US20110315346A1 - Cooling apparatus and heating apparatus - Google Patents
Cooling apparatus and heating apparatus Download PDFInfo
- Publication number
- US20110315346A1 US20110315346A1 US13/093,954 US201113093954A US2011315346A1 US 20110315346 A1 US20110315346 A1 US 20110315346A1 US 201113093954 A US201113093954 A US 201113093954A US 2011315346 A1 US2011315346 A1 US 2011315346A1
- Authority
- US
- United States
- Prior art keywords
- cooling
- substrate
- enclosure
- cooling means
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67173—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/005—Other direct-contact heat-exchange apparatus one heat-exchange medium being a solid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
Definitions
- the present invention relates to a cooling apparatus and a heating apparatus for a substrate for use in a magnetic recording medium manufacturing process.
- a substrate In a manufacturing process of a magnetic recording medium, a substrate is transported in vacuum, and various processes such as deposition, heating, cooling and the like are performed. In order to increase the throughput of the apparatus, it is requested to reduce a processing time (tact time) required for the processing in each chamber. In order to improve the cooling efficiency while reducing the tact time as described above, the cooling apparatus configured so that a cooling plate is brought close to the substrate has been proposed (see Japanese Patent Application Laid-Open Publication No. 2007-537356).
- the deposition processing is performed by heating the substrate to high temperatures in order to deposit high density magnetic film.
- the tact time is reduced to increase the throughput of the apparatus. Therefore, a cooling apparatus capable of cooling at high speed in short time has been demanded.
- the conventional cooling apparatus since a sufficient cooling efficiency cannot be ensured, such problem that the throughput is reduced occurs.
- An object of the present invention is to provide a cooling apparatus capable of improving a cooling efficiency and realizing a high speed cooling process.
- Another object of the present invention is to provide a heating apparatus capable of improving a heating efficiency of a substrate and heating the substrate at high speed.
- First aspect of the present invention is a cooling apparatus, comprising: a chamber; first cooling means provided in the chamber and configured to cool a substrate; second cooling means provided opposite to the first cooling means in the chamber and configured to cool the substrate; placement means configured to place a substrate holding section holding the substrate in a placement area between the first cooling means and the second cooling means; a gas supply opening provided in at least one of the first cooling means and the second cooling means and configured to supply gas that contributes to cooling of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first cooling means and the second cooling means so that the first cooling means and the second cooling means come close to the substrate holding section placed in the placement area.
- Second aspect of the present invention is a heating apparatus, comprising: a chamber; first heating means provided in the chamber and configured to heat a substrate; second heating means provided opposite to the first heating means in the chamber and configured to heat the substrate; placement means configured to place a substrate holding member holding the substrate in a placement area between the first heating means and the second heating means; a gas supply opening provided in at least one of the first heating means and the second heating means and configured to supply gas that contributes to heating of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first heating means and the second heating means so that the first heating means and the second heating means come close to the substrate holding section placed in the placement area.
- the cooling apparatus of the present invention it is possible to improve a cooling efficiency and realize a high speed cooling process while improving a throughput.
- the heating apparatus of the present invention it is possible to improve a heating efficiency of a substrate and realize a high speed process of heating the substrate.
- FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of this invention.
- FIG. 2 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a first embodiment of the present invention.
- FIG. 3 is a sectional side view illustrating an internal configuration of the cooling apparatus according to the first embodiment of the present invention.
- FIG. 4 is a view illustrating a cooling plate according to the first embodiment of this invention as viewed from a section taken along the line A-A of FIG. 2 .
- FIG. 5 is a view illustrating a modification of shapes of a first enclosure and a second enclosure according to the first embodiment of the present invention.
- FIG. 6 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
- FIG. 7 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
- FIG. 8 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
- FIG. 9 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a second embodiment of the present invention.
- FIG. 10 is front view of a cooling section according to the second embodiment of the present invention.
- FIG. 11 is a rear view of the cooling section according to the second embodiment of the present invention.
- FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate according to the second embodiment of the present invention.
- FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of the present invention.
- magnetic recording medium is not limited to a magnetic disk such as a hard disk or a floppy (registered trademark) disk using only magnetism when recording and reading information.
- magnetic recording medium includes, for example, a magneto optical recording medium such as an MO (Magneto Optical) disk using both magnetism and light, or a thermally assisted recording medium using both magnetism and heat.
- MO Magnetic Optical
- the substrate is formed in a disk shape with an opening at the center, and films are to be formed on both surfaces thereof.
- a load lock chamber 81 for loading a substrate 1 ( FIG. 2 ) to a carrier 2 an unload lock chamber 82 for unloading the substrate 1 from the carrier 2
- a plurality of chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 are arranged along a square-shaped outline thereof.
- a transport path 220 is formed along the load lock chamber 81 , chambers 201 to 218 , and the unload lock chamber 82 .
- Carriers 2 which can carry the substrate are provided on the transport path so that each of carriers 2 can be moved on the transport path.
- a processing time (tact time) required for the processing is predetermined. When this processing time (tact time) has elapsed, the carriers 2 are sequentially transported to the next chamber.
- the tact time in one chamber is about 5 sec or less, preferably, about 3.6 sec or less.
- Each of the load lock chamber 81 , unload lock chamber 82 , and chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 is a vacuum chamber that can be evacuated by a dedicated or shared evacuating system.
- Gate valves are provided in the boundary portions between the load lock chamber 81 , unload lock chamber 82 , and chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 , i.e., and at a carry-out port and a carry-in port of the carrier 2 .
- the chamber 201 of the magnetic recording medium manufacturing apparatus 200 forms a first soft magnetic layer on the substrate 1 .
- the direction change chamber 202 changes the transport direction of the carrier 2 .
- the chamber 203 forms a spacer layer on the first soft magnetic layer.
- the chamber 204 forms a second soft magnetic layer on the spacer layer.
- the chamber 205 forms a seed layer on the second soft magnetic layer.
- the direction change chamber 206 changes the transport direction of the carrier 2 .
- the magnetic recording medium manufacturing apparatus 200 also includes the chamber 207 (first heating chamber) and the chamber 208 (second heating chamber) for preheating the substrate 1 . Furthermore, the chamber 209 can form the seed layer.
- the chamber 210 can function as a sputtering apparatus to form a magnetic layer on the seed layer.
- the cooling chamber (cooling apparatus) 211 cools the substrate 1 having the magnetic layer formed thereon.
- the direction change chamber 212 changes the direction of the carrier 2 .
- the cooling chamber (cooling apparatus) 213 cools the substrate 1 located at the stop position in the chamber.
- the chamber 214 forms an exchange coupling control layer on the magnetic layer.
- the chamber 215 forms a third soft magnetic layer on the exchange coupling control layer.
- the direction change chamber 216 changes the direction of the carrier 2 .
- the chambers 217 and 218 form a protective layer.
- control means for example, computer for collectively managing a transportation process of the substrate carrier 2 , an evacuation operation of each chamber, a deposition process and the like.
- FIG. 2 is a sectional side view for illustrating the internal configuration of the cooling apparatus 211 .
- the cooling apparatus 211 includes the chamber 11 , the substrate carrier 2 having a substrate holding section for holding the substrate 1 , and a transport path 220 for transporting the substrate carrier 2 in the cooling apparatus 211 .
- the substrate carrier 2 is configured so as to be carried-in to the stop position inside the chamber 11 through the carry-in port of the chamber and to be further carried-out through the carry-out port of the chamber 11 .
- the cooling apparatus 211 includes a first cooling plate 3 a and a second cooling plate 3 b placed on both sides of the substrate carrier 2 carried-in to the stop position in the chamber, respectively.
- the first cooling plate 3 a and the second cooling plate 3 b are disposed in the chamber 11 so as to be opposite to each another.
- the substrate carrier 2 moves along the transport path 220 and stops at the above stop position so that the substrate support section of the substrate carrier 2 is located in an area (placement area) between the first cooling plate 3 a and the second cooling plate 3 b disposed so as to be opposite to each another. Namely, the movement and stop of the substrate carrier 2 are controlled so that the substrate 1 is located in the area (substrate placement area) where the substrate 1 should be located when being cooled.
- the transport mechanism (not shown) which is provided in the substrate carrier 2 and stops and moves the substrate carrier 2 along the transport path under the control of the control means, and the transport path 220 serve as placement means for placing the substrate holding section in the above placement area.
- the substrate 1 is held by the substrate carrier which serves both as the substrate holding section and the moving mechanism.
- the substrate 1 may be held by the substrate holder that functions as the substrate holding section.
- the substrate holder may be placed in the placement area so that the substrate 1 held by the substrate holder is located in the substrate placement area by a transport robot having arms capable of rotating, extending and shrinking as the placement means.
- the cooling apparatus 211 further includes a gas supply opening 4 formed at least in one of the first cooling plate 3 a and the second cooling plate 3 b , for supplying cooling gas to the substrate 1 , and a moving mechanism 10 as moving means capable of moving the first cooling plate 3 a and the second cooling plate 3 b so as to be close to the substrate carrier 2 located at the stop position. Furthermore, although not shown, a plurality of (three for example) holding claws for holding the substrate is formed on the substrate carrier 2 .
- the moving mechanism 10 is provided for each of the first cooling plate 3 a and the second cooling plate 3 b .
- the moving mechanism 10 for driving the first cooling plate 3 a is omitted for sake of convenience to schematically show the supply of the cooling gas from a cooling gas supply source 40 to the gas supply opening 4 .
- the first cooling plate 3 a and the second cooling plate 3 b are members for cooling the substrate, and are made up of, for example, copper plates having high thermal conductivity.
- ducts are provided for circulating therein cooling water.
- the ducts are connected to a cooling water supply source (not shown).
- the control means controls the cooling water supply source, and whereby cooling water flows in the ducts provided in the first cooling plate 3 a and the second cooling plate 3 b .
- the moving mechanism 10 has a driving source (motor) for moving the cooling plates (the first cooling plate 3 a and the second cooling plate 3 b ) so as to be close to the substrate carrier 2 carried-in from the carry-in port of the chamber 11 to the stop position in the chamber via support members (support members 9 a and 9 b ). Openings are formed respectively in the opposing side walls of the chamber 11 , and the support members 9 a and 9 b are inserted in the chamber 11 through the openings.
- the moving mechanism 10 (not shown in FIG. 2 ) is connected to the inserted support member 9 a outside the chamber 11 , while the base member 8 a is connected to the support member 9 a inside the chamber 11 .
- the first cooling plate 3 a is attached to the base member 8 a , and the gas supply opening 4 is formed in the first cooling plate 3 a , and the gas supply opening 4 is connected to a gas supply path 4 a that serves as the path for introducing cooling gas supplied from the cooling gas supply source 40 as the gas supply means.
- the cooling gas supplied from the cooling gas supply source 40 is supplied from the gas supply opening 4 via the gas supply path 4 a .
- the gas supply paths 4 a are provided respectively in the support member 9 a , the base member 8 a , and the first cooling plate 3 a . Therefore, according to this embodiment, it is not necessary to provide the moving mechanism of the cooling plate and the introduction path of the cooling gas separately.
- an enclosure 5 a that surrounds the first cooling plate 3 a , is mounted to the base member 8 a on which the first cooling plate 3 a is provided.
- an enclosure 5 b that surrounds the second cooling section 3 b , is mounted to the base member 8 b on which the second cooling plate 3 b is provided.
- the gas supply opening 4 is formed in the first cooling plate 3 a for supplying the cooling gas (for example, helium or hydrogen) from the cooling gas supply source 40 to the substrate 1 . As shown in FIG. 4 , the gas supply opening 4 is formed at the center of the first cooling plate 3 a for supplying gas to the central opening of the substrate 1 . In the cylindrical enclosure 5 a , notches 7 are formed at three positions corresponding to respective holding claws so as not to come in contact with the holding claws for the substrate carrier 2 .
- the gas supply opening 4 is formed only in the first cooling plate 3 a .
- the gas supply opening 4 may be formed also in the second cooling plate 3 b.
- a first cylindrical enclosure 5 a that extends from the base member 8 a to the second cooling plate 3 b is provided around the first cooling plate 3 a in the base member 8 a as the member for mounting the first cooling plate 3 a .
- a second cylindrical enclosure 5 b that extends from the base member 8 b to the second cooling plate 3 b is provided around the second cooling plate 3 b in the base member 8 b as the member for mounting the second cooling plate 3 b .
- the first enclosure 5 a is configured so as to surround around the first cooling plate 3 a supported by the base member 8 a to which the first enclosure 5 a is mounted, and to extend toward the second cooling plate 3 b provided opposite to the first cooling plate 3 a .
- the second enclosure 5 b is configured so as to surround around the second cooling plate 3 b supported by the base member 8 b to which the second enclosure 5 b is mounted, and to extend toward the first cooling plate 3 a provided opposite to the second cooling plate 3 b .
- openings are formed respectively to allow the first cooling plate 3 a and the second cooling plate 3 b to communicate with each other.
- the first enclosure 5 a is mounted to the base member 8 a so as to surround at least a part of the space between a first surface 8 c whereon the first cooling plate 3 a of the base member 8 a is formed, and a second surface 8 d whereon the second cooling plate 3 b of the base member 8 b is formed.
- the second enclosure 5 b is mounted to the base member 8 b so as to surround at least a part of the space between the first surface 8 c and the second surface 8 d.
- cylindrical indicates a substantially cylindrical shape, including a partially notched cylindrical shape.
- the first enclosure 5 a is formed longer than the second enclosure 5 b .
- the present invention is not limited to this. Namely, as shown in FIG. 3 , in the present embodiment, it is important to cover the space between the first surface 8 c and the second surface 8 d with the first enclosure 5 a and the second enclosure 5 b in the state where the first cooling plate 3 a and the second cooling plate 3 b are placed so as to be close to the substrate 1 (in the state of actually carrying out the cooling process).
- the respective lengths of the first enclosure 5 a and the second enclosure are not particularly limited as long as the above covering can be realized.
- the length of the enclosure is not longer than the distance between the first surface 8 c of the first cooling plate 3 a when carrying out the cooling process of the substrate 1 and the second surface 8 d of the second cooling plate 3 b when carrying out the cooling process of the substrate, it is possible to surround at least a part of the space between the first surface 8 c and the second surface 8 d when carrying out the cooling process. Therefore, with the enclosures, it is possible to suppress the cooling gas supplied to the vicinity of the substrate 1 from being leaked from the space where the substrate 1 is placed to the outside as will be described later.
- both the first enclosure 5 a and the second enclosure 5 b are formed concentrically about the center of the substrate surface.
- the first enclosure 5 a has a smaller diameter than that of the second enclosure 5 b .
- the closed loops of the first enclosure 5 a and the second enclosure 5 b have concentric circular shapes.
- the present invention is not limited to this.
- the first cooling plate 3 a , and the second cooling plate 3 b are placed in the vicinity (namely, when the cooling operation is to be performed)
- the first enclosure 5 a and the second enclosure 5 b are provided.
- the respective shapes of the first enclosure 5 a and the second enclosure 5 b are not particularly limited, and, for example, polygon such as quadrangle, pentagon, and hexagon, closed-looped shape may be adopted.
- the control means is configured so that the moving mechanism 10 is driven to move the first cooling plate 3 a and the second cooling plate 3 b to come close to the substrate carrier 2 (state shown in FIG. 3 ), and then the cooling gas supply source 40 is controlled to supply the cooling gas to the supply path 4 a , and the cooling water supply source is controlled to supply the cooling water to the inside of the first cooling plate 3 a and the second cooling plate 3 b .
- the cooling gas can be efficiently introduced into the closed space surrounding the substrate 1 , and the cooling efficiency can be improved not only by the cooling function by the first cooling plate 3 a and second cooling plate 3 b but also by the cooling function with the cooling gas.
- cooling gas is a gas that contributes to the cooling of the substrate. As long as the substrate can be consequently cooled with the cooling gas, such cooling gas is included in the cooling gas of the present invention even if its function of cooling the substrate is different.
- the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b can be promoted. Namely, since helium or hydrogen functions as a medium for the heat transfer, the heat can be more efficiently transferred from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b . Therefore, a gas such as helium or hydrogen that functions as a heat transfer medium is included in the cooling gas of the present invention.
- the low temperature gas (for example, the gas whose temperature is lower than that of the substrate 1 ) may be used as cooling gas.
- the low temperature gas may be generated by the cooling gas supply source 40 , to be supplied therefrom to the gas supply opening 4 through the supply path 4 a .
- the substrate 1 since the gas whose temperature is lower than that of the substrate 1 is blown onto the substrate 1 , the substrate 1 can be cooled not only by the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b but also by the gas itself.
- the cooling gas includes both the gas that is indirectly functioned to cool the substrate 1 and the gas that is directly functioned to cool the substrate 1 , and any gas that can be used for cooling the substrate falls under the cooling gas of the present invention.
- the cooling of the substrate 1 is performed in the state where both the first cooling plate 3 a and the second cooling plate are brought close to the substrate 1 , it is possible to carry out the cooling by means of the cooling plates, i.e., the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b in an efficient manner.
- the gas supply opening 4 configured to supply the cooling gas is provided in at least one of the first cooling plate 3 a and the second cooling plate 3 b that serve as the receiving plates for the heat from the substrate 1 . Therefore, it is possible to supply the cooling gas to the substrate 1 from the position near the substrate 1 . As a result, the substrate 1 can be cooled in more efficient manner.
- the first enclosure 5 a is mounted to the base member 8 a whereon the first cooling plate 3 a is provided
- the second enclosure 5 b is mounted to the base member 8 b whereon the second cooling plate 3 b is provided. Therefore, by placing the first cooling plate 3 a and the second cooling plate 3 b so that they come close to the substrate 1 when carrying out the cooling process, the space surrounding the substrate 1 , the first cooling plate 3 a and the second cooling plate 3 b , is automatically formed. Therefore, it can be reduced that the cooling gas supplied from the gas supply opening 4 formed in the first cooling plate 3 a escapes in the outside of the surrounding space, thereby realizing a still improved cooling efficiency.
- the first enclosure 5 a and the second enclosure 5 b are provided, and the gas supply opening 4 is formed in at least one of the first cooling plate 3 a and the second cooling plate 3 b that are placed in the vicinity of the substrate 1 in the cooling operation.
- the cooling gas can be supplied into the space (the surrounding space) partitioned by the first enclosure 5 a , the second enclosure 5 b , the base member 8 a , and the base member 8 b . It is therefore possible to make the cooling gas acting on cooling of the substrate be present in a limited manner at necessary portions (within the partitioned space).
- the cooling process of the substrate when the cooling process of the substrate is carried out, it is possible to form automatically the space defined by partitions formed so as to surround the substrate 1 in the state where the substrate 1 is brought close to the first cooling plate 3 a and the second cooling plate 3 b , and to supply the cooling gas into the space locally.
- FIG. 5 is a view illustrating a first modification of shapes of the first enclosure and the second enclosure.
- both of the first enclosure 5 a and the second enclosure 5 b are enclosures formed concentrically about the center of the substrate surface, in which the first enclosure 5 a and the second enclosure 5 b have the same diameter. Namely, as shown in FIG. 5 , when the first cooling plate 3 a and the second cooling plate 3 b come close to the substrate carrier 2 , the leading end of the first enclosure 5 a and the leading end of the second enclosure 5 b come in contact with each other.
- FIG. 6 is a view illustrating a second modification of shapes of the first enclosure and the second enclosure.
- both of the first enclosure 5 a and the second enclosure 5 b are inserted in the openings of the substrate carrier 2 .
- notches are formed for avoiding the holding claws of the substrate carrier 2 both in the first enclosure 5 a and the second enclosure 5 b .
- the gap between the first enclosure 5 a and the second enclosure 5 b is formed in a Labyrinth shape.
- FIG. 7 is a view illustrating a third modification of shapes of the first enclosure and the second enclosure.
- an end member 6 having a first concave part and a second concave part formed on both sides is formed on the side of holding the substrate of the substrate carrier 2 .
- the first enclosure 5 a and the second enclosure 5 b are inserted in the first concave part and the second concave part respectively.
- the first enclosure 5 a and the first concave part, and the second enclosure 5 b and the second concave part form Labyrinth shapes respectively.
- FIG. 8 is a view illustrating a fourth embodiment of shapes of the first enclosure and the second enclosure.
- an end member 6 is formed on the side of holding the substrate of the substrate carrier 2 so as to be projected toward the first cooling plate 3 a and the second cooling plate 3 b .
- the gap between the first enclosure 5 a and the end member 6 , and the gap between the second enclosure 5 b and the end member 6 form a labyrinth shape respectively.
- both the first enclosure 5 a and the second enclosure 5 b are provided.
- the structure wherein either one of the first enclosure 5 a and the second enclosure 5 b is provided may be adopted.
- the cooling plate 3 is adopted as cooling means for cooling the substrate.
- the present invention is not limited to this.
- a heating plate provided with a heater or the like as the heating means for heating the substrate may be used.
- the apparatus provided with the heating plate may be adopted as the first heating chamber 207 or the second heating chamber 208 in FIG. 1 .
- the gas to be supplied from the gas supply opening 4 is the heating gas.
- a heating gas supply source is provided in place of the cooling gas supply source 40 .
- the heating gas indicates the gas that contributes to heating the substrate, and any heat gas that eventually heats the substrate falls under the “the heating gas” even if the function of heating the substrate is different.
- the heating gas for example, gas that functions as a heat transfer medium such as helium, hydrogen or the like, or gas having a higher temperature than that of the substrate may be used.
- the heating gas includes both gas that is indirectly functioned to heat the substrate 1 and gas that is directly functioned to heat the substrate 1 , and any gas that can be used for heating the substrate falls under the heating gas of the present invention.
- cooling apparatus and the heating apparatus of the present invention can be realized by any combinations of the features described in each modification.
- FIG. 9 is a sectional side view illustrating an entire configuration of the cooling apparatus according to the second embodiment of the present invention.
- elements identical with those shown in FIG. 2 are denoted by the same reference numerals, and the detailed description thereof may be omitted as appropriate.
- a duct is provided as cooling means for circulating cooling water in the cooling plate 3 .
- a Peltier device 31 is provided as cooling means for cooling the substrate.
- a cooling apparatus 211 is provided on the vacuum side via a chamber wall 11 , and a moving mechanism 10 as the moving means and the power introducing means (not shown) are provided on the atmospheric side.
- the moving mechanism 10 changes a rotational force of a motor into a rectilinear motion with a ball screw to move a base member 12 back and forth. As a result, the Peltier device 31 can be brought close to the substrate via a shaft 38 .
- FIG. 10 is an enlarged sectional view of the cooling apparatus.
- the Peltier device 31 On the back side of a heat transfer section 30 having a heat transfer function made of ceramic or the like, the Peltier device 31 is provided so as to be sandwiched between a first metal member 35 and a second metal member 34 .
- the Peltier device 31 is arranged such that a P-type semiconductor device and an N-type semiconductor device are provided alternately at equal intervals.
- the Peltier device 31 exhibits the cooling effect by flowing of current across the first metal member 35 and the second metal member 34 via a wiring 36 connected to the power introducing means. When the front surface side of the Peltier device 31 is cooled, heat is radiated from the back surface side of the Peltier device 31 .
- an air duct 37 is provided on the back surface side of the Peltier device 31 , for introducing the cooling air for cooling the Peltier device 31 .
- the space between the Peltier device 31 and the heat transfer section 30 is sealed with an O-ring 33 .
- the space between the heat transfer section 30 and the base plate 32 is also sealed with an O-ring 33 .
- FIG. 11 is a view illustrating the cooling section when seen from the side of the substrate.
- the Peltier device 31 in a disc shape is formed on the first metal member 35 in a disc shape having a larger diameter than the Peltier device 31 (not shown in FIG. 11 ).
- the disk-shaped first metal member 35 can be secured onto the heat transfer section 30 by means of screws via four holes 39 formed along the outside edge. At respective centers of the Peltier device 31 and the first metal member 35 , openings are formed to be connected with the above-described gas supply opening 4 .
- FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate. As shown in the Figure, Peltier devices 31 are provided alternately at equal intervals. However, any design may be adopted without being limited to this.
- the cooling apparatus unlike the case of the first embodiment, it is not necessary to provide the duct for introducing cooling water inside the cooling plate. Thus, a problem of leakage of water does not occur. Similarly, according to the cooling apparatus of this embodiment, since the duct for introducing the cooling water inside the cooling plate is not provided, a problem of condensation when venting the chamber does not occur.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-147748 | 2010-06-29 | ||
JP2010147748 | 2010-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110315346A1 true US20110315346A1 (en) | 2011-12-29 |
Family
ID=45351410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/093,954 Abandoned US20110315346A1 (en) | 2010-06-29 | 2011-04-26 | Cooling apparatus and heating apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110315346A1 (enrdf_load_stackoverflow) |
JP (1) | JP5220147B2 (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130280838A1 (en) * | 2012-04-18 | 2013-10-24 | Samsung Display Co., Ltd. | Method for fabricating array substrate and fabrication apparatus used therefor |
CN103628031A (zh) * | 2012-08-22 | 2014-03-12 | Ap系统股份有限公司 | 冷却水处理装置、方法及其基板处理装置 |
US20140151360A1 (en) * | 2012-11-30 | 2014-06-05 | Wd Media, Inc. | Heater assembly for disk processing system |
US11072854B2 (en) * | 2018-01-25 | 2021-07-27 | Boe Technology Group Co., Ltd. | Substrate fixing carrier, evaporation device and evaporation method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5849934B2 (ja) * | 2012-11-16 | 2016-02-03 | 住友金属鉱山株式会社 | 真空成膜装置と真空成膜方法 |
JP6231399B2 (ja) * | 2014-02-17 | 2017-11-15 | キヤノンアネルバ株式会社 | 処理装置 |
JP7027057B2 (ja) * | 2017-07-18 | 2022-03-01 | 株式会社アルバック | 基板搬送装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5181556A (en) * | 1991-09-20 | 1993-01-26 | Intevac, Inc. | System for substrate cooling in an evacuated environment |
US20060179848A1 (en) * | 2005-02-14 | 2006-08-17 | Asia Vital Component Co., Ltd. | Radiator unit |
US20070283709A1 (en) * | 2006-06-09 | 2007-12-13 | Veeco Instruments Inc. | Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3021016B2 (ja) * | 1990-10-04 | 2000-03-15 | 日本真空技術株式会社 | 基板冷却機構 |
JP3793273B2 (ja) * | 1996-02-19 | 2006-07-05 | 株式会社ルネサステクノロジ | 半導体集積回路装置の製造方法 |
US5753092A (en) * | 1996-08-26 | 1998-05-19 | Velocidata, Inc. | Cylindrical carriage sputtering system |
JP2953395B2 (ja) * | 1996-09-05 | 1999-09-27 | 日本電気株式会社 | スパッタリング装置 |
JP2010093293A (ja) * | 2010-01-14 | 2010-04-22 | Canon Anelva Corp | 絶縁膜エッチング装置 |
-
2011
- 2011-03-03 JP JP2011045872A patent/JP5220147B2/ja active Active
- 2011-04-26 US US13/093,954 patent/US20110315346A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5181556A (en) * | 1991-09-20 | 1993-01-26 | Intevac, Inc. | System for substrate cooling in an evacuated environment |
US20060179848A1 (en) * | 2005-02-14 | 2006-08-17 | Asia Vital Component Co., Ltd. | Radiator unit |
US20070283709A1 (en) * | 2006-06-09 | 2007-12-13 | Veeco Instruments Inc. | Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130280838A1 (en) * | 2012-04-18 | 2013-10-24 | Samsung Display Co., Ltd. | Method for fabricating array substrate and fabrication apparatus used therefor |
US9070715B2 (en) * | 2012-04-18 | 2015-06-30 | Samsung Display Co., Ltd. | Method for fabricating array substrate and fabrication apparatus used therefor |
CN103628031A (zh) * | 2012-08-22 | 2014-03-12 | Ap系统股份有限公司 | 冷却水处理装置、方法及其基板处理装置 |
US20140151360A1 (en) * | 2012-11-30 | 2014-06-05 | Wd Media, Inc. | Heater assembly for disk processing system |
US11072854B2 (en) * | 2018-01-25 | 2021-07-27 | Boe Technology Group Co., Ltd. | Substrate fixing carrier, evaporation device and evaporation method |
Also Published As
Publication number | Publication date |
---|---|
JP2012031504A (ja) | 2012-02-16 |
JP5220147B2 (ja) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110315346A1 (en) | Cooling apparatus and heating apparatus | |
JP5462272B2 (ja) | 基板冷却装置、スパッタリング装置および電子デバイスの製造方法 | |
KR100613171B1 (ko) | 반도체 기판 냉각 방법 및 장치 | |
US5753092A (en) | Cylindrical carriage sputtering system | |
US9214371B2 (en) | Thermal treatment apparatus and thermal treatment method | |
CN1854908B (zh) | 加热装置、和涂敷、显影装置以及加热方法 | |
US6228171B1 (en) | Heat processing apparatus | |
KR102188702B1 (ko) | 증착 시스템 | |
KR100886023B1 (ko) | 가열처리장치 | |
JP2017506703A (ja) | キャリアによって支持された基板上に一又は複数の層を堆積させるためのシステム、及び当該システムを使用する方法 | |
JP2010126789A (ja) | スパッタ成膜装置 | |
JP5470979B2 (ja) | 磁場中熱処理装置、及び、磁場中熱処理方法 | |
KR102397849B1 (ko) | 기판 처리 장치 | |
US11694907B2 (en) | Substrate processing apparatus, recording medium, and fluid circulation mechanism | |
TWI745744B (zh) | 基板處理裝置、半導體裝置之製造方法及記錄媒體 | |
KR20220166758A (ko) | 기판 반송 장치를 포함하는 기판 처리 시스템 | |
JP2023069172A (ja) | 基板の搬送を行う装置、及び基板を搬送する方法 | |
JP6303167B2 (ja) | インライン式成膜装置及びそれを用いた磁気記録媒体の製造方法 | |
JP2017214654A (ja) | 有機材料用の蒸発源、有機材料用の蒸発源を有する装置、有機材料用の蒸発源を含む蒸発堆積装置を有するシステム、及び有機材料用の蒸発源を操作するための方法 | |
JP2018022773A (ja) | 蓋体及びこれを用いた基板処理装置 | |
JP4028198B2 (ja) | 熱処理装置 | |
JPH10214772A (ja) | 基板熱処理装置 | |
JP2006049489A (ja) | 基板処理装置 | |
US20240244717A1 (en) | Heat treatment chamber, film forming apparatus, and substrate heating method | |
JP4255010B2 (ja) | 基板温度制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON ANELVA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIMURA, HIDEKAZU;MAJIMA, KAZUYUKI;KITAGAWA, JUNICHI;AND OTHERS;SIGNING DATES FROM 20110513 TO 20110516;REEL/FRAME:026416/0728 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |