US20110315346A1 - Cooling apparatus and heating apparatus - Google Patents

Cooling apparatus and heating apparatus Download PDF

Info

Publication number
US20110315346A1
US20110315346A1 US13/093,954 US201113093954A US2011315346A1 US 20110315346 A1 US20110315346 A1 US 20110315346A1 US 201113093954 A US201113093954 A US 201113093954A US 2011315346 A1 US2011315346 A1 US 2011315346A1
Authority
US
United States
Prior art keywords
cooling
substrate
enclosure
cooling means
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/093,954
Inventor
Hidekazu Nishimura
Kazuyuki Majima
Junichi Kitagawa
Naoyuki Nozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Assigned to CANON ANELVA CORPORATION reassignment CANON ANELVA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KITAGAWA, JUNICHI, NISHIMURA, HIDEKAZU, NOZAWA, NAOYUKI, MAJIMA, KAZUYUKI
Publication of US20110315346A1 publication Critical patent/US20110315346A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/005Other direct-contact heat-exchange apparatus one heat-exchange medium being a solid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Definitions

  • the present invention relates to a cooling apparatus and a heating apparatus for a substrate for use in a magnetic recording medium manufacturing process.
  • a substrate In a manufacturing process of a magnetic recording medium, a substrate is transported in vacuum, and various processes such as deposition, heating, cooling and the like are performed. In order to increase the throughput of the apparatus, it is requested to reduce a processing time (tact time) required for the processing in each chamber. In order to improve the cooling efficiency while reducing the tact time as described above, the cooling apparatus configured so that a cooling plate is brought close to the substrate has been proposed (see Japanese Patent Application Laid-Open Publication No. 2007-537356).
  • the deposition processing is performed by heating the substrate to high temperatures in order to deposit high density magnetic film.
  • the tact time is reduced to increase the throughput of the apparatus. Therefore, a cooling apparatus capable of cooling at high speed in short time has been demanded.
  • the conventional cooling apparatus since a sufficient cooling efficiency cannot be ensured, such problem that the throughput is reduced occurs.
  • An object of the present invention is to provide a cooling apparatus capable of improving a cooling efficiency and realizing a high speed cooling process.
  • Another object of the present invention is to provide a heating apparatus capable of improving a heating efficiency of a substrate and heating the substrate at high speed.
  • First aspect of the present invention is a cooling apparatus, comprising: a chamber; first cooling means provided in the chamber and configured to cool a substrate; second cooling means provided opposite to the first cooling means in the chamber and configured to cool the substrate; placement means configured to place a substrate holding section holding the substrate in a placement area between the first cooling means and the second cooling means; a gas supply opening provided in at least one of the first cooling means and the second cooling means and configured to supply gas that contributes to cooling of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first cooling means and the second cooling means so that the first cooling means and the second cooling means come close to the substrate holding section placed in the placement area.
  • Second aspect of the present invention is a heating apparatus, comprising: a chamber; first heating means provided in the chamber and configured to heat a substrate; second heating means provided opposite to the first heating means in the chamber and configured to heat the substrate; placement means configured to place a substrate holding member holding the substrate in a placement area between the first heating means and the second heating means; a gas supply opening provided in at least one of the first heating means and the second heating means and configured to supply gas that contributes to heating of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first heating means and the second heating means so that the first heating means and the second heating means come close to the substrate holding section placed in the placement area.
  • the cooling apparatus of the present invention it is possible to improve a cooling efficiency and realize a high speed cooling process while improving a throughput.
  • the heating apparatus of the present invention it is possible to improve a heating efficiency of a substrate and realize a high speed process of heating the substrate.
  • FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of this invention.
  • FIG. 2 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a sectional side view illustrating an internal configuration of the cooling apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a view illustrating a cooling plate according to the first embodiment of this invention as viewed from a section taken along the line A-A of FIG. 2 .
  • FIG. 5 is a view illustrating a modification of shapes of a first enclosure and a second enclosure according to the first embodiment of the present invention.
  • FIG. 6 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 7 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 8 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 9 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a second embodiment of the present invention.
  • FIG. 10 is front view of a cooling section according to the second embodiment of the present invention.
  • FIG. 11 is a rear view of the cooling section according to the second embodiment of the present invention.
  • FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate according to the second embodiment of the present invention.
  • FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of the present invention.
  • magnetic recording medium is not limited to a magnetic disk such as a hard disk or a floppy (registered trademark) disk using only magnetism when recording and reading information.
  • magnetic recording medium includes, for example, a magneto optical recording medium such as an MO (Magneto Optical) disk using both magnetism and light, or a thermally assisted recording medium using both magnetism and heat.
  • MO Magnetic Optical
  • the substrate is formed in a disk shape with an opening at the center, and films are to be formed on both surfaces thereof.
  • a load lock chamber 81 for loading a substrate 1 ( FIG. 2 ) to a carrier 2 an unload lock chamber 82 for unloading the substrate 1 from the carrier 2
  • a plurality of chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 are arranged along a square-shaped outline thereof.
  • a transport path 220 is formed along the load lock chamber 81 , chambers 201 to 218 , and the unload lock chamber 82 .
  • Carriers 2 which can carry the substrate are provided on the transport path so that each of carriers 2 can be moved on the transport path.
  • a processing time (tact time) required for the processing is predetermined. When this processing time (tact time) has elapsed, the carriers 2 are sequentially transported to the next chamber.
  • the tact time in one chamber is about 5 sec or less, preferably, about 3.6 sec or less.
  • Each of the load lock chamber 81 , unload lock chamber 82 , and chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 is a vacuum chamber that can be evacuated by a dedicated or shared evacuating system.
  • Gate valves are provided in the boundary portions between the load lock chamber 81 , unload lock chamber 82 , and chambers 201 , 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 , 212 , 213 , 214 , 215 , 216 , 217 and 218 , i.e., and at a carry-out port and a carry-in port of the carrier 2 .
  • the chamber 201 of the magnetic recording medium manufacturing apparatus 200 forms a first soft magnetic layer on the substrate 1 .
  • the direction change chamber 202 changes the transport direction of the carrier 2 .
  • the chamber 203 forms a spacer layer on the first soft magnetic layer.
  • the chamber 204 forms a second soft magnetic layer on the spacer layer.
  • the chamber 205 forms a seed layer on the second soft magnetic layer.
  • the direction change chamber 206 changes the transport direction of the carrier 2 .
  • the magnetic recording medium manufacturing apparatus 200 also includes the chamber 207 (first heating chamber) and the chamber 208 (second heating chamber) for preheating the substrate 1 . Furthermore, the chamber 209 can form the seed layer.
  • the chamber 210 can function as a sputtering apparatus to form a magnetic layer on the seed layer.
  • the cooling chamber (cooling apparatus) 211 cools the substrate 1 having the magnetic layer formed thereon.
  • the direction change chamber 212 changes the direction of the carrier 2 .
  • the cooling chamber (cooling apparatus) 213 cools the substrate 1 located at the stop position in the chamber.
  • the chamber 214 forms an exchange coupling control layer on the magnetic layer.
  • the chamber 215 forms a third soft magnetic layer on the exchange coupling control layer.
  • the direction change chamber 216 changes the direction of the carrier 2 .
  • the chambers 217 and 218 form a protective layer.
  • control means for example, computer for collectively managing a transportation process of the substrate carrier 2 , an evacuation operation of each chamber, a deposition process and the like.
  • FIG. 2 is a sectional side view for illustrating the internal configuration of the cooling apparatus 211 .
  • the cooling apparatus 211 includes the chamber 11 , the substrate carrier 2 having a substrate holding section for holding the substrate 1 , and a transport path 220 for transporting the substrate carrier 2 in the cooling apparatus 211 .
  • the substrate carrier 2 is configured so as to be carried-in to the stop position inside the chamber 11 through the carry-in port of the chamber and to be further carried-out through the carry-out port of the chamber 11 .
  • the cooling apparatus 211 includes a first cooling plate 3 a and a second cooling plate 3 b placed on both sides of the substrate carrier 2 carried-in to the stop position in the chamber, respectively.
  • the first cooling plate 3 a and the second cooling plate 3 b are disposed in the chamber 11 so as to be opposite to each another.
  • the substrate carrier 2 moves along the transport path 220 and stops at the above stop position so that the substrate support section of the substrate carrier 2 is located in an area (placement area) between the first cooling plate 3 a and the second cooling plate 3 b disposed so as to be opposite to each another. Namely, the movement and stop of the substrate carrier 2 are controlled so that the substrate 1 is located in the area (substrate placement area) where the substrate 1 should be located when being cooled.
  • the transport mechanism (not shown) which is provided in the substrate carrier 2 and stops and moves the substrate carrier 2 along the transport path under the control of the control means, and the transport path 220 serve as placement means for placing the substrate holding section in the above placement area.
  • the substrate 1 is held by the substrate carrier which serves both as the substrate holding section and the moving mechanism.
  • the substrate 1 may be held by the substrate holder that functions as the substrate holding section.
  • the substrate holder may be placed in the placement area so that the substrate 1 held by the substrate holder is located in the substrate placement area by a transport robot having arms capable of rotating, extending and shrinking as the placement means.
  • the cooling apparatus 211 further includes a gas supply opening 4 formed at least in one of the first cooling plate 3 a and the second cooling plate 3 b , for supplying cooling gas to the substrate 1 , and a moving mechanism 10 as moving means capable of moving the first cooling plate 3 a and the second cooling plate 3 b so as to be close to the substrate carrier 2 located at the stop position. Furthermore, although not shown, a plurality of (three for example) holding claws for holding the substrate is formed on the substrate carrier 2 .
  • the moving mechanism 10 is provided for each of the first cooling plate 3 a and the second cooling plate 3 b .
  • the moving mechanism 10 for driving the first cooling plate 3 a is omitted for sake of convenience to schematically show the supply of the cooling gas from a cooling gas supply source 40 to the gas supply opening 4 .
  • the first cooling plate 3 a and the second cooling plate 3 b are members for cooling the substrate, and are made up of, for example, copper plates having high thermal conductivity.
  • ducts are provided for circulating therein cooling water.
  • the ducts are connected to a cooling water supply source (not shown).
  • the control means controls the cooling water supply source, and whereby cooling water flows in the ducts provided in the first cooling plate 3 a and the second cooling plate 3 b .
  • the moving mechanism 10 has a driving source (motor) for moving the cooling plates (the first cooling plate 3 a and the second cooling plate 3 b ) so as to be close to the substrate carrier 2 carried-in from the carry-in port of the chamber 11 to the stop position in the chamber via support members (support members 9 a and 9 b ). Openings are formed respectively in the opposing side walls of the chamber 11 , and the support members 9 a and 9 b are inserted in the chamber 11 through the openings.
  • the moving mechanism 10 (not shown in FIG. 2 ) is connected to the inserted support member 9 a outside the chamber 11 , while the base member 8 a is connected to the support member 9 a inside the chamber 11 .
  • the first cooling plate 3 a is attached to the base member 8 a , and the gas supply opening 4 is formed in the first cooling plate 3 a , and the gas supply opening 4 is connected to a gas supply path 4 a that serves as the path for introducing cooling gas supplied from the cooling gas supply source 40 as the gas supply means.
  • the cooling gas supplied from the cooling gas supply source 40 is supplied from the gas supply opening 4 via the gas supply path 4 a .
  • the gas supply paths 4 a are provided respectively in the support member 9 a , the base member 8 a , and the first cooling plate 3 a . Therefore, according to this embodiment, it is not necessary to provide the moving mechanism of the cooling plate and the introduction path of the cooling gas separately.
  • an enclosure 5 a that surrounds the first cooling plate 3 a , is mounted to the base member 8 a on which the first cooling plate 3 a is provided.
  • an enclosure 5 b that surrounds the second cooling section 3 b , is mounted to the base member 8 b on which the second cooling plate 3 b is provided.
  • the gas supply opening 4 is formed in the first cooling plate 3 a for supplying the cooling gas (for example, helium or hydrogen) from the cooling gas supply source 40 to the substrate 1 . As shown in FIG. 4 , the gas supply opening 4 is formed at the center of the first cooling plate 3 a for supplying gas to the central opening of the substrate 1 . In the cylindrical enclosure 5 a , notches 7 are formed at three positions corresponding to respective holding claws so as not to come in contact with the holding claws for the substrate carrier 2 .
  • the gas supply opening 4 is formed only in the first cooling plate 3 a .
  • the gas supply opening 4 may be formed also in the second cooling plate 3 b.
  • a first cylindrical enclosure 5 a that extends from the base member 8 a to the second cooling plate 3 b is provided around the first cooling plate 3 a in the base member 8 a as the member for mounting the first cooling plate 3 a .
  • a second cylindrical enclosure 5 b that extends from the base member 8 b to the second cooling plate 3 b is provided around the second cooling plate 3 b in the base member 8 b as the member for mounting the second cooling plate 3 b .
  • the first enclosure 5 a is configured so as to surround around the first cooling plate 3 a supported by the base member 8 a to which the first enclosure 5 a is mounted, and to extend toward the second cooling plate 3 b provided opposite to the first cooling plate 3 a .
  • the second enclosure 5 b is configured so as to surround around the second cooling plate 3 b supported by the base member 8 b to which the second enclosure 5 b is mounted, and to extend toward the first cooling plate 3 a provided opposite to the second cooling plate 3 b .
  • openings are formed respectively to allow the first cooling plate 3 a and the second cooling plate 3 b to communicate with each other.
  • the first enclosure 5 a is mounted to the base member 8 a so as to surround at least a part of the space between a first surface 8 c whereon the first cooling plate 3 a of the base member 8 a is formed, and a second surface 8 d whereon the second cooling plate 3 b of the base member 8 b is formed.
  • the second enclosure 5 b is mounted to the base member 8 b so as to surround at least a part of the space between the first surface 8 c and the second surface 8 d.
  • cylindrical indicates a substantially cylindrical shape, including a partially notched cylindrical shape.
  • the first enclosure 5 a is formed longer than the second enclosure 5 b .
  • the present invention is not limited to this. Namely, as shown in FIG. 3 , in the present embodiment, it is important to cover the space between the first surface 8 c and the second surface 8 d with the first enclosure 5 a and the second enclosure 5 b in the state where the first cooling plate 3 a and the second cooling plate 3 b are placed so as to be close to the substrate 1 (in the state of actually carrying out the cooling process).
  • the respective lengths of the first enclosure 5 a and the second enclosure are not particularly limited as long as the above covering can be realized.
  • the length of the enclosure is not longer than the distance between the first surface 8 c of the first cooling plate 3 a when carrying out the cooling process of the substrate 1 and the second surface 8 d of the second cooling plate 3 b when carrying out the cooling process of the substrate, it is possible to surround at least a part of the space between the first surface 8 c and the second surface 8 d when carrying out the cooling process. Therefore, with the enclosures, it is possible to suppress the cooling gas supplied to the vicinity of the substrate 1 from being leaked from the space where the substrate 1 is placed to the outside as will be described later.
  • both the first enclosure 5 a and the second enclosure 5 b are formed concentrically about the center of the substrate surface.
  • the first enclosure 5 a has a smaller diameter than that of the second enclosure 5 b .
  • the closed loops of the first enclosure 5 a and the second enclosure 5 b have concentric circular shapes.
  • the present invention is not limited to this.
  • the first cooling plate 3 a , and the second cooling plate 3 b are placed in the vicinity (namely, when the cooling operation is to be performed)
  • the first enclosure 5 a and the second enclosure 5 b are provided.
  • the respective shapes of the first enclosure 5 a and the second enclosure 5 b are not particularly limited, and, for example, polygon such as quadrangle, pentagon, and hexagon, closed-looped shape may be adopted.
  • the control means is configured so that the moving mechanism 10 is driven to move the first cooling plate 3 a and the second cooling plate 3 b to come close to the substrate carrier 2 (state shown in FIG. 3 ), and then the cooling gas supply source 40 is controlled to supply the cooling gas to the supply path 4 a , and the cooling water supply source is controlled to supply the cooling water to the inside of the first cooling plate 3 a and the second cooling plate 3 b .
  • the cooling gas can be efficiently introduced into the closed space surrounding the substrate 1 , and the cooling efficiency can be improved not only by the cooling function by the first cooling plate 3 a and second cooling plate 3 b but also by the cooling function with the cooling gas.
  • cooling gas is a gas that contributes to the cooling of the substrate. As long as the substrate can be consequently cooled with the cooling gas, such cooling gas is included in the cooling gas of the present invention even if its function of cooling the substrate is different.
  • the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b can be promoted. Namely, since helium or hydrogen functions as a medium for the heat transfer, the heat can be more efficiently transferred from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b . Therefore, a gas such as helium or hydrogen that functions as a heat transfer medium is included in the cooling gas of the present invention.
  • the low temperature gas (for example, the gas whose temperature is lower than that of the substrate 1 ) may be used as cooling gas.
  • the low temperature gas may be generated by the cooling gas supply source 40 , to be supplied therefrom to the gas supply opening 4 through the supply path 4 a .
  • the substrate 1 since the gas whose temperature is lower than that of the substrate 1 is blown onto the substrate 1 , the substrate 1 can be cooled not only by the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b but also by the gas itself.
  • the cooling gas includes both the gas that is indirectly functioned to cool the substrate 1 and the gas that is directly functioned to cool the substrate 1 , and any gas that can be used for cooling the substrate falls under the cooling gas of the present invention.
  • the cooling of the substrate 1 is performed in the state where both the first cooling plate 3 a and the second cooling plate are brought close to the substrate 1 , it is possible to carry out the cooling by means of the cooling plates, i.e., the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b in an efficient manner.
  • the gas supply opening 4 configured to supply the cooling gas is provided in at least one of the first cooling plate 3 a and the second cooling plate 3 b that serve as the receiving plates for the heat from the substrate 1 . Therefore, it is possible to supply the cooling gas to the substrate 1 from the position near the substrate 1 . As a result, the substrate 1 can be cooled in more efficient manner.
  • the first enclosure 5 a is mounted to the base member 8 a whereon the first cooling plate 3 a is provided
  • the second enclosure 5 b is mounted to the base member 8 b whereon the second cooling plate 3 b is provided. Therefore, by placing the first cooling plate 3 a and the second cooling plate 3 b so that they come close to the substrate 1 when carrying out the cooling process, the space surrounding the substrate 1 , the first cooling plate 3 a and the second cooling plate 3 b , is automatically formed. Therefore, it can be reduced that the cooling gas supplied from the gas supply opening 4 formed in the first cooling plate 3 a escapes in the outside of the surrounding space, thereby realizing a still improved cooling efficiency.
  • the first enclosure 5 a and the second enclosure 5 b are provided, and the gas supply opening 4 is formed in at least one of the first cooling plate 3 a and the second cooling plate 3 b that are placed in the vicinity of the substrate 1 in the cooling operation.
  • the cooling gas can be supplied into the space (the surrounding space) partitioned by the first enclosure 5 a , the second enclosure 5 b , the base member 8 a , and the base member 8 b . It is therefore possible to make the cooling gas acting on cooling of the substrate be present in a limited manner at necessary portions (within the partitioned space).
  • the cooling process of the substrate when the cooling process of the substrate is carried out, it is possible to form automatically the space defined by partitions formed so as to surround the substrate 1 in the state where the substrate 1 is brought close to the first cooling plate 3 a and the second cooling plate 3 b , and to supply the cooling gas into the space locally.
  • FIG. 5 is a view illustrating a first modification of shapes of the first enclosure and the second enclosure.
  • both of the first enclosure 5 a and the second enclosure 5 b are enclosures formed concentrically about the center of the substrate surface, in which the first enclosure 5 a and the second enclosure 5 b have the same diameter. Namely, as shown in FIG. 5 , when the first cooling plate 3 a and the second cooling plate 3 b come close to the substrate carrier 2 , the leading end of the first enclosure 5 a and the leading end of the second enclosure 5 b come in contact with each other.
  • FIG. 6 is a view illustrating a second modification of shapes of the first enclosure and the second enclosure.
  • both of the first enclosure 5 a and the second enclosure 5 b are inserted in the openings of the substrate carrier 2 .
  • notches are formed for avoiding the holding claws of the substrate carrier 2 both in the first enclosure 5 a and the second enclosure 5 b .
  • the gap between the first enclosure 5 a and the second enclosure 5 b is formed in a Labyrinth shape.
  • FIG. 7 is a view illustrating a third modification of shapes of the first enclosure and the second enclosure.
  • an end member 6 having a first concave part and a second concave part formed on both sides is formed on the side of holding the substrate of the substrate carrier 2 .
  • the first enclosure 5 a and the second enclosure 5 b are inserted in the first concave part and the second concave part respectively.
  • the first enclosure 5 a and the first concave part, and the second enclosure 5 b and the second concave part form Labyrinth shapes respectively.
  • FIG. 8 is a view illustrating a fourth embodiment of shapes of the first enclosure and the second enclosure.
  • an end member 6 is formed on the side of holding the substrate of the substrate carrier 2 so as to be projected toward the first cooling plate 3 a and the second cooling plate 3 b .
  • the gap between the first enclosure 5 a and the end member 6 , and the gap between the second enclosure 5 b and the end member 6 form a labyrinth shape respectively.
  • both the first enclosure 5 a and the second enclosure 5 b are provided.
  • the structure wherein either one of the first enclosure 5 a and the second enclosure 5 b is provided may be adopted.
  • the cooling plate 3 is adopted as cooling means for cooling the substrate.
  • the present invention is not limited to this.
  • a heating plate provided with a heater or the like as the heating means for heating the substrate may be used.
  • the apparatus provided with the heating plate may be adopted as the first heating chamber 207 or the second heating chamber 208 in FIG. 1 .
  • the gas to be supplied from the gas supply opening 4 is the heating gas.
  • a heating gas supply source is provided in place of the cooling gas supply source 40 .
  • the heating gas indicates the gas that contributes to heating the substrate, and any heat gas that eventually heats the substrate falls under the “the heating gas” even if the function of heating the substrate is different.
  • the heating gas for example, gas that functions as a heat transfer medium such as helium, hydrogen or the like, or gas having a higher temperature than that of the substrate may be used.
  • the heating gas includes both gas that is indirectly functioned to heat the substrate 1 and gas that is directly functioned to heat the substrate 1 , and any gas that can be used for heating the substrate falls under the heating gas of the present invention.
  • cooling apparatus and the heating apparatus of the present invention can be realized by any combinations of the features described in each modification.
  • FIG. 9 is a sectional side view illustrating an entire configuration of the cooling apparatus according to the second embodiment of the present invention.
  • elements identical with those shown in FIG. 2 are denoted by the same reference numerals, and the detailed description thereof may be omitted as appropriate.
  • a duct is provided as cooling means for circulating cooling water in the cooling plate 3 .
  • a Peltier device 31 is provided as cooling means for cooling the substrate.
  • a cooling apparatus 211 is provided on the vacuum side via a chamber wall 11 , and a moving mechanism 10 as the moving means and the power introducing means (not shown) are provided on the atmospheric side.
  • the moving mechanism 10 changes a rotational force of a motor into a rectilinear motion with a ball screw to move a base member 12 back and forth. As a result, the Peltier device 31 can be brought close to the substrate via a shaft 38 .
  • FIG. 10 is an enlarged sectional view of the cooling apparatus.
  • the Peltier device 31 On the back side of a heat transfer section 30 having a heat transfer function made of ceramic or the like, the Peltier device 31 is provided so as to be sandwiched between a first metal member 35 and a second metal member 34 .
  • the Peltier device 31 is arranged such that a P-type semiconductor device and an N-type semiconductor device are provided alternately at equal intervals.
  • the Peltier device 31 exhibits the cooling effect by flowing of current across the first metal member 35 and the second metal member 34 via a wiring 36 connected to the power introducing means. When the front surface side of the Peltier device 31 is cooled, heat is radiated from the back surface side of the Peltier device 31 .
  • an air duct 37 is provided on the back surface side of the Peltier device 31 , for introducing the cooling air for cooling the Peltier device 31 .
  • the space between the Peltier device 31 and the heat transfer section 30 is sealed with an O-ring 33 .
  • the space between the heat transfer section 30 and the base plate 32 is also sealed with an O-ring 33 .
  • FIG. 11 is a view illustrating the cooling section when seen from the side of the substrate.
  • the Peltier device 31 in a disc shape is formed on the first metal member 35 in a disc shape having a larger diameter than the Peltier device 31 (not shown in FIG. 11 ).
  • the disk-shaped first metal member 35 can be secured onto the heat transfer section 30 by means of screws via four holes 39 formed along the outside edge. At respective centers of the Peltier device 31 and the first metal member 35 , openings are formed to be connected with the above-described gas supply opening 4 .
  • FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate. As shown in the Figure, Peltier devices 31 are provided alternately at equal intervals. However, any design may be adopted without being limited to this.
  • the cooling apparatus unlike the case of the first embodiment, it is not necessary to provide the duct for introducing cooling water inside the cooling plate. Thus, a problem of leakage of water does not occur. Similarly, according to the cooling apparatus of this embodiment, since the duct for introducing the cooling water inside the cooling plate is not provided, a problem of condensation when venting the chamber does not occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention provides a cooling apparatus capable of improving a cooling efficiency and realizing a high speed cooling process. The present invention also provides a heating apparatus capable of improving a heating efficiency of a substrate and heating the substrate at high speed. A cooling apparatus according to one embodiment of the present invention includes a chamber; a substrate carrier for holding a substrate 1 to be carried into a stop position in the chamber from a carry-in port of the chamber, and to be further carried out from a carry-out port of the chamber; a first cooling plate and a second cooling plate respectively provided on both sides of the substrate carrier carried in to the stop position in the chamber; a gas supply opening, provided in at least one of the first cooling plate and the second cooling plate, for supplying gas to the substrate, gas supply means for supplying gas to the gas supply opening and moving means for moving the first cooling plate and the second cooling plate so as to be close to the substrate carrier.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a cooling apparatus and a heating apparatus for a substrate for use in a magnetic recording medium manufacturing process.
  • 2. Description of the Related Art
  • In a manufacturing process of a magnetic recording medium, a substrate is transported in vacuum, and various processes such as deposition, heating, cooling and the like are performed. In order to increase the throughput of the apparatus, it is requested to reduce a processing time (tact time) required for the processing in each chamber. In order to improve the cooling efficiency while reducing the tact time as described above, the cooling apparatus configured so that a cooling plate is brought close to the substrate has been proposed (see Japanese Patent Application Laid-Open Publication No. 2007-537356).
  • In recent years, the deposition processing is performed by heating the substrate to high temperatures in order to deposit high density magnetic film. On the other hand, the tact time is reduced to increase the throughput of the apparatus. Therefore, a cooling apparatus capable of cooling at high speed in short time has been demanded. However, according to the conventional cooling apparatus, since a sufficient cooling efficiency cannot be ensured, such problem that the throughput is reduced occurs.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a cooling apparatus capable of improving a cooling efficiency and realizing a high speed cooling process.
  • Another object of the present invention is to provide a heating apparatus capable of improving a heating efficiency of a substrate and heating the substrate at high speed.
  • First aspect of the present invention is a cooling apparatus, comprising: a chamber; first cooling means provided in the chamber and configured to cool a substrate; second cooling means provided opposite to the first cooling means in the chamber and configured to cool the substrate; placement means configured to place a substrate holding section holding the substrate in a placement area between the first cooling means and the second cooling means; a gas supply opening provided in at least one of the first cooling means and the second cooling means and configured to supply gas that contributes to cooling of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first cooling means and the second cooling means so that the first cooling means and the second cooling means come close to the substrate holding section placed in the placement area.
  • Second aspect of the present invention is a heating apparatus, comprising: a chamber; first heating means provided in the chamber and configured to heat a substrate; second heating means provided opposite to the first heating means in the chamber and configured to heat the substrate; placement means configured to place a substrate holding member holding the substrate in a placement area between the first heating means and the second heating means; a gas supply opening provided in at least one of the first heating means and the second heating means and configured to supply gas that contributes to heating of the substrate; gas supply means configured to supply the gas to the gas supply opening; and moving means configured to move the first heating means and the second heating means so that the first heating means and the second heating means come close to the substrate holding section placed in the placement area.
  • According to the cooling apparatus of the present invention, it is possible to improve a cooling efficiency and realize a high speed cooling process while improving a throughput.
  • According to the heating apparatus of the present invention, it is possible to improve a heating efficiency of a substrate and realize a high speed process of heating the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of this invention.
  • FIG. 2 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a sectional side view illustrating an internal configuration of the cooling apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a view illustrating a cooling plate according to the first embodiment of this invention as viewed from a section taken along the line A-A of FIG. 2.
  • FIG. 5 is a view illustrating a modification of shapes of a first enclosure and a second enclosure according to the first embodiment of the present invention.
  • FIG. 6 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 7 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 8 is a view illustrating a modification of shapes of the first enclosure and the second enclosure according to the first embodiment of the present invention.
  • FIG. 9 is a sectional side view illustrating an internal configuration of a cooling apparatus according to a second embodiment of the present invention.
  • FIG. 10 is front view of a cooling section according to the second embodiment of the present invention.
  • FIG. 11 is a rear view of the cooling section according to the second embodiment of the present invention.
  • FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate according to the second embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a view illustrating an entire configuration of a magnetic recording medium manufacturing apparatus according to one embodiment of the present invention.
  • Note that in this specification, the term “magnetic recording medium” is not limited to a magnetic disk such as a hard disk or a floppy (registered trademark) disk using only magnetism when recording and reading information. The term “magnetic recording medium” includes, for example, a magneto optical recording medium such as an MO (Magneto Optical) disk using both magnetism and light, or a thermally assisted recording medium using both magnetism and heat.
  • In this embodiment, the substrate is formed in a disk shape with an opening at the center, and films are to be formed on both surfaces thereof.
  • As shown in FIG. 1, in a magnetic recording medium manufacturing apparatus 200, a load lock chamber 81 for loading a substrate 1 (FIG. 2) to a carrier 2, an unload lock chamber 82 for unloading the substrate 1 from the carrier 2, and a plurality of chambers 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217 and 218 are arranged along a square-shaped outline thereof. Also, a transport path 220 is formed along the load lock chamber 81, chambers 201 to 218, and the unload lock chamber 82. Carriers 2 which can carry the substrate are provided on the transport path so that each of carriers 2 can be moved on the transport path. In each chamber, a processing time (tact time) required for the processing is predetermined. When this processing time (tact time) has elapsed, the carriers 2 are sequentially transported to the next chamber.
  • For the magnetic recording medium manufacturing apparatus to process about 1,000 substrates per hour, the tact time in one chamber is about 5 sec or less, preferably, about 3.6 sec or less.
  • Each of the load lock chamber 81, unload lock chamber 82, and chambers 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217 and 218 is a vacuum chamber that can be evacuated by a dedicated or shared evacuating system. Gate valves (not shown) are provided in the boundary portions between the load lock chamber 81, unload lock chamber 82, and chambers 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217 and 218, i.e., and at a carry-out port and a carry-in port of the carrier 2.
  • More specifically, the chamber 201 of the magnetic recording medium manufacturing apparatus 200 forms a first soft magnetic layer on the substrate 1. The direction change chamber 202 changes the transport direction of the carrier 2. The chamber 203 forms a spacer layer on the first soft magnetic layer. The chamber 204 forms a second soft magnetic layer on the spacer layer. The chamber 205 forms a seed layer on the second soft magnetic layer. The direction change chamber 206 changes the transport direction of the carrier 2. The magnetic recording medium manufacturing apparatus 200 also includes the chamber 207 (first heating chamber) and the chamber 208 (second heating chamber) for preheating the substrate 1. Furthermore, the chamber 209 can form the seed layer.
  • The chamber 210 can function as a sputtering apparatus to form a magnetic layer on the seed layer. The cooling chamber (cooling apparatus) 211 cools the substrate 1 having the magnetic layer formed thereon. The direction change chamber 212 changes the direction of the carrier 2. The cooling chamber (cooling apparatus) 213 cools the substrate 1 located at the stop position in the chamber. The chamber 214 forms an exchange coupling control layer on the magnetic layer. The chamber 215 forms a third soft magnetic layer on the exchange coupling control layer. The direction change chamber 216 changes the direction of the carrier 2. The chambers 217 and 218 form a protective layer.
  • Note that the magnetic recording medium manufacturing apparatus 200 is provided with control means (for example, computer) for collectively managing a transportation process of the substrate carrier 2, an evacuation operation of each chamber, a deposition process and the like.
  • First Embodiment
  • Next, an internal configuration of the cooling apparatus 211 as a characteristic part of this invention will be described referring to FIG. 2. FIG. 2 is a sectional side view for illustrating the internal configuration of the cooling apparatus 211.
  • The cooling apparatus 211 includes the chamber 11, the substrate carrier 2 having a substrate holding section for holding the substrate 1, and a transport path 220 for transporting the substrate carrier 2 in the cooling apparatus 211. The substrate carrier 2 is configured so as to be carried-in to the stop position inside the chamber 11 through the carry-in port of the chamber and to be further carried-out through the carry-out port of the chamber 11. Moreover, the cooling apparatus 211 includes a first cooling plate 3 a and a second cooling plate 3 b placed on both sides of the substrate carrier 2 carried-in to the stop position in the chamber, respectively. The first cooling plate 3 a and the second cooling plate 3 b are disposed in the chamber 11 so as to be opposite to each another. The substrate carrier 2 moves along the transport path 220 and stops at the above stop position so that the substrate support section of the substrate carrier 2 is located in an area (placement area) between the first cooling plate 3 a and the second cooling plate 3 b disposed so as to be opposite to each another. Namely, the movement and stop of the substrate carrier 2 are controlled so that the substrate 1 is located in the area (substrate placement area) where the substrate 1 should be located when being cooled. According to this embodiment, the transport mechanism (not shown) which is provided in the substrate carrier 2 and stops and moves the substrate carrier 2 along the transport path under the control of the control means, and the transport path 220 serve as placement means for placing the substrate holding section in the above placement area.
  • It is to be noted that in this embodiment, the substrate 1 is held by the substrate carrier which serves both as the substrate holding section and the moving mechanism. However, the present invention is not limited to this. For example, the substrate 1 may be held by the substrate holder that functions as the substrate holding section. In this case, for example, the substrate holder may be placed in the placement area so that the substrate 1 held by the substrate holder is located in the substrate placement area by a transport robot having arms capable of rotating, extending and shrinking as the placement means.
  • The cooling apparatus 211 further includes a gas supply opening 4 formed at least in one of the first cooling plate 3 a and the second cooling plate 3 b, for supplying cooling gas to the substrate 1, and a moving mechanism 10 as moving means capable of moving the first cooling plate 3 a and the second cooling plate 3 b so as to be close to the substrate carrier 2 located at the stop position. Furthermore, although not shown, a plurality of (three for example) holding claws for holding the substrate is formed on the substrate carrier 2.
  • Incidentally, the moving mechanism 10 is provided for each of the first cooling plate 3 a and the second cooling plate 3 b. In FIG. 2, however, the moving mechanism 10 for driving the first cooling plate 3 a is omitted for sake of convenience to schematically show the supply of the cooling gas from a cooling gas supply source 40 to the gas supply opening 4.
  • The first cooling plate 3 a and the second cooling plate 3 b are members for cooling the substrate, and are made up of, for example, copper plates having high thermal conductivity. In the first cooling plate 3 a and the second cooling plate 3 b, ducts are provided for circulating therein cooling water. The ducts are connected to a cooling water supply source (not shown). In this embodiment, the control means controls the cooling water supply source, and whereby cooling water flows in the ducts provided in the first cooling plate 3 a and the second cooling plate 3 b. The first cooling plate 3 a and the second cooling plate 3 b are cooled by the circulation of the cooling water, and the substrate 1 can be cooled by transmitting heat from the substrate 1 located in the substrate placement area to the first cooling plate 3 a and the second cooling plate 3 b.
  • The moving mechanism 10 has a driving source (motor) for moving the cooling plates (the first cooling plate 3 a and the second cooling plate 3 b) so as to be close to the substrate carrier 2 carried-in from the carry-in port of the chamber 11 to the stop position in the chamber via support members ( support members 9 a and 9 b). Openings are formed respectively in the opposing side walls of the chamber 11, and the support members 9 a and 9 b are inserted in the chamber 11 through the openings. The moving mechanism 10 (not shown in FIG. 2) is connected to the inserted support member 9 a outside the chamber 11, while the base member 8 a is connected to the support member 9 a inside the chamber 11. Similarly, the moving mechanism 10 is connected to the inserted support member 9 b outside the chamber 11, while the base member 8 b is connected to the support member 9 b inside the chamber 11. With this configuration, the first cooling plate 3 a and the second cooling plate 3 b can be moved in a direction of an arrow P by driving the moving mechanism 10 under the control of the control means.
  • According to this embodiment, the first cooling plate 3 a is attached to the base member 8 a, and the gas supply opening 4 is formed in the first cooling plate 3 a, and the gas supply opening 4 is connected to a gas supply path 4 a that serves as the path for introducing cooling gas supplied from the cooling gas supply source 40 as the gas supply means. As described above, according to this embodiment, the cooling gas supplied from the cooling gas supply source 40 is supplied from the gas supply opening 4 via the gas supply path 4 a. In this embodiment, the gas supply paths 4 a are provided respectively in the support member 9 a, the base member 8 a, and the first cooling plate 3 a. Therefore, according to this embodiment, it is not necessary to provide the moving mechanism of the cooling plate and the introduction path of the cooling gas separately. As a result, it is possible to move the cooling plate, and introduce the cooling gas into a space where the cooling plate and the substrate are provided in the vicinity by means of the same structure. Therefore, it is possible to supply the cooling gas to the vicinity of the substrate 1 without drawing around the cooling gas supply path.
  • Moreover, an enclosure 5 a, that surrounds the first cooling plate 3 a, is mounted to the base member 8 a on which the first cooling plate 3 a is provided. Similarly, an enclosure 5 b, that surrounds the second cooling section 3 b, is mounted to the base member 8 b on which the second cooling plate 3 b is provided.
  • FIG. 3 shows the state where the first cooling plate 3 a and the second cooling plate 3 b are placed in the vicinity of the substrate carrier 2 (for example, the distance between the cooling plate and the substrate is within 2 mm). The moving mechanism 10 is driven based on a control command from the control means, and with this driving, the first cooling plate 3 a and the second cooling plate 3 b are moved in the direction of arrow Q shown in FIG. 3 to be placed together near the substrate 1 located in the substrate placement area. Although not shown in FIG. 3, a notch (indicated by the reference numeral 7 in FIG. 4) is formed in the enclosure 5 a for avoiding the holding claws for holding the substrate 1.
  • The gas supply opening 4 is formed in the first cooling plate 3 a for supplying the cooling gas (for example, helium or hydrogen) from the cooling gas supply source 40 to the substrate 1. As shown in FIG. 4, the gas supply opening 4 is formed at the center of the first cooling plate 3 a for supplying gas to the central opening of the substrate 1. In the cylindrical enclosure 5 a, notches 7 are formed at three positions corresponding to respective holding claws so as not to come in contact with the holding claws for the substrate carrier 2.
  • In this embodiment, the gas supply opening 4 is formed only in the first cooling plate 3 a. However, the gas supply opening 4 may be formed also in the second cooling plate 3 b.
  • Moreover, a first cylindrical enclosure 5 a that extends from the base member 8 a to the second cooling plate 3 b is provided around the first cooling plate 3 a in the base member 8 a as the member for mounting the first cooling plate 3 a. A second cylindrical enclosure 5 b that extends from the base member 8 b to the second cooling plate 3 b is provided around the second cooling plate 3 b in the base member 8 b as the member for mounting the second cooling plate 3 b. Namely, the first enclosure 5 a is configured so as to surround around the first cooling plate 3 a supported by the base member 8 a to which the first enclosure 5 a is mounted, and to extend toward the second cooling plate 3 b provided opposite to the first cooling plate 3 a. Similarly, the second enclosure 5 b is configured so as to surround around the second cooling plate 3 b supported by the base member 8 b to which the second enclosure 5 b is mounted, and to extend toward the first cooling plate 3 a provided opposite to the second cooling plate 3 b. In addition, in the first enclosure 5 a and the second enclosure 5 b, openings are formed respectively to allow the first cooling plate 3 a and the second cooling plate 3 b to communicate with each other.
  • More specifically, the first enclosure 5 a is mounted to the base member 8 a so as to surround at least a part of the space between a first surface 8 c whereon the first cooling plate 3 a of the base member 8 a is formed, and a second surface 8 d whereon the second cooling plate 3 b of the base member 8 b is formed. Similarly, the second enclosure 5 b is mounted to the base member 8 b so as to surround at least a part of the space between the first surface 8 c and the second surface 8 d.
  • Incidentally, in this specification, the wording “cylindrical” indicates a substantially cylindrical shape, including a partially notched cylindrical shape.
  • As shown in FIGS. 2 and 3, the first enclosure 5 a is formed longer than the second enclosure 5 b. However, the present invention is not limited to this. Namely, as shown in FIG. 3, in the present embodiment, it is important to cover the space between the first surface 8 c and the second surface 8 d with the first enclosure 5 a and the second enclosure 5 b in the state where the first cooling plate 3 a and the second cooling plate 3 b are placed so as to be close to the substrate 1 (in the state of actually carrying out the cooling process). The respective lengths of the first enclosure 5 a and the second enclosure are not particularly limited as long as the above covering can be realized. Namely, if the length of the enclosure is not longer than the distance between the first surface 8 c of the first cooling plate 3 a when carrying out the cooling process of the substrate 1 and the second surface 8 d of the second cooling plate 3 b when carrying out the cooling process of the substrate, it is possible to surround at least a part of the space between the first surface 8 c and the second surface 8 d when carrying out the cooling process. Therefore, with the enclosures, it is possible to suppress the cooling gas supplied to the vicinity of the substrate 1 from being leaked from the space where the substrate 1 is placed to the outside as will be described later.
  • According to this embodiment, both the first enclosure 5 a and the second enclosure 5 b are formed concentrically about the center of the substrate surface. However, the first enclosure 5 a has a smaller diameter than that of the second enclosure 5 b. With this configuration, as shown in FIG. 3, when the first cooling plate 3 a and the second cooling plate 3 b come close to the substrate carrier 2, the first enclosure 5 a and the second enclosure 5 b are placed so as to be alternated with each other without contact, so that the gap between them forms a Labyrinth shape. As a result, the closed space that encloses therein the substrate 1 can be formed, which can make it hard for the cooling gas to leak out. Hence, it is possible to improve the cooling efficiency of the substrate 1.
  • In this embodiment, the closed loops of the first enclosure 5 a and the second enclosure 5 b have concentric circular shapes. However, the present invention is not limited to this. In this embodiment, in order to prevent or prevent as much as possible the cooling gas supplied to around the substrate 1 from leaking out from the space near the substrate 1 when the substrate 1, the first cooling plate 3 a, and the second cooling plate 3 b are placed in the vicinity (namely, when the cooling operation is to be performed), the first enclosure 5 a and the second enclosure 5 b are provided. Therefore, as long as the foregoing function can be ensured, the respective shapes of the first enclosure 5 a and the second enclosure 5 b are not particularly limited, and, for example, polygon such as quadrangle, pentagon, and hexagon, closed-looped shape may be adopted.
  • Each of the foregoing operations in the cooling apparatus is performed under the control of the control means. The control means is configured so that the moving mechanism 10 is driven to move the first cooling plate 3 a and the second cooling plate 3 b to come close to the substrate carrier 2 (state shown in FIG. 3), and then the cooling gas supply source 40 is controlled to supply the cooling gas to the supply path 4 a, and the cooling water supply source is controlled to supply the cooling water to the inside of the first cooling plate 3 a and the second cooling plate 3 b. As a result, the cooling gas can be efficiently introduced into the closed space surrounding the substrate 1, and the cooling efficiency can be improved not only by the cooling function by the first cooling plate 3 a and second cooling plate 3 b but also by the cooling function with the cooling gas.
  • In this specification, “cooling gas” is a gas that contributes to the cooling of the substrate. As long as the substrate can be consequently cooled with the cooling gas, such cooling gas is included in the cooling gas of the present invention even if its function of cooling the substrate is different.
  • For example, as described above, when using helium or hydrogen as a cooling gas, because the helium or hydrogen exists in the space between the first surface and the second surface, the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b can be promoted. Namely, since helium or hydrogen functions as a medium for the heat transfer, the heat can be more efficiently transferred from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b. Therefore, a gas such as helium or hydrogen that functions as a heat transfer medium is included in the cooling gas of the present invention.
  • Moreover, the low temperature gas (for example, the gas whose temperature is lower than that of the substrate 1) may be used as cooling gas. In this case, the low temperature gas may be generated by the cooling gas supply source 40, to be supplied therefrom to the gas supply opening 4 through the supply path 4 a. In this case, since the gas whose temperature is lower than that of the substrate 1 is blown onto the substrate 1, the substrate 1 can be cooled not only by the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b but also by the gas itself.
  • As described, according to the present invention, the cooling gas includes both the gas that is indirectly functioned to cool the substrate 1 and the gas that is directly functioned to cool the substrate 1, and any gas that can be used for cooling the substrate falls under the cooling gas of the present invention.
  • As described above, according to the present embodiment, since the cooling of the substrate 1 is performed in the state where both the first cooling plate 3 a and the second cooling plate are brought close to the substrate 1, it is possible to carry out the cooling by means of the cooling plates, i.e., the heat transfer from the substrate 1 to the first cooling plate 3 a and the second cooling plate 3 b in an efficient manner.
  • Furthermore, according to this embodiment, the gas supply opening 4 configured to supply the cooling gas is provided in at least one of the first cooling plate 3 a and the second cooling plate 3 b that serve as the receiving plates for the heat from the substrate 1. Therefore, it is possible to supply the cooling gas to the substrate 1 from the position near the substrate 1. As a result, the substrate 1 can be cooled in more efficient manner.
  • In addition, according to this embodiment, the first enclosure 5 a is mounted to the base member 8 a whereon the first cooling plate 3 a is provided, and the second enclosure 5 b is mounted to the base member 8 b whereon the second cooling plate 3 b is provided. Therefore, by placing the first cooling plate 3 a and the second cooling plate 3 b so that they come close to the substrate 1 when carrying out the cooling process, the space surrounding the substrate 1, the first cooling plate 3 a and the second cooling plate 3 b, is automatically formed. Therefore, it can be reduced that the cooling gas supplied from the gas supply opening 4 formed in the first cooling plate 3 a escapes in the outside of the surrounding space, thereby realizing a still improved cooling efficiency.
  • Moreover, the first enclosure 5 a and the second enclosure 5 b are provided, and the gas supply opening 4 is formed in at least one of the first cooling plate 3 a and the second cooling plate 3 b that are placed in the vicinity of the substrate 1 in the cooling operation. Thus, when carrying out the cooling operation, the cooling gas can be supplied into the space (the surrounding space) partitioned by the first enclosure 5 a, the second enclosure 5 b, the base member 8 a, and the base member 8 b. It is therefore possible to make the cooling gas acting on cooling of the substrate be present in a limited manner at necessary portions (within the partitioned space). Namely, according to the present embodiment, when the cooling process of the substrate is carried out, it is possible to form automatically the space defined by partitions formed so as to surround the substrate 1 in the state where the substrate 1 is brought close to the first cooling plate 3 a and the second cooling plate 3 b, and to supply the cooling gas into the space locally.
  • (First Modification)
  • FIG. 5 is a view illustrating a first modification of shapes of the first enclosure and the second enclosure.
  • In this modification, both of the first enclosure 5 a and the second enclosure 5 b are enclosures formed concentrically about the center of the substrate surface, in which the first enclosure 5 a and the second enclosure 5 b have the same diameter. Namely, as shown in FIG. 5, when the first cooling plate 3 a and the second cooling plate 3 b come close to the substrate carrier 2, the leading end of the first enclosure 5 a and the leading end of the second enclosure 5 b come in contact with each other.
  • (Second Modification)
  • FIG. 6 is a view illustrating a second modification of shapes of the first enclosure and the second enclosure. In this modification, both of the first enclosure 5 a and the second enclosure 5 b are inserted in the openings of the substrate carrier 2. In order to avoid the first enclosure 5 a and the second enclosure 5 b as inserted from striking against the holding claws of the substrate 2, notches (not shown) are formed for avoiding the holding claws of the substrate carrier 2 both in the first enclosure 5 a and the second enclosure 5 b. The gap between the first enclosure 5 a and the second enclosure 5 b is formed in a Labyrinth shape. Thus, the leakage of the cooling gas introduced in the space surrounding the substrate 1 is less likely to occur.
  • (Third Modification)
  • FIG. 7 is a view illustrating a third modification of shapes of the first enclosure and the second enclosure.
  • In this modification, other than the first enclosure 5 a and the second enclosure 5 b, an end member 6 having a first concave part and a second concave part formed on both sides is formed on the side of holding the substrate of the substrate carrier 2. As shown in FIG. 7, when the cooling plate 3 comes close to the substrate, the first enclosure 5 a and the second enclosure 5 b are inserted in the first concave part and the second concave part respectively. As a result, the first enclosure 5 a and the first concave part, and the second enclosure 5 b and the second concave part form Labyrinth shapes respectively.
  • (Fourth Modification)
  • FIG. 8 is a view illustrating a fourth embodiment of shapes of the first enclosure and the second enclosure.
  • In this modification, other than the first enclosure 5 a and the second enclosure 5 b, an end member 6 is formed on the side of holding the substrate of the substrate carrier 2 so as to be projected toward the first cooling plate 3 a and the second cooling plate 3 b. As in the case of the above-described modifications, the gap between the first enclosure 5 a and the end member 6, and the gap between the second enclosure 5 b and the end member 6 form a labyrinth shape respectively.
  • (Other Modifications)
  • In the Examples shown in FIGS. 2 to 7, both the first enclosure 5 a and the second enclosure 5 b are provided. However, the structure wherein either one of the first enclosure 5 a and the second enclosure 5 b is provided may be adopted.
  • In the above embodiments, the cooling plate 3 is adopted as cooling means for cooling the substrate. However, the present invention is not limited to this. For example, a heating plate provided with a heater or the like as the heating means for heating the substrate may be used. Moreover, the apparatus provided with the heating plate may be adopted as the first heating chamber 207 or the second heating chamber 208 in FIG. 1. Here, when the apparatus is used as the heating apparatus, the gas to be supplied from the gas supply opening 4 is the heating gas. Thus, in this case, a heating gas supply source is provided in place of the cooling gas supply source 40.
  • In the present specification, “the heating gas” indicates the gas that contributes to heating the substrate, and any heat gas that eventually heats the substrate falls under the “the heating gas” even if the function of heating the substrate is different.
  • For the heating gas, for example, gas that functions as a heat transfer medium such as helium, hydrogen or the like, or gas having a higher temperature than that of the substrate may be used. As described, in the present invention, the heating gas includes both gas that is indirectly functioned to heat the substrate 1 and gas that is directly functioned to heat the substrate 1, and any gas that can be used for heating the substrate falls under the heating gas of the present invention.
  • Incidentally, the cooling apparatus and the heating apparatus of the present invention can be realized by any combinations of the features described in each modification.
  • Second Embodiment
  • A cooling apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 12. FIG. 9 is a sectional side view illustrating an entire configuration of the cooling apparatus according to the second embodiment of the present invention. In FIG. 9, elements identical with those shown in FIG. 2 are denoted by the same reference numerals, and the detailed description thereof may be omitted as appropriate. In the cooling apparatus according to the first embodiment shown in FIG. 2, a duct is provided as cooling means for circulating cooling water in the cooling plate 3. In contrast, according to the cooling apparatus of this embodiment, a Peltier device 31 is provided as cooling means for cooling the substrate.
  • As shown in FIG. 9, a cooling apparatus 211 is provided on the vacuum side via a chamber wall 11, and a moving mechanism 10 as the moving means and the power introducing means (not shown) are provided on the atmospheric side. The moving mechanism 10 changes a rotational force of a motor into a rectilinear motion with a ball screw to move a base member 12 back and forth. As a result, the Peltier device 31 can be brought close to the substrate via a shaft 38.
  • FIG. 10 is an enlarged sectional view of the cooling apparatus.
  • On the back side of a heat transfer section 30 having a heat transfer function made of ceramic or the like, the Peltier device 31 is provided so as to be sandwiched between a first metal member 35 and a second metal member 34. The Peltier device 31 is arranged such that a P-type semiconductor device and an N-type semiconductor device are provided alternately at equal intervals. The Peltier device 31 exhibits the cooling effect by flowing of current across the first metal member 35 and the second metal member 34 via a wiring 36 connected to the power introducing means. When the front surface side of the Peltier device 31 is cooled, heat is radiated from the back surface side of the Peltier device 31. In order to cool the resulting heat, an air duct 37 is provided on the back surface side of the Peltier device 31, for introducing the cooling air for cooling the Peltier device 31. To prevent the leakage of the cooling air in the vacuum space inside the chamber, the space between the Peltier device 31 and the heat transfer section 30 is sealed with an O-ring 33. Similarly, the space between the heat transfer section 30 and the base plate 32 is also sealed with an O-ring 33.
  • FIG. 11 is a view illustrating the cooling section when seen from the side of the substrate. The Peltier device 31 in a disc shape is formed on the first metal member 35 in a disc shape having a larger diameter than the Peltier device 31 (not shown in FIG. 11). The disk-shaped first metal member 35 can be secured onto the heat transfer section 30 by means of screws via four holes 39 formed along the outside edge. At respective centers of the Peltier device 31 and the first metal member 35, openings are formed to be connected with the above-described gas supply opening 4.
  • FIG. 12 is a view showing the cooling section when seen from the opposite side of the substrate. As shown in the Figure, Peltier devices 31 are provided alternately at equal intervals. However, any design may be adopted without being limited to this.
  • As described above, in the cooling apparatus according to the second embodiment, unlike the case of the first embodiment, it is not necessary to provide the duct for introducing cooling water inside the cooling plate. Thus, a problem of leakage of water does not occur. Similarly, according to the cooling apparatus of this embodiment, since the duct for introducing the cooling water inside the cooling plate is not provided, a problem of condensation when venting the chamber does not occur.

Claims (7)

1. A cooling apparatus, comprising:
a chamber;
first cooling means provided in the chamber and configured to cool a substrate;
second cooling means provided opposite to the first cooling means in the chamber and configured to cool the substrate;
placement means configured to place a substrate holding section holding the substrate in a placement area between the first cooling means and the second cooling means;
a gas supply opening provided in at least one of the first cooling means and the second cooling means and configured to supply gas that contributes to cooling of the substrate;
gas supply means configured to supply the gas to the gas supply opening; and
moving means configured to move the first cooling means and the second cooling means so that the first cooling means and the second cooling means come close to the substrate holding section placed in the placement area.
2. A cooling apparatus according to claim 1, further comprising:
an enclosure mounted to at least one of a support section for supporting the first cooling means and a support section for supporting the second cooling means,
wherein the enclosure surrounds a cooling means supported by the support section to which the enclosure is mounted, and extends toward an opposing cooling means, and
the enclosure is opened so that the cooling means supported by the support member to which the enclosure is mounted, communicates with the opposing cooling means.
3. A cooling apparatus according to claim 1, further comprising:
a first enclosure provided around the first cooling means so as to surround at least a part of a space between the first cooling means and the second cooling means; and
a second enclosure provided around the second cooling means so as to surround at least a part of a space between the second cooling means and the first cooling means,
wherein the first enclosure and the second enclosure are configured such that a region between the first enclosure and the second enclosure form a Labyrinth shape when the first cooling means and the second cooling means come close to the substrate holding section placed in the placement area by the moving means.
4. A cooling apparatus according to claim 1, further comprising:
control means configured to control the moving means so as to move the first cooling means and the second cooling means toward the substrate holding section placed in the placement area, and to control the gas supply means so as to supply the gas to the gas supply opening.
5. A cooling apparatus according to claim 1,
wherein each of the first cooling means and the second cooling means comprises a Peltier device.
6. A cooling apparatus according to claim 5, further comprising:
an air duct configured to introduce air that cools the Peltier device.
7. A heating apparatus, comprising:
a chamber;
first heating means provided in the chamber and configured to heat a substrate;
second heating means provided opposite to the first heating means in the chamber and configured to heat the substrate;
placement means configured to place a substrate holding member holding the substrate in a placement area between the first heating means and the second heating means;
a gas supply opening provided in at least one of the first heating means and the second heating means and configured to supply gas that contributes to heating of the substrate;
gas supply means configured to supply the gas to the gas supply opening; and
moving means configured to move the first heating means and the second heating means so that the first heating means and the second heating means come close to the substrate holding section placed in the placement area.
US13/093,954 2010-06-29 2011-04-26 Cooling apparatus and heating apparatus Abandoned US20110315346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147748 2010-06-29
JP2010-147748 2010-06-29

Publications (1)

Publication Number Publication Date
US20110315346A1 true US20110315346A1 (en) 2011-12-29

Family

ID=45351410

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/093,954 Abandoned US20110315346A1 (en) 2010-06-29 2011-04-26 Cooling apparatus and heating apparatus

Country Status (2)

Country Link
US (1) US20110315346A1 (en)
JP (1) JP5220147B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280838A1 (en) * 2012-04-18 2013-10-24 Samsung Display Co., Ltd. Method for fabricating array substrate and fabrication apparatus used therefor
CN103628031A (en) * 2012-08-22 2014-03-12 Ap系统股份有限公司 Cooling water process apparatus and processing method and the substrate processing apparatus applying the same
US20140151360A1 (en) * 2012-11-30 2014-06-05 Wd Media, Inc. Heater assembly for disk processing system
US11072854B2 (en) * 2018-01-25 2021-07-27 Boe Technology Group Co., Ltd. Substrate fixing carrier, evaporation device and evaporation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670255B (en) * 2012-05-10 2013-12-04 中国科学院合肥物质科学研究院 Self-help ultrasonic bone strength detecting system and application method thereof
JP5849934B2 (en) * 2012-11-16 2016-02-03 住友金属鉱山株式会社 Vacuum film forming apparatus and vacuum film forming method
JP6231399B2 (en) * 2014-02-17 2017-11-15 キヤノンアネルバ株式会社 Processing equipment
JP7027057B2 (en) * 2017-07-18 2022-03-01 株式会社アルバック Board transfer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181556A (en) * 1991-09-20 1993-01-26 Intevac, Inc. System for substrate cooling in an evacuated environment
US20060179848A1 (en) * 2005-02-14 2006-08-17 Asia Vital Component Co., Ltd. Radiator unit
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021016B2 (en) * 1990-10-04 2000-03-15 日本真空技術株式会社 Substrate cooling mechanism
JP3793273B2 (en) * 1996-02-19 2006-07-05 株式会社ルネサステクノロジ Manufacturing method of semiconductor integrated circuit device
US5753092A (en) * 1996-08-26 1998-05-19 Velocidata, Inc. Cylindrical carriage sputtering system
JP2953395B2 (en) * 1996-09-05 1999-09-27 日本電気株式会社 Sputtering equipment
JP2010093293A (en) * 2010-01-14 2010-04-22 Canon Anelva Corp Insulating film etching apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181556A (en) * 1991-09-20 1993-01-26 Intevac, Inc. System for substrate cooling in an evacuated environment
US20060179848A1 (en) * 2005-02-14 2006-08-17 Asia Vital Component Co., Ltd. Radiator unit
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130280838A1 (en) * 2012-04-18 2013-10-24 Samsung Display Co., Ltd. Method for fabricating array substrate and fabrication apparatus used therefor
US9070715B2 (en) * 2012-04-18 2015-06-30 Samsung Display Co., Ltd. Method for fabricating array substrate and fabrication apparatus used therefor
CN103628031A (en) * 2012-08-22 2014-03-12 Ap系统股份有限公司 Cooling water process apparatus and processing method and the substrate processing apparatus applying the same
US20140151360A1 (en) * 2012-11-30 2014-06-05 Wd Media, Inc. Heater assembly for disk processing system
US11072854B2 (en) * 2018-01-25 2021-07-27 Boe Technology Group Co., Ltd. Substrate fixing carrier, evaporation device and evaporation method

Also Published As

Publication number Publication date
JP5220147B2 (en) 2013-06-26
JP2012031504A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US20110315346A1 (en) Cooling apparatus and heating apparatus
JP5462272B2 (en) Substrate cooling apparatus, sputtering apparatus, and electronic device manufacturing method
KR100613171B1 (en) Method and Apparatus for Cooling Substrates
US5753092A (en) Cylindrical carriage sputtering system
US9214371B2 (en) Thermal treatment apparatus and thermal treatment method
US6228171B1 (en) Heat processing apparatus
KR100886023B1 (en) Heat processing apparatus
US20100326351A1 (en) Apparatus and method for heating substrate and coating and developing system
JP2017506703A (en) System for depositing one or more layers on a substrate supported by a carrier and method of using the system
KR102188702B1 (en) Evaporation system
JP2010126789A (en) Sputtering film deposition system
JP5470979B2 (en) Magnetic field heat treatment apparatus and magnetic field heat treatment method
TWI745744B (en) Substrate processing device, semiconductor device manufacturing method and recording medium
US8299671B2 (en) Processing apparatus
JP6303167B2 (en) In-line film forming apparatus and method for manufacturing magnetic recording medium using the same
JP2021080559A (en) Film deposition device, film deposition method using the same and method for manufacturing electronic device
US11694907B2 (en) Substrate processing apparatus, recording medium, and fluid circulation mechanism
KR102473569B1 (en) Apparatus for transporting substrate and system for treating substrate with the apparatus
JP2023069172A (en) Device for carrying substrate and method for carrying substrate
JP4028198B2 (en) Heat treatment equipment
JP2006049489A (en) Board processing device
JP2017214654A (en) Vapor deposition source for organic material, device having vapor deposition source for organic material, system having evaporation deposition device including vapor deposition source for organic material, and method for operating vapor deposition source for organic material
JPH10214772A (en) Substrate heat-treating device
KR102397849B1 (en) Apparatus for treating a substrate
JP4255010B2 (en) Substrate temperature control method

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANON ANELVA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIMURA, HIDEKAZU;MAJIMA, KAZUYUKI;KITAGAWA, JUNICHI;AND OTHERS;SIGNING DATES FROM 20110513 TO 20110516;REEL/FRAME:026416/0728

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION