US20110270388A9 - Endovascular aortic valve replacement - Google Patents
Endovascular aortic valve replacement Download PDFInfo
- Publication number
- US20110270388A9 US20110270388A9 US10/047,581 US4758101A US2011270388A9 US 20110270388 A9 US20110270388 A9 US 20110270388A9 US 4758101 A US4758101 A US 4758101A US 2011270388 A9 US2011270388 A9 US 2011270388A9
- Authority
- US
- United States
- Prior art keywords
- valve
- situs
- procedure
- introducer
- host
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/243—Deployment by mechanical expansion
- A61F2/2433—Deployment by mechanical expansion using balloon catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2436—Deployment by retracting a sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3653—Interfaces between patient blood circulation and extra-corporal blood circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3653—Interfaces between patient blood circulation and extra-corporal blood circuit
- A61M1/3659—Cannulae pertaining to extracorporeal circulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0041—Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320016—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
- A61B17/32002—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320725—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22097—Valve removal in veins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/00232—Balloons having an irregular shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
- A61B2018/0025—Multiple balloons
- A61B2018/00261—Multiple balloons arranged in a line
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0074—Dynamic characteristics of the catheter tip, e.g. openable, closable, expandable or deformable
- A61M25/0075—Valve means
- A61M2025/0076—Unidirectional valves
- A61M2025/0078—Unidirectional valves for fluid inflow from the body into the catheter lumen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M2025/028—Holding devices, e.g. on the body having a mainly rigid support structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1047—Balloon catheters with special features or adapted for special applications having centering means, e.g. balloons having an appropriate shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/1077—Balloon catheters with special features or adapted for special applications having a system for expelling the air out of the balloon before inflation and use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/12—Blood circulatory system
- A61M2210/125—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0125—Catheters carried by the bloodstream, e.g. with parachutes; Balloon catheters specially designed for this purpose
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S623/00—Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
- Y10S623/902—Method of implanting
- Y10S623/904—Heart
Definitions
- This invention relates to devices and methods for endovascular replacement of a heart valve.
- Heart valve replacement generally has been accomplished by a major open heart surgical procedure, requiring general anesthesia, full cardiopulmonary bypass with complete cessation of cardiopulmonary activity, seven to ten days of hospitalization and months of recuperation time.
- the mortality rate with this type of procedure is about five to six percent.
- Endovascular procedures for valve replacement provide an alternative to open heart surgery.
- surgeons have used endovascular balloon aortic valvuloplasty.
- This procedure involves use of endovascular balloon dilatation to split commissures in diseased aortic valves with commissural fusion and to crack calcific plaques in calcified stenotic aortic valves.
- This method provides only partial and temporary relief for a patient with a stenotic aortic valve. A repeat procedure within a year of the first procedure is often required.
- An alternative treatment regimen is endovascular valve supplantation.
- instruments are used to insert a mechanical valve in the lumen of a central blood vessel via entry through a distal artery, for example, the brachial or femoral artery.
- the descriptive terms distal and proximal when used in relation to the vasculature in this application, refer to directions further and closer from the valve replacement or procedure site, as applicable.
- a guide wire is placed through the entry vessel and fluoroscopically directed to the desired situs. Flexible catheters are then guided over the guide wires which are used to propel and direct the new valve through the blood vessel to the desired central location near to the malfunctioning heart valve where it supplants the function of the existing valve.
- Endovascular heart procedures in contrast to open heart surgical procedures, would require only local anesthesia, partial or no cardiac bypass, one to two days hospitalization, and should have a reduced mortality rate as compared to open heart procedures.
- endovascular heart valve supplantation is limited to supra-annular arterial based mechanical valves which require an elongated mounting catheter originating at the distal arterial entry point to maintain the position of the valve in the aorta and therefore does not provide a permanent or internalized system.
- Valve supplantation is also limited to treating regurgitant aortic valves and is not applicable to stenotic aortic valves or any other malfunctioning heart valves.
- mechanical valves predispose the patient to thrombus formation and emboli, mandating long term anticoagulant therapy; intracranial hemorrhages are a serious side effect of long term anticoagulant therapy.
- a potential alternative to a mechanical valve is a bioprosthetic valve.
- a bioprosthetic valve can be either a homograft (a fresh human), allograft (a fixed human) or a xenograft (a fixed other species) valve. Homograft valves, in contrast to xenograft valves, are rarely used because of the lack of access to fresh human valves. Porcine glutaraldehyde preserved valves are often used since they are readily accessible and storable and are available in a variety of sizes. Bioprosthetic valve replacement does not predispose a patient to thrombus formation or emboli, and, therefore, requires no long-term anticoagulant therapy. Bioprosthetic valves are presently a mainstay in aortic valve replacement. Bioprosthetic heart valve replacement is preferable in patients who cannot tolerate long-term anticoagulant therapy or are otherwise potentially noncompliant with a long term medical regime.
- U.S. Pat. No. 3,671,979 to Moulopoulos describes a endovascularly inserted conical shaped umbrella-like valve positioned and held in place by an elongated mounting catheter at a supra-annular site to the aortic valve in a nearby arterial vessel.
- the conical end points toward the malfunctioning aortic valve and the umbrella's distal ends open up against the aorta wall with reverse blood flow, thereby preventing regurgitation.
- a valve replacement system together with methods of preparation and use, are provided for endovascular replacement of a heart valve in a host.
- the valve replacement system includes up to five components: (1) a prosthetic valve device, (2) a valve introducer device, (3) an intraluminal procedure device, (4) a procedure device capsule, and (5) a tissue cutter.
- the system provides for endovascular removal of a malfunctioning valve and subsequent replacement with a permanent prosthetic heart valve.
- FIG. 1 illustrates a procedure device capsule side view.
- FIG. 2 illustrates a side view of an intraluminal procedure device.
- FIG. 3 illustrates a bottom view of an intraluminal procedure device.
- FIG. 4 illustrates a top view of an intraluminal procedure device.
- FIG. 5 illustrates a tissue cutter in a closed position.
- FIG. 6 illustrates a tissue cutter in an open position.
- FIG. 7 illustrates a side view of a valve introducer capsule with bracer balloons deflated.
- FIG. 8 illustrates a side view of a valve introducer capsule with bracer balloons inflated.
- FIG. 9 illustrates a side view of a valve introducer capsule with balloons passed over a guide wire.
- FIG. 10 illustrates a side view of a pusher disc advancing a valve out of the introducer capsule.
- FIG. 11 illustrates an aortic valve in the side position.
- FIG. 12 illustrates an aortic valve from the top view.
- FIG. 13 illustrates a side view of an aortic valve with the mounting ring in the closed position.
- FIG. 14 illustrates a front view of an aortic valve with the mounting ring in the open position.
- FIG. 15 is a graphic illustration of a side view of a mounting pin confirmation change with balloon inflation.
- the present invention relates to the (supplantation or) replacement of a cardiac valve in a host through endovascular means.
- the valve replacement system includes up to five components: (1) a prosthetic valve device, (2) an valve introducer device, (3) an intraluminal procedure device, (4) a procedure device capsule, and (5) a tissue cutter. All the components of the system are not required to be used in conjunction with valve replacement; the description of valve replacement using all the components is merely exemplary.
- the procedure device capsule ( FIG. 1 ), which contains the intraluminal procedure device, is inserted into an entry point in the host and used to transport the intraluminal device to the desired situs, over a guide wire.
- a selectively permeable barrier of the intraluminal procedure device exits from the procedure device capsule, expands in a controlled and adjustable manner and abuts the lumen of the vessel encircling the old valve or prosthesis ( FIGS. 2, 3 & 4 ).
- the guide wire is withdrawn from the working channel of the intraluminal procedure device leaving the channel available for the passage of the tissue cutter, angioscope, ultrasound, tissue graspers, and tissue cutting devices.
- the channel can also be used for irrigation or applied to suction apparatus to remove debride, thrombus or other material.
- the tissue cutter then is inserted into the host through the working channel of the intraluminal procedure device to the valve situs where it is used to cut and remove the existing valve from the situs ( FIGS. 5,6 ). Accurate positioning of the cutter is assured using transesophageal echocardiography and intra-arterial or intra-cardiac ultrasound and angioscopy. The precision of the valve extraction and replacement is important to the success of endovascular valve replacement.
- Transesophageal echocardiography can be continuously used; 2) Intravascular ultrasound passed through the working channel of the intraluminal procedure device; 3) Intravascular ultrasound passed intravascularly via the venous system through the intra-atrial septum across the mitral valve and into the left ventricle; 4) An angioscope can be passed into the left ventricle in a like manner which would provide the added benefit of allowing constant high definition imaging of the entire procedure and high flow irrigation.
- tissue debris resulting from the procedure is trapped by the barrier of the intraluminal procedure device or is removed from the host through suction and tissue retrieval devices inserted via the working channel of the intraluminal procedure device, Tissue debris is removed via the working channel of the intraluminal procedure device with suction, grasping devices (e.g. dormier basket or grasping forceps) or is caught in the barrier of the intraluminal procedure device to avoid embolism.
- suction, grasping devices e.g. dormier basket or grasping forceps
- contraction of the tissue cutter allows for removal of the tissue cutter through the working channel of the intraluminal procedure device.
- the barrier of the intraluminal procedure device is contracted and the intraluminal procedure device is withdrawn into the procedure device capsule which is then removed.
- the valve introducer device containing the prosthetic valve device is then inserted and used to transport the replacement valve to the valve situs, over a guide wire ( FIG. 7 ).
- the bracer of the valve introducer device which optionally can include positioning balloons surrounding the introducer capsule of the valve introducer device, inflates in a differential manner, such that certain balloons inflate more-or less than others, to assure accurate positioning of the prosthetic valve when delivered out of the introducer capsule ( FIG. 8 ).
- a means for pushing the valve out of the introducer capsule, after the introducer capsule is in the appropriate position, is to advance the pusher device of the valve introducer device within the capsule ( FIG. 9 ).
- a means for securing the mounting pins into the desired situs is to inflate a balloon inside of the prosthetic valve device and within the lumen of the mounting ring ( FIGS. 10-15 ).
- the capsule positioning balloons and the intraluminal balloon can then be deflated and the valve introducer device is withdrawn.
- one method is percutaneous insertion of venous and arterial cannula with decompression of the left ventricle by insertion of a pulmonary arterial line allowing aspiration of blood and marked diminution of left ventricular filling and ejection.
- the invention provides several advantages, including the ability to replace or supplant existing cardiac or other valves or prostheses via a sutureless endovascular means avoiding the riskier, more expensive and complicated open heart surgical procedure.
- This prosthetic valve device preferably using a bioprosthesis or other thrombus resistant flexible prosthesis for the valve leaflets, will avoid the need for permanent anticoagulant therapy for the host. Once inserted, the valve is capable of operating autonomously. Further, bioprosthesis replacement valves in the past have required sutures and, therefore, open heart surgery for fixation at the annulus or vasculature situs.
- the mounting device used with the valve of the subject invention allows the invention to be fixed via endovascular means without the need for sutures.
- the prosthetic valve device is inserted on a permanent basis, and remains for the life of the valve incorporated in the device.
- the life of a bioprosthetic valve for example, can extend to over twenty years. Future developments can provide alternative prosthetic valves with a markedly extended life. Since most of the patients who are unable to tolerate open heart procedures are elderly, the bioprosthetic valve will usually outlive the patient.
- the intraluminal procedure device and the cutter allow for the novel ability to perform endovescular procedures without the serious side effect of causing loose debris and other emboli to circulate within the vasculature.
- the procedure device capsule comprises a cylindrical sleeve made of flexible durable material, for example, teflon coated polyurethane or other materials which have the following characteristics: flexible such that it can be maneuvered easily through vasculature, durable such that it can withstand the abrasive contact and pressure of instruments inserted and contained within it, and non-thrombogenic such that blood clots do not develop and adhere to its surface.
- the procedure device capsule has a generally cylindrical outside surface and a generally cylindrical inside surface with a mesh or grid design. It is characterized as capable of containing the barrier of the intraluminal procedure device and other devices which could be used intraluminally, and of intraluminal transport. The device is introduced over a guide wire to the said situs ( FIG. 1 ).
- a means for withdrawing the procedure device capsule ( 15 ) partially to allow for full expansion of the intraluminal procedure device is to have the distal end of the procedure device capsule and the proximal end of the working channel ( 5 ) of the intraluminal procedure device threaded together by a screw mechanism( 10 ).
- the intraluminal procedure device can be advanced within and out of the procedure device capsule.
- the intraluminal procedure device can be drawn back into the procedure device capsule and then secured within the capsule by rotating the working channel on the threads of the procedure device capsule in the reverse direction ( FIG. 2 ).
- the intraluminal procedure device functions to aid the performance of intraluminal procedures via endovascular or other intraluminal means and comprises a layer (the “barrier”) and a tube (the “working channel”).
- the barrier ( 20 ) comprises an umbrella-like cone with a generally conical outside surface and a generally conical inside surface ( FIG. 2 ).
- Materials for fabrication of the cone include flexible, durable, and selectively permeable (such that only certain selected sizes of particles may pass through it) material, for example, polypropylene, polyester, dacron or nylon mesh over supports of stainless steel.
- the apex of the cone is perforate to allow an exit from the working channel and points downstream in the vasculature.
- the barrier is suspended over the stainless steel tripod ( FIG. 3 ).
- an expansion device such as a balloon ( FIG. 4 ).
- the balloon can have four to twenty segments, each separated by a diaphragm.
- Each balloon segment has a separate inflation, deflation channel which allows each segment to have differential inflation directed from a central external control.
- the external device for inflation and/or deflation of each segment of the Bracer is comprised of means such as syringes or compressed air cylinders in parallel.
- Each has a valve in series allowing inflation when pressure is applied and passive or active deflation when open. Differential inflation of each balloon segment allows subtle changes in the angle of the working channel in relation to the valve situs.
- the barrier Once inflated the barrier is characterized as capable of allowing blood flow through its permeable surface preventing back pressure and embolization, and providing a working procedure region bounded by the inner surface of the barrier and extending from the barrier's distal ends proximally into the vasculature and heart ( FIG. 2 ).
- the tube of the intraluminal procedure device, the working channel comprises an elongated flexible cylinder.
- the working channel is made of durable flexible material, for example, teflon coated polyurethane or other materials which have the following characteristics: flexible, durable, and non-thrombogenic.
- the tube has a generally cylindrical outside surface and a generally cylindrical inside surface. The proximal open end of the working channel is attached around the barrier's perforated conical apex and its distal end extends out and through the vascular entry point.
- the working channel preferably has an internal diameter of about 0.5 to 10 millimeters making it capable of providing passage for instruments, for example, ultrasound, angioscopy, debridement, suction, irrigation, retrieval devices, and the tissue cutter, from outside the host to the working procedure region.
- this internal diameter size range can be varied up or down depending on the size of the host and lumen. It can also be useful to have suction or irrigation applied to the working channel.
- the tissue cutter comprises at least one proximal blade and a cable.
- the proximal blade ( 45 ) comprises a collapsible hinged ( 30 ) blade of length varying from about 1.0 to 20 millimeters with sharp cutting surfaces. This range of blade length can vary up or down depending on the size of host and lumen.
- the proximal blade can comprise a flexible wire capable of high speed rotation which would deliver a cutting contact to the tissue.
- the blade is made of rigid durable material, for example, stainless steel or elgiloy.
- the proximal blade is characterized as capable of passage through the working channel to the working procedure region in an unextended state, and then of extension of itself to allow for cutting of any undesired tissue and finally of return to its unextended state.
- Additional blades can be attached to the proximal blade to increase the cutting ability of the tissue cutter ( FIGS. 5,6 ).
- two shorter approximately 0.5 to 5.0 millimeter distal blades ( 40 ) can be attached through melding, hinging, or other connecting methods, to the distal ends of the proximal blade.
- This blade length range can vary up or down in size depending on the size of host and lumen. These blades provide sharp cutting surfaces at a range from about thirty to one hundred and fifty degree angles to the proximal blade which allows for simultaneous cutting at various angles.
- the cable ( 35 ) of the tissue cutter comprises a flexible durable elongated wire and is characterized as being capable of powering the tissue cutter ( FIG. 6 ).
- the cable is attached to the proximal blade at a central or off-center position and connected distally to an external motor.
- the cable can be a steel coaxial cable connected to a DC motor for variable speed rotation.
- the valve introducer device comprises a layer, a tube, a pusher device and a bracer.
- the layer of the valve introducer device, the introducer capsule comprises a cylindrical sleeve having a generally cylindrical outside surface and a generally cylindrical inside surface reinforced at the proximal end which is open, and having a semi-closed distal end with a perforate opening, the distal opening, having a diameter approximately the same as the internal diameter of the introducer channel ( 50 ) ( FIG. 7 ).
- the introducer capsule is made of durable, non-thrombogenic, flexible material, for example, teflon coated polyurethane with a grid or mesh design.
- the introducer capsule is characterized as being capable of containing and maintaining the prosthetic valve device in its compressed state allowing for easy transport through the host's vasculature.
- the introducer capsule is reinforced at its base with a solid rather than mesh or grid, for example, solid polyurethane coated with teflon to support the mounting ring and the mounting pins of the prosthetic valve device in its compressed state while within the introducer capsule.
- the bracer ( 70 ) is circumferentially attached to the external surface of the introducer capsule at the capsule's proximal end.
- the bracer comprises a differentially expandable device, such as a series of segmented balloons, and is characterized as having the capability of expanding to hold the introducer capsule in a precise position during delivery of the prosthetic valve device ( FIG. 8 ).
- Each segmented balloon can have an inflation/deflation channel to provide autonomous segmental expansion and compression. Differential expansion of the series of segmented balloons is directed from a central external control as done with the intraluminal procedure devices. Inflation of each differentially allows accurate positioning of the introducer capsule in proximity to the desired site of valve placement.
- the tube of the valve introducer device, the introducer channel comprises an elongated flexible cylinder.
- the introducer channel ( 50 ) is made of durable, flexible material, for example, teflon coated polyurethane or other materials which have the following characteristics flexible, durable, and non-thrombogenic.
- the introducer channel has a generally cylindrical outside surface and a generally cylindrical inside surface.
- the proximal end of the introducer channel is attached circumferentially around the distal opening of the introducer capsule and the introducer channel's distal end exits through the vascular entry point ( FIG. 9 ).
- the introducer channel preferably has an internal diameter of about 0.5-10 mm, making it capable of containing the pusher channel ( 55 ) of the pusher device.
- this internal diameter size range can be varied up or down depending on the size of the host and lumen.
- the introducer channel and pusher channel are also characterized as being capable of allowing suction or irrigation instruments within its lumen.
- the pusher device comprises a disc and a tube.
- the pusher disc ( 60 ) of the pusher device, the pusher disc comprises a generally circular disc, with a generally flat distal surface, a generally flat proximal surface and a central opening. The diameter of the opening should be smaller than the diameter used in the introducer channel.
- the pusher disc is made of a durable, flexible material such as teflon coated polyurethane or other materials which have the following characteristics: flexible and durable.
- the proximal surface of the pusher disc abuts the prosthetic valve device contained within the introducer capsule ( FIG. 9 ).
- the pusher channel comprises an elongated flexible cylinder and is made of durable, flexible, non-thrombogenic material, that can maintain its structural integrity such that it will not distort upon application of external pressure (e.g. teflon coated polyurethane).
- the pusher channel has a generally cylindrical outside surface and a generally cylindrical inside surface and has a smaller internal diameter than that used in the introducer channel ( FIG. 10 ).
- the pusher channel is also characterized as being capable of allowing suction or irrigation instruments within its lumen.
- the prosthetic valve device comprises a sleeve ( 80 ), a valve and an annulus.
- the sleeve is a flexible cylindrical shaped cylinder having a generally cylindrical outside surface and a generally cylindrical inside surface.
- the sleeve is secured on its inside surface to the valve and on the base of its outside surface to a compressible annulus, the mounting ring ( 85 ) ( FIGS. 11, 12 ).
- Securing means can include suturing, chemical bonding, laser welding, stapling, or other methods.
- Securing materials can include polypropylene, polyester, nylon, stainless steel or other inert, durable materials.
- the sleeve is of durable, host compatible, non-thrombogenic, flexible and compressible material, for example, dacron or polytetrafluorethylene, to allow it to be easily compressed, maneuvered and transported through the vasculature to permit endovascular placement.
- the sleeve's durability permits secure attachment to other objects and layers, and allows the sleeve to remain intact despite the replacement procedure, and the long term of the prosthetic device within the host. All components of the prosthetic valve device, the mounting ring, sleeve and valve, are flexible, compressible, non-thrombogenic and durable.
- the valve Secured to the inner layer of the prosthetic valve device comprises a valve which functions to permit unidirectional circulatory flow of blood.
- the valve comprises a cylindrical shaped annulus ( 100 ) having a generally cylindrical outside surface and a generally cylindrical inside surface containing at least one cusp ( 95 ) to permit blood flow in a single direction.
- the cusp(s) are attached at the distal end (relative to blood flow) of the cylindrical annulus.
- the cusp(s) open distally to permit the circulation's flow of blood through the valve situs, and then alternately close centrally to prevent circulation back-flow.
- the valve is flexible, compressible, host-compatible, and non-thrombogenic.
- the valve can be, for example, a glutaraldehyde fixed porcine aortic valve which has three cusps that open distally to permit unidirectional blood flow.
- the valve can also be fresh, cryopreserved or glutaraldehyde fixed allografts or xenografts.
- the optimal material will be synthetic such that it is manufactured from non-biological materials, non-thrombogenic, flexible such that it can be transported through the vasculature, biocompatible and very durable such that it can withstand a permanent fixation at the valve site. It is highly desirable to use flexible material where the valve is to be inserted via endovascular means.
- the mounting ring ( 85 ) of the prosthetic valve device is preferably attached at the base of the outside surface of the sleeve.
- the mounting ring is made of materials that are durable, have been high tensile strength, excellent fatigue characteristics and corrosion resistant (for example, stainless steel, MP35N or elgiloy) and is structured in a compressible architecture such that it can contract upon application and expand upon release of external pressure and still maintain its basic formation.
- the mounting ring has a generally cylindrical outside surface and a generally cylindrical inside surface comprised of a series of mounting pins ( 90 ) to fix the prosthetic valve device at the designated valve situs ( FIGS. 13-15 ).
- the mounting ring provides endovascular sutureless fixation of the device allowing it to operate autonomously.
- the pins are secured by melding, welding or other connecting methods, at about 30 to about 150 degree angles to the mounting ring.
- the composite of angles provides for secure fixation such that the-prosthetic valve device can tolerate the degree and directional pressure variations on the valve occurring during the different phases of the cardiac cycle.
- uniform pressure is exerted at the inner surface of the mounting ring, as for example by inflation of the mounting balloon, the mounting ring expands and the pins extend into and secure to the lumen wall.
- the function of the prosthetic valve device can be monitored by the same methods as used to monitor valve replacements done by open heart surgery. Routine physical examination, periodic echocardiography or angiography can be performed. In contrast to open heart surgery, however, the host requires a short recovery period and can return home within one day of the endovascular procedure.
- the prosthetic valve device can be used in any patient where bioprosthetic valves are indicated, namely elderly patients with cardiac valve diseases, and patients unable to tolerate open heart procedures or life-long anticoagulation.
- the prosthetic valve device will be indicated in all patients where the relative advantages of the life-span, the non-thrombogenic quality, and the ease of insertion of prosthetic valve devices outweigh the disadvantages of mechanical valves. Anticoagulation may be beneficial in certain clinical situations for either short or long term use.
- the intraluminal procedure device, the procedure device capsule and the tissue cutter can be independently applied, or applied in conjunction with each other, to instrumentation at or removal of cardiac, aortic, cerebrovascular, mesenteric, renal, or peripheral vessel valves or tissue, and would be especially important anywhere in the cardiac or vascular system where peripheral embolization-is problematic or accurate positioning of instruments is essential. They can also be used in other body lumens, for example, the gastrointestinal, genitourinary, biliary, and respiratory tracts. In addition, the valve replacement system can be used to supplant as well as replace a host's valve or prosthesis.
- the dysfunctional valve or prosthesis is not removed by the tissue cutter, and the prosthetic valve device is fixated at a vascular situs such that the device supplants the function of the dysfunctional valve or prosthesis
- the valve replacement system could be used in non-human species, for example, other mammals.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Child & Adolescent Psychology (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
The subject invention relates to a valve replacement system together with methods of preparation and use, are provided for endovascular replacement of a heart valve in a host. The valve replacement system includes up to five components: (1) a prosthetic valve device, (2) a valve introducer device, (3) an intraluminal procedure device, (4) a procedure device capsule, and (5) a tissue cutter. The system provides for endovascular removal of a malfunctioning valve and subsequent replacement with a permanent prosthetic heart valve.
Description
- 1. Field of the Invention
- This invention relates to devices and methods for endovascular replacement of a heart valve.
- 2. Background
- It is often necessary to replace malfunctioning heart valves within the body. Heart valve replacement generally has been accomplished by a major open heart surgical procedure, requiring general anesthesia, full cardiopulmonary bypass with complete cessation of cardiopulmonary activity, seven to ten days of hospitalization and months of recuperation time. The mortality rate with this type of procedure is about five to six percent.
- Endovascular procedures for valve replacement provide an alternative to open heart surgery. For example, in patients with serious aortic valve disease who are too compromised to tolerate open heart surgery, surgeons have used endovascular balloon aortic valvuloplasty. This procedure involves use of endovascular balloon dilatation to split commissures in diseased aortic valves with commissural fusion and to crack calcific plaques in calcified stenotic aortic valves. This method provides only partial and temporary relief for a patient with a stenotic aortic valve. A repeat procedure within a year of the first procedure is often required.
- An alternative treatment regimen is endovascular valve supplantation. In this procedure, instruments are used to insert a mechanical valve in the lumen of a central blood vessel via entry through a distal artery, for example, the brachial or femoral artery. The descriptive terms distal and proximal, when used in relation to the vasculature in this application, refer to directions further and closer from the valve replacement or procedure site, as applicable. A guide wire is placed through the entry vessel and fluoroscopically directed to the desired situs. Flexible catheters are then guided over the guide wires which are used to propel and direct the new valve through the blood vessel to the desired central location near to the malfunctioning heart valve where it supplants the function of the existing valve.
- Endovascular heart procedures, in contrast to open heart surgical procedures, would require only local anesthesia, partial or no cardiac bypass, one to two days hospitalization, and should have a reduced mortality rate as compared to open heart procedures. However, as discussed in the literature but never actually practiced, endovascular heart valve supplantation is limited to supra-annular arterial based mechanical valves which require an elongated mounting catheter originating at the distal arterial entry point to maintain the position of the valve in the aorta and therefore does not provide a permanent or internalized system. Valve supplantation is also limited to treating regurgitant aortic valves and is not applicable to stenotic aortic valves or any other malfunctioning heart valves. In addition, once implanted, mechanical valves predispose the patient to thrombus formation and emboli, mandating long term anticoagulant therapy; intracranial hemorrhages are a serious side effect of long term anticoagulant therapy.
- A potential alternative to a mechanical valve is a bioprosthetic valve. A bioprosthetic valve can be either a homograft (a fresh human), allograft (a fixed human) or a xenograft (a fixed other species) valve. Homograft valves, in contrast to xenograft valves, are rarely used because of the lack of access to fresh human valves. Porcine glutaraldehyde preserved valves are often used since they are readily accessible and storable and are available in a variety of sizes. Bioprosthetic valve replacement does not predispose a patient to thrombus formation or emboli, and, therefore, requires no long-term anticoagulant therapy. Bioprosthetic valves are presently a mainstay in aortic valve replacement. Bioprosthetic heart valve replacement is preferable in patients who cannot tolerate long-term anticoagulant therapy or are otherwise potentially noncompliant with a long term medical regime.
- To date, bioprosthetic and mechanical valves have been inserted near or at the native annulus site through open heart surgery and except for the Magovern-Cromie Valve which used pins to fix the valves have required sutures for fixation at the insertion site; means for endovascular valve replacement with any valve are not available. It would therefore be of interest to provide a endovascular means i) to easily remove a dysfunctional natural or prosthetic valve and ii) to replace the dysfunctional valve with a endovascularly replaceable bioprosthetic or flexible synthetic valve, independently fixed without sutures or catheter, near or at the native valve annulus site.
- Relevant Literature
- U.S. Pat. No. 3,671,979 to Moulopoulos, issued Jun. 27, 1972, describes a endovascularly inserted conical shaped umbrella-like valve positioned and held in place by an elongated mounting catheter at a supra-annular site to the aortic valve in a nearby arterial vessel. The conical end points toward the malfunctioning aortic valve and the umbrella's distal ends open up against the aorta wall with reverse blood flow, thereby preventing regurgitation.
- U.S. Pat. No. 4,056,854 to Boretos, issued Nov. 8, 1977, describes a endovascularly inserted, catheter mounted, supra-annular valve in which the circular frame abuts the wall of the artery and attached flaps of flexible membrane extend distally in the vasculature. The flaps lie against the artery wall during forward flow, and close inward towards the central catheter to prevent regurgitation during reverse blood flow. The Boretos valve was designed to be positioned against the artery wall during forward flow, as compared to the mid-center position of the Moulopoulos valve, to reduce the stagnation of blood flow and consequent thrombus and embolic formation expected from a valve at mid-center position.
- Reviews relating to replacement valves include: Gibbon's Surgery of the Chest, 5th Ed., David C. Sabiston, Jr., M.D., Frank D. Spencer, M.D., 1990, Vol. II, Ch. 52, pp. 1566-1596, and Textbook of Interventional Cardiology, Eric J. Topol, 1990, Chs. 43-44, pp. 831-867.
- According to the subject invention, a valve replacement system together with methods of preparation and use, are provided for endovascular replacement of a heart valve in a host. The valve replacement system includes up to five components: (1) a prosthetic valve device, (2) a valve introducer device, (3) an intraluminal procedure device, (4) a procedure device capsule, and (5) a tissue cutter. The system provides for endovascular removal of a malfunctioning valve and subsequent replacement with a permanent prosthetic heart valve.
-
FIG. 1 illustrates a procedure device capsule side view. -
FIG. 2 illustrates a side view of an intraluminal procedure device. -
FIG. 3 illustrates a bottom view of an intraluminal procedure device. -
FIG. 4 illustrates a top view of an intraluminal procedure device. -
FIG. 5 illustrates a tissue cutter in a closed position. -
FIG. 6 illustrates a tissue cutter in an open position. -
FIG. 7 illustrates a side view of a valve introducer capsule with bracer balloons deflated. -
FIG. 8 illustrates a side view of a valve introducer capsule with bracer balloons inflated. -
FIG. 9 illustrates a side view of a valve introducer capsule with balloons passed over a guide wire. -
FIG. 10 illustrates a side view of a pusher disc advancing a valve out of the introducer capsule. -
FIG. 11 illustrates an aortic valve in the side position. -
FIG. 12 illustrates an aortic valve from the top view. -
FIG. 13 illustrates a side view of an aortic valve with the mounting ring in the closed position. -
FIG. 14 illustrates a front view of an aortic valve with the mounting ring in the open position. -
FIG. 15 is a graphic illustration of a side view of a mounting pin confirmation change with balloon inflation. - The present invention relates to the (supplantation or) replacement of a cardiac valve in a host through endovascular means. The valve replacement system includes up to five components: (1) a prosthetic valve device, (2) an valve introducer device, (3) an intraluminal procedure device, (4) a procedure device capsule, and (5) a tissue cutter. All the components of the system are not required to be used in conjunction with valve replacement; the description of valve replacement using all the components is merely exemplary.
- In a general method, the procedure device capsule (
FIG. 1 ), which contains the intraluminal procedure device, is inserted into an entry point in the host and used to transport the intraluminal device to the desired situs, over a guide wire. At the situs, a selectively permeable barrier of the intraluminal procedure device exits from the procedure device capsule, expands in a controlled and adjustable manner and abuts the lumen of the vessel encircling the old valve or prosthesis (FIGS. 2, 3 & 4). The guide wire is withdrawn from the working channel of the intraluminal procedure device leaving the channel available for the passage of the tissue cutter, angioscope, ultrasound, tissue graspers, and tissue cutting devices. The channel can also be used for irrigation or applied to suction apparatus to remove debride, thrombus or other material. - The tissue cutter then is inserted into the host through the working channel of the intraluminal procedure device to the valve situs where it is used to cut and remove the existing valve from the situs (
FIGS. 5,6 ). Accurate positioning of the cutter is assured using transesophageal echocardiography and intra-arterial or intra-cardiac ultrasound and angioscopy. The precision of the valve extraction and replacement is important to the success of endovascular valve replacement. There are several imaging techniques presently available providing complementary options to assure this precisions 1) Transesophageal echocardiography can be continuously used; 2) Intravascular ultrasound passed through the working channel of the intraluminal procedure device; 3) Intravascular ultrasound passed intravascularly via the venous system through the intra-atrial septum across the mitral valve and into the left ventricle; 4) An angioscope can be passed into the left ventricle in a like manner which would provide the added benefit of allowing constant high definition imaging of the entire procedure and high flow irrigation. - Any tissue debris resulting from the procedure is trapped by the barrier of the intraluminal procedure device or is removed from the host through suction and tissue retrieval devices inserted via the working channel of the intraluminal procedure device, Tissue debris is removed via the working channel of the intraluminal procedure device with suction, grasping devices (e.g. dormier basket or grasping forceps) or is caught in the barrier of the intraluminal procedure device to avoid embolism. Once all the necessary tissue has been removed, contraction of the tissue cutter allows for removal of the tissue cutter through the working channel of the intraluminal procedure device. The barrier of the intraluminal procedure device is contracted and the intraluminal procedure device is withdrawn into the procedure device capsule which is then removed.
- The valve introducer device containing the prosthetic valve device is then inserted and used to transport the replacement valve to the valve situs, over a guide wire (
FIG. 7 ). The bracer of the valve introducer device, which optionally can include positioning balloons surrounding the introducer capsule of the valve introducer device, inflates in a differential manner, such that certain balloons inflate more-or less than others, to assure accurate positioning of the prosthetic valve when delivered out of the introducer capsule (FIG. 8 ). A means for pushing the valve out of the introducer capsule, after the introducer capsule is in the appropriate position, is to advance the pusher device of the valve introducer device within the capsule (FIG. 9 ). A means for securing the mounting pins into the desired situs is to inflate a balloon inside of the prosthetic valve device and within the lumen of the mounting ring (FIGS. 10-15 ). The capsule positioning balloons and the intraluminal balloon can then be deflated and the valve introducer device is withdrawn. - In order to support the circulation of the patient during the endovascular aortic valve replacement it will be necessary to place the patient on partial or complete cardiopulmonary bypass. There are presently available several means to provide this support. For example, one method is percutaneous insertion of venous and arterial cannula with decompression of the left ventricle by insertion of a pulmonary arterial line allowing aspiration of blood and marked diminution of left ventricular filling and ejection.
- The invention provides several advantages, including the ability to replace or supplant existing cardiac or other valves or prostheses via a sutureless endovascular means avoiding the riskier, more expensive and complicated open heart surgical procedure. This prosthetic valve device, preferably using a bioprosthesis or other thrombus resistant flexible prosthesis for the valve leaflets, will avoid the need for permanent anticoagulant therapy for the host. Once inserted, the valve is capable of operating autonomously. Further, bioprosthesis replacement valves in the past have required sutures and, therefore, open heart surgery for fixation at the annulus or vasculature situs. The mounting device used with the valve of the subject invention allows the invention to be fixed via endovascular means without the need for sutures. The prosthetic valve device is inserted on a permanent basis, and remains for the life of the valve incorporated in the device. The life of a bioprosthetic valve, for example, can extend to over twenty years. Future developments can provide alternative prosthetic valves with a markedly extended life. Since most of the patients who are unable to tolerate open heart procedures are elderly, the bioprosthetic valve will usually outlive the patient. The intraluminal procedure device and the cutter allow for the novel ability to perform endovescular procedures without the serious side effect of causing loose debris and other emboli to circulate within the vasculature.
- The components of the valve replacement system will now be described. The procedure device capsule comprises a cylindrical sleeve made of flexible durable material, for example, teflon coated polyurethane or other materials which have the following characteristics: flexible such that it can be maneuvered easily through vasculature, durable such that it can withstand the abrasive contact and pressure of instruments inserted and contained within it, and non-thrombogenic such that blood clots do not develop and adhere to its surface. The procedure device capsule has a generally cylindrical outside surface and a generally cylindrical inside surface with a mesh or grid design. It is characterized as capable of containing the barrier of the intraluminal procedure device and other devices which could be used intraluminally, and of intraluminal transport. The device is introduced over a guide wire to the said situs (
FIG. 1 ). - A means for withdrawing the procedure device capsule (15) partially to allow for full expansion of the intraluminal procedure device is to have the distal end of the procedure device capsule and the proximal end of the working channel (5) of the intraluminal procedure device threaded together by a screw mechanism(10). Upon rotation of the working channel on the threads of the procedure device capsule, the intraluminal procedure device can be advanced within and out of the procedure device capsule. After completion of work, the intraluminal procedure device can be drawn back into the procedure device capsule and then secured within the capsule by rotating the working channel on the threads of the procedure device capsule in the reverse direction (
FIG. 2 ). - The intraluminal procedure device functions to aid the performance of intraluminal procedures via endovascular or other intraluminal means and comprises a layer (the “barrier”) and a tube (the “working channel”). The barrier (20) comprises an umbrella-like cone with a generally conical outside surface and a generally conical inside surface (
FIG. 2 ). Materials for fabrication of the cone include flexible, durable, and selectively permeable (such that only certain selected sizes of particles may pass through it) material, for example, polypropylene, polyester, dacron or nylon mesh over supports of stainless steel. The apex of the cone is perforate to allow an exit from the working channel and points downstream in the vasculature. The barrier is suspended over the stainless steel tripod (FIG. 3 ). Attached circumferentially to the barrier is an expansion device (25, the “Bracer”), such as a balloon (FIG. 4 ). The balloon can have four to twenty segments, each separated by a diaphragm. Each balloon segment has a separate inflation, deflation channel which allows each segment to have differential inflation directed from a central external control. The external device for inflation and/or deflation of each segment of the Bracer is comprised of means such as syringes or compressed air cylinders in parallel. Each has a valve in series allowing inflation when pressure is applied and passive or active deflation when open. Differential inflation of each balloon segment allows subtle changes in the angle of the working channel in relation to the valve situs. Once inflated the barrier is characterized as capable of allowing blood flow through its permeable surface preventing back pressure and embolization, and providing a working procedure region bounded by the inner surface of the barrier and extending from the barrier's distal ends proximally into the vasculature and heart (FIG. 2 ). - The tube of the intraluminal procedure device, the working channel, comprises an elongated flexible cylinder. The working channel is made of durable flexible material, for example, teflon coated polyurethane or other materials which have the following characteristics: flexible, durable, and non-thrombogenic. The tube has a generally cylindrical outside surface and a generally cylindrical inside surface. The proximal open end of the working channel is attached around the barrier's perforated conical apex and its distal end extends out and through the vascular entry point. For use in an adult human, the working channel preferably has an internal diameter of about 0.5 to 10 millimeters making it capable of providing passage for instruments, for example, ultrasound, angioscopy, debridement, suction, irrigation, retrieval devices, and the tissue cutter, from outside the host to the working procedure region. For use in a host other than an adult human, this internal diameter size range can be varied up or down depending on the size of the host and lumen. It can also be useful to have suction or irrigation applied to the working channel.
- The tissue cutter comprises at least one proximal blade and a cable. The proximal blade (45) comprises a collapsible hinged (30) blade of length varying from about 1.0 to 20 millimeters with sharp cutting surfaces. This range of blade length can vary up or down depending on the size of host and lumen. Alternatively, the proximal blade can comprise a flexible wire capable of high speed rotation which would deliver a cutting contact to the tissue. The blade is made of rigid durable material, for example, stainless steel or elgiloy. The proximal blade is characterized as capable of passage through the working channel to the working procedure region in an unextended state, and then of extension of itself to allow for cutting of any undesired tissue and finally of return to its unextended state. Additional blades can be attached to the proximal blade to increase the cutting ability of the tissue cutter (
FIGS. 5,6 ). For example, two shorter approximately 0.5 to 5.0 millimeter distal blades (40) can be attached through melding, hinging, or other connecting methods, to the distal ends of the proximal blade. This blade length range can vary up or down in size depending on the size of host and lumen. These blades provide sharp cutting surfaces at a range from about thirty to one hundred and fifty degree angles to the proximal blade which allows for simultaneous cutting at various angles. - The cable (35) of the tissue cutter comprises a flexible durable elongated wire and is characterized as being capable of powering the tissue cutter (
FIG. 6 ). The cable is attached to the proximal blade at a central or off-center position and connected distally to an external motor. For example, the cable can be a steel coaxial cable connected to a DC motor for variable speed rotation. - The valve introducer device comprises a layer, a tube, a pusher device and a bracer. The layer of the valve introducer device, the introducer capsule, comprises a cylindrical sleeve having a generally cylindrical outside surface and a generally cylindrical inside surface reinforced at the proximal end which is open, and having a semi-closed distal end with a perforate opening, the distal opening, having a diameter approximately the same as the internal diameter of the introducer channel (50) (
FIG. 7 ). The introducer capsule is made of durable, non-thrombogenic, flexible material, for example, teflon coated polyurethane with a grid or mesh design. The introducer capsule is characterized as being capable of containing and maintaining the prosthetic valve device in its compressed state allowing for easy transport through the host's vasculature. The introducer capsule is reinforced at its base with a solid rather than mesh or grid, for example, solid polyurethane coated with teflon to support the mounting ring and the mounting pins of the prosthetic valve device in its compressed state while within the introducer capsule. - The bracer (70) is circumferentially attached to the external surface of the introducer capsule at the capsule's proximal end. The bracer comprises a differentially expandable device, such as a series of segmented balloons, and is characterized as having the capability of expanding to hold the introducer capsule in a precise position during delivery of the prosthetic valve device (
FIG. 8 ). Each segmented balloon can have an inflation/deflation channel to provide autonomous segmental expansion and compression. Differential expansion of the series of segmented balloons is directed from a central external control as done with the intraluminal procedure devices. Inflation of each differentially allows accurate positioning of the introducer capsule in proximity to the desired site of valve placement. - The tube of the valve introducer device, the introducer channel, comprises an elongated flexible cylinder. The introducer channel (50) is made of durable, flexible material, for example, teflon coated polyurethane or other materials which have the following characteristics flexible, durable, and non-thrombogenic. The introducer channel has a generally cylindrical outside surface and a generally cylindrical inside surface. The proximal end of the introducer channel is attached circumferentially around the distal opening of the introducer capsule and the introducer channel's distal end exits through the vascular entry point (
FIG. 9 ). For use in an adult human, the introducer channel preferably has an internal diameter of about 0.5-10 mm, making it capable of containing the pusher channel (55) of the pusher device. For use in a host other than an adult human, this internal diameter size range can be varied up or down depending on the size of the host and lumen. The introducer channel and pusher channel are also characterized as being capable of allowing suction or irrigation instruments within its lumen. - The pusher device comprises a disc and a tube. The pusher disc (60) of the pusher device, the pusher disc, comprises a generally circular disc, with a generally flat distal surface, a generally flat proximal surface and a central opening. The diameter of the opening should be smaller than the diameter used in the introducer channel. The pusher disc is made of a durable, flexible material such as teflon coated polyurethane or other materials which have the following characteristics: flexible and durable. The proximal surface of the pusher disc abuts the prosthetic valve device contained within the introducer capsule (
FIG. 9 ). - Attached at the pusher disc's distal surface circumuferentially around the central opening of the pusher disc is the proximal end of the tube, the pusher channel. The pusher channel, comprises an elongated flexible cylinder and is made of durable, flexible, non-thrombogenic material, that can maintain its structural integrity such that it will not distort upon application of external pressure (e.g. teflon coated polyurethane). The pusher channel has a generally cylindrical outside surface and a generally cylindrical inside surface and has a smaller internal diameter than that used in the introducer channel (
FIG. 10 ). It is characterized as capable of being contained within the lumen of the introducer channel with its distal end extending beyond the vascular entry point via the introducer channel and of allowing passage of the mounting balloon (75) and guide wire (65). It is also characterized as being capable of advancing within the lumen of the introducer channel, upon application of external pressure at the vascular entry point to advance the pusher disc within the introducer capsule. The pusher channel is also characterized as being capable of allowing suction or irrigation instruments within its lumen. - The prosthetic valve device comprises a sleeve (80), a valve and an annulus. The sleeve is a flexible cylindrical shaped cylinder having a generally cylindrical outside surface and a generally cylindrical inside surface. The sleeve is secured on its inside surface to the valve and on the base of its outside surface to a compressible annulus, the mounting ring (85) (
FIGS. 11, 12 ). Securing means can include suturing, chemical bonding, laser welding, stapling, or other methods. Securing materials can include polypropylene, polyester, nylon, stainless steel or other inert, durable materials. The sleeve is of durable, host compatible, non-thrombogenic, flexible and compressible material, for example, dacron or polytetrafluorethylene, to allow it to be easily compressed, maneuvered and transported through the vasculature to permit endovascular placement. The sleeve's durability permits secure attachment to other objects and layers, and allows the sleeve to remain intact despite the replacement procedure, and the long term of the prosthetic device within the host. All components of the prosthetic valve device, the mounting ring, sleeve and valve, are flexible, compressible, non-thrombogenic and durable. - Secured to the inner layer of the prosthetic valve device comprises a valve which functions to permit unidirectional circulatory flow of blood. The valve comprises a cylindrical shaped annulus (100) having a generally cylindrical outside surface and a generally cylindrical inside surface containing at least one cusp (95) to permit blood flow in a single direction. The cusp(s) are attached at the distal end (relative to blood flow) of the cylindrical annulus. The cusp(s) open distally to permit the circulation's flow of blood through the valve situs, and then alternately close centrally to prevent circulation back-flow. The valve is flexible, compressible, host-compatible, and non-thrombogenic. The valve can be, for example, a glutaraldehyde fixed porcine aortic valve which has three cusps that open distally to permit unidirectional blood flow. The valve can also be fresh, cryopreserved or glutaraldehyde fixed allografts or xenografts. The optimal material will be synthetic such that it is manufactured from non-biological materials, non-thrombogenic, flexible such that it can be transported through the vasculature, biocompatible and very durable such that it can withstand a permanent fixation at the valve site. It is highly desirable to use flexible material where the valve is to be inserted via endovascular means.
- The mounting ring (85) of the prosthetic valve device is preferably attached at the base of the outside surface of the sleeve. The mounting ring is made of materials that are durable, have been high tensile strength, excellent fatigue characteristics and corrosion resistant (for example, stainless steel, MP35N or elgiloy) and is structured in a compressible architecture such that it can contract upon application and expand upon release of external pressure and still maintain its basic formation. The mounting ring has a generally cylindrical outside surface and a generally cylindrical inside surface comprised of a series of mounting pins (90) to fix the prosthetic valve device at the designated valve situs (
FIGS. 13-15 ). The mounting ring provides endovascular sutureless fixation of the device allowing it to operate autonomously. The pins are secured by melding, welding or other connecting methods, at about 30 to about 150 degree angles to the mounting ring. The composite of angles provides for secure fixation such that the-prosthetic valve device can tolerate the degree and directional pressure variations on the valve occurring during the different phases of the cardiac cycle. As uniform pressure is exerted at the inner surface of the mounting ring, as for example by inflation of the mounting balloon, the mounting ring expands and the pins extend into and secure to the lumen wall. - Once the endovascular implantation of the prosthetic valve device is completed in the host, the function of the prosthetic valve device can be monitored by the same methods as used to monitor valve replacements done by open heart surgery. Routine physical examination, periodic echocardiography or angiography can be performed. In contrast to open heart surgery, however, the host requires a short recovery period and can return home within one day of the endovascular procedure. The prosthetic valve device can be used in any patient where bioprosthetic valves are indicated, namely elderly patients with cardiac valve diseases, and patients unable to tolerate open heart procedures or life-long anticoagulation. In addition, with the development of longer-life, flexible, non-thrombogenic synthetic valve alternatives to bioprosthesis', the prosthetic valve device will be indicated in all patients where the relative advantages of the life-span, the non-thrombogenic quality, and the ease of insertion of prosthetic valve devices outweigh the disadvantages of mechanical valves. Anticoagulation may be beneficial in certain clinical situations for either short or long term use.
- The intraluminal procedure device, the procedure device capsule and the tissue cutter can be independently applied, or applied in conjunction with each other, to instrumentation at or removal of cardiac, aortic, cerebrovascular, mesenteric, renal, or peripheral vessel valves or tissue, and would be especially important anywhere in the cardiac or vascular system where peripheral embolization-is problematic or accurate positioning of instruments is essential. They can also be used in other body lumens, for example, the gastrointestinal, genitourinary, biliary, and respiratory tracts. In addition, the valve replacement system can be used to supplant as well as replace a host's valve or prosthesis. In that procedure the dysfunctional valve or prosthesis is not removed by the tissue cutter, and the prosthetic valve device is fixated at a vascular situs such that the device supplants the function of the dysfunctional valve or prosthesis, Also, the valve replacement system could be used in non-human species, for example, other mammals.
- All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.
Claims (14)
1. A procedure device capsule for transport of the intraluminal procedure device to a vascular, cardiac or other intraluminal situs which when inserted in the lumen of a blood vessel in the presence of blood flow comprises:
one layer comprising a tubular flexible substrate means having a generally cylindrical outside surface and a generally cylindrical inside surface characterized as capable of transporting the intraluminal procedure device to said situs.
2. An intraluminal procedure device for performance of intravascular or intracardiac or other intraluminal procedures at a situs which when inserted in the lumen of a host blood vessel in the presence of blood flow comprises:
a layer and a tube, wherein:
i) said layer, the barrier, comprising a durable flexible selectively permeable umbrella-like conical shaped substrate means with the conical end perforate and pointing downstream in the host blood vessel and the distal ends segmented into at least two segments to allow for differential expansion and contraction of the segments, characterized as capable of passage through said host blood vessel to a vascular or cardiac or other intraluminal situs and of differentially expanding said distal ends to attach to the walls of and stabilize at said situs, at a determined angle and for a determined length of time, allowing blood flow through said permeable substrate means preventing back pressure and embolization, and providing a working procedure region within the area confined by the inside of said barrier, and
ii) said tube, the working channel, comprising an elongated tubular durable flexible substrate means having a generally cylindrical outside surface and a generally cylindrical inside surface which distal open end is attached at said situs of the perforation at the conical end of said barrier and which proximal end extends out the external entry to said host blood vessel, characterized as allowing external entry and utilization of instruments at said situs through passage of said instruments through said working channel, through the perforate conical end of said barrier and into the procedure working region.
3. A tissue cutter for removal of undesired tissue within the vascular or cardiac system or other anatomic lumens which when inserted into the intraluminal procedure device comprises:
at least one blade and a cable, wherein
i) said at least one blade comprising a collapsible blade, and characterized as capable of passage through a host blood vessel to a vascular or cardiac situs while collapsed within a working channel and then entry into the procedure working region, which when within the procedure working region comprises:
at least one collapsible sharp blade having at least one hinge mechanism allowing for collapsing and expansion and attached to zero or more other blades at varying angles to provide cutting surfaces at various angles, with said collapsible blade connected to
ii) said cable which when within the working channel comprises:
an elongated durable flexible wire which extends to the exterior of the host through the working channel, said cable characterized as capable of connection to an outside motor, and of controlling the speed of rotation of the blade(s).
4. The tissue cutter according to claim 3 wherein the proximal blade comprises a flexible wire capable of high speed rotation.
5. A valve introducer device for inserting a prosthetic valve device at a vascular, or cardiac situs which when inserted in the lumen of a blood vessel in the presence of blood flow comprises:
a layer, a tube, a pusher devise and a bracer, wherein
i) said layer, the introducer capsule, comprising a tubular flexible substrate means having a generally cylindrical outside surface and a generally cylindrical inside surface and reinforced at the proximal end which is open, and having a semi-closed distal end with a perforate opening having a diameter approximately the same as the internal diameter of the tube, characterized as capable of transporting said prosthetic valve device to said situs,
ii) said tube, the introducer channel, comprising an elongated tubular durable flexible substrate means having a generally cylindrical outside surface and a generally cylindrical inside surface which proximal open end is attached at said situs of the distal opening of said introducer capsule and which distal end extends out the external entry of said blood vessel, and is characterized as containing a pusher channel of a pusher device within its lumen,
iii) said pusher device comprising a disc and a tube, said disc of said pusher device comprising a generally circular disc, with a generally flat distal surface, a generally flat proximal surface and a central opening, and made of a durable, flexible material, having its proximal surface abut said prosthetic valve device contained within said introducer capsule, and attached at said central opening of its distal surface is said proximal end of said tube, which comprises:
an elongated flexible cylinder made of durable, flexible, non-thrombogenic material, having a generally cylindrical outside surface and a generally cylindrical inside surface and a smaller internal diameter than that used in said introducer channel, and is characterized as capable of maintaining its structural integrity such that it does not distort upon the application of external pressure, of being contained within the lumen of said introducer channel with its distal end extending beyond the vascular entry point via said introducer channel, of allowing passage of a mounting balloon and guide wire, and of advancing within the lumen of said introducer channel, upon application of external pressure to advance said pusher disc, and thereby said prosthetic valve device within said introducer capsule, and
iv) said bracer, comprising a differentially expandable device circumferentially attached to the external surface of said introducer capsule at said capsule's proximal end and is characterized as having the capability of expanding to hold said introducer capsule in a precise position during delivery of said prosthetic valve device.
6. A prosthetic valve device for supplanting or replacing a cardiac valve which when inserted in the lumen of a blood vessel, in extra-anatomic conduits or at a cardiac valve annulus situs in the presence of blood flow comprises:
a sleeve, a valve and an annulus, wherein
i) said sleeve comprises a tubular flexible substrate means having a generally cylindrical outside layer secured to
(ii) said compressible annulus at its base comprising a mounting ring by a series of mounting pins, and a generally cylindrical inside surface contacting an inner layer comprising
(iii) said valve, characterized as capable of insertion into a cardiac or vascular situs through a host blood vessel, host compatible and capable of autonomous operation, which when inserted in said situs in the presence of blood flow comprises a flexible annulus having a generally cylindrical outside surface and a generally cylindrical inside surface containing at least one cusp to permit blood flow through said cusp in a single direction;
iv) attachment means comprising at said first and second open ends of said cusp to permit fixation of said device at least at or above said annulus of said dysfunctional valve by the mounting ring which comprises;
v) a flexible annulus having a generally cylindrical inside surface and a generally cylindrical outside surface containing a series of mounting pins to fixate said prosthetic valve device at said situs.
7. A valve, characterized as capable of insertion into a cardiac or vascular situs through a host blood vessel, host compatible and capable of autonomous operation, which when inserted in said situs in the presence of blood flow comprises:
a flexible annulus having a generally cylindrical outside surface and a generally cylindrical inside surface containing at least one cusp to permit blood flow through said cusp in a single direction.
8. A valve according to claim 7 further comprising attachment means comprising at said first and second open ends of said cusp to permit fixation of said device at least at or above said annulus of said dysfunctional valve by the mounting ring.
9. A mounting ring to fixate an attached device at a situs characterized as capable of insertion into a cardiac or vascular situs through a host blood vessel, host compatible and capable of autonomous operation, which when inserted in said situs in the presence of blood flow comprises:
a flexible annulus having a generally cylindrical outside surface and a generally cylindrical inside surface containing a series of mounting pins to fixate said attached device at the said situs.
10. A valve replacement system for supplanting or replacing a cardiac valve which when inserted in the lumen of a blood vessel, in extra-anatomic conduits or at a cardiac valve annulus situs in the presence of blood flow comprises:
a procedure device capsule, an intraluminal procedure device, a tissue cutter, a valve introducer device, and a prosthetic valve device.
11. A method for replacing a cardiac or other valve or prosthesis endovascularly which method comprises:
a procedure device capsule contains and transports a intraluminal procedure device endovascularly, through surface insertion of and passage through the host's vasculature, to a valve situs whereby a barrier of said intraluminal procedure device exits from said procedure device capsule, expands in a controlled and adjustable manner, abuts the lumen of the vessel, and encircles the valve situs, and upon which:
a tissue cutter travels through a working channel of said intraluminal procedure device to said valve situs and upon arrival at said situs cuts and removes the old valve, prosthesis or other designated tissue, and any resulting loose matter is trapped by said barrier or is removed from the host's vasculature through suction and other tissue retrieval device inserted via said working channel, and upon removal of said old valve, prosthesis or other tissue:
said barrier is contracted, said intraluminal procedure device is withdrawn and secured into said procedure device capsule which is then removed, and a valve introducer device containing a prosthetic valve device transports said prosthetic valve to said valve situs via endovascular means, and upon reaching said valve situs:
said valve introducer device's bracer expands to position said valve introducer device correctly for insertion of said prosthetic valve device at said valve situs, a pusher device of said valve introducer device advances to expel said prosthetic valve device from said introducer capsule, upon which a balloon which has been introduced by a guide wire via a pusher channel of said pusher device, is inflated at the situs to securely mount said prosthetic valve device, and upon secure fixation of said prosthetic valve device at said situs:
said bracer is contracted, said balloon deflated, and said valve introducer device, said balloon and said guide wire are removed from said host's vasculature.
12. A method of supplanting a cardiac or other valve or prosthesis endovascularly which method comprises:
a valve introducer device containing a prosthetic valve device transports it to a valve fixation situs endovascularly, through surface insertion of and passage through the host's vasculature, to the fixation situs and upon reaching the fixation situs:
a valve introducer device's bracer expands to position said valve introducer device correctly for insertion of said prosthetic valve device at said valve situs, a pusher device of said valve introducer device advances to expel a prosthetic valve device from an introducer capsule, upon which a balloon which has been introduced by a guide wire via a pusher channel of said pusher device, is inflated at said situs to securely mount said prosthetic valve device, and upon secure fixation of said prosthetic valve device at said situs:
said bracer is contracted, said balloon deflated, and said valve introducer device, said balloon and said guide wire are removed from said host's vasculature.
13. A method of use extracting host valves or tissue endovascularly which method comprises:
a procedure device capsule contains and transports an intraluminal procedure device endovascularly, through surface insertion of and passage through a host's vasculature, to a situs for removal whereby a barrier of said intraluminal procedure device exits from said procedure device capsule, expands in a controlled and adjustable manner, abuts the lumen of said host vessel, and encircles said removal situs, and upon which:
a tissue cutter travels through a working channel in said procedure device to said removal situs and upon arrival at said situs cuts and removes the old valve, prosthesis or other designated tissue, and any resulting loose matter is trapped by said barrier or is removed from said host's vasculature through suction and other tissue retrieval device inserted via said working channel, and upon removal of said old valve, prosthesis or other tissue, said barrier is contracted, said intraluminal procedure device is withdrawn into and secured in said procedure device capsule, which is then removed.
14. A method of emboli free endovascular procedures which method comprises:
a procedure device capsule contains and transports an intraluminal procedure device endovascularly, through surface insertion of and passage through a host's vasculature, to a situs for procedure whereby a barrier of said intraluminal procedure device exits from said procedure device capsule, expands in a controlled and adjustable manner, abuts the lumen of said vessel, and encircles said procedure situs, and upon which:
a procedure instrument travels through a working channel in said procedure device to said procedure situs and upon arrival at said situs performs its specific task, and any resulting loose matter is trapped by said barrier or is removed from said host's vasculature through suction and other tissue retrieval device inserted via said working channel, and completion of said procedure and removal of all said procedure instruments through said working channel, said barrier is contracted, and said intraluminal procedure device is withdrawn into and secured in said procedure device capsule, which is then removed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/047,581 US8915959B2 (en) | 1991-07-16 | 2001-10-23 | Endovascular aortic valve replacement |
US10/869,407 US20040225355A1 (en) | 1991-07-16 | 2004-06-16 | Endovascular aortic valve replacement |
US10/883,532 US20040236418A1 (en) | 1991-07-16 | 2004-07-02 | Endovascular aortic valve replacement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/730,559 US5370685A (en) | 1991-07-16 | 1991-07-16 | Endovascular aortic valve replacement |
US08/206,419 US5545214A (en) | 1991-07-16 | 1994-03-04 | Endovascular aortic valve replacement |
US08/615,481 US6338735B1 (en) | 1991-07-16 | 1996-03-15 | Methods for removing embolic material in blood flowing through a patient's ascending aorta |
US10/047,581 US8915959B2 (en) | 1991-07-16 | 2001-10-23 | Endovascular aortic valve replacement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/615,481 Continuation US6338735B1 (en) | 1991-07-16 | 1996-03-15 | Methods for removing embolic material in blood flowing through a patient's ascending aorta |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/869,407 Continuation US20040225355A1 (en) | 1991-07-16 | 2004-06-16 | Endovascular aortic valve replacement |
US10/883,532 Continuation US20040236418A1 (en) | 1991-07-16 | 2004-07-02 | Endovascular aortic valve replacement |
Publications (3)
Publication Number | Publication Date |
---|---|
US20020058995A1 US20020058995A1 (en) | 2002-05-16 |
US20110270388A9 true US20110270388A9 (en) | 2011-11-03 |
US8915959B2 US8915959B2 (en) | 2014-12-23 |
Family
ID=24935849
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/730,559 Expired - Lifetime US5370685A (en) | 1991-07-16 | 1991-07-16 | Endovascular aortic valve replacement |
US08/206,419 Expired - Lifetime US5545214A (en) | 1991-07-16 | 1994-03-04 | Endovascular aortic valve replacement |
US08/615,481 Expired - Fee Related US6338735B1 (en) | 1991-07-16 | 1996-03-15 | Methods for removing embolic material in blood flowing through a patient's ascending aorta |
US10/047,581 Expired - Fee Related US8915959B2 (en) | 1991-07-16 | 2001-10-23 | Endovascular aortic valve replacement |
US10/869,407 Abandoned US20040225355A1 (en) | 1991-07-16 | 2004-06-16 | Endovascular aortic valve replacement |
US10/883,532 Abandoned US20040236418A1 (en) | 1991-07-16 | 2004-07-02 | Endovascular aortic valve replacement |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/730,559 Expired - Lifetime US5370685A (en) | 1991-07-16 | 1991-07-16 | Endovascular aortic valve replacement |
US08/206,419 Expired - Lifetime US5545214A (en) | 1991-07-16 | 1994-03-04 | Endovascular aortic valve replacement |
US08/615,481 Expired - Fee Related US6338735B1 (en) | 1991-07-16 | 1996-03-15 | Methods for removing embolic material in blood flowing through a patient's ascending aorta |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/869,407 Abandoned US20040225355A1 (en) | 1991-07-16 | 2004-06-16 | Endovascular aortic valve replacement |
US10/883,532 Abandoned US20040236418A1 (en) | 1991-07-16 | 2004-07-02 | Endovascular aortic valve replacement |
Country Status (8)
Country | Link |
---|---|
US (6) | US5370685A (en) |
EP (3) | EP1283027B1 (en) |
JP (1) | JPH06511167A (en) |
AU (1) | AU668690B2 (en) |
CA (1) | CA2113476C (en) |
DE (3) | DE69233210T2 (en) |
ES (3) | ES2142829T3 (en) |
WO (1) | WO1993001768A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140228942A1 (en) * | 2011-05-06 | 2014-08-14 | Contego Ab | Device For Delivery Of Medical Devices To A Cardiac Valve |
US20190125529A1 (en) * | 2017-10-31 | 2019-05-02 | W. L. Gore & Associates, Inc. | Valved conduit |
US11351058B2 (en) | 2017-03-17 | 2022-06-07 | W. L. Gore & Associates, Inc. | Glaucoma treatment systems and methods |
USD977642S1 (en) | 2018-10-29 | 2023-02-07 | W. L. Gore & Associates, Inc. | Pulmonary valve conduit |
US11617644B2 (en) | 2014-10-13 | 2023-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valved conduit |
US11678983B2 (en) | 2018-12-12 | 2023-06-20 | W. L. Gore & Associates, Inc. | Implantable component with socket |
Families Citing this family (978)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK124690D0 (en) * | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5584803A (en) | 1991-07-16 | 1996-12-17 | Heartport, Inc. | System for cardiac procedures |
US5795325A (en) * | 1991-07-16 | 1998-08-18 | Heartport, Inc. | Methods and apparatus for anchoring an occluding member |
US5766151A (en) * | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
US5769812A (en) | 1991-07-16 | 1998-06-23 | Heartport, Inc. | System for cardiac procedures |
US5452733A (en) * | 1993-02-22 | 1995-09-26 | Stanford Surgical Technologies, Inc. | Methods for performing thoracoscopic coronary artery bypass |
US5370685A (en) * | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US6010531A (en) * | 1993-02-22 | 2000-01-04 | Heartport, Inc. | Less-invasive devices and methods for cardiac valve surgery |
US5972030A (en) * | 1993-02-22 | 1999-10-26 | Heartport, Inc. | Less-invasive devices and methods for treatment of cardiac valves |
US6494211B1 (en) | 1993-02-22 | 2002-12-17 | Hearport, Inc. | Device and methods for port-access multivessel coronary artery bypass surgery |
US6478029B1 (en) | 1993-02-22 | 2002-11-12 | Hearport, Inc. | Devices and methods for port-access multivessel coronary artery bypass surgery |
US5799661A (en) * | 1993-02-22 | 1998-09-01 | Heartport, Inc. | Devices and methods for port-access multivessel coronary artery bypass surgery |
ATE184496T1 (en) | 1993-07-01 | 1999-10-15 | Schneider Europ Gmbh | MEDICAL DEVICES FOR THE TREATMENT OF BLOOD VESSELS USING IONIZATION RADIATION |
US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
AU740743B2 (en) * | 1993-12-03 | 2001-11-15 | Edwards Lifesciences Ag | Cardiopulmonary bypass system for closed-chest intervention |
EP0667133B1 (en) * | 1993-12-14 | 2001-03-07 | Sante Camilli | A percutaneous implantable valve for the use in blood vessels |
CA2181045C (en) * | 1993-12-17 | 2004-08-31 | John H. Stevens | System for cardiac procedures |
CA2179718A1 (en) * | 1993-12-22 | 1995-06-29 | Mogens Bugge | Cardiac valve holders |
US6500112B1 (en) | 1994-03-30 | 2002-12-31 | Brava, Llc | Vacuum dome with supporting rim and rim cushion |
US20050245850A1 (en) * | 1994-03-30 | 2005-11-03 | Freyre Carlos V | Method and apparatus for inhibiting the growth of and shrinking cancerous tumors |
US5478309A (en) | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
DE69413209T2 (en) | 1994-06-10 | 1999-03-04 | Schneider Europ Gmbh | Medicinal device for the treatment of a part of body vessels by means of ionizing radiation |
US5732872A (en) * | 1994-06-17 | 1998-03-31 | Heartport, Inc. | Surgical stapling instrument |
DE69426071T2 (en) | 1994-06-24 | 2001-05-10 | Schneider (Europe) Gmbh, Buelach | Medicinal device for the treatment of a part of a body vessel by means of ionizing radiation |
US5554185A (en) * | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US6152141A (en) * | 1994-07-28 | 2000-11-28 | Heartport, Inc. | Method for delivery of therapeutic agents to the heart |
US5904697A (en) | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5976159A (en) * | 1995-02-24 | 1999-11-02 | Heartport, Inc. | Surgical clips and methods for tissue approximation |
US5888247A (en) | 1995-04-10 | 1999-03-30 | Cardiothoracic Systems, Inc | Method for coronary artery bypass |
US6214043B1 (en) | 1995-05-24 | 2001-04-10 | St. Jude Medical, Inc. | Releasable hanger for heart valve prosthesis low profile holder |
US5578076A (en) * | 1995-05-24 | 1996-11-26 | St. Jude Medical, Inc. | Low profile holder for heart valve prosthesis |
US6019790A (en) * | 1995-05-24 | 2000-02-01 | St. Jude Medical, Inc. | Heart valve holder having a locking collar |
AU6280396A (en) * | 1995-06-20 | 1997-01-22 | Efstathios A. Agathos | Human valve replacement with marine mammal valve |
DE19532846A1 (en) * | 1995-09-06 | 1997-03-13 | Georg Dr Berg | Valve for use in heart |
US5735842A (en) * | 1995-09-11 | 1998-04-07 | St. Jude Medical, Inc. | Low profile manipulators for heart valve prostheses |
US5713952A (en) * | 1995-09-11 | 1998-02-03 | St. Jude Medical, Inc. | Apparatus for attachment of heart valve holder to heart valve prosthesis |
US5807405A (en) * | 1995-09-11 | 1998-09-15 | St. Jude Medical, Inc. | Apparatus for attachment of heart valve holder to heart valve prosthesis |
US5628789A (en) * | 1995-09-11 | 1997-05-13 | St. Jude Medical, Inc. | Apparatus for attachment of heart valve holder to heart valve prosthesis |
US5716399A (en) * | 1995-10-06 | 1998-02-10 | Cardiomend Llc | Methods of heart valve repair |
US5989281A (en) * | 1995-11-07 | 1999-11-23 | Embol-X, Inc. | Cannula with associated filter and methods of use during cardiac surgery |
US5769816A (en) * | 1995-11-07 | 1998-06-23 | Embol-X, Inc. | Cannula with associated filter |
EP0778051B1 (en) * | 1995-12-05 | 2003-04-09 | Schneider (Europe) GmbH | Filament for irradiating a living body and method for producing a filament for irradiating a living body |
DE19546692C2 (en) * | 1995-12-14 | 2002-11-07 | Hans-Reiner Figulla | Self-expanding heart valve prosthesis for implantation in the human body via a catheter system |
US6520904B1 (en) | 1996-01-02 | 2003-02-18 | The University Of Cincinnati | Device and method for restructuring heart chamber geometry |
US5957977A (en) * | 1996-01-02 | 1999-09-28 | University Of Cincinnati | Activation device for the natural heart including internal and external support structures |
US6592619B2 (en) | 1996-01-02 | 2003-07-15 | University Of Cincinnati | Heart wall actuation device for the natural heart |
US5855602A (en) * | 1996-09-09 | 1999-01-05 | Shelhigh, Inc. | Heart valve prosthesis |
US5871489A (en) * | 1996-01-24 | 1999-02-16 | S.M.T. (Medical Technologies) Ltd | Surgical implement particularly useful for implanting prosthetic heart valves, valve holder particularly useful therewith and surgical method including such implement |
US5904711A (en) * | 1996-02-08 | 1999-05-18 | Heartport, Inc. | Expandable thoracoscopic defibrillation catheter system and method |
US6182664B1 (en) | 1996-02-19 | 2001-02-06 | Edwards Lifesciences Corporation | Minimally invasive cardiac valve surgery procedure |
US6852075B1 (en) | 1996-02-20 | 2005-02-08 | Cardiothoracic Systems, Inc. | Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery |
US6099454A (en) * | 1996-02-29 | 2000-08-08 | Scimed Life Systems, Inc. | Perfusion balloon and radioactive wire delivery system |
US6234951B1 (en) | 1996-02-29 | 2001-05-22 | Scimed Life Systems, Inc. | Intravascular radiation delivery system |
US5855546A (en) | 1996-02-29 | 1999-01-05 | Sci-Med Life Systems | Perfusion balloon and radioactive wire delivery system |
US6006134A (en) | 1998-04-30 | 1999-12-21 | Medtronic, Inc. | Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers |
US8036741B2 (en) | 1996-04-30 | 2011-10-11 | Medtronic, Inc. | Method and system for nerve stimulation and cardiac sensing prior to and during a medical procedure |
US6048331A (en) * | 1996-05-14 | 2000-04-11 | Embol-X, Inc. | Cardioplegia occluder |
US5855601A (en) * | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US5755682A (en) * | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
US5814101A (en) * | 1996-09-25 | 1998-09-29 | St. Jude Medical, Inc. | Holder for heart valve prosthesis |
US5972017A (en) | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
US6036702A (en) * | 1997-04-23 | 2000-03-14 | Vascular Science Inc. | Medical grafting connectors and fasteners |
US6120432A (en) * | 1997-04-23 | 2000-09-19 | Vascular Science Inc. | Medical grafting methods and apparatus |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
EP0850607A1 (en) * | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US6110097A (en) * | 1997-03-06 | 2000-08-29 | Scimed Life Systems, Inc. | Perfusion balloon catheter with radioactive source |
US6059713A (en) * | 1997-03-06 | 2000-05-09 | Scimed Life Systems, Inc. | Catheter system having tubular radiation source with movable guide wire |
US6676590B1 (en) | 1997-03-06 | 2004-01-13 | Scimed Life Systems, Inc. | Catheter system having tubular radiation source |
US6059812A (en) | 1997-03-21 | 2000-05-09 | Schneider (Usa) Inc. | Self-expanding medical device for centering radioactive treatment sources in body vessels |
US20020087046A1 (en) * | 1997-04-23 | 2002-07-04 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
US6090096A (en) * | 1997-04-23 | 2000-07-18 | Heartport, Inc. | Antegrade cardioplegia catheter and method |
US6743246B1 (en) * | 1997-05-08 | 2004-06-01 | Edwards Lifesciences Corporation | Devices and methods for protecting a patient from embolic material during surgery |
US5846260A (en) * | 1997-05-08 | 1998-12-08 | Embol-X, Inc. | Cannula with a modular filter for filtering embolic material |
US5944730A (en) * | 1997-05-19 | 1999-08-31 | Cardio Medical Solutions, Inc. | Device and method for assisting end-to-side anastomosis |
JP4234212B2 (en) * | 1997-05-29 | 2009-03-04 | エドワーズ ライフサイエンシーズ コーポレイション | Adjustable surgical instrument handle |
US6004329A (en) * | 1997-05-29 | 1999-12-21 | Baxter International Inc. | Shape-adjustable surgical implement handle |
US6019718A (en) * | 1997-05-30 | 2000-02-01 | Scimed Life Systems, Inc. | Apparatus for intravascular radioactive treatment |
US6269819B1 (en) | 1997-06-27 | 2001-08-07 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for circulatory valve repair |
US5908029A (en) * | 1997-08-15 | 1999-06-01 | Heartstent Corporation | Coronary artery bypass with reverse flow |
FR2768324B1 (en) | 1997-09-12 | 1999-12-10 | Jacques Seguin | SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER |
US5980569A (en) * | 1997-09-19 | 1999-11-09 | United States Surgical Corp. | Prosthetic valve holder and method of use |
US5984959A (en) * | 1997-09-19 | 1999-11-16 | United States Surgical | Heart valve replacement tools and procedures |
AU9669898A (en) * | 1997-09-26 | 1999-04-12 | Cardeon Corporation | Multi-function aortic catheterization and bumper instrument |
ATE227145T1 (en) | 1997-09-26 | 2002-11-15 | Schneider Europ Gmbh | BALLOON CATHETER INFLATED WITH CARBON DIOXIDE FOR RADIOTHERAPY |
US6074416A (en) | 1997-10-09 | 2000-06-13 | St. Jude Medical Cardiovascular Group, Inc. | Wire connector structures for tubular grafts |
US6001124A (en) * | 1997-10-09 | 1999-12-14 | Vascular Science, Inc. | Oblique-angle graft connectors |
US6264596B1 (en) | 1997-11-03 | 2001-07-24 | Meadox Medicals, Inc. | In-situ radioactive medical device |
US5911702A (en) * | 1997-11-06 | 1999-06-15 | Heartport, Inc. | Methods and devices for cannulating a patient's blood vessel |
US6068654A (en) * | 1997-12-23 | 2000-05-30 | Vascular Science, Inc. | T-shaped medical graft connector |
EP2258312B9 (en) | 1997-12-29 | 2012-09-19 | The Cleveland Clinic Foundation | Deployable surgical platform and system for the removal and delivery of a medical device comprising such deployable surgical platform |
US6530952B2 (en) * | 1997-12-29 | 2003-03-11 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US6159178A (en) * | 1998-01-23 | 2000-12-12 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6193734B1 (en) * | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
US6096074A (en) | 1998-01-27 | 2000-08-01 | United States Surgical | Stapling apparatus and method for heart valve replacement |
DE69833882T2 (en) | 1998-01-30 | 2006-08-17 | St. Jude Medical ATG, Inc., Maple Grove | MEDICAL TRANSPLANTER CONNECTOR OR STOPPING AND PROCESS FOR THEIR MANUFACTURE |
US6994713B2 (en) * | 1998-01-30 | 2006-02-07 | St. Jude Medical Atg, Inc. | Medical graft connector or plug structures, and methods of making and installing same |
WO1999039649A1 (en) * | 1998-02-10 | 1999-08-12 | Dubrul William R | Occlusion, anchoring, tensioning and flow direction apparatus and methods for use |
US6651670B2 (en) | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
US20020144696A1 (en) | 1998-02-13 | 2002-10-10 | A. Adam Sharkawy | Conduits for use in placing a target vessel in fluid communication with a source of blood |
US6235054B1 (en) | 1998-02-27 | 2001-05-22 | St. Jude Medical Cardiovascular Group, Inc. | Grafts with suture connectors |
US6190408B1 (en) | 1998-03-05 | 2001-02-20 | The University Of Cincinnati | Device and method for restructuring the heart chamber geometry |
US6176864B1 (en) * | 1998-03-09 | 2001-01-23 | Corvascular, Inc. | Anastomosis device and method |
US7722667B1 (en) | 1998-04-20 | 2010-05-25 | St. Jude Medical, Inc. | Two piece bioprosthetic heart valve with matching outer frame and inner valve |
US6007557A (en) | 1998-04-29 | 1999-12-28 | Embol-X, Inc. | Adjustable blood filtration system |
US6200280B1 (en) * | 1998-05-29 | 2001-03-13 | Theracardia, Inc. | Cardiac massage apparatus and method |
WO1999062457A1 (en) * | 1998-05-29 | 1999-12-09 | Theracardia, Inc. | Cardiac massage apparatus and method |
US6613059B2 (en) | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6641593B1 (en) | 1998-06-03 | 2003-11-04 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6945980B2 (en) | 1998-06-03 | 2005-09-20 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US6197054B1 (en) * | 1998-09-01 | 2001-03-06 | Sulzer Carbomedics Inc. | Sutureless cuff for heart valves |
AU6384699A (en) * | 1998-09-10 | 2000-04-03 | Percardia, Inc. | Tmr shunt |
US6254564B1 (en) | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6413203B1 (en) | 1998-09-16 | 2002-07-02 | Scimed Life Systems, Inc. | Method and apparatus for positioning radioactive fluids within a body lumen |
US6508252B1 (en) | 1998-11-06 | 2003-01-21 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US6475222B1 (en) * | 1998-11-06 | 2002-11-05 | St. Jude Medical Atg, Inc. | Minimally invasive revascularization apparatus and methods |
US6113612A (en) | 1998-11-06 | 2000-09-05 | St. Jude Medical Cardiovascular Group, Inc. | Medical anastomosis apparatus |
US6152937A (en) | 1998-11-06 | 2000-11-28 | St. Jude Medical Cardiovascular Group, Inc. | Medical graft connector and methods of making and installing same |
US6478656B1 (en) | 1998-12-01 | 2002-11-12 | Brava, Llc | Method and apparatus for expanding soft tissue with shape memory alloys |
FR2788217A1 (en) * | 1999-01-12 | 2000-07-13 | Brice Letac | PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL |
US7578828B2 (en) | 1999-01-15 | 2009-08-25 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US7025773B2 (en) | 1999-01-15 | 2006-04-11 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
WO2000042951A1 (en) * | 1999-01-26 | 2000-07-27 | Edwards Lifesciences Corporation | Anatomical orifice sizers and methods of orifice sizing |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
EP1161185A2 (en) | 1999-03-09 | 2001-12-12 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
US6709465B2 (en) | 1999-03-18 | 2004-03-23 | Fossa Medical, Inc. | Radially expanding ureteral device |
US7214229B2 (en) | 1999-03-18 | 2007-05-08 | Fossa Medical, Inc. | Radially expanding stents |
US6342069B1 (en) * | 1999-03-26 | 2002-01-29 | Mures Cardiovascular Research, Inc. | Surgical instruments utilized to assemble a stentless autologous tissue heart valve |
WO2000059382A1 (en) | 1999-04-01 | 2000-10-12 | Bjerken David B | Vacuum-assisted remote suture placement system |
US6695859B1 (en) | 1999-04-05 | 2004-02-24 | Coalescent Surgical, Inc. | Apparatus and methods for anastomosis |
US8216256B2 (en) | 1999-04-09 | 2012-07-10 | Evalve, Inc. | Detachment mechanism for implantable fixation devices |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
WO2000060995A2 (en) | 1999-04-09 | 2000-10-19 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US6752813B2 (en) | 1999-04-09 | 2004-06-22 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
US7226467B2 (en) | 1999-04-09 | 2007-06-05 | Evalve, Inc. | Fixation device delivery catheter, systems and methods of use |
US7811296B2 (en) | 1999-04-09 | 2010-10-12 | Evalve, Inc. | Fixation devices for variation in engagement of tissue |
EP1173116A2 (en) * | 1999-04-28 | 2002-01-23 | St. Jude Medical, Inc. | Heart valve prostheses |
US6565528B1 (en) | 1999-05-07 | 2003-05-20 | Scimed Life Systems, Inc. | Apparatus and method for delivering therapeutic and diagnostic agents |
US6712836B1 (en) | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
EP1187652B1 (en) | 1999-06-02 | 2006-10-11 | Boston Scientific Limited | Devices for delivering a drug |
US7147633B2 (en) | 1999-06-02 | 2006-12-12 | Boston Scientific Scimed, Inc. | Method and apparatus for treatment of atrial fibrillation |
US6699256B1 (en) * | 1999-06-04 | 2004-03-02 | St. Jude Medical Atg, Inc. | Medical grafting apparatus and methods |
AU6059200A (en) | 1999-07-02 | 2001-01-22 | Quickpass, Inc. | Suturing device |
US6312465B1 (en) | 1999-07-23 | 2001-11-06 | Sulzer Carbomedics Inc. | Heart valve prosthesis with a resiliently deformable retaining member |
US6299637B1 (en) | 1999-08-20 | 2001-10-09 | Samuel M. Shaolian | Transluminally implantable venous valve |
US8529583B1 (en) | 1999-09-03 | 2013-09-10 | Medtronic, Inc. | Surgical clip removal apparatus |
US6352501B1 (en) | 1999-09-23 | 2002-03-05 | Scimed Life Systems, Inc. | Adjustable radiation source |
US6203485B1 (en) | 1999-10-07 | 2001-03-20 | Scimed Life Systems, Inc. | Low attenuation guide wire for intravascular radiation delivery |
US6398709B1 (en) | 1999-10-19 | 2002-06-04 | Scimed Life Systems, Inc. | Elongated member for intravascular delivery of radiation |
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US8414543B2 (en) * | 1999-10-22 | 2013-04-09 | Rex Medical, L.P. | Rotational thrombectomy wire with blocking device |
US6926730B1 (en) | 2000-10-10 | 2005-08-09 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US6425909B1 (en) * | 1999-11-04 | 2002-07-30 | Concentric Medical, Inc. | Methods and devices for filtering fluid flow through a body structure |
FR2800984B1 (en) * | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US6598307B2 (en) | 1999-11-17 | 2003-07-29 | Jack W. Love | Device and method for assessing the geometry of a heart valve |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US7018406B2 (en) * | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US20070043435A1 (en) * | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US6602263B1 (en) | 1999-11-30 | 2003-08-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US7749245B2 (en) | 2000-01-27 | 2010-07-06 | Medtronic, Inc. | Cardiac valve procedure methods and devices |
US6692513B2 (en) | 2000-06-30 | 2004-02-17 | Viacor, Inc. | Intravascular filter with debris entrapment mechanism |
KR20020082217A (en) | 2000-01-27 | 2002-10-30 | 쓰리에프 쎄러퓨틱스, 인코포레이티드 | Prosthetic Heart Valve |
US6872226B2 (en) | 2001-01-29 | 2005-03-29 | 3F Therapeutics, Inc. | Method of cutting material for use in implantable medical device |
US6589227B2 (en) * | 2000-01-28 | 2003-07-08 | William Cook Europe Aps | Endovascular medical device with plurality of wires |
US20040082879A1 (en) * | 2000-01-28 | 2004-04-29 | Klint Henrik S. | Endovascular medical device with plurality of wires |
EP1900343B1 (en) | 2000-01-31 | 2015-10-21 | Cook Biotech Incorporated | Stent valves |
EP2329796B1 (en) * | 2000-01-31 | 2021-09-01 | Cook Biotech Incorporated | Stent valve |
US6821297B2 (en) | 2000-02-02 | 2004-11-23 | Robert V. Snyders | Artificial heart valve, implantation instrument and method therefor |
US6797002B2 (en) | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
WO2001056512A1 (en) * | 2000-02-02 | 2001-08-09 | Snyders Robert V | Artificial heart valve |
US20050070999A1 (en) * | 2000-02-02 | 2005-03-31 | Spence Paul A. | Heart valve repair apparatus and methods |
DE10010073B4 (en) * | 2000-02-28 | 2005-12-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring for implantable heart valve prostheses |
US6416457B1 (en) | 2000-03-09 | 2002-07-09 | Scimed Life Systems, Inc. | System and method for intravascular ionizing tandem radiation therapy |
US6302865B1 (en) | 2000-03-13 | 2001-10-16 | Scimed Life Systems, Inc. | Intravascular guidewire with perfusion lumen |
US6551332B1 (en) | 2000-03-31 | 2003-04-22 | Coalescent Surgical, Inc. | Multiple bias surgical fastener |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
AU2001235964A1 (en) * | 2000-05-09 | 2001-11-20 | Paieon Inc. | System and method for three-dimensional reconstruction of an artery |
US8366769B2 (en) | 2000-06-01 | 2013-02-05 | Edwards Lifesciences Corporation | Low-profile, pivotable heart valve sewing ring |
WO2002001999A2 (en) * | 2000-06-30 | 2002-01-10 | Viacor, Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
US6746426B1 (en) * | 2000-07-11 | 2004-06-08 | Medtronic Vascular, Inc. | Transluminally deliverable vascular blockers and methods for facilitating retrograde flow of arterial blood through veins |
US6409758B2 (en) * | 2000-07-27 | 2002-06-25 | Edwards Lifesciences Corporation | Heart valve holder for constricting the valve commissures and methods of use |
US6808533B1 (en) | 2000-07-28 | 2004-10-26 | Atrium Medical Corporation | Covered stent and method of covering a stent |
JP2004506469A (en) | 2000-08-18 | 2004-03-04 | アトリテック, インコーポレイテッド | Expandable implantable device for filtering blood flow from the atrial appendage |
US7510572B2 (en) * | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US20050228422A1 (en) * | 2002-11-26 | 2005-10-13 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
WO2004030569A2 (en) * | 2002-10-01 | 2004-04-15 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US7691144B2 (en) | 2003-10-01 | 2010-04-06 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US6893459B1 (en) * | 2000-09-20 | 2005-05-17 | Ample Medical, Inc. | Heart valve annulus device and method of using same |
US20060106278A1 (en) * | 2004-05-14 | 2006-05-18 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system |
US8784482B2 (en) * | 2000-09-20 | 2014-07-22 | Mvrx, Inc. | Method of reshaping a heart valve annulus using an intravascular device |
US8956407B2 (en) | 2000-09-20 | 2015-02-17 | Mvrx, Inc. | Methods for reshaping a heart valve annulus using a tensioning implant |
US20090287179A1 (en) * | 2003-10-01 | 2009-11-19 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US20060106279A1 (en) | 2004-05-14 | 2006-05-18 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant having an adjustable bridge stop |
WO2004030570A2 (en) * | 2002-10-01 | 2004-04-15 | Ample Medical, Inc. | Devices for retaining native heart valve leaflet |
US20080091264A1 (en) | 2002-11-26 | 2008-04-17 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
EP1318766A2 (en) * | 2000-09-21 | 2003-06-18 | Atritech, Inc. | Apparatus for implanting devices in atrial appendages |
US6602288B1 (en) * | 2000-10-05 | 2003-08-05 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template, system and method of use |
DE10049865B8 (en) * | 2000-10-09 | 2008-10-30 | Universitätsklinikum Freiburg | Device for removing an aortic valve on the human heart by means of a minimally invasive surgical procedure |
US6918917B1 (en) | 2000-10-10 | 2005-07-19 | Medtronic, Inc. | Minimally invasive annuloplasty procedure and apparatus |
US6602286B1 (en) | 2000-10-26 | 2003-08-05 | Ernst Peter Strecker | Implantable valve system |
US6974476B2 (en) * | 2003-05-05 | 2005-12-13 | Rex Medical, L.P. | Percutaneous aortic valve |
AU2002236640A1 (en) * | 2000-12-15 | 2002-06-24 | Viacor, Inc. | Apparatus and method for replacing aortic valve |
US8721625B2 (en) | 2001-01-26 | 2014-05-13 | Cook Medical Technologies Llc | Endovascular medical device with plurality of wires |
US6733525B2 (en) * | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
US7374571B2 (en) | 2001-03-23 | 2008-05-20 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of manufacture |
US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
US6425902B1 (en) | 2001-05-04 | 2002-07-30 | Cardiomend Llc | Surgical instrument for heart valve reconstruction |
NL1018881C2 (en) * | 2001-05-08 | 2002-11-25 | Blue Medical Devices B V | Balloon catheter for dilating vessels and lumina comprise inflatable balloon with ends attached to it's catheter tube |
US6682558B2 (en) * | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
WO2002091952A2 (en) * | 2001-05-14 | 2002-11-21 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US20020183769A1 (en) * | 2001-05-30 | 2002-12-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US7338514B2 (en) | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US8623077B2 (en) | 2001-06-29 | 2014-01-07 | Medtronic, Inc. | Apparatus for replacing a cardiac valve |
US8771302B2 (en) * | 2001-06-29 | 2014-07-08 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
US7544206B2 (en) | 2001-06-29 | 2009-06-09 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
FR2826863B1 (en) | 2001-07-04 | 2003-09-26 | Jacques Seguin | ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT |
FR2828091B1 (en) * | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
US7097659B2 (en) | 2001-09-07 | 2006-08-29 | Medtronic, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
CN100333704C (en) * | 2001-10-01 | 2007-08-29 | 安普尔医药公司 | Methods and devices for heart valve treatments |
US6893460B2 (en) * | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US7201771B2 (en) | 2001-12-27 | 2007-04-10 | Arbor Surgical Technologies, Inc. | Bioprosthetic heart valve |
US7048754B2 (en) | 2002-03-01 | 2006-05-23 | Evalve, Inc. | Suture fasteners and methods of use |
US7163556B2 (en) * | 2002-03-21 | 2007-01-16 | Providence Health System - Oregon | Bioprosthesis and method for suturelessly making same |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
DE10217559B4 (en) * | 2002-04-19 | 2004-02-19 | Universitätsklinikum Freiburg | Device for minimally invasive, intravascular aortic valve extraction |
US8721713B2 (en) | 2002-04-23 | 2014-05-13 | Medtronic, Inc. | System for implanting a replacement valve |
US7976564B2 (en) | 2002-05-06 | 2011-07-12 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
US7241257B1 (en) * | 2002-06-28 | 2007-07-10 | Abbott Cardiovascular Systems, Inc. | Devices and methods to perform minimally invasive surgeries |
US7081084B2 (en) * | 2002-07-16 | 2006-07-25 | University Of Cincinnati | Modular power system and method for a heart wall actuation system for the natural heart |
US7959674B2 (en) | 2002-07-16 | 2011-06-14 | Medtronic, Inc. | Suture locking assembly and method of use |
US20040059180A1 (en) * | 2002-09-23 | 2004-03-25 | The University Of Cincinnati | Basal mounting cushion frame component to facilitate extrinsic heart wall actuation |
US7850729B2 (en) * | 2002-07-18 | 2010-12-14 | The University Of Cincinnati | Deforming jacket for a heart actuation device |
US20040015041A1 (en) * | 2002-07-18 | 2004-01-22 | The University Of Cincinnati | Protective sheath apparatus and method for use with a heart wall actuation system for the natural heart |
US6988982B2 (en) * | 2002-08-19 | 2006-01-24 | Cardioenergetics | Heart wall actuation system for the natural heart with shape limiting elements |
CA2827984A1 (en) * | 2002-08-28 | 2004-03-11 | Heart Leaflet Technologies, Inc. | Method and device for treating diseased valve |
US8066724B2 (en) | 2002-09-12 | 2011-11-29 | Medtronic, Inc. | Anastomosis apparatus and methods |
CO5500017A1 (en) * | 2002-09-23 | 2005-03-31 | 3F Therapeutics Inc | MITRAL PROTESTIC VALVE |
AU2003277115A1 (en) * | 2002-10-01 | 2004-04-23 | Ample Medical, Inc. | Device and method for repairing a native heart valve leaflet |
US8105345B2 (en) | 2002-10-04 | 2012-01-31 | Medtronic, Inc. | Anastomosis apparatus and methods |
US20040093012A1 (en) | 2002-10-17 | 2004-05-13 | Cully Edward H. | Embolic filter frame having looped support strut elements |
AU2003287638A1 (en) * | 2002-11-13 | 2004-06-03 | Rosengart, Todd, K. | Apparatus and method for cutting a heart valve |
US8551162B2 (en) | 2002-12-20 | 2013-10-08 | Medtronic, Inc. | Biologically implantable prosthesis |
US6945957B2 (en) | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
US7393339B2 (en) * | 2003-02-21 | 2008-07-01 | C. R. Bard, Inc. | Multi-lumen catheter with separate distal tips |
US7399315B2 (en) | 2003-03-18 | 2008-07-15 | Edwards Lifescience Corporation | Minimally-invasive heart valve with cusp positioners |
WO2004082530A2 (en) * | 2003-03-19 | 2004-09-30 | Cook Incorporated | Delivery systems for deploying expandable intraluminal medical devices |
US20060271081A1 (en) * | 2003-03-30 | 2006-11-30 | Fidel Realyvasquez | Apparatus and methods for valve repair |
US8372112B2 (en) | 2003-04-11 | 2013-02-12 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US20040267306A1 (en) | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US7175656B2 (en) * | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
US7331976B2 (en) * | 2003-04-29 | 2008-02-19 | Rex Medical, L.P. | Distal protection device |
US7604649B2 (en) * | 2003-04-29 | 2009-10-20 | Rex Medical, L.P. | Distal protection device |
EP1472996B1 (en) * | 2003-04-30 | 2009-09-30 | Medtronic Vascular, Inc. | Percutaneously delivered temporary valve |
US10646229B2 (en) | 2003-05-19 | 2020-05-12 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
US7007396B2 (en) * | 2003-05-29 | 2006-03-07 | Plc Medical Systems, Inc. | Replacement heart valve sizing device |
US20040243044A1 (en) * | 2003-06-02 | 2004-12-02 | Penegor Stephen A. | Hemostatic wound dressing |
WO2004110257A2 (en) * | 2003-06-09 | 2004-12-23 | The University Of Cincinnati | Power system for a heart actuation device |
WO2004110553A1 (en) * | 2003-06-09 | 2004-12-23 | The University Of Cincinnati | Actuation mechanisms for a heart actuation device |
US20060178551A1 (en) * | 2003-06-09 | 2006-08-10 | Melvin David B | Securement system for a heart actuation device |
US8114102B2 (en) * | 2003-06-16 | 2012-02-14 | St. Jude Medical Atg, Inc. | Temporary hemostatic plug apparatus and method of use |
US7537592B2 (en) * | 2003-06-20 | 2009-05-26 | Plc Medical Systems, Inc. | Endovascular tissue removal device |
WO2004112582A2 (en) * | 2003-06-20 | 2004-12-29 | Plc Medical Systems, Inc. | Endovascular tissue removal device |
JP4942031B2 (en) † | 2003-07-08 | 2012-05-30 | メドトロニック ベンター テクノロジーズ リミティド | In particular, an implantable prosthetic device suitable for transarterial delivery in the treatment of aortic stenosis, and a method of implanting the prosthetic device |
US7182769B2 (en) | 2003-07-25 | 2007-02-27 | Medtronic, Inc. | Sealing clip, delivery systems, and methods |
US7204255B2 (en) * | 2003-07-28 | 2007-04-17 | Plc Medical Systems, Inc. | Endovascular tissue removal device |
US20050043749A1 (en) | 2003-08-22 | 2005-02-24 | Coalescent Surgical, Inc. | Eversion apparatus and methods |
US8021421B2 (en) | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US8393328B2 (en) * | 2003-08-22 | 2013-03-12 | BiO2 Medical, Inc. | Airway assembly and methods of using an airway assembly |
US8394114B2 (en) | 2003-09-26 | 2013-03-12 | Medtronic, Inc. | Surgical connection apparatus and methods |
US20050075725A1 (en) | 2003-10-02 | 2005-04-07 | Rowe Stanton J. | Implantable prosthetic valve with non-laminar flow |
US7044966B2 (en) * | 2003-10-06 | 2006-05-16 | 3F Therapeutics, Inc. | Minimally invasive valve replacement system |
US10219899B2 (en) * | 2004-04-23 | 2019-03-05 | Medtronic 3F Therapeutics, Inc. | Cardiac valve replacement systems |
US9579194B2 (en) | 2003-10-06 | 2017-02-28 | Medtronic ATS Medical, Inc. | Anchoring structure with concave landing zone |
US7604650B2 (en) * | 2003-10-06 | 2009-10-20 | 3F Therapeutics, Inc. | Method and assembly for distal embolic protection |
US7556647B2 (en) * | 2003-10-08 | 2009-07-07 | Arbor Surgical Technologies, Inc. | Attachment device and methods of using the same |
US7879047B2 (en) | 2003-12-10 | 2011-02-01 | Medtronic, Inc. | Surgical connection apparatus and methods |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8328868B2 (en) | 2004-11-05 | 2012-12-11 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20120041550A1 (en) | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US20050137686A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US7824442B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US8828078B2 (en) | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
DK2926766T3 (en) | 2003-12-23 | 2016-05-17 | Boston Scient Scimed Inc | REPONIBLE HEART VALVE |
US20050137694A1 (en) | 2003-12-23 | 2005-06-23 | Haug Ulrich R. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
AU2004308508B2 (en) | 2003-12-23 | 2011-03-10 | Sadra Medical, Inc. | Repositionable heart valve |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US7748389B2 (en) | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US7824443B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US20050137691A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical | Two piece heart valve and anchor |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US20050137696A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical | Apparatus and methods for protecting against embolization during endovascular heart valve replacement |
US20070005003A1 (en) * | 2003-12-31 | 2007-01-04 | Patterson Ryan C | Reinforced multi-lumen catheter |
US7871435B2 (en) | 2004-01-23 | 2011-01-18 | Edwards Lifesciences Corporation | Anatomically approximate prosthetic mitral heart valve |
US8337545B2 (en) | 2004-02-09 | 2012-12-25 | Cook Medical Technologies Llc | Woven implantable device |
US7311730B2 (en) * | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
CN101683291A (en) * | 2004-02-27 | 2010-03-31 | 奥尔特克斯公司 | Prosthetic heart valve delivery systems and methods |
ITTO20040135A1 (en) * | 2004-03-03 | 2004-06-03 | Sorin Biomedica Cardio Spa | CARDIAC VALVE PROSTHESIS |
EP1734903B2 (en) | 2004-03-11 | 2022-01-19 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous heart valve prosthesis |
US8216299B2 (en) | 2004-04-01 | 2012-07-10 | Cook Medical Technologies Llc | Method to retract a body vessel wall with remodelable material |
US7637937B2 (en) | 2004-04-08 | 2009-12-29 | Cook Incorporated | Implantable medical device with optimized shape |
US20060025857A1 (en) | 2004-04-23 | 2006-02-02 | Bjarne Bergheim | Implantable prosthetic valve |
US7641686B2 (en) | 2004-04-23 | 2010-01-05 | Direct Flow Medical, Inc. | Percutaneous heart valve with stentless support |
CA2828619C (en) | 2004-05-05 | 2018-09-25 | Direct Flow Medical, Inc. | Prosthetic valve with an elastic stent and a sealing structure |
JP4774048B2 (en) | 2004-05-14 | 2011-09-14 | エヴァルヴ インコーポレイテッド | Locking mechanism of fixing device engaged with tissue and tissue engaging method |
US7462191B2 (en) | 2004-06-30 | 2008-12-09 | Edwards Lifesciences Pvt, Inc. | Device and method for assisting in the implantation of a prosthetic valve |
US7276078B2 (en) | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
US7208000B2 (en) * | 2004-07-23 | 2007-04-24 | Cardiomend, Llp | Surgical cutting device |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US20060052867A1 (en) | 2004-09-07 | 2006-03-09 | Medtronic, Inc | Replacement prosthetic heart valve, system and method of implant |
WO2006037073A2 (en) | 2004-09-27 | 2006-04-06 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US8052592B2 (en) | 2005-09-27 | 2011-11-08 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
US6951571B1 (en) | 2004-09-30 | 2005-10-04 | Rohit Srivastava | Valve implanting device |
US20060074483A1 (en) * | 2004-10-01 | 2006-04-06 | Schrayer Howard L | Method of treatment and devices for the treatment of left ventricular failure |
EP2471492B1 (en) | 2004-10-02 | 2021-06-09 | Edwards Lifesciences CardiAQ LLC | Implantable heart valve |
US8562672B2 (en) | 2004-11-19 | 2013-10-22 | Medtronic, Inc. | Apparatus for treatment of cardiac valves and method of its manufacture |
WO2006054107A2 (en) * | 2004-11-19 | 2006-05-26 | Medtronic Inc. | Method and apparatus for treatment of cardiac valves |
WO2006055982A2 (en) * | 2004-11-22 | 2006-05-26 | Avvrx | Ring-shaped valve prosthesis attachment device |
WO2006049629A1 (en) * | 2004-11-24 | 2006-05-11 | Sunnyside Technologies Inc. | Devices and methods for beating heart cardiac surgeries |
US7758640B2 (en) * | 2004-12-16 | 2010-07-20 | Valvexchange Inc. | Cardiovascular valve assembly |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
ITTO20050074A1 (en) | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | CARDIAC VALVE PROSTHESIS |
US8574257B2 (en) | 2005-02-10 | 2013-11-05 | Edwards Lifesciences Corporation | System, device, and method for providing access in a cardiovascular environment |
US7993362B2 (en) * | 2005-02-16 | 2011-08-09 | Boston Scientific Scimed, Inc. | Filter with positioning and retrieval devices and methods |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US7699770B2 (en) | 2005-02-24 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Device for non-invasive measurement of fluid pressure in an adjustable restriction device |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7331991B2 (en) | 2005-02-25 | 2008-02-19 | California Institute Of Technology | Implantable small percutaneous valve and methods of delivery |
US7717955B2 (en) | 2005-02-28 | 2010-05-18 | Medtronic, Inc. | Conformable prosthesis for implanting two-piece heart valves and methods for using them |
US8083793B2 (en) * | 2005-02-28 | 2011-12-27 | Medtronic, Inc. | Two piece heart valves including multiple lobe valves and methods for implanting them |
US10219902B2 (en) | 2005-03-25 | 2019-03-05 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop |
US8197534B2 (en) * | 2005-03-31 | 2012-06-12 | Cook Medical Technologies Llc | Valve device with inflatable chamber |
US7513909B2 (en) * | 2005-04-08 | 2009-04-07 | Arbor Surgical Technologies, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
WO2006127756A2 (en) | 2005-05-24 | 2006-11-30 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
US8083664B2 (en) | 2005-05-25 | 2011-12-27 | Maquet Cardiovascular Llc | Surgical stabilizers and methods for use in reduced-access surgical sites |
US9955969B2 (en) * | 2005-05-26 | 2018-05-01 | Texas Heart Institute | Surgical system and method for attaching a prosthetic vessel to a hollow structure |
EP1895942B1 (en) | 2005-05-27 | 2020-05-13 | Medtronic, Inc. | Gasket with collar for prosthetic heart valves |
CA2610669A1 (en) | 2005-06-07 | 2006-12-14 | Direct Flow Medical, Inc. | Stentless aortic valve replacement with high radial strength |
US20090082619A1 (en) * | 2005-06-09 | 2009-03-26 | De Marchena Eduardo | Method of treating cardiomyopathy |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
WO2007001936A2 (en) | 2005-06-20 | 2007-01-04 | Sutura, Inc. | Method and apparatus for applying a knot to a suture |
US8512333B2 (en) * | 2005-07-01 | 2013-08-20 | Halt Medical Inc. | Anchored RF ablation device for the destruction of tissue masses |
EP1919397B1 (en) * | 2005-07-13 | 2013-01-02 | Medtronic, Inc. | Two-piece percutaneous prosthetic heart valves |
US7682391B2 (en) * | 2005-07-13 | 2010-03-23 | Edwards Lifesciences Corporation | Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring |
US8790396B2 (en) * | 2005-07-27 | 2014-07-29 | Medtronic 3F Therapeutics, Inc. | Methods and systems for cardiac valve delivery |
US7712606B2 (en) | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
WO2007038540A1 (en) | 2005-09-26 | 2007-04-05 | Medtronic, Inc. | Prosthetic cardiac and venous valves |
US8167932B2 (en) | 2005-10-18 | 2012-05-01 | Edwards Lifesciences Corporation | Heart valve delivery system with valve catheter |
US7715918B2 (en) | 2005-10-18 | 2010-05-11 | University Of Cincinnati | Muscle energy converter with smooth continuous tissue interface |
US7785366B2 (en) | 2005-10-26 | 2010-08-31 | Maurer Christopher W | Mitral spacer |
US8216302B2 (en) | 2005-10-26 | 2012-07-10 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US8449606B2 (en) * | 2005-10-26 | 2013-05-28 | Cardiosolutions, Inc. | Balloon mitral spacer |
US9259317B2 (en) * | 2008-06-13 | 2016-02-16 | Cardiosolutions, Inc. | System and method for implanting a heart implant |
US8852270B2 (en) | 2007-11-15 | 2014-10-07 | Cardiosolutions, Inc. | Implant delivery system and method |
US8092525B2 (en) * | 2005-10-26 | 2012-01-10 | Cardiosolutions, Inc. | Heart valve implant |
US8778017B2 (en) | 2005-10-26 | 2014-07-15 | Cardiosolutions, Inc. | Safety for mitral valve implant |
EP3167847B1 (en) | 2005-11-10 | 2020-10-14 | Edwards Lifesciences CardiAQ LLC | Heart valve prosthesis |
US8764820B2 (en) | 2005-11-16 | 2014-07-01 | Edwards Lifesciences Corporation | Transapical heart valve delivery system and method |
WO2007067942A1 (en) * | 2005-12-07 | 2007-06-14 | Arbor Surgical Technologies, Inc. | Connection systems for two piece prosthetic heart valve assemblies |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US9078781B2 (en) | 2006-01-11 | 2015-07-14 | Medtronic, Inc. | Sterile cover for compressible stents used in percutaneous device delivery systems |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US7967857B2 (en) | 2006-01-27 | 2011-06-28 | Medtronic, Inc. | Gasket with spring collar for prosthetic heart valves and methods for making and using them |
WO2007097983A2 (en) | 2006-02-14 | 2007-08-30 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
US7780724B2 (en) * | 2006-02-24 | 2010-08-24 | California Institute Of Technology | Monolithic in situ forming valve system |
US20080275550A1 (en) * | 2006-02-24 | 2008-11-06 | Arash Kheradvar | Implantable small percutaneous valve and methods of delivery |
US8147541B2 (en) | 2006-02-27 | 2012-04-03 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US7749266B2 (en) | 2006-02-27 | 2010-07-06 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
WO2007123658A1 (en) | 2006-03-28 | 2007-11-01 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US7625403B2 (en) | 2006-04-04 | 2009-12-01 | Medtronic Vascular, Inc. | Valved conduit designed for subsequent catheter delivered valve therapy |
US7740655B2 (en) | 2006-04-06 | 2010-06-22 | Medtronic Vascular, Inc. | Reinforced surgical conduit for implantation of a stented valve therein |
US7591848B2 (en) | 2006-04-06 | 2009-09-22 | Medtronic Vascular, Inc. | Riveted stent valve for percutaneous use |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US20070239269A1 (en) * | 2006-04-07 | 2007-10-11 | Medtronic Vascular, Inc. | Stented Valve Having Dull Struts |
US20070239254A1 (en) * | 2006-04-07 | 2007-10-11 | Chris Chia | System for percutaneous delivery and removal of a prosthetic valve |
US20070239271A1 (en) * | 2006-04-10 | 2007-10-11 | Than Nguyen | Systems and methods for loading a prosthesis onto a minimally invasive delivery system |
US20070244544A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Seal for Enhanced Stented Valve Fixation |
US7727276B2 (en) | 2006-04-14 | 2010-06-01 | Machiraju Venkat R | System and method for heart valve replacement |
US20070244545A1 (en) * | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070244546A1 (en) * | 2006-04-18 | 2007-10-18 | Medtronic Vascular, Inc. | Stent Foundation for Placement of a Stented Valve |
EP2023860A2 (en) | 2006-04-29 | 2009-02-18 | Arbor Surgical Technologies, Inc. | Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them |
US8021161B2 (en) | 2006-05-01 | 2011-09-20 | Edwards Lifesciences Corporation | Simulated heart valve root for training and testing |
WO2007130614A2 (en) | 2006-05-04 | 2007-11-15 | Cook Incorporated | Self-orienting delivery system |
US8585594B2 (en) | 2006-05-24 | 2013-11-19 | Phoenix Biomedical, Inc. | Methods of assessing inner surfaces of body lumens or organs |
WO2007149841A2 (en) | 2006-06-20 | 2007-12-27 | Aortx, Inc. | Torque shaft and torque drive |
CN101505686A (en) | 2006-06-20 | 2009-08-12 | 奥尔特克斯公司 | Prosthetic heart valves, support structures and systems and methods for implanting the same |
JP2009540956A (en) | 2006-06-21 | 2009-11-26 | エーオーテックス, インコーポレイテッド | Prosthetic valve implantation system |
US20080004696A1 (en) * | 2006-06-29 | 2008-01-03 | Valvexchange Inc. | Cardiovascular valve assembly with resizable docking station |
US7815676B2 (en) * | 2006-07-07 | 2010-10-19 | The Cleveland Clinic Foundation | Apparatus and method for assisting in the removal of a cardiac valve |
WO2008013915A2 (en) | 2006-07-28 | 2008-01-31 | Arshad Quadri | Percutaneous valve prosthesis and system and method for implanting same |
US9408607B2 (en) | 2009-07-02 | 2016-08-09 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
US9585743B2 (en) | 2006-07-31 | 2017-03-07 | Edwards Lifesciences Cardiaq Llc | Surgical implant devices and methods for their manufacture and use |
WO2008016578A2 (en) | 2006-07-31 | 2008-02-07 | Cartledge Richard G | Sealable endovascular implants and methods for their use |
US8876754B2 (en) | 2006-08-31 | 2014-11-04 | Bayer Medical Care Inc. | Catheter with filtering and sensing elements |
EP1978895B1 (en) | 2006-09-08 | 2010-06-09 | Edwards Lifesciences Corporation | Integrated heart valve delivery system |
US7544213B2 (en) * | 2006-09-12 | 2009-06-09 | Adams Jason P | Inflatable hernia patch |
US8876895B2 (en) | 2006-09-19 | 2014-11-04 | Medtronic Ventor Technologies Ltd. | Valve fixation member having engagement arms |
US8834564B2 (en) | 2006-09-19 | 2014-09-16 | Medtronic, Inc. | Sinus-engaging valve fixation member |
US11304800B2 (en) | 2006-09-19 | 2022-04-19 | Medtronic Ventor Technologies Ltd. | Sinus-engaging valve fixation member |
WO2008047354A2 (en) | 2006-10-16 | 2008-04-24 | Ventor Technologies Ltd. | Transapical delivery system with ventriculo-arterial overflow bypass |
US9149609B2 (en) * | 2006-10-16 | 2015-10-06 | Embolitech, Llc | Catheter for removal of an organized embolic thrombus |
US8133213B2 (en) | 2006-10-19 | 2012-03-13 | Direct Flow Medical, Inc. | Catheter guidance through a calcified aortic valve |
US7935144B2 (en) | 2006-10-19 | 2011-05-03 | Direct Flow Medical, Inc. | Profile reduction of valve implant |
NZ549911A (en) * | 2006-10-19 | 2009-04-30 | Syft Technologies Ltd | Improvements in or relating to SIFT-MS instruments |
AU2007329243B2 (en) | 2006-12-06 | 2014-04-03 | Medtronic CV Luxembourg S.a.r.l | System and method for transapical delivery of an annulus anchored self-expanding valve |
US8470024B2 (en) | 2006-12-19 | 2013-06-25 | Sorin Group Italia S.R.L. | Device for in situ positioning of cardiac valve prosthesis |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US8236045B2 (en) | 2006-12-22 | 2012-08-07 | Edwards Lifesciences Corporation | Implantable prosthetic valve assembly and method of making the same |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US9192471B2 (en) * | 2007-01-08 | 2015-11-24 | Millipede, Inc. | Device for translumenal reshaping of a mitral valve annulus |
EP2114318A4 (en) * | 2007-01-18 | 2015-01-21 | Valvexchange Inc | Tools for removal and installation of exchangeable cardiovascular valves |
WO2008097589A1 (en) | 2007-02-05 | 2008-08-14 | Boston Scientific Limited | Percutaneous valve, system, and method |
DE102007005992A1 (en) | 2007-02-07 | 2008-08-28 | Georg Lutter | Catheter for heart valve valvuloplasty, resection and consecutive implantation of a heart valve stent |
EP2124826B2 (en) * | 2007-02-15 | 2020-09-23 | Medtronic, Inc. | Multi-layered stents |
WO2008103280A2 (en) | 2007-02-16 | 2008-08-28 | Medtronic, Inc. | Delivery systems and methods of implantation for replacement prosthetic heart valves |
EP2134266A4 (en) | 2007-03-29 | 2015-06-03 | Nobles Medical Technologies Inc | Suturing devices and methods for closing a patent foramen ovale |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
FR2915087B1 (en) | 2007-04-20 | 2021-11-26 | Corevalve Inc | IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT. |
US8480730B2 (en) * | 2007-05-14 | 2013-07-09 | Cardiosolutions, Inc. | Solid construct mitral spacer |
US8663217B2 (en) * | 2007-05-29 | 2014-03-04 | Cvdevices, Llc | Devices and systems for valve removal |
US9504486B2 (en) | 2010-04-19 | 2016-11-29 | Cvdevices, Llc | Devices, systems, and methods for valve removal |
US8663319B2 (en) * | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Methods and apparatus for percutaneous aortic valve replacement |
US8663318B2 (en) | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Method and apparatus for percutaneous aortic valve replacement |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US9814611B2 (en) | 2007-07-31 | 2017-11-14 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US9566178B2 (en) | 2010-06-24 | 2017-02-14 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US8747458B2 (en) | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
US8486138B2 (en) | 2007-08-21 | 2013-07-16 | Valvexchange Inc. | Method and apparatus for prosthetic valve removal |
EP2190379B1 (en) | 2007-08-23 | 2016-06-15 | Direct Flow Medical, Inc. | Translumenally implantable heart valve with formed in place support |
US8114154B2 (en) | 2007-09-07 | 2012-02-14 | Sorin Biomedica Cardio S.R.L. | Fluid-filled delivery system for in situ deployment of cardiac valve prostheses |
US8808367B2 (en) | 2007-09-07 | 2014-08-19 | Sorin Group Italia S.R.L. | Prosthetic valve delivery system including retrograde/antegrade approach |
EP2399527A1 (en) | 2007-09-07 | 2011-12-28 | Sorin Biomedica Cardio S.r.l. | Prosthetic valve delivery system including retrograde/antegrade approach |
DE102007043830A1 (en) | 2007-09-13 | 2009-04-02 | Lozonschi, Lucian, Madison | Heart valve stent |
US8425593B2 (en) | 2007-09-26 | 2013-04-23 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US9532868B2 (en) | 2007-09-28 | 2017-01-03 | St. Jude Medical, Inc. | Collapsible-expandable prosthetic heart valves with structures for clamping native tissue |
US20090138079A1 (en) * | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US10856970B2 (en) | 2007-10-10 | 2020-12-08 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US9848981B2 (en) | 2007-10-12 | 2017-12-26 | Mayo Foundation For Medical Education And Research | Expandable valve prosthesis with sealing mechanism |
EP2211972B1 (en) | 2007-10-26 | 2015-12-23 | Embolitech, LLC | Intravascular guidewire filter system for pulmonary embolism protection and embolism removal or maceration |
US8597347B2 (en) * | 2007-11-15 | 2013-12-03 | Cardiosolutions, Inc. | Heart regurgitation method and apparatus |
US7846199B2 (en) | 2007-11-19 | 2010-12-07 | Cook Incorporated | Remodelable prosthetic valve |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
PL3643273T3 (en) | 2007-12-14 | 2021-12-06 | Edwards Lifesciences Corporation | Leaflet attachment frame for a prosthetic valve |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8876897B2 (en) * | 2007-12-20 | 2014-11-04 | Arash Kheradvar | Implantable prosthetic valves and methods relating to same |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
WO2009094197A1 (en) | 2008-01-24 | 2009-07-30 | Medtronic, Inc. | Stents for prosthetic heart valves |
US20090287290A1 (en) * | 2008-01-24 | 2009-11-19 | Medtronic, Inc. | Delivery Systems and Methods of Implantation for Prosthetic Heart Valves |
US9149358B2 (en) | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
EP2254512B1 (en) | 2008-01-24 | 2016-01-06 | Medtronic, Inc. | Markers for prosthetic heart valves |
US8157852B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US7972378B2 (en) | 2008-01-24 | 2011-07-05 | Medtronic, Inc. | Stents for prosthetic heart valves |
US9393115B2 (en) | 2008-01-24 | 2016-07-19 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
EP4378420A3 (en) | 2008-01-24 | 2024-08-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
EP2262447B1 (en) | 2008-02-28 | 2015-08-12 | Medtronic, Inc. | Prosthetic heart valve systems |
US9241792B2 (en) | 2008-02-29 | 2016-01-26 | Edwards Lifesciences Corporation | Two-step heart valve implantation |
WO2009108942A1 (en) | 2008-02-29 | 2009-09-03 | Edwards Lifesciences Corporation | Expandable member for deploying a prosthetic device |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8177836B2 (en) | 2008-03-10 | 2012-05-15 | Medtronic, Inc. | Apparatus and methods for minimally invasive valve repair |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US8696689B2 (en) * | 2008-03-18 | 2014-04-15 | Medtronic Ventor Technologies Ltd. | Medical suturing device and method for use thereof |
US8430927B2 (en) | 2008-04-08 | 2013-04-30 | Medtronic, Inc. | Multiple orifice implantable heart valve and methods of implantation |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US9061119B2 (en) | 2008-05-09 | 2015-06-23 | Edwards Lifesciences Corporation | Low profile delivery system for transcatheter heart valve |
WO2009137766A1 (en) | 2008-05-09 | 2009-11-12 | Sutura, Inc. | Suturing devices and methods for suturing an anatomic valve |
ES2386239T3 (en) | 2008-05-16 | 2012-08-14 | Sorin Biomedica Cardio S.R.L. | Atraumatic cardiovalvular prosthesis |
WO2009141286A1 (en) * | 2008-05-19 | 2009-11-26 | Van Den Cornelis Johannes Maria Berg | Method for treating heart diseases |
US9186488B2 (en) | 2008-06-02 | 2015-11-17 | Loma Vista Medical, Inc. | Method of making inflatable medical devices |
HUE054943T2 (en) | 2008-06-06 | 2021-10-28 | Edwards Lifesciences Corp | Low profile transcatheter heart valve |
US8591460B2 (en) * | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
US8323335B2 (en) | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
EP4176845A1 (en) | 2008-07-15 | 2023-05-10 | St. Jude Medical, LLC | Collapsible and re-expandable prosthetic heart valve cuff designs |
JP6023427B2 (en) * | 2008-07-21 | 2016-11-09 | ジェニファー ケー. ホワイト, | Repositionable intraluminal support structure and its application |
US9039756B2 (en) | 2008-07-21 | 2015-05-26 | Jenesis Surgical, Llc | Repositionable endoluminal support structure and its applications |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
WO2010030859A1 (en) * | 2008-09-12 | 2010-03-18 | Valvexchange Inc. | Valve assembly with exchangeable valve member and a tool set for exchanging the valve member |
WO2010031060A1 (en) | 2008-09-15 | 2010-03-18 | Medtronic Ventor Technologies Ltd. | Prosthetic heart valve having identifiers for aiding in radiographic positioning |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
AU2009295960A1 (en) | 2008-09-29 | 2010-04-01 | Cardiaq Valve Technologies, Inc. | Heart valve |
US8337541B2 (en) | 2008-10-01 | 2012-12-25 | Cardiaq Valve Technologies, Inc. | Delivery system for vascular implant |
US8690936B2 (en) | 2008-10-10 | 2014-04-08 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
US8790387B2 (en) | 2008-10-10 | 2014-07-29 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8449625B2 (en) | 2009-10-27 | 2013-05-28 | Edwards Lifesciences Corporation | Methods of measuring heart valve annuluses for valve replacement |
US8986361B2 (en) | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
EP2358297B1 (en) | 2008-11-21 | 2019-09-11 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis |
WO2010065265A2 (en) | 2008-11-25 | 2010-06-10 | Edwards Lifesciences Corporation | Apparatus and method for in situ expansion of prosthetic device |
US8591573B2 (en) | 2008-12-08 | 2013-11-26 | Hector Daniel Barone | Prosthetic valve for intraluminal implantation |
US8308798B2 (en) | 2008-12-19 | 2012-11-13 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
ES2551694T3 (en) | 2008-12-23 | 2015-11-23 | Sorin Group Italia S.R.L. | Expandable prosthetic valve with anchoring appendages |
EP2381852A4 (en) * | 2009-01-21 | 2014-06-11 | Tendyne Medical Inc | Apical papillary muscle attachment for left ventricular reduction |
US20100217382A1 (en) | 2009-02-25 | 2010-08-26 | Edwards Lifesciences | Mitral valve replacement with atrial anchoring |
US9980818B2 (en) | 2009-03-31 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
US8496655B2 (en) * | 2009-04-06 | 2013-07-30 | Michael J. O'Donnell | System and method for resecting a valve |
US8518060B2 (en) | 2009-04-09 | 2013-08-27 | Medtronic, Inc. | Medical clip with radial tines, system and method of using same |
US8414644B2 (en) | 2009-04-15 | 2013-04-09 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US8668704B2 (en) | 2009-04-24 | 2014-03-11 | Medtronic, Inc. | Medical clip with tines, system and method of using same |
US9011524B2 (en) * | 2009-04-24 | 2015-04-21 | Medtronic, Inc. | Prosthetic heart valves and methods of attaching same |
US8512397B2 (en) | 2009-04-27 | 2013-08-20 | Sorin Group Italia S.R.L. | Prosthetic vascular conduit |
EP4035623A1 (en) * | 2009-04-29 | 2022-08-03 | Edwards Lifesciences Corporation | Apparatus and method for replacing a diseased cardiac valve |
US8353953B2 (en) | 2009-05-13 | 2013-01-15 | Sorin Biomedica Cardio, S.R.L. | Device for the in situ delivery of heart valves |
US9168105B2 (en) | 2009-05-13 | 2015-10-27 | Sorin Group Italia S.R.L. | Device for surgical interventions |
EP2250975B1 (en) | 2009-05-13 | 2013-02-27 | Sorin Biomedica Cardio S.r.l. | Device for the in situ delivery of heart valves |
US8075611B2 (en) | 2009-06-02 | 2011-12-13 | Medtronic, Inc. | Stented prosthetic heart valves |
US8348998B2 (en) * | 2009-06-26 | 2013-01-08 | Edwards Lifesciences Corporation | Unitary quick connect prosthetic heart valve and deployment system and methods |
US8439970B2 (en) | 2009-07-14 | 2013-05-14 | Edwards Lifesciences Corporation | Transapical delivery system for heart valves |
US20110022165A1 (en) | 2009-07-23 | 2011-01-27 | Edwards Lifesciences Corporation | Introducer for prosthetic heart valve |
EP2298371A1 (en) * | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Function element, in particular fluid pump with a housing and a transport element |
US9730790B2 (en) | 2009-09-29 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Replacement valve and method |
US8652203B2 (en) | 2010-09-23 | 2014-02-18 | Cardiaq Valve Technologies, Inc. | Replacement heart valves, delivery devices and methods |
US20110073115A1 (en) * | 2009-09-30 | 2011-03-31 | Nellcor Puritan Bennett Llc | Tracheal cuff for providing seal with reduced pressure on the tracheal walls |
US8808369B2 (en) | 2009-10-05 | 2014-08-19 | Mayo Foundation For Medical Education And Research | Minimally invasive aortic valve replacement |
FR2951549B1 (en) | 2009-10-15 | 2013-08-23 | Olivier Schussler | PROCESS FOR OBTAINING IMPLANTABLE MEDICAL BIOPROTHESES |
US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
EP3649985B8 (en) | 2009-12-08 | 2021-04-21 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
CA2784499C (en) | 2009-12-15 | 2017-04-18 | Edwards Lifesciences Corporation | Expansion device for treatment of vascular passageways |
US8926693B2 (en) | 2010-02-17 | 2015-01-06 | Medtronic, Inc. | Heart valve delivery catheter with safety button |
US8518106B2 (en) | 2010-02-17 | 2013-08-27 | Medtronic, Inc. | Catheter assembly with valve crimping accessories |
US8475523B2 (en) | 2010-02-17 | 2013-07-02 | Medtronic, Inc. | Distal tip assembly for a heart valve delivery catheter |
US9414914B2 (en) | 2010-02-24 | 2016-08-16 | Medtronic Ventor Technologies Ltd. | Catheter assembly with valve crimping accessories |
US9226826B2 (en) | 2010-02-24 | 2016-01-05 | Medtronic, Inc. | Transcatheter valve structure and methods for valve delivery |
US8795354B2 (en) | 2010-03-05 | 2014-08-05 | Edwards Lifesciences Corporation | Low-profile heart valve and delivery system |
US9480557B2 (en) | 2010-03-25 | 2016-11-01 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8652204B2 (en) | 2010-04-01 | 2014-02-18 | Medtronic, Inc. | Transcatheter valve with torsion spring fixation and related systems and methods |
DK2560580T3 (en) | 2010-04-21 | 2019-08-12 | Medtronic Inc | PROTEST CLAP WITH SEALING ELEMENTS |
EP3384879B1 (en) | 2010-04-23 | 2020-09-30 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
US8623079B2 (en) | 2010-04-23 | 2014-01-07 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
WO2011143238A2 (en) | 2010-05-10 | 2011-11-17 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US9554901B2 (en) | 2010-05-12 | 2017-01-31 | Edwards Lifesciences Corporation | Low gradient prosthetic heart valve |
US9603708B2 (en) | 2010-05-19 | 2017-03-28 | Dfm, Llc | Low crossing profile delivery catheter for cardiovascular prosthetic implant |
IT1400327B1 (en) | 2010-05-21 | 2013-05-24 | Sorin Biomedica Cardio Srl | SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT. |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US9387077B2 (en) | 2010-05-27 | 2016-07-12 | Medtronic Vascular Galway | Catheter assembly with prosthesis crimping and prosthesis retaining accessories |
EP4018966A1 (en) | 2010-06-21 | 2022-06-29 | Edwards Lifesciences CardiAQ LLC | Replacement heart valve |
JP5848345B2 (en) | 2010-07-09 | 2016-01-27 | ハイライフ エスエーエス | Transcatheter atrioventricular valve prosthesis |
US9326853B2 (en) | 2010-07-23 | 2016-05-03 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves |
US20120053680A1 (en) | 2010-08-24 | 2012-03-01 | Bolling Steven F | Reconfiguring Heart Features |
AU2011296361B2 (en) | 2010-09-01 | 2015-05-28 | Medtronic Vascular Galway | Prosthetic valve support structure |
US9370418B2 (en) | 2010-09-10 | 2016-06-21 | Edwards Lifesciences Corporation | Rapidly deployable surgical heart valves |
US8641757B2 (en) | 2010-09-10 | 2014-02-04 | Edwards Lifesciences Corporation | Systems for rapidly deploying surgical heart valves |
CN106073946B (en) | 2010-09-10 | 2022-01-04 | 西美蒂斯股份公司 | Valve replacement device, delivery device for a valve replacement device and method of producing a valve replacement device |
US9125741B2 (en) | 2010-09-10 | 2015-09-08 | Edwards Lifesciences Corporation | Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves |
US8845720B2 (en) | 2010-09-27 | 2014-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve frame with flexible commissures |
US8568475B2 (en) | 2010-10-05 | 2013-10-29 | Edwards Lifesciences Corporation | Spiraled commissure attachment for prosthetic valve |
CA2813419C (en) | 2010-10-05 | 2019-12-17 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US20120116496A1 (en) | 2010-11-05 | 2012-05-10 | Chuter Timothy A | Stent structures for use with valve replacements |
US8882693B2 (en) * | 2010-12-07 | 2014-11-11 | Zoll Lifebridge Gmbh | Cardiopulmonary apparatus and methods for preserving life |
EP3351215B1 (en) | 2011-01-18 | 2024-09-11 | Loma Vista Medical, Inc. | Inflatable medical devices |
US8845717B2 (en) | 2011-01-28 | 2014-09-30 | Middle Park Medical, Inc. | Coaptation enhancement implant, system, and method |
US8888843B2 (en) | 2011-01-28 | 2014-11-18 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valve regurgitation |
US20120209375A1 (en) | 2011-02-11 | 2012-08-16 | Gilbert Madrid | Stability device for use with percutaneous delivery systems |
EP2486894B1 (en) | 2011-02-14 | 2021-06-09 | Sorin Group Italia S.r.l. | Sutureless anchoring device for cardiac valve prostheses |
ES2641902T3 (en) | 2011-02-14 | 2017-11-14 | Sorin Group Italia S.R.L. | Sutureless anchoring device for cardiac valve prostheses |
US9155619B2 (en) | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US9962559B2 (en) * | 2011-03-16 | 2018-05-08 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Multi-segmented inflatable brachytherapy devices, systems, and methods of using the same |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
EP3644194B1 (en) | 2011-04-15 | 2022-12-07 | Heartstitch, Inc. | Suturing devices for suturing an anatomic valve |
US9381082B2 (en) | 2011-04-22 | 2016-07-05 | Edwards Lifesciences Corporation | Devices, systems and methods for accurate positioning of a prosthetic valve |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
US8945209B2 (en) | 2011-05-20 | 2015-02-03 | Edwards Lifesciences Corporation | Encapsulated heart valve |
US20120303048A1 (en) | 2011-05-24 | 2012-11-29 | Sorin Biomedica Cardio S.R.I. | Transapical valve replacement |
US9289282B2 (en) | 2011-05-31 | 2016-03-22 | Edwards Lifesciences Corporation | System and method for treating valve insufficiency or vessel dilatation |
US10434292B2 (en) | 2011-06-24 | 2019-10-08 | Access Closure | Method and devices for flow occlusion during device exchanges |
US20130046376A1 (en) | 2011-06-24 | 2013-02-21 | Ali Hassan | Method and devices for flow occlusion during device exchanges |
WO2013009975A1 (en) | 2011-07-12 | 2013-01-17 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
US8795357B2 (en) | 2011-07-15 | 2014-08-05 | Edwards Lifesciences Corporation | Perivalvular sealing for transcatheter heart valve |
US9089631B2 (en) | 2011-07-22 | 2015-07-28 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
US9339384B2 (en) | 2011-07-27 | 2016-05-17 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9480559B2 (en) | 2011-08-11 | 2016-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US8945177B2 (en) | 2011-09-13 | 2015-02-03 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
US9827093B2 (en) | 2011-10-21 | 2017-11-28 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US9131926B2 (en) | 2011-11-10 | 2015-09-15 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US8940014B2 (en) | 2011-11-15 | 2015-01-27 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
CA2857997C (en) | 2011-12-09 | 2021-01-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having improved commissure supports |
US9345574B2 (en) | 2011-12-09 | 2016-05-24 | Edwards Lifesciences Corporation | Force-based heart valve sizer |
US9277996B2 (en) | 2011-12-09 | 2016-03-08 | Edwards Lifesciences Corporation | Force-based heart valve sizer |
US8652145B2 (en) | 2011-12-14 | 2014-02-18 | Edwards Lifesciences Corporation | System and method for crimping a prosthetic valve |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US20130158345A1 (en) * | 2011-12-19 | 2013-06-20 | Heshmat Majlessi | Veno-Merse / Harvester Device |
US9510945B2 (en) | 2011-12-20 | 2016-12-06 | Boston Scientific Scimed Inc. | Medical device handle |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US9078747B2 (en) | 2011-12-21 | 2015-07-14 | Edwards Lifesciences Corporation | Anchoring device for replacing or repairing a heart valve |
EP2609893B1 (en) | 2011-12-29 | 2014-09-03 | Sorin Group Italia S.r.l. | A kit for implanting prosthetic vascular conduits |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
EP2811939B8 (en) | 2012-02-10 | 2017-11-15 | CVDevices, LLC | Products made of biological tissues for stents and methods of manufacturing |
CA3097321A1 (en) | 2012-02-22 | 2013-08-29 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US10292818B2 (en) | 2012-03-14 | 2019-05-21 | Universite Catholique De Louvain | Device for excision of heart valve |
US9445897B2 (en) | 2012-05-01 | 2016-09-20 | Direct Flow Medical, Inc. | Prosthetic implant delivery device with introducer catheter |
US9532785B2 (en) | 2012-05-09 | 2017-01-03 | Access Closure, Inc. | Method and devices for flow occlusion during device exchanges |
WO2013170081A1 (en) | 2012-05-11 | 2013-11-14 | Heartstitch, Inc. | Suturing devices and methods for suturing an anatomic structure |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
WO2014022124A1 (en) | 2012-07-28 | 2014-02-06 | Tendyne Holdings, Inc. | Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
US9675454B2 (en) | 2012-07-30 | 2017-06-13 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
CN102805676B (en) | 2012-08-14 | 2015-06-17 | 杭州启明医疗器械有限公司 | Compression device for artificial valve replacement device |
US9204887B2 (en) | 2012-08-14 | 2015-12-08 | W. L. Gore & Associates, Inc. | Devices and systems for thrombus treatment |
US20140067049A1 (en) * | 2012-09-05 | 2014-03-06 | Medtronic Vascular Galway Limited | Integrated Dilation Balloon and Valve Prosthesis Delivery System |
US20140067048A1 (en) | 2012-09-06 | 2014-03-06 | Edwards Lifesciences Corporation | Heart Valve Sealing Devices |
US10543088B2 (en) | 2012-09-14 | 2020-01-28 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10849755B2 (en) | 2012-09-14 | 2020-12-01 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
NZ735457A (en) | 2012-10-18 | 2019-05-31 | Loma Vista Medical Inc | Reinforced inflatable medical devices |
EP2922592B1 (en) | 2012-11-21 | 2022-09-21 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic heart valves |
US9439763B2 (en) | 2013-02-04 | 2016-09-13 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
AU2014214700B2 (en) | 2013-02-11 | 2018-01-18 | Cook Medical Technologies Llc | Expandable support frame and medical device |
US9168129B2 (en) | 2013-02-12 | 2015-10-27 | Edwards Lifesciences Corporation | Artificial heart valve with scalloped frame design |
WO2014134257A1 (en) | 2013-02-28 | 2014-09-04 | Cook Medical Technologies Llc | Medical devices, systems, and methods for the visualization and treatment of bodily passages |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9149360B2 (en) | 2013-03-12 | 2015-10-06 | Edwards Lifesciences Corporation | Dynamic annuloplasty ring sizer |
CN105517509B (en) | 2013-03-13 | 2017-08-08 | 爱德华兹生命科学卡迪尔克有限责任公司 | Radial type joint valve bracket and method |
US20140277427A1 (en) | 2013-03-14 | 2014-09-18 | Cardiaq Valve Technologies, Inc. | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US11007058B2 (en) | 2013-03-15 | 2021-05-18 | Edwards Lifesciences Corporation | Valved aortic conduits |
CA2900367C (en) | 2013-03-15 | 2020-12-22 | Edwards Lifesciences Corporation | Valved aortic conduits |
US9232998B2 (en) | 2013-03-15 | 2016-01-12 | Cardiosolutions Inc. | Trans-apical implant systems, implants and methods |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US10149757B2 (en) | 2013-03-15 | 2018-12-11 | Edwards Lifesciences Corporation | System and method for transaortic delivery of a prosthetic heart valve |
US9289297B2 (en) | 2013-03-15 | 2016-03-22 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
DE102013104020B4 (en) * | 2013-04-22 | 2022-01-20 | Acandis Gmbh | Medical catheter for supplying medical instruments and treatment system with such a catheter |
US9629718B2 (en) | 2013-05-03 | 2017-04-25 | Medtronic, Inc. | Valve delivery tool |
ES2908132T3 (en) | 2013-05-20 | 2022-04-27 | Edwards Lifesciences Corp | Prosthetic Heart Valve Delivery Apparatus |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US9468527B2 (en) | 2013-06-12 | 2016-10-18 | Edwards Lifesciences Corporation | Cardiac implant with integrated suture fasteners |
KR20160041040A (en) | 2013-06-14 | 2016-04-15 | 카디오솔루션즈, 인코포레이티드 | Mitral valve spacer and system and method for implanting the same |
WO2014210124A1 (en) | 2013-06-25 | 2014-12-31 | Mark Christianson | Thrombus management and structural compliance features for prosthetic heart valves |
EA032962B1 (en) | 2013-07-02 | 2019-08-30 | Мед-Венче Инвестментс, Ллс | Suturing device for suturing an anatomic structure |
US9561103B2 (en) | 2013-07-17 | 2017-02-07 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
JP6465883B2 (en) | 2013-08-01 | 2019-02-06 | テンダイン ホールディングス,インコーポレイテッド | Epicardial anchor device and method |
US9549748B2 (en) | 2013-08-01 | 2017-01-24 | Cook Medical Technologies Llc | Methods of locating and treating tissue in a wall defining a bodily passage |
US9655723B2 (en) | 2013-08-05 | 2017-05-23 | Savant Holdings LLC | One-way heart assist valve |
SG10201805117UA (en) | 2013-08-12 | 2018-07-30 | Mitral Valve Tech Sarl | Apparatus and methods for implanting a replacement heart valve |
LT3545906T (en) | 2013-08-14 | 2021-03-10 | Mitral Valve Technologies Sarl | Replacement heart valve apparatus |
US9919137B2 (en) | 2013-08-28 | 2018-03-20 | Edwards Lifesciences Corporation | Integrated balloon catheter inflation system |
CN105491978A (en) | 2013-08-30 | 2016-04-13 | 耶拿阀门科技股份有限公司 | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
CA2910602C (en) | 2013-09-20 | 2020-03-10 | Edwards Lifesciences Corporation | Heart valves with increased effective orifice area |
WO2015058039A1 (en) | 2013-10-17 | 2015-04-23 | Robert Vidlund | Apparatus and methods for alignment and deployment of intracardiac devices |
US10646333B2 (en) | 2013-10-24 | 2020-05-12 | Medtronic, Inc. | Two-piece valve prosthesis with anchor stent and valve component |
US10166098B2 (en) | 2013-10-25 | 2019-01-01 | Middle Peak Medical, Inc. | Systems and methods for transcatheter treatment of valve regurgitation |
ES2773255T3 (en) | 2013-10-28 | 2020-07-10 | Tendyne Holdings Inc | Prosthetic heart valve and systems to supply it |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US20150119977A1 (en) * | 2013-10-30 | 2015-04-30 | The Regents Of The University Of Michigan | System and method to limit cerebral ischemia |
US9913715B2 (en) | 2013-11-06 | 2018-03-13 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak sealing mechanism |
US20150122687A1 (en) | 2013-11-06 | 2015-05-07 | Edwards Lifesciences Corporation | Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage |
CN111419472B (en) | 2013-11-11 | 2023-01-10 | 爱德华兹生命科学卡迪尔克有限责任公司 | System and method for manufacturing stent frames |
EP3068345B1 (en) | 2013-11-15 | 2020-08-26 | Guy's And St. Thomas' NHS Foundation Trust | Information markers for heart prostheses |
US9622863B2 (en) | 2013-11-22 | 2017-04-18 | Edwards Lifesciences Corporation | Aortic insufficiency repair device and method |
US10098734B2 (en) | 2013-12-05 | 2018-10-16 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
EP3079602B1 (en) | 2013-12-06 | 2020-01-22 | Med-venture Investments, LLC | Suturing apparatuses |
US9901444B2 (en) | 2013-12-17 | 2018-02-27 | Edwards Lifesciences Corporation | Inverted valve structure |
WO2015120122A2 (en) | 2014-02-05 | 2015-08-13 | Robert Vidlund | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
CA2910087C (en) | 2014-02-18 | 2022-06-07 | Edwards Lifesciences Corporation | Flexible commissure frame |
CN115089349A (en) | 2014-02-20 | 2022-09-23 | 米特拉尔维尔福科技有限责任公司 | Convoluted anchor for supporting a prosthetic heart valve, prosthetic heart valve and deployment device |
CN106170269B (en) | 2014-02-21 | 2019-01-11 | 爱德华兹生命科学卡迪尔克有限责任公司 | The delivery apparatus of controlled deployment for valve substitutes |
CR20160366A (en) | 2014-02-21 | 2016-11-15 | Mitral Valve Tecnhnologies Sarl | DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE |
US9937323B2 (en) | 2014-02-28 | 2018-04-10 | Cook Medical Technologies Llc | Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages |
USD755384S1 (en) | 2014-03-05 | 2016-05-03 | Edwards Lifesciences Cardiaq Llc | Stent |
CA2937566C (en) | 2014-03-10 | 2023-09-05 | Tendyne Holdings, Inc. | Devices and methods for positioning and monitoring tether load for prosthetic mitral valve |
US9572666B2 (en) | 2014-03-17 | 2017-02-21 | Evalve, Inc. | Mitral valve fixation device removal devices and methods |
US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
US9549816B2 (en) | 2014-04-03 | 2017-01-24 | Edwards Lifesciences Corporation | Method for manufacturing high durability heart valve |
US9585752B2 (en) | 2014-04-30 | 2017-03-07 | Edwards Lifesciences Corporation | Holder and deployment system for surgical heart valves |
US10195025B2 (en) | 2014-05-12 | 2019-02-05 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US20150328000A1 (en) | 2014-05-19 | 2015-11-19 | Cardiaq Valve Technologies, Inc. | Replacement mitral valve with annular flap |
EP3134033B1 (en) | 2014-05-29 | 2018-04-04 | Edwards Lifesciences CardiAQ LLC | Prosthesis and delivery device |
US9532870B2 (en) | 2014-06-06 | 2017-01-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
ES2908178T3 (en) | 2014-06-18 | 2022-04-28 | Polares Medical Inc | Mitral valve implants for the treatment of valvular regurgitation |
USD867594S1 (en) | 2015-06-19 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
CA2914094C (en) | 2014-06-20 | 2021-01-05 | Edwards Lifesciences Corporation | Surgical heart valves identifiable post-implant |
WO2015195252A1 (en) * | 2014-06-20 | 2015-12-23 | Ethicon Endo-Surgery, Inc. | Artificial esophageal sphincter |
US10251635B2 (en) | 2014-06-24 | 2019-04-09 | Middle Peak Medical, Inc. | Systems and methods for anchoring an implant |
DK2962721T3 (en) * | 2014-07-04 | 2019-07-15 | Abiomed Europe Gmbh | SHELTERS FOR CLOSED ACCESS TO AN YEAR |
US10178993B2 (en) | 2014-07-11 | 2019-01-15 | Cardio Medical Solutions, Inc. | Device and method for assisting end-to-side anastomosis |
US9180005B1 (en) | 2014-07-17 | 2015-11-10 | Millipede, Inc. | Adjustable endolumenal mitral valve ring |
US10195026B2 (en) | 2014-07-22 | 2019-02-05 | Edwards Lifesciences Corporation | Mitral valve anchoring |
EP2979664B1 (en) | 2014-08-01 | 2019-01-09 | Alvimedica Tibbi Ürünler Sanayi Ve Dis Ticaret A.S | Aortic valve prosthesis, particularly suitable for transcatheter implantation |
US10195398B2 (en) | 2014-08-13 | 2019-02-05 | Cook Medical Technologies Llc | Tension member seal and securing mechanism for medical devices |
US10058424B2 (en) | 2014-08-21 | 2018-08-28 | Edwards Lifesciences Corporation | Dual-flange prosthetic valve frame |
US10016272B2 (en) | 2014-09-12 | 2018-07-10 | Mitral Valve Technologies Sarl | Mitral repair and replacement devices and methods |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
JP6700278B2 (en) | 2014-12-04 | 2020-05-27 | エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation | Percutaneous clips for repairing heart valves |
US9492273B2 (en) | 2014-12-09 | 2016-11-15 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
EP3242630A2 (en) | 2015-01-07 | 2017-11-15 | Tendyne Holdings, Inc. | Prosthetic mitral valves and apparatus and methods for delivery of same |
WO2016115375A1 (en) | 2015-01-16 | 2016-07-21 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
EP3884906A1 (en) | 2015-02-05 | 2021-09-29 | Tendyne Holdings, Inc. | Expandable epicardial pads and devices and methods for delivery of same |
US10231834B2 (en) | 2015-02-09 | 2019-03-19 | Edwards Lifesciences Corporation | Low profile transseptal catheter and implant system for minimally invasive valve procedure |
US10039637B2 (en) | 2015-02-11 | 2018-08-07 | Edwards Lifesciences Corporation | Heart valve docking devices and implanting methods |
US20160235525A1 (en) | 2015-02-12 | 2016-08-18 | Medtronic, Inc. | Integrated valve assembly and method of delivering and deploying an integrated valve assembly |
WO2016130991A1 (en) | 2015-02-13 | 2016-08-18 | Millipede, Inc. | Valve replacement using rotational anchors |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
WO2016144391A1 (en) | 2015-03-11 | 2016-09-15 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
FR3034642B1 (en) | 2015-04-07 | 2021-01-15 | Benjamin Faurie | INTRODUCTOR FOR A HEART VALVE REPLACEMENT KIT OR FOR CORONARY ANGIOPLASTY KIT |
US10327896B2 (en) | 2015-04-10 | 2019-06-25 | Edwards Lifesciences Corporation | Expandable sheath with elastomeric cross sectional portions |
US10792471B2 (en) | 2015-04-10 | 2020-10-06 | Edwards Lifesciences Corporation | Expandable sheath |
US10064718B2 (en) | 2015-04-16 | 2018-09-04 | Edwards Lifesciences Corporation | Low-profile prosthetic heart valve for replacing a mitral valve |
AU2016248314B2 (en) | 2015-04-16 | 2020-05-21 | Tendyne Holdings, Inc. | Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves |
US10010417B2 (en) | 2015-04-16 | 2018-07-03 | Edwards Lifesciences Corporation | Low-profile prosthetic heart valve for replacing a mitral valve |
US10441416B2 (en) | 2015-04-21 | 2019-10-15 | Edwards Lifesciences Corporation | Percutaneous mitral valve replacement device |
US10232564B2 (en) | 2015-04-29 | 2019-03-19 | Edwards Lifesciences Corporation | Laminated sealing member for prosthetic heart valve |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
WO2016177562A1 (en) | 2015-05-01 | 2016-11-10 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
CN107624058B (en) | 2015-05-14 | 2019-10-08 | 爱德华兹生命科学公司 | Heart valve sealing device and its delivery apparatus |
US10849746B2 (en) | 2015-05-14 | 2020-12-01 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
AU2016262564B2 (en) | 2015-05-14 | 2020-11-05 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
US10226335B2 (en) | 2015-06-22 | 2019-03-12 | Edwards Lifesciences Cardiaq Llc | Actively controllable heart valve implant and method of controlling same |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
CR20170597A (en) | 2015-07-02 | 2018-04-20 | Edwards Lifesciences Corp | INTEGRATED HYBRID HEART VALVES |
CA2989437C (en) | 2015-07-02 | 2023-08-08 | Edwards Lifesciences Corporation | Hybrid heart valves adapted for post-implant expansion |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US9974650B2 (en) | 2015-07-14 | 2018-05-22 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
WO2017019572A1 (en) | 2015-07-24 | 2017-02-02 | Ichor Vascular Inc. | Embolectomy system and methods of making same |
US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10179046B2 (en) | 2015-08-14 | 2019-01-15 | Edwards Lifesciences Corporation | Gripping and pushing device for medical instrument |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10034747B2 (en) | 2015-08-27 | 2018-07-31 | Medtronic Vascular, Inc. | Prosthetic valve system having a docking component and a prosthetic valve component |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US20170056215A1 (en) | 2015-09-01 | 2017-03-02 | Medtronic, Inc. | Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies |
CA2995855C (en) | 2015-09-02 | 2024-01-30 | Edwards Lifesciences Corporation | Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure |
US10779940B2 (en) | 2015-09-03 | 2020-09-22 | Boston Scientific Scimed, Inc. | Medical device handle |
US10080653B2 (en) | 2015-09-10 | 2018-09-25 | Edwards Lifesciences Corporation | Limited expansion heart valve |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US10314703B2 (en) | 2015-09-21 | 2019-06-11 | Edwards Lifesciences Corporation | Cylindrical implant and balloon |
US10335275B2 (en) | 2015-09-29 | 2019-07-02 | Millipede, Inc. | Methods for delivery of heart valve devices using intravascular ultrasound imaging |
US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
US9592121B1 (en) | 2015-11-06 | 2017-03-14 | Middle Peak Medical, Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10470876B2 (en) | 2015-11-10 | 2019-11-12 | Edwards Lifesciences Corporation | Transcatheter heart valve for replacing natural mitral valve |
US10376364B2 (en) | 2015-11-10 | 2019-08-13 | Edwards Lifesciences Corporation | Implant delivery capsule |
US10321996B2 (en) | 2015-11-11 | 2019-06-18 | Edwards Lifesciences Corporation | Prosthetic valve delivery apparatus having clutch mechanism |
JP6892446B2 (en) | 2015-11-17 | 2021-06-23 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Implantable equipment and delivery system to reshape the heart valve annulus |
JP2018535754A (en) | 2015-12-03 | 2018-12-06 | テンダイン ホールディングス,インコーポレイテッド | Frame features for artificial mitral valves |
CA3006662C (en) | 2015-12-10 | 2023-12-19 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
JP6795591B2 (en) | 2015-12-28 | 2020-12-02 | テンダイン ホールディングス,インコーポレイテッド | Atrial pocket closure for artificial heart valve |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
US10179043B2 (en) | 2016-02-12 | 2019-01-15 | Edwards Lifesciences Corporation | Prosthetic heart valve having multi-level sealing member |
CN114392007A (en) | 2016-03-01 | 2022-04-26 | 米特拉尔爱有限责任公司 | Systems, devices, and methods for anchoring and/or sealing a heart valve prosthesis |
US10667904B2 (en) | 2016-03-08 | 2020-06-02 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US11219746B2 (en) | 2016-03-21 | 2022-01-11 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799676B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10799675B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Cam controlled multi-direction steerable handles |
US10799677B2 (en) | 2016-03-21 | 2020-10-13 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
US10835714B2 (en) | 2016-03-21 | 2020-11-17 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
CR20180410A (en) | 2016-03-24 | 2019-04-01 | Edwards Lifesciences Corp | Delivery system for prosthetic heart valve |
EP3225218A1 (en) * | 2016-03-30 | 2017-10-04 | Biotronik AG | Catheter device with an implant capsule attached to the external shaft by means of tabs |
US10687801B2 (en) | 2016-04-11 | 2020-06-23 | Nobles Medical Technologies Ii, Inc. | Suture spools for tissue suturing device |
USD815744S1 (en) | 2016-04-28 | 2018-04-17 | Edwards Lifesciences Cardiaq Llc | Valve frame for a delivery system |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
JP7081749B2 (en) | 2016-05-13 | 2022-06-07 | イエナバルブ テクノロジー インク | Heart valve prosthesis delivery system |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10245136B2 (en) | 2016-05-13 | 2019-04-02 | Boston Scientific Scimed Inc. | Containment vessel with implant sheathing guide |
US10456245B2 (en) | 2016-05-16 | 2019-10-29 | Edwards Lifesciences Corporation | System and method for applying material to a stent |
US10201416B2 (en) | 2016-05-16 | 2019-02-12 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
WO2017218375A1 (en) | 2016-06-13 | 2017-12-21 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
US11331187B2 (en) | 2016-06-17 | 2022-05-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10588745B2 (en) | 2016-06-20 | 2020-03-17 | Medtronic Vascular, Inc. | Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis |
US11090157B2 (en) | 2016-06-30 | 2021-08-17 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
EP3484411A1 (en) | 2016-07-12 | 2019-05-22 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
US11096781B2 (en) | 2016-08-01 | 2021-08-24 | Edwards Lifesciences Corporation | Prosthetic heart valve |
EP3500214A4 (en) | 2016-08-19 | 2019-07-24 | Edwards Lifesciences Corporation | Steerable delivery system for replacement mitral valve and methods of use |
EP3503848B1 (en) | 2016-08-26 | 2021-09-22 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
US10575944B2 (en) | 2016-09-22 | 2020-03-03 | Edwards Lifesciences Corporation | Prosthetic heart valve with reduced stitching |
US11071564B2 (en) | 2016-10-05 | 2021-07-27 | Evalve, Inc. | Cardiac valve cutting device |
EP3522800B1 (en) | 2016-10-07 | 2021-07-14 | Electroducer | Assembly for replacing a heart valve or a coronary angioplasty assembly |
US10758348B2 (en) | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10653862B2 (en) | 2016-11-07 | 2020-05-19 | Edwards Lifesciences Corporation | Apparatus for the introduction and manipulation of multiple telescoping catheters |
US10493248B2 (en) * | 2016-11-09 | 2019-12-03 | Medtronic Vascular, Inc. | Chordae tendineae management devices for use with a valve prosthesis delivery system and methods of use thereof |
US10368988B2 (en) | 2016-11-09 | 2019-08-06 | Medtronic Vascular, Inc. | Valve delivery system having an integral displacement component for managing chordae tendineae in situ and methods of use thereof |
US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
US10463484B2 (en) | 2016-11-17 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic heart valve having leaflet inflow below frame |
US10973631B2 (en) | 2016-11-17 | 2021-04-13 | Edwards Lifesciences Corporation | Crimping accessory device for a prosthetic valve |
US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
US10603165B2 (en) | 2016-12-06 | 2020-03-31 | Edwards Lifesciences Corporation | Mechanically expanding heart valve and delivery apparatus therefor |
US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
USD846122S1 (en) | 2016-12-16 | 2019-04-16 | Edwards Lifesciences Corporation | Heart valve sizer |
US10905554B2 (en) | 2017-01-05 | 2021-02-02 | Edwards Lifesciences Corporation | Heart valve coaptation device |
CR20190381A (en) | 2017-01-23 | 2019-09-27 | Cephea Valve Tech Inc | Replacement mitral valves |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US11185406B2 (en) | 2017-01-23 | 2021-11-30 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11013600B2 (en) | 2017-01-23 | 2021-05-25 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
US11654023B2 (en) | 2017-01-23 | 2023-05-23 | Edwards Lifesciences Corporation | Covered prosthetic heart valve |
CN110392557A (en) | 2017-01-27 | 2019-10-29 | 耶拿阀门科技股份有限公司 | Heart valve simulation |
US10905550B2 (en) | 2017-02-01 | 2021-02-02 | Medtronic Vascular, Inc. | Heart valve prostheses including torque anchoring mechanisms and delivery devices for the heart valve prostheses |
CN110381887B (en) | 2017-02-10 | 2022-03-29 | 波士顿科学国际有限公司 | Implantable device and delivery system for remodeling a heart valve annulus |
US10478303B2 (en) | 2017-03-13 | 2019-11-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
US10653524B2 (en) | 2017-03-13 | 2020-05-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
CN115040289A (en) | 2017-03-13 | 2022-09-13 | 宝来瑞斯医疗有限公司 | Devices, systems, and methods for transcatheter treatment of valve regurgitation |
US10463485B2 (en) | 2017-04-06 | 2019-11-05 | Edwards Lifesciences Corporation | Prosthetic valve holders with automatic deploying mechanisms |
HRP20220104T1 (en) | 2017-04-18 | 2022-04-15 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11224511B2 (en) | 2017-04-18 | 2022-01-18 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US10973634B2 (en) | 2017-04-26 | 2021-04-13 | Edwards Lifesciences Corporation | Delivery apparatus for a prosthetic heart valve |
EP3614967B1 (en) * | 2017-04-27 | 2024-02-07 | Medtronic Inc. | Transcatheter stented prosthesis tensioning and locking systems and devices |
EP3614969B1 (en) | 2017-04-28 | 2023-05-03 | Edwards Lifesciences Corporation | Prosthetic heart valve with collapsible holder |
US10799312B2 (en) | 2017-04-28 | 2020-10-13 | Edwards Lifesciences Corporation | Medical device stabilizing apparatus and method of use |
CN110582242B (en) | 2017-05-03 | 2023-03-10 | 美敦力瓦斯科尔勒公司 | Tissue removal catheter |
US11690645B2 (en) | 2017-05-03 | 2023-07-04 | Medtronic Vascular, Inc. | Tissue-removing catheter |
US10959846B2 (en) | 2017-05-10 | 2021-03-30 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US11065119B2 (en) | 2017-05-12 | 2021-07-20 | Evalve, Inc. | Long arm valve repair clip |
US11135056B2 (en) | 2017-05-15 | 2021-10-05 | Edwards Lifesciences Corporation | Devices and methods of commissure formation for prosthetic heart valve |
EP4427706A2 (en) | 2017-05-22 | 2024-09-11 | Edwards Lifesciences Corporation | Valve anchor and installation method |
US12064341B2 (en) | 2017-05-31 | 2024-08-20 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10869759B2 (en) | 2017-06-05 | 2020-12-22 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US11026785B2 (en) | 2017-06-05 | 2021-06-08 | Edwards Lifesciences Corporation | Mechanically expandable heart valve |
US10828154B2 (en) | 2017-06-08 | 2020-11-10 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
WO2018236766A1 (en) | 2017-06-19 | 2018-12-27 | Heartstitch, Inc. | Suturing systems and methods for suturing body tissue |
EP3641660A1 (en) | 2017-06-19 | 2020-04-29 | Heartstitch, Inc. | Suturing devices and methods for suturing an opening in the apex of the heart |
WO2018237020A1 (en) | 2017-06-21 | 2018-12-27 | Edwards Lifesciences Corporation | Dual-wireform limited expansion heart valves |
WO2019006332A1 (en) | 2017-06-30 | 2019-01-03 | Edwards Lifesciences Corporation | Lock and release mechanisms for trans-catheter implantable devices |
CA3068313A1 (en) | 2017-06-30 | 2019-01-03 | Edwards Lifesciences Corporation | Docking stations for transcatheter valves |
US11123186B2 (en) | 2017-07-06 | 2021-09-21 | Edwards Lifesciences Corporation | Steerable delivery system and components |
US10857334B2 (en) | 2017-07-12 | 2020-12-08 | Edwards Lifesciences Corporation | Reduced operation force inflator |
US11154399B2 (en) | 2017-07-13 | 2021-10-26 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
US10918473B2 (en) | 2017-07-18 | 2021-02-16 | Edwards Lifesciences Corporation | Transcatheter heart valve storage container and crimping mechanism |
CN111163729B (en) | 2017-08-01 | 2022-03-29 | 波士顿科学国际有限公司 | Medical implant locking mechanism |
EP3664749B1 (en) | 2017-08-11 | 2023-07-26 | Edwards Lifesciences Corporation | Sealing element for prosthetic heart valve |
US11083575B2 (en) | 2017-08-14 | 2021-08-10 | Edwards Lifesciences Corporation | Heart valve frame design with non-uniform struts |
US10932903B2 (en) | 2017-08-15 | 2021-03-02 | Edwards Lifesciences Corporation | Skirt assembly for implantable prosthetic valve |
CN111225633B (en) | 2017-08-16 | 2022-05-31 | 波士顿科学国际有限公司 | Replacement heart valve coaptation assembly |
US10898319B2 (en) | 2017-08-17 | 2021-01-26 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
EP3668415B1 (en) | 2017-08-18 | 2023-10-25 | Nobles Medical Technologies II, Inc. | Apparatus for applying a knot to a suture |
US10973628B2 (en) | 2017-08-18 | 2021-04-13 | Edwards Lifesciences Corporation | Pericardial sealing member for prosthetic heart valve |
US10722353B2 (en) | 2017-08-21 | 2020-07-28 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US10806573B2 (en) | 2017-08-22 | 2020-10-20 | Edwards Lifesciences Corporation | Gear drive mechanism for heart valve delivery apparatus |
EP3675774B1 (en) | 2017-08-28 | 2023-06-21 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
US11051939B2 (en) | 2017-08-31 | 2021-07-06 | Edwards Lifesciences Corporation | Active introducer sheath system |
US10973629B2 (en) | 2017-09-06 | 2021-04-13 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11051940B2 (en) | 2017-09-07 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic spacer device for heart valve |
US11065117B2 (en) | 2017-09-08 | 2021-07-20 | Edwards Lifesciences Corporation | Axisymmetric adjustable device for treating mitral regurgitation |
US11147667B2 (en) | 2017-09-08 | 2021-10-19 | Edwards Lifesciences Corporation | Sealing member for prosthetic heart valve |
US11110251B2 (en) | 2017-09-19 | 2021-09-07 | Edwards Lifesciences Corporation | Multi-direction steerable handles for steering catheters |
IL273562B2 (en) | 2017-10-18 | 2024-01-01 | Edwards Lifesciences Corp | Catheter assembly |
US11207499B2 (en) | 2017-10-20 | 2021-12-28 | Edwards Lifesciences Corporation | Steerable catheter |
US10974031B2 (en) * | 2017-12-28 | 2021-04-13 | Biosense Webster (Israel) Ltd. | Balloon catheter with internal distal end |
US10159570B1 (en) | 2018-01-09 | 2018-12-25 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10238493B1 (en) | 2018-01-09 | 2019-03-26 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10136993B1 (en) | 2018-01-09 | 2018-11-27 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
AU2019207613B2 (en) | 2018-01-09 | 2024-09-05 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10105222B1 (en) | 2018-01-09 | 2018-10-23 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10973639B2 (en) | 2018-01-09 | 2021-04-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10123873B1 (en) | 2018-01-09 | 2018-11-13 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10245144B1 (en) | 2018-01-09 | 2019-04-02 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10231837B1 (en) | 2018-01-09 | 2019-03-19 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10076415B1 (en) | 2018-01-09 | 2018-09-18 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
US10111751B1 (en) | 2018-01-09 | 2018-10-30 | Edwards Lifesciences Corporation | Native valve repair devices and procedures |
EP3740160A2 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Inductance mode deployment sensors for transcatheter valve system |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
WO2019147497A1 (en) | 2018-01-23 | 2019-08-01 | Edwards Lifesciences Corporation | Prosthetic valve holders, systems, and methods |
WO2019147846A2 (en) | 2018-01-25 | 2019-08-01 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post- deployment |
WO2019157156A1 (en) | 2018-02-07 | 2019-08-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
EP3758651B1 (en) | 2018-02-26 | 2022-12-07 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
FR3079404B1 (en) | 2018-03-29 | 2020-03-06 | Electroducer | REPLACEMENT ASSEMBLY OF A HEART VALVE WITH ASSISTANCE OF STIMULATION BY ARTERIAL OR PERIPHERAL VENOUS |
WO2019185880A1 (en) | 2018-03-29 | 2019-10-03 | Electroducer | Assembly for placement of a cardiac, aortic or arterial implant with stimulation assistance by a peripheral venous or arterial catheter |
US11389297B2 (en) | 2018-04-12 | 2022-07-19 | Edwards Lifesciences Corporation | Mitral valve spacer device |
US11207181B2 (en) | 2018-04-18 | 2021-12-28 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
US11318011B2 (en) | 2018-04-27 | 2022-05-03 | Edwards Lifesciences Corporation | Mechanically expandable heart valve with leaflet clamps |
US11229517B2 (en) | 2018-05-15 | 2022-01-25 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
CA3101165A1 (en) | 2018-05-23 | 2019-11-28 | Sorin Group Italia S.R.L. | A cardiac valve prosthesis |
US11844914B2 (en) | 2018-06-05 | 2023-12-19 | Edwards Lifesciences Corporation | Removable volume indicator for syringe |
WO2019241477A1 (en) | 2018-06-13 | 2019-12-19 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
USD908874S1 (en) | 2018-07-11 | 2021-01-26 | Edwards Lifesciences Corporation | Collapsible heart valve sizer |
AU2019353156A1 (en) | 2018-10-05 | 2021-05-13 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US10945844B2 (en) | 2018-10-10 | 2021-03-16 | Edwards Lifesciences Corporation | Heart valve sealing devices and delivery devices therefor |
CN112867468B (en) | 2018-10-19 | 2024-08-23 | 爱德华兹生命科学公司 | Prosthetic heart valve with non-cylindrical frame |
US12102531B2 (en) | 2018-10-22 | 2024-10-01 | Evalve, Inc. | Tissue cutting systems, devices and methods |
US11779728B2 (en) | 2018-11-01 | 2023-10-10 | Edwards Lifesciences Corporation | Introducer sheath with expandable introducer |
EP3880096B1 (en) | 2018-11-16 | 2024-09-18 | Medtronic Vascular Inc. | Tissue-removing catheter |
WO2020123486A1 (en) | 2018-12-10 | 2020-06-18 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
CA3120097C (en) | 2018-12-13 | 2023-07-04 | Abbott Laboratories | Fabric material for medical devices |
US11547557B2 (en) | 2018-12-13 | 2023-01-10 | Abbott Laboratories | Stabilized fabric material for medical devices |
JP2022517423A (en) | 2019-01-17 | 2022-03-08 | エドワーズ ライフサイエンシーズ コーポレイション | Frame for artificial valve |
BR122021018588A2 (en) | 2019-02-14 | 2021-10-13 | Edwards Lifesciences Corporation | "CLOSURE FOR A HEART VALVE TREATMENT DEVICE" |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
WO2020198273A2 (en) | 2019-03-26 | 2020-10-01 | Edwards Lifesciences Corporation | Prosthetic heart valve |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
US11819236B2 (en) | 2019-05-17 | 2023-11-21 | Medtronic Vascular, Inc. | Tissue-removing catheter |
JP7543391B2 (en) | 2019-07-15 | 2024-09-02 | エバルブ,インコーポレイティド | Method of Actuating Individual Proximal Elements |
CN110639117A (en) * | 2019-09-26 | 2020-01-03 | 中国人民解放军北部战区总医院 | Air bag arterial cannula with suction function |
EP4048204A1 (en) | 2019-10-24 | 2022-08-31 | Abbott Laboratories | Sheet material for medical devices |
EP3831343B1 (en) | 2019-12-05 | 2024-01-31 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
WO2021126778A1 (en) | 2019-12-16 | 2021-06-24 | Edwards Lifesciences Corporation | Valve holder assembly with suture looping protection |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
EP4164551A1 (en) | 2020-06-11 | 2023-04-19 | Abbott Laboratories | Fabric material for medical devices |
EP4167911A1 (en) | 2020-06-18 | 2023-04-26 | Edwards Lifesciences Corporation | Crimping methods |
US11534286B1 (en) * | 2020-08-11 | 2022-12-27 | Simon B. Rayhanabad | Method of using an endovascular stent-graft with an extra vascular extension |
US11678980B2 (en) | 2020-08-19 | 2023-06-20 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
CN112121242B (en) * | 2020-08-24 | 2024-01-23 | 复旦大学附属华山医院 | Miniature negative pressure chest drainage bottle and miniature negative pressure chest drainage device |
KR20230073211A (en) | 2020-08-24 | 2023-05-25 | 에드워즈 라이프사이언시스 코포레이션 | Natural valve commissure and prosthetic heart valve commissure alignment method and system |
WO2022047393A1 (en) | 2020-08-31 | 2022-03-03 | Shifamed Holdings, Llc | Prosthetic delivery system |
CN216455494U (en) | 2020-08-31 | 2022-05-10 | 爱德华兹生命科学公司 | System for crimping a prosthetic implant to a delivery device and crimping system |
US11464634B2 (en) | 2020-12-16 | 2022-10-11 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors |
KR20230132822A (en) | 2021-01-20 | 2023-09-18 | 에드워즈 라이프사이언시스 코포레이션 | Connecting skirt for attaching valve leaflets to the frame of an artificial heart valve |
US20220265423A1 (en) | 2021-02-24 | 2022-08-25 | St. Jude Medical, Cardiology Division, Inc. | Leaflet Attachment To Prosthetic Heart Valve |
EP4312883A1 (en) | 2021-03-23 | 2024-02-07 | Edwards Lifesciences Corporation | Prosthetic heart valve having elongated sealing member |
US11759321B2 (en) | 2021-06-25 | 2023-09-19 | Polares Medical Inc. | Device, system, and method for transcatheter treatment of valvular regurgitation |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US15192A (en) * | 1856-06-24 | Tubular | ||
US545214A (en) * | 1895-08-27 | Sprocket-chain | ||
US411880A (en) * | 1889-10-01 | Interlocking-switch-operating mechanism | ||
US3464065A (en) * | 1965-07-08 | 1969-09-02 | Surgitool Inc | Prosthetic heart valve |
GB1127325A (en) * | 1965-08-23 | 1968-09-18 | Henry Berry | Improved instrument for inserting artificial heart valves |
US3587115A (en) * | 1966-05-04 | 1971-06-28 | Donald P Shiley | Prosthetic sutureless heart valves and implant tools therefor |
US3540431A (en) * | 1968-04-04 | 1970-11-17 | Kazi Mobin Uddin | Collapsible filter for fluid flowing in closed passageway |
US3671979A (en) * | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US3755823A (en) | 1971-04-23 | 1973-09-04 | Hancock Laboratories Inc | Flexible stent for heart valve |
US3744060A (en) * | 1971-06-10 | 1973-07-10 | F Bellhouse | Prosthetic cardiac valve |
US3787899A (en) * | 1972-07-11 | 1974-01-29 | Imp Optical Co Ltd | Ear muff assembly |
US3839741A (en) * | 1972-11-17 | 1974-10-08 | J Haller | Heart valve and retaining means therefor |
US4000739A (en) | 1975-07-09 | 1977-01-04 | Cordis Corporation | Hemostasis cannula |
US4033331A (en) * | 1975-07-17 | 1977-07-05 | Guss Stephen B | Cardiac catheter and method of using same |
US4038703A (en) | 1975-11-14 | 1977-08-02 | General Atomic Company | Prosthetic devices having a region of controlled porosity |
CA1069652A (en) | 1976-01-09 | 1980-01-15 | Alain F. Carpentier | Supported bioprosthetic heart valve with compliant orifice ring |
US4056854A (en) * | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
US4297749A (en) | 1977-04-25 | 1981-11-03 | Albany International Corp. | Heart valve prosthesis |
DK229077A (en) * | 1977-05-25 | 1978-11-26 | Biocoating Aps | HEARTBALL PROSTHET AND PROCEDURE FOR MANUFACTURING IT |
US4222126A (en) | 1978-12-14 | 1980-09-16 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare | Unitized three leaflet heart valve |
US4574803A (en) * | 1979-01-19 | 1986-03-11 | Karl Storz | Tissue cutter |
US4214587A (en) * | 1979-02-12 | 1980-07-29 | Sakura Chester Y Jr | Anastomosis device and method |
GB2056023B (en) | 1979-08-06 | 1983-08-10 | Ross D N Bodnar E | Stent for a cardiac valve |
US4339831A (en) * | 1981-03-27 | 1982-07-20 | Medtronic, Inc. | Dynamic annulus heart valve and reconstruction ring |
IT1212547B (en) | 1982-08-09 | 1989-11-30 | Iorio Domenico | INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER |
US4612011A (en) * | 1983-07-22 | 1986-09-16 | Hans Kautzky | Central occluder semi-biological heart valve |
US5104399A (en) * | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US4787899A (en) * | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
US5669936A (en) * | 1983-12-09 | 1997-09-23 | Endovascular Technologies, Inc. | Endovascular grafting system and method for use therewith |
US4631052A (en) * | 1984-01-03 | 1986-12-23 | Intravascular Surgical Instruments, Inc. | Method and apparatus for surgically removing remote deposits |
US4627436A (en) * | 1984-03-01 | 1986-12-09 | Innoventions Biomedical Inc. | Angioplasty catheter and method for use thereof |
US4979939A (en) * | 1984-05-14 | 1990-12-25 | Surgical Systems & Instruments, Inc. | Atherectomy system with a guide wire |
US4883458A (en) * | 1987-02-24 | 1989-11-28 | Surgical Systems & Instruments, Inc. | Atherectomy system and method of using the same |
US5007896A (en) * | 1988-12-19 | 1991-04-16 | Surgical Systems & Instruments, Inc. | Rotary-catheter for atherectomy |
US4926858A (en) * | 1984-05-30 | 1990-05-22 | Devices For Vascular Intervention, Inc. | Atherectomy device for severe occlusions |
DE3426300A1 (en) | 1984-07-17 | 1986-01-30 | Doguhan Dr.med. 6000 Frankfurt Baykut | TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS |
USRE33258E (en) * | 1984-07-23 | 1990-07-10 | Surgical Dynamics Inc. | Irrigating, cutting and aspirating system for percutaneous surgery |
US4580568A (en) | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
FR2591900A1 (en) * | 1985-12-20 | 1987-06-26 | Tebaldini Caroline | Device for the retention of clots, and ancillary introduction and release device |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
DE3643362A1 (en) * | 1986-12-18 | 1988-06-23 | Frimberger Erintrud | PROBE FOR INTRODUCTION IN HUMAN OR ANIMAL BODIES, IN PARTICULAR PAPILLOTOM |
US5000743A (en) * | 1987-02-27 | 1991-03-19 | Patel Piyush V | Catheter assembly and method of performing percutaneous transluminal coronary angioplasty |
US4878495A (en) | 1987-05-15 | 1989-11-07 | Joseph Grayzel | Valvuloplasty device with satellite expansion means |
US4796629A (en) | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
FR2616666A1 (en) * | 1987-06-22 | 1988-12-23 | Scit Sc | Device of the catheter type for extracting and repositioning filters of the Greenfield or similar type which are wrongly positioned, through the vein |
US4748803A (en) * | 1987-09-23 | 1988-06-07 | New Holland Inc. | Windrow turner discharge chute |
US4873978A (en) * | 1987-12-04 | 1989-10-17 | Robert Ginsburg | Device and method for emboli retrieval |
SU1711906A1 (en) * | 1988-01-11 | 1992-02-15 | 2-й Московский государственный медицинский институт им.Н.И.Пирогова | Intravenous filter and device for its implantation |
US5156621A (en) * | 1988-03-22 | 1992-10-20 | Navia Jose A | Stentless bioprosthetic cardiac valve |
US5226427A (en) * | 1988-04-28 | 1993-07-13 | Research Medical Inc. | Removable stylet for retrograde cardioplegia catheter and methods for use |
US5032128A (en) * | 1988-07-07 | 1991-07-16 | Medtronic, Inc. | Heart valve prosthesis |
US5019090A (en) | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5011488A (en) * | 1988-12-07 | 1991-04-30 | Robert Ginsburg | Thrombus extraction system |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US4966604A (en) * | 1989-01-23 | 1990-10-30 | Interventional Technologies Inc. | Expandable atherectomy cutter with flexibly bowed blades |
US5152777A (en) * | 1989-01-25 | 1992-10-06 | Uresil Corporation | Device and method for providing protection from emboli and preventing occulsion of blood vessels |
US4994077A (en) * | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
US5609626A (en) * | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5104377A (en) * | 1989-08-10 | 1992-04-14 | C. R. Bard, Inc. | Uterine access device with automatic cervical adjustment |
US5047041A (en) * | 1989-08-22 | 1991-09-10 | Samuels Peter B | Surgical apparatus for the excision of vein valves in situ |
DE8910603U1 (en) * | 1989-09-06 | 1989-12-07 | Günther, Rolf W., Prof. Dr. | Device for removing blood clots from arteries and veins |
US4986830A (en) | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5102416A (en) * | 1989-11-21 | 1992-04-07 | Rock John M | Vessel vector invasive catheter |
SE465017B (en) * | 1989-11-24 | 1991-07-15 | Lars Knutson | DEVICE FOR SEGMENTAL PERFUSION / ASPIRATION OF THE ENTREPRENEUR |
US5089015A (en) * | 1989-11-28 | 1992-02-18 | Promedica International | Method for implanting unstented xenografts and allografts |
US5084010A (en) * | 1990-02-20 | 1992-01-28 | Devices For Vascular Intervention, Inc. | System and method for catheter construction |
US5037434A (en) | 1990-04-11 | 1991-08-06 | Carbomedics, Inc. | Bioprosthetic heart valve with elastic commissures |
IT1239958B (en) * | 1990-05-09 | 1993-11-27 | Stoppani Luigi Spa | PROCESS AND PLANT FOR THE PREPARATION OF ALKALINE CHROMATES FROM CHROME MINERALS |
US5080660A (en) * | 1990-05-11 | 1992-01-14 | Applied Urology, Inc. | Electrosurgical electrode |
US5154724A (en) * | 1990-05-14 | 1992-10-13 | Andrews Winston A | Atherectomy catheter |
DK124690D0 (en) * | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5122154A (en) * | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5160342A (en) * | 1990-08-16 | 1992-11-03 | Evi Corp. | Endovascular filter and method for use thereof |
US5162771A (en) * | 1990-10-01 | 1992-11-10 | New York University | Highly efficient yoked permanent magnet |
US5053008A (en) * | 1990-11-21 | 1991-10-01 | Sandeep Bajaj | Intracardiac catheter |
US5147379A (en) * | 1990-11-26 | 1992-09-15 | Louisiana State University And Agricultural And Mechanical College | Insertion instrument for vena cava filter |
US5152771A (en) * | 1990-12-31 | 1992-10-06 | The Board Of Supervisors Of Louisiana State University | Valve cutter for arterial by-pass surgery |
US5295958A (en) | 1991-04-04 | 1994-03-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
CA2202800A1 (en) * | 1991-04-11 | 1992-10-12 | Alec A. Piplani | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5167628A (en) * | 1991-05-02 | 1992-12-01 | Boyles Paul W | Aortic balloon catheter assembly for indirect infusion of the coronary arteries |
US5397351A (en) | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
US5304131A (en) | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
US5370685A (en) * | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5195942A (en) * | 1991-08-12 | 1993-03-23 | Institute Of Critical Care Medicine | Cardiac arrest treatment |
DE69210959T2 (en) * | 1991-11-18 | 1996-09-26 | Lilly Industries Ltd | Benzo (b) thiophene-2-carboxamide for the treatment of diseases of the central nervous system |
US5163953A (en) | 1992-02-10 | 1992-11-17 | Vince Dennis J | Toroidal artificial heart valve stent |
US5332402A (en) | 1992-05-12 | 1994-07-26 | Teitelbaum George P | Percutaneously-inserted cardiac valve |
US5545209A (en) | 1993-09-30 | 1996-08-13 | Texas Petrodet, Inc. | Controlled deployment of a medical device |
US5417657A (en) * | 1993-10-06 | 1995-05-23 | Hauer; Carolyn | No-sepsis urinary drainage catheter |
US5480424A (en) | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5478309A (en) | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
US5593405A (en) | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US5554185A (en) * | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US5824064A (en) * | 1995-05-05 | 1998-10-20 | Taheri; Syde A. | Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor |
US5695519A (en) * | 1995-11-30 | 1997-12-09 | American Biomed, Inc. | Percutaneous filter for carotid angioplasty |
US5662671A (en) * | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US6074024A (en) | 1998-07-10 | 2000-06-13 | Agtracks, Inc. | Guide wheel for flexible track of a track system |
US6296619B1 (en) * | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
DE60135836D1 (en) | 2000-03-24 | 2008-10-30 | Prorhythm Inc | Gerät zur intrakorporalen thermotherapie |
AU2001257328A1 (en) | 2000-04-28 | 2001-11-12 | Focus Surgery, Inc. | Ablation system with visualization |
-
1991
- 1991-07-16 US US07/730,559 patent/US5370685A/en not_active Expired - Lifetime
-
1992
- 1992-07-15 DE DE69233210T patent/DE69233210T2/en not_active Expired - Lifetime
- 1992-07-15 AU AU24127/92A patent/AU668690B2/en not_active Expired
- 1992-07-15 WO PCT/US1992/005919 patent/WO1993001768A1/en active IP Right Grant
- 1992-07-15 EP EP02019355A patent/EP1283027B1/en not_active Expired - Lifetime
- 1992-07-15 DE DE69230375T patent/DE69230375T2/en not_active Expired - Lifetime
- 1992-07-15 EP EP92916897A patent/EP0597967B1/en not_active Expired - Lifetime
- 1992-07-15 ES ES92916897T patent/ES2142829T3/en not_active Expired - Lifetime
- 1992-07-15 EP EP99108298A patent/EP0937439B1/en not_active Expired - Lifetime
- 1992-07-15 DE DE69233715T patent/DE69233715T2/en not_active Expired - Lifetime
- 1992-07-15 JP JP5502932A patent/JPH06511167A/en active Pending
- 1992-07-15 ES ES99108298T patent/ES2207885T3/en not_active Expired - Lifetime
- 1992-07-15 CA CA002113476A patent/CA2113476C/en not_active Expired - Lifetime
- 1992-07-15 ES ES02019355T patent/ES2296854T3/en not_active Expired - Lifetime
-
1994
- 1994-03-04 US US08/206,419 patent/US5545214A/en not_active Expired - Lifetime
-
1996
- 1996-03-15 US US08/615,481 patent/US6338735B1/en not_active Expired - Fee Related
-
2001
- 2001-10-23 US US10/047,581 patent/US8915959B2/en not_active Expired - Fee Related
-
2004
- 2004-06-16 US US10/869,407 patent/US20040225355A1/en not_active Abandoned
- 2004-07-02 US US10/883,532 patent/US20040236418A1/en not_active Abandoned
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140228942A1 (en) * | 2011-05-06 | 2014-08-14 | Contego Ab | Device For Delivery Of Medical Devices To A Cardiac Valve |
US9023101B2 (en) * | 2011-05-08 | 2015-05-05 | Swat Medical Ab | Device for delivery of medical devices to a cardiac valve |
US10433946B2 (en) | 2011-05-08 | 2019-10-08 | Swat Medical Ab | Device and method for delivery of medical devices to a cardiac valve |
US11617644B2 (en) | 2014-10-13 | 2023-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valved conduit |
US11351058B2 (en) | 2017-03-17 | 2022-06-07 | W. L. Gore & Associates, Inc. | Glaucoma treatment systems and methods |
US11406533B2 (en) | 2017-03-17 | 2022-08-09 | W. L. Gore & Associates, Inc. | Integrated aqueous shunt for glaucoma treatment |
US11523940B2 (en) | 2017-03-17 | 2022-12-13 | W. L. Gore & Associates, Inc. | Delivery aids for glaucoma shunts |
US20190125529A1 (en) * | 2017-10-31 | 2019-05-02 | W. L. Gore & Associates, Inc. | Valved conduit |
US11039919B2 (en) * | 2017-10-31 | 2021-06-22 | W. L. Gore & Associates, Inc. | Valved conduit |
US20210322158A1 (en) * | 2017-10-31 | 2021-10-21 | W. L. Gore & Associates, Inc. | Valved conduit |
USD977642S1 (en) | 2018-10-29 | 2023-02-07 | W. L. Gore & Associates, Inc. | Pulmonary valve conduit |
US11678983B2 (en) | 2018-12-12 | 2023-06-20 | W. L. Gore & Associates, Inc. | Implantable component with socket |
Also Published As
Publication number | Publication date |
---|---|
EP0937439A3 (en) | 1999-10-13 |
EP0597967A4 (en) | 1994-12-07 |
DE69230375D1 (en) | 2000-01-05 |
EP0597967B1 (en) | 1999-12-01 |
DE69233210T2 (en) | 2004-08-19 |
EP0937439B1 (en) | 2003-09-17 |
US20040225355A1 (en) | 2004-11-11 |
DE69230375T2 (en) | 2000-07-06 |
AU668690B2 (en) | 1996-05-16 |
US6338735B1 (en) | 2002-01-15 |
US5545214A (en) | 1996-08-13 |
DE69233715D1 (en) | 2007-12-27 |
AU2412792A (en) | 1993-02-23 |
CA2113476A1 (en) | 1993-02-04 |
JPH06511167A (en) | 1994-12-15 |
DE69233715T2 (en) | 2008-10-30 |
ES2142829T3 (en) | 2000-05-01 |
EP1283027B1 (en) | 2007-11-14 |
CA2113476C (en) | 2006-10-10 |
DE69233210D1 (en) | 2003-10-23 |
ES2296854T3 (en) | 2008-05-01 |
US20020058995A1 (en) | 2002-05-16 |
US20040236418A1 (en) | 2004-11-25 |
ES2207885T3 (en) | 2004-06-01 |
EP0597967A1 (en) | 1994-05-25 |
EP1283027A3 (en) | 2003-04-23 |
US8915959B2 (en) | 2014-12-23 |
WO1993001768A1 (en) | 1993-02-04 |
EP1283027A2 (en) | 2003-02-12 |
EP0937439A2 (en) | 1999-08-25 |
US5370685A (en) | 1994-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0937439B1 (en) | Endovascular aortic valve replacement device | |
US11266500B2 (en) | Transapical heart valve delivery system | |
US20200069416A1 (en) | Percutaneously implantable replacement heart valve device and method of making same | |
US5855601A (en) | Artificial heart valve and method and device for implanting the same | |
US20070219630A1 (en) | Devices and Methods for Beating Heart Cardiac Surgeries | |
US20030130729A1 (en) | Percutaneously implantable replacement heart valve device and method of making same | |
US12121438B2 (en) | Transapical heart valve delivery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20181223 |