US20120303048A1 - Transapical valve replacement - Google Patents

Transapical valve replacement Download PDF

Info

Publication number
US20120303048A1
US20120303048A1 US13/478,729 US201213478729A US2012303048A1 US 20120303048 A1 US20120303048 A1 US 20120303048A1 US 201213478729 A US201213478729 A US 201213478729A US 2012303048 A1 US2012303048 A1 US 2012303048A1
Authority
US
United States
Prior art keywords
catheter
valve
advancing
heart
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/478,729
Inventor
Eric Manasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorin Biomedica Cardio SpA
Original Assignee
Sorin Biomedica Cardio SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161489435P priority Critical
Application filed by Sorin Biomedica Cardio SpA filed Critical Sorin Biomedica Cardio SpA
Priority to US13/478,729 priority patent/US20120303048A1/en
Assigned to SORIN BIOMEDICA CARDIO S.R.L. reassignment SORIN BIOMEDICA CARDIO S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANASSE, ERIC
Publication of US20120303048A1 publication Critical patent/US20120303048A1/en
Assigned to SORIN GROUP ITALIA S.R.L. reassignment SORIN GROUP ITALIA S.R.L. CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER PREVIOUSLY RECORDED ON REEL 029557 FRAME 0162. ASSIGNOR(S) HEREBY CONFIRMS THE APPLICATION NUMBER IS 13/478,279.. Assignors: SORIN BIOMEDICA CARDIO S.R.L.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects

Abstract

Techniques for reaching the interior of the heart, such as for aortic valve replacement, can combine elements of percutaneous implantation methods and elements of surgical implantation methods. In some instances, aortic valve replacement may include a dual transapical approach in which a transfemoral approach is used to reach the apex of the patient's heart from inside the left ventricle while a minimally invasive surgical procedure provides access to the exterior of the apex via an intercostal approach.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit under 35 U.S.C, §119(e) of U.S. Provisional Application No. 61/489,435, filed May 24, 2011, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The disclosure relates generally to any procedure performed within the heart (or its main arteries), including closure of ventricular septal defects, repair of aortic aneurysm, ablation of atrial/ventricular arrhythmia, and valve replacement procedures. More particularly, it relates to transapical valve replacement procedures.
  • BACKGROUND
  • Natural heart valves, such as aortic valves, mitral valves, pulmonary valves, and tricuspid valves, often become damaged by disease in such a manner that they fail to maintain bodily fluid flow in a single direction. A malfunctioning heart valve may be stenotic (i.e., calcification of the valve leaflets) or regurgitant (i.e., heart leaflets are wide open). Maintenance of blood flow in a single direction through the heart valve is important for proper flow, pressure, and perfusion of blood through the body. Hence, a heart valve that does not function properly may noticeably impair the function of the heart. Left untreated, valve disease can lead to death. There has been increasing consideration given to the possibility of using, as an alternative to traditional cardiac-valve prostheses, valves designed to be implanted using minimally-invasive surgical techniques or endovascular delivery (so-called “percutaneous valves”).
  • SUMMARY
  • Example 1 is a transapical method of gaining access to an interior of a patient's heart. A first guidewire may be advanced through the ascending aorta and through the aortic valve to a location within the left ventricle. A guide catheter may be advanced over the first guidewire to the location within the left ventricle. A cutting catheter may be advanced over the first guidewire and a balloon catheter having an inflatable balloon may be advanced over the first guide catheter. The inflatable balloon may be inflated proximate the wall of the left ventricle, and the left ventricle wall may be penetrated using the cutting catheter. The interior of a patient's chest may be accessed through an intercostal space that is disposed above the apex of the patient's heart. An S-shaped catheter may be advanced through the intercostal space such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac. The pericardial sac may be penetrated using an instrument advanced through the S-shaped catheter. A distal end of the balloon catheter may be connected to the distal end of the S-shaped catheter and the S-shaped catheter may be withdrawn to lift the apex of the heart.
  • In Example 2, the method of Example 1 in which the first guidewire is advanced through the patient's vasculature from a femoral access point.
  • In Example 3, the method of Example 1 or Example 2 in which accessing the interior of a patient's chest includes penetrating the chest wall through an intercostal space using a hollow needle.
  • In Example 4, the method of any of Examples 1-3 in which the instrument used to penetrate the pericardial sac is a hollow needle.
  • In Example 5, the method of any of Examples 1-4, further including advancing a port over the balloon catheter.
  • In Example 6, the method of Example 5, further including delivering a prosthetic valve through the port.
  • Example 7 is a transapical method of gaining access to an interior of a patient's heart. A first hollow needle may be advanced into a patient's chest through an intercostal space, the intercostal space being above the apex of the patient's heart. An S-shaped catheter may be advanced through the first hollow needle such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac. A guidewire may be advanced through the S-shaped catheter. A second hollow needle may be advanced over the guidewire to a position proximate the pericardial sac, and the pericardial sac may be penetrated with the second hollow needle. A catheter bearing a cutting blade may be advanced through the second hollow needle and penetrating the heart wall. A catheter including an inflatable balloon on a distal region of the catheter may be advanced, the inflatable balloon may be inflated, and then the catheter may be partially withdrawn to lift the apex of the heart to a higher position proximate the intercostal space through which the first hollow needle was advanced.
  • While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 12 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 14 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 15 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 16 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 17 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 18 is a schematic view of a method in accordance with an embodiment of the present invention.
  • FIG. 19 is a perspective view of an embodiment of an implantable prosthetic aortic valve.
  • FIG. 20 is a perspective view of an embodiment of an implantable prosthetic aortic valve.
  • FIGS. 21A and 21B are schematic illustrations of an embodiment of a delivery device.
  • FIG. 22 is a partial cross-section of the delivery device shown in FIGS. 21A and 21B.
  • FIG. 23 is a schematic illustration of an embodiment of a delivery device.
  • FIG. 24 is an exploded view of the delivery device of FIG. 23.
  • While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
  • DETAILED DESCRIPTION
  • The invention pertains to techniques for gaining access to the interior of the heart. Once access has been gained to the interior of the heart, a variety of useful procedures may be performed. For illustrative purposes, embodiments of the invention will be described with respect to cardiac valve replacement. In some embodiments, the invention pertains to aortic valve replacement techniques that combine elements of percutaneous implantation methods and elements of surgical implantation methods. In some embodiments, aortic valve replacement may include a transapical approach.
  • In some embodiments, as illustrated in FIGS. 1-11, aortic valve replacement may involve a dual transapical procedure in which a transfemoral approach is used to reach the apex of the patient's heart from inside the left ventricle while a minimally invasive surgical procedure provides access to the exterior of the apex via an intercostal approach. In some embodiments, the Seldinger technique may be used to access the interior of the left ventricle.
  • FIGS. 1 through 5 illustrate the transfemoral portion of the dual transapical procedure. FIG. 1 illustrates a portion of the left heart 10. The left heart 10 includes the left atrium 12, the left ventricle 14 and the aorta 16. The aorta 16 may be considered as including an ascending aorta 18 and a descending aorta 20. An aortic valve 22 is disposed between the left atrium 12 and the left ventricle 14. The left ventricle 14 includes an apex 15. As seen in FIG. 1, a guidewire 24 has been advanced up through the descending aorta 20, through the ascending aorta 18 and through the aortic valve 22 into the left ventricle 14. In some embodiments, the guidewire 24 may access the vasculature via the femoral artery (not illustrated). In some embodiments, the guidewire 24 may instead access the vasculature via a radial or brachial artery (not illustrated) or through the aorta 16. In some embodiments, the guidewire 24 may include a trilabe centering balloon such as that shown in FIG. 8 of U.S. Patent Publication US 200810147180, which is incorporated by reference herein in its entirety.
  • Once the guidewire 24 has been placed, additional elements such as a guide catheter may be advanced over the guidewire 24 such that the guide catheter passes through the aorta 16, through the aortic valve 22 and into the left ventricle 14 to a location proximate the apex 15. In some embodiments, the guidewire 24 may be withdrawn once the guide catheter 26 has been placed. As seen in FIG. 2, a guide catheter 26 has been advanced over the guidewire 24, and the guidewire 24 has been withdrawn.
  • In some embodiments, a cutting element may be introduced through the guide catheter 26. The cutting element may be an elongate hollow needle. In some embodiments, as illustrated in FIG. 2, the cutting element may be a cutting catheter 28 that includes a blade 30 that is secured to the cutting catheter 28. By advancing the cutting catheter 28 through the guide catheter 26, the vasculature and the cardiac anatomy are protected from potential inadvertent damage that could otherwise be caused by the blade 30.
  • Before the cutting catheter 28 is advanced into significant contact with the myocardium, a balloon catheter 32 may be advanced over or through the guide catheter 26. In some embodiments, as illustrated, the balloon catheter 32 may be advanced over the guide catheter 26. In some embodiments, the balloon catheter 32 includes an inflatable balloon 34 disposed at or near a distal end 36 of the balloon catheter 32. In some embodiments (not illustrated), the guide catheter 26 itself includes an inflatable balloon and thus functions as a balloon catheter. In some embodiments, the balloon catheter 32 may be advanced over the cutting catheter 28, particularly if the cutting catheter 28 includes a configuration in which the blade 30 is withdrawn, retracted, folded or otherwise temporarily rendered inert to permit the balloon catheter 32 to advance over the cutting catheter 28. The balloon catheter 32 will include an inflation lumen (not shown) that permits inflation fluid to be communicated to an interior of the inflatable balloon 34 in order to inflate the inflatable balloon 34.
  • In FIG. 2, the guide catheter 26 is illustrated as extending distally beyond the balloon catheter 32. The cutting catheter 28 is illustrated as extending distally beyond the guide catheter 26. These relative positions are intended merely to be illustrative by showing each of the components in a single drawing but are not intended to describe or suggest any potential limitation regarding the relative positions of each of these components.
  • In some embodiments, as illustrated in FIG. 3, the balloon catheter 32 (or other catheter optionally carrying an inflatable balloon, such as the guide catheter 26) may be advanced towards the apex 15 such that the inflatable balloon 34 is proximate the apex 15. The inflatable balloon 34 may be inflated to provide an air/fluid seal between the balloon catheter 32 and the heart wall such that little to no air may enter the heart and such that little or no blood may exit the heart. FIG. 4 is a cross-sectional view illustrating the position of the balloon catheter 32 relative to the heart wall 40. Once the inflatable balloon 34 has been inflated to provide an air/fluid seal between the balloon catheter 32 and the heart wall 40, and as seen in FIG. 5, the cutting catheter 28 may be advanced up to and through the heart wall 40 to form an aperture 42 that extends through the heart wall 40 and into the pericardial sac 44.
  • In some embodiments, the dual transapical procedure also includes an intercostal portion of the procedure, as outlined in FIGS. 6 through 11. FIG. 6 shows the left ventricle 14 and apex 15 relative to the pericardial sac 44 and the ribcage 46. The intercostal portion of the procedure begins, in some embodiments, by penetrating the chest wall through the ribcage 46 using a hollow needle 48. In some embodiments, the ribcage 46 is penetrated through the 4th intercostal space or the 5th intercostal space. In some embodiments, the ribcage 46 is penetrated at a relative level that is above the normal position of the apex 15.
  • As seen in FIG. 7, the hollow needle 48 has penetrated the ribcage 46 and a guidewire 50 has been advanced through the hollow needle 48 and down through the space between the pericardial sac 44 and the ribcage 46 to a position proximate (but exterior to the pericardiac sac 44) to the apex 15. Once the guidewire 50 has been placed, a malleable S-shaped catheter 52 is advanced over the guidewire 50. In some embodiments, the S-shaped catheter 52 is formed of a shape memory material such as a shape memory polymer or a shape memory metal. It can be seen that a distal end 54 of the S-shaped catheter 52 is at a position that is relatively lower than the point at which the hollow needle 48 penetrated the ribcage 46.
  • As seen in FIG. 8, a hollow needle 56 may be advanced over the guidewire 50 or through the S-shaped catheter 52 (if the guidewire 50 has already been withdrawn) and penetrates the pericardial sac 44. At this point, the distal end 54 of the S-shaped catheter 52 is proximate a distal end of either the guide catheter 26, the cutting catheter 28 and/or the balloon catheter 32. In some embodiments (not illustrated), a separate balloon catheter 58 including an inflatable balloon 60 is advanced through the guide catheter 26 to a position proximate the distal end 54 of the S-shaped catheter 52.
  • Turning now to FIG. 9, the distal end 54 of the S-shaped catheter 52 is proximate a distal end 62 of the balloon catheter 58. In some embodiments, the distal end 54 of the S-shaped catheter 52 is configured to capture the distal end 62 of the balloon catheter 58 such that the S-shaped catheter 52 may be withdrawn proximally in order to pull the distal end 62 of the balloon catheter 58. In some embodiments, magnets may be used to secure the catheters 52 and 58 together. In some embodiments, there may be a frictional fit between the two.
  • As seen in FIG. 10, the inflatable balloon 60 may be inflated such that pulling on the balloon catheter 58 causes the apex 15 of the left ventricle 14 to be lifted. In some embodiments, the inflatable balloon 60 may be configured differently and may be stronger than, for example, the inflatable balloon 34 that was used to provide an air/fluid seal. The balloon catheter 58 may be withdrawn proximally a sufficient distance to lift the apex 15 of the left ventricle 14 to a position that is aligned or substantially aligned with the initial puncture through the ribcage 46. The native position of the left ventricle 14 is shown in phantom, illustrating how the left ventricle 14 has been lifted. It will be appreciated that this method provides easy access from a position exterior the chest wall to the aortic valve 22.
  • As seen in FIG. 11, a port 70 may be advanced over the balloon catheter 58 to provide access for delivery and deployment of a replacement aortic valve (not shown in this Figure). In some embodiments, the inflatable balloon 60 may be deflated before the port 70 is advanced over the balloon catheter 58 into the left ventricle 14.
  • In some embodiments, as illustrated in FIG. 12, the port 70 may include structure that helps to secure the port 70 relative to the heart wall 40 and to prevent air from passing through port 70 into the heart and/or prevent blood from leaking out of the heart. This is particularly useful when the procedures described herein are undertaken off-pump, i.e., with a beating heart, in some embodiments, the port 70 includes an inner flange 72 and an outer flange 74. The inner flange 72 and the outer flange 74 may be resilient annular structures that help to secure the port 70 relative to the heart wall 40. In some embodiments, the inner flange 72 and the outer flange 74 may be sufficiently resilient to lay flat against the port 70 for delivery of the port 70 into the heart wall 40. In some embodiments, the port 70 includes a valve 76 such as a hemostasis valve that permits delivery through the valve 76 while preventing air and blood from leaking in either direction through the valve 76.
  • In some embodiments, access to the aortic valve 22 may be provided without the transfemoral or percutaneous portion of the procedure. In some embodiments, the steps shown in FIGS. 1-5 and 9 may be excluded. Another method of providing access to the aortic valve 22 is illustrated in FIGS. 13-18. FIG. 13 shows the left ventricle 14 and apex 15 relative to the pericardial sac 44 and the ribcage 46. The intercostal portion of the procedure begins; in some embodiments, by penetrating the chest wall through the ribcage 46 using a hollow needle 148. In some embodiments, the ribcage 46 is penetrated through the 4th intercostal space or the 5th intercostal space. In some embodiments, the ribcage 46 is penetrated at a relative level that is above the normal position of the apex 15.
  • As seen in FIG. 14, the hollow needle 148 has penetrated the ribcage 46 and a guidewire 150 has been advanced through the hollow needle 148 and down through the space between the pericardial sac 44 and the ribcage 46 to a position proximate (but exterior to the pericardiac sac 44) to the apex 15. Once the guidewire 150 has been placed, a malleable S-shaped catheter 152 is advanced over the guidewire 150. In some embodiments, the S-shaped catheter 52 is formed of a shape memory material such as a shape memory polymer or a shape memory metal. It can be seen that a distal end 154 of the S-shaped catheter 152 is at a position that is relatively lower than the point at which the hollow needle 48 penetrated the ribcage 46.
  • As seen in FIG. 15, a hollow needle 156 may be advanced over the guidewire 150 or through the S-shaped catheter 152 (if the guidewire 150 has already been withdrawn) and penetrates the pericardial sac 44. In some embodiments, a balloon catheter 158 having an inflatable balloon 160 may be advanced through the S-shaped catheter 152. As the hollow needle 156 penetrates through the pericardial sac 44 and the heart wall 40, the balloon catheter 158 may be advanced through the resulting aperture and the inflatable balloon 160 may be inflated inside the left ventricle 14 in order to provide an air/fluid seal. In some embodiments, a second inflatable balloon (not illustrated) may be disposed just outside the heart wall 40 and may be inflated to further seal against air and/or blood.
  • In some embodiments, as illustrated in FIG. 16, the inflatable balloon 160 may be inflated such that pulling on the balloon catheter 158 causes the apex 15 of the left ventricle 14 to be lifted. The balloon catheter 158 may be withdrawn proximally a sufficient distance to lift the apex 15 of the left ventricle 14 to a position that is aligned or substantially aligned with the initial puncture through the ribcage 46. The native position of the left ventricle 14 is shown in phantom, illustrating how the left ventricle 14 has been lifted. It will be appreciated that this method provides easy access from a position exterior the chest wall to the aortic valve 22.
  • As seen in FIG. 17, a port 170 may be advanced over the balloon catheter 158 to provide access for delivery and deployment of a replacement aortic valve (not shown in this Figure). In some embodiments, the inflatable balloon 160 may be deflated before the port 170 is advanced over the balloon catheter 158 into the left ventricle 14.
  • In some embodiments, as illustrated in FIG. 18, the port 170 may include structure that helps to secure the port 170 relative to the heart wall 40 and to prevent air from passing through port 170 into the heart and/or prevent blood from leaking out of the heart. This is particularly useful when the procedures described herein are undertaken off-pump, i.e., with a beating heart. In some embodiments, the port 170 includes an inner flange 172 and an outer flange 174. The inner flange 172 and the outer flange 174 may be resilient annular structures that help to secure the port 170 relative to the heart wall 40. In some embodiments, the inner flange 172 and the outer flange 174 may be sufficiently resilient to lay flat against the port 170 for delivery of the port 170 into the heart wall 40. In some embodiments, the port 170 includes a valve 176 such as a hemostasis valve that permits delivery through the valve 176 while preventing air and blood from leaking in either direction through the valve 176.
  • Once the port 70 (or 170) has been deployed, a variety of different valves, including prosthetic aortic valves, may be implanted through the port 70 (170). An illustrative but non-limiting example of a suitable prosthetic valve may be seen in FIG. 19, FIG. 19 illustrates a valve 301 that can be implanted in a variety of ways, including a minimally invasive procedure. The valve 301 includes an armature 302 and a set of leaflets 303. The armature 302 has a general cage-like structure that includes a number of ribs extending along an axis X4. The ribs include a first series of ribs 305 and a second series of ribs 306. The ribs 305, 306 may be made of a radially expandable metal. In some embodiments, the ribs 305, 306 may be formed of a shape memory material such as Nitinol.
  • The first series of ribs 305 and the second series of ribs 306 have different functions. In some embodiments, the ribs 305 form an external or anchor portion of the armature 302 that is configured to enable the location and anchorage of the valve 301 at an implantation site. The ribs 306 are configured to provide an internal or support portion of the armature 302. In some embodiments, the ribs 306 support a plurality of valve leaflets 330 provided within the set of leaflets 303.
  • In some embodiments, the ribs 305 are arranged in sets of ribs (threes or multiples of three) such that they are more readily adaptable, hi a complementary way, to the anatomy of the Valsalva's sinuses, which is the site of choice for implantation of the valve 301. The Valsalva's sinuses are the dilatations, from the overall lobed profile, which are present at the root of the aorta, hence in a physiologically distal position with respect to the aortic valve annulus.
  • In some embodiments, the structure and the configuration of the ribs 306 is, as a whole, akin to that of the ribs 305. In the case of the ribs 306, which form the internal part of the armature 302 of the valve 301, there is, however, usually the presence of just three elements that support, in a position corresponding to homologous lines of commissure (which take material form as sutures 331), on the valve leaflets 330. Essentially, the complex of ribs 306 and valve leaflets 330 is designed to form the normal structure of a biological valve prosthesis. This is a valve prosthesis which (in the form that is to be implanted with a surgical operation of a traditional type, hence of an invasive nature) has met with a wide popularity in the art.
  • In some embodiments, suitable materials used to form the leaflets 330, such as the pericardium or meningeal tissue of animal origin are described for example in EP 0 155 245 B and EP 0 133 420 B, both of which are hereby incorporated by reference herein in their entirety. In some embodiments, the valve 301 may be similar to those described in U.S. Patent Publication No. 2005/0197695, which is hereby incorporated by reference herein in its entirety.
  • Another illustrative but non-limiting example of a suitable prosthetic valve may be seen in FIG. 20, FIG. 20 illustrates a prosthetic valve 401 that can be implanted using a variety of different techniques. In some embodiments, the valve 401 may be implanted using a minimally invasive procedure such as those discussed herein. As illustrated, the valve 401 includes an armature 402 and a valve sleeve 403 that is coupled to the armature 402 and that includes three valve leaflets 403 a, 403 b and 403 c.
  • As can be seen, the armature 402 has a general cage-like structure and is generally symmetric about a principal axis X1. As shown, the armature 402 defines a lumen which operates as a flow tube or duct to accommodate the flow of blood there through. As will be readily apparent to those skilled in the art, a major characteristic of the present invention is the absence of structural elements that can extend in the lumen through which blood flows.
  • The valve sleeve 403 may be constructed according to various techniques known in the art. For example, in some embodiments, techniques for the formation of the valve leaflets, assembly of the valve sleeve and installation thereof on an armature that can be used in the context of the present disclosure are described in EP-A-0 133 420, EP-A-0 155 245 and EP-A-0 515 324 (all of which are hereby incorporated by reference). In some embodiments, the valve 401 may be similar to those described in U.S. Patent Publication No. 2006/0178740, which is hereby incorporated by reference herein in its entirety.
  • As will be understood by those of ordinary skill in the art, in operation, the valve leaflets 403 a, 403 b, 403 c are able to undergo deformation, divaricating and moving up against the armature 402 so as to enable free flow of the blood through the prosthesis. When the pressure gradient, and hence the direction of flow, of the blood through the prosthesis tends to be reversed, the valve leaflets 403 a, 403 b, 403 c then move into the position represented in FIG. 20, in which they substantially prevent the flow of the blood through the prosthesis. In some embodiments, the valve leaflets 403 a, 403 b, 403 c are made in such a way as to assume spontaneously, in the absence of external stresses, the closed configuration represented in FIG. 20.
  • The prosthetic valves described herein, such as the valve 301 and the valve 401, may be delivered in a variety of different manners. In some embodiments, a prosthetic valve may be delivered in a minimally invasive manner in which the valve is disposed on a delivery apparatus that is configured to be inserted into the patient through the port 70 (170) discussed above. Once the prosthetic valve has been appropriately positioned, the delivery apparatus can be manipulated to deploy the valve.
  • An illustrative but non-limiting example of a suitable delivery device can be seen in FIGS. 21A and 21B, which are schematic illustrations of a delivery device 501. In the illustrated embodiment, the delivery device 501 includes a carrier portion 502 for enclosing and carrying a prosthetic device (not visible in this view) and a manipulation portion 503 that couples the carrier portion 502 to a control handle 504. The control handle 504 includes several actuator members such as the sliders 505 and 506. In some embodiments, an optional third actuator member may be provided for controlling translational movement of the carrier portion 502 relative to the control handle 504. As will be appreciated, this feature permits microadjustment of the carrier portion 502 and the valve prosthesis in relation to a desired location while the control handle 504 is in a fixed location. A further optional actuator on the control handle 504 provides rotational adjustment of carrier portion 502 in relation to manipulation portion 50503 and/or control handle 4. This permits the optional placement of the valve prosthesis through at least 360 degrees of rotation.
  • The manipulation portion 503 may have more than one configuration. FIG. 21A shows a configuration in which the manipulation portion 503 is a substantially rigid bar having a length that permits positioning of the carrier portion 503, and hence the prosthetic valve disposed therein, at an aortic valve site. In some embodiments, the substantially rigid bar may have a length of about 10 centimeters. The delivery device 501 is sized and dimensioned to permit easy surgical manipulation of the entire instruction as well as the actuators on the instrument without contacting parts of the subject in a way to interfere with the users position of the valve prosthesis.
  • FIG. 21B illustrates an embodiment in which the manipulation portion 503 is an elongated, flexible catheter-like member that can be used for transvascular catherization. However, this embodiment can be used in the procedures discussed herein. In some embodiments, the catheter-like member is braided or is otherwise configured to facilitate torque transmission from the control handle 504 to the carrier portion 502 such that the operator may effect radial positioning of the carrier portion 502 during the implantation procedure.
  • As shown in FIG. 22, the carrier portion 502 includes two deployment elements 510 and 520, each of which are independently operable to allow the expansion of at least one corresponding, radially expandable portion of the valve prosthesis V. In some embodiments, the valve prosthesis V may be self-expanding or may require expansion by another device (such as, for example, balloon expansion).
  • In the illustrated embodiment, the valve prosthesis V is self-expanding, and is arranged within the carrier portion 502 such that an expandable portion IF and an expandable portion OF are each located within one of the deployment elements 510, 520. Each deployment element 510, 520 may be formed as a collar, cap or sheath. In yet a further embodiment, the elements 510, 520 are porous (or have apertures) such that blood flow is facilitated prior, during and after placement of prosthesis V. As will be appreciated, blood flows through the elements 510, 520 and over or through the prosthesis V during the placement procedure. Each deployment element 510, 520 is able to constrain the portions IF, OF in a radially contracted position, against the elastic strength of its constituent material. The portions IF, OF are able to radially expand, as a result of their characteristics of superelasticity, only when released from the deployment element 510, 520. Typically, the release of the portions IF, OF is obtained by causing an axial movement of the deployment elements 510, 520 along the main axis X2 of the carrier portion 502. In one embodiment, the operator causes this axial movement by manipulating the sliders 505 and 506, which are coupled to the deployment elements 510, 520. In some embodiments, suitable delivery devices such as the delivery device 501 may be found in U.S. Patent Publication No. 2008/0147182, which is hereby incorporated by reference herein in its entirety.
  • Another illustrative but non-limiting example of a delivery device may be seen in FIG. 23. FIG. 23 shows an prosthetic valve delivery device 700 that includes a handle 701 for manipulation by a practitioner and a holder unit 710 for a valve V to be delivered. In the illustrated embodiment, the handle 701 and the holder unit 710 are generally located at proximal and distal ends, respectively, of the device 700. In this, proximal refers to the portion of the device 700 manipulated by the practitioner while distal refer to the end of the device 700 at which the valve V is delivered.
  • In one embodiment, the valve V includes two annular end portions V1 and V2 and is arranged within the holder unit 710 at the distal delivery end of the device 700 with the annular portions V1, V2 in a radially contracted configuration. In some embodiments, the valve V is delivered by releasing the annular portion V1 first and then by causing the valve V to gradually expand (e.g. due to its elastic or superelastic nature), starting from the portion V1 and continuing to the portion V2, until expansion is compete.
  • As shown in the exploded view of FIG. 24, a shaft 706 (which may be either rigid or flexible) extends from the handle 701 to the holder unit 710 for the valve. The holder unit 710 includes an annular groove or similar recessed 709 formation adapted to receive the (proximal) annular portion V2 of the valve V in a radially contracted condition. A tubular sheath or sleeve is slidably arranged over the shaft 706. Such a sleeve (hereinafter the “inner” sleeve) includes a proximal portion 705 proximate the handle 701 as well as a distal portion 707. The inner sleeve is of a length such that it can extend axially over the shaft 706 to form with its marginal end an intermediate tubular member 770 of the holder unit 710 which surrounds the formation 709 to radially constrain and retain the annular portion V2 of the valve V located therein.
  • In some embodiments, the proximal portion 705 of the inner sheet or sleeve terminates in an annular member 750 adapted to abut against a stop member 702. When in place on the shaft 706, the stop member 702 prevents the inner sleeve from being retracted (i.e. slid back) along the axis X6 of the shaft 706 from the position shown in FIG. 7, where the intermediate member or constraint 770 of the holder unit 710 radially constrains and retains the annular portion V2 of the valve V. When the stop member 702 is removed or otherwise disengaged, the inner sleeve can be retracted along the axis X6 so that the intermediate member 770 of the holder unit releases the annular portion V2 of the valve V.
  • In one embodiment, the stop or blocking member 702 includes a fork-shaped body (e.g. of plastics material) adapted to be arranged astride the root portion of the shaft 706 between the annular member 750 and the handle 701 to prevent “backward” movement of the inner sleeve towards the handle 701.
  • A further tubular sheet or sleeve (hereinafter the “outer” sleeve) is slidably arranged over the inner sleeve 705, 707. The outer sleeve 704 includes a proximal portion having an outer threaded surface 740 to cooperate with a complementary threaded formation 730 provided at the inner surface of a tubular rotary actuation member 703 arranged around the proximal portion 704 of the outer sleeves. In an embodiment, the actuation member 703 encloses the annular member 750 of the inner sleeve. The outer sleeve 704 extends over the inner sleeve 705, 707 and terminates with a distal portion 708 including an terminal constraint or outer member 780 adapted to extend around the distal portion to form an external tubular member of the holder unit 710 adapted to radially constrain and retain the annular portion V1 of the valve V located therein.
  • In some embodiments, the threaded surface/formations 730, 740 form a “micrometric” device actuatable by rotating the actuation member 703 to produce and precisely control axial displacement of the outer sleeve along the axis X6 of the shaft 706. Such a controlled movement may take place along the axis X6 of the shaft 706 starting from an extended position, as shown in FIG. 23, where the outer member 780 of the holder unit 710 radially constrains and retains the valve V. In these embodiments, which allow such a gradual movement or retraction, the outer member 780 gradually releases first the annular portion V1 of the valve V and then the remaining portions of the valve located between the annular portion V1 and the annular portion V2, thus permitting gradual radial expansion of the valve V.
  • In one embodiment, the retraction movement produced by the “micrometric” actuation device 730, 740 actuated via the rotary member 703 is stopped when the distal marginal end of the outer member 780 is aligned with the marginal end of the intermediate member 770 which still radially constrains and retains the annular portion V2 of the valve V in the formation 709. As further described below, in that condition, the valve V is partly expanded (i.e., more or less “basket-like”) with the annular portion V1 completely (or almost completely) expanded and the annular portion V1 still contracted.
  • Starting from that position, if the stop member 702 is removed or otherwise disengaged, both the inner sleeve and the (retracted) outer sleeve mounted thereon can be slid back along the axis X6 towards the handle 701. In that way, the intermediate member 770 of the holder unit 710 releases the annular portion V2 of the valve V thus permitting valve expansion to become complete. Valve expansion is not hindered by the member 780 as this is likewise retracted towards the handle 701.
  • In an illustrative embodiment, the practitioner introduces the device 700 into the patient's body. In a particular example of aortic valve replacement, the device 700 may be placed such that the outer member 780 is located immediately distal (with respect to blood flow from the left ventricle) of the aortic annulus so that the annular portions V1 and V2 are located on opposite sides of the Valsalva sinuses.
  • One the device 700 is placed such that the outer member 780 is disposed properly at the annulus site, the rotary actuation member 730 may be actuated by rotating the rotary actuation member in such a way that cooperation of the threaded sections 730 and 740 will cause the outer sleeve 704, 708 to start gradually retracting towards the handle 701. As a result of this retraction of the outer sleeve, the outer member 780 will gradually disengage the annular portion V1 of the valve V. The annular portion V1 will thus be allowed to radially expand.
  • Gradual withdrawal of the outer sleeve 704, 708 proceeds until the outer member 780 has almost completely disengaged the valve V, while the annular formation V2 is still securely retained by the intermediate member 770 of the inner sleeve 705, 707 which maintains the annular formation V2 of the valve on the holder portion 709. This deployment mechanism of the annular formation V1 and the valve V may be controlled very precisely by the practitioner via the screw-like mechanism 730, 740 actuated by the rotary member 703. Deployment may take place in a gradual and easily controllable manner by enabling the practitioner to verify how deployment takes place.
  • In some embodiments, so long as the annular formation V2 of the valve V is still constrained within the formation 709 by the intermediate member 770, the practitioner still retains firm control of the partial (e.g., “basket-like”) expanded valve V. The practitioner will thus be able to adjust the position of the valve V both axially and radially (e.g., by rotating the valve V around its longitudinal axis). This radial adjustment allows the practitioner to ensure that radially expanding anchoring formations of the valve V are properly aligned with the Valsalva sinuses to firmly and reliably retain in place the valve V once finally delivered.
  • With the valve V retained by the device 700 almost exclusively via the intermediate member 770 acting on the annular formation V2, the blocking member 702 can be removed from the shaft 706, thus permitting the inner sleeve 705, 707 (and, if not already effected previously, the outer sleeve 704, 708) to be retracted in such a way to disengage the annular portion V2 of the valve. This movement allows the annular formation V2 (and the valve V as a whole) to become disengaged from the device 700 and thus becoming completely deployed at the implantation site. This movement can be effected by sliding the inner sleeve (and the outer sleeve) towards the handle 701.
  • In some embodiments, the valves described herein such as the valve 301 (FIG. 19) or the valve 401 (FIG. 20) may be implanted using the delivery devices 501 (FIGS. 21A-B) or 700 (FIG. 23) in a minimally invasive manner. In some embodiments, the delivery devices may be manipulated remotely using a medical robotic system. Suitable medical robotic systems are described, for example, in U.S. Pat. Nos. 6,493,608; 6,424,885 and 7,453,227, each of which are incorporated herein by reference in their entirety. Illustrative but non-limiting examples of medical robotic systems include those available from intuitive Surgical, Inc., of Sunnyvale Calif. under the da Vinci tradename.
  • Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims (7)

1. A transapical method of gaining access to an interior of a patient's heart, the method comprising steps of:
advancing a first guidewire through the ascending aorta and through the aortic valve to a location within the left ventricle;
advancing a guide catheter over the first guidewire to the location within the left ventricle;
advancing a cutting catheter over the first guidewire;
advancing a balloon catheter including an inflatable balloon over the first guide catheter;
inflating the inflatable balloon proximate the wall of the left ventricle;
penetrating the wall of the left ventricle using the cutting catheter;
accessing the interior of a patient's chest through an intercostal space that is disposed above the apex of the patient's heart;
advancing an S-shaped catheter through the intercostal space such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac;
penetrating the pericardial sac using an instrument advanced through the S-shaped catheter;
connecting a distal end of the balloon catheter to the distal end of the S-shaped catheter; and
withdrawing the S-shaped catheter to lift the apex of the heart.
2. The method of claim 1, wherein the first guidewire is advanced through the patient's vasculature from a femoral access point.
3. The method of claim 1, wherein accessing the interior of a patient's chest comprises penetrating the chest wall through an intercostal space using a hollow needle.
4. The method of claim 1, wherein the instrument used to penetrate the pericardial sac is a hollow needle.
5. The method of claim 1, further comprising advancing a port over the balloon catheter.
6. The method of claim 5, further comprising delivering a prosthetic valve through the port.
7. A transapical method of gaining access to an interior of a patient's heart, the method comprising steps of:
advancing a first hollow needle into a patient's chest through an intercostal space, the intercostal space being above the apex of the patient's heart;
advancing an S-shaped catheter through the first hollow needle such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac;
advancing a guidewire through the S-shaped catheter;
advancing a second hollow needle over the guidewire to a position proximate the pericardial sac;
penetrating the pericardial sac with the second hollow needle;
advancing a catheter bearing a cutting blade through the second hollow needle and penetrating the heart wall;
advancing a catheter including an inflatable balloon on a distal region of the catheter;
inflating the inflatable balloon; and
partially withdrawing the catheter to lift the apex of the heart to a higher position proximate the intercostal space through which the first hollow needle was advanced.
US13/478,729 2011-05-24 2012-05-23 Transapical valve replacement Abandoned US20120303048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201161489435P true 2011-05-24 2011-05-24
US13/478,729 US20120303048A1 (en) 2011-05-24 2012-05-23 Transapical valve replacement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/478,729 US20120303048A1 (en) 2011-05-24 2012-05-23 Transapical valve replacement
US15/153,475 US10058313B2 (en) 2011-05-24 2016-05-12 Transapical valve replacement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/153,475 Division US10058313B2 (en) 2011-05-24 2016-05-12 Transapical valve replacement

Publications (1)

Publication Number Publication Date
US20120303048A1 true US20120303048A1 (en) 2012-11-29

Family

ID=47219733

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/478,729 Abandoned US20120303048A1 (en) 2011-05-24 2012-05-23 Transapical valve replacement
US15/153,475 Active 2033-03-29 US10058313B2 (en) 2011-05-24 2016-05-12 Transapical valve replacement

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/153,475 Active 2033-03-29 US10058313B2 (en) 2011-05-24 2016-05-12 Transapical valve replacement

Country Status (1)

Country Link
US (2) US20120303048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140163525A1 (en) * 2012-12-10 2014-06-12 Abbott Cardiovascular Systems Inc. Balloon With Fibers for Treatment of Blood Vessels
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144690A1 (en) * 2008-05-14 2011-06-16 Onset Medical Corporation Expandable transapical sheath and method of use

Family Cites Families (293)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514131A (en) 1967-05-22 1970-05-26 Hamilton Co Luer lock
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US4011947A (en) 1975-05-22 1977-03-15 Philip Nicholas Sawyer Packaged prosthetic device
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4220151A (en) 1978-09-20 1980-09-02 Sherwood Medical Industries Inc. Disposable Luer lock syringe
US4477930A (en) 1982-09-28 1984-10-23 Mitral Medical International, Inc. Natural tissue heat valve and method of making same
US4722725A (en) 1983-04-12 1988-02-02 Interface Biomedical Laboratories, Inc. Methods for preventing the introduction of air or fluid into the body of a patient
US4684364A (en) 1983-04-12 1987-08-04 Interface Biomedical Laboratories Corporation Safety arrangement for preventing air embolism during intravenous procedures
IT1159433B (en) 1983-07-25 1987-02-25 Sorin Biomedica Spa Process and apparatus for the manufacture of valve flaps for cardiac valve prostheses and heart valve prosthesis provided with such flaps
US5387247A (en) 1983-10-25 1995-02-07 Sorin Biomedia S.P.A. Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
IT1208326B (en) 1984-03-16 1989-06-12 Sorin Biomedica Spa cardiac valve prosthesis provided with valve flaps of biological tissue
US4601706A (en) 1984-12-03 1986-07-22 Rene Aillon Central venous pressure catheter for preventing air embolism and method of making
IT1186142B (en) 1984-12-05 1987-11-18 Medinvent Sa transluminal implantation device
US5084151A (en) 1985-11-26 1992-01-28 Sorin Biomedica S.P.A. Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon
US4784644A (en) 1986-01-13 1988-11-15 Interface Biomedical Laboratories Corp. Valve, catheter and method for preventing the introduction of air into the body of a patient
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US5133845A (en) 1986-12-12 1992-07-28 Sorin Biomedica, S.P.A. Method for making prosthesis of polymeric material coated with biocompatible carbon
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
IT1210722B (en) 1987-05-11 1989-09-20 Sorin Biomedica Spa Devices for conditioning blood flows
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5057092A (en) 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen Klapprotes for implantation in the body for replacement of the natural folding and catheter for use in the implantation of such a prosthesis flap
US5181911A (en) 1991-04-22 1993-01-26 Shturman Technologies, Inc. Helical balloon perfusion angioplasty catheter
IT1245528B (en) 1991-05-06 1994-09-29 Mini Ricerca Scient Tecnolog Angioplasty catheter and method for obtaining it.
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R cardiac valvular prosthesis, especially for aortic valve replacement
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US5795325A (en) 1991-07-16 1998-08-18 Heartport, Inc. Methods and apparatus for anchoring an occluding member
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5287848A (en) 1991-09-30 1994-02-22 Anthony Cubb Easy intubator
EP0536610B1 (en) 1991-10-11 1997-09-03 ANGIOMED GmbH & Co. Medizintechnik KG Stenosis dilatation device
US5123919A (en) 1991-11-21 1992-06-23 Carbomedics, Inc. Combined prosthetic aortic heart valve and vascular graft
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5304189A (en) 1992-04-09 1994-04-19 Lafeber Company Venous valve cutter for in situ incision of venous valve leaflets
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5312393A (en) 1992-12-31 1994-05-17 Douglas Mastel Ring lighting system for microsurgery
US6125852A (en) 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
DE69412474T2 (en) 1993-04-28 1998-12-17 Focal Inc Device, product, and use on the intraluminal photothermographic shaping
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
US5445608A (en) 1993-08-16 1995-08-29 James C. Chen Method and apparatus for providing light-activated therapy
JP3566963B2 (en) 1993-10-22 2004-09-15 シメッド ライフ システムズ インコーポレイテッド Improved stent delivery apparatus and method
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5556414A (en) 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US6019790A (en) 1995-05-24 2000-02-01 St. Jude Medical, Inc. Heart valve holder having a locking collar
US5849005A (en) 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5628789A (en) 1995-09-11 1997-05-13 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US5695503A (en) 1995-09-14 1997-12-09 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
EP0851746A1 (en) 1995-09-18 1998-07-08 W.L. GORE & ASSOCIATES, INC. A delivery system for intraluminal vascular grafts
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
WO1997024989A1 (en) 1996-01-04 1997-07-17 Shelhigh, Inc. Heart valve prosthesis and method for making same
US5871489A (en) 1996-01-24 1999-02-16 S.M.T. (Medical Technologies) Ltd Surgical implement particularly useful for implanting prosthetic heart valves, valve holder particularly useful therewith and surgical method including such implement
US5772693A (en) 1996-02-09 1998-06-30 Cardiac Control Systems, Inc. Single preformed catheter configuration for a dual-chamber pacemaker system
USRE40377E1 (en) 1996-02-23 2008-06-10 Cardiovascular Technologies Llc Means and method of replacing a heart valve in a minimally invasive manner
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US6258083B1 (en) 1996-03-29 2001-07-10 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
US6019756A (en) 1996-04-05 2000-02-01 Eclipse Surgical Technologies, Inc. Laser device for transmyocardial revascularization procedures
US6090099A (en) 1996-05-24 2000-07-18 Target Therapeutics, Inc. Multi-layer distal catheter section
US5782811A (en) 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5800421A (en) 1996-06-12 1998-09-01 Lemelson; Jerome H. Medical devices using electrosensitive gels
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
AU4906497A (en) 1996-10-22 1998-05-15 Emory University Method and apparatus for endovascular venous transplantation
US6395017B1 (en) 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6030360A (en) 1996-12-30 2000-02-29 Biggs; Robert C. Steerable catheter
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6106497A (en) 1997-01-31 2000-08-22 Medical Instrument Development Laboratories System and method for preventing an air embolism in a surgical procedure
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6676682B1 (en) 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
AUPO700897A0 (en) 1997-05-26 1997-06-19 William A Cook Australia Pty Ltd A method and means of deploying a graft
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6162208A (en) 1997-09-11 2000-12-19 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
IT1296619B1 (en) 1997-12-10 1999-07-14 Sorin Biomedica Cardio Spa A method for the treatment of prosthesis having an apertured structure and related devices.
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6019778A (en) 1998-03-13 2000-02-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US5980570A (en) 1998-03-27 1999-11-09 Sulzer Carbomedics Inc. System and method for implanting an expandable medical device into a body
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US6656218B1 (en) 1998-07-24 2003-12-02 Micrus Corporation Intravascular flow modifier and reinforcement device
WO2000018448A2 (en) 1998-09-30 2000-04-06 A-Med Systems, Inc. Method and apparatus for preventing air embolisms
WO2000018303A1 (en) 1998-10-01 2000-04-06 Cardeon Corporation Minimally invasive cardiac surgery procedure
DE19857887B4 (en) 1998-12-15 2005-05-04 Markus Dr.med. Dr.disc.pol. Ferrari Anchoring support for a heart valve prosthesis
US6254609B1 (en) 1999-01-11 2001-07-03 Scimed Life Systems, Inc. Self-expanding stent delivery system with two sheaths
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac Implantable prosthetic valve by catheterization, or surgically
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
EP1253854A4 (en) 1999-03-07 2010-01-06 Discure Ltd Method and apparatus for computerized surgery
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6726712B1 (en) 1999-05-14 2004-04-27 Boston Scientific Scimed Prosthesis deployment device with translucent distal end
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
JP3358589B2 (en) 1999-06-08 2002-12-24 株式会社村田製作所 Ceramic substrate composition, green sheet and a ceramic circuit component
US6299638B1 (en) 1999-06-10 2001-10-09 Sulzer Carbomedics Inc. Method of attachment of large-bore aortic graft to an aortic valve
US6346071B1 (en) 1999-07-16 2002-02-12 World Heart Corporation Inflow conduit assembly for a ventricular assist device
US6136025A (en) 1999-07-27 2000-10-24 Barbut; Denise R. Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support
US6726651B1 (en) 1999-08-04 2004-04-27 Cardeon Corporation Method and apparatus for differentially perfusing a patient during cardiopulmonary bypass
US6689156B1 (en) 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa A device for repair or replacement valvolarecardiaca.
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
DE29919625U1 (en) 1999-11-08 2000-01-05 Lindenberg Helmut Application device for introducing stents
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin Device for replacing a heart valve percutaneously
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US20040236170A1 (en) 2000-11-15 2004-11-25 Ducksoo Kim Method for surgically joining a ventricular assist device to the cardiovascular system of a living subject using a piercing introducer assembly
US6645220B1 (en) 1999-12-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Embolic protection system and method including and embolic-capturing filter
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
DE10010073B4 (en) 2000-02-28 2005-12-22 Ferrari, Markus, Dr.med. Dr.disc.pol. Anchor for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Ferrari, Markus, Dr.med. Dr.disc.pol. Device for fastening and anchoring of cardiac valve prostheses
US7798147B2 (en) 2001-03-02 2010-09-21 Pulmonx Corporation Bronchial flow control devices with membrane seal
US6416474B1 (en) 2000-03-10 2002-07-09 Ramon Medical Technologies Ltd. Systems and methods for deploying a biosensor in conjunction with a prosthesis
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7666221B2 (en) 2000-05-01 2010-02-23 Endovascular Technologies, Inc. Lock modular graft component junctions
US6805711B2 (en) 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
US6769434B2 (en) 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US6726648B2 (en) 2000-08-14 2004-04-27 The University Of Miami Valved apical conduit with trocar for beating-heart ventricular assist device placement
US20060142848A1 (en) 2000-09-12 2006-06-29 Shlomo Gabbay Extra-anatomic aortic valve placement
DE60115821T2 (en) 2000-10-13 2006-08-31 Medtronic AVE, Inc., Santa Rosa Hydraulic stent delivery system
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US6607553B1 (en) 2000-11-17 2003-08-19 B. Braun Medical, Inc. Method for deploying a thermo-mechanically expandable stent
DE60112603T2 (en) 2000-11-21 2006-06-14 Rex Medical Lp percutaneous aortic valve
US20040093075A1 (en) 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
US6899727B2 (en) 2001-01-22 2005-05-31 Gore Enterprise Holdings, Inc. Deployment system for intraluminal devices
US20020107531A1 (en) 2001-02-06 2002-08-08 Schreck Stefan G. Method and system for tissue repair using dual catheters
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques An assembly for the introduction of a prosthetic valve in a body conduit
US6726714B2 (en) 2001-08-09 2004-04-27 Scimed Life Systems, Inc. Stent delivery system
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6981942B2 (en) 2001-11-19 2006-01-03 University Of Medicine And Dentristy Of New Jersey Temporary blood circulation assist device
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US6991646B2 (en) 2001-12-18 2006-01-31 Linvatec Biomaterials, Inc. Method and apparatus for delivering a stent into a body lumen
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US20050244337A1 (en) 2003-04-08 2005-11-03 Xingwu Wang Medical device with a marker
US6974464B2 (en) 2002-02-28 2005-12-13 3F Therapeutics, Inc. Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
CA2476207C (en) 2002-03-20 2008-06-10 Matsushita Electric Industrial Co., Ltd. Imaging system, image conversion system and image-editing device
AU2003228528A1 (en) 2002-04-16 2003-11-03 Viacor, Inc. Method and apparatus for resecting and replacing an aortic valve
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
JP3643567B2 (en) 2002-04-17 2005-04-27 コーリンメディカルテクノロジー株式会社 Augmentation index measurement device
DE10217559B4 (en) 2002-04-19 2004-02-19 Universitätsklinikum Freiburg A device for minimally invasive, intravascular Aortenklappenextraktion
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US20060241656A1 (en) 2002-06-13 2006-10-26 Starksen Niel F Delivery devices and methods for heart valve repair
CA2489434C (en) 2002-06-28 2012-02-07 Cook Incorporated Thoracic deployment device
EP1545371B1 (en) 2002-08-01 2016-04-13 Robert A. Levine Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
DE20321838U1 (en) 2002-08-13 2011-02-10 JenaValve Technology Inc., Wilmington Device for anchoring and orientation of prosthetic heart valves
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
US20040039371A1 (en) 2002-08-23 2004-02-26 Bruce Tockman Coronary vein navigator
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
ITTO20030037A1 (en) 2003-01-24 2004-07-25 Sorin Biomedica Cardio S P A Ora S Orin Biomedica An operating device for catheters.
US7155293B2 (en) 2003-01-29 2006-12-26 Cardiac Pacemakers, Inc. Medical electrical lead employing load bearing sleeve
US7077801B2 (en) 2003-02-19 2006-07-18 Corlife Gbr Methods and devices for improving cardiac output
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
EP1610728B1 (en) 2003-04-01 2011-05-25 Cook Incorporated Percutaneously deployed vascular valves
DE602004018059D1 (en) 2003-04-30 2009-01-15 Medtronic Vascular Inc Perivaskulares repair system for leaks
EP1488735B1 (en) 2003-06-17 2007-06-13 Raymond Moser Instrumented retrievable implantable device
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
EP1660164B1 (en) 2003-07-31 2009-04-29 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US20050075720A1 (en) 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US7287078B2 (en) 2003-10-31 2007-10-23 Hewlett-Packard Development Company, L.P. Restoration of lost peer-to-peer offline transaction records
US7338509B2 (en) 2003-11-06 2008-03-04 Boston Scientific Scimed, Inc. Electroactive polymer actuated sheath for implantable or insertable medical device
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US20070156225A1 (en) 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
EP2529696B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US20050137696A1 (en) 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050165480A1 (en) 2004-01-23 2005-07-28 Maybelle Jordan Endovascular treatment devices and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa cardiac valve prosthesis
AU2005231356A1 (en) 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
EP2422751A3 (en) 2004-05-05 2013-01-02 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US20050278010A1 (en) 2004-05-27 2005-12-15 Scimed Life Systems, Inc. Stent delivery system with imaging capability
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US20060004436A1 (en) 2004-07-02 2006-01-05 Amarant Paul D Stent having arcuate struts
US20090118580A1 (en) 2004-07-02 2009-05-07 Wei-Zen Sun Image-type intubation-aiding device
US7824358B2 (en) 2004-07-22 2010-11-02 Thoratec Corporation Heart pump connector
AT390096T (en) 2004-07-28 2008-04-15 Cordis Corp Insertion device having a low deployment force
US7651525B2 (en) 2004-08-05 2010-01-26 Medtronic Vascular, Inc. Intraluminal stent assembly and method of deploying the same
US20060135962A1 (en) 2004-09-09 2006-06-22 Kick George F Expandable trans-septal sheath
US20060063199A1 (en) 2004-09-21 2006-03-23 Elgebaly Salwa A Diagnostic marker
EP1804725A1 (en) 2004-10-02 2007-07-11 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060085060A1 (en) 2004-10-15 2006-04-20 Campbell Louis A Methods and apparatus for coupling an allograft tissue valve and graft
EP1807142A1 (en) 2004-11-01 2007-07-18 Applied Medical Resources Corporation Longitudinal sheath enforcement
US20060100639A1 (en) 2004-11-05 2006-05-11 G&L Consulting, Llc System and method for the treatment of reperfusion injury
KR20070094888A (en) 2004-11-19 2007-09-27 메드트로닉 인코포레이티드 Method and apparatus for treatment of cardiac valves
US20070219630A1 (en) 2004-11-24 2007-09-20 Xi Chu Devices and Methods for Beating Heart Cardiac Surgeries
WO2006073628A1 (en) 2004-12-01 2006-07-13 Cook Incorporated Sensing delivery system for intraluminal medical devices
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
US20070032850A1 (en) 2004-12-16 2007-02-08 Carlos Ruiz Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath
US20060142838A1 (en) 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
DE102005003632A1 (en) 2005-01-20 2006-08-17 Ferrari, Markus, Dr.med. Dr.disc.pol. Catheter for trans-vascular implantation of prosthetic heart valves
WO2006086135A2 (en) 2005-01-21 2006-08-17 Innovia, Llc Stent-valve and deployment catheter for use therewith
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl Prosthetic heart valve
WO2006089517A1 (en) 2005-02-25 2006-08-31 Ernst-Peter Strecker Implanting a self-expanding stent by means of hydraulic power
US20060195186A1 (en) 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
WO2006119495A2 (en) 2005-05-03 2006-11-09 Hansen Medical, Inc. Robotic catheter system
US20070118207A1 (en) 2005-05-04 2007-05-24 Aga Medical Corporation System for controlled delivery of stents and grafts
WO2006127756A2 (en) 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US7799052B2 (en) 2005-06-02 2010-09-21 Codman & Shurtleff, Inc. Stretch resistant embolic coil delivery system with mechanical release mechanism
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20070162111A1 (en) 2005-07-06 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
US20070043420A1 (en) 2005-08-17 2007-02-22 Medtronic Vascular, Inc. Apparatus and method for stent-graft release using a cap
US8337446B2 (en) 2005-09-02 2012-12-25 Pokorney James L Prosthetic heart valve housing
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington A device for implantation and fixation of prosthetic heart valves
US7722580B2 (en) 2005-11-02 2010-05-25 Navilyst Medical, Inc. Percutaneous access port
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
EP1955643B1 (en) 2005-12-01 2019-01-09 Olympus Corporation Guiding long medical member and long medical device
CA2668988A1 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
MX2008008068A (en) 2005-12-22 2008-09-10 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery.
US8758294B2 (en) 2005-12-27 2014-06-24 Acist Medical Systems, Inc. Balloon inflation device
US20070162100A1 (en) 2006-01-10 2007-07-12 Shlomo Gabbay System and method for loading implanter with prosthesis
US9717468B2 (en) 2006-01-10 2017-08-01 Mediguide Ltd. System and method for positioning an artificial heart valve at the position of a malfunctioning valve of a heart through a percutaneous route
US20070265702A1 (en) 2006-01-27 2007-11-15 Lattouf Omar M Percutaneous treatment for heart valves
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8518098B2 (en) 2006-02-21 2013-08-27 Cook Medical Technologies Llc Split sheath deployment system
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7635386B1 (en) 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
US20080021546A1 (en) 2006-07-18 2008-01-24 Tim Patz System for deploying balloon-expandable heart valves
US20080097595A1 (en) 2006-08-22 2008-04-24 Shlomo Gabbay Intraventricular cardiac prosthesis
ES2429220T3 (en) 2006-09-08 2013-11-13 Edwards Lifesciences Corporation Apparatus for treating a defective heart valve
CA2664662A1 (en) 2006-09-28 2008-04-03 Heart Leaflet Technologies, Inc. Delivery tool for percutaneous delivery of a prosthesis
CA2671754C (en) 2006-12-06 2015-08-18 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US20080147181A1 (en) 2006-12-19 2008-06-19 Sorin Biomedica Cardio S.R.L. Device for in situ axial and radial positioning of cardiac valve prostheses
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
EP1935377B1 (en) 2006-12-19 2010-03-24 Sorin Biomedica Cardio S.R.L. Instrument for in situ deployment of cardiac valve prostheses
WO2008092133A2 (en) 2007-01-25 2008-07-31 Neurovista Corporation Methods and systems for measuring a subject's susceptibility to a seizure
EP2109417B1 (en) 2007-02-05 2013-11-06 Boston Scientific Limited Percutaneous valve and delivery system
US8092472B2 (en) 2007-02-22 2012-01-10 Cerier Jeffrey C Methods and devices for endoscopic treatment of organs
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
EP2155115B1 (en) 2007-04-13 2018-09-05 JenaValve Technology, Inc. Medical device for treating a heart valve insufficiency or stenosis
AU2008250552B2 (en) 2007-05-15 2012-03-08 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
EP2160150B1 (en) 2007-06-26 2011-10-26 St. Jude Medical, Inc. Apparatus for implanting collapsible/expandable prosthetic heart valves
EP2399527A1 (en) 2007-09-07 2011-12-28 Sorin Biomedica Cardio S.r.l. Prosthetic valve delivery system including retrograde/antegrade approach
ES2362950T3 (en) 2007-09-07 2011-07-15 Mayo Foundation For Medical Education And Research Supply system filled with liquid for in situ prosthetic heart valves deployment.
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US20090105794A1 (en) 2007-09-07 2009-04-23 Ziarno W Andrew Microprocessor controlled delivery system for cardiac valve prosthesis
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
FR2925838A1 (en) 2007-12-28 2009-07-03 Univ Franche Comte Etablisseme Ancillary automates insertion and fixing by clamping of an annular body, in particular a prosthesis on a resilient annular volume
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
CA2714605C (en) 2008-02-29 2017-05-02 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
US8353953B2 (en) 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
US8403982B2 (en) 2009-05-13 2013-03-26 Sorin Group Italia S.R.L. Device for the in situ delivery of heart valves
US9168105B2 (en) 2009-05-13 2015-10-27 Sorin Group Italia S.R.L. Device for surgical interventions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144690A1 (en) * 2008-05-14 2011-06-16 Onset Medical Corporation Expandable transapical sheath and method of use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140163525A1 (en) * 2012-12-10 2014-06-12 Abbott Cardiovascular Systems Inc. Balloon With Fibers for Treatment of Blood Vessels
US9409000B2 (en) * 2012-12-10 2016-08-09 Abbott Cardiovascular Systems Inc. Balloon with fibers for treatment of blood vessels
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors

Also Published As

Publication number Publication date
US20160256143A1 (en) 2016-09-08
US10058313B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
AU2010315030B2 (en) Valve prosthesis
AU2009219005B2 (en) Expandable member for deploying a prosthetic device
AU2005234793B2 (en) Implantable prosthetic valve
US8926693B2 (en) Heart valve delivery catheter with safety button
US8157853B2 (en) Delivery systems and methods of implantation for prosthetic heart valves
US9572664B2 (en) Methods and apparatuses for deploying minimally-invasive heart valves
US8986361B2 (en) Delivery system for deployment of medical devices
US8454683B2 (en) Annuloplasty device having a helical anchor and methods for its use
EP2222248B1 (en) Cardiac valve downsizing device
CN102772273B (en) Replacement valve for use in the human body
EP1951166B1 (en) Transapical heart valve delivery syste
EP2278944B1 (en) Prosthetic mitral valve
US9375210B2 (en) Apical puncture access and closure system
US8187217B2 (en) TMR shunt
US20050203549A1 (en) Methods and apparatus for off pump aortic valve replacement with a valve prosthesis
CA2360185C (en) Methods and devices for implanting cardiac valves
US7442207B2 (en) Device, system, and method for treating cardiac valve regurgitation
US8740976B2 (en) Transcatheter prosthetic heart valve delivery system with flush report
US20080082165A1 (en) Delivery Tool For Percutaneous Delivery Of A Prosthesis
US20060074485A1 (en) Method and apparatus for percutaneous valve repair
US6821297B2 (en) Artificial heart valve, implantation instrument and method therefor
EP2536357B1 (en) Catheter assembly with valve crimping accessories
US9289295B2 (en) Tissue restraining devices and methods of use
US20080097595A1 (en) Intraventricular cardiac prosthesis
US20140018912A1 (en) Method and Apparatus Useful for Transcatheter Aortic Valve Implantation

Legal Events

Date Code Title Description
AS Assignment

Owner name: SORIN BIOMEDICA CARDIO S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANASSE, ERIC;REEL/FRAME:028262/0779

Effective date: 20120523

AS Assignment

Owner name: SORIN GROUP ITALIA S.R.L., ITALY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER PREVIOUSLY RECORDED ON REEL 029557 FRAME 0162. ASSIGNOR(S) HEREBY CONFIRMS THE APPLICATION NUMBER IS 13/478,279.;ASSIGNOR:SORIN BIOMEDICA CARDIO S.R.L.;REEL/FRAME:029626/0213

Effective date: 20121205

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION