US20110026062A1 - Information processing apparatus, method for controlling information processing apparatus, and storage medium - Google Patents
Information processing apparatus, method for controlling information processing apparatus, and storage medium Download PDFInfo
- Publication number
- US20110026062A1 US20110026062A1 US12/837,891 US83789110A US2011026062A1 US 20110026062 A1 US20110026062 A1 US 20110026062A1 US 83789110 A US83789110 A US 83789110A US 2011026062 A1 US2011026062 A1 US 2011026062A1
- Authority
- US
- United States
- Prior art keywords
- processing
- mode
- processing apparatus
- information processing
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3206—Monitoring of events, devices or parameters that trigger a change in power modality
- G06F1/3228—Monitoring task completion, e.g. by use of idle timers, stop commands or wait commands
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0751—Error or fault detection not based on redundancy
- G06F11/0754—Error or fault detection not based on redundancy by exceeding limits
- G06F11/0757—Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00885—Power supply means, e.g. arrangements for the control of power supply to the apparatus or components thereof
- H04N1/00888—Control thereof
- H04N1/00896—Control thereof using a low-power mode, e.g. standby
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/24—Resetting means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/325—Power saving in peripheral device
- G06F1/3284—Power saving in printer
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1415—Saving, restoring, recovering or retrying at system level
- G06F11/1417—Boot up procedures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1415—Saving, restoring, recovering or retrying at system level
- G06F11/1438—Restarting or rejuvenating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1415—Saving, restoring, recovering or retrying at system level
- G06F11/1441—Resetting or repowering
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
- G06F9/4403—Processor initialisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
- G06F9/4418—Suspend and resume; Hibernate and awake
Definitions
- the present invention relates to an information processing apparatus, a method for controlling the information processing apparatus, and a control program.
- the shift processing includes, for example, startup processing, shutdown processing, power saving shift/return processing, and the like (details of each processing will be described below in exemplary embodiments).
- a mode of startup processing may include, for example, a normal mode, an initialization mode, and the like (details of each mode will be described below in exemplary embodiments).
- a mode of shutdown processing may include, for example, a normal mode, a complete erasure mode, a recovery mode, and the like (details of each mode will be described below in exemplary embodiments).
- a mode of power saving shift/return processing may include, for example, a normal mode, a temperature regulation mode, a calibration mode, and the like (details of each mode will be described below in exemplary embodiment).
- one monitoring time is constantly used.
- suitable monitoring time cannot be determined corresponding to each mode. For example, if the monitoring time is shortened in accordance with a mode whose shifting time is short and when shift processing is executed in a mode whose shifting time is long, even when the shift processing is normally executed, the shift processing is executed again. Further, for example, if the monitoring time is lengthened in accordance with the mode whose shifting time is long and when shift processing is executed in the mode whose shifting time is short, if the shift processing is stopped on the way, time until the shift processing is executed again may lengthen.
- the present invention is directed to an information processing apparatus in which suitable monitoring time is determined corresponding to a mode of shift processing and the shift processing is executed again when the shift processing is not completed within the monitoring time.
- an information processing apparatus includes a selection unit configured to select a mode of processing to be executed when a power supply state of the information processing apparatus is shifted from a first power supply state to a second power supply state, a determination unit configured to determine time necessary for executing the processing based on the mode selected by the selection unit, an execution unit configured to execute the processing in the mode selected by the selection unit, and a control unit configured to control the execution unit to execute the processing again when the processing has not been completed within the time determined by the determination unit.
- FIG. 1 is a block diagram illustrating a configuration of an image forming apparatus.
- FIG. 2 is a block diagram illustrating a configuration of a controller.
- FIGS. 3A to 3C are tables illustrating correspondence between each mode of shift processing and monitoring time of the shift processing.
- FIG. 4 is a flowchart illustrating power control on an image forming apparatus according to a first exemplary embodiment.
- FIG. 5 is a flowchart illustrating power control on an image forming apparatus according to a second exemplary embodiment.
- FIG. 6 is a flowchart illustrating power control on an image forming apparatus according to a third exemplary embodiment.
- FIG. 1 is a block diagram illustrating a configuration of an image forming apparatus according to a first exemplary embodiment.
- an image forming apparatus will be described as an example of an information processing apparatus.
- the information processing apparatus may also be an apparatus other than the image forming apparatus.
- An image forming apparatus 1 is connected with a power source device 8 .
- the image forming apparatus 1 can execute input and output of a digital image from a computer 10 via a local area network (LAN) 9 , issue of a job, a command to devices, and the like.
- LAN local area network
- the image forming apparatus 1 can execute various jobs. An example will be described below.
- the image forming apparatus 1 can execute a copy function of recording an image read from a scanner device 2 on a hard disk drive (HDD) 6 and simultaneously executing printing using a printer device 4 . Further, the image forming apparatus 1 can execute an image transmission function of transmitting an image read from the scanner device 2 to the computer 10 via the LAN 9 .
- HDD hard disk drive
- the image forming apparatus 1 can execute an image storage function of recording an image read from the scanner device 2 on the HDD 6 , and executing image transmission and image printing as needed. Still furthermore, the image forming apparatus 1 can execute an image print function of analyzing, for example, a page description language transmitted from the computer 10 and printing it by the printer device 4 .
- the scanner device 2 optically reads an image from a document to convert it into a digital image.
- the scanner device 2 includes a document feeding unit 21 capable of automatically successively changing a bundle of documents and a scanner unit 22 capable of optically scanning the document and converting scanned data into a digital image.
- the converted image data is transmitted to a controller 3 .
- the controller 3 includes a hardware resource which will be described below and issues a command to each stored module, thereby executing a job on the image forming apparatus. As described below, the controller 3 executes control to shift a power supply state from the power source device 8 to any power mode of a plurality of power modes. Further, the controller 3 executes predetermined restart processing to the power source device 8 by turning on power again from the power source device 8 .
- the printer device 4 outputs a digital image to a paper device.
- the printer device 4 includes a marking unit 41 configured to print image data on fed paper, a paper feed unit 42 capable of successively feeding from a bundle of paper sheets one by one, and a paper discharge unit 43 configured to discharge the paper after printing.
- An operation unit 5 receives an operation to the image forming apparatus to display a state of the image forming apparatus.
- the HDD 6 stores a digital image, a control program, and the like.
- a facsimile (FAX) device 7 executes transmission or reception of a digital image to and from a telephone line or the like.
- the power source device 8 supplies power to the controller 3 , the scanner device 2 , and the printer device 4 .
- FIG. 2 is a block diagram illustrating a detail configuration of the controller 3 illustrated in FIG. 1 .
- a hardware resource is simplified and illustrated.
- a central processing unit (CPU) 201 and a CPU 221 include CPU peripheral hardware such as a chip set, a bus bridge, and a clock generator in large numbers. However, these are omitted.
- the controller 3 includes a main board 200 and a sub board 220 .
- the main board 200 is a general purpose CPU system.
- the main board 200 is externally connected with a universal serial bus (USB) memory 209 , the operation unit 5 , the HDD 6 , the power source device 8 , and the like.
- USB universal serial bus
- the main board 200 includes the CPU 201 for controlling the whole board, a read only memory (ROM) 202 including a boot program, and a memory 203 to be used by the CPU as a work memory. Further, the main board 200 includes a bus controller 204 having a bridge function with an external bus, a nonvolatile memory 205 which is not erased when a power source is intercepted, and a disk controller 206 for controlling a storage device.
- ROM read only memory
- the main board 200 includes a bus controller 204 having a bridge function with an external bus, a nonvolatile memory 205 which is not erased when a power source is intercepted, and a disk controller 206 for controlling a storage device.
- the main board 200 includes a flash disk (solid state disk (SSD) etc.) 207 which is a storage device configured by a semiconductor device and having a relatively small capacity, a USB controller 208 capable of controlling the USB, and the like. Still furthermore, the main board 200 includes a power source control unit 210 configured to control power supply from the power source device 8 to each component of the image forming apparatus 1 , a power source switch 211 for inputting an instruction to turn on/off the power source from a user, and a timer 212 to be used for power source control.
- SSD solid state disk
- the sub board 220 includes a relatively small general purpose CPU system and image processing hardware. Each of the scanner device 2 and the printer device 4 outside executes transmission and reception of digital image data via a device controller 226 .
- the FAX device 7 is directly controlled by the CPU 221 .
- the sub board 220 includes the CPU 221 for controlling the whole board, the memory 203 to be used by the CPU 221 as a work memory, and a bus controller 224 having a bridge function with an external bus. Further, the sub board 220 includes a nonvolatile memory 225 which is not erased when a power source is intercepted, the device controller 226 , and an image processing processor 227 for executing real time digital image processing.
- FIGS. 3A to 3C are tables illustrating correspondence between each mode of shift processing and monitoring time of the shift processing. These tables are stored in the nonvolatile memory 205 .
- FIG. 3A is a table illustrating correspondence between each mode of startup processing and monitoring time of the startup processing when a power source is turned on.
- a normal mode is a mode of startup processing when initialization processing needed in first startup of the image forming apparatus 1 is already completed.
- An initialization mode is a mode of startup processing when initialization processing needed in the first startup of the image forming apparatus 1 is not still completed.
- the initialization mode when startup processing is executed, it is necessary for the image forming apparatus 1 to execute initialization processing in addition to the processing in the normal mode. Accordingly, since time of startup processing is longer in the initialization mode than in the normal mode, monitoring time of startup processing is also determined with time longer in the initialization mode than in the normal mode.
- FIG. 3B is a table illustrating correspondence between each mode of shutdown processing and monitoring time of the shutdown processing.
- a normal mode is a mode of shutdown processing when complete erasure of data and recovery of mirroring are not executed on the HDD 6 .
- a complete erasure mode is a mode of shutdown processing when complete erasure of data (processing for overwriting other data when data is erased) is executed on the HDD 6 .
- a recovery mode is a mode of shutdown processing when recovery of mirroring (processing, when one HDD is replaced by mirroring, for writing data on another HDD on the HDD) is executed on the HDD 6 .
- FIG. 3C is a table illustrating correspondence between each mode of power saving shift/return processing and monitoring time of power saving shift/return processing when shifting to or returning from the power saving.
- a normal mode is a mode of power saving shift/return processing when temperature regulation and calibration are not executed on the printer device 4 in executing the power saving shift/return processing.
- a temperature regulation mode is a mode of the power saving shift/return when temperature regulation is executed on the printer device 4 in executing the power saving shift/return processing.
- a calibration mode is a mode of the power saving shift/return when calibration is executed on the printer device 4 in executing the power saving shift/return processing.
- the temperature regulation and the calibration mode when the power saving shift/return processing is executed, the temperature regulation and the calibration are needed to be executed on the printer device 4 in addition to the processing in the normal mode. Accordingly, since time of the power saving shift/return processing is longer in the temperature regulation mode and the calibration than in the normal mode, monitoring time of the power saving shift/return processing is also determined with time longer in the temperature regulation mode and the calibration mode than in the normal mode.
- power control when a power source is turned on in other words, power control from when the power source is turned off (first power supply state) to when the power source is turned on (second power supply state) in the image forming apparatus will be described.
- FIG. 4 is a flowchart illustrating power control on the image forming apparatus according to the first exemplary embodiment. Each step indicated in the flowchart is realized by causing the CPU 201 to load a control program stored in the ROM 202 into the memory 203 to execute it. Further, a part of the steps indicated in the flowchart is realized by causing the power source control unit 210 to execute it under the control of the CPU 201 .
- step S 401 the power source control unit 210 detects that the power source switch 211 has been turned on.
- step S 401 the power source on the image forming apparatus 1 is turned on.
- step S 402 the CPU 201 accesses the nonvolatile memory 205 to select a mode of startup processing.
- the mode of startup processing is selected by confirming whether the startup processing on the image forming apparatus 1 is the first time.
- the nonvolatile memory 205 stores initialization information indicating that initialization processing, which is needed in the first startup of the image forming apparatus 1 when the image forming apparatus 1 is manufactured, is not still completed. Then, the initialization information is erased when initialization processing, which is needed in the first startup of the image forming apparatus 1 , is normally completed.
- the initialization mode is selected as the mode of startup processing.
- the normal mode is selected as the mode of startup processing.
- step S 403 the CPU 201 accesses the nonvolatile memory 205 and determines monitoring time corresponding to the mode selected in step S 402 by referring to the table illustrated in FIG. 3A .
- the determined monitoring time is set to the timer 212 .
- the timer 212 starts subtraction of time from the set monitoring time.
- the determined monitoring time may be set to the timer 212 .
- the timer 212 may also start addition of time from zero.
- step S 404 the CPU 201 starts the startup processing of the image forming apparatus 1 in the mode selected in step S 402 .
- the CPU 201 executes startup of various types of software to be used in the image forming apparatus 1 , startup of various types of hardware included in the image forming apparatus 1 , and the like.
- the CPU 201 executes initialization processing (e.g., setup of software and hardware to be used in the image forming apparatus 1 ) which is needed in the first startup of the image forming apparatus 1 .
- step S 405 the power source control unit 210 determines whether the startup processing started in step S 404 has been completed. When it is determined that the startup processing has been completed (YES in step S 405 ), the processing ends. When it is determined that the startup processing has not been completed (NO in step S 405 ), the processing proceeds to step S 406 .
- step S 406 the power source control unit 210 determines whether monitoring time determined in step S 403 has elapsed. When it is determined that the monitoring time has elapsed (YES in step S 406 ) (in other words, when it is determined that startup processing has not been completed within the monitoring time), the processing proceeds to step S 407 .
- step S 406 When it is determined that the monitoring time has not elapsed (NO in step S 406 ), the processing returns to step S 405 . Whenever it is determined that the monitoring time has elapsed in step S 406 , a frequency thereof may be counted. When the frequency becomes equal to or larger than a predetermined frequency, display of an error is output on an operation screen on the operation unit 5 and then, the processing may end.
- step S 407 the power source control unit 210 turns on the power source again on the image forming apparatus 1 .
- Turning on the power source again in step S 407 may include turning off and on of the power source on the image forming apparatus 1 .
- the processing returns to step S 404 .
- suitable monitoring time can be determined corresponding to a mode of startup processing when a power source on an information processing apparatus is turned on, and the startup processing can be executed again when the startup processing has not been completed within the monitoring time.
- monitoring time is determined so as to be made short.
- monitoring time is determined so as to be made long. Thus, this can prevent startup processing from being executed again regardless of that the startup processing is normally executed.
- power control when a power source is turned off in other words, power control from when the power source is turned on (first power supply state) to when the power source is turned off (second power supply state) on an image forming apparatus will be described.
- FIG. 5 is a flowchart illustrating power control on the image forming apparatus according to the second exemplary embodiment. Each step indicated in the flowchart is realized by causing the CPU 201 to load a control program stored in the ROM 202 into the memory 203 to execute it. Further, a part of the steps indicated in the flowchart is realized by causing the power source control unit 210 to execute it under the control of the CPU 201 .
- step S 501 the CPU 201 detects that the power source switch 211 has been turned off.
- step S 502 the CPU 201 accesses the nonvolatile memory 205 to select a mode of shutdown processing.
- the mode of shutdown processing is selected by confirming whether complete erasure of data and recovery of mirroring are set (or executed) when the shutdown processing is executed.
- the nonvolatile memory 205 stores complete erasure information indicating that effect. Then, the complete erasure information is erased when complete erasure of data has been cancelled (or completed).
- the nonvolatile memory 205 When recovery of mirroring is set (or executed), the nonvolatile memory 205 stores recovery information indicating that effect. Then, the recovery information is erased when recovery of mirroring has been cancelled (or completed).
- the nonvolatile memory 205 stores the complete erasure information, in other words, when complete erasure of data is set (or executed) in executing the shutdown processing, the complete erasure mode is selected as the mode of shutdown processing.
- the recovery mode is selected as the mode of shutdown processing.
- the normal mode is selected as the mode of shutdown processing.
- step S 503 the CPU 201 accesses the nonvolatile memory 205 and determines monitoring time corresponding to the mode selected in step S 502 by referring to the table illustrated in FIG. 3B .
- the determined monitoring time is set to the timer 212 .
- the timer 212 starts subtraction of time from the set monitoring time.
- the determined monitoring time may be set to the timer 212 .
- the timer 212 may also start addition of time from zero.
- step S 504 the CPU 201 starts the shutdown processing of the image forming apparatus 1 in the mode selected in step S 502 .
- the CPU 201 executes storage of various settings of the image forming apparatus 1 , termination of various types of software used in the image forming apparatus 1 , and termination of various types of hardware included in the image forming apparatus 1 .
- the CPU 201 executes complete erasure of data on the HDD 6 .
- the shutdown processing in the recovery mode in addition to shutdown processing in the normal mode, the CPU 201 executes recovery of mirroring on the HDD 6 .
- step S 505 the power source control unit 210 determines whether the shutdown processing started in step S 504 has been completed. When it is determined that the shutdown processing has been completed (YES in step S 505 ), the power source on the image forming apparatus 1 is turned off. Then, the processing ends. When it is determined that shutdown processing has not been completed (NO in step S 505 ), the processing proceeds to step S 506 .
- step S 506 the power source control unit 210 determines whether monitoring time determined in step S 503 has elapsed. When it is determined that the monitoring time has elapsed (YES in step S 506 ) (in other words, when it is determined that the shutdown processing has not been completed within the monitoring time), the processing proceeds to step S 507 . When it is determined that the monitoring time has not elapsed (NO in step S 506 ), the processing returns to step S 505 .
- step S 506 Whenever it is determined that the monitoring time has elapsed in step S 506 , a frequency thereof may be counted. When the frequency becomes equal to or larger than a predetermined frequency, display of an error is output on the operation screen on the operation unit 5 and then, the processing may end. Further, in step S 506 , when it is determined that the monitoring time has elapsed, the power source on the image forming apparatus 1 is turned off. Then, the processing may end.
- step S 506 when it is determined that the monitoring time has elapsed (in other words, when it is determined that the shutdown processing has not been completed within the monitoring time), then in step S 507 , the power source control unit 210 restarts the image forming apparatus 1 .
- Restart of the apparatus in step S 507 may include turning off and on of the power source on the image forming apparatus 1 and the startup processing of the image forming apparatus 1 .
- the processing returns to step S 504 .
- suitable monitoring time can be determined corresponding to a mode of shutdown processing when a power source on an information processing apparatus is turned off, and shutdown processing can be executed again when the shutdown processing has not been completed within the monitoring time.
- monitoring time is determined so as to be made short.
- the shutdown processing can be swiftly executed again.
- monitoring time is determined so as to be made long. Thus, this can prevent shutdown processing from being executed again regardless of that the shutdown processing is normally executed.
- power control in shifting to power saving in an image forming apparatus in other words, power control from a normal operation (first power supply state) to a power saving operation (second power supply state) will be described. Further, in the present exemplary embodiment, power control in returning from power saving in the image forming apparatus, in other words, power control from the power saving operation (first power supply state) to the normal operation (second power supply state) will be described.
- FIG. 6 is a flowchart illustrating power control on the image forming apparatus according to the third exemplary embodiment. Each step indicated in the flowchart is realized by causing the CPU 201 to load a control program stored in the ROM 202 into the memory 203 to execute it. Further, a part of the steps indicated in the flowchart is realized by causing the power source control unit 210 to execute it under the control of the CPU 201 .
- power saving shift/return processing refers to power saving shift processing or power saving return processing.
- the power saving shift processing is processing in which the power supply state of the image forming apparatus 1 is shifted from the normal state to a power saving state.
- the power saving return processing is processing in which the power supply state of the image forming apparatus 1 is shifted from the power saving state to the normal state.
- the normal state is a state in which electric power is supplied to the all components of the image forming apparatus 1 .
- the power saving state is a state in which electric power is supplied to some components of the image forming apparatus 1 and is not supplied to components other than that.
- some components of the image forming apparatus 1 include at least the power source control unit 210 and the timer 212 .
- step S 601 the CPU 201 detects an instruction to shift to or return from the power saving state.
- the instruction to shift to or return from the power saving state is detected when a power saving shift/return button on the operation unit 5 has been pressed, or predetermined time has elapsed from input of a job.
- step S 602 the CPU 201 accesses the nonvolatile memory 205 to select a mode of power saving shift/return processing.
- the mode of power saving shift/return processing is selected by confirming whether temperature regulation and calibration are set (or executed) when the power saving shift/return processing is executed.
- the nonvolatile memory 205 stores temperature regulation information indicating that effect. Then, the temperature regulation information is erased when the temperature regulation has been cancelled (or completed).
- the nonvolatile memory 205 stores calibration information indicating that effect. Then, the calibration information is erased when the calibration has been cancelled (or completed).
- the temperature regulation mode is selected as the mode of power saving shift/return processing.
- the calibration mode is selected as the mode of power saving shift/return processing.
- the nonvolatile memory 205 does not store the temperature regulation information and the calibration information, in other words, when the temperature regulation and the calibration are not set (or executed) in executing the power saving shift/return processing, the normal mode is selected as the mode of power saving shift/return processing.
- step S 603 the CPU 201 accesses the nonvolatile memory 205 and determines monitoring time corresponding to the mode selected in step S 602 by referring to the table illustrated in FIG. 3C .
- the determined monitoring time is set to the timer 212 .
- the timer 212 starts subtraction of time from the set monitoring time.
- the determined monitoring time may be set to the timer 212 .
- the timer 212 may also start addition of time from zero.
- step S 604 the CPU 201 starts the power saving shift/return processing on the image forming apparatus 1 in the mode selected in step S 602 .
- the power saving shift/return processing in the normal mode storage/reading of various types of data on the image forming apparatus 1 , stop/restart of power supply to some components of the image forming apparatus 1 , and the like are executed.
- the power saving shift/return processing in the temperature regulation mode in addition to the power saving shift/return processing in the normal mode, the temperature regulation or the like on the printer device 4 is executed.
- the power saving shift/return processing in the calibration mode in addition to the power saving shift/return processing in the normal mode, the calibration or the like on the printer device 4 is executed.
- step S 605 the power source control unit 210 determines whether the power saving shift/return processing started in step S 604 has been completed. When it is determined that the power saving shift/return processing has been completed (YES in step S 605 ), the processing ends. When it is determined that the power saving shift/return processing has not been completed (NO in step S 605 ), the processing proceeds to step S 606 .
- step S 605 when it is determined that the power saving shift/return processing has not been completed, then in step S 606 , the power source control unit 210 determines whether monitoring time determined in step S 603 has elapsed. When it is determined that the monitoring time has elapsed (YES in step S 606 ) (in other words, when it is determined that the power saving shift/return processing has not been completed within the monitoring time), the processing proceeds to step S 607 . When it is determined that the monitoring time has not elapsed (NO in step S 606 ), the processing returns to step S 605 .
- step S 606 whenever it is determined that the monitoring time has elapsed, a frequency thereof may be counted. When the frequency becomes equal to or larger than a predetermined frequency, display of an error is output on the operation screen on the operation unit 5 and the processing may end.
- step S 606 when it is determined that the monitoring time has elapsed (in other words, when it is determined that the power saving shift/return processing has not been completed within the monitoring time), in step S 607 , the power source control unit 210 restarts the image forming apparatus 1 .
- Restart of the apparatus in step S 607 may include turning off and on of the power source on the image forming apparatus 1 and the startup processing of the image forming apparatus 1 .
- the processing returns to step S 604 .
- the processing in step S 604 may be omitted.
- suitable monitoring time can be determined corresponding to a mode of power saving shift/return processing in executing power saving shift/return, and the power saving shift/return processing can be executed again when the power saving shift/return processing has not been completed within the monitoring time.
- monitoring time is determined so as to be made long.
- this can prevent power saving shift/return processing from being executed again regardless of that the power saving shift/return processing is normally executed.
- aspects of the present invention can also be realized by a computer of a system or apparatus (or devices such as a CPU or MPU) that reads out and executes a program recorded on a memory device to perform the functions of the above-described embodiment(s), and by a method, the steps of which are performed by a computer of a system or apparatus by, for example, reading out and executing a program recorded on a memory device to perform the functions of the above-described embodiment(s).
- the program is provided to the computer for example via a network or from a recording medium of various types serving as the memory device (e.g., computer-readable medium).
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Facsimiles In General (AREA)
- Power Sources (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/185,794 US20140168689A1 (en) | 2009-07-31 | 2014-02-20 | Information processing apparatus, method for controlling information processing apparatus, and storage medium |
US14/284,226 US9360912B2 (en) | 2009-07-31 | 2014-05-21 | Shutdown processing mode with forcible power off |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-178770 | 2009-07-31 | ||
JP2009178770A JP5460167B2 (ja) | 2009-07-31 | 2009-07-31 | 情報処理装置、情報処理装置の制御方法及び制御プログラム |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/185,794 Division US20140168689A1 (en) | 2009-07-31 | 2014-02-20 | Information processing apparatus, method for controlling information processing apparatus, and storage medium |
US14/284,226 Division US9360912B2 (en) | 2009-07-31 | 2014-05-21 | Shutdown processing mode with forcible power off |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110026062A1 true US20110026062A1 (en) | 2011-02-03 |
Family
ID=43301874
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/837,891 Abandoned US20110026062A1 (en) | 2009-07-31 | 2010-07-16 | Information processing apparatus, method for controlling information processing apparatus, and storage medium |
US14/185,794 Abandoned US20140168689A1 (en) | 2009-07-31 | 2014-02-20 | Information processing apparatus, method for controlling information processing apparatus, and storage medium |
US14/284,226 Active US9360912B2 (en) | 2009-07-31 | 2014-05-21 | Shutdown processing mode with forcible power off |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/185,794 Abandoned US20140168689A1 (en) | 2009-07-31 | 2014-02-20 | Information processing apparatus, method for controlling information processing apparatus, and storage medium |
US14/284,226 Active US9360912B2 (en) | 2009-07-31 | 2014-05-21 | Shutdown processing mode with forcible power off |
Country Status (4)
Country | Link |
---|---|
US (3) | US20110026062A1 (enrdf_load_stackoverflow) |
EP (1) | EP2284704B1 (enrdf_load_stackoverflow) |
JP (1) | JP5460167B2 (enrdf_load_stackoverflow) |
CN (2) | CN101989123B (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102868844A (zh) * | 2011-07-05 | 2013-01-09 | 夏普株式会社 | 图像形成装置及其控制方法 |
US20130250336A1 (en) * | 2011-11-08 | 2013-09-26 | Canon Kabushiki Kaisha | Image forming apparatus, method for controlling the same, and program |
US20140281622A1 (en) * | 2013-03-15 | 2014-09-18 | Mahesh Wagh | Method, apparatus, and system for improving resume times for root ports and root port integrated endpoints |
US8843700B1 (en) * | 2013-11-29 | 2014-09-23 | NXGN Data, Inc. | Power efficient method for cold storage data retention management |
US20140380077A1 (en) * | 2013-06-24 | 2014-12-25 | Canon Kabushiki Kaisha | Information processing apparatus and control method of information processing apparatus |
US20160085563A1 (en) * | 2014-09-19 | 2016-03-24 | Acer Incorporated | Electronic device and method for waking up operating system thereof |
US9898064B2 (en) * | 2012-04-18 | 2018-02-20 | Canon Kabushiki Kaisha | Information processing apparatus, power control method thereof, and storage medium, with fast start up and automatic screen updating |
US10341501B2 (en) * | 2016-10-25 | 2019-07-02 | Seiko Epson Corporation | Monitoring apparatus, monitoring method, and recording medium |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5348552B2 (ja) * | 2009-08-25 | 2013-11-20 | 株式会社リコー | 画像処理装置及び画像処理装置における動作終了処理方法 |
JP5822749B2 (ja) | 2012-02-06 | 2015-11-24 | キヤノン株式会社 | 画像形成装置、画像形成装置の制御方法、及びプログラム |
JP2014075786A (ja) * | 2012-09-11 | 2014-04-24 | Canon Inc | 画像形成装置、画像形成装置の制御方法、及び、プログラム |
JP6004883B2 (ja) * | 2012-10-16 | 2016-10-12 | キヤノン株式会社 | 画像形成装置及びその制御方法、並びにプログラム |
JP6270377B2 (ja) * | 2013-08-27 | 2018-01-31 | キヤノン株式会社 | 画像形成装置 |
CN105528241B (zh) * | 2014-09-28 | 2019-06-14 | 宏碁股份有限公司 | 电子装置及其操作系统唤醒方法 |
US9774753B2 (en) | 2015-05-28 | 2017-09-26 | Canon Kabushiki Kaisha | Image forming apparatus, control method therefor, and storage medium |
JP6394821B2 (ja) * | 2015-12-11 | 2018-09-26 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
CN108267972B (zh) * | 2016-12-30 | 2021-08-03 | 北京小米移动软件有限公司 | 电子设备控制方法和装置 |
EP4581721A1 (en) * | 2022-09-02 | 2025-07-09 | Braun GmbH | Battery powered charger for wireless charging of a personal care device |
JP7506347B1 (ja) | 2023-12-01 | 2024-06-26 | 富士通クライアントコンピューティング株式会社 | 情報処理装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978913A (en) * | 1998-03-05 | 1999-11-02 | Compaq Computer Corporation | Computer with periodic full power-on self test |
US20020188838A1 (en) * | 1999-06-18 | 2002-12-12 | Welder W. Dean | Method and apparatus for providing content on a computer system based on usage profile |
US20030005277A1 (en) * | 2001-06-29 | 2003-01-02 | Harding Matthew C. | Automatic replacement of corrupted BIOS image |
US20030028628A1 (en) * | 2001-08-03 | 2003-02-06 | Ncr Corporation | Method for storing, retrieving and managing configuration settings of computer systems |
US20030225988A1 (en) * | 2002-06-03 | 2003-12-04 | Randall Ralphs | Device driver with improved timeout performance |
US20040078679A1 (en) * | 2002-06-28 | 2004-04-22 | Cagle John M. | Autonomous boot failure detection and recovery |
US6820197B2 (en) * | 2000-11-15 | 2004-11-16 | Infineon Technologies Ag | Data processing system having configurable components |
US20070157011A1 (en) * | 2005-12-30 | 2007-07-05 | Intel Corporation | Fault resilient boot in multi-processor systems |
US20080082808A1 (en) * | 2006-09-29 | 2008-04-03 | Rothman Michael A | System and method for increasing platform boot efficiency |
US20080276132A1 (en) * | 2007-05-02 | 2008-11-06 | Honeywell International Inc. | Microprocessor supervision in a special purpose computer system |
US20090037677A1 (en) * | 2007-07-31 | 2009-02-05 | Juan Alonso Coronado | Dynamic timer configuration for task monitoring in a remote mirror and copy environment |
US7516315B2 (en) * | 2005-03-18 | 2009-04-07 | Research In Motion Ltd. | Electronic device having an alterable configuration and methods of manufacturing and configuring the same |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06100943B2 (ja) * | 1988-05-27 | 1994-12-12 | 株式会社日立製作所 | 処理装置の電源停止制御方法及びその装置 |
JPH1078832A (ja) * | 1996-08-30 | 1998-03-24 | Nec Corp | シャットダウン装置 |
JP2001014069A (ja) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Ind Co Ltd | 自動電源停止方法と自動電源停止装置を備えた情報処理装置 |
JP4394253B2 (ja) * | 2000-05-26 | 2010-01-06 | クラリオン株式会社 | 適応的コールドスタートタイムアウト機能付きgps受信機 |
JP2002055741A (ja) * | 2000-08-11 | 2002-02-20 | Toshiba Tec Corp | 電源管理装置 |
JP2002073220A (ja) * | 2000-08-29 | 2002-03-12 | Matsushita Electric Ind Co Ltd | 自動シャットダウン制御方式 |
JP3893910B2 (ja) | 2001-07-12 | 2007-03-14 | 富士ゼロックス株式会社 | 電子機器およびその制御方法 |
JP2004054616A (ja) | 2002-07-19 | 2004-02-19 | Hitachi Ltd | ファームウェア自動修復機能を有する情報処理装置 |
JP4300824B2 (ja) | 2003-02-28 | 2009-07-22 | 富士ゼロックス株式会社 | 画像形成装置 |
JP4111890B2 (ja) * | 2003-07-29 | 2008-07-02 | 三洋電機株式会社 | 無停電電源装置 |
KR100598379B1 (ko) * | 2003-09-08 | 2006-07-06 | 삼성전자주식회사 | 컴퓨터 시스템 및 그 제어방법 |
US7685443B2 (en) * | 2003-10-14 | 2010-03-23 | Hewlett-Packard Development Company, L.P. | Server card power switch |
JP4364241B2 (ja) | 2004-03-03 | 2009-11-11 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 制御プログラム、記録媒体、制御方法、及び情報処理装置 |
JP4579629B2 (ja) * | 2004-09-16 | 2010-11-10 | キヤノン株式会社 | 通信装置 |
JP2006155239A (ja) | 2004-11-29 | 2006-06-15 | Canon Inc | ソフトウェアシステム、ソフトウェアシステムの制御方法、制御プログラム及び記憶媒体 |
JP2006221381A (ja) | 2005-02-09 | 2006-08-24 | Sharp Corp | プロセッサシステム、該プロセッサシステムを備えた画像形成装置 |
JP2006344112A (ja) * | 2005-06-10 | 2006-12-21 | Matsushita Electric Ind Co Ltd | 情報処理装置のセキュリティ装置およびセキュリティ方法 |
JP4361073B2 (ja) | 2005-07-28 | 2009-11-11 | 株式会社リコー | 画像処理装置とその制御方法 |
US7840846B2 (en) * | 2006-10-30 | 2010-11-23 | International Business Machines Corporation | Point of sale system boot failure detection |
JP2008140072A (ja) * | 2006-11-30 | 2008-06-19 | Toshiba Tec Corp | 電子機器 |
JP4862670B2 (ja) | 2007-01-25 | 2012-01-25 | 富士ゼロックス株式会社 | 省エネ制御装置および画像処理装置 |
KR101057090B1 (ko) * | 2007-08-24 | 2011-08-16 | 삼성전자주식회사 | 광대역 무선접속 시스템에서 아이들 모드 진입을 위한 장치및 방법 |
JP5021404B2 (ja) | 2007-09-14 | 2012-09-05 | 株式会社リコー | 電子機器、電子機器の起動制御方法及び画像形成装置 |
US8001404B2 (en) * | 2008-03-04 | 2011-08-16 | Sharp Laboratories Of America, Inc. | Remote wakeup web service for imaging device |
-
2009
- 2009-07-31 JP JP2009178770A patent/JP5460167B2/ja active Active
-
2010
- 2010-07-16 US US12/837,891 patent/US20110026062A1/en not_active Abandoned
- 2010-07-22 EP EP10170502.8A patent/EP2284704B1/en active Active
- 2010-07-30 CN CN201010245113XA patent/CN101989123B/zh active Active
- 2010-07-30 CN CN201310104015.8A patent/CN103279400B/zh not_active Expired - Fee Related
-
2014
- 2014-02-20 US US14/185,794 patent/US20140168689A1/en not_active Abandoned
- 2014-05-21 US US14/284,226 patent/US9360912B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978913A (en) * | 1998-03-05 | 1999-11-02 | Compaq Computer Corporation | Computer with periodic full power-on self test |
US20020188838A1 (en) * | 1999-06-18 | 2002-12-12 | Welder W. Dean | Method and apparatus for providing content on a computer system based on usage profile |
US6820197B2 (en) * | 2000-11-15 | 2004-11-16 | Infineon Technologies Ag | Data processing system having configurable components |
US20030005277A1 (en) * | 2001-06-29 | 2003-01-02 | Harding Matthew C. | Automatic replacement of corrupted BIOS image |
US20030028628A1 (en) * | 2001-08-03 | 2003-02-06 | Ncr Corporation | Method for storing, retrieving and managing configuration settings of computer systems |
US20030225988A1 (en) * | 2002-06-03 | 2003-12-04 | Randall Ralphs | Device driver with improved timeout performance |
US20040078679A1 (en) * | 2002-06-28 | 2004-04-22 | Cagle John M. | Autonomous boot failure detection and recovery |
US7516315B2 (en) * | 2005-03-18 | 2009-04-07 | Research In Motion Ltd. | Electronic device having an alterable configuration and methods of manufacturing and configuring the same |
US20070157011A1 (en) * | 2005-12-30 | 2007-07-05 | Intel Corporation | Fault resilient boot in multi-processor systems |
US20080082808A1 (en) * | 2006-09-29 | 2008-04-03 | Rothman Michael A | System and method for increasing platform boot efficiency |
US20080276132A1 (en) * | 2007-05-02 | 2008-11-06 | Honeywell International Inc. | Microprocessor supervision in a special purpose computer system |
US20090037677A1 (en) * | 2007-07-31 | 2009-02-05 | Juan Alonso Coronado | Dynamic timer configuration for task monitoring in a remote mirror and copy environment |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102868844A (zh) * | 2011-07-05 | 2013-01-09 | 夏普株式会社 | 图像形成装置及其控制方法 |
US9621754B2 (en) * | 2011-11-08 | 2017-04-11 | Canon Kabushiki Kaisha | Image forming apparatus, method, and medium for affecting startup |
US20130250336A1 (en) * | 2011-11-08 | 2013-09-26 | Canon Kabushiki Kaisha | Image forming apparatus, method for controlling the same, and program |
US9898064B2 (en) * | 2012-04-18 | 2018-02-20 | Canon Kabushiki Kaisha | Information processing apparatus, power control method thereof, and storage medium, with fast start up and automatic screen updating |
US10139889B2 (en) | 2013-03-15 | 2018-11-27 | Intel Corporation | Method, apparatus, and system for improving resume times for root ports and root port integrated endpoints |
US20140281622A1 (en) * | 2013-03-15 | 2014-09-18 | Mahesh Wagh | Method, apparatus, and system for improving resume times for root ports and root port integrated endpoints |
US10146291B2 (en) | 2013-03-15 | 2018-12-04 | Intel Corporation | Method, apparatus, and system for improving resume times for root ports and root port integrated endpoints |
US20140380077A1 (en) * | 2013-06-24 | 2014-12-25 | Canon Kabushiki Kaisha | Information processing apparatus and control method of information processing apparatus |
US9791914B2 (en) * | 2013-06-24 | 2017-10-17 | Canon Kabushiki Kaisha | Returning back to normal power mode only after completing a transition to a power saving mode by an image forming apparatus |
US10409356B2 (en) | 2013-06-24 | 2019-09-10 | Canon Kabushiki Kaisha | Printing device handling wake up event received immediately before shifted to a low power mode |
US20150153962A1 (en) * | 2013-11-29 | 2015-06-04 | NXGN Data, Inc. | Power efficient method for cold storage data retention management |
US9250820B2 (en) * | 2013-11-29 | 2016-02-02 | NXGN Data, Inc. | Power efficient method for cold storage data retention management |
US8843700B1 (en) * | 2013-11-29 | 2014-09-23 | NXGN Data, Inc. | Power efficient method for cold storage data retention management |
US20160085563A1 (en) * | 2014-09-19 | 2016-03-24 | Acer Incorporated | Electronic device and method for waking up operating system thereof |
US9672048B2 (en) * | 2014-09-19 | 2017-06-06 | Acer Incorporated | Electronic device and method for waking up operating system thereof |
US10341501B2 (en) * | 2016-10-25 | 2019-07-02 | Seiko Epson Corporation | Monitoring apparatus, monitoring method, and recording medium |
Also Published As
Publication number | Publication date |
---|---|
EP2284704A1 (en) | 2011-02-16 |
US20140168689A1 (en) | 2014-06-19 |
CN101989123A (zh) | 2011-03-23 |
US9360912B2 (en) | 2016-06-07 |
CN103279400B (zh) | 2017-03-01 |
JP2011034267A (ja) | 2011-02-17 |
CN103279400A (zh) | 2013-09-04 |
EP2284704B1 (en) | 2019-09-11 |
JP5460167B2 (ja) | 2014-04-02 |
CN101989123B (zh) | 2013-04-24 |
US20140258753A1 (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9360912B2 (en) | Shutdown processing mode with forcible power off | |
US10620896B2 (en) | Information processing apparatus capable of selecting among a plurality of power saving modes using a simple operation, and control method and storage medium therefor | |
US9513853B2 (en) | Data processing apparatus capable of controlling power supply, control method therefor, and storage medium | |
US8922805B2 (en) | Image processing apparatus having updatable firmware, method for controlling image processing apparatus, and program | |
US8977872B2 (en) | Information processing apparatus having power saving mode, and control method and storage medium therefor | |
US20180054537A1 (en) | Image forming apparatus, control method therefor, and program | |
US10859958B1 (en) | Image forming apparatus that transfers data from volatile cache memory to non-volatile storage based on power supply state and control method thereof | |
KR101596095B1 (ko) | 인쇄 장치 및 기록 매체 | |
US20160224298A1 (en) | Image forming apparatus, operation control method and non-transitory computer-readable storage medium storing operation control program | |
US10033895B2 (en) | Printing apparatus having plurality of power states and control method therefor | |
US9348295B2 (en) | Printing apparatus, method for controlling printing apparatus, and storage medium | |
US20130191623A1 (en) | Information processing apparatus, control method therefor, and storage medium | |
JP5800861B2 (ja) | 情報処理装置、情報処理装置の制御方法及び制御プログラム | |
US10956090B2 (en) | Memory system and electronic apparatus | |
JP2021126816A (ja) | 画像形成装置および画像形成システム | |
JP2021026319A (ja) | 画像形成装置および画像形成装置の制御方法 | |
US20220236679A1 (en) | Image forming apparatus, control method for the image forming apparatus, and a storage medium | |
US20140092412A1 (en) | Image forming apparatus and image forming method | |
JP5825290B2 (ja) | 画像形成装置 | |
US20200174876A1 (en) | Electronic apparatus equipped with hdd, control method therefor, and storage medium | |
JP2011151733A (ja) | 画像処理装置 | |
JP2012091460A (ja) | 画像形成装置、その制御方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKATANI, TAMOTSU;REEL/FRAME:025142/0759 Effective date: 20100708 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |