US20100031727A1 - Production method of multi-gauge strips - Google Patents
Production method of multi-gauge strips Download PDFInfo
- Publication number
- US20100031727A1 US20100031727A1 US12/514,583 US51458307A US2010031727A1 US 20100031727 A1 US20100031727 A1 US 20100031727A1 US 51458307 A US51458307 A US 51458307A US 2010031727 A1 US2010031727 A1 US 2010031727A1
- Authority
- US
- United States
- Prior art keywords
- strip
- gauge
- thin portion
- grooves
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 52
- 238000003825 pressing Methods 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 36
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
- B21C37/045—Manufacture of wire or bars with particular section or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
- B21D5/06—Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H8/00—Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
Definitions
- the present invention relates to a method for production of multi-gauge strips (MGS) which are mainly used as materials for lead frames of semiconductors.
- Multi-gauge strips refer to a band-shaped member consisting of a thick portion and a thin portion which are continuously disposed along the lengthwise direction.
- the present invention relates to a method of producing multi-gauge strips by using a general purpose roller or a press.
- Multi-gauge strip is a member having a use in a lead frame which supplies electricity to semiconductor parts requiring great electric capacitance or to electric or electronic parts, while supporting them. For example, it is used to supply electricity to heat generating parts, such as a power transistor or a connector, as well as to smoothly radiate heat generated from such parts.
- Multi-gauge strip is generally produced by forming a thick portion and a thin portion in a strip made of copper and a copper alloy, wherein the thin portion is used as a lead and the thick portion as a heat radiator.
- FIG. 1 a V-Mill-employing method as shown in FIG. 1 .
- the method processes a strip material ( 2 ) which includes the formation of a groove ( ) ( 1 b ) in the upper side at the center of a dice ( 1 ), and then of slopes ( 1 c ) in each right and left side of the groove ( 1 b ), wherein the slopes ( 1 c ) broadens from the acute angle part ( 1 a ) so as to form a shape of V.
- the center portion of the strip material ( 2 ) inserted into the groove ( 1 b ) is formed into a thick portion ( 2 a ) shown in FIG. 2 , and each side of the lower part of the thick portion ( 2 a ) is cut by a right angled part ( 1 d ) and an acute angled part ( 1 a ) in the upper part of the groove in the dice ( 1 ), forming a cut part ( 2 b ) having a slanted surface ( 2 c ) and a linear surface ( 2 d ).
- the dimension of the cut part ( 2 b ) becomes increased owing to the gradually expanded slanted surface ( 1 c ), and the cut part ( 2 b ) is formed to a thin portion ( 2 e ) by a flat part ( 1 e ) of the dice ( 1 ). Then a multi-gauge strip ( 2 ) having the thick portion ( 2 a ) and the thin portion ( 2 e ) is formed.
- a roll (not shown) moves in a back-and-forth motion in the feeding direction of a material or moves in a left-and-right motion at a right angle to the feeding direction of a material. Further, hammering of the upper side of the material at high speed is employed, or the dice ( 1 ) can be modified to have the shape of a roll for the formation.
- a roll should moves back-and-forth while applying pressure, and one of the reciprocal movement should be unloaded state, therefore the production rate is low owing to the limitation in speed and pressurization.
- the shape of a dice is structured to comprise a V-shaped slope, the fabrication, maintenance and repair thereof are difficult, and the shape of the acute angle part is weak against the applied pressure.
- the pressure should be increased as much as the volume of a protrusion ( 2 f ) in the groove, and this necessitate a high ejecting power, thereby causing limitation in formation itself as well as a material transfer.
- MGR Multi Grooved Roll
- a pair of the upper and the lower roll each of which has depression and prominence ( 3 a , 3 b ), respectively, and a pair of the upper and the lower roll having a flat surface ( 4 a , 4 b ) are placed alternately at multiple stages in tandem, as shown in FIG. 3 .
- the upper and the lower roll ( 3 a , 3 b ) pressurize both sides of a material ( 5 ) to form a bended part and a thin portion, then the upper and the lower roll having a flat surface ( 4 a , 4 b ) correct the depression and prominence of the formed material to a flat plane by repeated rolling.
- the thin portion is formed by being gradually widened in both left and right side directions.
- the width of a thin portion formed by a single movement of rolling is set to be wide, wave forms are produced in the thin portion, and when the width is set to be narrow, the number of a pair of the upper and the lower roll having depression and prominence respectively should be increased, increasing cost of tools in total production cost. Therefore, through the correction using the upper and the lower roll having a flat surface, the length of the thick portion is formed to be same with the length of the thin portion.
- This method uses the upper roll ( 6 ) where a groove ( 6 a ), flat surfaces ( 6 b ) in each side of the groove, and a slope ( 6 c ) are formed, and the lower roll (not shown) having a flat surface with the upper roll, as shown in FIG. 4 .
- the upper roll ( 6 ) forms a thick portion ( 7 a ) by making the center portion of a material ( 7 ) be inserted into the groove ( 6 a ), and at the same time the flat surfaces ( 6 b ) and the slope ( 6 c ) form a thin portion ( 7 b ) and slopes ( 7 c ) at both ends of the thin portion. The above procedure is repeated so as to gradually increase the width of the thin portion.
- the strip material forms into a multi-gauge strip, via the shape A, B and then C, as shown in the cross-sectional view of FIG. 5 .
- the strip material is formed into a multi-gauge strip via the shape D, E and then F. In other words, formation is carried out in a way that a thick portion is formed first at the center portion of the material and then the width of the thin portion is increased in each side of the center portion of the material.
- each roll arranged in tandem requires a speed-increasing function, since the thicknesses of both of the thick portion and the thin portion are decreased as the material passes through each upper and lower roll, wherein the decrement contributes to an increase in length. Further, the material becomes hardened during the repeated formation procedure, thereby requiring large scale equipment for exclusive use.
- the methods described above have common problems that, when forming the thin portion through repeated formation process of a material, the position of the material during formation is not fixed. Accordingly, the formation of a shape having a multiple number of the thick and the thin portions is structurally restricted.
- the present invention has been designed to dissolve the problems of conventional arts.
- the object of the present invention is to provide a method of producing multi-gauge strips in which the formation of a thick portion and a thin portion can be conducted simultaneously as the elongation rate in the lengthwise direction of the thick portion becomes synchronized with that of the thin portion, by firstly forming the thin portion having a groove in the lower side of the strip material, thereby making a certain space between the groove and a lower roll, wherein the space makes the elongation rate in the widthwise direction high when the thick portion and the thin portion in the upper side are formed.
- the method of producing multi-gauge st rips of the present invention characteristically comprises the following steps in a method of producing a multi-gauge strip consisting of a relatively thick portion and a relatively thin portion formed along the widthwise direction while continuously transferring a strip material: primarily forming a strip material by pressing the upper side thereof so as to make a groove in the lower side of the part where a thin portion is to be formed; and secondly forming the resulted strip by pressing the upper side of the primarily formed strip so as to form the part having a groove into a thin portion and the other part into a thick portion.
- the groove formed in the primary forming step is in the shape of a trapezoid or curved surface.
- the primary forming step comprises formation of the strip material into a processed strip which has a thick portion formed at the center in the widthwise direction of the strip, and a groove ( ) formed in each end of the lower side; and the second forming step comprises formation of the processed strip into a multi-gauge strip consisting of a thick portion in the center and a thin portion at each end of the thick portion.
- the second forming step comprises formation of a W-shaped multi-gauge strip by forming a square-shaped depressed area at the center in the upper part of the thick portion.
- the primary forming step comprises formation of a strip material into a processed strip which has a multiple number of grooves in the lower side thereof and a thick portion between said grooves; and second forming step comprises formation of the processed strip into a multi-gauge strip consisting of a multiple number of thick portions and thin portions therebetween, by forming the grooves in the inner part of the processed strip into a thin portion and then forming the grooves at each end part simultaneously into a thin portion.
- the formation of the grooves in the inner part into a thin portion in the second forming step is conducted subsequently in order of grooves in the center and outward grooves.
- the primary forming step comprises formation of a strip material into a processed strip having grooves formed in each side of the protrusion at the center of the lower side, and a thick portion formed outside of the grooves; and a second forming step comprises formation of the processed strip into a multi-gauge strip consisting of thick portions at each end thereof and a thin portion between the thick portions.
- FIGS. 1 and 2 are reference figures showing a method of producing a multi-gauge strip by using a conventional V-Mill.
- FIGS. 3 to 6 are reference figures showing a method of producing a multi-gauge strip by using a conventional MGR method.
- FIG. 7 is a conceptual plan view of the equipment for describing a method of producing a multi-gauge strip according to the present invention.
- FIG. 8 is a cross-sectional view showing a forming procedure according to a first embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing a forming procedure according to a second embodiment of the present invention.
- FIG. 10 is a cross-sectional view showing a forming procedure according to a third embodiment of the present invention.
- FIG. 11 is a cross-sectional view showing a forming procedure according to a fourth embodiment of the present invention.
- a method of producing multi-gauge strips of the present invention comprises the following steps in a method of producing a multi-gauge strip consisting of a relatively thick portion and a relatively thin portion formed along the widthwise direction while continuously transferring a strip material: primarily forming a strip material by pressing the upper side thereof so as to make a groove in the lower side of the part where a thin portion is to be formed; and secondly forming the resulted strip by pressing the upper side of the primarily formed strip so as to form the part having a groove into a thin portion and the other part into a thick portion. Specific examples according to the present method are described in the below.
- the first embodiment of a method of producing a multi-gauge strip according to the present invention comprises the steps of: forming a strip material ( 10 ) into a processed strip ( 20 ) in which a thick portion ( 21 ) is formed at the center portion in the widthwise direction, and grooves ( ) ( 22 ) are formed in each end of the lower side; and forming the processed strip ( 20 ) into a multi-gauge strip ( 30 ) having thin portions ( 32 ) formed on each side of the thick portion ( 31 ) in the center, as shown in FIGS. 7 and 8 .
- the shape of the grooves ( 22 ) is not particularly limited, and may include curved groove such as circular or elliptical type, or trapezoid.
- the processed strip ( 20 ) is formed by a first lower roller ( 101 ) having at least one protrusions ( 101 ) at each side end in the widthwise direction, and a first upper roller having a flat surface (not shown), and the multi-gauge strip ( 30 ) is continuously formed by a second lower roller (not shown) having a flat surface, and a second upper roller ( 102 ) having a groove ( 102 ) corresponding to the thick portion in the center.
- the strip material ( 10 ) on the protrusion ( 101 ) of the first lower roll ( 101 ) is pressurized by the first upper roller.
- a groove ( 22 ) having a shape of the corresponding to the protrusion is formed on the lower side of the strip, while forming a processed strip ( 20 ) which is elongated to the widthwise direction as well as the lengthwise direction.
- the groove ( 22 ) formed on the lower part of the processed strip ( 20 ) forms a space over the second lower roller having a flat surface.
- a multi-gauge strip ( 30 ) is finally, formed which consists of the thick portion ( 31 ) at the center and the thin portions ( 32 ) at each side of the thick portion.
- the thickness of the thin portion in said processed strip ( 20 ) is formed to be larger than the required thickness of the thin portion of the resulting multi-gauge strip ( 30 ), since the upper side of the processed strip ( 20 ) is to be stretched and elongated when contacting with the groove ( 102 ) of the second upper roller ( 102 ).
- the flat portion pressurizes the upper side of the groove part of the processed strip ( 20 ) to stretch it in the widthwise direction, thereby forming a thin portion.
- the formation process is carried out as same as above described, except for eliminating the rolling work for the corresponding volume reduction.
- the slanted part of the groove in the processed strip ( 20 ) which forms a space is allowed to have an acute angle in order to extend the length of the slanted part.
- the length of the slanted part of the groove is allowed to be shortened.
- the shape or dimension of the groove is optionally adjusted depending on the standard required.
- the processed strip ( 20 ) is formed by using a lower punch ( 110 ) having at least one protrusions ( 111 ) at each end in the widthwise direction and a flat upper die ( 120 ).
- the multi-gauge strip ( 30 ) is formed by using an upper punch ( 140 ) having a groove ( 141 ) corresponding to the thick portion ( 31 ) over the center of a flat lower die ( 130 ).
- This example 2 of the present invention demonstrates a method in which, when forming a processed strip ( 20 ) into a multi-gauge strip ( 30 ) in the above example 1, a square-shaped depressed area ( 33 ) is formed on the upper side at the center of the thick portion ( 31 ), resulting in W-shaped multi-gauge strip ( 30 ), as shown in FIG. 9 .
- an upper punch ( 240 ) for forming a W-shaped multi-gauge strip ( 30 ) one having a groove ( 241 ) with the square-shaped depressed area ( 242 ) formed in the center of the lower side is used.
- the pressure inside the groove ( 241 ) is increased as much as the volume of the square-shaped depressed area ( 242 ) as compared to the case in which a groove ( 241 ) is only formed in the upper punch ( 240 ), however the space formed in the lower side of the processed strip ( 20 ) increases the flexibility of the material. Hence, it does not necessitate high pressure and it is possible to carry out formation without restriction on ejection and transfer of a material.
- This example 3 of the present invention demonstrates a method which comprises: a step of forming a strip material into a processed strip ( 40 ) having a multiple number of grooves ( 42 ) in the lower side thereof and a thick portion ( 41 ) therebetween; and a step of forming the processed strip ( 40 ) into a multi-gauge strip ( 50 ) consisting of a multiple number of thick portions ( 51 ) and thin portions ( 52 ) therebetween, by forming the grooves in the inner part of the processed strip ( 40 ) into a thin portion and then forming the grooves at each end simultaneously into a thin portion, as shown in FIG. 10 .
- the formation is conducted subsequently in order of grooves in the center of the processed strip ( 40 ) and outward grooves, and then finally the grooves in the edge of the processed strip ( 40 ) is formed into a thin portion.
- the groove can be formed as a trapezoid or curved groove.
- a strip material is formed into a first processed strip ( 40 ) having a multiple number of grooves in the lower side, by using a lower punch ( 310 ) having a multiple number of protrusions and a flat upper die ( 320 ); then the first processed strip ( 40 ) is formed into a second processed strip ( 45 ) in which the inner groove part is formed into a thin portion, by using a flat lower die ( 330 ) and a first upper punch ( 340 ) having protrusions corresponding to the inner grooves of the first processed strip ( 40 ); and finally the second processed strip ( 45 ) is formed into a multi-gauge strip ( 50 ) having a multiple number of thick portions ( 51 ) and thin portions ( 52 ) formed therebetween by using a flat lower die ( 330 ) and a second punch ( 350 ) having protrusions ( 351 ) corresponding to the grooves ( 42 ) of the first processed strip ( 40 ).
- rollers can be used for forming a multi-gauge strip ( 50 ).
- This example 4 of the present invention demonstrates a method which comprises: a step of forming a strip material into a processed strip ( 60 ) having grooves ( 62 ) formed in each side of a protrusion ( 63 ) at the center of the lower side, and thick portions ( 61 ) which are formed on each side of the grooves; and a step of forming the processed strip ( 60 ) into a multi-gauge strip ( 70 ) consisting of thick portions ( 71 ) at each end and a thin portion ( 72 ) therebetween, as shown in FIG. 11 .
- the protrusion ( 63 ) of the processed strip ( 60 ) is preferably formed to be a curved shape, and the grooves ( 62 ) can suitably have either of a trapezoid or a curved shape.
- the strip material is formed into a processed strip ( 60 ) having a protrusion ( 63 ) at the center of the lower side of the strip, grooves ( 62 ) formed therebetween, and thick portions ( 61 ) formed on each side of the grooves ( 62 ), by using a lower punch ( 410 ) having a protrusion ( 411 ) where a groove ( 412 ) is formed in the center and a flat upper die ( 420 ); and then the processed strip ( 60 ) is formed into a multi-gauge strip ( 70 ) consisting of thick portions ( 71 ) at each end thereof and a thin portion ( 72 ) between the thick portions, by using a flat lower die ( 430 ) and an upper punch ( 440 ) having a protrusion ( 441 ) corresponding to the groove ( 62 ) of the processed strip ( 60 ).
- the elongation rate in the widthwise direction is higher than that in the lengthwise direction.
- the elongation rate in the widthwise direction is higher that that in the lengthwise direction, as aforementioned. Accordingly, it is possible to form rather wider thin portion in the center of the multi-gauge strip ( 70 ). Further, in this example also, rollers can be used, instead of using a die and a cast of a punch and a die.
- the method of producing multi-gauge strips of the present invention it is possible to reduce investment cost by being capable of forming a multi-gauge strip with a general low-price equipment; to decrease production cost by using a reduced number of process tools owing to the simplified forming process; to minimize the dust generation, thereby decreasing defective proportion while improving productivity at the same time; and to result in multi-gauge strips in various shapes by allowing formation of a thick portion and a thin portion in optional location of a material. Therefore, the present invention may contribute to the development in industries related to semiconductor parts and electric or electronic parts where such multi-gauge strips are used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060114506A KR100826397B1 (ko) | 2006-11-20 | 2006-11-20 | 이형 스트립의 제조방법 |
KR10-2006-0114506 | 2006-11-20 | ||
KR1020070099118A KR100903266B1 (ko) | 2007-10-02 | 2007-10-02 | 이형 스트립 제조방법 |
KR10-2007-0099118 | 2007-10-02 | ||
PCT/KR2007/005838 WO2008062992A1 (en) | 2006-11-20 | 2007-11-20 | Production method of multi-gauge strips |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100031727A1 true US20100031727A1 (en) | 2010-02-11 |
Family
ID=39429893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/514,583 Abandoned US20100031727A1 (en) | 2006-11-20 | 2007-11-20 | Production method of multi-gauge strips |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100031727A1 (ja) |
JP (1) | JP2010510066A (ja) |
WO (1) | WO2008062992A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210217630A1 (en) * | 2020-01-09 | 2021-07-15 | Texas Instruments Incorporated | Lead frame rolling |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6604457B2 (en) * | 2001-05-11 | 2003-08-12 | Graftech Inc. | Process and apparatus for embossing graphite articles |
US20060123867A1 (en) * | 2004-12-03 | 2006-06-15 | Ball Melville D | Roll embossing of discrete features |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06134541A (ja) * | 1992-10-26 | 1994-05-17 | Kobe Steel Ltd | 異形断面条の圧延方法 |
JPH0739979A (ja) * | 1993-07-28 | 1995-02-10 | Nisshin Steel Co Ltd | 異形断面条の製造方法 |
KR100578939B1 (ko) * | 2003-10-01 | 2006-05-12 | 김충열 | 이형스트립의 제조방법 및 장치 |
-
2007
- 2007-11-20 US US12/514,583 patent/US20100031727A1/en not_active Abandoned
- 2007-11-20 JP JP2009537090A patent/JP2010510066A/ja active Pending
- 2007-11-20 WO PCT/KR2007/005838 patent/WO2008062992A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6604457B2 (en) * | 2001-05-11 | 2003-08-12 | Graftech Inc. | Process and apparatus for embossing graphite articles |
US20060123867A1 (en) * | 2004-12-03 | 2006-06-15 | Ball Melville D | Roll embossing of discrete features |
Also Published As
Publication number | Publication date |
---|---|
WO2008062992A1 (en) | 2008-05-29 |
JP2010510066A (ja) | 2010-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180154417A1 (en) | Method and apparatus for forming metal sheet | |
JP2006255770A (ja) | 金属板の曲げ加工装置および曲げ加工方法 | |
US20090158808A1 (en) | Method for Manufacturing Ring-Shaped Member | |
KR100396059B1 (ko) | 금속제 소재의 굴곡 변형부의 가공법과 이것에 사용되는소성 가공용 금속제 소재 | |
US20100031727A1 (en) | Production method of multi-gauge strips | |
EP3266535A1 (en) | Punch processing method, method of manufacturing press-formed product, and press-formed product | |
JP3798299B2 (ja) | 異形条の製造方法およびリードフレームの製造方法 | |
JP2000042681A (ja) | フランジ付き軸受の製作方法および装置 | |
TWI407517B (zh) | 多厚度帶的製造方法 | |
CN101563175B (zh) | 多厚度带的制造方法 | |
JP2006136896A (ja) | フィンの製造方法およびフィンの製造装置 | |
JP4817183B2 (ja) | ワッシャの製造方法 | |
US5575062A (en) | Method for forming a connector | |
JPH08243642A (ja) | 帯状金属板のかえり除去方法およびかえり除去装置 | |
SU1574316A1 (ru) | Способ формообразовани листовых заготовок дво кой кривизны | |
JPH10192981A (ja) | 板材の曲げ加工方法およびその方法に用いる金型 | |
JPH1190534A (ja) | 形状凍結性に優れた弓形プレス成形品の成形方法 | |
JP4145718B2 (ja) | 金属板部材の製造法 | |
JP5277943B2 (ja) | 分割体の製造装置及び製造方法 | |
JPH09276934A (ja) | 金属板のプレス加工方法およびそれに用いる金型 | |
JP2001121221A (ja) | 打抜きダイの製造方法及び打抜きダイ | |
JP2000158049A (ja) | 金属サイディングの成形方法及び成形装置 | |
KR101908791B1 (ko) | 이형스트립 제조방법 및 장치 | |
US7111487B2 (en) | Apparatus and method for forming curvature in sheet metal | |
JP2010510066A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |