US20100005706A1 - Fuel composition with enhanced low temperature properties - Google Patents

Fuel composition with enhanced low temperature properties Download PDF

Info

Publication number
US20100005706A1
US20100005706A1 US12/171,560 US17156008A US2010005706A1 US 20100005706 A1 US20100005706 A1 US 20100005706A1 US 17156008 A US17156008 A US 17156008A US 2010005706 A1 US2010005706 A1 US 2010005706A1
Authority
US
United States
Prior art keywords
composition
fuel
particulate
renewable
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/171,560
Other languages
English (en)
Inventor
Jack Burgazli
Jerry Burton
Dave Daniels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innospec Fuel Specialties LLC
Original Assignee
Innospec Fuel Specialties LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innospec Fuel Specialties LLC filed Critical Innospec Fuel Specialties LLC
Priority to US12/171,560 priority Critical patent/US20100005706A1/en
Priority to EP09795050.5A priority patent/EP2307528B1/de
Priority to KR1020117003305A priority patent/KR101646796B1/ko
Priority to BRPI0915891-0A priority patent/BRPI0915891B1/pt
Priority to PCT/US2009/049778 priority patent/WO2010005947A2/en
Priority to RU2011105060/04A priority patent/RU2515238C2/ru
Priority to AU2009268728A priority patent/AU2009268728A1/en
Priority to CN200980135725.9A priority patent/CN102149797B/zh
Priority to CA2733810A priority patent/CA2733810C/en
Priority to MYPI2011003217A priority patent/MY160060A/en
Assigned to Innospec Fuel Specialties, LLC reassignment Innospec Fuel Specialties, LLC PATENT INVENTION Assignors: BURGAZLI, JACK, BURTON, JERRY, DANIELS, DAVE
Publication of US20100005706A1 publication Critical patent/US20100005706A1/en
Priority to ZA2011/01126A priority patent/ZA201101126B/en
Assigned to LLOYDS TSB BANK PLC, AS SECURITY AGENT reassignment LLOYDS TSB BANK PLC, AS SECURITY AGENT SECURITY AGREEMENT Assignors: INNOSPEC ACTIVE CHEMICALS LLC, INNOSPEC FUEL SPECIALITIES LLC, INNOSPEC INC.
Priority to US13/633,537 priority patent/US9493716B2/en
Priority to AU2016216699A priority patent/AU2016216699B2/en
Assigned to INNOSPEC ACTIVE CHEMICALS LLC, INNOSPEC FUEL SPECIALTIES LLC reassignment INNOSPEC ACTIVE CHEMICALS LLC RELEASE OF 2011 INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: LLOYDS BANK PLC, AS SECURITY AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1826Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms poly-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • C10L1/231Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • This invention relates generally to fuel oil compositions.
  • the invention more specifically relates to renewable fuels, and blends of petroleum fuels with renewable fuels, in combination with a novel additive composition designed to diminish particulate formation upon storage of the renewable fuel and renewable fuel petroleum fuel blends.
  • Hydro-treating is a process by which hydrogen, under pressure, in the presence of a catalyst, reacts with sulfur compounds in the fuel to form hydrogen sulfide gas and a hydrocarbon.
  • renewable fuels are gaining greater market acceptance as a cutter stock to extend petroleum diesel market capacity.
  • the blends of renewable fuels with petroleum diesel are being used as a fuel for diesel engines, utilized for heating, power generation, and for locomotion with ships, boats, as well as motor vehicles.
  • Bio-diesel is defined as fatty acid alkyl esters of vegetable or animal oils.
  • Common oils used in bio-diesel production are rapeseed, soya, palm, palm kernel, tallow, sunflower, and used cooking oil or animal fats, although more exotic oil sources such as algae derived oils or Jetropha oil are also gaining market interest.
  • Bio-diesel is prepared by reacting (trans-esterification) whole oils with alcohols (mainly methanol) in the presence of a catalyst (acid or base), such as sodium hydroxide or sodium methoxide.
  • a catalyst such as sodium hydroxide or sodium methoxide.
  • Bio-diesel is a legally registered fuel and fuel additive with the U.S. Environmental Protection Agency (EPA).
  • EPA U.S. Environmental Protection Agency
  • ASTM D6751 the entire teaching of which is incorporated herein by reference
  • EN14214 the entire teaching of which is incorporated herein by reference
  • the ASTM D6751 specification is intended to insure the quality of bio-diesel to be used as a blend stock for 20% and lower blend levels, where as EN14214 is used to ensure quality in 100% bio diesel to be used independently as a fuel as well as Bio diesel to be used to prepare blends with petroleum fuels.
  • renewable fuels are also being produced by newer and different processes than the traditional trans-esterification process used to produce conventional biodiesel. Examples of these modern processes include BTL (biomass to liquid) based on Fischer-Tropsch GTL (gas to liquid) technology, and “next generation” bio diesel which utilizes hydro treating of bio derived fats and oils to produce hydrocarbon fuels. Although these renewable fuels have many positive political and environmental attributes, they also have certain negative characteristics which must be taken into consideration when utilizing the material as an alternative fuel or as a blend stock for petroleum diesel. One of the properties which are of particular concern in the industry is the susceptibility of renewable fuels and renewable fuel/petroleum fuel blends to form insoluble particulates during storage.
  • the present invention addresses fuel industry operability concerns related to particulate formation in renewable fuels as well as renewable fuels/petroleum diesel blends.
  • the present invention relates generally to fuel compositions.
  • the invention more specifically relates to novel additive composition to inhibit particulate formation in renewable fuels (B100) and renewable fuels/petroleum fuel (Bxx) blends, and to methods of using such compositions.
  • the renewable fuel composition comprises (i) a renewable component, and (ii) a novel additive composition.
  • the blended fuel composition comprises (i) a petroleum based component, (ii) a renewable component, and (iii) a novel additive composition.
  • additives such as (a) thermal stabilizers, (b) corrosion inhibitors, (c) cetane improvers, (d) detergents, (e) lubricity improvers, (f) dyes and markers, (g) anti-icing additives, (h) demulsifiers/anti-haze additives, (i) antioxidants, (j) metal deactivators, (k) biocides, (l) static dissipater additives, (m) low temperature operability/cold flow additives, and (n) antifoams; in combination with the disclosed novel additive composition; in combination with the renewable fuel and novel additive composition; or in combination with the renewable fuel, petroleum fuel blend and the novel additive composition, to not only directly enhance fuel particulate inhibition, but also other fuel properties.
  • additives such as (a) thermal stabilizers, (b) corrosion inhibitors, (c) cetane improvers, (d) detergents, (e) lubricity improvers, (f) dyes and markers, (g) anti-icing
  • Another embodiment of the present invention is directed toward a method for operating an internal combustion engine such as a compression-ignition engine using as fuel for the engine, a suitable petroleum based component, a suitable renewable based component, and the described novel additive composition.
  • an internal combustion engine such as a compression-ignition engine using as fuel for the engine, a suitable petroleum based component, a suitable renewable based component, and the described novel additive composition.
  • FIG. 1 is a diagram of the receiving flask, 0.7 micron glass fiber filter and funnel as a unit.
  • the present invention relates generally to fuel oil compositions.
  • the invention more specifically relates to one or more renewable fuels in combination with a particulate inhibitor additive composition, or to the blends of petroleum fuels with renewable fuels and the particulate inhibitor additive composition.
  • the Petroleum Fuel is a hydrocarbon derived from refining petroleum or as a product of Fischer-Tropsch processes (well known to those skilled in the art).
  • the hydrocarbon may also be a solvent.
  • the fuel products are commonly referred to as petroleum distillate fuels.
  • Petroleum distillate fuels encompass a range of distillate fuel types. These distillate fuels are used in a variety of applications, including automotive diesel engines and in non automotive applications under both varying and relatively constant speed and load conditions such as power generation, marine, rail, farming, and construction equipment applications.
  • Petroleum distillate fuel oils can comprise atmospheric or vacuum distillates.
  • the distillate fuel can comprise cracked gas oil or a blend of any proportion of straight run or thermally or catalytically cracked distillates.
  • the distillate fuel in many cases can be subjected to further processing such as hydrogen-treatment or other processes to improve fuel properties.
  • the material can be described as a gasoline or middle distillate fuel oil.
  • Gasoline is a low boiling mixture of aliphatic, olefinic, and aromatic hydrocarbons, and optionally, alcohols or other oxygenated components. Typically, the mixture boils in the range from about room temperature up to about 225° C.
  • Middle distillates can be utilized as a fuel for locomotion in motor vehicles, air planes, ships and boats as burner fuel in home heating and power generation and as fuel in multi purpose stationary diesel engines.
  • Middle distillate fuels are higher boiling mixtures of aliphatic, olefinic, and aromatic hydrocarbons and other polar and non-polar compounds having a boiling point up to about 350° C.
  • Middle distillate fuels generally include, but are not limited to, kerosene, jet fuels, and various diesel fuels.
  • Diesel fuels encompass Grades No. 1-Diesel, 2-Diesel, 4-Diesel Grades (light and heavy), Grade 5 (light and heavy), and Grade 6 residual fuels.
  • Middle distillates specifications are described in ASTM D-975, for automotive applications (the entire teaching of which is incorporated herein by reference), and ASTM D-396, for burner applications (the entire teaching of which is incorporated herein by reference).
  • Jet fuels for aviation are designated by such terms as JP-4, JP-5, JP-7, JP-8, Jet A, Jet A-1.
  • the Jet fuels are defined by U.S. military specification MIL-T-5624-N, the entire teaching of which is incorporated herein by reference, and JP-8 is defined by U.S. Military Specification MIL-T83 133-D, the entire teaching of which is incorporated herein by reference.
  • Jet A, Jet A-1 and Jet B are defined by ASTM specification D-1655 and Def. Stan. 91, the entire teachings of which are incorporated herein by reference.
  • a Renewable Fuel is an organic material that is derived from a natural, replenishable feed stock which can be utilized as a source of energy.
  • Suitable examples of renewable fuels include, but are not limited to, bio-diesel, ethanol and bio-mass. Other renewable materials are well known to those skilled in the art.
  • bio-diesel refers to all mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats.
  • Bio-diesel is commonly produced by the reaction of whole oils with alcohols in the presence of a suitable catalyst.
  • Whole oils are natural triglycerides derived from plant or animal sources.
  • the reaction of whole oil with an alcohol to produce a fatty acid ester and glycerin is commonly referred to as trans esterification.
  • bio-diesel can be produced by the reaction of a fatty acid with an alcohol to form the fatty acid ester.
  • the fatty acid segments of triglycerides are typically composed of C 10 -C 24 fatty acids, where the fatty acid composition can be uniform or a mixture of various chain lengths.
  • the bio-diesel according to the invention may comprise single feed sourced components, or blends of multiple feed stocks derived from vegetable(s), or animal(s) origin.
  • the commonly used single or combination feed stocks include, but are not limited to, coconut, corn, castor, jetropha, linseed, olive, palm, palm kernel, peanut, rapeseed, safflower, sunflower, soybean, tall oil, tallow, lard, yellow grease, sardine, menhaden, herring and used cooking oils and fats.
  • Suitable alcohols used in either of the esterification processes can be aliphatic or aromatic, saturated or unsaturated, branched or linear, primary, secondary or tertiary, and may possess any hydrocarbon chain having lengths from about C-1 to about C-22.
  • the industry and typical choice being identified as methanol.
  • Bio-diesel composition is established by specification parameters set forth in international specifications such as EN12214 and ASTM D6751 (the entire teaching of which are incorporated herein by reference).
  • the fatty acid ester must meet and maintain the established specification parameters set forth in EN14214 or ASTM D6751, regardless of the whole oil feed source or the process utilized for its production.
  • ASTM D6751 specification outlines the requirements for bio-diesel (B100) to be considered as a suitable blending stock for hydrocarbon fuels.
  • EN14214 specifies requirements of bio diesel to be used as both a fuel and as a blend stock for blending with distillate fuels.
  • renewable fuel can also encompass in addition to bio diesel products produced from hydro treatment of oils and fats, and also products of BTL processes. These processes are well known to those skilled in the art.
  • renewable fuel and petroleum fuel can be blended in any proportion necessary wherein the final oil blend is appropriate to be utilized as a fuel.
  • the fuel can contain about 100% renewable fuels, however, the renewable content of the blend is typically up to about 50% by volume of the finished fuel blend, more typically up to about 35% by volume of the finished fuel blend, and alternatively up to about 20% by volume of the finished fuel blend.
  • the invention can be practiced at high renewable fuel concentrations, wherein the renewable fuel content is greater than about 15% by volume of the finished fuel blend.
  • the invention is also applicable at renewable fuel concentrations as low as about 15, 12.5, 12, 11, and 10% by volume of the finished fuel blend, and even at very low renewable fuel concentrations as low as about 7.5, 5, 3, 2, 1, and 0.5% by volume of the finished fuel blend.
  • particulate formation is not fully understood. However, industry technical leaders in Europe and United States postulate the particulates may be due to very low concentration of products of incomplete trans-esterification such as mono-, di- and triglycerides, glycerine derivatives (glycerides), natural sterols, or even saturated fatty acid methyl esters present in the fuel.
  • products of incomplete trans-esterification such as mono-, di- and triglycerides, glycerine derivatives (glycerides), natural sterols, or even saturated fatty acid methyl esters present in the fuel.
  • LTO Low Temperature Operability
  • CP cloud point
  • PP pour point
  • CFPP Cold Filter Plugging Point
  • LTFT Low Temperature Flow Test
  • the Cold Filter Plugging Point of a fuel is the temperature at and below which wax in the fuel will cause severe restrictions to flow through a filter screen. CFPP is believed to correlate well with vehicle operability at lower temperatures.
  • LTFT Low Temperature Flow Test
  • the petroleum diesel filtration methods (CFPP, and LTFT) are referred to as surrogate test methods. These methods try to predict the behavior of the fuel with respect to actual engine operating conditions. There is substantial industry data relating CFPP with actual field operability.
  • the Cloud Point or wax appearance temperature (WAT) of a fuel is the point at which first visible crystals are detected in the fuel. Cloud point can be evaluated using ASTM D2500, D5771, D5772, and D5773 (visible method), the entire teachings of which are incorporated herein by reference, and by IP-389 (crystal formation method), the entire teaching of which is incorporated herein by reference.
  • the Pour Point is a standardized term for the temperature at which an oil, for example, mineral oil, diesel fuel or hydraulic oil, stops flowing upon cooling.
  • Pour point of petroleum fuels can be evaluated using ASTM D97 (the entire teaching of which is incorporated herein by reference), and ISO-3016 (the entire teaching of which is incorporated herein by reference).
  • the petroleum diesel physical evaluation methods are methods used to evaluate the fuel low temperature characteristics. While these methods are not directly considered as a surrogate test for engine performance, there is a common belief/practice in the petroleum industry, wherein the use of a fuel's cloud point is a very conservative predictor of fuel field operability. Specifically, if the fuel is stored and used above the fuel's cloud point, there are rarely if any field issues attributable to fuel low temperature properties.
  • the inapplicability of standard petroleum test can be due to the new particulate formation phenomenon encountered with renewable fuels and renewable fuel/petroleum fuel blends.
  • the new phenomenon can be caused by different chemical species in petroleum fuels, as compared to renewable fuels and renewable fuel/petroleum fuel blends and also possibly the difference in particulate formation mechanisms between petroleum fuels and renewable fuels or renewable fuel/petroleum fuel blends.
  • the invention disclosed herein enhances the resistance of the renewable fuel or the renewable fuel petroleum fuel blend to forming insoluble particulates during extended storage or low temperature operation.
  • Agglomerates are defined as union of similar or dissimilar materials to form a large mass.
  • Conglomerates are defined as a union of agglomerates to form a larger mass.
  • Particulates are defined as a union of conglomerates and agglomerates to form an even larger mass.
  • An embodiment of the invention is the use of an additive composition to inhibit agglomeration, conglomeration and particulate formation in renewable fuels, and in mixtures of renewable fuels and petroleum fuels
  • the novel additive composition selected to inhibit agglomeration, conglomeration and particulate formation in fuels is composed of a combination of any one of the material consisting of i) Agglomeration Retarders, ii) Particulate Dispersants, iii) Particulate Settling Inhibitor, and iv) Compatibility Enhancers.
  • Agglomeration Retarders are materials which inhibit the initial association of hydrocarbon oxygenates like Fatty acid Methyl Esters (FAME) as contained in bio diesel with other FAME's for B100 fuels, and in the case of blended fuel, the association of FAME components with other FAME's or with hydrocarbon or paraffin components in petroleum fuels.
  • FAME Fatty acid Methyl Esters
  • the inhibition results in a retardation of the rate of association of molecules required to form agglomerates.
  • the Agglomeration Retarders utilized in the formulation are selected from a group consisting of polymers derived from derivatized acrylic acid monomers,
  • An embodiment of the invention is an Agglomeration Retarder consisting essentially of homopolymers or co polymers of acrylic acid, or acrylic acid derivatives.
  • the monomers which can be utilized to prepare the acrylate polymers are selected from the group described by general formulas I and II.
  • hydrocarbon as used herein means any one of a saturated or unsaturated alkyl group, wherein groups may be linear, branched or cyclic, or a substituted or un-substituted aryl group.
  • Suitable examples of optional substituents include; nitro groups, alkyl groups, alkoxy, alkylthio, cyano, alkoxycarbonyl, alkylamino, dialkylamino, (alkylcarbonyl)alkylamino, (alkoxycarbonyl)-alkylamino, alkylcarbonylamino, alkoxycarbonylamino and carboxylic, alkylcarboxylic (ester) and hydroxyl groups.
  • An alkyl moiety as described as R′, R′′ selected as an optional subsistent suitably has up to 8 carbon atoms, preferably up to 4, and especially 1 or 2 carbon atoms. If having more than two carbon atoms they may be branched, but are preferably linear.
  • R represents a hydrogen atom or an optionally substituted C 1-4 alkyl group. Most preferably R represents a hydrogen atom or a methyl group
  • R 1 represents an optionally substituted (but preferably unsubstituted) alkyl group or alkylene group or fatty acid group or aryl group (for example a benzyl group). Most preferably it represents an unsaturated alkyl group.
  • R 1 has 8 or more carbon atoms, preferably 10 or more, and more preferably 12, or more.
  • R 2 and R 3 represent a hydrogen atom or an optionally substituted C 1-4 alkyl group. Most preferably R 2 and R 3 represent a hydrogen atom or a methyl group.
  • the proportions of monomers of type I or type II, or multiple monomers of a single type can be varied to meet required properties, with the total adding up to 100 wt %.
  • the number average molecular weight (Mn) of the acrylate polymer is in the range 750 to 100,000, more preferably 1,000 to 50,000, and most preferably 2,000 to 40,000 amu's.
  • the Agglomeration Retarders are present in the formulation in the range of about 0% to about 80%, more preferably between about 0.1% to about 70.0% v/v, even more preferably between about 10.0% to about 65.0% v/v, and most preferably between about 20.0% to about 60.0% v/v of the additive composition.
  • Particulate Dispersants are materials which inhibit the association of agglomerated Fatty acid Methyl Esters, or agglomerated FAME's and hydrocarbon or paraffin components forming larger conglomerates, and fiuther result in an inhibition of the association of conglomerates required to form particulates.
  • Particulate dispersants as described in the present invention are any suitable nitrogen-containing detergent or dispersant known in the art for use in lubricants or fuel oils.
  • the dispersant is selected from:
  • hydrocarbon as used herein means any one of a saturated or unsaturated alkyl group, wherein groups may be linear, branched or cyclic, or a substituted or un-substituted aryl group.
  • Substituted Amines can be described as hydrocarbyl amines, wherein hydrocarbyl as used herein denotes a group having a carbon atom directly attached to the remainder of the molecule.
  • the hydrocarbyl substituent in such amines contain at least 8 and up to about 50 carbon atoms.
  • Hydrocarbyl substituents can comprise up to about 200 carbon atoms. Examples of hydrocarbyl groups include but are not limited to methyl, ethyl, propyl, isopropyl, butyl and isomers and polymers thereof.
  • Substituted Amines can be described as Aromatic amines or Aromatic polyamines of the general formula:
  • aromatic polyamines are the various isomeric phenylene diamines, the various isomeric naphthalene diamines, etc.
  • Substituted Amines can be described as polyamines wherein the polyamines can be described by the general formula:
  • each R is independently selected from hydrogen, or a hydrocarbyl group.
  • a hydrocarbyl group include but are not limited to methyl, ethyl, propyl, isopropyl, butyl and isomers and polymers thereof.
  • X is preferably a C 1-8 alkylene group, most preferably ethylene, and n can be an integer from 0 to 10.
  • Substituted Amines can be a mixture of polyamines for example a mixture of ethylene polyamines.
  • polyalkylene polyamines (1) include ethylenediamine, triethylenetetramine, tetraethylenepentamine, tri-(trimethylene) tetramine, pentaethylenehexamine, hexaethyleneheptamine, 1,2-propylenediamine, and other commercially available materials which comprise complex mixtures of polyamines.
  • the amine or polyamine may be a hydroxyalkyl-substituted amine or polyamine wherein the parent amine or poly amine can also be converted to their corresponding alkoxylates.
  • the alkoxylates are products derived from the reaction of 1-100 molar equivalents of an alkoxylating agent with the nitrogen moiety.
  • the required alkoxylating agents are chosen from the group comprising: ethylene oxide, propylene oxide, butylene oxide and epichlorohydrin, or their mixtures.
  • the alkoxylates can be produced from a single alkoxylating agent or alternatively from a mixture of agents.
  • the alkoxylate derived from mixtures of alkoxylating agents can be prepared by stepwise addition of the agents to the amine to form block polymers, or can be added as mixed agents to form random block/alternating alkoxylates.
  • Substituted amines can include heterocyclic substituents selected from nitrogen-containing aliphatic and aromatic heterocycles, for example piperazines, imidazolines, pyrimidines, morpholines, etc.
  • heterocyclic- substituted polyamines (2) are N-2-aminoethyl piperazine, N-2 and N-3 amino propyl morpholine, N-3(dimethyl amino) propyl piperazine, 2-heptyl-3-(2 aminopropyl) imidazoline, 1,4-bis (2-aminoethyl)piperazine, 1-(2-hydroxy ethyl) piperazine, and 2-heptadecyl-1-(2-hydroxyethyl)-imidazoline, etc.
  • a typical class of acylated nitrogen compounds suitable for use in the present invention is those formed by the reaction of a carboxylic acid-derived acylating agent and an amine. In such compositions the acylating agent is linked to the amino compound through an imido, amido, amidine or acyloxy ammonium linkage.
  • the acylating agent can vary from formic acid and its acylating derivatives to acylating agents having high molecular weight of the aliphatic substituents of up to 5,000, 10,000 or 20,000 amu.
  • the acylating agent may be a mono- or polyearboxylic acid (or reactive equivalent thereof), for example a substituted succinic, or phthalic acid.
  • the acylating agent commonly possesses a hydrocarbyl substituent.
  • hydrocarbyl as used herein denotes a group having a carbon atom directly attached to the remainder of the molecule.
  • hydrocarbyl substituent in such acylating agents preferably comprises at least 10, more preferably at least 12, for example 30 or 50 carbon atoms.
  • Hydrocarbyl substituents can comprise up to about 200 carbon atoms.
  • the hydrocarbyl substituent of the acylating agent has a number average molecular weight (Mn) of between 170 to 2800, for example from 250 to 1500, preferably from 500 to 1500 and more preferably 500 to 1100.
  • Mn number average molecular weight
  • An Mn of 700 to 1300 is especially preferred.
  • Illustrative hydrocarbyl substituent groups include n-octyl, n-decyl, n-dodecyl, tetrapropenyl, n-octadecyl, oleyl, chloroctadecyl, triicontanyl, etc.
  • the hydrocarbyl based substituents may be made from homo- or interpolymers (e.g. copolymers, terpolymers) of mono- and di-olefins having 2 to 10 carbon atoms, for example ethylene, propylene, butane-1, isobutene, butadiene, isoprene, 1-hexene, 1-octene, etc. Preferably these olefins are 1-monoolefins.
  • the hydrocarbyl substituent may also be derived from the halogenated (e.g. chlorinated or brominated) analogs of such homo- or interpolymers.
  • the substituent may be made from other sources, for example monomeric high molecular weight alkenes (e.g. 1-tetracontene) and chlorinated analogs and hydrochlorinated analogs thereof, aliphatic petroleum fractions, for example paraffin waxes and cracked and chlorinated analogs and hydrochlorinated analogs thereof, white oils, synthetic alkenes for example produced by the Ziegler and other methods known to those skilled in the art. Any unsaturation in the substituent may if desired be reduced or eliminated by hydrogenation according to procedures known in the art.
  • monomeric high molecular weight alkenes e.g. 1-tetracontene
  • chlorinated analogs and hydrochlorinated analogs thereof aliphatic petroleum fractions, for example paraffin waxes and cracked and chlorinated analogs and hydrochlorinated analogs thereof, white oils
  • synthetic alkenes for example produced by the Ziegler and other methods known to those skilled in the art. Any unsaturation in the substituent may if desired be
  • Suitable hydrocarbyl based groups may contain non-hydrocarbon moieties. For example they may contain up to one non-hydrocarbyl group for every ten carbon atoms provided this non-hydrocarbyl group does not significantly alter the predominantly hydrocarbon character of the group.
  • hydrocarbyl based substituents are purely aliphatic hydrocarbon in character and do not contain such groups.
  • the hydrocarbyl-based substituents are preferably predominantly saturated, that is, they contain no more than one carbon-to-carbon unsaturated bond for every ten carbon-to-carbon single bonds present.
  • polymeric hydrocarbyl-based substituents are poly-isobutenes known in the art.
  • the nitrogen compounds can vary from ammonia itself to hydrocarbyl amines.
  • Hydrocarbyl as used herein denotes a group having a carbon atom directly attached to the remainder of the molecule.
  • the hydrocarbyl substituent in such amines contain at least 8 and up to about 50 carbon atoms.
  • Hydrocarbyl substituent can comprise up to about 200 carbon atoms. Examples of a hydrocarbyl groups include but are not limited to methyl, ethyl, propyl, isopropyl, butyl and isomers and polymers thereof.
  • Hydrocarbyl-Substituted Amines suitable for use in the fuel compositions of the present invention are well known to those skilled in the art and are described in a number of patents. Among these is U.S. Pat. Nos. 3,275,554; 3,438,757; 3,454,555; 3,565,804; 3,755,433 and 3,822,209 (the entire teachings of which is incorporated herein by reference). These patents describe suitable hydrocarbyl amines for use in the present invention including their method of preparation.
  • the amino compound can be a polyamine or a mixture of polyamines, for example a mixture of ethylene polyamines.
  • Poly amino compounds useful for reacting with acylating agents include polyalkylene polyamines of the general formula:
  • each R is independently selected from hydrogen, or a hydrocarbyl group.
  • a hydrocarbyl group include but are not limited to methyl, ethyl, propyl, isopropyl, butyl and isomers and polymers thereof.
  • X is preferably a C 1-8 alkylene group, most preferably ethylene, and n can be an integer from 0 to 10.
  • polyalkylene polyamines (1) include ethylene diamine, diethylenetriamine, tetraethylenepentamine, tri-(trimethylene) tetramine, pentaethylenehexamine, hexaethyleneheptamine, 1,2-propylenediamine, and other commercially available materials which comprise complex mixtures of polyamines.
  • the amine or polyamine may be a hydroxyalkyl-substituted amine or polyamine wherein the parent amine or poly amine can also be converted to their corresponding alkoxylates.
  • the alkoxylates are products derived from the reaction of 1-100 molar equivalents of an alkoxylating agent with the nitrogen moiety.
  • the required alkoxylating agents are chosen from the group comprising: ethylene oxide, propylene oxide, butylene oxide and epichlorohydrin, or their mixtures.
  • the alkoxylates can be produced from a single alkoxylating agent or alternatively from a mixture of agents.
  • the alkoxylate derived from mixtures of alkoxylating agents can be prepared by stepwise addition of the agents to the amine to form block polymers, or can be added as mixed agents to form random block/alternating alkoxylates. These oxyalkylates can also be further derivatized with organic acids to form esters.
  • Typical acylated nitrogen compounds are formed by the reaction of a molar ratio of acylating agent: nitrogen compound of from 10:1 to 1:10, preferably from 5:1 to 1:5, more preferably from 2:1 to 1:2 and most preferably from 2:1 to 1:1.
  • This type of acylated nitrogen compounds compound and the preparation thereof is well known to those skilled in the art
  • a further type of acylated nitrogen compound suitable for use in the present invention is the product of the reaction of a fatty monocarboxylic acid of about 10-30 carbon atoms and the afore-described alkylene amines, typically, ethylene, propylene or trimethylene polyamines containing 2 to 10 amino groups and mixtures thereof.
  • a type of acylated nitrogen compound belonging to this class is that made by reacting an hydrocarbyl amine or poly amine with substituted succinic acids or anhydrides, or with aliphatic mono-carboxylic acids having from 2 to about 22 carbon atoms.
  • Typical of the monocarboxylic acids are formic acid, acetic acid, dodecanoic acid, butanoic acid, oleic acid, stearic acid, the commercial mixture of stearic acid isomers known as isostearic acid, tolyl acid, etc. Such materials are more fully described in U.S. Pat. Nos. 3,216,936 and 3,250,715 (the entire teachings of which is incorporated herein by reference).
  • the fatty mono-carboxylic acids are generally mixtures of straight and branched chain fatty carboxylic acids containing 10-30 carbon atoms. These include but are not limited to Rapeseed Oil Fatty Acid, and Tall Oil Fatty Acids (TOFA). Fatty dicarboxylic acids can also be used.
  • the mixture of fatty acids contain from 5 to about 30 mole percent straight chain acid and about 70 to about 95 percent mole branched chain fatty acids.
  • the commercially available mixtures are those known widely in the trade as isostearic acid. These mixtures are produced as a by-product from the dimerization of unsaturated fatty acids as described in U.S. Pat. Nos. 2,812,342 and 3,260,671 (the entire teachings of which is incorporated herein by reference).
  • the branched chain fatty acids can also include those in which the branch may not be alkyl in nature, for example phenyl and cyclohexyl stearic acid and the chloro-stearic acids.
  • Branched chain fatty carboxylic acid/alkylene polyamine products have been described extensively in the art. See for example, U.S. Pat. Nos. 3,110,673; 3,251,853; 15 3,326,801; 3,337,459; 3,405,064; 3,429,674; 3,468,639; 3,857,791 (the entire teachings of which is incorporated herein by reference).
  • Acylated nitrogen compounds of this class can alternatively be prepared by reacting a poly(isobutene)- substituted succinic acid-derived acylating agent (e.g. anhydride, acid, ester, etc.) wherein the poly(isobutene) substituent has between about 12 to about 200 carbon atoms with a mixture of ethylene polyamines having 3 to about 9 amino nitrogen atoms per ethylene polyamine and about 1 to about 8 ethylene groups.
  • a poly(isobutene)- substituted succinic acid-derived acylating agent e.g. anhydride, acid, ester, etc.
  • Phenol/aldehyde/amine condensates are useful as dispersants in the fuel.
  • the compositions of the present invention include those generically referred to as Mannich condensates.
  • Mannich compounds can be made by reacting simultaneously or sequentially at least one active hydrogen compound for example a hydrocarbon-substituted phenol (e.g. an alkyl phenol wherein the alkyl group has at least an average of about 8 to 200; preferably at least 12 up to about 200 carbon atoms) having at least one hydrogen atom bonded to an aromatic carbon, with at least one aldehyde or aldehyde-producing material (typically formaldehyde or a precursor thereof) and at least one amino or polyamino compound having at least one NH group.
  • a hydrocarbon-substituted phenol e.g. an alkyl phenol wherein the alkyl group has at least an average of about 8 to 200; preferably at least 12 up to about 200 carbon atoms
  • aldehyde or aldehyde-producing material typically formaldehyde or a precursor thereof
  • the amino compounds include primary or secondary monoamines having hydrocarbon substituents of 1 to 30 carbon atoms or hydroxyl substituted hydrocarbon substituents of 1 to about 30 carbon atoms.
  • Another type of typical amino compound is the polyamines described above in relation to acylated nitrogen-containing compounds.
  • the Particulate Dispersants are present in the formulation in the range of about 0% to about 70%, more preferably between about 0.1% to about 60.0% v/v, even more preferably from about 10.0% to about 55.0% v/v, and most preferably between about 20.0% to about 50.0% v/v of the additive composition.
  • Particulate Settling Inhibitors are materials which inhibit conglomerated Fatty Acid Methyl Esters, or conglomerated FAME's and hydrocarbon or paraffin components forming larger conglomerates, and inhibition these conglomerates from settling out of solution.
  • Particulate Settling Inhibitors Three polymer families are considered suitable polymers as part of the invention to function as Particulate Settling Inhibitors. These are hydrocarbon polymers, oxyalkylene polymers and nitrogen containing polymers.
  • Hydrocarbon polymers which can be used in accordance with the invention are homo polymers and copolymers of two or more of ethylenically unsaturated monomers, selected from the group consisting of; alpha-olefins (e.g. styrene, 1-octene), unsaturated esters (eg. vinyl acetate), and unsaturated acids and their esters (eg. fumaric, itaconic acids, maleic anhydride and phthallic anhydride).
  • alpha-olefins e.g. styrene, 1-octene
  • unsaturated esters eg. vinyl acetate
  • unsaturated acids and their esters eg. fumaric, itaconic acids, maleic anhydride and phthallic anhydride.
  • the preferred polymers can be described by the general formula:
  • the suitable molar ratios of monomers in the co polymer are preferably in the range of about 3 to 1 and 1 to 3.
  • Olefins that can be copolymerized with e.g. maleic anhydride include 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
  • the acid or anhydride group of the polymer can be esterified by any suitable technique and although preferred it is not essential.
  • Alcohols which can be used include normal alcohols such as n-decan-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, and n-octadecan-1-ol and branched alcohols such as 1-methylpentadecan-1-ol or 2-methyltridecan-1-ol or a mixture thereof.
  • the particularly preferred polymers are those having a number average molecular weight, as measured by vapor phase osmometry, of 1,000 to 100,000, more especially 1,000 to 30,000.
  • polyoxyalkylene polymers which can be used in accordance with the invention are polyoxyalkylene esters, ethers, ester/ethers and mixtures thereof, particularly those containing at least one, preferably at least two, C 10 to C 30 alkyl groups and a polyoxyalkylene glycol group of molecular weight up to 5,000, preferably about 200 to about 5,000, and the alkyl spacer group in said polyoxyalkylene glycol containing from 1 to 6 carbon atoms.
  • esters, ethers or ester/ethers can be described by the general formula:
  • R and R′ may be the same or different, and represented by
  • the polyalkylene spacer segment (D) of the glycol can encompass an alkylene group, in which the alkylene group has 1 to 6 carbon atoms.
  • the spacer can be linear or branched.
  • Common glycol spacer segments are methylene, ethylene, trimethylene, tetramethylene hexamethylene moieties which are substantially linear, and propylene which has some degree of branching.
  • Nitrogen containing polymer where the polymer is composed of derivatives of a primary or secondary amine, wherein an amine has been converted to an amide, imide, imidazoline, carbamate, urea, imine, or an enamine.
  • the nitrogen atom can be attached to a linear, branched, saturated, unsaturated or a cyclic, hydrocarbon; or to aromatic or poly aromatic groups, to hydrogens, or to a combination of these groups.
  • a non-exclusive list of chain lengths attached to the nitrogen atom are in the range of about C 1 -C 30 such as butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, uneicosyl, docosyl, tricosyl, and tetracosyl, and in the case of secondary amines, the combinations in the range of about C 1 -C 30 , are also suitable,
  • the amine functional class may also include poly amines.
  • the poly amines are described by the formula:
  • Suitable polyamines of the present invention are the polyethylene poly amines such as EDA (ethylenediamine), DETA (diethylenetriamine), TETA (triethylenetetraamine) and their higher homologs; their alkyl analogs (as exemplified, but not limited to, N-coco-ethylenediamine, N-oleyl-ethylenediamine, and N-butyl-ethylenediamine), and their analogs based on other industrially available spacers such as propyl and hexyl (as exemplified, but not limited to, dipropylenetriamine, and bis-hexamethylenetriamine); and their subsequent derivatives such as; ester amines, amido amines, imido amines, imidazolines, carbamates, ureas, imines, and enamines.
  • EDA ethylenediamine
  • DETA diethylenetriamine
  • TETA triethylenetetraamine
  • alkyl analogs as exemplified
  • the parent amine or poly amine can also be converted to their corresponding alkoxylates.
  • the alkoxylates are products derived from the reaction of 1-100 molar equivalents of an alkoxylating agent with the nitrogen moiety.
  • the required alkoxylating agents are chosen from the group comprising: ethylene oxide, propylene oxide, butylene oxide and epichlorohydrin, or their mixtures.
  • the alkoxylates can be produced from a single alkoxylating agent or alternatively from a mixture of agents.
  • the alkoxylate derived from mixtures of alkoxylating agents can be prepared by stepwise addition of the agents to the amine to form block polymers, or can be added as mixed agents to form random block/alternating alkoxylates. These oxyalkylates can also be further derivatized with organic acids to form esters.
  • the Particulate Settling Inhibitors are present in the formulation in the range of about 0% to about 70%, more preferably between about 0.1% to about 60.0% v/v, even more preferably between about 10.0% to about 55.0% v/v, and most preferably between about 20.0% to about 50.0% v/v of the additive composition.
  • Compatibility Enhancers are materials which are believed to solubilize and break up agglomerated or conglomerated Fatty Acid Methyl Esters, or agglomerated or conglomerated FAME's and hydrocarbon or paraffin components, and retard their dissolution from the bulk fuel.
  • the Compatibility Enhancer in the formulation may be a single compound or a combination of compounds so as to form an intertwined synergistic matrix.
  • the Compatibility Enhancers are selected from monofunctional alcohols, glycols, polyols, esters, ethers, glycol ether acetates, ketones, glycol ethers, amides, amines, nitro compounds and combinations of two or more of the foregoing.
  • At least one of the Compatibility Enhancers is a monofunctional alcohol.
  • mono-functional alcohols include C 1 -C 30 alcohols, wherein the hydrocarbon portion of the alcohol can be linear, branched, saturated, unsaturated, or cyclic, or an aromatic or poly aromatic.
  • mono-functional alcohols include n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, amyl alcohol, 2-ethylhexanol, decyl alcohol, and 1-octadecanol.
  • At least one of the Compatibility Enhancers is a polyol.
  • polyols include glycols such as ethylene glycol, polyethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol.
  • the polyol used is propylene glycol.
  • At least one of the Compatibility Enhancers is a glycol ether.
  • a “glycol ether” shall define a molecule having the structure of a glycol, except that the molecule possesses an ether linkage to an alkyl group from one of the oxygen atoms in the glycol.
  • a mono-alkyl ether of ethylene glycol for example, has the structure of ethylene glycol with an ether linkage connected to an alkyl group instead of one of the two hydroxyl groups normally found on ethylene glycol.
  • ethylene glycol mono butyl ether refers to a molecule having the structure of ethylene glycol with an ether linkage connected to a butyl group.
  • a reference to a number of carbons on the ether refers to the number of carbons in an alkyl group attached to the ether linkage.
  • a “C 3 -C 10 glycol ether” refers to a glycol ether in which the alkyl group attached to the ether has three to ten carbons.
  • the glycol ether Compatibility Enhancer includes more than one ether linkage defined as a polyglycol ether.
  • the polyglycol ethers are generally products of an alcohol reacted with ethylene or propylene oxide.
  • the repeating glycol unit is preferably less than 16 more preferably less than 8, and most preferably 3 or less.
  • Some examples include; ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether.
  • the glycol ether is selected from a combination of two or more glycol ethers.
  • At least one of the Compatibility Enhancers is an ester.
  • Ester Compatibility Enhancers include C 2 -C 30 esters.
  • the carbon atoms on either side of the ester linkage can be linear, branched, saturated, unsaturated, or cyclic, or aromatic or poly aromatic.
  • ester Compatibility Enhancers include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, amyl acetate, methyl amyl acetate, n-propyl propionate, n-butyl propionate, isobutyl isobutyrate, 2-ethylhexyl acetate, ethylene glycol diacetate, dimethyl adipate, dimethyl succinate, dimethyl glutarate, C 8 -C 30 fatty acid methyl esters, propylene glycol diacetate (diacetoxypropane), and combinations of two or more thereof.
  • the longest hydrocarbon chain in the ester Compatibility Enhancer contains C 1 -C 8 atoms.
  • At least one of the Compatibility Enhancers is a glycol ether ester.
  • Glycol ether esters have structures similar to glycol ethers except that they possess an ester linkage in the place of the hydroxy group on the corresponding glycol ether.
  • the glycol ether and polyglycol ether are as described previously.
  • the ester portion on the molecule is formed by reacting the terminal hydroxyl group of the glycol with an acyl bearing moiety.
  • the acyl bearing moiety can contain between about 3-30 carbon atoms, wherein the hydrocarbon portion can be linear, branched, saturated, unsaturated, or cyclic or aromatic or poly aromatic.
  • esters may also be prepared by esterifying polyethoxylated fatty acids, or esterifying polyglycols to form diesters of polyethers, or esterifying polyethoxylated alcohols to form ether esters
  • Suitable glycols are polyethylene glycols (PEG) and polypropylene glycols (PPG) having a molecular weight of from 100 to 5,000, preferably from 200 to 2,000.
  • Diesters, or ether/esters and mixtures thereof are suitable as additives. It is preferred that a major amount of the dialkyl compound be present. In particular, C 6 to C 30 ether esters and diesters of polyethylene glycol, polypropylene glycol or polyethylene/polypropylene glycol mixtures are preferred.
  • ether esters include ethyl-3-ethoxypropionate, ethylene glycol monobutyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate,
  • At least one of the Compatibility Enhancers is an ether compound.
  • Some examples of Compatibility Enhancers selected from the class of ethers include diisopropyl ether, tetrahydrofuran (THF), dipropylene glycol dimethyl ether, and combinations of two or more thereof.
  • the ether is THF.
  • At least one of the Compatibility Enhancers is a ketone.
  • Some examples of Compatibility Enhancers selected from the class of ketones include straight or branched C 3 to C 30 ketones (wherein C 3 to C 30 refers to the number of carbon atoms in the ketone molecule).
  • ketone Compatibility Enhancers are acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, cyclohexanone, methyl amyl ketone, and combinations of two or more thereof.
  • At least one of the Compatibility Enhancers is an amide compound.
  • the amide is a C 3 to C 30 amide (wherein C 3 to C 30 refers to the number of carbon atoms in the amide molecule).
  • Some examples of Compatibility Enhancers selected from the class of amides include N,N-dimethylformamide (DMF), N-methylpyrrolidone and dimethylacetamide and combinations of two or more thereof.
  • the amide is DMF.
  • At least one of the Compatibility Enhancers is a nitro compound.
  • the nitro compounds can be nitration products of aliphatic or aromatic organic feedstocks, and derivatives there of. These derivatives can contain other aliphatic substituents on the aromatic ring, or can also contain other functional groups such as esters, ethers, amines alcohols, halogens, and combinations there of.
  • Some examples of Compatibility Enhancers selected from the class of nitro compounds include but are not limited to nitropropane isomers, nitrobenzenes, nitro phenols and combinations there of.
  • the Compatibility Enhancer is selected from an individual compatibility enhancer (glycol ethers, alcohols, ethers, ketones, amides and esters) and in other embodiments the compatibility enhancer is selected from a combination of compatibility enhancers.
  • the preferred individual compatibility enhancers are glycol ethers, alcohols, ethers, and esters, and most preferably glycol ethers, and alcohols.
  • the single Compatibility Enhancer is selected from ethylene glycol monopropyl ether, diethylene glycol monobutyl ether, or 2-ethylhexanol.
  • the Compatibility Enhancer includes a combination of two or more of the classes of Compatibility Enhancer selected from the group comprising glycol ethers, alcohols, ethers, ketones, amides and esters, wherein any useful combination can be selected.
  • the combination and ratio of Compatibility Enhancers is to be utilized is greatly dependant on the particular properties of the fuel to be stabilized.
  • the preferred combination of Compatibility Enhancers include at least one glycol ether and at least one alcohol in a ratio range of about 1 part glycol ether to about 3 parts alcohol to a ratio range of about 3 part glycol ether to about 1 parts alcohol, more preferably where the glycol ether and the alcohol are in a ratio of about 1 part glycol ether to about 1 part alcohol of the total of all Compatibility Enhancer components.
  • the preferred combination of Compatibility Enhancers include at least one poly glycol ether and at least one alcohol in a ratio range of about 1 part poly glycol ether to about 3 parts alcohol to a ratio range of about 3 parts poly glycol ether to about 1 part alcohol, more preferably where the poly glycol ether and the alcohol are in a ratio of about 1 part poly glycol ether to about 1 part alcohol of the total of all Compatibility Enhancer components.
  • the preferred combination of Compatibility Enhancers include at least one glycol ether, and at least one ester in a ratio range of about 1 part glycol ether to about 3 parts ester to a ratio range of about 3 parts glycol ether to about 1 part ester, more preferably where the glycol ether and the ester are in a ratio of about 1 part glycol ether to about 1 part ester of the total of all Compatibility Enhancer components.
  • the ester is selected from the group consisting of: methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, propylene glycol diacetate and combinations of two or more thereof.
  • the glycol ether Compatibility Enhancer is selected from the group consisting of: ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and combinations of two or more thereof.
  • the glycol ether can also be a polyglycol ether.
  • the polyol Compatibility Enhancer is selected from the group consisting of: ethylene glycol, polyethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and combinations of two or more thereof.
  • the Compatibility Enhancer are utilized in the formulation in the range of about 10% to about 80%, more preferably between about 10.0% to about 70.0% v/v, even more preferably between about 10.0% to about 60.0% v/v, and most preferably between about 20.0% to about 60.0% v/v of the additive composition.
  • Another aspect of this invention is a method of diminishing the formation of insoluble particulates in renewable fuels, or blends of renewable fuel with petroleum fuels by metering into the renewable fuel, or the renewable fuel/petroleum fuel blend the particulate inhibition formulation.
  • the specific level of utilization of the particulate inhibitor formulation is chosen as the amount which is required to produce a worthwhile benefit in retarding particulate formation in either the renewable fuel, or in the renewable fuel petroleum fuel blend. This amount may differ for different fuels and is readily determined by routine experimentation.
  • the particulate inhibitor formulation is generally present in the renewable component (B100) in the range of about 200 mg/l to about 8000 mg/l; or in the renewable fuel petroleum fuel blend in the range of about 200 mg/l to about 8000 mg/l based on content of the renewable fuel component.
  • the particulate inhibitor formulation can be suitably added at a treat rate of at least 200 mg/l to about 8000 mg/l, more preferably from 500 mg/l to about 6000 mg/l, and most preferably from about 1000 mg/l to about 4000 mg/l based on renewable fuel content.
  • a non-exclusive list of additives typically used in petroleum fuel and which can be incorporated into petroleum fuel renewable fuel blends are: (a) low temperature operability/cold flow additives such as ethylene-unsaturated ester copolymers, comb polymers containing hydrocarbyl groups pendant from a polymer backbone, polar nitrogen compounds having a cyclic ring system, hydrocarbyl, hydrocarbon polymers such as ethylene alpha-olefin copolymers, polyoxyethylene esters, ethers and ester/ether mixtures such as behenic diesters of polyethylene glycol, (b) corrosion inhibitors, such as fatty amines, poly amines and amides thereof known as filming amines, and polymers of fatty acids known as dimer trimer acids, (c) cetane improvers such as 2-ethyl hexyl nitrite (2EHN) and di-tert butyl peroxide (DTBP), (d) detergents such as components derived from reactions of organic acids with
  • tolutriazole and derivatives thereof, 4,5,6,7-tetrahydrobenzotriazole and 5,5′-methylenebisbenzotriazole, Mannich bases of benzotriazole or tolutriazole, e.g.
  • 2-mercaptobenzothiazole 2,5-dimercapto-1,3,4-thiadiazole and derivatives thereof, and 3,5-bis[di(2-ethyl-hexyl)aminomethyl]-1,3,4-thiadiazolin-2-one
  • Amino compounds and imino compounds such as N,N′-disalicylidene propylene diamine (I)MD), salicylaminoguanadine and salts thereof, (k) biocides, ( 1 ) thermal stabilizers such as those compounds containing secondary and tertiary amines, (m) anti-foams such as poly ether modified siloxanes and (n) conductivity additives such as those having components derived from chemical families that include: aliphatic amines-fluorinated polyolefins (U.S.
  • Low temperature operability/coldflow additives are used in fuels to enable users and operators to handle the fuel at temperatures below which the fuel would normally cause operational problems.
  • Distillate fuels such as diesel fuels tend to exhibit reduced flow at low temperatures due in part to formation of waxy solids in the fuel.
  • the reduced flow of the distillate fuel affects transport and use of the distillate fuels in refinery operations and internal combustion engines. This is a particular problem during the winter months and especially in northern regions where the distillates are frequently exposed to temperatures at which solid formation begins to occur in the fuel, generally known as the cloud point (ASTM D 2500) or wax appearance point (ASTM D 3117).
  • waxy solids in the fuel will in time essentially prevent the ability of the fuel to flow, thus plugging transport lines such as refinery piping and engine fuel supply lines.
  • transport lines such as refinery piping and engine fuel supply lines.
  • wax precipitation and gelation can cause the engine fuel filters to plug resulting in engine inoperability.
  • An example of a low temperature operability/cold flow additive available from Innospec Inc, of Newark, Del. is PPD 8500.
  • Corrosion Inhibitors are a group of additives which are utilized to prevent or retard the detrimental interaction of fuel and materials present in the fuel with engine components.
  • the additives used to impart corrosion inhibition to fuels generally also function as lubricity improvers.
  • Examples of corrosion inhibitors available from Innospec Inc. of Newark, Del. are DCI 6A, and DCI 4A.
  • Cetane Improvers are used to improve the combustion properties of middle distillates. Fuel ignition in diesel engines is achieved through the heat generated by air compression, as a piston in the cylinder moves to reduce the cylinder volume during the compression stroke. In the engine, the air is first compressed, then the fuel is injected into the cylinder; as the fuel contacts the heated air, it vaporizes and finally begins to burn as the self-ignition temperature is reached. Additional fuel is injected during the compression stroke and the fuel bums almost instantaneously, once the initial flame has been established. Thus, a period of time elapses between the beginning of fuel injection and the appearance of a flame in the cylinder. This period is commonly called “ignition delay” and must be relatively short in order to avoid “diesel knock”.
  • a major contributing factor to diesel fuel performance and the avoidance of “diesel knock” is the cetane number of the diesel fuel. Diesel fuels of higher cetane number exhibit a shorter ignition delay than do diesel fuels of a lower cetane number. Therefore, higher cetane number diesel fuels are desirable to avoid diesel knock. Most diesel fuels possess cetane numbers in the range of about 40 to55. A correlation between ignition delay and cetane number has been reported in “How Do Diesel Fuel Ignition Improvers Work” Clothier, et al., Chem. Soc. Rev, 1993, pg. 101-108, the entire teaching of which is incorporated herein. Cetane improvers have been used for many years to improve the ignition quality of diesel fuels. This use is described in U.S. Pat. No. 5,482,518 (the entire teaching of which is incorporated herein by reference). An example of a Cetane Improver available from Innospec Inc. of Newark Del. is CI-0801.
  • Detergents are additives which can be added to hydrocarbon fuels to prevent or reduce deposit formation, or to remove or modify formed deposits. It is commonly known that certain fuels have a propensity to form deposits which may cause fuel injectors to clog and affect fuel injector spray patterns. The alteration of fuel spray patterns may cause non uniform distribution and/or incomplete atomization of fuel resulting in poor fuel combustion. The accumulation of deposits is characterized by overall poor drivability including hard starting, stalls, rough engine idle and stumbles during acceleration. Furthermore if deposit build up is allowed to proceed unchecked, irreparable harm may result which may require replacement or non-routine maintenance. In extreme cases, irregular combustion could cause hot spots on the pistons which can resulted in total engine failure requiring a complete engine overhaul or replacement. Examples of detergents available from Innospec Inc. of Newark, Del. are DDA 350, and OMA 580.
  • Lubricity improvers increase the lubricity of the fuel, to prevent wear on contacting metal surfaces in the engine.
  • Certain diesel engine designs rely on fuel as a lubricant for their internal moving components. A potential detrimental result of poor lubricating ability of the fuel can be premature failure of engine components (e.g. fuel injection pumps). Examples of lubricity improvers available from Innospec Inc. of Newark, Del. OLI 9070.x and OLI9101.x.
  • Dyes and Markers are materials used by the EPA (Environmental Protection Agency) and the IRS (Internal Revenue Service) to monitor and track fuels. Since 1994 the principle use for dyes in fuel is attributed to the federally mandated dying or marking of untaxed “off-road” middle distillate fuels as defined in the Code of Federal Regulations, Title 26, Part 48.4082-1(26 CFR 48.4082-1). Dyes are also used in Aviation Gasoline; Red, Blue and Yellow dyes denote octane grades in Avgas. Markers are used to identify, trace or mark petroleum products without imparting visible color to the treated product. One of the main applications for markers in fuels is in Home Heating Oil. Examples of Dyes and Markers available from Innospec Inc. of Newark, Del. are Oil Red B4 and Oil Color IAR.
  • Anti-Icing Additives are mainly used in the aviation industry and in cold climates. They work by combining with any free water and lowering the freeze point of the mixture that no ice crystals are formed. Examples of anti-icing additives available from Innospec Inc. of Newark, Del. are Dri-Tech and DEGME.
  • Demulsifiers/Anti-Haze additives are mainly added to the fuel to combat cloudiness problems which may be caused by the distribution of water in a wet fuel by a dispersant used in stability packages.
  • Examples of demulsifiers/anti-haze additives available from Innospec Inc. of Newark, Del. are DDH 10 and DDH 20.
  • Antioxidants are used to inhibit the degradation of fuels by interaction of the fuel with atmospheric oxygen. This process is known as “Oxidative Instability”. The oxidation of the fuel results in the formation of alcohols, aldehydes, ketones, carboxylic acids and further reaction products of these functional groups, some of which may yield polymers. Antioxidants function mainly by interrupting free radical chain reactions thus inhibiting peroxide formation and fuel degradation. Examples of antioxidants additives available from Innospec Inc. of Newark, Del. are AO 37 and AO 29.
  • Metal Deactivators are chelating agents that form stable complexes with specific metals. Certain metals (e.g. copper and zinc) are very detrimental to fuel stability as they catalyze oxidation processes resulting in fuel degradation (increase in gums, polymers, color, and acidity).
  • An example of a metal deactivator available from Innospec Inc. of Newark, Del. is DMD.
  • Biocides are used to control microorganisms such as bacteria and fungi (yeasts, molds) which can contaminate fuels.
  • Biological problems are generally a function of fuel system cleanliness, specifically water removal from tanks and low point in the system.
  • An example of a Biocide available from Innospec Inc. of Newark, Del. is 6500.
  • Thermal Stabilizers are additives which help prevent the degradation of fuel upon exposure to elevated temperatures. Fuel during its use cycle is exposed to varying thermal stresses. These stresses are: 1) In storage—where temperatures are low to moderate, 0 to 49° C. (32 to 120° F.), for long periods of time, 2) In vehicle fuel systems—where temperatures are higher depending on ambient temperature and engine system, 60 to 70° C. (140 to 175° F.), but the fuel is subjected to these higher temperatures for shorter periods of time than in normal storage, and 3) In (or near) the engine—where temperatures reach temperatures as high as 150° C. (302° F.) before injection or recycling, but for even shorter periods of time. Thermal stability additives protect the fuel uniformity/stability against these types of exposures. Examples of thermal stabilizers available from Innospec Inc. of Newark, Dela. are FOA 3 and FOA 6.
  • Anti-foams additives are mainly utilized to prevent foaming of the fuel during pumping, transport and use.
  • examples of anti-foams available in the marketed are the TEGOPRENTM (available from Dow Coming), SAGTM (available from ex OSi—now Dow), and RHODORSILTM (available from ex Rhone Poulenc).
  • Conductivity Additives/Static Dissipaters/Electrical Conductivity additives are used to minimize the risk of electrostatic ignition in hydrocarbons fuels and solvents. It is widely known that electrostatic charges can be frictionally transferred between two dissimilar, nonconductive materials. When this occurs, the electrostatic charge thus created appears at the surfaces of the contacting materials. The magnitude of the generated charge is dependent upon the nature of and, more particularly, the respective conductivity of each material. Electrostatic charging is known to occur when solvents and fuels flow through conduits with high surface area or through “fine” filters. The potential for electrostatic ignition and explosion is probably at its greatest during product handling, transfer and transportation.
  • Static charge accumulates in these fluids because electric charge moves very slowly through these liquids and can take a considerable time to reach a surface which is grounded. Until the charge is dissipated, a high surface-voltage potential can be achieved which can create an incendiary spark, resulting in an ignition or an explosion.
  • the increased hazard presented by low conductivity organic liquids can be addressed by the use of additives to increase the conductivity of the respective fluids.
  • the increased conductivity of the liquid will substantially reduce the time necessary for any charges that exist in the liquid to be conducted away by the grounded inside surface of the container. Examples of conductivity additives available from Innospec Inc. of Newark, Del. are Stadis® 425 and Stadis® 450.
  • the invention is further described by the following illustrative but non-limiting examples.
  • the following examples depict affect of the novel additive composition on particulate inhibition in renewable fuels and renewable fuel petroleum fuel blends.
  • Certain substances that are soluble or appear to be soluble in renewable fuel or in renewable fuel petroleum blends at ambient temperatures can upon cooling or standing for extended periods, come out of solution and possibly block fuel delivery systems.
  • Two testing methods were used to assess the propensity of a fuel to form in-soluble substances during extended storage.
  • This test method covers the determination by filtration time after cold soak the suitability of a Biodiesel (B100) for blending with light-middle and middle distillates to provide adequate low temperature operability performance to at least the cloud point of the finished blend.
  • the test method can be used as a means of evaluating the propensity of a biodiesel and biodiesel blends to cause fuel filter plugging. Fuels that give short filtration times are expected to give satisfactory operation down to the cloud point of biodiesel blends.
  • Bio Diesel (B100) from different feed stocks were evaluated as per the filtration method.
  • Table 1 denotes the filtration times for the base fuels.
  • the respective B100's were treated with 2000 mg/l of a particulate inhibitor formulation.
  • the treated samples were evaluated as per ASTM filtration method.
  • Table 2 denotes the filtration times for the treated fuels.
  • the additive evaluated in the study was a bio diesel particulate inhibiting additive, composed 60% of a acrylic acid polymer and 40% diluents.
  • compositions selected for evaluation of formulation component performance were: Agglomeration Retarder—Viscoplex 10390 obtained from Rhomax, Particulate Dispersant—OMA 350 obtained form Innospec Fuel Specialties LLC, Particulate Settling Inhibitor Dodiwax 4500 obtained from Clariant, Compatibility Enhancer A—2-ethylhexanol—and Compatibility Enhancer B—Butoxy ethanol
  • the cold stored fuels were evaluated for particulate formation and visibly rated with the best being little or no of visible particulates, to the worst being sample that contains the most visible particulates. It is important to note that while some of the formulations performed better than others, they all performed better than the untreated sample which was completely solid after 2 day of storage. The 5 day storage results are listed in table 4.
  • compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those skilled in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein where the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
US12/171,560 2008-07-11 2008-07-11 Fuel composition with enhanced low temperature properties Abandoned US20100005706A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US12/171,560 US20100005706A1 (en) 2008-07-11 2008-07-11 Fuel composition with enhanced low temperature properties
AU2009268728A AU2009268728A1 (en) 2008-07-11 2009-07-07 Fuel composition with enhanced low temperature properties
MYPI2011003217A MY160060A (en) 2008-07-11 2009-07-07 Fuel composition with enhanced low temperature properties
KR1020117003305A KR101646796B1 (ko) 2008-07-11 2009-07-07 저온 특성이 개선된 연료 조성물
BRPI0915891-0A BRPI0915891B1 (pt) 2008-07-11 2009-07-07 "uso de uma composição aditiva inibidora de particulado"
PCT/US2009/049778 WO2010005947A2 (en) 2008-07-11 2009-07-07 Fuel composition with enhanced low temperature properties
RU2011105060/04A RU2515238C2 (ru) 2008-07-11 2009-07-07 Топливная композиция с улучшенными низкотемпературными свойствами
EP09795050.5A EP2307528B1 (de) 2008-07-11 2009-07-07 Verwendung zur verbesserung der niedrigtemperatureigenschaften einer kraftstoffzusammensetzung
CN200980135725.9A CN102149797B (zh) 2008-07-11 2009-07-07 具有改良的低温性能的燃料组合物
CA2733810A CA2733810C (en) 2008-07-11 2009-07-07 Fuel composition with enhanced low temperature properties
ZA2011/01126A ZA201101126B (en) 2008-07-11 2011-02-11 Fuel composition with enhanced low temperature properties
US13/633,537 US9493716B2 (en) 2008-07-11 2012-10-02 Fuel composition with enhanced low temperature properties
AU2016216699A AU2016216699B2 (en) 2008-07-11 2016-08-19 Fuel composition with enhanced low temperature properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/171,560 US20100005706A1 (en) 2008-07-11 2008-07-11 Fuel composition with enhanced low temperature properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/633,537 Continuation US9493716B2 (en) 2008-07-11 2012-10-02 Fuel composition with enhanced low temperature properties

Publications (1)

Publication Number Publication Date
US20100005706A1 true US20100005706A1 (en) 2010-01-14

Family

ID=41503843

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/171,560 Abandoned US20100005706A1 (en) 2008-07-11 2008-07-11 Fuel composition with enhanced low temperature properties
US13/633,537 Active US9493716B2 (en) 2008-07-11 2012-10-02 Fuel composition with enhanced low temperature properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/633,537 Active US9493716B2 (en) 2008-07-11 2012-10-02 Fuel composition with enhanced low temperature properties

Country Status (11)

Country Link
US (2) US20100005706A1 (de)
EP (1) EP2307528B1 (de)
KR (1) KR101646796B1 (de)
CN (1) CN102149797B (de)
AU (2) AU2009268728A1 (de)
BR (1) BRPI0915891B1 (de)
CA (1) CA2733810C (de)
MY (1) MY160060A (de)
RU (1) RU2515238C2 (de)
WO (1) WO2010005947A2 (de)
ZA (1) ZA201101126B (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100031558A1 (en) * 2008-08-05 2010-02-11 Spirit Of The 21St Century Group, Llc Modified fuels and methods of making and using thereof
US20100235073A1 (en) * 2009-03-13 2010-09-16 Magneti Marelli Sistemas Automotivos Industria E Comercio Ltda. Sbs logical bio-diesel sensor
US20110021396A1 (en) * 2007-08-29 2011-01-27 Perry Stephen C Fuel additive
CN102443448A (zh) * 2010-10-11 2012-05-09 中国石油化工股份有限公司 一种柴油组合物和提高生物柴油氧化安定性的方法
CN102443447A (zh) * 2010-10-11 2012-05-09 中国石油化工股份有限公司 柴油组合物和提高生物柴油氧化安定性的方法
WO2013012983A1 (en) 2011-07-20 2013-01-24 Exxonmobil Research And Engineering Company Aviation gas turbine fuel with improved low temperature operability
WO2013098524A1 (fr) * 2011-12-28 2013-07-04 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse
FR2985267A1 (fr) * 2011-12-28 2013-07-05 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
FR2985266A1 (fr) * 2011-12-28 2013-07-05 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
WO2014149117A2 (en) 2012-12-28 2014-09-25 Exxonmobil Research And Engineering Company Blending of dewaxed biofuels with mineral-based kero(jet) distillate cuts to provide on-spec jet fuels
US20150144087A1 (en) * 2011-09-11 2015-05-28 Neste Oil Oyj Gasoline compositions and method of producing the same
WO2015077296A3 (en) * 2013-11-20 2015-08-13 Weatherford/Lamb, Inc. Anti-agglomerants for the prevention of hydrates
US9840678B2 (en) 2013-12-26 2017-12-12 Exxonmobil Research And Engineering Company Methods of inhibiting precipitation of biodiesel fuel components
US20180078327A1 (en) * 2014-07-25 2018-03-22 Arrinex, Inc. Apparatus and method for treating rhinitis
US10273425B2 (en) 2017-03-13 2019-04-30 Afton Chemical Corporation Polyol carrier fluids and fuel compositions including polyol carrier fluids
US20190185771A1 (en) * 2017-12-19 2019-06-20 Exxonmobil Research And Engineering Company Dewaxed diesel fuel composition
US10457884B2 (en) 2013-11-18 2019-10-29 Afton Chemical Corporation Mixed detergent composition for intake valve deposit control
CN112795408A (zh) * 2021-01-08 2021-05-14 贾辛枝 一种燃油清洁剂
EP3031885B1 (de) * 2014-12-09 2022-08-17 Afton Chemical Corporation Zusammensetzung zur verringerung der oberflächenspannung in einem destillierten brennstoff
US11795412B1 (en) 2023-03-03 2023-10-24 Afton Chemical Corporation Lubricating composition for industrial gear fluids
WO2024006694A1 (en) * 2022-06-30 2024-01-04 Bl Technologies, Inc. Diesel fuel composition and method for reducing diesel fuel filter blocking tendency from biodiesel contaminants
US11873461B1 (en) 2022-09-22 2024-01-16 Afton Chemical Corporation Extreme pressure additives with improved copper corrosion
US11884890B1 (en) 2023-02-07 2024-01-30 Afton Chemical Corporation Gasoline additive composition for improved engine performance

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192076A1 (en) * 2010-02-05 2011-08-11 Evonik Rohmax Additives Gmbh Composition having improved filterability
CN102286300B (zh) * 2011-08-30 2013-10-23 山西华顿实业有限公司 一种金属腐蚀抑制剂及其制备方法
CN103695054B (zh) * 2013-12-26 2014-09-03 西安嘉宏石化科技有限公司 醇基汽油添加剂及其制备方法和应用
CN105400555B (zh) * 2015-12-11 2017-08-25 广昌达新材料技术服务(深圳)股份有限公司 一种环保油品抗静电剂及其使用方法
US10876036B2 (en) 2016-01-06 2020-12-29 Championx Usa Inc. Temperature-stable paraffin inhibitor compositions
US10759989B2 (en) 2016-01-06 2020-09-01 Ecolab Usa Inc. Temperature-stable paraffin inhibitor compositions
US10465854B2 (en) * 2016-04-07 2019-11-05 Ecolab Usa Inc. Temperature-stable paraffin inhibitor compositions
US10858575B2 (en) 2017-06-02 2020-12-08 Championx Usa Inc. Temperature-stable corrosion inhibitor compositions and methods of use
WO2019133659A1 (en) * 2017-12-28 2019-07-04 Ecolab Usa Inc. Cloud point depressant for middle distillate fuels
EP3820972A1 (de) 2018-07-11 2021-05-19 Ecolab USA, Inc. Kaltflussadditiv für mitteldestillatbrennstoffe
CN111828148B (zh) * 2019-04-15 2021-10-26 康明斯排放处理公司 用于检测未完成清除事件的系统和方法
EP4083011B1 (de) 2019-12-31 2024-02-07 China Petroleum & Chemical Corporation Verstopfungshemmer für diesel mit niedrigem schwefelgehalt, verfahren zu seiner herstellung und seine verwendung
CA3188369A1 (en) 2020-09-14 2022-03-17 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
CN112341188A (zh) * 2020-10-19 2021-02-09 中国工程物理研究院材料研究所 一种Li4Ti5O12陶瓷靶材的快速烧结制备方法
CN113582784B (zh) * 2021-07-13 2022-04-22 四川省南部永生化工有限责任公司 乳化炸药废料回收的处理方法
CN114561236B (zh) * 2022-01-24 2023-06-27 成都小号科技有限公司 一种适用于可燃气体泄露警示的环保添加剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003881A1 (en) * 1998-11-23 2001-06-21 Pure Energy Corporation Diesel fuel composition
US20020062053A1 (en) * 2000-05-02 2002-05-23 Berlowitz Paul Joseph Wide cut Fischer Tropsch diesel fuels
US20030158074A1 (en) * 2002-01-09 2003-08-21 Haas Michael J. Lipid rich compositions, production of lipid rich compositions, production of fatty acid alkyl esters from heterogeneous lipid mixtures
US20050188606A1 (en) * 1999-03-26 2005-09-01 Rinaldo Caprotti Fuel oil compositions
US20080092436A1 (en) * 2006-06-30 2008-04-24 University Of North Dakota Method for cold stable biojet fuel
US20080127552A1 (en) * 2006-11-30 2008-06-05 Flint Hills Resources, L.P. Biodiesel fuel blend

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812342A (en) 1955-04-29 1957-11-05 Emery Industries Inc Hydrogenation of structurally modified acids and products produced thereby
GB824447A (en) 1956-08-10 1959-12-02 Gen Aniline & Film Corp Improved process of preparing anionic surface active agents
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
DE1248643B (de) 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3110673A (en) 1961-03-31 1963-11-12 California Research Corp Lubricant composition
US3429674A (en) 1962-02-02 1969-02-25 Lubrizol Corp Oil-soluble nitrogen composition
US3251853A (en) 1962-02-02 1966-05-17 Lubrizol Corp Oil-soluble acylated amine
NL300948A (de) 1962-11-23
US3405064A (en) 1963-06-06 1968-10-08 Lubrizol Corp Lubricating oil composition
NL137371C (de) 1963-08-02
US3320292A (en) 1963-09-05 1967-05-16 Lever Brothers Ltd Preparation of sulfonated fatty acid ester surface-active agents
US3455832A (en) 1963-09-09 1969-07-15 Monsanto Co Schiff bases
US3455831A (en) 1963-09-27 1969-07-15 Monsanto Co Imines containing a polyalkenylsuccinic anhydride substituent
US3250715A (en) 1964-02-04 1966-05-10 Lubrizol Corp Terpolymer product and lubricating composition containing it
US3216936A (en) 1964-03-02 1965-11-09 Lubrizol Corp Process of preparing lubricant additives
US3310492A (en) 1964-09-08 1967-03-21 Chevron Res Oils for two-cycle engines containing basic amino-containing detergents and aryl halides
NL145565B (nl) 1965-01-28 1975-04-15 Shell Int Research Werkwijze ter bereiding van een smeermiddelcompositie.
US3337459A (en) 1965-06-04 1967-08-22 Shell Oil Co 2-stroke lubricant
US3326801A (en) 1965-07-16 1967-06-20 Shell Oil Co Lubricating oil compositions
US3468639A (en) 1965-08-06 1969-09-23 Chevron Res Gasolines containing deposit-reducing monoamides of polyamines characterized by improved water tolerance
US3574576A (en) 1965-08-23 1971-04-13 Chevron Res Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine
US3272746A (en) 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3822209A (en) 1966-02-01 1974-07-02 Ethyl Corp Lubricant additives
GB1282887A (en) 1968-07-03 1972-07-26 Lubrizol Corp Acylation of nitrogen-containing products
US3578421A (en) 1968-07-26 1971-05-11 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US3576743A (en) 1969-04-11 1971-04-27 Lubrizol Corp Lubricant and fuel additives and process for making the additives
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
US3677725A (en) 1970-02-04 1972-07-18 Mobil Oil Corp Liquid hydrocarbon compositions containing antistatic agents
US3652238A (en) 1970-08-06 1972-03-28 Texaco Inc Antistatic fuel composition
US3804763A (en) 1971-07-01 1974-04-16 Lubrizol Corp Dispersant compositions
US3758283A (en) 1971-09-24 1973-09-11 Du Pont Conductivity additive for liquid hydrocarbons
US3755433A (en) 1971-12-16 1973-08-28 Texaco Inc Ashless lubricating oil dispersant
US3857791A (en) 1972-05-25 1974-12-31 Cities Service Oil Co Lubricating oil additive and lubricating oil compositions containing same
US3811848A (en) 1972-06-30 1974-05-21 Du Pont Antistatic additive compositions
US3917466A (en) 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4333741A (en) 1977-06-27 1982-06-08 Petrolite Corporation Olefin-acrylonitrile copolymers and uses thereof
US4388452A (en) 1977-06-27 1983-06-14 Petrolite Corporation Olefin-acrylonitrile copolymers and uses thereof
US4252542A (en) 1978-04-26 1981-02-24 Standard Oil Company (Indiana) Anti-static additives
US4416668A (en) 1978-10-25 1983-11-22 Petrolite Corporation Antistatic agents for organic liquids
US4259087A (en) 1978-12-15 1981-03-31 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4405526A (en) 1981-08-24 1983-09-20 Lever Brothers Company Process for producing directly esterified fatty acyl isethionate by a mixed zinc oxide-sulfonic acid catalyst
US4491651A (en) 1982-05-17 1985-01-01 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4537601A (en) 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US6299655B1 (en) * 1985-03-14 2001-10-09 The Lubrizol Corporation Diesel fuel compositions
GB9122351D0 (en) * 1991-10-22 1991-12-04 Exxon Chemical Patents Inc Oil and fuel oil compositions
DE4209779C1 (de) 1992-03-26 1993-07-15 Oelmuehle Leer Connemann Gmbh & Co., 2950 Leer, De
US5482518A (en) 1994-11-18 1996-01-09 Exxon Research And Engineering Company Synergistic cetane improver composition comprising mixture of alkyl-nitrate and hydroperoxide quinone
FR2746106B1 (fr) * 1996-03-15 1998-08-28 Combustible emulsionne et l'un de ses procedes d'obtention
US5672183A (en) 1996-07-01 1997-09-30 Petrolite Corporation Anti-static additives for hydrocarbons
DE19702989A1 (de) * 1997-01-28 1998-07-30 Clariant Gmbh Umweltfreundlicher Dieseltreibstoff
US5863466A (en) 1997-02-06 1999-01-26 Mor; Ebrahim Electrostatic dissipative composition
US6821307B2 (en) 1997-05-15 2004-11-23 Infineum International Ltd. Oil composition
EP1032620B1 (de) 1997-11-21 2004-03-03 Rohmax Additives GmbH Additiv für biodiesel und biobrennstofföle
US6206939B1 (en) * 1999-05-13 2001-03-27 Equistar Chemicals, Lp Wax anti-settling agents for distillate fuels
CA2403136A1 (en) 2000-03-16 2001-11-22 The Lubrizol Corporation Anti-static lubricity additive ultra-low sulfur diesel fuels
US6391070B2 (en) 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels
FR2827608B1 (fr) 2001-07-17 2004-01-16 Elf Antar France Polymeres a base d'olefine et d'alkylate d'alkenyle et leur utilisation comme additif multifonctionnel dans les carburants et les combustiles
US6584002B1 (en) * 2002-01-31 2003-06-24 Hewlett-Packard Development Company, L.P. Method of querying a four-transistor memory array as a content addressable memory by rows or columns
US20060236598A1 (en) * 2005-04-26 2006-10-26 Flint Hills Resources, L.P. Low temperature biodiesel diesel blend
DE102006016588A1 (de) * 2006-04-06 2007-10-18 Rohmax Additives Gmbh Kraftstoffzusammensetzungen umfassend nachwachsende Rohstoffe
BRPI0713128A2 (pt) * 2006-06-22 2012-04-17 Basf Se mistura, uso da mistura, e, concentrado de aditivo de combustìvel
CN101535451A (zh) 2006-07-11 2009-09-16 英诺斯派克燃料专业有限责任公司 石油和可再生燃料混合物的稳定剂组合物
WO2008051984A2 (en) * 2006-10-23 2008-05-02 Blue Sun Biodiesel, Llc Methods of purifying biodiesel fuels
GB0700534D0 (en) 2007-01-11 2007-02-21 Innospec Ltd Composition
GB0714725D0 (en) 2007-07-28 2007-09-05 Innospec Ltd Fuel oil compositions and additives therefor
US20090115435A1 (en) * 2007-11-02 2009-05-07 Tomlinson Douglas F Processing System and Method for Hand-Held Impedance Spectroscopy Analysis Device for Determining Biofuel Properties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003881A1 (en) * 1998-11-23 2001-06-21 Pure Energy Corporation Diesel fuel composition
US20050188606A1 (en) * 1999-03-26 2005-09-01 Rinaldo Caprotti Fuel oil compositions
US20020062053A1 (en) * 2000-05-02 2002-05-23 Berlowitz Paul Joseph Wide cut Fischer Tropsch diesel fuels
US20030158074A1 (en) * 2002-01-09 2003-08-21 Haas Michael J. Lipid rich compositions, production of lipid rich compositions, production of fatty acid alkyl esters from heterogeneous lipid mixtures
US20080092436A1 (en) * 2006-06-30 2008-04-24 University Of North Dakota Method for cold stable biojet fuel
US20080127552A1 (en) * 2006-11-30 2008-06-05 Flint Hills Resources, L.P. Biodiesel fuel blend

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021396A1 (en) * 2007-08-29 2011-01-27 Perry Stephen C Fuel additive
US10273421B2 (en) 2008-08-05 2019-04-30 Spirit Of The 21St Century Group, Llc Modified fuels and methods of making and using thereof
US20100031558A1 (en) * 2008-08-05 2010-02-11 Spirit Of The 21St Century Group, Llc Modified fuels and methods of making and using thereof
US8790423B2 (en) * 2008-08-05 2014-07-29 Spirit Of The 21St Century Group, Llc Modified fuels and methods of making and using thereof
US20100235073A1 (en) * 2009-03-13 2010-09-16 Magneti Marelli Sistemas Automotivos Industria E Comercio Ltda. Sbs logical bio-diesel sensor
US8527184B2 (en) * 2009-03-13 2013-09-03 Magneti Marelli Sistemas Automotivos Industria E Comercio Ltda. SBS logical bio-diesel sensor
CN102443448A (zh) * 2010-10-11 2012-05-09 中国石油化工股份有限公司 一种柴油组合物和提高生物柴油氧化安定性的方法
CN102443447A (zh) * 2010-10-11 2012-05-09 中国石油化工股份有限公司 柴油组合物和提高生物柴油氧化安定性的方法
WO2013012983A1 (en) 2011-07-20 2013-01-24 Exxonmobil Research And Engineering Company Aviation gas turbine fuel with improved low temperature operability
US20150144087A1 (en) * 2011-09-11 2015-05-28 Neste Oil Oyj Gasoline compositions and method of producing the same
US9822321B2 (en) * 2011-09-11 2017-11-21 Neste Oyj Gasoline compositions and method of producing the same
FR2985267A1 (fr) * 2011-12-28 2013-07-05 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
FR2985266A1 (fr) * 2011-12-28 2013-07-05 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
WO2013098524A1 (fr) * 2011-12-28 2013-07-04 Total Raffinage Marketing Composition combustible comprenant un fioul lourd et un produit issu de la biomasse
WO2014149117A2 (en) 2012-12-28 2014-09-25 Exxonmobil Research And Engineering Company Blending of dewaxed biofuels with mineral-based kero(jet) distillate cuts to provide on-spec jet fuels
US10457884B2 (en) 2013-11-18 2019-10-29 Afton Chemical Corporation Mixed detergent composition for intake valve deposit control
WO2015077296A3 (en) * 2013-11-20 2015-08-13 Weatherford/Lamb, Inc. Anti-agglomerants for the prevention of hydrates
US9840678B2 (en) 2013-12-26 2017-12-12 Exxonmobil Research And Engineering Company Methods of inhibiting precipitation of biodiesel fuel components
EP3087163B1 (de) * 2013-12-26 2019-01-30 ExxonMobil Research and Engineering Company Verfahren zur ausfällungsverhinderung von biodieselkraftstoffkomponenten
US20180078327A1 (en) * 2014-07-25 2018-03-22 Arrinex, Inc. Apparatus and method for treating rhinitis
EP3031885B1 (de) * 2014-12-09 2022-08-17 Afton Chemical Corporation Zusammensetzung zur verringerung der oberflächenspannung in einem destillierten brennstoff
US10273425B2 (en) 2017-03-13 2019-04-30 Afton Chemical Corporation Polyol carrier fluids and fuel compositions including polyol carrier fluids
US20190185771A1 (en) * 2017-12-19 2019-06-20 Exxonmobil Research And Engineering Company Dewaxed diesel fuel composition
US11643610B2 (en) * 2017-12-19 2023-05-09 ExxonMobil Technology and Engineering Company Dewaxed diesel fuel composition
CN112795408A (zh) * 2021-01-08 2021-05-14 贾辛枝 一种燃油清洁剂
WO2024006694A1 (en) * 2022-06-30 2024-01-04 Bl Technologies, Inc. Diesel fuel composition and method for reducing diesel fuel filter blocking tendency from biodiesel contaminants
US11873461B1 (en) 2022-09-22 2024-01-16 Afton Chemical Corporation Extreme pressure additives with improved copper corrosion
US11884890B1 (en) 2023-02-07 2024-01-30 Afton Chemical Corporation Gasoline additive composition for improved engine performance
US11795412B1 (en) 2023-03-03 2023-10-24 Afton Chemical Corporation Lubricating composition for industrial gear fluids

Also Published As

Publication number Publication date
US9493716B2 (en) 2016-11-15
EP2307528B1 (de) 2019-08-28
BRPI0915891A2 (pt) 2015-11-03
CA2733810A1 (en) 2010-01-14
ZA201101126B (en) 2012-08-29
KR20110068971A (ko) 2011-06-22
AU2016216699A1 (en) 2016-09-15
KR101646796B1 (ko) 2016-08-08
RU2011105060A (ru) 2012-08-20
WO2010005947A2 (en) 2010-01-14
CN102149797B (zh) 2015-08-26
CA2733810C (en) 2017-07-04
RU2515238C2 (ru) 2014-05-10
WO2010005947A3 (en) 2010-05-06
EP2307528A4 (de) 2012-04-04
AU2016216699B2 (en) 2017-09-28
BRPI0915891B1 (pt) 2018-03-27
CN102149797A (zh) 2011-08-10
US20130025189A1 (en) 2013-01-31
MY160060A (en) 2017-02-15
EP2307528A2 (de) 2011-04-13
AU2009268728A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
AU2016216699B2 (en) Fuel composition with enhanced low temperature properties
US20080163542A1 (en) Synergistic fuel composition for enhancing fuel cold flow properties
RU2713658C2 (ru) Четвертичные аммониевые соединения и их применение в качестве присадок к топливу или смазочным материалам
US10858608B2 (en) Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels
AU2008281580B2 (en) Fuel oil compositions and additives therefor
AU2006350703B2 (en) Stabilizer compositions for blends of petroleum and renewable fuels
US9587193B2 (en) Additives for improving the resistance to wear and to lacquering of diesel or biodiesel fuels
PH12014501374B1 (en) Additive compositions that improve the lacquering resistance of superior quality diesel or biodiesel fuels
US20100064576A1 (en) Oligo- or polyamines as oxidation stabilizers for biofuel oils
CN117965212A (zh) 燃料组合物
JP2001081481A (ja) 増強された潤滑性を持つ燃料分散剤
KR20090045231A (ko) 석유와 재생가능한 연료의 블렌드를 위한 안정화제 조성물
JP4299948B2 (ja) 軽油組成物
JP2009074102A (ja) 軽油組成物
US20240059992A1 (en) Fuels

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOSPEC FUEL SPECIALTIES, LLC, DELAWARE

Free format text: PATENT INVENTION;ASSIGNORS:BURGAZLI, JACK;BURTON, JERRY;DANIELS, DAVE;REEL/FRAME:023310/0881

Effective date: 20090923

AS Assignment

Owner name: LLOYDS TSB BANK PLC, AS SECURITY AGENT, UNITED KIN

Free format text: SECURITY AGREEMENT;ASSIGNORS:INNOSPEC ACTIVE CHEMICALS LLC;INNOSPEC FUEL SPECIALITIES LLC;INNOSPEC INC.;REEL/FRAME:027389/0380

Effective date: 20111214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INNOSPEC ACTIVE CHEMICALS LLC, COLORADO

Free format text: RELEASE OF 2011 INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:LLOYDS BANK PLC, AS SECURITY AGENT;REEL/FRAME:050593/0782

Effective date: 20190930

Owner name: INNOSPEC FUEL SPECIALTIES LLC, COLORADO

Free format text: RELEASE OF 2011 INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:LLOYDS BANK PLC, AS SECURITY AGENT;REEL/FRAME:050593/0782

Effective date: 20190930