US20090000641A1 - Methods and apparatus for cleaning deposition chamber parts using selective spray etch - Google Patents

Methods and apparatus for cleaning deposition chamber parts using selective spray etch Download PDF

Info

Publication number
US20090000641A1
US20090000641A1 US12/146,676 US14667608A US2009000641A1 US 20090000641 A1 US20090000641 A1 US 20090000641A1 US 14667608 A US14667608 A US 14667608A US 2009000641 A1 US2009000641 A1 US 2009000641A1
Authority
US
United States
Prior art keywords
cleaning
spray
spraying
temperature
chamber component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/146,676
Other languages
English (en)
Inventor
Liyuan Bao
Ken Mun Loo
Samantha S.H. Tan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quantum Global Technologies LLC
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US12/146,676 priority Critical patent/US20090000641A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAO, LIYUAN, LOO, KEN MUN, TAN, SAMANTHA S.H.
Publication of US20090000641A1 publication Critical patent/US20090000641A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAN, SAMANTHA S.H., BAO, LIYUAN, JIANG, ANBEI
Assigned to FOX CHASE BANK reassignment FOX CHASE BANK SECURITY AGREEMENT Assignors: QUANTUM GLOBAL TECHNOLOGIES, LLC
Assigned to Quantum Global Technologies LLC reassignment Quantum Global Technologies LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APPLIED MATERIALS, INC.
Priority to US13/585,294 priority patent/US8691023B2/en
Assigned to QUANTUM GLOBAL TECHNOLOGIES, LLC reassignment QUANTUM GLOBAL TECHNOLOGIES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UNIVEST BANK AND TRUST CO., SUCCESSOR BY MERGER TO FOX CHASE BANK
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals

Definitions

  • FIGS. 1A-E are a schematic illustration of a method for cleaning or reclaiming a process film coated component according to one of the embodiments of the invention.
  • FIG. 2 is a flow diagram of a cleaning method of the invention.
  • FIG. 3 is a flow diagram of a method of controlling chamber component temperature during cleaning chemistry spraying.
  • FIG. 4 is a schematic drawing of a chamber component spraying apparatus of the invention.
  • FIG. 6 is a schematic drawing of another chamber component spraying apparatus of the invention.
  • FIG. 7 is a schematic drawing of another chamber component spraying apparatus of the invention.
  • the components may be dipped into an acid bath to remove an unintentional coating or film.
  • the acid bath dip may result in a violent reaction which may be undesirable.
  • a tremendous amount of heat may be produced by the reaction so that a chiller may be needed to cool the process to an operating temperature at which the equipment is not over heated.
  • the unintentional coating on the equipment may not be even.
  • PVD physical vapor deposition
  • the top of the shields near the target or source may accumulate a thicker, denser coating than the bottom of the shields near the substrate.
  • Over-etching may damage the shields and may cause future unintentional coatings to shed onto a substrate being processed. Shedding of particles onto a substrate may cause defects in the substrate that may render the substrate inoperative.
  • contamination control is a major issue for manufacturers of semiconductor devices, flat panel displays and solar power panels.
  • the present invention provides methods and apparatus for cleaning coatings from the surfaces of processing equipment.
  • the applicants have discovered that by spraying a cleaning chemistry onto a part, rather than by dipping the part into the cleaning chemistry, enhanced cleaning of processing equipment parts may be obtained.
  • the enhanced cleaning may be obtained with less etching of the parts themselves and with less etching of any intentional coating of the part.
  • the part may then be pressure washed with DI water, for example, and then may be treated with potassium hydroxide. Finally, the part may be re-rinsed with the DI water.
  • FIGS. 1A-1E are a schematic illustration of a method for cleaning (or reclaiming) a process-film coated component according to one of the embodiments of the invention.
  • the starting point in FIG. 1A may be a chamber component 102 .
  • a chamber component may be made from aluminum, stainless steel or a ceramic.
  • the chamber components may be made from aluminum.
  • new chamber components 102 may be intentionally covered with a coating 104 .
  • This may be referred to herein as an “intentional coating.”
  • the coating may, for example, be a protective layer, or a layer which gives the component proper electrical properties in order to be compatible with a plasma environment.
  • the coating may minimize contamination of substrates within the chamber.
  • One intentional coating 104 is a twin wire arc spray (“TWAS”) coating of aluminum, copper, nickel, molybdenum, or zinc, for example. Other intentional coatings may be used.
  • TWAS coating process may include two wires which form an electric arc. Molten metal which results from the arcing metal wires may be atomized by compressed air and sprayed upon a component to form a coating.
  • the resulting intentionally coated component may have a roughness which promotes adhesion of PVD materials to the component. This may help prevent unintentionally coated PVD materials from breaking off and contaminating the surface of a substrate.
  • Other components such as the ones listed earlier, may also be coated by a TWAS processes.
  • adhesion of other process materials such as, for example, CVD films, and etching by-products, etc., as discussed earlier may be enhanced by the TWAS or other intentional coating.
  • the next layer may be the accumulated process material layer or unintentional coating 106 .
  • the unintentional coating material may vary.
  • Common accumulated process films in PVD equipment may include copper (Cu), ruthenium (Ru), aluminum (Al), titanium (Ti) and/or titanium nitride (TiN), titanium tungsten (TiW) and tantalum (Ta) and/or tantalum nitride (TaN).
  • Unintentional coatings on etching equipment are usually polymeric.
  • Unintentional coatings on CVD chambers may be silicon dioxide, silicon nitride, silicon oxynitride, silicon carbon, doped silicon oxides, oxygenated silicon carbon films (often referred to as SiCOH).
  • the first cleaning or reclaiming step takes place.
  • the chamber component 102 with intentional 104 and unintentional 106 coatings or films is exposed to a cleaning chemistry spray.
  • This cleaning chemistry spray may preferentially remove or etch the unintentional coating 106 as compared to the intentional coating 104 and/or chamber component material itself.
  • the unintentional coating 106 may be TaN/Ta and the intentional layer 104 may be a TWAS deposited aluminum layer on an aluminum chamber component 102 .
  • Spraying the cleaning chemistry on the component, as opposed to dipping the component in the cleaning chemistry may have several advantages. First, with a spray, the direction of the chemical can be more readily controlled.
  • areas with thick unintentional coating can be exposed to a chemical for a longer time than areas of thin unintentional coating. Accordingly, the thick areas of unintentional coating may be completely or substantially cleaned without over-etching the thin areas of unintentional coating. For example, it may take only 30 minutes to remove a thin unintentional coating, whereas it may take about 2 hours to remove a thick or dense unintentional coating.
  • spraying a chemical may use less chemical than dipping into a chemical bath uses. For example, a spray process may use a few gallons of chemical (which can be collected and recycled via an automated spray system) whereas a bath may use 20 gallons of chemical. A spray process also generates less heat than a dipping bath process and therefore, the spray process may be safer and the use of a chiller may not be required in spray systems.
  • portions of a chamber component which have not accumulated unintentional coating may be masked so that the cleaning chemistry spray will not etch the chamber component or the intentional coating.
  • the spray chemistry may vary depending upon the identity of the unintentional film 106 , the intentional film 104 and the substrate 102 .
  • an effective selective chemistry may be 15:85 ratio of hydrogen fluoride (HF) to nitric acid (HNO 3 ) or the same ratio of hydrogen chloride (HCl) to nitric acid (HNO 3 ).
  • the nitric acid may be commercial grade which may provide a cost benefit.
  • the ratio may vary somewhat, a 20:80 ratio of the same constituents may also be effective for selective stripping of TaN/Ta from an Al coating or component.
  • the majority, if not all of the unintentional coating 106 may be removed from the thickly accumulated areas (top of the shield near a source/target, for example), while the thinly coated areas may not be over-etched.
  • step 1 C the component is power washed with DI water to remove the cleaning chemistry and perhaps to remove some (if any exists) of the remaining unintentional coating 106 (TaN/Ta, for example).
  • the pressure of the pressure washing step can vary widely, from 500 to 2000 p.s.i. However, it is expected that for most applications, 1000 p.s.i will suffice.
  • the intentional coating 104 (TWAS Al, for example) is removed with a dilute potassium hydroxide (KOH) mixture.
  • KOH potassium hydroxide
  • the degree of dilution may vary from about 6% KOH up to 25% KOH.
  • the KOH may be sprayed on the component, or the component may be dipped in a bath of KOH.
  • any of the unintentional coating 106 remains on the chamber component 102 , it is expected that the KOH step will under-cut the fragmented unintentional coating 106 . Such undercutting may help to remove any remaining fragmented unintentional coating 106 .
  • the size of a PVD shield it is expected to take about 60 to 90 minutes to remove the intentional coating 104 with a dilute KOH treatment.
  • the component may be washed with DI water at about 40 p.s.i following the KOH treatment.
  • the cleaned component (PVD shield, for example) is ready for grit-blasting and an application of a new intentional layer 106 (TWAS Al, in the example of a PVD shield) so that the component can be re-installed in a processing chamber.
  • TWAS Al a new intentional layer 106
  • Details of the grit-blasting process and deposition of the intentional layer can be found in commonly owned U.S. Pat. No. 6,812,471 by Popiolkokwski et al., filed on Jul. 17, 2003, and U.S. Pat. No. 6,933,508 also by Popiolkokwski et al., filed on Mar. 13, 2002, which are incorporated herein in their entireties for all purposes.
  • FIGS. 1A-1E illustrate a cleaning method of the invention and its effect on a surface of a component.
  • FIG. 2 is a flow diagram of one embodiment of the cleaning method 200 of the invention.
  • Method 200 begins in step 202 .
  • a component to be cleaned is provided wherein the component has an unintentional coating.
  • the unintentional coating corresponds to layer 106 of FIGS. 1A-E .
  • the cleaning process may also be thought of as a reclaiming process or a stripping process.
  • the component may also have an intentional coating on it located on the component but beneath the unintentional coating. The intentional coating corresponds to layer 104 as discussed with reference to FIGS. 1A-E .
  • the component having an unintentional coating is sprayed with a cleaning chemistry.
  • the cleaning chemistry may be a selective chemistry whereby the cleaning chemistry may etch the unintentional coating 106 faster than it etches the intentional coating 104 .
  • the selective chemistry may etch the unintentional coating faster than it etches the component.
  • the chemistry used would be the same as explained in conjunction with FIG. 1B .
  • step 208 the component is sprayed with high pressure DI water.
  • the pressure washing removes the chemicals from step 206 and may loosen and remove any unintentional coating material remaining after step 206 .
  • step 210 the component is exposed to a dilute KOH mixture.
  • the mixture concentration is as explained in conjunction with FIG. 1D .
  • the mixture may be sprayed on the component or the component may be dipped in a bath of KOH. If the spray method is used, the KOH treatment may occur in the same apparatus. Alternatively, the component may be moved to a separate apparatus to receive KOH treatment (either spray or bath). The KOH treatment may strip the intentional coating from the component. If the component does not have an intentional coating ( 104 of FIG. 1 ), then step 4 may be omitted.
  • the component may be rinsed with DI water following the treatment with KOH.
  • the newly cleaned component is ready to be reconditioned.
  • the reconditioning process may include grit blasting the component and the application of a new intentional coating. Reconditioning processes are discussed in more detail in commonly owned U.S. Pat. No. 6,812,471 by Popiolkokwski et al., filed on Jul. 17, 2003, and U.S. Pat. No. 6,933,508 also by Popiolkokwski et al., filed on Mar. 13, 2002, which have been previously incorporated herein by reference.
  • step 308 the method may pass to step 310 in which the flow rate of the cleaning chemistry is decreased, and the spraying of the chamber component is continued. The method then passes back to step 306 where the temperature is re-measured.
  • FIG. 4 is a schematic drawing of a chamber component spraying apparatus 400 of the invention.
  • Spraying apparatus 400 may be used to perform any spraying step described herein.
  • the spraying apparatus 400 may be a tank 402 or the like which completely encloses a component to be cleaned 404 as shown in FIG. 4 .
  • the apparatus may appear to be an open tank with a fume hood above it.
  • the tank 402 may be used to clean one chamber component 404 at a time if the chamber component 404 is a large component.
  • Spraying apparatus 400 may include spray nozzles 408 which are depicted in FIG. 4 as located along the left and right sides of the tank 402 . It will be understood that spray nozzles 408 may be located on any interior surface of tank 402 or alternatively spray nozzles 408 may be suspended within tank 402 . Spray nozzles 408 may be connected to cleaning chemistry supplies 410 , which may in turn be connected to cleaning chemistry recycle conduit 412 . Although conduit 412 is shown as connected to only one cleaning chemistry supply 410 , it will be understood that a similar connection may be made with the other depicted cleaning chemistry supply 410 . One or more cleaning chemistry supplies 410 may be used.
  • FIG. 5 is a schematic drawing of another spraying apparatus 500 of the present invention.
  • Spraying apparatus 500 may be substantially similar to spraying apparatus 400 of FIG. 4 , with the following differences.
  • the chamber component 404 is not suspended and/or raised by component holding devices 406 . Instead, chamber component 404 may be placed upon turntable 502 .
  • Turntable 502 may be used to rotate the chamber component 404 .
  • FIG. 6 is a schematic drawing of yet another spraying apparatus 600 of the present invention.
  • Spraying apparatus 600 may be substantially similar to the spraying apparatus 500 of FIG. 5 , with the following exceptions.
  • Spraying apparatus 600 may have an interior spray assembly 602 .
  • the interior spray assembly 602 may include a cleaning chemistry source 604 connected through a conduit/support member 606 to a nozzle 608 .
  • Nozzle 608 may be similar to nozzle 408 .
  • the nozzle 608 may be movably and/or rotatably mounted on conduit/support member 606 .
  • the conduit/support member 606 may be adapted to move the nozzle 608 vertically and or rotationally. Although only one nozzle 608 is shown, it is to be understood that a plurality of nozzles 608 may be used and attached to conduit/support member 606 .
  • the spraying apparatus 600 may be operated similarly to the spraying apparatus 400 of FIG. 4 and the spraying apparatus 500 of FIG. 5 , with the additional functionality described herein.
  • the spraying apparatus 600 of FIG. 6 may spray cleaning chemistry on the interior portions of chamber component 404 through the nozzle 608 .
  • Cleaning chemistry may flow from cleaning chemistry source 604 through the conduit 606 to the nozzle 608 .
  • the interior spray assembly 602 may be operated independently of the nozzles 408 . Alternatively, the interior spray assembly 602 may be operated in conjunction with the nozzles 408 .
  • the nozzle 608 may rotate so that all interior portions of the chamber component 404 may be sprayed with cleaning composition.
  • the rotation of the nozzle 608 may be accomplished by rotating the conduit/support member 606 or by any other suitable method.
  • the nozzle 608 may be moved in the vertical direction by raising or lowering the conduit/support member 606 , or by any other suitable method.
  • the spraying apparatus 700 of FIG. 7 may be operated similarly to the spraying apparatus 400 of FIG. 4 , with the following differences.
  • the chamber component 404 may be rotated so that the nozzles 408 may reach all portions of the exterior of the chamber component 404 .
  • the chamber component 404 may be held stationary by component holding devices 406 and the nozzles 408 , which may be mounted on arm 702 , may be moved laterally, vertically and/or rotationally to reach all exterior portions of the chamber component 404 .
  • the nozzles 408 may be independently controlled so that more or less cleaning chemistry may be sprayed on portions of the chamber component 404 which have more or less unintentional coating 106 there on.
US12/146,676 2007-06-28 2008-06-26 Methods and apparatus for cleaning deposition chamber parts using selective spray etch Abandoned US20090000641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/146,676 US20090000641A1 (en) 2007-06-28 2008-06-26 Methods and apparatus for cleaning deposition chamber parts using selective spray etch
US13/585,294 US8691023B2 (en) 2007-06-28 2012-08-14 Methods and apparatus for cleaning deposition chamber parts using selective spray etch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94698307P 2007-06-28 2007-06-28
US12/146,676 US20090000641A1 (en) 2007-06-28 2008-06-26 Methods and apparatus for cleaning deposition chamber parts using selective spray etch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/585,294 Division US8691023B2 (en) 2007-06-28 2012-08-14 Methods and apparatus for cleaning deposition chamber parts using selective spray etch

Publications (1)

Publication Number Publication Date
US20090000641A1 true US20090000641A1 (en) 2009-01-01

Family

ID=39765057

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/146,676 Abandoned US20090000641A1 (en) 2007-06-28 2008-06-26 Methods and apparatus for cleaning deposition chamber parts using selective spray etch
US13/585,294 Active US8691023B2 (en) 2007-06-28 2012-08-14 Methods and apparatus for cleaning deposition chamber parts using selective spray etch

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/585,294 Active US8691023B2 (en) 2007-06-28 2012-08-14 Methods and apparatus for cleaning deposition chamber parts using selective spray etch

Country Status (9)

Country Link
US (2) US20090000641A1 (de)
EP (2) EP2383049B1 (de)
JP (2) JP5596909B2 (de)
KR (1) KR101027612B1 (de)
CN (2) CN101342534B (de)
AT (1) ATE518018T1 (de)
SG (2) SG148975A1 (de)
TW (1) TWI479559B (de)
WO (1) WO2009005742A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218042A1 (en) * 2006-03-03 2009-09-03 Quantum Global Technologies, Llc. Methods For Producing Quartz Parts With Low Defect And Impurity Densities For Use In Semiconductor Processing
US7993470B2 (en) 2003-09-02 2011-08-09 Applied Materials, Inc. Fabricating and cleaning chamber components having textured surfaces
US20190295826A1 (en) * 2010-10-15 2019-09-26 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479559B (zh) 2007-06-28 2015-04-01 Quantum Global Tech Llc 以選擇性噴灑蝕刻來清潔腔室部件的方法和設備
JP5169669B2 (ja) 2007-11-02 2013-03-27 株式会社デンソー 燃圧検出装置、及び燃圧検出システム
KR101477817B1 (ko) 2008-01-25 2014-12-30 미쓰비시 마테리알 가부시키가이샤 반응로 세정 장치
US8580332B2 (en) * 2009-09-22 2013-11-12 Applied Materials, Inc. Thin-film battery methods for complexity reduction
EP2363136A1 (de) 2010-03-02 2011-09-07 Fresenius Medical Care Deutschland GmbH Von Erwachsenenstammzellen abgeleitete Mikrovesikel zur Verwendung bei der therapeutischen Behandlung von Tumorkrankheiten
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
KR102189874B1 (ko) * 2013-10-07 2020-12-11 세메스 주식회사 기판 처리 장치, 그리고 기판 처리 장치를 이용한 기판 처리 방법
US9903020B2 (en) * 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
CN105296927A (zh) * 2015-10-29 2016-02-03 云南汇恒光电技术有限公司 一种光学真空镀膜机内腔清洁方法
US9999907B2 (en) 2016-04-01 2018-06-19 Applied Materials, Inc. Cleaning process that precipitates yttrium oxy-flouride
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US20190070639A1 (en) * 2017-09-07 2019-03-07 Applied Materials, Inc. Automatic cleaning machine for cleaning process kits
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
KR102007950B1 (ko) * 2017-10-30 2019-08-06 주식회사 싸이노스 내성코팅층 제거방법
CN109904054B (zh) * 2017-12-08 2021-08-13 北京北方华创微电子装备有限公司 腔室环境恢复方法及刻蚀方法
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
CN108517494A (zh) * 2018-05-22 2018-09-11 桑尼光电技术(安徽)有限公司 一种光学真空镀膜机内腔清洁方法
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
WO2020039011A1 (en) * 2018-08-21 2020-02-27 Oerlikon Surface Solutions Ag, Pfäffikon Stripping of coatings al-containing coatings
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
CN109365382B (zh) * 2018-10-25 2024-03-12 广东西江数据科技有限公司 一种服务器清洗设备及其清洗方法
KR102620219B1 (ko) 2018-11-02 2024-01-02 삼성전자주식회사 기판 처리 방법 및 기판 처리 장치
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
RU2711066C1 (ru) * 2019-03-05 2020-01-15 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) Способ электрохимического осаждения легированных атомами переходных металлов кремний-углеродных пленок на электропроводящие материалы
US20200354831A1 (en) * 2019-05-07 2020-11-12 Alta Devices, Inc. Methods and systems for cleaning deposition systems

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505636B1 (en) * 2000-06-26 2003-01-14 Lam Research Corporation Apparatus for wafer carrier in-process clean and rinse
US20040000327A1 (en) * 2002-06-26 2004-01-01 Fabio Somboli Apparatus and method for washing quartz parts, particularly for process equipment used in semiconductor industries
US20040099285A1 (en) * 2002-11-25 2004-05-27 Applied Materials, Inc. Method of cleaning a coated process chamber component
US6770424B2 (en) * 2002-12-16 2004-08-03 Asml Holding N.V. Wafer track apparatus and methods for dispensing fluids with rotatable dispense arms
US6810298B2 (en) * 2000-04-07 2004-10-26 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the temperature adjustment apparatus, and semiconductor device manufacturing method
US20040211449A1 (en) * 2003-04-25 2004-10-28 Dainippon Screen Mfg. Co., Ltd. Cleaning apparatus and substrate processing apparatus
US6812471B2 (en) * 2002-03-13 2004-11-02 Applied Materials, Inc. Method of surface texturizing
US20050048876A1 (en) * 2003-09-02 2005-03-03 Applied Materials, Inc. Fabricating and cleaning chamber components having textured surfaces
US20050172984A1 (en) * 2004-02-11 2005-08-11 Applied Materials, Inc. Cleaning of chamber components
US6933508B2 (en) * 2002-03-13 2005-08-23 Applied Materials, Inc. Method of surface texturizing
US20060124155A1 (en) * 2004-12-13 2006-06-15 Suuronen David E Technique for reducing backside particles
US20060220329A1 (en) * 2004-08-20 2006-10-05 Semitool, Inc. Apparatus for use in thinning a semiconductor workpiece
US20070000521A1 (en) * 2005-07-01 2007-01-04 Fury Michael A System and method for mid-pressure dense phase gas and ultrasonic cleaning
US20070131255A1 (en) * 2002-10-18 2007-06-14 Nigel-Philip Cox Method for removing a layer area of a component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143035B1 (de) * 1996-05-21 2005-12-14 Applied Materials, Inc. Verfahren und Vorrichtung zum Regeln der Temperatur einer Reaktorwand
JP2002292346A (ja) * 2001-03-29 2002-10-08 Sharp Corp 付着膜回収装置および付着膜の回収方法
US6977796B2 (en) * 2002-02-08 2005-12-20 Headway Technologies, Inc. Wiring pattern and method of manufacturing the same and thin film magnetic head and method of manufacturing the same
US20050028838A1 (en) * 2002-11-25 2005-02-10 Karl Brueckner Cleaning tantalum-containing deposits from process chamber components
US7077918B2 (en) * 2004-01-29 2006-07-18 Unaxis Balzers Ltd. Stripping apparatus and method for removal of coatings on metal surfaces
JP3116197U (ja) * 2004-06-28 2005-12-02 アプライド マテリアルズ インコーポレイテッド プロセス残留物を付着する表面を有する基板処理チャンバー用コンポーネント
TWI479559B (zh) 2007-06-28 2015-04-01 Quantum Global Tech Llc 以選擇性噴灑蝕刻來清潔腔室部件的方法和設備

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810298B2 (en) * 2000-04-07 2004-10-26 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the temperature adjustment apparatus, and semiconductor device manufacturing method
US6505636B1 (en) * 2000-06-26 2003-01-14 Lam Research Corporation Apparatus for wafer carrier in-process clean and rinse
US6933508B2 (en) * 2002-03-13 2005-08-23 Applied Materials, Inc. Method of surface texturizing
US6812471B2 (en) * 2002-03-13 2004-11-02 Applied Materials, Inc. Method of surface texturizing
US20040000327A1 (en) * 2002-06-26 2004-01-01 Fabio Somboli Apparatus and method for washing quartz parts, particularly for process equipment used in semiconductor industries
US20060237054A1 (en) * 2002-06-26 2006-10-26 Stmicroelectronics S.R.L. Apparatus and method for washing quartz parts, particularly for process equipment used in semiconductor industries
US20070131255A1 (en) * 2002-10-18 2007-06-14 Nigel-Philip Cox Method for removing a layer area of a component
US6902627B2 (en) * 2002-11-25 2005-06-07 Applied Materials, Inc. Cleaning chamber surfaces to recover metal-containing compounds
US20040099285A1 (en) * 2002-11-25 2004-05-27 Applied Materials, Inc. Method of cleaning a coated process chamber component
US6770424B2 (en) * 2002-12-16 2004-08-03 Asml Holding N.V. Wafer track apparatus and methods for dispensing fluids with rotatable dispense arms
US20040211449A1 (en) * 2003-04-25 2004-10-28 Dainippon Screen Mfg. Co., Ltd. Cleaning apparatus and substrate processing apparatus
US20050048876A1 (en) * 2003-09-02 2005-03-03 Applied Materials, Inc. Fabricating and cleaning chamber components having textured surfaces
US20050172984A1 (en) * 2004-02-11 2005-08-11 Applied Materials, Inc. Cleaning of chamber components
US20060220329A1 (en) * 2004-08-20 2006-10-05 Semitool, Inc. Apparatus for use in thinning a semiconductor workpiece
US20060124155A1 (en) * 2004-12-13 2006-06-15 Suuronen David E Technique for reducing backside particles
US20070000521A1 (en) * 2005-07-01 2007-01-04 Fury Michael A System and method for mid-pressure dense phase gas and ultrasonic cleaning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993470B2 (en) 2003-09-02 2011-08-09 Applied Materials, Inc. Fabricating and cleaning chamber components having textured surfaces
US20090218042A1 (en) * 2006-03-03 2009-09-03 Quantum Global Technologies, Llc. Methods For Producing Quartz Parts With Low Defect And Impurity Densities For Use In Semiconductor Processing
US20190295826A1 (en) * 2010-10-15 2019-09-26 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
US11488812B2 (en) * 2010-10-15 2022-11-01 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers

Also Published As

Publication number Publication date
EP2011897A2 (de) 2009-01-07
EP2011897A3 (de) 2009-03-04
US8691023B2 (en) 2014-04-08
SG148975A1 (en) 2009-01-29
JP2009007674A (ja) 2009-01-15
JP5935174B2 (ja) 2016-06-15
CN101342534A (zh) 2009-01-14
CN103406300B (zh) 2017-11-03
WO2009005742A1 (en) 2009-01-08
SG182970A1 (en) 2012-08-30
JP5596909B2 (ja) 2014-09-24
TWI479559B (zh) 2015-04-01
KR101027612B1 (ko) 2011-04-06
US20130037062A1 (en) 2013-02-14
KR20090004598A (ko) 2009-01-12
EP2383049A1 (de) 2011-11-02
EP2011897B8 (de) 2011-09-28
CN103406300A (zh) 2013-11-27
EP2011897B1 (de) 2011-07-27
EP2383049B1 (de) 2013-08-07
JP2014210980A (ja) 2014-11-13
CN101342534B (zh) 2013-08-28
ATE518018T1 (de) 2011-08-15
TW200908135A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
US8691023B2 (en) Methods and apparatus for cleaning deposition chamber parts using selective spray etch
CN108878246A (zh) 用于腔室部件的多层等离子体侵蚀保护
US9406534B2 (en) Wet clean process for cleaning plasma processing chamber components
TW200301520A (en) Electrochemical edge and bevel cleaning process and system
KR20090125179A (ko) 플라즈마 처리 장치용 복합 샤워헤드 전극 어셈블리를 위한 세정 하드웨어 키트
KR20020077165A (ko) 부착막 회수 장치 및 부착막의 회수 방법
US20030070695A1 (en) N2 splash guard for liquid injection on the rotating substrate
WO2020028012A1 (en) System and method for chemical and heated wetting of substrates prior to metal plating
JP4398091B2 (ja) 半導体処理装置の部品の洗浄液及び洗浄方法
US7097713B2 (en) Method for removing a composite coating containing tantalum deposition and arc sprayed aluminum from ceramic substrates
CN111508821A (zh) 晶圆清洗方法
CN113578858B (zh) 清洗装置和清洗方法
CN201930874U (zh) 晶圆表面液体喷出装置
CN114496710A (zh) 一种半导体设备陶瓷窗氧化钇涂层清洗方法
JP2017528598A (ja) マスク、キャリア、及び堆積ツールの構成要素から堆積材料を取り除くための剥脱プロセス
KR20070064847A (ko) 반도체 웨이퍼 전기도금장치
JP6970884B2 (ja) アルミニウム箔の製造方法およびアルミニウム箔の製造装置
US6274504B2 (en) Minimizing metal corrosion during post metal solvent clean
JP2003037096A (ja) 半導体製造装置のブラスト処理方法
CN113130290A (zh) 一种单晶片的湿法清洗方法
KR20110079145A (ko) 메탈 부식 발생 소자의 메탈 리워크방법
JP2003301298A (ja) 電着塗装方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAO, LIYUAN;LOO, KEN MUN;TAN, SAMANTHA S.H.;REEL/FRAME:021505/0355

Effective date: 20080801

AS Assignment

Owner name: APPLIED MATERIALS, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAO, LIYUAN;TAN, SAMANTHA S.H.;JIANG, ANBEI;SIGNING DATES FROM 20100218 TO 20100303;REEL/FRAME:024164/0906

AS Assignment

Owner name: FOX CHASE BANK, PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:QUANTUM GLOBAL TECHNOLOGIES, LLC;REEL/FRAME:026468/0130

Effective date: 20110609

AS Assignment

Owner name: QUANTUM GLOBAL TECHNOLOGIES LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APPLIED MATERIALS, INC.;REEL/FRAME:026886/0171

Effective date: 20110512

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: QUANTUM GLOBAL TECHNOLOGIES, LLC, PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNIVEST BANK AND TRUST CO., SUCCESSOR BY MERGER TO FOX CHASE BANK;REEL/FRAME:046962/0614

Effective date: 20180827