US20080240973A1 - Copper-Zinc Alloy and Synchronizer Ring Produced Therefrom - Google Patents

Copper-Zinc Alloy and Synchronizer Ring Produced Therefrom Download PDF

Info

Publication number
US20080240973A1
US20080240973A1 US12/133,710 US13371008A US2008240973A1 US 20080240973 A1 US20080240973 A1 US 20080240973A1 US 13371008 A US13371008 A US 13371008A US 2008240973 A1 US2008240973 A1 US 2008240973A1
Authority
US
United States
Prior art keywords
less
copper
amount
lead
zinc alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/133,710
Other languages
English (en)
Inventor
Norbert Gaag
Meinrad Holderied
Friedrich Gebhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metall Stiftung and Co KG
Original Assignee
Diehl Metall Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37722603&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080240973(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Diehl Metall Stiftung and Co KG filed Critical Diehl Metall Stiftung and Co KG
Publication of US20080240973A1 publication Critical patent/US20080240973A1/en
Assigned to DIEHL METALL STIFTUNG & CO. KG reassignment DIEHL METALL STIFTUNG & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEBHARD, FRIEDRICH, HOLDERIED, MEINRAD, GAAG, NORBERT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/025Synchro rings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches

Definitions

  • the invention relates to a novel copper-zinc alloy.
  • the invention also relates to a use of such a copper-zinc alloy for producing a synchronizer ring, as well as to a synchronizer ring.
  • Copper-zinc alloys or brasses are used in the plumbing and sanitary industries as well as in the electronics industry.
  • brass rings with a high wear resistance and a high friction coefficient are employed for synchronizer rings which are used in a mechanical gearbox for synchronizing the gear wheel.
  • a lead-free copper-zinc alloy for applications in the plumbing industry is known from European patent EP 1 045 041 B1 and U.S. Pat. No. 6,413,330 B1.
  • the disclosed alloy comprises 69 to 79 wt. % copper, 2 to 4 wt. % silicon, 0.1 to 1.5 wt. % aluminum and 0.02 to 0.25 wt. % phosphorus. This interaction of the components silicon, aluminum and phosphorus is intended to produce a gamma phase of the alloy, which ensures good machine processability without using lead.
  • German patent DE 29 19 478 C2 discloses a copper-zinc alloy having 70 to 73 wt. % copper, 6 to 8 wt. % manganese, 4 to 6 wt. % aluminum, 1 to 4 wt. % silicon, 1 to 3 wt. % iron, 0.5 to 1.5 wt. % lead, 0 to 0.2 wt. % nickel, 0 to 0.2 wt. % tin and zinc as the remainder.
  • this alloy comprises a lattice of 60 to 85% a mixed crystal predominantly as a finely disperse distribution in the ⁇ phase. Lead is alloyed to it in a relatively small weight proportion.
  • German patent DE 37 35 783 C1 and its counterpart U.S. Pat. No. 4,954,187 describe a copper-zinc alloy to be used particularly for synchronizer rings, which consists of 50 to 65 wt. % copper, 1 to 6 wt. % aluminum, 0.5 to 5 wt. % silicon, 5 to 8 wt. % nickel as well as selectively 0 to 1 wt. % iron, 0 to 2 wt. % lead and zinc as the remainder. A lead proportion of less than 2 wt. % is optional.
  • the high wear resistance is achieved in that the nickel is present predominantly as an intermetallic compound with silicon and aluminum.
  • a copper-zinc alloy having high wear resistance is furthermore known from European patent EP 0 657 555 B1, which comprises 40 to 65 wt. % copper, 8 to 25 wt. % nickel, 2.5 to 5 wt. % silicon, 0 to 3 wt. % aluminum, 0 to 3 wt. % iron, 0 to 2 wt. % manganese, 0 to 2 wt. % lead, the remainder being zinc as well as unavoidable impurities.
  • the high wear resistance is achieved by the very high nickel and silicon contents, the effect of which is that the matrix contains a high volume content of nickel silicides.
  • the lattice comprises no y phase and consists primarily of ⁇ phases. Lead in small amounts is considered useful with a view to good processability.
  • German patent DE 28 30 459 C3 and its counterpart U.S. Pat. No. 4,191,564 relate to a copper-nickel alloy with high wear resistance, which consists of 45 to 75 wt. % copper, 2 to 7 wt. % aluminum, 0.1 to 2 wt. % iron, 1 to 5 wt. % nickel, 0.5 to 2 wt. % silicon, 0.1 to 2 wt. % cobalt and the remainder zinc.
  • this alloy furthermore contains an intermetallic compound of the nickel-silicon type, into which aluminum and cobalt are also bound. It does not contain lead.
  • German patent DE 38 09 994 C3 and its counterpart U.S. Pat. No. 4,995,924 a copper-zinc alloy is formed for a synchronizer ring from 20 to 40 wt. % zinc, 2 to 8 wt. % aluminum, from at least two further components which form intermetallic compounds, at least one of the components being titanium, and for the remaining part from copper and random impurities.
  • the high wear resistance is achieved by the intermetallic compounds. Lead is unnecessary.
  • a feature common to the low-lead and lead-free copper-zinc alloys which have a high wear strength is that they have a high content of intermetallic phases. These intermetallic phases lead to a certain brittleness of the alloy, so that it becomes easier to machine process. The swarf breaks readily and can be transported away. For this reason, the proportion of lead can be reduced or lead can be omitted. If a high wear resistance is not required, as in U.S. Pat. No. 6,413,330 and European patent EP 1 045 041 B1, then the lead content can be reduced by stabilizing a y phase in the alloy through an interaction of silicon, aluminum and phosphorus. This alloy contains phosphorus in order to ensure a dezincing resistance of the alloy for the desired application in the sanitary industry.
  • a copper-zinc alloy which comprises 55 to 75 wt. % copper, 0.1 to 8 wt. % aluminum, 0.3 to 3.5 wt. % iron, 0.5 to 8 wt. % manganese, 0 to less than 5 wt. % nickel, 0 to less than 0.1 wt. % lead, 0 to 3 wt. % tin, 0.3 to 5 wt. % silicon, 0 to less than 0.1 wt. % cobalt, 0 to less than 0.05 wt. % titanium, 0 to less than 0.02 wt. % phosphorus, unavoidable impurities and the remainder zinc.
  • the invention is based on the idea of deliberately lowering the lead content below 0.1 wt. % without providing compensation in respect of the desired mechanical processability by intermetallic phases or stabilisation of a y phase.
  • a sufficient wear resistance is ensured by the necessary alloy components aluminum, manganese, iron and silicon.
  • Manganese, iron and silicon in the specified quantitative ranges lead to a sufficient basic proportion of intermetallic phases in the copper-zinc alloy.
  • aluminum hardens the mixed crystal.
  • Manganese makes a positive contribution to the wear resistance.
  • An improvement can be achieved through the optionally mentioned further alloy components nickel and tin. It may contain cobalt and titanium up to below the specified limits. Alloying it with them beyond this, however, is unnecessary for the desired mechanical processability and for achieving the desired wear resistance.
  • Phosphorus as an alloy component is unnecessary for improving the dezincing resistance.
  • the wear resistance and the abrasion strength of the copper-zinc alloy can be improved when the copper-zinc alloy advantageously comprises aluminum in a proportion of from 0.5 to 2.5 wt. %, iron in a proportion of from 0.3 to 1 wt. %, manganese in a proportion of from 0.5 to 5 wt. %, nickel in a proportion of from 0.5 to less than 5 wt. %, tin in a proportion of from 0 to 1.5 wt. % and silicon in a proportion of from 0.3 to 2 wt. %.
  • the copper-zinc alloy comprises a higher proportion of aluminum and is distinguished in that it comprises aluminum in a proportion of from 3 to 8 wt. %, iron in a proportion of from 1 to 3 wt. %, manganese in a proportion of from 5 to 8 wt. %, nickel in a proportion of from 0 to less than 0.5 wt. %, tin in a proportion of from 0 to less than 0.5 wt. % and silicon in a proportion of from 1 to 4 wt. %.
  • Such a material has the mechanical properties necessary for a synchronizer ring.
  • the copper-zinc alloy is suitable for producing a synchronizer ring—also referred to as a synchronizing ring—particularly by machining.
  • the sole figure of the drawing is a perspective view of a synchronizer ring according to the invention.
  • a synchronizer ring also referred to as a synchronizing ring—as can be produced in particular by machining from a copper-zinc alloy.
  • the synchronizer ring 1 has an inner surface 3 , which is intended for friction pairing with a conical friction partner.
  • Teeth 2 which engage with corresponding slots on a mating slotted sleeve, are arranged on the outer circumference of the synchronizer ring 1 .
  • the inner surface 3 has oil channels 4 fitted in an axial direction, which rapidly transport away the oil present in the case of friction pairing.
  • Alloy 1A contains 57.9 wt. % copper, 1.65 wt. % aluminum, 0.4 wt. % iron, 1.95 wt. % manganese, 0.55 wt. % lead, 0.6 wt. % silicon and the remainder zinc.
  • Alloy 1 B differs from this alloy 1A in that lead is absent from it, i.e. it contains lead only at an unavoidable impurity level of 0.02 wt. %.
  • Alloy 2 ⁇ contains 69.7 wt. % copper, 5.2 wt. % aluminum, 1.1 wt. % iron, 7.8 wt.
  • Alloy 2B differs from alloy 2A in that it contains lead only at an unavoidable level of 0.05.
  • Alloys A are comparative alloys containing lead, which are suitable in respect of their wear resistance and processability for synchronizer rings.
  • the alloys B are embodiments of the invention.
  • the wear strength in km/g and the friction coefficient are determined in a Reichert friction-and-wear balance with a sliding speed of 1.65 m/sec and a load of 52 N/mm 2 over a total traveled distance of 2500 m.
  • a brass pin made of the respective test alloy with a diameter of 2.7 mm is pressed with the specified load onto a revolving steel ring.
  • the wear strength and the friction coefficient are determined from the weight loss of the brass pin after the specified running distance. The result is summarized in the following table:
  • the lead-free alloys are suitable particularly for producing a synchronizer ring.
  • the need for the addition of lead to improve the mechanical processability is therefore obviated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Operated Clutches (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)
  • Sliding-Contact Bearings (AREA)
US12/133,710 2005-12-13 2008-06-05 Copper-Zinc Alloy and Synchronizer Ring Produced Therefrom Abandoned US20080240973A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005059391.7 2005-12-13
DE102005059391A DE102005059391A1 (de) 2005-12-13 2005-12-13 Kupfer-Zink-Legierung sowie daraus hergestellter Synchronring
PCT/EP2006/011622 WO2007068368A1 (de) 2005-12-13 2006-12-05 Kupfer-zink-legierung sowie daraus hergestellter synchronring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/011622 Continuation WO2007068368A1 (de) 2005-12-13 2006-12-05 Kupfer-zink-legierung sowie daraus hergestellter synchronring

Publications (1)

Publication Number Publication Date
US20080240973A1 true US20080240973A1 (en) 2008-10-02

Family

ID=37722603

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/133,710 Abandoned US20080240973A1 (en) 2005-12-13 2008-06-05 Copper-Zinc Alloy and Synchronizer Ring Produced Therefrom

Country Status (11)

Country Link
US (1) US20080240973A1 (pt)
EP (1) EP1960560B1 (pt)
JP (1) JP2009519376A (pt)
KR (2) KR20140054439A (pt)
CN (1) CN101331241B (pt)
AR (1) AR056755A1 (pt)
BR (2) BR122014003022B1 (pt)
DE (1) DE102005059391A1 (pt)
PL (1) PL1960560T3 (pt)
RU (1) RU2415188C2 (pt)
WO (1) WO2007068368A1 (pt)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090022620A1 (en) * 2007-06-28 2009-01-22 Kai Weber Copper-zinc alloy, production method and use
US20100155011A1 (en) * 2008-12-23 2010-06-24 Chuankai Xu Lead-Free Free-Cutting Aluminum Brass Alloy And Its Manufacturing Method
US20100158748A1 (en) * 2008-12-23 2010-06-24 Xiamen Lota International Co., Ltd. Lead-Free Free-Cutting Aluminum Brass Alloy And Its Manufacturing Method
US20110129383A1 (en) * 2009-11-27 2011-06-02 Chan Wen Copper Industry Co., Ltd. Copper-zinc alloy
US9209567B2 (en) * 2011-09-21 2015-12-08 Phoenix Contact Gmbh & Co. Kg Clamping body for an electrical conductor
EP2971819A1 (en) 2013-03-15 2016-01-20 Honeywell International Inc. Brass alloys for use in turbocharger bearing applications
US9322085B2 (en) 2009-01-06 2016-04-26 Oiles Corporation High-strength brass alloy for sliding members, and sliding members
CN105980586A (zh) * 2014-02-04 2016-09-28 奥托福克斯两合公司 润滑剂相容的铜合金
US9637808B2 (en) 2013-05-24 2017-05-02 Wieland-Werke Ag Refill for a ball-point pen and use thereof
US20190093195A1 (en) * 2016-05-20 2019-03-28 Otto Fuchs Kommanditgesellschaft Lead-Free High Tensile Brass Alloy and High Tensile Brass Alloy Product
US10316398B2 (en) 2014-05-16 2019-06-11 Otto Fuchs Kommanditgesellschaft High-tensile brass alloy and alloy product
US10364482B2 (en) 2015-03-31 2019-07-30 Wieland-Werke Ag Copper-zinc alloy, band material composed thereof, process for producing a semifinished part composed of a copper-zinc alloy and sliding element composed of a copper-zinc alloy
US10570484B2 (en) 2016-05-20 2020-02-25 Otto Fuchs Kommanditgesellschaft High tensile brass alloy and high tensile brass alloy product
CN114540657A (zh) * 2022-03-24 2022-05-27 中南大学 一种具有宽频电磁屏蔽的稀土铜合金材料及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2806044T3 (pl) * 2007-06-28 2018-03-30 Wieland-Werke Ag Stop miedzi i cynku, sposób jego wytwarzania i zastosowanie
DE102009014760A1 (de) * 2009-03-27 2010-11-11 Diehl Metall Stiftung & Co. Kg Kupfer-Zink-Legierung
WO2011035806A1 (de) * 2009-09-24 2011-03-31 Otto Fuchs Kg Synchronringpaket sowie verfahren zum ausbilden der reibbeläge eines synchronringes
CN101788049A (zh) * 2010-03-22 2010-07-28 北京理工大学 一种短行程同步环
CL2010000655A1 (es) * 2010-06-18 2010-10-22 Com Kraviva Spa Herraduras de aleacion de cobre con propiedades bactericidas y fungicidas que comprenden cobre, zinc, aluminio, hierro y opcionalmente manganeso.
DE102010055055B3 (de) * 2010-12-17 2012-05-10 Wieland-Werke Ag Verwendung einer Kupfer-Zinn-Mehrstoffbronze
CN102242292B (zh) * 2011-08-16 2012-07-25 中南大学 高抗变色环保易切削白色铜合金及制备方法
RU2486270C1 (ru) * 2012-05-22 2013-06-27 Юлия Алексеевна Щепочкина Сплав на основе меди
KR101483542B1 (ko) * 2012-09-14 2015-01-16 노인국 실리콘 황동 괴 및 그 제조방법
CN102925743B (zh) * 2012-11-12 2016-05-18 宁波博威合金材料股份有限公司 一种无铅耐磨铜合金
RU2502818C1 (ru) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Латунь
CN103484713B (zh) * 2013-01-22 2016-04-06 阮伟光 高强度耐磨多元复杂黄铜合金挤制管棒材及其制作工艺
DE102013004081B4 (de) * 2013-03-11 2023-06-07 Hansa Metallwerke Ag Sanitärer Armaturenkörper
CN103469004B (zh) * 2013-08-14 2015-12-02 永和流体智控股份有限公司 一种无铅铜合金材料
CN103589903B (zh) * 2013-08-16 2016-04-20 武汉泛洲中越合金有限公司 一种高强度耐磨铜合金及其制造方法
CN103589904B (zh) * 2013-08-16 2016-06-01 武汉泛洲中越合金有限公司 一种高强度耐磨铜合金及其制管方法
CN104152743B (zh) * 2014-08-01 2017-10-03 武汉泛洲中越合金有限公司 铜合金齿环基体材料及其制备方法
DE102015003687A1 (de) * 2015-03-24 2016-09-29 Diehl Metall Stiftung & Co. Kg Kupfer-Zink-Legierung und deren Verwendung
CN105238950B (zh) * 2015-10-12 2017-04-05 浙江朋诚科技有限公司 一种铜合金保护螺母及其制造方法
RU2625853C1 (ru) * 2016-07-11 2017-07-19 Юлия Алексеевна Щепочкина Латунь
RU2625202C1 (ru) * 2016-07-11 2017-07-12 Юлия Алексеевна Щепочкина Латунь
CN106978548A (zh) * 2017-04-28 2017-07-25 浙江天马轴承有限公司 一种新型锰黄铜轴承保持架材料及其制备方法
KR102050429B1 (ko) 2017-12-12 2020-01-08 충남대학교산학협력단 연성상 분산 층상 구조의 마찰 기계 부재의 제조방법
CN108118186A (zh) * 2018-02-06 2018-06-05 重庆熵臻科技有限公司 一种变压器用环保型高熔点耐久铜合金型材及其制造工艺
DE102018007045A1 (de) * 2018-09-06 2020-03-12 Diehl Metall Stiftung & Co. Kg Verwendung einer Messinglegierung zur Herstellung von Bauteilen für den Heizungsbau
JP2022512797A (ja) * 2018-10-29 2022-02-07 オットー フックス カーゲー 特別な真ちゅう合金および特別な真ちゅう合金製品
CN112522535B (zh) * 2020-12-08 2022-02-18 宁波正元铜合金有限公司 一种高强耐磨黄铜合金及其制备方法
DE102021118907A1 (de) * 2021-07-21 2023-01-26 Diehl Brass Solutions Stiftung & Co. Kg Bleifreie Messinglegierung und Verwendung derselben

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191564A (en) * 1977-11-24 1980-03-04 Chuetsu Metal Works Co., Ltd. Brass having superior adhesion and wear resistant properties
US4954187A (en) * 1987-10-22 1990-09-04 Diehl Gmbh & Co. Precipitates copper-zinc alloy with nickel silicide
US4995924A (en) * 1987-03-24 1991-02-26 Mitsubishi Metal Corporation Synchronizer ring in speed variator made of copper-base alloy
US5658401A (en) * 1993-11-18 1997-08-19 Diehl Gmbh & Co. Copper-zinc alloy
US5788924A (en) * 1994-10-27 1998-08-04 Mitsubishi Materials Corporation Wear resistant copper alloy and synchronizer ring made thereof
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773504A (en) 1970-12-28 1973-11-20 I Niimi Copper base alloy having wear resistance at high temperatures
SE7812591L (sv) * 1977-12-16 1979-06-17 Diehl Gmbh & Co Koppar-zink-legering och forfarande for framstellning av densamma
DE2919478A1 (de) * 1979-05-15 1980-11-27 Diehl Gmbh & Co Kupfer-zink-legierung und ihre verwendung
JPS56127741A (en) 1980-03-06 1981-10-06 Honda Motor Co Ltd Abrasion resistant copper alloy
JPS5952944B2 (ja) 1980-10-30 1984-12-22 三菱マテリアル株式会社 強靭性および耐摩耗性を有するMn−Si系金属間化合物分散型高力黄銅
JPH08283889A (ja) * 1995-04-14 1996-10-29 Chuetsu Gokin Chuko Kk 高強度・高硬度銅合金

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191564A (en) * 1977-11-24 1980-03-04 Chuetsu Metal Works Co., Ltd. Brass having superior adhesion and wear resistant properties
US4995924A (en) * 1987-03-24 1991-02-26 Mitsubishi Metal Corporation Synchronizer ring in speed variator made of copper-base alloy
US4954187A (en) * 1987-10-22 1990-09-04 Diehl Gmbh & Co. Precipitates copper-zinc alloy with nickel silicide
US5658401A (en) * 1993-11-18 1997-08-19 Diehl Gmbh & Co. Copper-zinc alloy
US5788924A (en) * 1994-10-27 1998-08-04 Mitsubishi Materials Corporation Wear resistant copper alloy and synchronizer ring made thereof
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090022620A1 (en) * 2007-06-28 2009-01-22 Kai Weber Copper-zinc alloy, production method and use
US20100155011A1 (en) * 2008-12-23 2010-06-24 Chuankai Xu Lead-Free Free-Cutting Aluminum Brass Alloy And Its Manufacturing Method
US20100158748A1 (en) * 2008-12-23 2010-06-24 Xiamen Lota International Co., Ltd. Lead-Free Free-Cutting Aluminum Brass Alloy And Its Manufacturing Method
US7776163B2 (en) 2008-12-23 2010-08-17 Xiamen Lota International Co., Ltd. Lead-free free-cutting aluminum brass alloy and its manufacturing method
US9322085B2 (en) 2009-01-06 2016-04-26 Oiles Corporation High-strength brass alloy for sliding members, and sliding members
US20110129383A1 (en) * 2009-11-27 2011-06-02 Chan Wen Copper Industry Co., Ltd. Copper-zinc alloy
US9209567B2 (en) * 2011-09-21 2015-12-08 Phoenix Contact Gmbh & Co. Kg Clamping body for an electrical conductor
US10287653B2 (en) 2013-03-15 2019-05-14 Garrett Transportation I Inc. Brass alloys for use in turbocharger bearing applications
EP2971819A4 (en) * 2013-03-15 2017-05-17 Honeywell International Inc. Brass alloys for use in turbocharger bearing applications
EP2971819A1 (en) 2013-03-15 2016-01-20 Honeywell International Inc. Brass alloys for use in turbocharger bearing applications
US9637808B2 (en) 2013-05-24 2017-05-02 Wieland-Werke Ag Refill for a ball-point pen and use thereof
CN105980586A (zh) * 2014-02-04 2016-09-28 奥托福克斯两合公司 润滑剂相容的铜合金
US11427890B2 (en) * 2014-02-04 2022-08-30 Otto Fuchs Kommanditgesellschaft Lubricant-compatible copper alloy
US10316398B2 (en) 2014-05-16 2019-06-11 Otto Fuchs Kommanditgesellschaft High-tensile brass alloy and alloy product
US10364482B2 (en) 2015-03-31 2019-07-30 Wieland-Werke Ag Copper-zinc alloy, band material composed thereof, process for producing a semifinished part composed of a copper-zinc alloy and sliding element composed of a copper-zinc alloy
US20190093195A1 (en) * 2016-05-20 2019-03-28 Otto Fuchs Kommanditgesellschaft Lead-Free High Tensile Brass Alloy and High Tensile Brass Alloy Product
US10570484B2 (en) 2016-05-20 2020-02-25 Otto Fuchs Kommanditgesellschaft High tensile brass alloy and high tensile brass alloy product
US11359263B2 (en) 2016-05-20 2022-06-14 Otto Fuchs Kommanditgesellschaft Lead-free high tensile brass alloy and high tensile brass alloy product
CN114540657A (zh) * 2022-03-24 2022-05-27 中南大学 一种具有宽频电磁屏蔽的稀土铜合金材料及其制备方法

Also Published As

Publication number Publication date
EP1960560A1 (de) 2008-08-27
PL1960560T3 (pl) 2017-12-29
DE102005059391A1 (de) 2007-06-14
BRPI0619813B1 (pt) 2018-09-11
AR056755A1 (es) 2007-10-24
EP1960560B1 (de) 2017-04-12
RU2008128429A (ru) 2010-01-20
KR20140054439A (ko) 2014-05-08
CN101331241B (zh) 2012-08-29
WO2007068368A1 (de) 2007-06-21
JP2009519376A (ja) 2009-05-14
CN101331241A (zh) 2008-12-24
BR122014003022B1 (pt) 2018-04-03
KR20080080156A (ko) 2008-09-02
BRPI0619813A2 (pt) 2011-10-18
RU2415188C2 (ru) 2011-03-27

Similar Documents

Publication Publication Date Title
US20080240973A1 (en) Copper-Zinc Alloy and Synchronizer Ring Produced Therefrom
US10316398B2 (en) High-tensile brass alloy and alloy product
KR101361018B1 (ko) 황동 합금 및 싱크로나이저 링
JP6504330B2 (ja) 切削加工用線材
KR100825566B1 (ko) 피삭성 및 열간압연성이 우수한 환경친화형 무연 쾌삭강
FR2813317A1 (fr) Materiau d'alliage fritte pour guides de soupape
US6419766B1 (en) Cutting-free bronze alloys
KR100940715B1 (ko) 피삭성 및 열간압연성이 우수한 환경친화형 무연 쾌삭강의제조방법
DE19539498A1 (de) Verschleißfester Synchronring aus einer Kupferlegierung
CN114427050A (zh) 无铅的Cu-Zn基合金
MX2008007520A (en) Copper-zinc alloy and synchronizing ring produced therefrom
WO2008093974A1 (en) Free-cutting copper alloy
EP2625300B1 (de) Kupferlegierung
KR100225751B1 (ko) 무연쾌삭 황동합금
US6228138B1 (en) Good machinability Fe-based sintered alloy and process of manufacture therefor
EP1980633A1 (de) Bronzelegierung zum Stranggiessen
JP7202235B2 (ja) 低鉛銅合金
JP2017082328A (ja) 摺動部材用銅合金
JP7126197B2 (ja) 無鉛快削りん青銅棒線材
WO2015151720A1 (ja) 水道部材用低鉛黄銅合金
SU1525223A1 (ru) Сплав на основе цинка
KR100979058B1 (ko) 피삭성 및 열간압연성이 우수한 환경친화형 무연 쾌삭강
KR20150044069A (ko) 절삭성이 우수한 무연청동합금
JPH0756061B2 (ja) 硫黄複合快削鋼
JPS6164843A (ja) 耐摩耗性のすぐれた歯車用Cu合金

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIEHL METALL STIFTUNG & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAAG, NORBERT;HOLDERIED, MEINRAD;GEBHARD, FRIEDRICH;REEL/FRAME:022780/0250;SIGNING DATES FROM 20080528 TO 20080530

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION