US20080000555A1 - High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same - Google Patents
High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same Download PDFInfo
- Publication number
- US20080000555A1 US20080000555A1 US11/663,581 US66358105A US2008000555A1 US 20080000555 A1 US20080000555 A1 US 20080000555A1 US 66358105 A US66358105 A US 66358105A US 2008000555 A1 US2008000555 A1 US 2008000555A1
- Authority
- US
- United States
- Prior art keywords
- steel sheet
- cooling
- high strength
- inv
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 65
- 239000010959 steel Substances 0.000 claims abstract description 65
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 52
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 38
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 23
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 54
- 238000010438 heat treatment Methods 0.000 claims description 41
- 238000000137 annealing Methods 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000001953 recrystallisation Methods 0.000 claims description 7
- 239000004615 ingredient Substances 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 238000005097 cold rolling Methods 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 claims description 3
- 238000005554 pickling Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 27
- 238000002474 experimental method Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 238000007747 plating Methods 0.000 description 7
- 238000005496 tempering Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 235000010262 sodium metabisulphite Nutrition 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 229910009973 Ti2O3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004196 calcium 5'-ribonucleotide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/041—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to high strength thin-gauge steel sheet excellent in elongation and hole expandability and a method of production thereof.
- the working method is frequently shifting from the conventional drawing using wrinkle elimination to simple stamping and bending.
- the bending ridge is an arc or other curve
- stretch flanging where the end face of the steel sheet is elongated is sometimes used.
- the amount of the expansion in the large case is up to 1.6 times the diameter of the preparatory hole.
- the present invention has as its object to solve the problems of the prior art as explained above and realize high strength thin-gauge steel sheet with excellent elongation and hole expandability and a method of production for the same on an industrial scale. Specifically, it has as its object to realize high strength thin-gauge steel sheet exhibiting the above performance by a tensile strength of 500 MPa or more and a method of production of the same on an industrial scale.
- the inventors studied the methods of production of high strength thin-gauge steel sheet with excellent elongation and hole expandability and as a result discovered that to further improve the ductility and hole expandability of steel sheet, in the case of high strength cold rolled steel sheet with a tensile strength of steel sheet of 500 MPa or more, the form and balance of the metal structure of the steel sheet and the use of tempered martensite are important.
- High strength thin-gauge steel sheet with excellent elongation and hole expandability characterized by being comprised of, by mass %, C: 0.03 to 0.25%, Si: 0.4 to 2.0%, Mn: 0.8 to 3.1%, P ⁇ 0.02%, S ⁇ 0.02%, Al ⁇ 2.0%, N ⁇ 0.01%, and a balance of Fe and unavoidable impurities and having a microstructure comprised of ferrite with an area fraction of 10 to 85% and residual austenite with a volume fraction of 1 to 10%, an area fraction of 10% to 60% of tempered martensite, and a balance of bainite.
- TS target value is design value of strength of steel sheet in units of MPa, [Al] is mass % of Al, and [Si] is mass % of Si,
- a method of production of high strength thin-gauge steel sheet with excellent elongation and hole expandability characterized by producing a slab comprised of, by mass %, C: 0.03 to 0.25%, Si: 0.4 to 2.0%, Mn: 0.8 to 3.1%, P ⁇ 0.02%, S ⁇ 0.02%, Al ⁇ 2.0%, and N ⁇ 0.01% and, further, when necessary, one or more types of V: 0.005 to 1%, Ti: 0.002 to 1%, Nb: 0.002 to 1%, Cr: 0.005 to 2%, Mo: 0.005 to 1%, B: 0.0002 to 0.1%, Mg: 0.0005 to 0.01%, REM: 0.0005 to 0.01%, and Ca: 0.0005 to 0.01%, and a balance of Fe and unavoidable impurities, heating it in a range of 1150 to 1250° C., then hot rolling it in a temperature range of 800 to 950° C., coiling it at 700° C.
- a metal structure having a microstructure comprised of ferrite with an area fraction of 10 to 85% and residual austenite with a volume fraction of 1 to 10%, an area fraction of 10% to 60% of tempered martensite, and a balance of bainite.
- a method of production of high strength thin-gauge steel sheet with excellent elongation and hole expandability according to (4) characterized by, in the continuous annealing process, soaking at 600° C. to the Ac 3 point+50° C. for recrystallization annealing, cooling by an average cooling rate of 10 to 150° C./s to 400° C. or less, then heating and holding a first time at 150 to 400° C. for 1 to 20 minutes, then heating and holding a second time at a temperature 30 to 300° C. higher than the first heating and holding temperature to 500° C. for 1 to 100 seconds, then cooling.
- a method of production of high strength thin-gauge steel sheet with excellent elongation and hole expandability according to (4) characterized by, in the continuous annealing process, soaking at 600° C. to the Ac 3 point+50° C. for recrystallization annealing, cooling by an average cooling rate of 10 to 150° C./s to 400° C. or less, then heating and holding a first time at 150 to 400° C. for 1 to 20 minutes, cooling to the martensitic transformation point or less, heating and holding a second time at the cooling end temperature to 500° C. for 1 to 100 seconds, then cooling.
- the biggest characteristic of the structure of a high strength thin-gauge steel sheet according to the present invention is that by performing the necessary heat treatment after an annealing and quenching process, a metal structure containing ferrite, residual austenite, tempered martensite, and bainite in a good balance can be obtained and a material having extremely stable ductility and hole expandability can be obtained.
- C is an important element for improving the strengthening and hardenability of the steel and is essential for obtaining a composite structure comprised of ferrite, martensite, bainite, etc.
- a composite structure comprised of ferrite, martensite, bainite, etc.
- 0.03% or more is necessary.
- the content becomes greater, the cementite or other iron-based carbides easily become coarser, the local formability deteriorates, and the hardness after welding remarkably rises, so 0.25% was made the upper limit.
- Si is an element preferable for raising the strength without lowering the workability of the steel.
- 0.4% a pearlite structure harmful to the hole expandability is easily formed and, due to the drop in the solution strengthening of the ferrite, the hardness difference between the formed structures becomes greater and deterioration of the hole expandability is invited, so 0.4% was made the lower limit.
- the cold rollability drops and the Si oxides formed at the steel sheet surface cause a drop in the chemical conversion ability. Further, the plating adhesion and weldability also drop, so 2.0% was made the upper limit.
- Mn is an element which has to be added from the viewpoint of securing the strength and, further, delaying the formation of carbides and is an element effective for formation of ferrite. If less than 0.8%, the strength is not satisfactory. Further, formation of ferrite becomes insufficient and the ductility deteriorates. If over 3.1%, the martensite becomes excessive, a rise in strength is invited, and the workability deteriorates, so 3.1% was made the upper limit.
- Al is an element required for deoxidization of steel, but if over 2.0% increases the alumina and other inclusions and impairs the workability, so 2.0% was made the upper limit. To improve the ductility, addition of 0.2% or more is preferable.
- TS target value is the design value of the strength of the steel sheet in units of MPa
- [Al] is the mass % of Al
- [Si] is the mass % of Si
- the amounts of Al and Si added are (0.0012 ⁇ [TS target value] ⁇ 0.29)/3 or less, they are insufficient for improving the ductility, while if 1.0 or more, the chemical conversion ability and plating adhesion deteriorate.
- V for improving the strength, can be added in the range of 0.005 to 1%.
- Ti is an element effective for the purpose of improving the strength and for forming Ti-based sulfides with relatively little effect on the local formability and reducing the harmful MnS. Further, it has the effect of suppressing coarsening of the welded metal structure and making embrittlement difficult. To exhibit these effects, less than 0.002% is insufficient, so 0.002% is made the lower limit. However, if excessively added, the coarse and angular TiN increases and reduces the local formability. Further, stable carbides are formed, the concentration of C in the austenite falls at the time of production of the matrix, the desired hardened structure cannot be obtained, and the tensile strength also can no longer be secured, so 1.0% was made the upper limit.
- Nb is an element effective for the purpose of improving the strength and forming fine carbides suppressing softening of the weld heat affected zone. If less than 0.002%, the effect of suppressing softening of the weld heat affected zone cannot be sufficiently obtained, so 0.002% was made the lower limit. On the other hand, if excessively added, the increase in the carbides causes the workability of the matrix to decline, so 1.0% was made the upper limit.
- Cr can be added as a strengthening element, but if less than 0.005, has no effect, while if over 2%, degrades the ductility and chemical conversion ability, so 0.005% to 2% was made the range.
- Mo is an element which has an effect on securing the strength and on the hardenability and further makes a bainite structure easier to obtain. Further, it also has the effect of suppressing the softening of the weld heat affected zone. Copresence together with Nb etc. is believed to increase this effect. If less than 0.005%, this effect is insufficient, so 0.005% is made the lower limit. However, even if excessively added, the effect becomes saturated and becomes economically disadvantageous, so 1% was made the upper limit.
- B is an element having the effect of improving the hardenability of the steel and interacting with C to suppress diffusion of C at the weld heat affected zone and thereby suppress softening. To exhibit this effect, addition of 0.0002% or more is necessary. On the other hand, if excessively added, the workability of the matrix drops and embrittlement of the steel or a drop in the hot workability is caused, so 0.1% was made the upper limit.
- Mg bonds with oxygen to form oxides upon addition but the MgO and the complex compounds of Al 2 O 3 , SiO 2 , MnO, Ti 2 O 3 , etc. including MgO are believed to precipitate extremely finely. These oxides finely and uniformly dispersed in the steel, while not certain, are believed to have the effect of forming fine voids at the time of stamping or shearing at the stamped or sheared cross-section forming starting points of cracks and suppressing stress concentration at the time of later burring or stretch flanging so as to prevent growth of the cracks to large cracks.
- REM are believed to be elements with a similar effect as Mg. While not sufficiently confirmed, they are believed to be elements promising an improvement in the hole expandability and stretch flangeability due to the effect of suppression of cracks by the formation of fine oxides, but if less than 0.0005%, this effect is insufficient, so 0.0005% was made the lower limit. On the other hand, with addition over 0.01%, not only does the amount of improvement with respect to the added amount become saturated, but also this conversely degrades the cleanliness factor of the steel and degrades the hole expandability and stretch flangeability, so 0.01% was made the upper limit.
- Ca has the effect of improving the local formability of the matrix by control of the form of the sulfide-based inclusions (spheroidization), but if less than 0.0005%, the effect is insufficient, so 0.0005% was made the lower limit. Further, if excessively added, not only is the effect saturated, but also the reverse effect due to the increase in inclusions (deterioration of local formability) occurs, so the upper limit was made 0.01%.
- the reason for making the structure of the steel sheet a composite structure of ferrite, residual austenite, tempered martensite, and bainite is to obtain steel shape excellent in strength and also elongation and hole expandability.
- the “ferrite” indicates polygonal ferrite and bainitic ferrite.
- the biggest feature in the metal structure of the high strength thin-gauge steel sheet is that the steel contains tempered marensite in an area fraction of 10 to 60%.
- This tempered martensite is tempered and becomes a tempered martensite structure by heat treatment comprising cooling the martensite formed in the cooling process of the annealing to the martensitic transformation point or less, then holding at 150 to 400° C. for 1 to 20 minutes or by holding at a temperature 50 to 300° C. higher than the holding temperature to 500° C. for 1 to 100 seconds.
- the area fraction of the tempered martensite is less than 10%, the hardness difference between the structures will become too large and no improvement in the hole expansion rate will be seen, while if over 60%, the strength of the steel sheet will drop too much. Further, it may be considered that by making the ferrite an area fraction of 10 to 85% and the residual austenite an area fraction of 1 to 10% for a good balance in the steel sheet, the elongation and hole expansion rate would be remarkably improved. If the ferrite area fraction is less than 10%, the elongation cannot be sufficient secured, while if the ferrite area fraction is over 85%, the strength becomes insufficient, so this is not preferable. Moreover, in the process of the present invention, 1% or more residual austenite remains.
- the residual austenite With over a 10% residual austenite volume fraction, the residual austenite will transform to martensite transformation by working. At that time, voids or a large number of dislocations will occur at the interface of the martensite phase and the surrounding phases. Hydrogen will accumulate at such locations resulting in inferior delayed fracture characteristics, so this is not desirable.
- bainite of the remaining structure can include untempered martensite in an area fraction of 10% or less with respect to the entire structure without any major effect on the quality.
- a slab comprised of the above composition of ingredients is produced.
- the slab is inserted into a heating furnace while at a high temperature or after cooling down to room temperature, heated at a temperature range of 1150 to 1250° C., then hot finished rolled a temperature range of 800 to 950° C. and coiled at 700° C. or less to obtain a hot rolled steel sheet. If the hot rolled final temperature is less than 800° C., the crystal grains become mixed grains and the workability of the matrix is lowered. If over 950° C., the austenite grains become coarse and the desired microstructure cannot be obtained.
- a lower coiling temperature enables the formation of a pearlite structure to be suppressed, but if considering the cooling load as well, the temperature is preferably made a range of 400 to 600° C.
- the cold rolling rate is preferably a range of 30 to 80% in terms of rolling load and material quality.
- the annealing temperature is important in securing a predetermined strength and workability of high strength steel sheet and is preferably 600° C. to Ac 3 +50° C. If less than 600° C., sufficient recrystallization does not occur and the workability of the matrix itself is hard to stably obtain. Further, if over Ac 3 +50° C., the austenite grains coarsen, formation of ferrite is suppressed, and the desired microstructure becomes hard to obtain. Further, to obtain the microstructure prescribed by the present invention, the method of continuous annealing is preferable.
- the sheet is cooled to 600° C. to Ar 3 at an average cooling rate of 30° C./s or less to form ferrite. If less than 600° C., pearlite precipitates and the quality degrades, so this is not preferred. If over Ar 3 , the predetermined ferrite area fraction cannot be obtained. Further, even if the average cooling rate is over 30° C./s, the predetermined ferrite area fraction cannot be obtained, so the average cooling rate was made 30° C./s or less, more preferably 10° C./s or less.
- the sheet is treated by a heating and holding process in which it is held at a temperature range of 150 to 400° C. for 1 to 20 minutes. If less than 150° C., the martensite will not be tempered and the hardness difference between the structures will become large. Further, the bainite transformation will also be insufficient and the predetermined ductility and hole expandability will not be obtained. If over 400°, the sheet will be overly tempered and the strength will falls, so this is not desirable.
- the upper limit is preferably made the martensitic transformation point or less.
- the lower limit is preferably over the martensitic transformation point.
- the holding time is less than 1 minute, the tempering and transformation do not progress much at all or remain incomplete, and the ductility and hole expansion rate are not improved. If over 20 minutes, the tempering and transformation substantially end, so there is no effect even with extending the time.
- the heating and holding process may be one connected to the continuous annealing line or may be a separate line, but one connected to the continuous annealing facility or one performed in an averaging oven of the continuous annealing line is preferable in terms of productivity.
- the above heating and holding process a first heating and holding process of heating and holding at 150 to 400° C. and holding for 1 to 20 minutes, then a second heating and holding process of heating to a temperature 30 to 300° C. higher than the holding temperature of the first heating and holding process to 500° C. for 1 to 100 seconds, then cooling.
- the temperature of the second heating and holding process is less than the holding temperature of the first heating and holding process +30° C., the martensite is not tempered, the hardness difference between the structures becomes large, and the predetermined ductility and hole expandability cannot be obtained. If the temperature of the second heating and holding process is over the holding temperature of the first heating and holding process +300° C., the sheet will be overly tempered and the strength will fall, so this is not preferable.
- the holding time is less than 1 second, the tempering will not proceed much at all or will remain incomplete and the ductility and hole expansion rate will not be improved. If over 100 seconds, the tempering substantially ends, so there is no effect even with extending the time.
- the heating and holding process a first heating and holding process of heating and holding at 150 to 400° C. and holding for 1 to 20 minutes, then cooling to the martensitic transformation point or less, holding at the cooling end temperature to 500° C. for 1 to 100 seconds for second heating and holding, then cooling. If the temperature of the second heating and holding process is made the cooling end temperature when cooling to the martensitic transformation point or less +50 to 300° C. to 500° C. or less, tempered martensite can be reliably secured, so this is preferable.
- the lower limit of the temperature of the second heating and holding process is more preferably the cooling end temperature +50° C. and the martensitic transformation point or more. If the cooling end temperature +300° C., it is more preferable. If the temperature of the second heating and holding process is over 500° C., the sheet is overly tempered and the strength drops, so this is not preferable.
- the tempering does not progress much at all or remains incomplete and the ductility and hole expanding rate are not improved. If over 100 seconds, the tempering substantially ends, so there is no effect even with extending the time.
- the steel sheet may also be cold rolled steel sheet or plated steel sheet.
- the plating may be ordinary galvanization, aluminum plating, etc.
- the plating may be either hot dipping or electroplating.
- the steel sheet may be plated, then alloyed. It may also be plated by multiple layers. Further, even steel sheet comprised of non-plated steel sheet or plated steel sheet on which a film is laminated is not outside the present invention.
- Tensile characteristics Evaluated by running tensile test in direction perpendicular to rolling direction of JIS No. 5 tensile test piece
- Hole expansion rate Hole expansion test method of Japan Iron and Steel Federation standard JFST1001-1996 employed.
- a conical punch with a 60° apex angle was forced through a ⁇ 10 mm punched hole (die inside diameter of 10.3 mm, clearance 12.5%) to form a burr of the hole in the outside direction by a speed of 20 mm/min:
- Ferrite area fraction Ferrite observed by Nital etching.
- the ferrite area fraction is quantified by polishing a sample by Nital etching (alumina finish), dipping it in corrosive solution (mixture of pure water, sodium pyrosulfite, ethyl alcohol, and picric acid) for 10 seconds, then polishing again, rinsing, then drying the sample by cooling air. After drying, a 100 ⁇ m ⁇ 100 ⁇ m area of the structure of the sample is measured for area by a Luzex system at a power of 1000 to determine the area% of the ferrite. In each table, this ferrite area fraction is shown as the ferrite area %.
- the tempered martensite area fraction is quantified by polishing a sample by LePera etching (alumina finish), dipping it in corrosive solution (mixture of pure water, sodium pyrosulfite, ethyl alcohol, and picric acid) for 10 seconds, then polishing again, rinsing, then drying the sample by cooling air. After drying, a 100 ⁇ m ⁇ 100 ⁇ m area of the structure of the sample is measured for area by a Luzex system at a power of 1000 to determine the area % of the tempered martensite. In each table, this tempered martensite area fraction is shown as the tempered martensite area %.
- Residual austenite volume fraction The residual austenite is quantized by MoKa beams from the (200), (210) area strength of the ferrite and the (200), (220), and (311) area strength of the austenite at the surface of the supplied sheet chemically polished to 1 ⁇ 4 the thickness from the surface and used as the residual austenite volume fraction. A residual austenite volume fraction of 1 to 10% or more is deemed good.
- the residual austenite volume fraction is expressed as the residual y-volume % and rate.
- test results of comparative examples of Experiment No. [8] shown in Table 2 of Example 1 are shown in Table 3. Further, the test results of Experiment No. [2] of the present invention are shown in Table 4, those of Experiment No. [6] are shown in Table 5, and those of Experiment No. [9] are shown in Table 6. Further, the test results of Example 2 are shown in Table 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004293990A JP4445365B2 (ja) | 2004-10-06 | 2004-10-06 | 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法 |
JP2004-293990 | 2004-10-06 | ||
PCT/JP2005/018724 WO2006038708A1 (ja) | 2004-10-06 | 2005-10-05 | 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/018724 A-371-Of-International WO2006038708A1 (ja) | 2004-10-06 | 2005-10-05 | 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/583,846 Division US8137487B2 (en) | 2004-10-06 | 2009-08-27 | Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080000555A1 true US20080000555A1 (en) | 2008-01-03 |
Family
ID=36142775
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/663,581 Abandoned US20080000555A1 (en) | 2004-10-06 | 2005-10-05 | High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same |
US12/583,846 Active 2026-06-05 US8137487B2 (en) | 2004-10-06 | 2009-08-27 | Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/583,846 Active 2026-06-05 US8137487B2 (en) | 2004-10-06 | 2009-08-27 | Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability |
Country Status (10)
Country | Link |
---|---|
US (2) | US20080000555A1 (de) |
EP (2) | EP2690191B1 (de) |
JP (1) | JP4445365B2 (de) |
KR (1) | KR20070061859A (de) |
CN (2) | CN101851730A (de) |
CA (1) | CA2582409C (de) |
ES (2) | ES2712177T3 (de) |
PL (2) | PL1808505T3 (de) |
TW (1) | TWI305232B (de) |
WO (1) | WO2006038708A1 (de) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071997A1 (en) * | 2003-05-21 | 2007-03-29 | Koichi Goto | A cold-rolled steel sheet having a tensile strength of 780 mpa or more, an excellent local formability and a suppressed increase in weld hardness |
US20090214892A1 (en) * | 2008-02-19 | 2009-08-27 | Jfe Steel Corporation, A Corporation Of Japan | High strength steel sheet having superior ductility and method for manufacturing the same |
US20100218857A1 (en) * | 2007-10-25 | 2010-09-02 | Jfe Steel Corporation | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US20100314009A1 (en) * | 2008-01-31 | 2010-12-16 | Jfe Steel Corporation | High strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US20110048586A1 (en) * | 2009-08-31 | 2011-03-03 | Hyundai Hysco | Dual phase steel sheet and method of manufacturing the same |
US20120009434A1 (en) * | 2008-07-11 | 2012-01-12 | Kabushiki Kaisha Kobe Seiko Sho | Cold-rolled steel sheet |
US20120222781A1 (en) * | 2009-11-30 | 2012-09-06 | Masafumi Azuma | HIGH STRENGTH STEEL PLATE WITH ULTIMATE TENSILE STRENGTH OF 900 MPa OR MORE EXCELLENT IN HYDROGEN EMBRITTLEMENT RESISTANCE AND METHOD OF PRODUCTION OF SAME |
US20120312433A1 (en) * | 2011-06-13 | 2012-12-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof |
EP2546375A1 (de) * | 2010-03-09 | 2013-01-16 | JFE Steel Corporation | Hochfestes gepresstes element und herstellungsverfahren dafür |
WO2013037485A1 (en) * | 2011-09-13 | 2013-03-21 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
US20130273392A1 (en) * | 2010-12-17 | 2013-10-17 | Nippon Steel & Sumitomo Metal Corporation | Hot-dip galvanized steel sheet and manufacturing method thereof |
US20140234658A1 (en) * | 2011-09-30 | 2014-08-21 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
US20140242416A1 (en) * | 2011-10-04 | 2014-08-28 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
US20140342183A1 (en) * | 2011-09-30 | 2014-11-20 | Nippon Steel & Sumitomo Metal Corporation | HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT PLATING ADHESION, FORMABILITY, AND HOLE EXPANDABILITY WITH TENSILE STRENGTH OF 980 MPa OR MORE AND MANUFACTURING METHOD THEREFOR |
US9234268B2 (en) | 2011-07-29 | 2016-01-12 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet excellent in bendability and manufacturing method thereof |
US20160060722A1 (en) * | 2013-04-02 | 2016-03-03 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel |
US9322088B2 (en) | 2012-12-12 | 2016-04-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet and method for producing the same |
US9475112B2 (en) | 2011-06-10 | 2016-10-25 | Kobe Steel, Ltd. | Hot press-formed product and process for producing same |
US20160355920A1 (en) * | 2011-03-31 | 2016-12-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet excellent in workability and manufacturing method thereof |
US9540720B2 (en) | 2011-09-30 | 2017-01-10 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 MPa or more |
EP2325346A4 (de) * | 2008-09-10 | 2017-01-25 | JFE Steel Corporation | Hochfeste stahlplatte und herstellungsverfahren dafür |
US20170166988A1 (en) * | 2015-04-10 | 2017-06-15 | The Nanosteel Company, Inc. | Edge Formability In Metallic Alloys |
US20180187283A1 (en) * | 2016-03-30 | 2018-07-05 | Tata Steel Limited | Hot Rolled High Strength Steel (HRHSS) Product with Tensile Strength of 1000 - 1200 MPa and Total Elongation of 16% - 17% |
US10072316B2 (en) | 2012-10-18 | 2018-09-11 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for producing the same |
US10501830B2 (en) * | 2014-03-31 | 2019-12-10 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability |
US10538830B2 (en) | 2011-10-06 | 2020-01-21 | Nippon Steel Corporation | Steel sheet and method of producing the same |
US10544474B2 (en) | 2012-02-08 | 2020-01-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet and method for producing the same |
EP3585532A4 (de) * | 2017-02-21 | 2020-08-12 | The Nanosteel Company, Inc. | Verbesserte kantenformbarkeit in metallischen legierungen |
US10889873B2 (en) | 2016-03-08 | 2021-01-12 | Posco | Complex-phase steel sheet having excellent formability and method of manufacturing the same |
US11136644B2 (en) | 2016-08-31 | 2021-10-05 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method for producing the same |
US11208705B2 (en) | 2017-11-15 | 2021-12-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet |
US11332803B2 (en) | 2017-04-21 | 2022-05-17 | Nippon Steel Corporation | High strength hot-dip galvanized steel sheet and production method therefor |
US11401569B2 (en) | 2017-11-29 | 2022-08-02 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
US11473164B2 (en) | 2018-03-19 | 2022-10-18 | Nippon Steel Corporation | High-strength cold-rolled steel sheet and manufacturing method therefor |
CN116194609A (zh) * | 2020-09-07 | 2023-05-30 | 浦项股份有限公司 | 扩孔性优异的高强度钢板及其制造方法 |
US20230349020A1 (en) * | 2020-02-28 | 2023-11-02 | Jfe Steel Corporation | Steel sheet, member, and methods for manufacturing the same |
US11814708B2 (en) | 2019-02-06 | 2023-11-14 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US11905570B2 (en) | 2019-02-06 | 2024-02-20 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US12006562B2 (en) | 2019-02-06 | 2024-06-11 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US12098440B2 (en) | 2020-11-11 | 2024-09-24 | Nippon Steel Corporation | Steel sheet and method for producing same |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4679195B2 (ja) * | 2005-03-23 | 2011-04-27 | 日新製鋼株式会社 | 低降伏比高張力溶融亜鉛めっき鋼板の製造方法 |
US20090277547A1 (en) * | 2006-07-14 | 2009-11-12 | Kabushiki Kaisha Kobe Seiko Sho | High-strength steel sheets and processes for production of the same |
JP4743076B2 (ja) * | 2006-10-18 | 2011-08-10 | 株式会社神戸製鋼所 | 伸び及び伸びフランジ性に優れた高強度鋼板 |
ES2367713T3 (es) * | 2007-08-15 | 2011-11-07 | Thyssenkrupp Steel Europe Ag | Acero de fase dual, producto plano de un acero de fase dual tal y procedimiento para la fabricación de un producto plano. |
PL2028282T3 (pl) * | 2007-08-15 | 2012-11-30 | Thyssenkrupp Steel Europe Ag | Stal dwufazowa, płaski wyrób wytworzony ze stali dwufazowej i sposób wytwarzania płaskiego wyrobu |
JP5256690B2 (ja) * | 2007-10-25 | 2013-08-07 | Jfeスチール株式会社 | 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5256689B2 (ja) * | 2007-10-25 | 2013-08-07 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5369663B2 (ja) * | 2008-01-31 | 2013-12-18 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
KR101130837B1 (ko) * | 2008-04-10 | 2012-03-28 | 신닛뽄세이테쯔 카부시키카이샤 | 구멍 확장성과 연성의 균형이 극히 양호하고, 피로 내구성도 우수한 고강도 강판과 아연 도금 강판 및 이 강판들의 제조 방법 |
KR101027285B1 (ko) * | 2008-05-29 | 2011-04-06 | 주식회사 포스코 | 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리경화형 부재 및 이들의 제조방법 |
JP5504643B2 (ja) * | 2008-08-19 | 2014-05-28 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
KR101109953B1 (ko) * | 2008-09-29 | 2012-02-24 | 현대제철 주식회사 | 연신율과 신장플랜지성이 우수한 고장력 열연강판 및 그 제조방법 |
JP5476735B2 (ja) * | 2009-02-20 | 2014-04-23 | Jfeスチール株式会社 | 加工性に優れた高強度熱延鋼板およびその製造方法 |
JP5463685B2 (ja) * | 2009-02-25 | 2014-04-09 | Jfeスチール株式会社 | 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 |
TWI362424B (en) * | 2009-03-27 | 2012-04-21 | Nippon Steel Corp | Carbon steel sheet hiving high carburizing quenching property and manufacturing method thereof |
JP5493986B2 (ja) * | 2009-04-27 | 2014-05-14 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法 |
JP5412182B2 (ja) | 2009-05-29 | 2014-02-12 | 株式会社神戸製鋼所 | 耐水素脆化特性に優れた高強度鋼板 |
JP4737319B2 (ja) * | 2009-06-17 | 2011-07-27 | Jfeスチール株式会社 | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 |
MX338319B (es) | 2009-12-21 | 2016-04-12 | Tata Steel Ijmuiden Bv | Tira de acero galvanizado por inmersion en caliente de alta resistencia. |
JP5589893B2 (ja) * | 2010-02-26 | 2014-09-17 | 新日鐵住金株式会社 | 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法 |
JP5739669B2 (ja) * | 2010-04-20 | 2015-06-24 | 株式会社神戸製鋼所 | 延性に優れた高強度冷延鋼板の製造方法 |
JP5141811B2 (ja) * | 2010-11-12 | 2013-02-13 | Jfeスチール株式会社 | 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
KR101243002B1 (ko) * | 2010-12-22 | 2013-03-12 | 주식회사 포스코 | 연신율이 우수한 고강도 강판 및 그 제조방법 |
JP5862051B2 (ja) * | 2011-05-12 | 2016-02-16 | Jfeスチール株式会社 | 加工性に優れる高強度冷延鋼板ならびにその製造方法 |
KR101108838B1 (ko) | 2011-06-30 | 2012-01-31 | 현대하이스코 주식회사 | 충돌성능이 우수한 열처리 경화강 및 이를 이용한 열처리 경화형 부품 제조 방법 |
KR101598313B1 (ko) * | 2011-12-15 | 2016-02-26 | 가부시키가이샤 고베 세이코쇼 | 강도 및 연성의 편차가 작은 고강도 냉연 강판 및 그 제조 방법 |
TWI510641B (zh) * | 2011-12-26 | 2015-12-01 | Jfe Steel Corp | High strength steel sheet and manufacturing method thereof |
JP5348268B2 (ja) | 2012-03-07 | 2013-11-20 | Jfeスチール株式会社 | 成形性に優れる高強度冷延鋼板およびその製造方法 |
JP5890711B2 (ja) * | 2012-03-15 | 2016-03-22 | 株式会社神戸製鋼所 | 熱間プレス成形品およびその製造方法 |
JP5890710B2 (ja) * | 2012-03-15 | 2016-03-22 | 株式会社神戸製鋼所 | 熱間プレス成形品およびその製造方法 |
CN102912235B (zh) * | 2012-10-29 | 2014-11-12 | 武汉钢铁(集团)公司 | 抗拉强度590MPa级热轧双相钢及其制造方法 |
CN103060690A (zh) * | 2013-01-22 | 2013-04-24 | 宝山钢铁股份有限公司 | 一种高强度钢板及其制造方法 |
CA2903916A1 (en) * | 2013-03-11 | 2014-09-18 | Tata Steel Ijmuiden Bv | High strength hot dip galvanised complex phase steel strip |
KR101299896B1 (ko) * | 2013-05-30 | 2013-08-23 | 주식회사 포스코 | 인장강도 1.5GPa급의 초고강도 강판의 제조방법 |
CN103469058B (zh) * | 2013-10-08 | 2016-01-13 | 武汉钢铁(集团)公司 | 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法 |
WO2016020714A1 (en) * | 2014-08-07 | 2016-02-11 | Arcelormittal | Method for producing a coated steel sheet having improved strength, ductility and formability |
JP6048620B1 (ja) * | 2015-02-27 | 2016-12-21 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
CN105568147A (zh) * | 2015-12-31 | 2016-05-11 | 南阳汉冶特钢有限公司 | 一种铝板带拉伸机钳口用q550特厚板及其生产方法 |
US11993823B2 (en) | 2016-05-10 | 2024-05-28 | United States Steel Corporation | High strength annealed steel products and annealing processes for making the same |
US11560606B2 (en) | 2016-05-10 | 2023-01-24 | United States Steel Corporation | Methods of producing continuously cast hot rolled high strength steel sheet products |
EP3455068A1 (de) | 2016-05-10 | 2019-03-20 | United States Steel Corporation | Hochfeste stahlerzeugnisse und glühverfahren zur herstellung davon |
KR102177591B1 (ko) * | 2016-08-10 | 2020-11-11 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
WO2018115936A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
MX2019004457A (es) * | 2017-01-30 | 2019-06-24 | Nippon Steel & Sumitomo Metal Corp | Lamina de acero. |
US11326234B2 (en) | 2017-03-31 | 2022-05-10 | Nippon Steel Corporation | Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet |
CN107747042A (zh) * | 2017-11-06 | 2018-03-02 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种690MPa级经济型高表面质量高扩孔钢及其制备方法 |
DE102017130237A1 (de) * | 2017-12-15 | 2019-06-19 | Salzgitter Flachstahl Gmbh | Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts |
JP6597938B1 (ja) | 2018-01-31 | 2019-10-30 | Jfeスチール株式会社 | 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法 |
KR102708307B1 (ko) * | 2018-02-07 | 2024-09-20 | 타타 스틸 네덜란드 테크날러지 베.뷔. | 고강도 열간 압연 또는 냉간 압연 및 어닐링된 강 및 그 제조 방법 |
CN108406238B (zh) * | 2018-04-09 | 2020-07-07 | 西南交通大学 | 一种双相叠层组织钢板及其制备方法 |
CN110643894B (zh) | 2018-06-27 | 2021-05-14 | 宝山钢铁股份有限公司 | 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法 |
KR102164086B1 (ko) * | 2018-12-19 | 2020-10-13 | 주식회사 포스코 | 버링성이 우수한 고강도 냉연강판 및 합금화 용융아연도금강판과 이들의 제조방법 |
CN113166839B (zh) | 2019-02-06 | 2023-02-10 | 日本制铁株式会社 | 热浸镀锌钢板及其制造方法 |
CN110747391A (zh) * | 2019-08-30 | 2020-02-04 | 武汉钢铁有限公司 | 一种具有优良延伸率的冷轧超高强钢及其制备方法 |
US20220333221A1 (en) | 2019-10-10 | 2022-10-20 | Nippon Steel Corporation | Cold-rolled steel sheet and method for producing same |
WO2021153392A1 (ja) * | 2020-01-31 | 2021-08-05 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
CN115151673B (zh) * | 2020-02-28 | 2024-04-19 | 杰富意钢铁株式会社 | 钢板、构件和它们的制造方法 |
KR20220128658A (ko) * | 2020-02-28 | 2022-09-21 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 그들의 제조 방법 |
EP4186987A4 (de) | 2020-10-15 | 2023-09-27 | Nippon Steel Corporation | Stahlblech und verfahren zur herstellung davon |
KR102470747B1 (ko) * | 2020-12-16 | 2022-11-25 | 주식회사 포스코 | 항복비 및 성형성이 우수한 고강도 냉연강판의 제조방법 및 이를 이용하여 제조된 고강도 냉연강판 |
CN114763595B (zh) * | 2021-01-15 | 2023-07-07 | 宝山钢铁股份有限公司 | 一种冷轧钢板以及冷轧钢板的制造方法 |
US20240309482A1 (en) | 2021-03-10 | 2024-09-19 | Nippon Steel Corporation | Cold-rolled steel sheet and manufacturing method thereof |
KR20230125022A (ko) | 2021-03-10 | 2023-08-28 | 닛폰세이테츠 가부시키가이샤 | 냉연 강판 및 그 제조 방법 |
CN113106336B (zh) * | 2021-03-17 | 2022-06-10 | 唐山钢铁集团有限责任公司 | 一种降低激光焊接头软化程度的超高强双相钢及生产方法 |
CN116917519A (zh) | 2021-03-25 | 2023-10-20 | 日本制铁株式会社 | 钢板 |
CN113403551B (zh) * | 2021-05-21 | 2022-08-16 | 鞍钢股份有限公司 | 高屈强比抗氢脆冷轧dh980钢板及其制备方法 |
CN113549821A (zh) * | 2021-06-29 | 2021-10-26 | 鞍钢股份有限公司 | 一种低屈强比高扩孔率800MPa级热轧酸洗复相钢及其生产方法 |
CN113941599A (zh) * | 2021-09-14 | 2022-01-18 | 中国第一汽车股份有限公司 | 一种汽车用高强韧性热成形零件的制备方法 |
JPWO2023135962A1 (de) | 2022-01-13 | 2023-07-20 | ||
CN118679271A (zh) | 2022-02-09 | 2024-09-20 | 日本制铁株式会社 | 冷轧钢板及其制造方法 |
MX2024009396A (es) | 2022-02-09 | 2024-08-14 | Nippon Steel Corp | Lamina de acero laminada en frio. |
CN114959478B (zh) * | 2022-05-30 | 2023-05-02 | 山东钢铁集团日照有限公司 | 一种一钢多用的800MPa级复相钢及其调控方法 |
CN114959482B (zh) * | 2022-05-31 | 2023-05-30 | 山东钢铁集团日照有限公司 | 一种一钢多用的800MPa级双相钢及其调控方法 |
KR20230170171A (ko) * | 2022-06-09 | 2023-12-19 | 주식회사 포스코 | 연신율 및 구멍확장성이 우수한 초고강도 강판 및 그 제조방법 |
CN115710673B (zh) * | 2022-11-07 | 2023-07-14 | 鞍钢股份有限公司 | 一种高扩孔冷轧dh1180钢及其制备方法 |
CN117187682B (zh) * | 2023-04-28 | 2024-05-14 | 鞍钢股份有限公司 | 新能源汽车用1200MPa电池包用钢及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423426B1 (en) * | 1999-04-21 | 2002-07-23 | Kawasaki Steel Corporation | High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof |
US7090731B2 (en) * | 2001-01-31 | 2006-08-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength steel sheet having excellent formability and method for production thereof |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241120A (ja) * | 1987-02-06 | 1988-10-06 | Kobe Steel Ltd | 高延性高強度複合組織鋼板の製造法 |
JP2652539B2 (ja) * | 1987-09-21 | 1997-09-10 | 株式会社神戸製鋼所 | 張出し成形性及び疲労特性にすぐれる複合組織高強度冷延鋼板の製造方法 |
JPH01272720A (ja) * | 1988-04-22 | 1989-10-31 | Kobe Steel Ltd | 高延性高強度複合組織鋼板の製造法 |
JP3317303B2 (ja) * | 1991-09-17 | 2002-08-26 | 住友金属工業株式会社 | 局部延性の優れた高張力薄鋼板とその製造法 |
JP3350944B2 (ja) * | 1991-12-21 | 2002-11-25 | 住友金属工業株式会社 | 延性,耐食性の優れた高張力冷延薄鋼板と製造法 |
JP2962038B2 (ja) * | 1992-03-25 | 1999-10-12 | 住友金属工業株式会社 | 高張力薄鋼板とその製造方法 |
JP2660644B2 (ja) * | 1992-11-02 | 1997-10-08 | 新日本製鐵株式会社 | プレス成形性の良好な高強度鋼板 |
US5470529A (en) * | 1994-03-08 | 1995-11-28 | Sumitomo Metal Industries, Ltd. | High tensile strength steel sheet having improved formability |
JPH0967645A (ja) | 1995-08-29 | 1997-03-11 | Kobe Steel Ltd | 剪断加工後の伸びフランジ性に優れた薄鋼板及びその薄鋼板を用いた素板 |
JPH11323489A (ja) * | 1998-05-13 | 1999-11-26 | Nippon Steel Corp | 形状凍結性に優れた良加工性高強度冷延鋼板およびその製造方法 |
JP3587126B2 (ja) * | 1999-04-21 | 2004-11-10 | Jfeスチール株式会社 | 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法 |
US6537394B1 (en) * | 1999-10-22 | 2003-03-25 | Kawasaki Steel Corporation | Method for producing hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property |
JP3587116B2 (ja) * | 2000-01-25 | 2004-11-10 | Jfeスチール株式会社 | 高張力溶融亜鉛めっき鋼板およびその製造方法 |
JP3972551B2 (ja) * | 2000-01-26 | 2007-09-05 | Jfeスチール株式会社 | 高張力溶融亜鉛めっき鋼板およびその製造方法 |
JP3927384B2 (ja) * | 2001-02-23 | 2007-06-06 | 新日本製鐵株式会社 | 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法 |
JP4188608B2 (ja) | 2001-02-28 | 2008-11-26 | 株式会社神戸製鋼所 | 加工性に優れた高強度鋼板およびその製造方法 |
JP3881559B2 (ja) | 2002-02-08 | 2007-02-14 | 新日本製鐵株式会社 | 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板 |
WO2003078668A1 (fr) * | 2002-03-18 | 2003-09-25 | Jfe Steel Corporation | Procede pour fabriquer une feuille d'acier galvanisee a chaud de haute resistance, presentant une excellente ductilite et une grande resistance a la fatigue |
US7559997B2 (en) | 2002-06-25 | 2009-07-14 | Jfe Steel Corporation | High-strength cold rolled steel sheet and process for producing the same |
JP4306202B2 (ja) * | 2002-08-02 | 2009-07-29 | 住友金属工業株式会社 | 高張力冷延鋼板及びその製造方法 |
JP4062616B2 (ja) * | 2002-08-12 | 2008-03-19 | 株式会社神戸製鋼所 | 伸びフランジ性に優れた高強度鋼板 |
JP4119758B2 (ja) * | 2003-01-16 | 2008-07-16 | 株式会社神戸製鋼所 | 加工性および形状凍結性に優れた高強度鋼板、並びにその製法 |
-
2004
- 2004-10-06 JP JP2004293990A patent/JP4445365B2/ja not_active Expired - Lifetime
-
2005
- 2005-10-05 KR KR1020077007768A patent/KR20070061859A/ko not_active Application Discontinuation
- 2005-10-05 US US11/663,581 patent/US20080000555A1/en not_active Abandoned
- 2005-10-05 PL PL05793806T patent/PL1808505T3/pl unknown
- 2005-10-05 ES ES13189987T patent/ES2712177T3/es active Active
- 2005-10-05 WO PCT/JP2005/018724 patent/WO2006038708A1/ja active Application Filing
- 2005-10-05 EP EP13189987.4A patent/EP2690191B1/de active Active
- 2005-10-05 CN CN201010209272A patent/CN101851730A/zh active Pending
- 2005-10-05 PL PL13189987T patent/PL2690191T3/pl unknown
- 2005-10-05 TW TW094134783A patent/TWI305232B/zh not_active IP Right Cessation
- 2005-10-05 CA CA2582409A patent/CA2582409C/en active Active
- 2005-10-05 ES ES05793806T patent/ES2712142T3/es active Active
- 2005-10-05 EP EP05793806.0A patent/EP1808505B1/de active Active
- 2005-10-05 CN CN2005800342050A patent/CN101035921B/zh active Active
-
2009
- 2009-08-27 US US12/583,846 patent/US8137487B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423426B1 (en) * | 1999-04-21 | 2002-07-23 | Kawasaki Steel Corporation | High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof |
US7090731B2 (en) * | 2001-01-31 | 2006-08-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength steel sheet having excellent formability and method for production thereof |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7780799B2 (en) * | 2003-05-21 | 2010-08-24 | Nippon Steel Corporation | Cold-rolled steel sheet having a tensile strength of 780 MPA or more, an excellent local formability and a suppressed increase in weld hardness |
US20070071997A1 (en) * | 2003-05-21 | 2007-03-29 | Koichi Goto | A cold-rolled steel sheet having a tensile strength of 780 mpa or more, an excellent local formability and a suppressed increase in weld hardness |
US9458521B2 (en) | 2007-10-25 | 2016-10-04 | Jfe Steel Corporation | High tensile strength galvanized steel sheets excellent in formability and methods of manufacturing the same |
US20100218857A1 (en) * | 2007-10-25 | 2010-09-02 | Jfe Steel Corporation | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US20100314009A1 (en) * | 2008-01-31 | 2010-12-16 | Jfe Steel Corporation | High strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US8815026B2 (en) | 2008-01-31 | 2014-08-26 | Jfe Steel Corporation | High strength galvanized steel sheet excellent in formability |
US7919194B2 (en) * | 2008-02-19 | 2011-04-05 | Jfe Steel Corporation | High strength steel sheet having superior ductility |
US20090214892A1 (en) * | 2008-02-19 | 2009-08-27 | Jfe Steel Corporation, A Corporation Of Japan | High strength steel sheet having superior ductility and method for manufacturing the same |
US20120009434A1 (en) * | 2008-07-11 | 2012-01-12 | Kabushiki Kaisha Kobe Seiko Sho | Cold-rolled steel sheet |
US8876986B2 (en) * | 2008-07-11 | 2014-11-04 | Kobe Steel, Ltd. | Cold-rolled steel sheet |
EP2325346A4 (de) * | 2008-09-10 | 2017-01-25 | JFE Steel Corporation | Hochfeste stahlplatte und herstellungsverfahren dafür |
US20110048586A1 (en) * | 2009-08-31 | 2011-03-03 | Hyundai Hysco | Dual phase steel sheet and method of manufacturing the same |
US20120222781A1 (en) * | 2009-11-30 | 2012-09-06 | Masafumi Azuma | HIGH STRENGTH STEEL PLATE WITH ULTIMATE TENSILE STRENGTH OF 900 MPa OR MORE EXCELLENT IN HYDROGEN EMBRITTLEMENT RESISTANCE AND METHOD OF PRODUCTION OF SAME |
US10023947B2 (en) * | 2009-11-30 | 2018-07-17 | Nippon Steel & Sumitomo Metal Corporation | High strength steel plate with ultimate tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and method of production of same |
EP2546375A4 (de) * | 2010-03-09 | 2014-06-25 | Jfe Steel Corp | Hochfestes gepresstes element und herstellungsverfahren dafür |
US9644247B2 (en) | 2010-03-09 | 2017-05-09 | Jfe Steel Corporation | Methods for manufacturing a high-strength press-formed member |
US8992697B2 (en) * | 2010-03-09 | 2015-03-31 | Jfe Steel Corporation | High strength press-formed member and method for manufacturing the same |
EP2546375A1 (de) * | 2010-03-09 | 2013-01-16 | JFE Steel Corporation | Hochfestes gepresstes element und herstellungsverfahren dafür |
US20130048161A1 (en) * | 2010-03-09 | 2013-02-28 | Jfe Steel Corporation | High strength press-formed member and method for manufacturing the same |
US10280475B2 (en) * | 2010-12-17 | 2019-05-07 | Nippon Steel & Sumitomo Metal Corporation | Hot-dip galvanized steel sheet and manufacturing method thereof |
US20130273392A1 (en) * | 2010-12-17 | 2013-10-17 | Nippon Steel & Sumitomo Metal Corporation | Hot-dip galvanized steel sheet and manufacturing method thereof |
US10927428B2 (en) | 2010-12-17 | 2021-02-23 | Nippon Steel Corporation | Hot-dip galvanized steel sheet and manufacturing method thereof |
US20160355920A1 (en) * | 2011-03-31 | 2016-12-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet excellent in workability and manufacturing method thereof |
US9475112B2 (en) | 2011-06-10 | 2016-10-25 | Kobe Steel, Ltd. | Hot press-formed product and process for producing same |
US9745639B2 (en) * | 2011-06-13 | 2017-08-29 | Kobe Steel, Ltd. | High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof |
US20120312433A1 (en) * | 2011-06-13 | 2012-12-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof |
US9234268B2 (en) | 2011-07-29 | 2016-01-12 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet excellent in bendability and manufacturing method thereof |
WO2013037485A1 (en) * | 2011-09-13 | 2013-03-21 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
US9783878B2 (en) * | 2011-09-30 | 2017-10-10 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent plating adhesion, formability, and hole expandability with tensile strength of 980 MPa or more and manufacturing method therefor |
US20140234658A1 (en) * | 2011-09-30 | 2014-08-21 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
US9540720B2 (en) | 2011-09-30 | 2017-01-10 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 MPa or more |
US20140342183A1 (en) * | 2011-09-30 | 2014-11-20 | Nippon Steel & Sumitomo Metal Corporation | HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND HIGH-STRENGTH ALLOYED HOT-DIP GALVANIZED STEEL SHEET HAVING EXCELLENT PLATING ADHESION, FORMABILITY, AND HOLE EXPANDABILITY WITH TENSILE STRENGTH OF 980 MPa OR MORE AND MANUFACTURING METHOD THEREFOR |
US9970092B2 (en) * | 2011-09-30 | 2018-05-15 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
US10465272B2 (en) | 2011-09-30 | 2019-11-05 | Nippon Steel Corporation | High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent plating adhesion, formability, and hole expandability with tensile strength of 980 MPa or more and manufacturing method therefor |
US8876987B2 (en) * | 2011-10-04 | 2014-11-04 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
US20140242416A1 (en) * | 2011-10-04 | 2014-08-28 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
US10538830B2 (en) | 2011-10-06 | 2020-01-21 | Nippon Steel Corporation | Steel sheet and method of producing the same |
US10544474B2 (en) | 2012-02-08 | 2020-01-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet and method for producing the same |
US10072316B2 (en) | 2012-10-18 | 2018-09-11 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for producing the same |
US9322088B2 (en) | 2012-12-12 | 2016-04-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength steel sheet and method for producing the same |
US10544475B2 (en) * | 2013-04-02 | 2020-01-28 | Nippon Steel Corporation | Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel |
US11371110B2 (en) | 2013-04-02 | 2022-06-28 | Nippon Steel Corporation | Cold-rolled steel sheet |
US20160060722A1 (en) * | 2013-04-02 | 2016-03-03 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel |
US10501830B2 (en) * | 2014-03-31 | 2019-12-10 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability |
US10465260B2 (en) * | 2015-04-10 | 2019-11-05 | The Nanosteel Company, Inc. | Edge formability in metallic alloys |
US20190352731A1 (en) * | 2015-04-10 | 2019-11-21 | The Nanosteel Company, Inc. | Edge Formability In Metallic Alloys |
US20170166988A1 (en) * | 2015-04-10 | 2017-06-15 | The Nanosteel Company, Inc. | Edge Formability In Metallic Alloys |
US10975453B2 (en) * | 2015-04-10 | 2021-04-13 | United States Steel Corporation | Edge formability in metallic alloys |
US20210238703A1 (en) * | 2015-04-10 | 2021-08-05 | United States Steel Corporation | Edge formability in metallic alloys |
US10889873B2 (en) | 2016-03-08 | 2021-01-12 | Posco | Complex-phase steel sheet having excellent formability and method of manufacturing the same |
US20180187283A1 (en) * | 2016-03-30 | 2018-07-05 | Tata Steel Limited | Hot Rolled High Strength Steel (HRHSS) Product with Tensile Strength of 1000 - 1200 MPa and Total Elongation of 16% - 17% |
US10876184B2 (en) * | 2016-03-30 | 2020-12-29 | Tata Steel Limited | Hot rolled high strength steel (HRHSS) product with tensile strength of 1000-1200 MPa and total elongation of 16%-17% |
US11136644B2 (en) | 2016-08-31 | 2021-10-05 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method for producing the same |
EP3585532A4 (de) * | 2017-02-21 | 2020-08-12 | The Nanosteel Company, Inc. | Verbesserte kantenformbarkeit in metallischen legierungen |
US11332803B2 (en) | 2017-04-21 | 2022-05-17 | Nippon Steel Corporation | High strength hot-dip galvanized steel sheet and production method therefor |
US11208705B2 (en) | 2017-11-15 | 2021-12-28 | Nippon Steel Corporation | High-strength cold-rolled steel sheet |
US11401569B2 (en) | 2017-11-29 | 2022-08-02 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
US11473164B2 (en) | 2018-03-19 | 2022-10-18 | Nippon Steel Corporation | High-strength cold-rolled steel sheet and manufacturing method therefor |
US11814708B2 (en) | 2019-02-06 | 2023-11-14 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US11905570B2 (en) | 2019-02-06 | 2024-02-20 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US12006562B2 (en) | 2019-02-06 | 2024-06-11 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US20230349020A1 (en) * | 2020-02-28 | 2023-11-02 | Jfe Steel Corporation | Steel sheet, member, and methods for manufacturing the same |
CN116194609A (zh) * | 2020-09-07 | 2023-05-30 | 浦项股份有限公司 | 扩孔性优异的高强度钢板及其制造方法 |
US12098440B2 (en) | 2020-11-11 | 2024-09-24 | Nippon Steel Corporation | Steel sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
ES2712142T3 (es) | 2019-05-09 |
CA2582409A1 (en) | 2006-04-13 |
EP2690191A3 (de) | 2017-03-01 |
JP2006104532A (ja) | 2006-04-20 |
CA2582409C (en) | 2012-02-07 |
CN101035921A (zh) | 2007-09-12 |
EP2690191A2 (de) | 2014-01-29 |
WO2006038708A1 (ja) | 2006-04-13 |
CN101035921B (zh) | 2012-07-04 |
JP4445365B2 (ja) | 2010-04-07 |
EP2690191B1 (de) | 2018-11-28 |
EP1808505B1 (de) | 2018-11-28 |
PL2690191T3 (pl) | 2019-05-31 |
US8137487B2 (en) | 2012-03-20 |
EP1808505A1 (de) | 2007-07-18 |
TWI305232B (en) | 2009-01-11 |
EP1808505A4 (de) | 2012-04-25 |
TW200615387A (en) | 2006-05-16 |
CN101851730A (zh) | 2010-10-06 |
US20090314395A1 (en) | 2009-12-24 |
PL1808505T3 (pl) | 2019-05-31 |
ES2712177T3 (es) | 2019-05-09 |
KR20070061859A (ko) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8137487B2 (en) | Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability | |
JP6043801B2 (ja) | 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法 | |
JP6536294B2 (ja) | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 | |
KR101399741B1 (ko) | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
JP4085583B2 (ja) | 高強度冷延溶融亜鉛メッキ鋼板およびその製造方法 | |
KR102000854B1 (ko) | 고강도 냉연 강판 및 그 제조방법 | |
US20120175028A1 (en) | High strength steel sheet and method for manufacturing the same | |
KR101225246B1 (ko) | 성형성이 우수한 자동차용 고강도 냉연 복합조직강판 및 그 제조 방법 | |
KR101445465B1 (ko) | 가공성과 스폿 용접성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
KR20100099757A (ko) | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
KR101986640B1 (ko) | 고강도 냉연 강판 및 그의 제조 방법 | |
KR20210060550A (ko) | 고항복비 고강도 전기 아연계 도금 강판 및 그의 제조 방법 | |
KR102020407B1 (ko) | 고항복비형 고강도 강판 및 이의 제조방법 | |
JP4291711B2 (ja) | 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法 | |
KR102468051B1 (ko) | 연성이 우수한 초고강도 강판 및 그 제조방법 | |
CN114921726A (zh) | 低成本高屈强比冷轧热镀锌超高强钢及其生产方法 | |
EP4176092A1 (de) | Wärmebehandeltes kaltgewalztes stahlblech und verfahren zur herstellung davon | |
JP2005105399A (ja) | 低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP4428075B2 (ja) | 伸びフランジ成形性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP3925064B2 (ja) | プレス成形性と歪時効硬化特性に優れた溶融亜鉛めっき鋼板およびその製造方法 | |
KR102464387B1 (ko) | 고강도 합금화 용융아연도금 강판 및 그 제조방법 | |
RU2788613C1 (ru) | Холоднокатаный и покрытый стальной лист и способ его получения | |
KR102245228B1 (ko) | 균일연신율 및 가공경화율이 우수한 강판 및 이의 제조방법 | |
KR20230087773A (ko) | 강도 및 연성이 우수한 강판 및 그 제조방법 | |
KR20240106696A (ko) | 내부식성 초고강도 냉연강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON STEEL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NONAKA, TOSHIKI;TANIGUCHI, HIROKAZU;GOTO, KOICHI;REEL/FRAME:019118/0279 Effective date: 20070220 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |