CN114921726A - 低成本高屈强比冷轧热镀锌超高强钢及其生产方法 - Google Patents

低成本高屈强比冷轧热镀锌超高强钢及其生产方法 Download PDF

Info

Publication number
CN114921726A
CN114921726A CN202210593239.9A CN202210593239A CN114921726A CN 114921726 A CN114921726 A CN 114921726A CN 202210593239 A CN202210593239 A CN 202210593239A CN 114921726 A CN114921726 A CN 114921726A
Authority
CN
China
Prior art keywords
yield
ultrahigh
cold
galvanized
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210593239.9A
Other languages
English (en)
Other versions
CN114921726B (zh
Inventor
谭文
胡建旺
丁涛
周文强
方芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202210593239.9A priority Critical patent/CN114921726B/zh
Publication of CN114921726A publication Critical patent/CN114921726A/zh
Application granted granted Critical
Publication of CN114921726B publication Critical patent/CN114921726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开一种低成本高屈强比冷轧热镀锌超高强钢及其生产方法,钢的化学成份及重量百分比为:C:0.085~0.12%,Mn:2.00~2.30%,Als:0.010~0.030%,Si:0.10~0.30%,Nb:0.021~0.039%,Cr:0.20~0.40%,Ti:0.010~0.030%,P:≤0.015%,S:≤0.002%,N:≤0.008%,其余为Fe和不可避免的杂质。其生产方法包括:冶炼、连铸、加热、热轧、层流冷却、卷取、酸洗、冷轧、连续退火及涂镀。本发明的贵重合金元素添加少,产品屈强比达到0.70以上,且延伸率、扩孔率等性能指标良好,由于本材料不易屈服变形,因此可用于生产对安全要求较高的汽车结构件。

Description

低成本高屈强比冷轧热镀锌超高强钢及其生产方法
技术领域
本发明涉及冷轧热镀锌汽车用超高强钢制造领域,具体涉及一种低成本高屈强比冷轧热镀锌超高强钢及其生产方法。
背景技术
近年来,随着汽车节能减排技术的推进,汽车轻量化成为一种发展趋势。780MPa级及以上的超高强钢是汽车轻量化材料的发展方向之一,高屈强比超高强钢屈服强度高,在碰撞时难以变形,可以更好的保护乘客安全,因此在一些重要的汽车结构件上得到广泛应用。与普通冷轧超高强钢相比,镀锌超高强钢还具有良好的耐腐蚀性能,可延长汽车使用寿命,因此兼具高屈强比和耐蚀性的超高强钢越来越受到市场的青睐。
申请号为CN201811404464.3的发明专利公开了一种高屈强比冷轧双相钢及其生产方法,其化学元素质量百分配比为:C:0.05~0.08%,Mn:0.9~1.2%,Si:0.1~0.6%,Nb:0.030~0.060%,Ti:0.030~0.060%,Al:0.015~0.045%,余量为Fe和其他不可避免的杂质。申请号为CN201710390994.6的发明专利公开了一种800MPa级高屈强比冷轧钢带及其生产方法,钢带化学成分组成及质量百分含量为:C:0.05~0.08%,Si≤0.15%,Mn:1.60~1.90%,P≤0.020%,S≤0.008%,Als:0.020~0.060%,Nb:0.045~0.065%,Ti:0.090~0.110%,Mo:0.15~0.20%,N≤0.0050%,其余为铁和不可避免的杂质。
申请号为CN201910357999.8的发明专利公开了一种800MPa级高屈强比冷轧双相钢及其制备方法,其包括C:0.08-0.10%、Si:0.6-0.8%、Mn:1.8-2.0%、Cr:0.6-0.8%、Als:0.03-0.06%、Nb:0.04-0.06%、P≤0.02%、S≤0.01%,余量为Fe和不可避免的杂质。申请号为CN201810366354.6的发明专利公开了一种800MPa级纯锌镀层高扩孔钢板及其生产方法,其包括C:0.08-0.12%;Si:0.10-0.20%;Mn:1.5-2.5%;Cr:0.2-0.4%;Mo:0.12-0.20%;Als:0.03-0.06%、P≤0.015%、S≤0.04%、N:≤0.005%,余量为Fe和不可避免的杂质。
在现有技术中,780MPa级的高屈强比超高强钢主要为普通冷轧产品,屈强比(屈服强度/抗拉强度)通常低于0.70。在生产中,为了提高屈强比,通常会添加较高的合金元素Cr、Mo、Nb、Ti等,导致合金成本较高。
发明内容
本发明的目的在于克服上述背景技术的不足,提供一种低成本高屈强比冷轧热镀锌超高强钢及其生产方法。贵重合金元素添加少,产品屈强比达到0.70以上,且延伸率、扩孔率等性能指标良好,由于本材料不易屈服变形,因此可用于生产对安全要求较高的汽车结构件。
为实现上述目的,一方面,本发明提供一种低成本高屈强比冷轧热镀锌超高强钢,其化学成份及重量百分比为:C:0.085~0.12%,Mn:2.00~2.30%,Als:0.010~0.030%,Si:0.10~0.30%,Nb:0.021~0.039%,Cr:0.20~0.40%,Ti:0.010~0.030%,P:≤0.015%,S:≤0.002%,N:≤0.008%,其余为Fe和不可避免的杂质。
优选地,其屈服强度为550~700MPa,抗拉强度为780~850MPa,屈强比≥0.70,延伸率A80≥18%。
优选地,其金相组织在厚度方向由上中下三层组成,上下层由25~50%铁素体(F)、0~5%贝氏体(B)、50~70%马氏体组成,中间层由35~65%铁素体(F)、0~10%贝氏体(B)、0~10%珠光体(P)、35~55%马氏体组成。
进一步优选地,上下层厚度之和占整个厚度的比例为40~60%,马氏体晶粒平均直径在1.0~2.5μm之间。
另一方面,本发明提供一种生产如前所述的低成本高屈强比冷轧热镀锌超高强钢的方法,包括:冶炼、连铸、加热、热轧、层流冷却、卷取、酸洗、冷轧、连续退火及涂镀。
优选地,冶炼步骤中采用RH、LF等精炼方式对钢水进行精炼。
优选地,板坯加热步骤中,板坯出炉温度为1250-1280℃,加热时间为150-200min。
优选地,热轧步骤中,在1000~920℃区间的板坯压下率(板坯厚度/热轧产品厚度)≥90%,热轧终轧温度860~920℃;层流冷却步骤中,采用前段快速冷却,且带钢在860~600℃温度区间的平均冷却速率≥20℃/s;卷取步骤中,卷取温度520~570℃。进一步地,热轧终轧温度优选860~900℃,平均冷却速率优选≥25℃/s,卷取温度优选530~560℃。
优选地,冷轧步骤中,冷轧压下率控制在50~70%。
优选地,连续退火步骤中,退火温度760~810℃,连续退火时间60~200s;连续退火后快冷速度20~100℃/s,快速冷却终点温度150~470℃,保温时间0~5s,加热升温速度0.1~100℃/s。进一步地,退火温度优选780~800℃,退火时间优选100~160s,退火后快冷速度优选25~70℃/s,快速冷却终点温度优选440~470℃,保温时间优选0s,加热升温速度优选0.1~5℃/s。
优选地,涂镀步骤中,包括涂镀、冷却、光整,其中涂镀温度440~470℃,冷却速度≥2℃/s,冷却终点温度≤200℃,光整延伸率0.30~0.50%。
本发明中各元素及主要工序的作用:
C:碳与钢中的Nb、Ti等等形成MC细小颗粒,在钢材冷变形中,起到钉扎位错,提高钢材的屈服强度从而提高屈强比的作用。碳含量太高,对焊接性能等造成不利影响。综合考虑,钢中的C含量选择为0.085%~0.12%。
Mn:Mn在钢中稳定奥氏体、促进马氏体形成的作用,含量过低,形成马氏体量小,强度较低,Mn含量过高,形成马氏体的强度偏高,同时韧性降低,因此本发明Mn含量为2.00~2.30%。
Si:对提高钢材的屈服强度,提高屈强比有显著作用,但Si含量过高,造成马氏体硬度太高,造成延伸性能和成型性能下降;在一定的卷取温度范围,Si可促进钢中细小贝氏体组织的形成,避免粗大珠光体的形成。
Al:Al为强脱氧剂,有效降低钢中的残氧,减少钢中夹杂物的含量,添加过多的Al,增加钢材的成本。因此本发明中Al含量为0.010~0.030%。
P:P为钢中的杂质元素,易于在晶界偏聚,影响产品的韧性,因此其含量越低越好。根据实际控制水平,应控制在0.015%以下。
S:S为钢中的杂质元素,炼钢时应充分去除,但S含量过低时,增加生产费用,因此根据成本和性能考虑,应控制在≤0.008%。
N:N为钢中的杂质元素,容易和钢中Nb、Ti等形氮化物粒子,消耗钢中的有效Nb、Ti等,降低Nb、Ti细化晶粒的效果,因此尽量降低其含量,但N含量控制过低,需增加生产费用,综合性能和成本考虑,N应控制在0.006%以下。
Cr:Cr在一定卷取温度下可促进钢中贝氏体的形成,避免粗大珠光体的形成,因此本发明中Cr含量为0.20~0.40%。
Nb:通过与热轧轧制温度及压下率配合,Nb可抑制奥氏体的再结晶和晶粒长大,显著细化奥氏体晶粒,从而得到细小的马氏体组织,同时提高钢材的屈服强度、抗拉强度和延伸率,Nb也可提高淬透性,促进马氏体的形成,起到替代Mo等合金元素的作用,但Nb含量过高会增加钢材的制造成本,因此本发明中Nb的含量为0.021~0.039%。
Ti:Ti可抑制奥氏体的再结晶和晶粒长大,显著细化奥氏体晶粒,并得到细小的马氏体组织,形成的TiC粒子在冷变形过程中,起到钉扎位错,提高屈服强度从而提高屈强比的作用,但Ti含量过高带来成本增加,因此本发明中Ti的含量为0.010~0.030%。
对本发明中主要工艺理由分析如下:
由于本发明中添加了一定量的Nb和Ti,因此板坯出炉温度采用1250-1280℃;板坯温度低于1250℃不利于钢中Nb、Ti的固溶以及均匀化,减弱Nb和Ti在热轧和连退过程中的晶粒细化作用,加热温度高于1280℃,表面容易形成难以去除的Fe2SiO4,使产品表面质量变差;加热时间150-300min利于钢中Nb、Ti的固溶以及均匀化,加热时间太短,减弱Nb、Ti细化晶粒的效果,加热时间过长,容易造成表面铁皮增厚和形成难以去除的Fe2SiO4,不利于镀锌产品的表面质量控制。
通过研究发现,热轧产品细小的B组织有利于促进连退产品细小马氏体的形成,因此本发明期望在热轧产品的组织中获得细小的B组织。通过控制热轧阶段的压下率可以显著抑制钢材的再结晶,促进钢材的未再结晶,细化奥氏体晶粒,因此本发明热轧在1000~920℃区间的板坯压下率(板坯厚度/热轧产品厚度)≥90%,热轧终轧温度860~920℃,终轧温度优选860~900℃;在层流冷却阶段中,采用前段快速冷却,且带钢在860~600℃温度区间的平均冷却速率≥20℃/s可以抑制冷却过程中形成过多粗大的铁素体和珠光体组织;卷取温度在520~570℃时,容易形成细小的贝氏体组织,抑制粗大珠光体的形成,同时,较低的卷取温度可以抑制卷取过程中细小Nb、Ti碳化物的形成,避免连退中析出粗大的碳化物粒子,降低Nb、Ti的强化效果。
在冷轧过程中,采用50%以上的冷轧压下率可充分破碎热轧组织,使连退后的组织细小均匀,而冷轧压下率太大,容易造成轧制负荷太大,易于造成边部开裂,因此,本发明中,冷轧压下率控制在50~70%。
在连续退火过程中,连续退火温度太低和连续退火时间太短,组织中的铁素体得不到充分的回复和再结晶,降低产品的延伸性能,退火温度太高和连续退火时间太长容易造成产品的马氏体晶粒粗大,降低产品的屈强比、延伸率和成型性能,因此本发明退火温度760~810℃,连续退火时间60~200s;连续退火后快冷速度20~100℃/s有利于增加产品上下层中的马氏体分数,并细化马氏体晶粒,冷速太高,马氏体含量太高,而钢中的铁素体、贝氏体和珠光体第二相分数较低,降低产品的延伸率和成型性能。
连续退火后的快速冷却终点温度、保温时间、快速加热速度等均影响本发明产品的上中下组织类型,快速冷却终点温度过低,造成产品中的马氏体含量增加,第二相铁素体、贝氏体、珠光体较少,产品的延伸率降低,而快速冷却终点温度太高、保温时间太长形成的马氏体晶粒、分数较少,降低产品的屈服强度和屈强比;保温时间过长或造成钢中形成的贝氏体或珠光体过多,造成产品的抗拉强度降低,因此,本发明快速冷却终点温度150~470℃,保温时间0~5s,快速加热速度0.1~100℃/s。
涂覆后的光整延伸率可进一步提高钢材的屈服强度和屈强比,但光整延伸率过大,造成微观组织中的位错较多,降低延伸率和成型性能。
与现有技术相比,本发明具有如下优点:
(1)本发明提供了一种屈强比大于≥0.70,抗拉强度≥780MPa,且成型性能和表面质量良好的冷轧超高强钢镀锌产品,产品的力学性能可达到:屈服强度550~700MPa,抗拉强度780~850MPa,屈强比≥0.70,延伸率A80≥18%,可满足市场对高屈强比镀锌产品的需求。
(2)本发明减少Mo、V贵重金属合金元素的使用,只添加低于0.40%的Cr、低于0.04%的Nb、低于0.03%的Ti就可得到高屈强比的产品,大大降低了合金成本。
(3)本发明热轧阶段控制低温阶段的压下率,提高了Nb、Ti细化晶粒的效果;在卷取阶段采用低温卷取,避免了粗大珠光体的产生,并进一步细化产品的晶粒;在连续退火阶段,采用均热后直接快速冷却的方式,避免了晶粒长大,增加钢中马氏体的分数,并在较低温度进行保温和加热的方式,使形成的马氏体产生一定程度软化,从而提高产品的延伸率和成型性能。
具体实施方式
下面结合实施案例详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明本发明的优点将变得更加清楚和容易理解。
实施例1~6
本发明各实施例按照以下步骤进行生产(冶炼、连铸→加热→热轧→层流冷却→卷取→酸洗→冷轧→连退退火→涂镀→光整→成品)
冶炼、连铸:采用RH和LF等方式对钢水进行精炼。
将上述连铸板坯进行加热,板坯出炉温度1250-1280℃,加热时间150-200min。
热轧:对加热后的板坯进行热轧,热轧终轧温度860~920℃,且在1000~920℃区间的板坯压下率(板坯厚度/热轧产品厚度)≥90%。
层流冷却:对热轧后的带钢采用前段快速冷却,且带钢在860~600℃温度区间的平均冷却速率≥20℃/s。
卷取:对层流冷却后的带钢进行卷取,卷取温度520~570℃。
酸洗:对热轧钢带进行酸洗。
冷轧:对酸洗后的钢带进行冷轧,冷轧压下率控制在50~70%。
8)连续退火:对冷轧后的钢带进行连续退火,退火温度760~810℃,连续退火时间60~200s;连续退火后的带钢进行快速冷却,快速冷却速度20~100℃/s,快速冷却终点温度150~470℃,保温时间0~5s;保温后的钢带进行快速加热,快速加热速度0.1~100℃/s。
9)涂镀:快速加热后的带钢进行涂镀,涂镀温度440~470℃;涂镀后的带钢进行冷却,冷却速度≥2℃/s,冷却终点温度≤200℃;涂覆并冷却后的带钢进行光整,光整压下率0.30~0.50%。
实施例1~6及对比例1~3的具体化学成分见下表1(wt%);实施例1~6及对比例1~3的热轧和冷轧等主要参数控制及效果见下表2;实施例1~6及对比例1~3的冷轧及退火工艺参数控制见下表3;实施例1~6及对比例1~3的实施效果见下表4。
表1
Figure BDA0003666484260000081
表2
Figure BDA0003666484260000091
表3
Figure BDA0003666484260000092
对实施例和对比例的微观组织进行检验,结果见下表4。
表4
Figure BDA0003666484260000101
对实施例和对比例的力学性能进行检验,结果见下表5。
表5
Figure BDA0003666484260000102
Figure BDA0003666484260000111
从表5可以看出,本发明实施例1~6的产品屈服强度在550MPa以上,抗拉强度780~850MPa之间,延伸率A80达18%以上,屈强比均在0.71以上。实施例1~6均没有添加贵重合金元素Mo,且Si含量小于0.30%、Cr含量小于0.40%。对比例1~3采用了贵重的合金元素Mo,产品的最终力学性能屈服强度低于550MPa,屈强比低于0.70。
以上,仅为本发明的具体实施方式,应当指出,任何熟悉本领域的技术人员在本发明所揭示的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内,其余未详细说明的为现有技术。

Claims (10)

1.一种低成本高屈强比冷轧热镀锌超高强钢,其特征在于,其化学成份及重量百分比为:C:0.085~0.12%,Mn:2.00~2.30%,Als:0.010~0.030%,Si:0.10~0.30%,Nb:0.021~0.039%,Cr:0.20~0.40%,Ti:0.010~0.030%,P:≤0.015%,S:≤0.002%,N:≤0.008%,其余为Fe和不可避免的杂质。
2.根据权利要求1所述的低成本高屈强比冷轧热镀锌超高强钢,其特征在于,其屈服强度为550~700MPa,抗拉强度为780~850MPa,屈强比≥0.70,延伸率A80≥18%。
3.根据权利要求1所述的低成本高屈强比冷轧热镀锌超高强钢,其特征在于,其金相组织在厚度方向由上中下三层组成,上下层由25~50%铁素体、0~5%贝氏体、50~70%马氏体组成,中间层由35~65%铁素体、0~10%贝氏体、0~10%珠光体、35~55%马氏体组成。
4.根据权利要求3所述的低成本高屈强比冷轧热镀锌超高强钢,其特征在于,上下层厚度之和占整个厚度的比例为40~60%,马氏体晶粒平均直径在1.0~2.5μm之间。
5.一种生产权利要求1-4任一项所述的低成本高屈强比冷轧热镀锌超高强钢的方法,其特征在于,包括:冶炼、连铸、加热、热轧、层流冷却、卷取、酸洗、冷轧、连续退火及涂镀。
6.根据权利要求5所述的低成本高屈强比冷轧热镀锌超高强钢的生产方法,其特征在于,板坯加热步骤中,板坯出炉温度为1250-1280℃,加热时间为150-200min。
7.根据权利要求5所述的低成本高屈强比冷轧热镀锌超高强钢的生产方法,其特征在于,热轧步骤中,在1000~920℃区间的板坯压下率≥90%,热轧终轧温度860~920℃;层流冷却步骤中,采用前段快速冷却,且带钢在860~600℃温度区间的平均冷却速率≥20℃/s;卷取步骤中,卷取温度520~570℃。
8.根据权利要求5所述的低成本高屈强比冷轧热镀锌超高强钢的生产方法,其特征在于,冷轧步骤中,冷轧压下率控制在50~70%。
9.根据权利要求5所述的低成本高屈强比冷轧热镀锌超高强钢的生产方法,其特征在于,连续退火步骤中,退火温度760~810℃,连续退火时间60~200s;连续退火后快冷速度20~100℃/s,快速冷却终点温度150~470℃,保温时间0~5s,加热升温速度0.1~100℃/s。
10.根据权利要求5所述的低成本高屈强比冷轧热镀锌超高强钢的生产方法,其特征在于,涂镀步骤中,包括涂镀、冷却、光整,其中涂镀温度440~470℃,冷却速度≥2℃/s,冷却终点温度≤200℃,光整延伸率0.30~0.50%。
CN202210593239.9A 2022-05-27 2022-05-27 低成本高屈强比冷轧热镀锌超高强钢及其生产方法 Active CN114921726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210593239.9A CN114921726B (zh) 2022-05-27 2022-05-27 低成本高屈强比冷轧热镀锌超高强钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210593239.9A CN114921726B (zh) 2022-05-27 2022-05-27 低成本高屈强比冷轧热镀锌超高强钢及其生产方法

Publications (2)

Publication Number Publication Date
CN114921726A true CN114921726A (zh) 2022-08-19
CN114921726B CN114921726B (zh) 2023-10-20

Family

ID=82810539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210593239.9A Active CN114921726B (zh) 2022-05-27 2022-05-27 低成本高屈强比冷轧热镀锌超高强钢及其生产方法

Country Status (1)

Country Link
CN (1) CN114921726B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116441870A (zh) * 2023-05-22 2023-07-18 发哲(浙江)新材料科技有限公司 一种超高强度轻量化的钢管或型材及其制造工艺
CN116479332A (zh) * 2023-04-28 2023-07-25 鞍钢股份有限公司 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156680A (ja) * 2006-12-21 2008-07-10 Nippon Steel Corp 高降伏比を有する高強度冷延鋼板及びその製造方法
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN109097705A (zh) * 2018-09-26 2018-12-28 武汉钢铁有限公司 一种800MPa级冷轧热镀锌双相钢及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156680A (ja) * 2006-12-21 2008-07-10 Nippon Steel Corp 高降伏比を有する高強度冷延鋼板及びその製造方法
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN109097705A (zh) * 2018-09-26 2018-12-28 武汉钢铁有限公司 一种800MPa级冷轧热镀锌双相钢及其生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116479332A (zh) * 2023-04-28 2023-07-25 鞍钢股份有限公司 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法
CN116441870A (zh) * 2023-05-22 2023-07-18 发哲(浙江)新材料科技有限公司 一种超高强度轻量化的钢管或型材及其制造工艺
CN116441870B (zh) * 2023-05-22 2023-09-29 发哲(浙江)新材料科技有限公司 一种超高强度轻量化的钢管或型材及其制造工艺

Also Published As

Publication number Publication date
CN114921726B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN109097705B (zh) 一种800MPa级冷轧热镀锌双相钢及其生产方法
CN108796375B (zh) 一种抗拉强度1000MPa级热镀锌高强钢及其减量化生产方法
CN112048681B (zh) 一种980MPa级高成形性冷轧DH钢及其制备方法
CA2582409C (en) High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
CN108823507B (zh) 一种抗拉强度800MPa级热镀锌高强钢及其减量化生产方法
CN111979489B (zh) 一种780MPa级高塑性冷轧DH钢及其制备方法
CN113242912B (zh) 加工性优异的冷轧钢板、热浸镀锌钢板及其制造方法
CN102586688B (zh) 一种双相钢板及其制造方法
CN110172640B (zh) 500MPa级高加工硬化率热镀锌双相钢板及其制备方法
CN112048680A (zh) 一种合金化热镀锌dh980钢及其制备方法
WO2011118421A1 (ja) 深絞り性に優れた高強度鋼板の製造方法
CN113416889B (zh) 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN114921726B (zh) 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN111979488B (zh) 一种780MPa级合金化热镀锌DH钢及其制备方法
KR20120121811A (ko) 고강도 강판 및 그 제조 방법
KR102020407B1 (ko) 고항복비형 고강도 강판 및 이의 제조방법
CN113403550A (zh) 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
CN111945075A (zh) 一种高扩孔性能合金化热镀锌dh590钢及其制备方法
CN114107797A (zh) 一种980MPa级贝氏体析出强化型高扩孔钢及其制造方法
CN109371318B (zh) 氢脆裂纹敏感性低的1180MPa级高强热镀锌钢板及制备方法
JP2521553B2 (ja) 焼付硬化性を有する深絞り用冷延鋼板の製造方法
CN109825768B (zh) 一种780MPa级超薄规格热镀锌双相钢及其制备方法
CN112095047A (zh) 焊接性能优良的冷轧热浸镀锌dh780钢及其制备方法
JP2023509374A (ja) 冷間圧延焼鈍鋼板及び製造方法
CN112048670B (zh) 表面质量优良的冷轧热镀锌dh590钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant