CN116479332A - 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法 - Google Patents

兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法 Download PDF

Info

Publication number
CN116479332A
CN116479332A CN202310476373.5A CN202310476373A CN116479332A CN 116479332 A CN116479332 A CN 116479332A CN 202310476373 A CN202310476373 A CN 202310476373A CN 116479332 A CN116479332 A CN 116479332A
Authority
CN
China
Prior art keywords
percent
ferrite
dual
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310476373.5A
Other languages
English (en)
Inventor
王科强
刘仁东
胡智评
顾兴利
郭金宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202310476373.5A priority Critical patent/CN116479332A/zh
Publication of CN116479332A publication Critical patent/CN116479332A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明提供了一种兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法,该钢的成分按重量百分比计如下:C:0.09%~0.12%,Si:0.2%~0.4%,Mn:2.0%~2.5%,Cr:0.2~0.5%,Mo:0~0.3%,P≤0.05%,S≤0.01%,Ti:0.01~0.04%,Nb:0.01~0.04%,余量为Fe和不可避免的杂质;制备方法包括冶炼、铸造、热轧、酸洗、冷轧、连退、光整;应用本发明生产的双相钢抗拉强度1000MPa以上,屈服强度600~800MPa,延伸率≥12%,扩孔率≥35%。

Description

兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法
技术领域
本发明属于金属材料领域,尤其涉及一种兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法。
背景技术
随着全球能源危机和环境恶化的日益加剧,安全、节能和环保已成为汽车制造业的发展潮流。兼具高强度和良好塑性韧性的新型汽车用先进高强钢(AHSS)能够有效实现零件厚度减薄,从而实现汽车减重及节能降耗,受到了钢铁界和汽车界的广泛青睐。在先进高强钢中,具有高强度、良好塑性的双相钢(Dual phase,DP)生产技术最为成熟、应用最为广泛。但是,目前成熟应用的双相钢大多集中在800MPa以下,其马氏体含量一般在50%以下。针对1000MPa级别双相钢,目前工业生产和应用还尚不成熟。此外,传统双相钢由于铁素体和马氏体两相硬度差异大,一般扩孔性能不足,极大地限制了双相钢的推广,因此,高强度兼顾良好扩孔性能的双相钢亟需研发。
公开号为CN107058869 B的中国申请专利申请公开了超低屈强比980MPa级冷轧双相钢及其制造方法,该发明化学成分中C含量较高,为0.13~0.18wt%,采用传统一次退火工艺,钢板力学性能的屈强比小于0.5。
公开号为CN113416888 A的中国申请专利申请公开了高扩孔高塑性980MPa级双相镀锌钢板及其制备方法,该发明采用高C、高Si的成分体系,化学成分中C含量为0.13~0.18wt%,Si含量为0.5~1.4wt%,热处理采用淬火提温退火工艺,热处理后所得钢板抗拉强度大于980MPa,延伸率大于16%,但未涉及热镀锌合金化产品。
发明内容
本发明的目的在于克服上述问题和不足而提供一种无明显提高合金成分的基础上实现高强塑性的力学性能的兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法。
本发明目的是这样实现的:
一种兼顾塑性及扩孔性能的1000MPa级双相钢,该钢的成分按重量百分比计如下:C:0.09%~0.12%,Si:0.2%~0.4%,Mn:2.0%~2.5%,Cr:0.2~0.5%,Mo:0~0.3%,P≤0.05%,S≤0.01%,Ti:0.01~0.04%,Nb:0.01~0.04%,余量为Fe和不可避免的杂质。
所述双相钢抗拉强度1000MPa以上,屈服强度600~800MPa,延伸率≥12%,扩孔率≥35%。
所述双相钢显微组织包括铁素体和马氏体,各项显微组织按体积百分比及如下:铁素体5%~30%,马氏体70%~95%。
所述铁素体分为临界区铁素体和缓冷阶段形成的外延铁素体,临界区铁素体呈针状,平均长度小于3μm,平均宽度小于0.5μm,外延铁素体分布在临界区铁素体周围。
本发明成分设计理由如下:
C:C元素是低碳钢传统、经济的强化元素,是稳定奥氏体的主要元素。此外,碳能够增加钢的淬透性,影响马氏体形成。C元素含量过低会降低钢的强度,C元素含量过高则会给冶炼和焊接带来困难。因此,本申请将C元素含量控制在0.1%左右,最优范围为0.09~0.12%。
Si:Si本身有促进铁素体形成,强化铁素体基体的作用。此外,Si还起到固溶强化的作用。然而添加过多的Si会降低钢的表面质量。因此,本发明中将Si元素的含量控制为0.2%~0.4%。
Mn:元素为低合金钢的基本组成元素,是奥氏体稳定化元素。Mn元素能显著提高钢的淬透性,并起到固溶强化和细化铁素体晶粒的作用,能够显著推迟珠光体和贝氏体转变。Mn元素含量提高会增加生成成本,同时使冶炼变得困难。因此,本申请将Mn元素含量控制在2.0~2.5%。
Ti:Ti在可以捕捉钢中游离的N原子,起到固N的作用。同时TiN可在凝固过程中析出,起到钉扎晶界的作用,Ti(C,N)在热轧阶段析出钉扎原奥氏体晶界,起到细化原奥氏体晶粒的作用。同时少量Ti在连续退火阶段析出,起到强化铁素体的作用,但是过多的Ti析出会占据更多的C原子,并且增加冶炼成本。因此,本发明中将Ti元素含量控制为0.01~0.04%。
Nb:Nb对细化晶粒、相变行为、奥氏体中C富集和马氏体形核发挥显著作用。Nb与C和N结合形成细小的碳氮化物,阻止晶粒长大,起到明显强化效果。因此,本申请将Mn元素含量控制在0.01~0.04%。
P:P元素是钢中的有害元素,其含量越低越好。考虑到成本,本发明中将P元素含量控制在P≤0.05%。
S:S元素是钢中的有害元素,其含量越低越好。考虑到成本,本发明中将S元素含量控制在S≤0.01%。
本发明技术方案之二是提供一种兼顾塑性及扩孔性能的1000MPa级双相钢的制备方法,包括冶炼、铸造、热轧、酸洗、冷轧、连退、光整;
冶炼:通过电炉进行冶炼,得到上述范围内的合金成分。
热轧:①加热温度在1230~1280℃之间,起到均匀成分的作用。②开轧温度在1100~1150℃之间,终轧温度在900℃以上,保证再结晶区的轧制温度,促进原奥氏体晶粒在热轧阶段的动态再结晶行为,细化晶粒。③卷取温度在650~700℃之间,防止卷取温度过低加大冷轧难度。热轧卷厚度在2.8~4.0mm之间。
酸洗:去除热轧表面所生成的氧化铁皮,保证冷轧钢板表面质量。
冷轧:冷轧压下率为50%~58%,保证冷轧50%以上轧制压下量,促进冷轧组态中的组织纤维化;同时,防止冷轧压下率过高,导致变形抗力过大,难以轧制到目标厚度。
连退:
①预淬火:加热等温温度在A3~(A3+10)区间,等温时间在10~70s,然后快速冷却至室温,得到全马氏体组织;
②对步骤得到的钢带进行再次加热,等温温度在(A3-15)~(A3-5)℃,等温时间在80~160s,缓冷温度750℃以上,缓冷冷速控制在0.5~5℃/s;
③缓冷后以大于30℃/s的冷速冷却至240~280℃,等温320~550s,随后以大于2℃/s的冷速降至室温;然后,钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%;
其机理在于:本发明针对上述合金设计,摒弃传统的热处理路线,采用预淬火获得高位错密度的初始马氏体组织,有利于二次退火中组织细小均匀,在后续的退火阶段,严格控制退火温度在(A3-15)~(A3-5)℃之间,保证奥氏体呈细小条状,铁素体呈针状,缓冷阶段形成高合金含量的外延铁素体在针状铁素体周围,有效缓解最终组织中临界区铁素体与马氏体的硬度差,有利于塑性和扩孔性能。在接下来的淬火和过时效阶段阶段,形成细小均匀的条状马氏体,有利于提高钢板的协调变形能力。
最终组织构成:铁素体(5~30%)+马氏体(70~95%)。
通过上述方法可以得到一种兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法,其抗拉强度1000MPa以上,屈服强度600~800MPa,延伸率13%以上,扩孔值35%以上,符合兼顾高扩孔及高塑性的力能指标。
本发明的有益效果在于:
(1)本发明的钢材化学成分主要以C、Si、Mn、Al为主要元素,无明显贵重合金,同时C含量低于0.12%,有利于生产及应用过程中的激光焊接及电阻点焊;
(2)本发明采用双退火的热处理思路,有效的细化了原奥氏体晶粒尺寸,并且严格调控了组织中各相的形态和分布,提高了钢的塑性和扩孔性能;
(3)本发明通过低成本的合金设计以及巧妙工艺设计,实现兼顾高扩孔及高塑性的力能指标。
具体实施方式
下面通过实施例对本发明作进一步的说明。
本发明实施例根据技术方案的组分配比,进行冶炼、铸造、热轧、酸洗、冷轧、连退、光整。
热轧:加热温度1230~1280℃;开轧温度1100~1150℃,终轧温度900℃以上,卷取温度650~700℃;
冷轧:冷轧压下率为50%~58%;
连退:
①预淬火:加热等温温度在A3~(A3+10)区间,等温时间在10~70s,然后快速冷却至室温,得到全马氏体组织;
②对步骤得到的钢带进行再次加热,等温温度在(A3-15)~(A3-5)℃,等温时间在80~160s,缓冷温度750℃以上,缓冷冷速控制在0.5~5℃/s;
③缓冷后以大于30℃/s的冷速冷却至240~280℃,等温320~550s,随后冷却至室温;然后,钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%;
本发明实施例钢的成分见表1。本发明实施例钢热轧的主要工艺参数见表2。本发明实施例钢热轧退火的主要工艺参数见表3。本发明实施例钢的性能见表4。
表1本发明实施例钢的成分(wt%)及A3温度
C Mn Si Cr Mo Nb Ti P S A3/℃
1 0.1 2.1 0.3 0.5 0.3 0.04 0.02 0.03 0.005 857
2 0.12 2.3 0.4 0.4 0.2 0.03 0.025 0.05 0.006 861
3 0.12 2.4 0.3 0.3 0.2 0.025 0.015 0.05 0.008 862
4 0.11 2.4 0.4 0.4 0.2 0.035 0.02 0.02 0.004 859
5 0.09 2.5 0.3 0.3 0.1 0.030 0.025 0.05 0.005 864
表2本发明实施例钢热轧的主要工艺参数
实施例 加热温度/℃ 开轧温度/℃ 终轧温度/℃ 卷取温度/℃
1 1213 1121 933 691
2 1245 1144 922 666
3 1224 1116 935 684
4 1252 1128 907 693
5 1246 1124 938 659
表3本发明实施例钢退火的主要工艺参数
表4本发明实施例钢的组织
由上述实施例可见,通过低成本合金设计及巧妙的工艺设计,制备出的钢板抗拉强度980MPa以上,屈服强度600~800MPa,延伸率12%以上,扩孔值35%以上,符合兼顾高扩孔及高塑性的力能指标。
为了表述本发明,在上述中通过实施例对本发明恰当且充分地进行了说明,以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,本发明的专利保护范围应由权利要求限定。

Claims (5)

1.一种兼顾塑性及扩孔性能的1000MPa级双相钢,其特征在于,该钢的成分按重量百分比计如下:C:0.09%~0.12%,Si:0.2%~0.4%,Mn:2.0%~2.5%,Cr:0.2~0.5%,Mo:0~0.3%,P≤0.05%,S≤0.01%,Ti:0.01~0.04%,Nb:0.01~0.04%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种兼顾塑性及扩孔性能的1000MPa级双相钢,其特征在于,所述双相钢显微组织包括铁素体和马氏体,各项显微组织按体积百分比及如下:铁素体5%~30%,马氏体70%~95%。
3.根据权利要求2所述的一种兼顾塑性及扩孔性能的1000MPa级双相钢,其特征在于,所述铁素体分为临界区铁素体和缓冷阶段形成的外延铁素体,临界区铁素体呈针状,平均长度小于3μm,平均宽度小于0.5μm,外延铁素体分布在临界区铁素体周围。
4.根据权利要求1所述的一种兼顾塑性及扩孔性能的1000MPa级双相钢,其特征在于,所述双相钢抗拉强度1000MPa以上,屈服强度600~800MPa,延伸率≥12%,扩孔率≥35%。
5.一种权利要求1-4任一项所述的一种兼顾塑性及扩孔性能的1000MPa级双相钢的制备方法,包括冶炼、铸造、热轧、酸洗、冷轧、连退、光整;其特征在于:
热轧:加热温度1230~1280℃;开轧温度1100~1150℃,终轧温度900℃以上,卷取温度650~700℃,;
冷轧:冷轧压下率为50%~58%;
连退:
①预淬火:加热等温温度在A3~(A3+10)区间,等温时间在10~70s,然后快速冷却至室温,得到全马氏体组织;
②对步骤得到的钢带进行再次加热,等温温度在(A3-15)~(A3-5)℃,等温时间在80~160s,缓冷温度750℃以上,缓冷冷速控制在0.5~5℃/s;
③缓冷后以大于30℃/s的冷速冷却至240~280℃,等温320~550s,随后以大于2℃/s的冷速冷却至室温;
光整:钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%。
CN202310476373.5A 2023-04-28 2023-04-28 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法 Pending CN116479332A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310476373.5A CN116479332A (zh) 2023-04-28 2023-04-28 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310476373.5A CN116479332A (zh) 2023-04-28 2023-04-28 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法

Publications (1)

Publication Number Publication Date
CN116479332A true CN116479332A (zh) 2023-07-25

Family

ID=87226620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310476373.5A Pending CN116479332A (zh) 2023-04-28 2023-04-28 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法

Country Status (1)

Country Link
CN (1) CN116479332A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469112A (zh) * 2013-09-29 2013-12-25 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
CN108517466A (zh) * 2018-05-17 2018-09-11 马鞍山钢铁股份有限公司 一种抗拉强度780MPa级冷轧双相钢钢板及其制备方法
CN112593154A (zh) * 2020-11-30 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法
CN113502382A (zh) * 2021-06-28 2021-10-15 东北大学 一种980MPa级超高延展性冷轧高强钢的制备方法
CN114921726A (zh) * 2022-05-27 2022-08-19 武汉钢铁有限公司 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN115584440A (zh) * 2022-10-19 2023-01-10 攀钢集团攀枝花钢铁研究院有限公司 一种具有不同屈强比的1180MPa级连退双相钢及其制备方法
CN115679223A (zh) * 2022-11-07 2023-02-03 鞍钢股份有限公司 一种新型高屈强比冷轧dh980钢及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469112A (zh) * 2013-09-29 2013-12-25 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
CN108517466A (zh) * 2018-05-17 2018-09-11 马鞍山钢铁股份有限公司 一种抗拉强度780MPa级冷轧双相钢钢板及其制备方法
CN112593154A (zh) * 2020-11-30 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法
CN113502382A (zh) * 2021-06-28 2021-10-15 东北大学 一种980MPa级超高延展性冷轧高强钢的制备方法
CN114921726A (zh) * 2022-05-27 2022-08-19 武汉钢铁有限公司 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN115584440A (zh) * 2022-10-19 2023-01-10 攀钢集团攀枝花钢铁研究院有限公司 一种具有不同屈强比的1180MPa级连退双相钢及其制备方法
CN115679223A (zh) * 2022-11-07 2023-02-03 鞍钢股份有限公司 一种新型高屈强比冷轧dh980钢及其制备方法

Similar Documents

Publication Publication Date Title
CN105803321B (zh) 一种980MPa级含钒超细晶粒冷轧双相钢及其制备方法
CN111254354B (zh) 一种v微合金化高强韧性贝氏体非调质钢及其控锻控冷工艺和生产工艺
CN113416888B (zh) 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法
CN113416887B (zh) 汽车超高成形性980MPa级镀锌钢板及制备方法
CN113416890B (zh) 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法
CN111235470A (zh) 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN113186461B (zh) 一种高强塑积深冷轧制钢板及制备方法
CN111455285B (zh) 一种低成本且易生产的抗拉强度980MPa级冷轧双相钢及其生产方法
CN113403529B (zh) 冷冲压用1470MPa级合金化镀锌钢板及其制备方法
CN109280854A (zh) 980MPa级低碳冷轧双相钢及其制备方法
CN114369765A (zh) 一种屈服强度550MPa级热轧H型钢及其生产方法
CN112301293A (zh) 一种冷轧热镀锌钢及其制造方法
CN111809114B (zh) 具有优异高温强度的塑料模具钢及其制备方法
CN111118403B (zh) 一种Ti微合金化高强韧性贝氏体非调质钢及其控锻控冷工艺和生产工艺
CN109207847B (zh) 一种低碳当量高扩孔率1180MPa级冷轧钢板及其制造方法
CN113061808B (zh) 一种780MPa级冷轧轻质高强钢及其制备方法
CN114015932B (zh) 一种具有优异扩孔性能的800MPa级冷轧低合金高强钢的制备方法
CN113073271B (zh) 一种1180MPa级冷轧轻质高强钢及其制备方法
CN115627423A (zh) 一种1600MPa级的热轧卷板及其生产方法
CN112048670B (zh) 表面质量优良的冷轧热镀锌dh590钢及其生产方法
CN115537645A (zh) 一种trip钢及其制备方法、冷轧钢板和热镀锌钢板
CN113061806A (zh) 一种1180MPa级轻质高强钢及其制备方法
CN116479332A (zh) 兼顾塑性及扩孔性能的1000MPa级双相钢及其制备方法
CN116377334B (zh) 超高塑各向同性的980MPa级冷轧高强钢板及其制备方法
CN116536582B (zh) 一种高塑性合金化热镀锌q&p980钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination