WO2021153392A1 - 鋼板、部材及びそれらの製造方法 - Google Patents

鋼板、部材及びそれらの製造方法 Download PDF

Info

Publication number
WO2021153392A1
WO2021153392A1 PCT/JP2021/001935 JP2021001935W WO2021153392A1 WO 2021153392 A1 WO2021153392 A1 WO 2021153392A1 JP 2021001935 W JP2021001935 W JP 2021001935W WO 2021153392 A1 WO2021153392 A1 WO 2021153392A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
slab
temperature
content
Prior art date
Application number
PCT/JP2021/001935
Other languages
English (en)
French (fr)
Inventor
真平 吉岡
金子 真次郎
佑馬 本田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180010944.5A priority Critical patent/CN115003841B/zh
Priority to EP21747814.8A priority patent/EP4067524A4/en
Priority to US17/794,418 priority patent/US20230069838A1/en
Priority to MX2022009184A priority patent/MX2022009184A/es
Priority to JP2021521864A priority patent/JP7001198B2/ja
Priority to KR1020227025465A priority patent/KR20220112299A/ko
Publication of WO2021153392A1 publication Critical patent/WO2021153392A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to steel sheets, members, and methods for manufacturing them. More specifically, the present invention relates to steel sheets and members having a tensile strength of 1310 MPa or more and having excellent end face cracking resistance and bendability, and a method for producing them.
  • the steel sheet of the present invention can be suitably used for cold press forming accompanied by shearing and punching.
  • end face cracks may cause cracks during press molding in the next process and may become a starting point of fatigue fracture when mounted on a vehicle body as a part, which hinders the spread of high-strength steel sheets for cold pressing. It is a factor. End face cracks can be improved by adjusting machining conditions such as shear clearance, but due to the effect of increasing the strength of the work material, the shear clearance changes over time due to tool wear in actual parts manufacturing. .. Therefore, it is difficult to stably secure a normal shear end face in a high-strength steel plate having a TS of 1310 MPa or more.
  • Patent Document 1 states that the total area ratio of martensite and bainite to the entire structure is 95% or more and 100% or less, the balance is composed of one or two types of ferrite and retained austenite, and the average particle size of the former austenite grains. Is more than 5 ⁇ m, and the length of the major axis is 20 to 80 ⁇ m, and the number of inclusions is 5 pieces / mm 2 or less.
  • the technology related to bainite is disclosed.
  • the steel structure is mainly composed of ferrite and bainite, the Mn segregation degree in the plate thickness direction (central Mn peak concentration / average Mn concentration) is 1.20 or less, and the Mn segregation zone in the plate thickness direction.
  • a technique relating to a steel sheet having a width of 43 ⁇ m or less and a TS of 540 MPa or more and less deterioration of characteristics after cutting is disclosed.
  • Patent Document 3 contains a bainite phase having an area ratio of 90% or more, and among all the Fe-based carbides precipitated in the bainite phase, the number of Fe-based carbides precipitated in the bainite ferrite grains.
  • a technique relating to a hot-rolled steel sheet having a TS of 980 MPa or more is disclosed.
  • Patent Document 2 has a TS of 540 MPa or more and has ferrite and bainite as main phases, and the effect of reducing Mn segregation specified in Patent Document 2 is mainly due to martensite having a TS of 1310 MPa class, which is the subject of the present invention. There is no guarantee that the steel plate used as the phase will be sufficient.
  • Patent Document 3 discloses a technique for promoting material fragmentation during shearing by utilizing carbides in steel containing bainite as the main phase.
  • Non-Patent Document 1 discloses that in steel containing martensite as a main phase, bending workability is impaired when carbides are coarsely precipitated.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel sheet, a member, and a method for producing the same, which has a TS of 1310 MPa or more and excellent end face crack resistance and bendability. do.
  • the TS cuts out a JIS No. 5 tensile test piece so that the direction perpendicular to rolling is the longitudinal direction, and carries out a tensile test with a crosshead speed of 10 mm / min in accordance with JIS Z2241 (2011). Can be obtained.
  • excellent bendability means that JIS No. 3 test pieces whose longitudinal direction is perpendicular to the rolling direction (coil width direction) are sampled from each steel sheet, and 90 ° V by the V block method in accordance with the provisions of JIS Z 2248.
  • the bending test is performed by changing the bending radius, and the value (R / t) obtained by dividing the minimum bending radius R that does not cause cracks on the surface of the test piece by the plate thickness t is 4.0 or less.
  • the excellent end face crack resistance means that the ratio of the observation test piece in which the end face crack is generated is less than 50% by the following method.
  • a test piece having a length of 110 mm in the rolling direction and a length of 500 mm in the direction perpendicular to rolling is cut out from the vicinity of the center of the steel sheet in the direction perpendicular to rolling (width direction).
  • the test piece is sheared by lowering the upper blade while sandwiching the test piece between the lower blade and the plate holder by a cutting machine (shearing conditions are such that the clearance CL is 15% of the plate thickness t).
  • the shear angle tilt of the steel plate with respect to the plate surface
  • the shear angle is 0 °.
  • the test pieces are sheared 5 times at intervals of 30 mm in the direction perpendicular to rolling, and 5 strip-shaped test pieces having a sheared surface that was on the upper blade side when sheared. To get.
  • Each of the above five strip-shaped test pieces is cut at intervals of 10 mm in the rolling direction and divided into 11 pieces.
  • a total of 50 strip-shaped test pieces cut into a total of 11 pieces are collected as observation test pieces and used for observing end face cracks.
  • the sheared surface of the test piece for observation is polished and the presence or absence of end face cracks is observed from the plate thickness side with an optical microscope without corrosion.
  • An observation test piece in which one or more cracks extending from the surface of the sheared surface in the depth direction by 30 ⁇ m or more are present is determined to have end face cracks.
  • the present inventors have made extensive studies to solve the above problems. Then, the present inventors have a specific composition and a specific steel structure, appropriately control the number density of predetermined inclusion particles near the center of the thickness of the steel sheet and near the surface of the steel sheet, and predetermined. It was found that by controlling the number density of carbides in the above, a steel sheet having a tensile strength of 1310 MPa or more and excellent end face cracking resistance and bendability can be obtained. Specifically, the present inventors have obtained the following findings.
  • End face cracks are formed near the center of the plate thickness, and by including a predetermined amount of inclusions having a diameter equivalent to a circle of 4.0 ⁇ m or more near the center of the plate thickness, shear that occurs even in high-strength steel during shearing. Cracks on the end face are suppressed. This is because during shearing, minute cracks (microcracks) are generated starting from inclusions, and these minute cracks are connected along the plane parallel to the plate thickness direction, resulting in a fracture surface with few end face cracks. It is thought that it is formed.
  • the present invention has been made based on the above findings, and the gist of the present invention is as follows. [1] By mass%, C: 0.12% or more and 0.40% or less, Si: 0.01% or more and 1.5% or less, Mn: 0.2% or more and 1.7% or less, P: 0.05% or less, S: 0.010% or less, sol. Al: 1.00% or less, N: 0.010% or less, B: Contains 0.0002% or more and 0.0050% or less, and one or two of Nb and Ti in total of 0.010% or more and 0.080% or less, and the balance is from Fe and unavoidable impurities.
  • Ingredient composition and It has a steel structure in which the area ratio of martensite is 70% or more, the area ratio of bainite is 30% or less, and the total area ratio of ferrite and retained austenite is 5% or less.
  • the number density of carbides having a major axis of 0.5 ⁇ m or more at the position where the thickness of the steel sheet is 1/4 is 60,000 pieces / mm 2 or less.
  • the number density of the inclusion particles of equivalent circle diameter in a range of thickness 1 / 4-1 3/4 is not less than 4.0 ⁇ m steel sheet is 10 or / mm 2 or more 30 / mm 2 or less,
  • the number density of inclusion particles having a circular equivalent diameter of 4.0 ⁇ m or more in the range from the surface of the steel sheet to the plate thickness of 1/4 is 27 particles / mm 2 or less.
  • the component composition is mass%, and further Mo: 0.350% or less, Cr: 0.350% or less, Zr: 0.350% or less, Ca: 0.0050% or less, V: 0.500% or less, W: 0.200% or less Cu: 1.00% or less, Ni: 1.00% or less, Sb: 0.100% or less, Sn: 0.100% or less,
  • the steel sheet according to [1] or [2] which has a plating layer on the surface of the steel sheet.
  • a slab having the component composition according to [1] or [2] has an average heating rate of 0.10 ° C./s or more in a temperature range in which the surface temperature of the slab is from 300 ° C. to 1220 ° C.
  • the surface temperature of the slab is 1220 ° C. or higher for 30 minutes or longer.
  • a slab heating step that keeps the center temperature of the slab at 1220 ° C or higher for 30 minutes or less.
  • a cold rolling process in which the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet, After holding the cold-rolled steel sheet at an annealing temperature of 800 ° C. or higher for 240 seconds or longer, the temperature range from the cooling start temperature of 680 ° C. or higher to 300 ° C. is cooled at an average cooling rate of 70 ° C./s or higher, and then 150.
  • a method for producing a steel sheet which comprises an annealing step of holding for 20 seconds or more and 1500 seconds or less in a temperature range of ° C. or higher and 260 ° C. or lower.
  • the steel sheet of the present invention has a tensile strength of 1310 MPa or more, and has excellent end face crack resistance and bendability.
  • the steel sheet of the present invention can be suitably used for cold press forming accompanied by shearing and punching, and contributes to improvement of component strength and weight reduction.
  • C 0.12% or more and 0.40% or less C is contained in order to improve hardenability and obtain a martensite structure having an area ratio of 70% or more. Further, C is contained from the viewpoint of increasing the strength of martensite or bainite and ensuring TS ⁇ 1310 MPa. Further, C is contained from the viewpoint of forming inclusions having a diameter equivalent to a circle of 4.0 ⁇ m or more. If the C content is less than 0.12%, it is necessary to excessively lower the tempering temperature, and it becomes impossible to maintain excellent end face cracking resistance and obtain a predetermined strength. Therefore, the C content is 0.12% or more. From the viewpoint of maintaining excellent end face cracking resistance and obtaining TS ⁇ 1400 MPa, the C content is preferably 0.18% or more.
  • the C content exceeds 0.40%, the strength becomes too high and the toughness decreases, making it difficult to obtain sufficient end face cracking resistance. Further, when the C content exceeds 0.40%, the bendability also deteriorates. Therefore, the C content is 0.40% or less, preferably 0.36% or less.
  • Si 0.01% or more and 1.5% or less
  • Si is a strengthening element by solid solution strengthening. Further, Si is an element that suppresses the formation of film-like carbides when rebaked in a temperature range of 200 ° C. or higher to improve bendability. From the viewpoint of obtaining the above effects, the Si content is 0.01% or more, preferably 0.02% or more, and more preferably 0.1% or more. On the other hand, if the Si content is too high, the toughness is lowered and the end face crack resistance is deteriorated. In addition, the rolling load in the hot rolling process is significantly increased. Therefore, the Si content is 1.5% or less, preferably 1.0% or less.
  • Mn 0.2% or more and 1.7% or less Mn is contained in order to improve the hardenability of steel and to bring the martensite area ratio within the range of the present invention. Further, S in the steel is fixed as MnS, and Mn is contained in order to reduce hot brittleness.
  • the Mn content is 0.2% or more, preferably 0.6% or more, in order to secure the total area ratio of the predetermined martensite and bainite in an industrially stable manner. However, from the viewpoint of welding stability, the Mn content is 1.7% or less, preferably 1.6% or less, and more preferably 1.5% or less.
  • P 0.05% or less
  • P is an element that reinforces steel, but if its content is high, toughness decreases and end face crack resistance and spot weldability deteriorate. Therefore, the P content is 0.05% or less, preferably 0.02% or less.
  • the lower limit of P content is not specified, but the lower limit currently industrially feasible is 0.002%.
  • S 0.010% or less Since S deteriorates bendability through the formation of coarse MnS, the S content is 0.010% or less, preferably 0.005% or less, and more preferably 0.002. % Or less. Further, when the S content exceeds 0.010%, the end face crack resistance also deteriorates.
  • the lower limit of the S content is not specified, but the lower limit currently industrially feasible is 0.0002%.
  • sol. Al 1.00% or less Al is contained in order to sufficiently deoxidize and reduce inclusions in steel.
  • the lower limit of Al is not particularly specified, but it is preferably 0.01% or more in order to perform stable deoxidation.
  • sol. When Al exceeds 1.00%, a large amount of coarse Al-based inclusions are generated, and the bendability deteriorates. Therefore, sol.
  • the Al content is 1.00% or less.
  • sol. Al is preferably 0.50% or less, and more preferably 0.10% or less.
  • N 0.010% or less N forms a coarse nitride and deteriorates bendability, so it is necessary to limit the amount of N added. Therefore, the N content is 0.010% or less, preferably 0.005% or less.
  • the lower limit of the N content is not specified, but the lower limit currently industrially feasible is 0.0005%.
  • B 0.0002% or more and 0.0050% or less B is an element that improves the hardenability of steel, and has an advantage of producing martensite or bainite having a predetermined area ratio even with a small Mn content.
  • the B content is 0.0002% or more, preferably 0.0005% or more.
  • the B content is 0.0050% or less, preferably 0.0030% or less.
  • Nb and Ti are 0.010% or more and 0.080% or less in total.
  • Nb and Ti contribute to high strength through miniaturization of the internal structure of martensite and generate carbonitride. Improves end face crack resistance.
  • As the carbonitride, TiN, TiC, NbC, NbN and the like may be present alone, or two or more of them may be combined to form one inclusion. In the investigation by the inventors, no clear correlation was found between the component composition of the inclusions and the probability of occurrence of end face cracks, so Nb and Ti may be added alone or in combination. From the viewpoint of obtaining the above effects, the total content of one or two of Nb and Ti is 0.010% or more, preferably 0.025% or more.
  • the total content of one or two of Nb and Ti is 0.080% or less, preferably 0.060% or less, and more preferably 0.055% or less.
  • the above are the basic components of the steel sheet used in the present invention.
  • the steel sheet used in the present invention contains the above basic components, and the balance other than the above components has a component composition containing Fe (iron) and unavoidable impurities.
  • the steel sheet of the present invention contains the above-mentioned components, and the balance has a component composition of Fe and unavoidable impurities.
  • the steel sheet of the present invention may contain at least one selected from the following optional components. If the optional components shown below are contained in an amount equal to or less than the upper limit shown below, the effect of the present invention can be obtained, so that a lower limit is not particularly set. When the following optional element is contained below the suitable lower limit value described later, the element is considered to be contained as an unavoidable impurity.
  • Mo 0.350% or less Mo has the effect of improving the hardenability of steel and stably securing a predetermined strength, the effect of generating fine carbides containing Mo that becomes hydrogen trap sites, and the fine martensite. It can be added for the purpose of obtaining the effect of improving the end face cracking resistance by forming the metal. However, if Mo is contained in an amount of more than 0.350%, the chemical conversion processability deteriorates. Therefore, when Mo is contained in the steel sheet, the Mo content is 0.350% or less, preferably 0.10% or less. Since the effect of the present invention can be obtained when the Mo content is 0.350% or less, the lower limit of the Mo content is not particularly limited. The Mo content is preferably 0.005% or more in order to more effectively obtain the effect of improving the end face cracking resistance.
  • Cr 0.350% or less Cr can be added to obtain the effect of improving the hardenability of steel. However, if the Cr content exceeds 0.350%, the chemical conversion processability deteriorates. Therefore, when the steel sheet contains Cr, the Cr content is 0.350% or less, preferably 0.20% or less. Since the effect of the present invention can be obtained when the Cr content is 0.350% or less, the lower limit of the Cr content is not particularly limited. The Cr content is preferably 0.01% or more in order to more effectively obtain the effect of improving the end face cracking resistance.
  • Zr 0.350% or less Zr contributes to high strength through the miniaturization of the old ⁇ particle size and the resulting miniaturization of the internal structure of martensite.
  • the strength is increased and the end face crack resistance is improved.
  • the Zr content is 0.350% or less, preferably 0.10% or less. Since the effect of the present invention can be obtained when the Zr content is 0.350% or less, the lower limit of the Zr content is not particularly limited.
  • the Zr content is preferably 0.005% or more from the viewpoint of more effectively obtaining the effect of improving the end face cracking resistance as well as increasing the strength.
  • Ca 0.0050% or less Ca fixes S as CaS and improves end face crack resistance.
  • the Ca content is 0.0050% or less, preferably 0.0035% or less. Since the effect of the present invention can be obtained when the Ca content is 0.0050% or less, the lower limit of the Ca content is not particularly limited. From the viewpoint of more effectively obtaining the effect of improving the end face cracking resistance, the Ca content is preferably 0.0002% or more.
  • V 0.500% or less
  • V has the effect of improving hardenability of steel, the effect of generating fine carbides containing V that becomes hydrogen trap sites, and the effect of improving end face cracking resistance by refining martensite. Can be added for the purpose of obtaining.
  • the V content is 0.500% or less, preferably 0.200% or less.
  • the V content is more preferably 0.050% or less. Since the effect of the present invention can be obtained when the V content is 0.500% or less, the lower limit of the V content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect of adding V as described above, the V content is preferably 0.005% or more.
  • W 0.200% or less W contributes to high strength and improvement of end face crack resistance through the formation of fine W-based carbides and W-based carbonitrides that serve as hydrogen trap sites.
  • W when W is contained in the steel sheet, W is 0.200% or less, preferably 0.050% or less.
  • the W content is more preferably 0.020% or less. Since the effect of the present invention can be obtained when the W content is 0.200% or less, the lower limit of the W content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect of improving the end face crack resistance as well as increasing the strength, the W content is preferably 0.005% or more.
  • Cu 1.00% or less
  • the inclusion of Cu has an effect that the corrosion product coats the surface of the steel sheet and suppresses hydrogen invasion into the steel sheet.
  • the Cu content is 1.00% or less, preferably 0.5% or less. Since the effect of the present invention can be obtained when the Cu content is 1.00% or less, the lower limit of the Cu content is not particularly limited.
  • the Cu content is preferably 0.01% or more. Further, from the viewpoint of improving the end face crack resistance, the Cu content is more preferably 0.05% or more.
  • Ni 1.00% or less
  • Ni is also an element that has the effect of improving corrosion resistance. Further, Ni has an effect of reducing surface defects that are likely to occur when Cu is contained. However, if the Ni content is too high, scale formation in the heating furnace becomes non-uniform, causing surface defects and a significant cost increase. Therefore, when the steel sheet contains Ni, the Ni content is 1.00% or less, preferably 0.30% or less. The Ni content is more preferably 0.15% or less. Since the effect of the present invention can be obtained when the Ni content is 1.00% or less, the lower limit of the Ni content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect when Ni is added as described above, the Ni content is preferably 0.01% or more.
  • Sb 0.100% or less Sb suppresses oxidation and nitriding of the surface layer, and suppresses the resulting reduction of C and B. By suppressing the reduction of C and B, the formation of ferrite on the surface layer is suppressed, which contributes to high strength and improvement of end face crack resistance. However, if the Sb content exceeds 0.100%, the castability deteriorates, and Sb segregates at the old ⁇ grain boundaries to deteriorate the end face crack resistance. Therefore, when the steel sheet contains Sb, the Sb content is 0.100% or less, preferably 0.050% or less. The Sb content is more preferably 0.020% or less.
  • the lower limit of the Sb content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect when Sb is added as described above, the Sb content is preferably 0.001% or more.
  • Sn 0.100% or less Sn suppresses oxidation and nitriding of the surface layer, and thereby suppresses reduction of the content of C and B in the surface layer. By suppressing the reduction of C and B, the formation of ferrite on the surface layer is suppressed, which contributes to high strength and improvement of end face crack resistance. However, if the Sn content exceeds 0.100%, the castability deteriorates, and Sn segregates at the old ⁇ grain boundaries to deteriorate the end face crack resistance. Therefore, when the steel sheet contains Sn, the Sn content is 0.100% or less, preferably 0.050% or less. The Sn content is more preferably 0.020% or less.
  • the lower limit of the Sn content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect when Sn is added as described above, the Sn content is preferably 0.001% or more.
  • Mg 0.01% or less Mg fixes O as MgO and improves end face crack resistance. However, adding a large amount of Mg deteriorates the surface quality and bendability. Therefore, when the steel sheet contains Mg, the Mg content is 0.01% or less, preferably 0.0020% or less. The Mg content is more preferably 0.0010% or less. Since the effect of the present invention can be obtained when the Mg content is 0.01% or less, the lower limit of the Mg content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect of improving the end face crack resistance, the Mg content is preferably 0.0002% or more.
  • the REM content is 0.01% or less, preferably 0.0020% or less.
  • the REM content is more preferably 0.0010% or less. Since the effect of the present invention can be obtained when the REM content is 0.01% or less, the lower limit of the REM content is not particularly limited. Further, from the viewpoint of more effectively obtaining the effect of improving bendability and end face crack resistance, the REM content is preferably 0.0002% or more.
  • the area ratio of martensite is 70% or more, the area ratio of bainite is 30% or less, and the total area ratio of ferrite and retained austenite is 5% or less.
  • the area ratio of martensite is 70% or more.
  • martensite In order to obtain the specified strength, martensite must be contained in 70% or more. Below this, bainite, ferrite, and retained austenite increase, making it difficult to obtain a predetermined strength.
  • the area ratio of martensite is preferably 85% or more.
  • the martensite includes tempered martensite, martensite that has self-tempered during continuous cooling, and martensite that has not been tempered by holding at 150 ° C. or higher and 260 ° C. or lower for a certain period of time.
  • the area ratio of martensite may be 100%.
  • Bainite area ratio is 30% or less In order to obtain a predetermined strength, the bainite area ratio is 30% or less, preferably 15% or less. The area ratio of bainite may be 0%.
  • the total area ratio of ferrite and retained austenite is 5% or less.
  • the residual structure other than martensite and bainite is ferrite, retained austenite, and the like. Ferrites and retained austenite are even less intense than bainite.
  • the total area ratio of ferrite and retained austenite is 5% or less, preferably 3% or less.
  • the total area ratio of ferrite and retained austenite may be 0%.
  • the method for measuring the area ratio of the steel structure described above After polishing, the L cross section of the steel sheet (cross section parallel to the rolling direction and perpendicular to the surface of the steel sheet) is corroded with nital, and at a position 1/4 thickness from the surface of the steel sheet, SEM (scanning electron microscope) at a magnification of 2000 times 4
  • the area ratio of the steel structure is measured by observing the field and analyzing the photographed microstructure. In this measurement, martensite and bainite are observed as gray areas. In addition, ferrite is observed as a region exhibiting black color.
  • the inside of martensite and bainite contains trace amounts of carbides, nitrides, sulfides, and oxides, but it is difficult to exclude them, so the area ratio is measured in the area including these.
  • the residual austenite is measured by chemically polishing the surface of the steel sheet to the position of 200 ⁇ m in thickness with oxalic acid, and then determining the surface of the steel sheet by the X-ray diffraction intensity method.
  • Volume fraction of retained austenite from the integrated intensities of (200) ⁇ , (211) ⁇ , (220) ⁇ , (200) ⁇ , (220) ⁇ , and (311) ⁇ diffraction plane peaks measured by Mo-K ⁇ rays. To calculate. Then, the volume fraction of the retained austenite is regarded as the area fraction of the retained austenite.
  • Martensite and bainite can be distinguished by observing the position of carbides contained inside and the crystal orientation relationship with SEM at a magnification of 10000 times.
  • In bainite carbides are formed at the interface of the lath-like structure or in the lath, and since there is only one type of crystal orientation relationship between bainitic ferrite and cementite, the produced carbides extend in one direction.
  • martensite carbides are generated in the lath, and since there are two or more types of crystal orientation relationships between the lath and the carbides, the generated carbides extend in a plurality of directions.
  • bainite has a relatively high aspect ratio of the structure, and retained austenite, which is considered to be produced by concentrating C, can be observed as a region in which white color is exhibited between the laths.
  • the major axis of the carbide in the present invention refers to the value of the diameter of the longest inclusion in the L cross section (cross section parallel to the rolling direction and perpendicular to the surface of the steel sheet) observed by the method described in the examples. Specifically, as the above method, the L cross section of the steel sheet (the cross section parallel to the rolling direction and perpendicular to the surface of the steel sheet) is polished and then corroded with picral, and SEM (scanning) is performed at a position 1/4 thickness from the surface of the steel sheet. (Electronic microscope) is observed in 10 fields at a magnification of 10000 times, and the number density of carbides having a major axis of 0.5 ⁇ m or more is measured.
  • the number density of inclusion particles having a circle-equivalent diameter of 4.0 ⁇ m or more (hereinafter, also simply referred to as number density Nc) in the range of 1/4 to 3/4 of the thickness of the steel sheet is 10 / mm 2 or more and 30 / mm 2 or less End face cracks frequently occur in the range of 1/4 to 3/4 of the thickness of the steel sheet.
  • Nc number density of inclusion particles having a circle-equivalent diameter of 4.0 ⁇ m or more
  • the number density Nc is 10 pieces / mm 2 or more, preferably 15 pieces / mm 2 or more. From the viewpoint of suppressing end face cracking, it is preferable that the number density Nc is large, but if it is contained in excess of a certain amount, the bendability deteriorates. From the viewpoint of suppressing deterioration of bendability, the number density Nc is 30 pieces / mm 2 or less, preferably 25 pieces / mm 2 or less.
  • the number density (pieces / mm 2 ) of inclusion particles referred to in the present invention is determined in the L cross section (cross section parallel to the rolling direction and perpendicular to the steel sheet surface) of the steel sheet observed by the method described in the examples. It means the number of inclusion particles having a circular equivalent diameter of 4.0 ⁇ m or more per 1 mm 2.
  • the number of inclusion particles with a circle-equivalent diameter of 4.0 ⁇ m or more in the range from the surface of the steel sheet to the plate thickness of 1/4 is 27 particles / mm 2 or less.
  • the number density Ns of inclusion particles of 4.0 ⁇ m or more exceeds 27 particles / mm 2 , it deteriorates remarkably.
  • the number density Ns is 27 pieces / mm 2 or less, preferably 20 pieces / mm 2 or less.
  • the L cross section of the steel sheet (the cross section parallel to the rolling direction and perpendicular to the surface of the steel sheet) is polished, and then the steel sheet is not corroded by an optical microscope. Take 20 fields at 100x magnification. Image analysis was performed on the obtained photographs, and inclusions having a circle-equivalent diameter of 4.0 ⁇ m or more in each of the range of the steel plate thickness of 1/4 to 3/4 and the range of the steel plate surface to the plate thickness 1/4. Calculate the average number density of particles.
  • the tensile strength of the steel sheet of the present invention is 1310 MPa or more.
  • the high strength in the present invention means that the tensile strength is 1310 MPa or more.
  • Deterioration of end face cracking resistance becomes apparent when the tensile strength of the material is 1310 MPa or more.
  • One of the features of the steel sheet of the present invention is that the end face crack resistance is good even at 1310 MPa or more.
  • Tensile strength is measured by a tensile test. Specifically, in the tensile test, a JIS No.
  • tensile test piece is cut out so that the direction perpendicular to rolling is the longitudinal direction, and a tensile test based on JIS Z2241 (2011) is performed to evaluate the tensile strength.
  • the crosshead speed of the tensile test is 10 mm / min.
  • the steel sheet of the present invention has excellent end face crack resistance.
  • Having excellent end face cracking resistance in the present invention means a steel sheet in which the proportion of observation test pieces in which end face cracking has occurred is less than 50% when the end face cracking resistance is evaluated by the method described in Examples. To say.
  • a test piece 10 having a length of 110 mm in the rolling direction and a length of 500 mm in the direction perpendicular to rolling is cut out from the vicinity of the center of the steel sheet in the direction perpendicular to rolling (width direction).
  • the test piece 10 was sheared by lowering the upper blade 20 while sandwiching the test piece 10 between the lower blade 30 and the plate retainer 40 by the cutting processing apparatus 100 as shown in FIG.
  • the shearing conditions are such that the clearance CL is 15% of the plate thickness t and the shear angle (inclination of the steel plate with respect to the plate surface) is 0 °.
  • the test piece 10 is sheared five times at intervals of 30 mm in the length perpendicular to the rolling direction to obtain five strip-shaped test pieces 50 as shown in FIG.
  • Each of the strip-shaped test pieces 50 has a sheared surface S1 that was on the upper blade 20 side when sheared.
  • the five strip-shaped test pieces 50 are cut at intervals of 10 mm in the rolling direction. By this cutting, the strip-shaped test piece 50 is divided into 11 pieces.
  • the cutting position of the strip-shaped test piece 50 is shown by a broken line in FIG. Ten of the strip-shaped test pieces 50 cut into a total of 11 pieces are collected as observation test pieces 60.
  • observation test pieces 60 are collected from the five strip-shaped test pieces 50 and used for observing end face cracks.
  • the observation test piece 60 observes the presence or absence of end face cracks with an optical microscope without polishing the sheared surface S1 and corroding it.
  • each of the observation test pieces 60 observes the shear surface S1 from the plate thickness surface side in the same direction.
  • the observation test piece 60 in which one or more cracks 70 extending from the surface of the sheared surface S1 in the depth direction by 30 ⁇ m or more are present is determined to have end face cracks. Then, in the present invention, it is evaluated that the steel sheet in which the ratio of the observation test piece 60 in which the end face crack is generated is less than 50% is excellent in the end face crack resistance.
  • the steel sheet of the present invention has excellent bendability. Having excellent bendability in the present invention means that when the bendability is evaluated by a 90 ° V bending test by the method described in Examples, the minimum bending radius R that does not cause cracks on the surface of the test piece is set to the plate thickness. It means that the value (R / t) divided by t is 4.0 or less.
  • a method for evaluating bendability specifically, first, a JIS No. 3 test piece whose longitudinal direction is perpendicular to the rolling direction (coil width direction) is collected from each steel sheet, and conforms to the provisions of JIS Z 2248. The 90 ° V bending test by the V block method is performed by changing the bending radius. Then, the bendability is evaluated by the value (R / t) obtained by dividing the minimum bending radius R that does not cause cracks on the surface of the test piece by the plate thickness t.
  • the bending ridge direction should be parallel to the rolling direction.
  • the preferable thickness of the steel sheet of the present invention is in the range of 0.8 to 2.6 mm.
  • the steel sheet of the present invention may have a plating layer on its surface.
  • the type of the plating layer is not particularly limited, and may be either a Zn plating layer or a metal plating layer other than Zn. Further, the plating layer may contain a component other than the main component such as Zn.
  • the temperature at which the steel plate or the like shown below is heated or cooled means the surface temperature of the slab (steel material), the steel plate or the like.
  • a slab having the above-mentioned composition is heated at an average heating rate of 0.10 ° C./s or more in a temperature range where the surface temperature of the slab is from 300 ° C. to 1220 ° C.
  • the surface temperature of the slab is 1220 ° C. or more for 30 minutes or more.
  • a slab heating step in which the center temperature of the slab is maintained at 1220 ° C.
  • a hot rolling step in which the slab after the slab heating step is hot-rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet are cooled.
  • a cold rolling process in which the cold-rolled steel sheet is rolled into a cold-rolled steel sheet, and after the cold-rolled steel sheet is held at an annealing temperature of 800 ° C. or higher for 240 seconds or longer, the temperature range from the cooling start temperature of 680 ° C. or higher to 300 ° C. is 70 ° C. It has an annealing step of cooling at an average cooling rate of / s or more and then holding for 20 seconds or more and 1500 seconds or less in a temperature range of 150 ° C. or higher and 260 ° C. or lower.
  • the average heating rate is 0.10 ° C / s or more in the temperature range where the surface temperature of the slab is from 300 ° C to 1220 ° C, and the average temperature ratio of the center temperature Tc of the slab to the surface temperature Ts of the slab in the temperature range. Heating under conditions where (Tc / Ts) is 0.85 or less After cooling the surface temperature of the slab after continuous casting to 300 ° C or less, average heating in the temperature range where the surface temperature of the slab is from 300 ° C to 1220 ° C. Heating is performed under a condition that the rate is 0.10 ° C./s or more and the average temperature ratio (Tc / Ts) of the center temperature Tc of the slab to the surface temperature Ts of the slab is 0.85 or less in the temperature range.
  • the average heating rate is not particularly limited. However, since the effect is saturated even if the average heating rate exceeds 0.50 ° C./s, the average heating rate is preferably 0.50 ° C./s or less. Further, from the viewpoint of making the size of the crystal grains in the steel sheet uniform and making it difficult for the plate thickness deviation to occur during hot and cold rolling, it is more preferable that the average heating rate is 0.20 ° C./s or less. ..
  • the average temperature ratio (Tc / Ts) of the center temperature Tc of the slab to the surface temperature Ts of the slab should be small.
  • the average temperature ratio (Tc / Ts) is 0.85 or less, preferably 0.80 or less.
  • the heating conditions can be achieved, for example, by increasing the thickness of the slab and / or increasing the heating rate of the slab.
  • the average temperature ratio (Tc / Ts) referred to in the present invention is the center temperature Tc of the slab with respect to the surface temperature Ts of the slab at each of the slab surface temperatures of 300 ° C., 600 ° C., 900 ° C. and 1200 ° C.
  • the temperature ratio is calculated, and the temperature ratio at these four points is averaged.
  • the surface temperature of the slab can be measured with a radiation thermometer.
  • the core temperature of the slab can be obtained by heat transfer calculation.
  • the average heating rate is obtained by "(1220 (° C.)-300 (° C.)) / (Heating time (seconds) from 300 ° C. to 1220 ° C.)".
  • the slab surface or higher at the center of the slab can be realized by heating the slab surface. This is because the heating of the slab surface causes the slab surface to become hot first, heat is transferred to the central part of the slab, and the temperature of the central part rises later. Further, holding the slab under the conditions that the surface temperature of the slab is 1220 ° C. or higher for 30 minutes or more and the center temperature of the slab is 1220 ° C. or higher and 30 minutes or less specifically increases the thickness of the slab. / Or can be achieved by increasing the slab heating rate.
  • the upper limit of the slab surface temperature is not particularly limited, but it is economically unfavorable to make the slab surface temperature excessively high, so it is preferably 1300 ° C. or lower.
  • the hot rolling process is a process of hot rolling the slab after the slab heating process to produce a hot-rolled steel sheet.
  • Hot rolling can be performed by a conventional method, and the conditions are not particularly limited.
  • the conditions of the finish rolling end temperature and the take-up temperature are not particularly limited, but the finish roll end temperature is preferably in the temperature range of 840 to 950 ° C., and the take-up temperature is preferably in the temperature range of 400 to 700 ° C. ..
  • the cold-rolling process is a process of cold-rolling a hot-rolled steel sheet to produce a cold-rolled steel sheet.
  • Cold rolling can be performed by a conventional method, and the conditions are not particularly limited.
  • Holding a cold-rolled steel sheet at an annealing temperature of 800 ° C. or higher for 240 seconds or longer it is necessary to hold a cold-rolled steel sheet at an annealing temperature of 800 ° C. or higher for 240 seconds or longer in order to obtain a predetermined martensite. If the temperature is lower than this or the holding time is short, sufficient austenite will not be produced during annealing. Therefore, a predetermined martensite cannot be obtained in the final product, and a tensile strength of 1310 MPa or more cannot be obtained.
  • the upper limit of the annealing temperature and the holding time is not particularly limited, but if the annealing temperature is high or the holding time is long, the austenite particle size may become coarse and the toughness may deteriorate. Therefore, the annealing temperature is preferably 950 ° C. or lower.
  • the holding time is preferably 900 seconds or less.
  • the upper limit of the average cooling rate is not particularly limited, but it is preferably 2000 ° C./s or less from the viewpoint of reducing the burden of capital investment. If the cooling start temperature is lower than this, a large amount of ferrite is generated. Upper bainite and lower bainite are formed when the cooling rate is slow or the cooling shutdown temperature exceeds 300 ° C.
  • the cooling rate from the annealing temperature to the cooling start temperature is not particularly limited.
  • the average cooling rate is obtained by "(cooling start temperature (° C.)-300 (° C.)) / (cooling time from the cooling start temperature to 300 ° C. (seconds))".
  • the cooling shutdown temperature after quenching may be set to a temperature range of 150 ° C. or higher and 260 ° C. or lower, or may be cooled to lower than 150 ° C. and then reheated to a temperature range of 150 ° C. or higher and 260 ° C. or lower. If the temperature is kept below 150 ° C.
  • the effect of material homogenization by tempering may be insufficient, and thus the end face crack resistance deteriorates. Further, when the holding temperature exceeds 260 ° C., a large amount of coarse carbides are generated and the bendability deteriorates. Further, if the holding time exceeds 1500 seconds, not only the tempering effect is saturated but also the manufacturing cost is increased.
  • the method for producing a steel sheet of the present invention may include a plating step of plating a steel sheet after the annealing step. By performing the plating treatment, a steel sheet having a plating layer on the surface of the steel sheet can be obtained. In the method for producing a steel sheet of the present invention, it is preferable to apply an electrogalvanizing treatment to the surface of the steel sheet as a plating treatment.
  • the steel sheet can be temper-rolled from the viewpoint of stabilizing the press formability such as adjusting the surface roughness and flattening the plate shape.
  • temper rolling is performed when the plating treatment is performed, temper rolling is performed after the plating treatment.
  • the holding temperature does not have to be constant as long as it is within the above-mentioned temperature range, and even when the cooling rate changes during cooling, it is within the specified range.
  • the gist of the present invention is not impaired.
  • the steel sheet may be heat-treated by any equipment as long as the heat history is satisfied.
  • the member of the present invention is formed by subjecting the steel sheet of the present invention to at least one of molding and welding. Further, the method for manufacturing a member of the present invention includes a step of performing at least one of molding and welding on the steel sheet manufactured by the method for manufacturing a steel sheet of the present invention.
  • the steel sheet of the present invention has a tensile strength of 1310 MPa or more, and has excellent end face crack resistance and bendability. Therefore, the member obtained by using the steel plate of the present invention also has high strength, and cracks at the time of molding or collision with the vehicle body are very small as compared with the conventional high-strength member. Further, the weight can be reduced by using the member of the present invention. Therefore, the member of the present invention can be suitably used for, for example, a vehicle body skeleton part.
  • general processing methods such as press processing can be used without limitation.
  • welding general welding such as spot welding and arc welding can be used without limitation.
  • Example 1 The present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
  • the steel After melting the steel having the composition shown in Table 1, the steel was cast into a slab, the slab was heated under the slab heating conditions shown in Table 2, and then the slab was hot-rolled. In hot rolling, the finish rolling end temperature was set in the range of 840 to 950 ° C, and the winding temperature was set in the range of 400 to 700 ° C.
  • the obtained hot-rolled steel sheet was pickled and then cold-rolled to obtain a cold-rolled steel sheet.
  • the obtained cold-rolled steel sheet was heat-treated under the continuous annealing conditions shown in Table 2 and then temper-rolled at 0.1% to obtain a steel sheet. The thickness of all the steel plates was 1.4 mm. No.
  • the cold-rolled steel sheet (CR) of No. 18 was subjected to an electrogalvanized steel sheet (EG) to obtain an electrogalvanized steel sheet (EG).
  • the surface temperature of the slab was actually measured with a radiation thermometer, and the center temperature of the slab was obtained by heat transfer calculation.
  • the obtained steel sheet was measured and evaluated as follows.
  • the residual austenite was measured by chemically polishing the surface of the steel sheet to the position of 200 ⁇ m in thickness with oxalic acid, and determining the surface of the steel sheet by the X-ray diffraction intensity method. Volume fraction of retained austenite from the integrated intensities of (200) ⁇ , (211) ⁇ , (220) ⁇ , (200) ⁇ , (220) ⁇ , and (311) ⁇ diffraction plane peaks measured by Mo-K ⁇ rays. was calculated. Then, the volume fraction of the retained austenite was regarded as the area fraction of the retained austenite.
  • Martensite and bainite can be distinguished by observing the position of carbides contained inside and the crystal orientation relationship with SEM at a magnification of 10000 times.
  • In bainite carbides are formed at the interface of the lath-like structure or in the lath, and since there is only one type of crystal orientation relationship between bainitic ferrite and cementite, the produced carbides extend in one direction.
  • martensite carbides are generated in the lath, and since there are two or more types of crystal orientation relationships between the lath and the carbides, the generated carbides extend in a plurality of directions.
  • bainite has a relatively high aspect ratio of the structure, and retained austenite, which is considered to be produced by concentrating C, can be observed as a region in which white color is exhibited between the laths.
  • test piece 10 having a length of 110 mm in the rolling direction and a length of 500 mm in the direction perpendicular to rolling was cut out from the vicinity of the center of the steel sheet in the direction perpendicular to rolling (width direction).
  • the test piece 10 was sheared by lowering the upper blade 20 while sandwiching the test piece 10 between the lower blade 30 and the plate retainer 40 by the cutting processing apparatus 100 as shown in FIG.
  • the shearing conditions were such that the clearance CL was 15% of the plate thickness t and the shear angle (inclination of the steel plate with respect to the plate surface) was 0 °.
  • the test piece 10 was sheared five times at intervals of 30 mm in the length perpendicular to the rolling direction to obtain five strip-shaped test pieces 50 as shown in FIG.
  • Each of the strip-shaped test pieces 50 has a sheared surface S1 that was on the upper blade 20 side when sheared.
  • Five strip-shaped test pieces 50 were cut at intervals of 10 mm in the rolling direction. By this cutting, the strip-shaped test piece 50 was divided into 11 pieces. The cutting position of the strip-shaped test piece 50 is shown by a broken line in FIG. Ten of the strip-shaped test pieces 50 cut into a total of 11 pieces were collected as observation test pieces 60.
  • observation test pieces 60 were collected from the five strip-shaped test pieces 50 and used for observing end face cracks.
  • the shear surface S1 was polished and the presence or absence of end face cracks was observed with an optical microscope without corrosion.
  • each of the observation test pieces 60 was observed with the shear surface S1 from the plate thickness surface side in the same direction.
  • the observation test piece 60 in which one or more cracks 70 extending from the surface of the sheared surface S1 in the depth direction by 30 ⁇ m or more are present is determined to have end face cracks.
  • the steel sheet in which the ratio of the observation test piece 60 in which the end face crack is generated is less than 50% is excellent in the end face crack resistance.
  • the steel sheet evaluated to have excellent end face cracking resistance is shown as "A” in Table 3.
  • a steel sheet having an end face crack occurrence frequency of 50% or more was evaluated as having inferior end face crack resistance.
  • Steel sheets evaluated to have inferior end face cracking resistance are indicated by "F” in Table 3.
  • the observation test piece 60 has a sheared surface that was on the lower blade 30 side when sheared on the opposite surface of the sheared surface S1 that was on the upper blade 20 side when sheared.
  • the sheared surface on the lower blade 30 side during the shearing process was observed in the same manner as the sheared surface S1, almost no end face cracking occurred. Therefore, in the present invention, the evaluation was performed on the sheared surface S1.
  • the steel sheet of the example of the present invention has a tensile strength of 1310 MPa or more, and has excellent end face crack resistance and bendability.
  • the steel sheet of the comparative example is inferior to the invention example in any of the items.
  • Example 2 Production condition No. in Table 2 of Example 1.
  • a galvanized steel sheet subjected to a galvanized treatment was press-molded with respect to 1 (example of the present invention) to manufacture a member of the example of the present invention.
  • the production condition No. of Table 2 of Example 1 A galvanized steel sheet obtained by subjecting 1 (Example of the present invention) to a galvanized steel sheet, and the production condition No. 1 in Table 2 of Example 1. 2 (Example of the present invention) was joined to a galvanized steel sheet that had been galvanized by spot welding to manufacture a member of the example of the present invention. Since the members of the examples of the present invention are excellent in the above-mentioned end face cracking resistance evaluation "A" and the bendability is also excellent in the evaluation "A”, these members are suitable for automobile parts and the like. It turns out that it is used.
  • the manufacturing condition No. in Table 2 of Example 1 The steel sheet according to 1 (Example of the present invention) was press-formed to manufacture the member of the example of the present invention. Further, the production condition No. of Table 2 of Example 1 The steel sheet according to 1 (Example of the present invention) and the production condition No. 1 in Table 2 of Example 1.
  • the member of the present invention was manufactured by joining the steel plate according to 2 (example of the present invention) by spot welding. Since the members of the examples of the present invention are excellent in the above-mentioned end face cracking resistance evaluation "A" and the bendability is also excellent in the evaluation "A", these members are suitable for automobile parts and the like. It turns out that it is used.
  • Test piece 20 Upper blade 30 Lower blade 40 Plate holder 50 Strip-shaped test piece 60 Observation test piece 70 Crack 100 Cutting device CL clearance t Plate thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有する鋼板、部材及びそれらの製造方法を提供することを目的とする。 本発明の鋼板は、特定の成分組成と、マルテンサイトの面積率が70%以上であり、ベイナイトの面積率が30%以下であり、かつフェライト及び残留オーステナイトの面積率の合計が5%以下である鋼組織と、を有し、鋼板の板厚1/4位置における長径が0.5μm以上の炭化物の個数密度が60000個/mm以下であり、鋼板の板厚1/4~3/4の範囲における円相当径が4.0μm以上の介在物粒子の個数密度が10個/mm以上30個/mm以下であり、鋼板の表面~板厚1/4の範囲における円相当径4.0μm以上の介在物粒子の個数密度が27個/mm以下であり、引張強さが1310MPa以上である。

Description

鋼板、部材及びそれらの製造方法
 本発明は、鋼板、部材及びそれらの製造方法に関する。より詳細には、本発明は、引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有する鋼板、部材及びそれらの製造方法に関する。本発明の鋼板は、せん断や打ち抜き加工を伴う冷間プレス成形用として好適に使用できる。
 近年、自動車車体軽量化ニーズの更なる高まりから、車体骨格部品に対して引張強さ(以下、単にTSともいう。)が1310MPa以上の高強度鋼板の適用が進みつつある。また、さらなる軽量化の観点から、TSが1.8GPa級又はそれ以上の高強度化の検討も開始されつつある。従来は、熱間プレスによる高強度化が精力的に検討されてきたが、最近ではコスト・生産性の観点から、改めて冷間プレスでの高強度鋼の適用が検討されつつある。車体骨格をより効率的に高強度化し、軽量化効果を得るためには、降伏強さを増加させることが有効である。マルテンサイト組織は、フェライトやベイナイトなどの比較的軟質な組織よりも高い降伏強さが得やすいため、高強度鋼板の組織設計においては、マルテンサイト組織を主体とすることが重要である。
 しかしながら、TSが1310MPa以上の高強度鋼板にシャー切断や打抜き等の加工を施すと、せん断端面に亀裂が発生する場合がある。このような亀裂は、せん断端面の板厚中心付近に、板面に対し平行又は傾斜した線状亀裂として観察され、板面内側には数百μmの長さを有して存在する。本明細書では、このような割れを端面割れと称する場合がある。また、本明細書では、このような端面割れに対する材料の耐性を、耐端面割れ性と称する場合がある。この端面割れは、工具との接触により工具寿命を低下させる。また、端面割れは、次工程のプレス成形時に割れを誘発するといった問題や、部品として車体に搭載した際には疲労破壊の起点となる恐れがあり、冷間プレス用高強度鋼板の普及の阻害要因となっている。端面割れはせん断クリアランスなどの加工条件の調整によって改善することができる場合もあるが、被加工材の高強度化の影響もあり、実際の部品製造においては工具の摩耗によりせん断クリアランスは経時変化する。したがって、TSが1310MPa以上の高強度鋼板において、正常なせん断端面を安定的に確保することは困難である。
 特許文献1には、マルテンサイト及びベイナイトの組織全体に対する面積率が合計で95%以上100%以下であり、残部がフェライト及び残留オーステナイトの1種又は2種からなり、旧オーステナイト粒の平均粒径が5μm超えであり、長軸の長さが20~80μmである介在物群が5個/mm以下であることを特徴とする、せん断端面の耐遅れ破壊特性に優れた、TSが1320MPa以上の鋼板に関する技術が開示されている。
 特許文献2には、鋼組織が主としてフェライトとベイナイトからなり、板厚方向のMn偏析度(中心部Mnピーク濃度/平均Mn濃度)が1.20以下であり、板厚方向のMn偏析帯の幅が43μm以下であり、TSが540MPa以上であることを特徴とする切断後の特性劣化の少ない鋼板に関する技術が開示されている。
 特許文献3には、面積率で90%以上のベイナイト相を含み、該ベイナイト相中に析出している全Fe系炭化物のうち、ベイニティックフェライト粒内に析出しているFe系炭化物の個数比率が30%以上、ベイニティックフェライト粒内に析出しているFe系炭化物の平均粒径が150nm以下であり、鋼中の固溶V量が質量%で0.100%以上である組織を有し、TSが980MPa以上であることを特徴とする熱延鋼板に関する技術が開示されている。
特許第6388085号公報 特許第5136182号公報 特許第6056790号公報
長滝康伸、津山青史、細谷佳弘著、「マルテンサイト鋼の曲げ加工性におよぼす焼戻し温度の影響」、鉄と鋼、一般社団法人日本鉄鋼協会、2013年、vol.99、No.3、p.245-253
 しかしながら、特許文献1に記載の技術では、せん断加工後の遅れ破壊の起点となる介在物は十分に低減されるが、せん断加工で形成されるせん断端面における数百μmサイズの微細な亀裂を抑制するものではない。また、特許文献2はTSが540MPa以上でかつフェライトとベイナイトを主相としており、特許文献2で規定されるMn偏析低減の効果が、本発明で対象とするTSが1310MPa級のマルテンサイトを主相とする鋼板において十分である保証はない。実際に発明者らが端面割れの発生状況を詳細に調査したところ、亀裂は必ずしもMn等の偏析帯に沿って進展しておらず、比較的偏析の軽微な領域に沿った亀裂も散見された。したがって、特許文献1と特許文献2を組み合わせだけで、せん断加工で形成される端面割れを抑制することは困難な可能性が高い。特許文献3は、ベイナイトを主相とする鋼において炭化物を利用してせん断時の材料の分断を促進する技術が開示されている。一方、非特許文献1には、マルテンサイトを主相とした鋼において、炭化物を粗大に析出させると曲げ加工性を損なうことが開示されている。
 以上より、既存の技術では、マルテンサイトを主相とした高強度鋼板において、正常なせん断端面を安定的に確保することは困難である。
 本発明は、このような事情に鑑みてなされたものであり、TSが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有する鋼板、部材及びそれらの製造方法を提供することを目的とする。
 なお、本発明において、TSは、圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、JIS Z2241(2011)に準拠し、クロスヘッドスピードを10mm/minとした引張試験を実施して得られる。
 また、優れた曲げ性とは、各鋼板から圧延方向と直角方向(コイル幅方向)を長手方向とするJIS3号試験片を採取し、JIS Z 2248の規定に準拠したVブロック法による90°V曲げ試験を曲げ半径を変えて行い、試験片表面に亀裂を生じない最小の曲げ半径Rを板厚tで除した値(R/t)が4.0以下であることをいう。
 また、優れた耐端面割れ性とは、以下の方法により、端面割れが発生している観察用試験片の割合が50%未満であることを指す。
(1)鋼板の圧延直角方向(幅方向)の中央付近から、圧延方向の長さが110mm、圧延直角方向の長さが500mmの試験片を切り出す。
(2)切断加工装置によって、上記試験片を下刃と板押さえで挟持しながら上刃を下降させて、試験片をせん断する(せん断加工条件は、クリアランスCLを板厚tの15%とし、シャー角(鋼板の板面に対する傾き)を0°とする。)
(3)上記せん断加工条件で、圧延直角方向の長さが30mmの間隔で試験片を5回せん断し、せん断加工した際に上刃側であったせん断面を有する5個の短冊状試験片を得る。
(4)上記5個の短冊状試験片を、それぞれ、圧延方向に10mmずつ間隔をあけて切断し、11個に分割する。
(5)計11個に切断された短冊状試験片のうち10個を観察用試験片として合計50個採取し、端面割れの観察に用いる。
(6)観察用試験片のせん断面を研磨し腐食せずに光学顕微鏡で端面割れの有無を板厚面側から観察する。
(7)せん断面の表面から深さ方向に30μm以上進展している亀裂が1つ以上存在する観察用試験片を、端面割れが発生していると判定する。
 本発明者らは、上記の課題を解決するために鋭意検討を重ねた。そして、本発明者らは、特定の成分組成と特定の鋼組織を有し、鋼板の板厚中心付近及び鋼板の表面付近の所定の介在物粒子の個数密度をそれぞれ適切に制御し、かつ所定の炭化物の個数密度を制御することで、引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有する鋼板を得られることが分かった。本発明者らは、具体的には、以下の知見を得た。
 (1)端面割れは板厚中心付近に形成し、板厚中心付近に4.0μm以上の円相当径を有する介在物を所定の量含むことで、高強度鋼であってもせん断時に生じるせん断端面の亀裂は抑制される。これは、せん断加工時に、介在物を起点として微小な亀裂(マイクロクラック)が発生し、板厚方向に平行な面に沿ってそれらの微小な亀裂が連結して、端面割れが少ない破断面が形成されるためと考えられる。一方、板厚中心付近に存在する介在物が少ない場合は、介在物同士の間隔が広いので上記のような効果が得られず、亀裂が様々な方向に伸展しやすくなる。したがって、板厚中心付近に存在する介在物が少ない場合、鋼板の破断面の内部(板厚方向に平行な面に対して交差する方向)に向かって亀裂が伸展しやすく、端面割れが発生しやすいと考えられる。
 (2)上記のような介在物は端面割れが発生する板厚中心付近に一定量存在すればよい。また、介在物は鋼板表層に存在する場合、曲げ加工時の割れを助長する可能性がある。そのため、介在物の個数密度の上限と好適な板厚方向分布が存在する。本発明者らが鋭意検討した結果、鋼板表層~板厚1/4位置の範囲及び板厚1/4~3/4位置の範囲における介在物の個数密度について、曲げ性に悪影響しない臨界値が存在することが分かった。
 (3)介在物の個数密度に影響を与える製造因子としては熱間圧延時のスラブの加熱工程がある。スラブの高温加熱で粗大な介在物の固溶促進が図れるが、上記の介在物分布を実現するためには、従来行われてきたスラブ加熱条件の管理では不十分であり、加熱条件を厳密に制御することで、スラブの板厚内部の温度分布を制御する必要がある。
 (4)上記条件に加えて、鋼中の炭化物の個数密度を適切に制御することで、優れた耐端面割れ性と優れた曲げ性を両立することができる。
 本発明は以上の知見に基づきなされたものであり、本発明の要旨は以下のとおりである。
[1]質量%で、
 C:0.12%以上0.40%以下、
 Si:0.01%以上1.5%以下、
 Mn:0.2%以上1.7%以下、
 P:0.05%以下、
 S:0.010%以下、
 sol.Al:1.00%以下、
 N:0.010%以下、
 B:0.0002%以上0.0050%以下、並びに
 Nb及びTiのうち1種又は2種を合計で0.010%以上0.080%以下、を含有し、残部がFe及び不可避的不純物からなる成分組成と、
 マルテンサイトの面積率が70%以上であり、ベイナイトの面積率が30%以下であり、かつフェライト及び残留オーステナイトの面積率の合計が5%以下である鋼組織と、を有し、
 鋼板の板厚1/4位置における長径が0.5μm以上の炭化物の個数密度が60000個/mm以下であり、
 鋼板の板厚1/4~3/4の範囲における円相当径が4.0μm以上の介在物粒子の個数密度が10個/mm以上30個/mm以下であり、
 鋼板の表面~板厚1/4の範囲における円相当径4.0μm以上の介在物粒子の個数密度が27個/mm以下であり、
 引張強さが1310MPa以上である鋼板。
[2]前記成分組成が、質量%で、さらに、
 Mo:0.350%以下、
 Cr:0.350%以下、
 Zr:0.350%以下、
 Ca:0.0050%以下、
 V:0.500%以下、
 W:0.200%以下
 Cu:1.00%以下、
 Ni:1.00%以下、
 Sb:0.100%以下、
 Sn:0.100%以下、
 Mg:0.01%以下、及び
 REM:0.01%以下のうちから選択される少なくとも一種を含有する請求項1に記載の鋼板。
[3]鋼板の表面にめっき層を有する[1]又は[2]に記載の鋼板。
[4][1]~[3]のいずれか一つに記載の鋼板に対して、成形加工及び溶接の少なくとも一方を施してなる部材。
[5][1]又は[2]に記載の成分組成を有するスラブを、スラブの表面温度が300℃から1220℃までとなる温度域で平均加熱速度が0.10℃/s以上であり、かつ当該温度域でスラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)が0.85以下となる条件で加熱した後、スラブの表面温度を1220℃以上で30分以上、かつスラブの中心温度を1220℃以上で30分以下の条件で保持するスラブ加熱工程と、
 前記スラブ加熱工程後のスラブを熱間圧延して熱延鋼板とする熱間圧延工程と、
 前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、
 前記冷延鋼板を800℃以上の焼鈍温度で240秒以上保持した後、680℃以上の冷却開始温度から300℃までの温度域を70℃/s以上の平均冷却速度で冷却し、その後、150℃以上260℃以下の温度域で20秒以上1500秒以下保持する焼鈍工程と、を有する鋼板の製造方法。
[6]前記焼鈍工程後の鋼板の表面にめっき処理を施すめっき工程を有する[5]に記載の鋼板の製造方法。
[7][5]又は[6]に記載の鋼板の製造方法によって製造された鋼板に対して、成形加工及び溶接の少なくとも一方を施す工程を有する部材の製造方法。
 本発明の鋼板は、引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有する。本発明の鋼板は、せん断や打ち抜き加工を伴う冷間プレス成形用として好適に使用でき、部品強度の向上や軽量化に貢献する。
切断加工装置を示す断面模式図である。 試験片を30mm間隔でせん断して作製された5つの短冊状試験片を示す模式図である。 短冊状試験片を示す斜視図である。 端面割れが発生している観察用試験片を示す斜視図である。
 以下、本発明の実施形態について説明する。まず鋼板に含有する各成分の含有量について説明する。成分の含有量を表す「%」は「質量%」を意味する。
 C:0.12%以上0.40%以下
 Cは、焼入れ性を向上させて面積率70%以上のマルテンサイト組織を得るために含有する。また、Cは、マルテンサイト又はベイナイトの強度を上昇させ、TS≧1310MPaを確保する観点から含有する。また、Cは、円相当径4.0μm以上の介在物を生成させる観点から含有する。Cの含有量が0.12%未満では、焼戻し温度を過度に低下させる必要があり、優れた耐端面割れ性を維持して所定の強度を得ることができなくなる。したがって、C含有量は0.12%以上である。優れた耐端面割れ性を維持してTS≧1400MPaを得る観点からは、C含有量を0.18%以上とすることが好ましい。C含有量が0.40%を超えると強度が高くなり過ぎて靭性が低下し、十分な耐端面割れ性を得ることが難しくなる。また、C含有量が0.40%を超えると曲げ性も劣化する。したがって、C含有量は0.40%以下であり、好ましくは0.36%以下である。
 Si:0.01%以上1.5%以下
 Siは固溶強化による強化元素である。また、Siは200℃以上の温度域で焼き戻す場合のフィルム状の炭化物の生成を抑制して曲げ性を改善する元素である。上記効果を得る観点からは、Si含有量は0.01%以上であり、好ましくは0.02%以上であり、より好ましくは0.1%以上である。一方、Siの含有量が多くなりすぎると、靭性の低下を招き耐端面割れ性が劣化する。また、熱延工程における圧延荷重の著しい増加を招く。したがって、Siの含有量は1.5%以下であり、好ましくは1.0%以下である。
 Mn:0.2%以上1.7%以下
 Mnは鋼の焼入れ性を向上させ、マルテンサイト面積率を本発明の範囲にするために含有する。また、鋼中のSをMnSとして固定し、熱間脆性を軽減するためにMnを含有する。工業的に安定して所定のマルテンサイト及びベイナイトの合計面積率を確保するために、Mn含有量は0.2%以上であり、好ましくは0.6%以上である。ただし、溶接の安定性からMn含有量は1.7%以下であり、好ましくは1.6%以下であり、より好ましくは1.5%以下である。
 P:0.05%以下
 Pは鋼を強化する元素であるが、その含有量が多いと靭性が低下し耐端面割れ性やスポット溶接性が劣化する。したがって、P含有量は0.05%以下であり、好ましくは0.02%以下である。P含有量の下限は規定しないが、現在工業的に実施可能な下限は0.002%である。
 S:0.010%以下
 Sは粗大なMnSの形成を通じて曲げ性を劣化させるため、S含有量は0.010%以下であり、好ましくは0.005%以下であり、より好ましくは0.002%以下である。また、S含有量が0.010%超えの場合、耐端面割れ性も劣化する。S含有量の下限は規定しないが、現在工業的に実施可能な下限は0.0002%である。
 sol.Al:1.00%以下
 Alは十分な脱酸を行い、鋼中介在物を低減するために含有する。sol.Alの下限は特に規定しないが、安定して脱酸を行うためには0.01%以上とすることが好ましい。一方、sol.Alが1.00%超となると、Al系の粗大介在物が多量に生成し、曲げ性が劣化する。したがって、sol.Alの含有量は1.00%以下とする。sol.Alは、好ましくは0.50%以下であり、より好ましくは0.10%以下である。
 N:0.010%以下
 Nは粗大な窒化物を形成し、曲げ性を劣化させるためその添加量を制限する必要がある。したがって、N含有量は0.010%以下であり、好ましくは0.005%以下である。N含有量の下限は規定しないが、現在工業的に実施可能な下限は0.0005%である。
 B:0.0002%以上0.0050%以下
 Bは鋼の焼入れ性を向上させる元素であり、少ないMn含有量でも所定の面積率のマルテンサイトやベイナイトを生成させる利点を有する。このようなBの効果を得るには、B含有量は0.0002%以上であり、好ましくは0.0005%以上である。一方、Bを0.0050%超えで含有すると、その効果が飽和する。したがって、B含有量は0.0050%以下であり、好ましくは0.0030%以下である。
 Nb及びTiのうち1種又は2種を合計で0.010%以上0.080%以下
 NbやTiはマルテンサイトの内部構造の微細化を通じて高強度化に寄与するとともに、炭窒化物を生成し耐端面割れ性を改善する。炭窒化物としては、TiN、TiC、NbC、NbNなどがそれぞれ単独で存在する場合や2種以上が複合して1つの介在物を形成する場合がある。発明者らの調査において、介在物の成分組成と端面割れの発生確率には明確な相関が認められていないため、NbとTiは単独で添加しても複合添加してもよい。上記の効果を得る観点で、Nb及びTiのうち1種又は2種の合計含有量は0.010%以上であり、好ましくは0.025%以上である。一方、Nb又はTiを過剰に含有すると、スラブ加熱条件等を適正化しても、鋼板の表面付近の介在物密度が増大し、曲げ性を劣化させる。そのため、Nb及びTiのうち1種又は2種の合計含有量は、0.080%以下であり、好ましくは0.060%以下であり、より好ましくは0.055%以下である。
 以上が本発明において用いられる鋼板の基本成分である。本発明において用いられる鋼板は、上記基本成分を含有し、上記成分以外の残部はFe(鉄)及び不可避的不純物を含む成分組成を有する。ここで、本発明の鋼板は、上記成分を含有し、残部はFe及び不可避的不純物からなる成分組成を有することが好ましい。本発明の鋼板には、上記の基本成分に加え、以下に示す任意成分のうちから選択される少なくとも一種を含有させてもよい。なお、以下に示す任意成分は、以下で示す上限量以下で含有していれば、本発明の効果が得られるため、下限は特に設けない。なお、下記の任意元素を後述する好適な下限値未満で含む場合、当該元素は不可避的不純物として含まれるものとする。
 Mo:0.350%以下
 Moは、鋼の焼入れ性を向上させ、所定の強度を安定的に確保する効果、水素トラップサイトとなるMoを含む微細な炭化物を生成させる効果、及びマルテンサイトを微細化することによる耐端面割れ性の改善の効果を得る目的で添加することができる。しかしながら、Moを0.350%超えで含有すると化成処理性が劣化する。したがって、鋼板にMoを含有する場合は、Mo含有量は0.350%以下であり、好ましくは0.10%以下である。Mo含有量が0.350%以下であれば本発明の効果を得られるので、Mo含有量の下限は特に限られない。耐端面割れ性の改善の効果をより有効に得るにはMo含有量は0.005%以上であることが好ましい。
 Cr:0.350%以下
 Crは鋼の焼入れ性を向上させる効果を得るために添加することができる。しかしながら、Cr含有量が0.350%を超えると化成処理性が劣化する。したがって、鋼板にCrを含有する場合は、Cr含有量は0.350%以下であり、好ましくは0.20%以下である。Cr含有量が0.350%以下であれば本発明の効果を得られるので、Cr含有量の下限は特に限られない。耐端面割れ性の改善の効果をより有効に得るには、Cr含有量は0.01%以上であることが好ましい。
 Zr:0.350%以下
 Zrは、旧γ粒径の微細化やそれによるマルテンサイトの内部構造の微細化を通じて高強度化に寄与する。また、水素トラップサイトとなる微細なZr系炭化物・炭窒化物の形成を通じて高強度化とともに耐端面割れ性を改善する。しかし、Zrを多量に添加するとZr系の粗大な析出物が増加し、耐端面割れ性を劣化させる。このため、鋼板にZrを含有する場合、Zr含有量は0.350%以下であり、好ましくは0.10%以下である。Zr含有量が0.350%以下であれば本発明の効果を得られるので、Zr含有量の下限は特に限られない。高強度化とともに耐端面割れ性を改善するという効果をより有効に得る観点からは、Zr含有量は0.005%以上であることが好ましい。
 Ca:0.0050%以下
 CaはSをCaSとして固定し、耐端面割れ性を改善する。しかし、Caを多量に添加すると表面品質や曲げ性を劣化させるので、鋼板にCaを含有する場合、Ca含有量は0.0050%以下であり、好ましくは0.0035%以下である。Ca含有量が0.0050%以下であれば本発明の効果を得られるので、Ca含有量の下限は特に限られない。耐端面割れ性を改善するという効果をより有効に得る観点からは、Ca含有量は0.0002%以上であることが好ましい。
 V:0.500%以下
 Vは鋼の焼入れ性を向上させる効果、水素トラップサイトとなるVを含む微細な炭化物を生成させる効果、及びマルテンサイトを微細化することによる耐端面割れ性の改善効果を得る目的で添加することができる。しかし、Vを0.500%超えで含有すると鋳造性が著しく劣化する。したがって、鋼板にVを含有する場合、V含有量は0.500%以下であり、好ましくは0.200%以下である。V含有量は、より好ましくは0.050%以下である。V含有量が0.500%以下であれば本発明の効果を得られるので、V含有量の下限は特に限られない。また、上記のようなV添加による効果をより有効に得る観点からは、V含有量は0.005%以上であることが好ましい。
 W:0.200%以下
 Wは水素のトラップサイトとなる微細なW系炭化物や、W系炭窒化物の形成を通じて、高強度化とともに耐端面割れ性の改善に寄与する。しかし、Wを多量に含有させると、熱間圧延工程のスラブ加熱時に未固溶で残存する粗大な析出物が増加し、曲げ性が劣化する。したがって、鋼板にWを含有する場合、Wは0.200%以下であり、好ましくは0.050%以下である。W含有量は、より好ましくは0.020%以下である。W含有量が0.200%以下であれば本発明の効果を得られるので、W含有量の下限は特に限られない。また、高強度化とともに耐端面割れ性を改善するという効果をより有効に得る観点からは、W含有量は0.005%以上であることが好ましい。
 Cu:1.00%以下
 Cuは自動車の使用環境での耐食性を向上させる。また、Cu含有により、腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。しかし、Cu含有量が多くなりすぎると表面欠陥の原因となる。したがって、鋼板にCuを含有する場合、Cu含有量は1.00%以下であり、好ましくは0.5%以下である。Cu含有量が1.00%以下であれば本発明の効果を得られるので、Cu含有量の下限は特に限られない。また、耐食性の向上や、水素侵入を抑制するという効果をより有効に得る観点からは、Cu含有量は0.01%以上であることが好ましい。また、さらに耐端面割れ性向上の観点からは、Cu含有量が0.05%以上であることがより好ましい。
 Ni:1.00%以下
 Niも耐食性を向上させる作用のある元素である。また、NiはCuを含有させる場合に生じやすい表面欠陥を低減する作用がある。しかし、Niの含有量が多くなりすぎると加熱炉内でのスケール生成が不均一になり表面欠陥の原因になるとともに、著しいコスト増となる。したがって、鋼板にNiを含有する場合、Ni含有量は1.00%以下であり、好ましくは0.30%以下である。Ni含有量は、より好ましくは0.15%以下である。Ni含有量が1.00%以下であれば本発明の効果を得られるので、Ni含有量の下限は特に限られない。また、上記のようなNi添加した際の効果をより有効に得る観点からは、Ni含有量は0.01%以上であることが好ましい。
 Sb:0.100%以下
 Sbは表層の酸化や窒化を抑制し、それによるCやBの低減を抑制する。CやBの低減が抑制されることで表層のフェライト生成を抑制し、高強度化と耐端面割れ性の改善に寄与する。しかし、Sb含有量が0.100%を超えると鋳造性が劣化し、また、旧γ粒界にSbが偏析して耐端面割れ性を劣化させる。したがって、鋼板にSbを含有する場合、Sb含有量は0.100%以下であり、好ましくは0.050%以下である。Sb含有量は、より好ましくは0.020%以下である。Sb含有量が0.100%以下であれば本発明の効果を得られるので、Sb含有量の下限は特に限られない。また、上記のようなSb添加した際の効果をより有効に得る観点からは、Sb含有量は0.001%以上であることが好ましい。
 Sn:0.100%以下
 Snは表層の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。CやBの低減が抑制されることで表層のフェライト生成を抑制し、高強度化と耐端面割れ性の改善に寄与する。しかし、Sn含有量が0.100%を超えると鋳造性が劣化し、また、旧γ粒界にSnが偏析して耐端面割れ性が劣化する。このため、鋼板にSnを含有する場合、Sn含有量は0.100%以下であり、好ましくは0.050%以下である。Sn含有量は、より好ましくは0.020%以下である。Sn含有量が0.100%以下であれば本発明の効果を得られるので、Sn含有量の下限は特に限られない。また、上記のようなSn添加した際の効果をより有効に得る観点からは、Sn含有量は0.001%以上であることが好ましい。
 Mg:0.01%以下
 MgはMgOとしてOを固定し、耐端面割れ性を改善する。しかし、Mgを多量に添加すると表面品質や曲げ性を劣化させる。したがって、鋼板にMgを含有する場合、Mg含有量は0.01%以下であり、好ましくは0.0020%以下である。Mg含有量は、より好ましくは0.0010%以下である。Mg含有量が0.01%以下であれば本発明の効果を得られるので、Mg含有量の下限は特に限られない。また、耐端面割れ性を改善する効果をより有効に得る観点からは、Mg含有量は0.0002%以上であることが好ましい。
 REM:0.01%以下
 REMは介在物を微細化し、破壊の起点を減少させることで曲げ性や耐端面割れ性を改善する。しかし、REMを多量に添加すると逆に介在物が粗大化し曲げ性や耐端面割れ性が劣化する。このため、鋼板にREMを含有する場合、REM含有量は0.01%以下であり、好ましくは0.0020%以下である。REM含有量は、より好ましくは0.0010%以下である。REM含有量が0.01%以下であれば本発明の効果を得られるので、REM含有量の下限は特に限られない。また、曲げ性や耐端面割れ性を改善する効果をより有効に得る観点からは、REM含有量は0.0002%以上であることが好ましい。
 次に、本発明の鋼板の鋼組織の限定理由について説明する。
 本発明の鋼板の鋼組織は、マルテンサイトの面積率が70%以上であり、ベイナイトの面積率が30%以下であり、かつフェライト及び残留オーステナイトの面積率の合計が5%以下である。
 マルテンサイトの面積率が70%以上
 所定の強度を得るためにマルテンサイトは70%以上含有する必要がある。これを下回ると、ベイナイト、フェライト、残留オーステナイトが増加し、所定の強度を得ることが難しくなる。マルテンサイト分率が70%未満の組織構成で所定の強度を確保する方法としては、焼戻し温度の低下がある。しかし、焼戻し温度が過度に低くなると、靭性が低下し耐端面割れ性が劣化する。また、C量を増加させることでも強度を増加させることができるが、溶接性を劣化させる恐れがあり好ましくない。したがって、優れた耐端面割れ性と優れた溶接性を確保した上で、所定の強度を確保するためには、マルテンサイトの面積率を70%以上とする必要がある。マルテンサイトの面積率は、好ましくは85%以上である。ここで、マルテンサイトには、焼戻しマルテンサイト、連続冷却中に自己焼戻しを生じたマルテンサイト、150℃以上260℃以下で一定時間保持することによる焼戻しが生じていないマルテンサイトを含む。なお、マルテンサイトの面積率が100%であってもよい。
 ベイナイトの面積率が30%以下
 所定の強度を得るために、ベイナイトの面積率は30%以下であり、好ましくは15%以下である。ベイナイトの面積率は0%であってもよい。
 フェライト及び残留オーステナイトの面積率の合計が5%以下
 マルテンサイト及びベイナイト以外の残部組織は、フェライト、残留オーステナイト、等である。フェライト及び残留オーステナイトは、ベイナイトよりもさらに強度が低い。本発明の強度を得るために、フェライト及び残留オーステナイトの面積率の合計は5%以下であり、好ましくは3%以下である。フェライト及び残留オーステナイトの面積率の合計は0%であってもよい。
 次に、上記の鋼組織の面積率の測定方法を説明する。
鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後ナイタールで腐食し、鋼板表面から1/4厚み位置においてSEM(走査電子顕微鏡)で2000倍の倍率にて4視野観察し、撮影した組織写真を画像解析して鋼組織の面積率を測定する。この測定では、マルテンサイト、ベイナイトは灰色を呈する領域として観察される。また、フェライトは黒色を呈する領域として観察される。なお、マルテンサイトやベイナイトの内部には微量の炭化物、窒化物、硫化物、酸化物を含むが、これらを除外することは困難なので、これらを含めた領域により面積率を測定する。
 残留オーステナイトの測定は、鋼板の表面~板厚200μm位置をシュウ酸で化学研磨し、板面を対象に、X線回折強度法により求める。Mo-Kα線によって測定した(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γ回折面ピークの積分強度より、残留オーステナイトの体積率を計算する。そして、当該残留オーステナイトの体積率を、残留オーステナイトの面積率とみなす。
 マルテンサイトとベイナイトは、内部に含まれる炭化物の位置や結晶方位関係をSEMで10000倍の倍率にて観察することにより区別できる。ベイナイトは、ラス状組織の界面又はラス内に炭化物が生成しており、ベイニティックフェライトとセメンタイトとの結晶方位関係が1種類であるので、生成した炭化物は一方向に伸びている。一方、マルテンサイトは、ラス内に炭化物が生成しており、ラスと炭化物との結晶方位関係が2種類以上あるため、生成した炭化物は複数方向に伸びている。またベイナイトは組織のアスペクト比が比較的高く、Cが濃化して生成したと考えられる残留オーステナイトがラス間に白色を呈する領域として観察できる。
 鋼板の板厚1/4位置における長径が0.5μm以上の炭化物の個数密度が60000個/mm以下
 粗大な炭化物は曲げ加工時に破壊の起点となり曲げ加工性を低下させるため、鋼板の板厚1/4位置における長径が0.5μm以上の炭化物の個数密度を60000個/mm以下に制限する必要がある。当該炭化物は、好ましくは30000個/mm以下である。なお、長径が0.5μm未満の炭化物は曲げ加工性に悪影響しないため対象としない。また、本発明における炭化物の長径とは、実施例に記載の方法で観察したL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)において、最も長い介在物の径の値をいう。
上記の方法としては、具体的には、鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後ピクラールで腐食し、鋼板表面から1/4厚み位置においてSEM(走査電子顕微鏡)で10000倍の倍率にて10視野観察し、長径が0.5μm以上の炭化物の個数密度を測定する。
 鋼板の板厚1/4~3/4の範囲における円相当径が4.0μm以上の介在物粒子の個数密度(以下、単に個数密度Ncともいう。)が10個/mm以上30個/mm以下
 端面割れは鋼板の板厚1/4~3/4の範囲で発生する頻度が高い。発明者らは、この範囲における円相当径が4.0μm以上の介在物粒子の個数密度Ncを10個/mm以上30個/mm以下とすることで端面割れを抑制できることを知見した。これは、せん断加工時に、介在物を起点として微小な亀裂(マイクロクラック)が発生し、板厚方向に平行な面に沿ってそれらの微小な亀裂が連結して、端面割れが少ない破断面が形成されるためと考えられる。一方、板厚中心付近に存在する介在物が少ない場合は、介在物同士の間隔が広いので上記のような効果が得られず、亀裂が様々な方向に伸展しやすくなる。したがって、板厚中心付近に存在する介在物が少ない場合、鋼板の破断面の内部(板厚方向に平行な面に対して交差する方向)に向かって亀裂が伸展しやすく、端面割れが発生しやすいと考えられる。ここで、介在物の個数密度と端面割れの発生確率の相関を調査したところ、円相当径が4.0μm以上の介在物を対象とすることで明瞭な相関が認められた。そのため、円相当径が4.0μm未満のサイズの介在物は、介在物を起点として微小な亀裂が発生し、それらの亀裂が連結するような効果は小さいと考えられる。したがって、円相当径が4.0μm未満のサイズの介在物は本発明において対象としていない。一方、本発明の鋼板において、円相当径が15μmを超える介在物は存在頻度が極めて小さいため、実質的には円相当径が15μm以下の介在物が対象となる。上記のような効果を十分に得るためには、個数密度Ncは10個/mm以上であり、好ましくは15個/mm以上である。端面割れを抑制する観点では、個数密度Ncは多い方が好ましいが、一定量を超えて含有すると曲げ性が劣化する。曲げ性の劣化を抑制する観点から、個数密度Ncは30個/mm以下であり、好ましくは25個/mm以下である。
 また、本発明でいう介在物粒子の個数密度(個/mm)は、実施例に記載の方法で観察した鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)における、1mm当たりの円相当径が4.0μm以上の介在物粒子の個数を意味する。
 鋼板の表面~板厚1/4の範囲における円相当径4.0μm以上の介在物粒子の個数密度が27個/mm以下
 曲げ性は、表面~板厚1/4の範囲における円相当径4.0μm以上の介在物粒子の個数密度Nsが27個/mmを超えると顕著に劣化する。優れた曲げ性を安定的に得るためには、個数密度Nsが27個/mm以下であり、好ましくは20個/mm以下である。
 上記の介在物の個数密度の測定方法としては、具体的には、まず、鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後、腐食せずに光学顕微鏡で100倍の倍率にて20視野撮影する。得られた写真を画像解析して、鋼板の板厚1/4~3/4の範囲及び鋼板の表面~板厚1/4の範囲のそれぞれにおいて、円相当径が4.0μm以上の介在物粒子の個数密度の平均を求める。
 引張強さ(TS):1310MPa以上
 本発明の鋼板の引張強さは1310MPa以上である。なお、本発明でいう高強度とは、引張強さが1310MPa以上であることをいう。耐端面割れ性の劣化は素材の引張強さが1310MPa以上で著しく顕在化する。1310MPa以上でも、耐端面割れ性が良好な点が本発明の鋼板の特徴の一つである。
引張強さの測定は、引張試験により行う。具体的には、引張試験は圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、JIS Z2241(2011)に準拠した引張試験を実施して引張強さを評価する。引張試験のクロスヘッドスピードは10mm/minとする。
 本発明の鋼板は、優れた耐端面割れ性を有する。本発明でいう優れた耐端面割れ性を有するとは、実施例に記載の方法で耐端面割れ性の評価をした際に、端面割れが発生した観察用試験片の割合が50%未満の鋼板をいう。
 耐端面割れ性の評価方法としては、まず、鋼板の圧延直角方向(幅方向)の中央付近から、圧延方向の長さが110mm、圧延直角方向の長さが500mmの試験片10を切り出す。図1に示すような切断加工装置100によって、試験片10を下刃30と板押さえ40で挟持しながら上刃20を下降させて、試験片10をせん断した。せん断加工条件は、クリアランスCLを板厚tの15%とし、シャー角(鋼板の板面に対する傾き)を0°とする。このせん断加工条件で、圧延直角方向の長さが30mmの間隔で試験片10を5回せん断し、図2に示すような5個の短冊状試験片50を得る。短冊状試験片50は、それぞれ、せん断加工した際に上刃20側であったせん断面S1を有している。5個の短冊状試験片50を、それぞれ、圧延方向に10mmずつ間隔をあけて切断する。この切断により、短冊状試験片50は11個に分割する。短冊状試験片50の切断位置は、図3に破線で示している。計11個に切断された短冊状試験片50のうち10個を観察用試験片60として採取する。したがって、5個の短冊状試験片50から、合計50個の観察用試験片60を採取し、端面割れの観察に用いる。観察用試験片60は、せん断面S1を研磨し腐食せずに光学顕微鏡で端面割れの有無を観察する。図4に示すように、観察用試験片60を、それぞれ、せん断面S1を同じ方向の板厚面側から観察する。本発明では、せん断面S1の表面から深さ方向に30μm以上進展している亀裂70が1つ以上存在する観察用試験片60を、端面割れが発生していると判定する。そして、本発明では、端面割れが発生している観察用試験片60の割合が50%未満の鋼板を耐端面割れ性に優れると評価する。
 本発明の鋼板は、優れた曲げ性を有する。本発明でいう優れた曲げ性を有するとは、実施例に記載の方法で90°V曲げ試験により曲げ性を評価した際に、試験片表面に亀裂を生じない最小の曲げ半径Rを板厚tで除した値(R/t)が4.0以下であることをいう。
ここで、曲げ性の評価方法は、具体的には、まず、各鋼板から圧延方向と直角方向(コイル幅方向)を長手方向とするJIS3号試験片を採取し、JIS Z 2248の規定に準拠したVブロック法による90°V曲げ試験を曲げ半径を変えて行う。そして、試験片表面に亀裂を生じない最小の曲げ半径Rを板厚tで除した値(R/t)により曲げ性を評価する。なお、曲げ稜線方向を圧延方向と平行になるようにする。
 本発明の鋼板の好ましい板厚は、0.8~2.6mmの範囲内である。
 本発明の鋼板は、表面にめっき層を有してもよい。めっき層の種類は特に限定されず、Znめっき層、Zn以外の金属のめっき層のいずれでもよい。また、めっき層はZn等の主となる成分以外の成分を含んでもよい。
 次いで、本発明の鋼板の製造方法の一実施形態を説明する。なお、以下に示す鋼板等を加熱又は冷却する際の温度は、特に説明がない限り、スラブ(鋼素材)、鋼板等の表面温度を意味する。
 本発明の鋼板の製造方法は、上記の成分組成を有するスラブを、スラブの表面温度が300℃から1220℃までとなる温度域で平均加熱速度が0.10℃/s以上であり、かつ当該温度域でスラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)が0.85以下となる条件で加熱した後、スラブの表面温度を1220℃以上で30分以上、かつスラブの中心温度を1220℃以上で30分以下の条件で保持するスラブ加熱工程と、スラブ加熱工程後のスラブを熱間圧延して熱延鋼板とする熱間圧延工程と、熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、冷延鋼板を800℃以上の焼鈍温度で240秒以上保持した後、680℃以上の冷却開始温度から300℃までの温度域を70℃/s以上の平均冷却速度で冷却し、その後、150℃以上260℃以下の温度域で20秒以上1500秒以下保持する焼鈍工程と、を有する。
 まず、スラブ加熱工程の各条件について説明する。
 スラブの表面温度が300℃から1220℃までとなる温度域で平均加熱速度が0.10℃/s以上であり、かつ当該温度域でスラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)が0.85以下となる条件で加熱
 連続鋳造後のスラブの表面温度を300℃以下まで冷却した後、スラブの表面温度が300℃から1220℃までとなる温度域で平均加熱速度が0.10℃/s以上であり、かつ当該温度域でスラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)が0.85以下となる条件で加熱する。これにより、スラブ表面温度とスラブ中心温度に温度勾配を発生させ、個数密度Ns及び個数密度Ncを所定の範囲に制御することができる。当該平均加熱速度の上限は特に限定されない。ただし、当該平均加熱速度を0.50℃/s超えとしても効果が飽和するので、当該平均加熱速度は0.50℃/s以下が好ましい。また、鋼板内の結晶粒の大きさを均一化させ、熱間、冷間圧延時に板厚偏差を生じにくくする観点からは、平均加熱速度を0.20℃/s以下とすることがより好ましい。
 また、温度勾配をより大きくするためには、スラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)は小さい方がよい。本発明では、平均温度比(Tc/Ts)0.85以下であり、好ましくは0.80以下である。加熱条件は、例えば、スラブの厚さを厚くする及び/又はスラブの加熱速度を速くすることによって、達成できる。
 また、本発明でいう上記平均温度比(Tc/Ts)は、スラブ表面温度が300℃、600℃、900℃、1200℃のそれぞれの温度において、スラブの表面温度Tsに対するスラブの中心温度Tcの温度比を求め、この4点での温度比を平均して求めている。スラブの表面温度は放射温度計により実測できる。また、スラブの中心温度は伝熱計算により求めることができる。
 また、スラブ加熱工程において、平均加熱速度は、「(1220(℃)-300(℃))/(300℃から1220℃までの加熱時間(秒))」により得られる。
 スラブの表面温度を1220℃以上で30分以上、かつスラブの中心温度を1220℃以上で30分以下の条件で保持
 個数密度Nsを27個/mm以下に制御するためには、スラブの表面温度を1220℃以上として30分以上保持し、粗大なNb、Ti系介在物の固溶を促進する必要がある。さらに、スラブの中心温度を1220℃以上で30分以下保持することができれば、本発明の所定の個数密度Ncを満足することができる。
スラブ表面における1220℃以上での保持時間を、スラブ中心部における1220℃以上での保持時間以上とする点については、スラブ表面を加熱することで実現できる。スラブ表面の加熱により、スラブ表面が先に高温になり、スラブの中心部へ伝熱され、中心部が後から温度が上がっていくためである。また、スラブの表面温度を1220℃以上で30分以上、かつスラブの中心温度を1220℃以上で30分以下の条件での保持は、具体的には、例えば、スラブの厚さを厚くする及び/又は上記スラブ加熱速度を速くすることによって達成できる。なお、スラブ表面温度の上限は特に限定されないが、過度に高温にすることは経済上好ましくないので、1300℃以下とすることが好ましい。
 次に、熱間圧延工程について説明する。
 熱間圧延工程は、スラブ加熱工程後のスラブを熱間圧延して熱延鋼板を製造する工程である。熱間圧延は常法で行うことができ、条件は特に限定されない。仕上げ圧延終了温度と巻取温度の条件は特に限定されないが、仕上げ圧延終了温度は840~950℃の温度域とすることが好ましく、巻取温度は400~700℃の温度域とすることが好ましい。
 次に、冷間圧延工程について説明する。
 冷間圧延工程は、熱延鋼板を冷間圧延して冷延鋼板を製造する工程である。冷間圧延は常法にて行うことができ、条件は特に限定されない。
 次に、焼鈍工程について説明する。
 冷延鋼板を800℃以上の焼鈍温度で240秒以上保持
 本発明において、所定のマルテンサイトを得るために、冷延鋼板を800℃以上の焼鈍温度で、240秒以上保持する必要がある。これより温度が低い場合又は保持時間が短い場合、焼鈍時に十分なオーステナイトが生成しない。そのため、最終製品において所定のマルテンサイトが得られず、1310MPa以上の引張強さが得られなくなる。焼鈍温度と保持時間の上限は特に限定しないが、焼鈍温度が高い場合又は保持時間が長い場合はオーステナイト粒径が粗大になり靱性が劣化する可能性がある。そのため、焼鈍温度は950℃以下が好ましい。また、保持時間は900秒以下が好ましい。
 680℃以上の冷却開始温度から300℃までの温度域を70℃/s以上の平均冷却速度で冷却
 フェライト、残留オーステナイトを低減し、マルテンサイトの面積率を70%以上にするためには、680℃以上の冷却開始温度から300℃までの温度域を70℃/s以上の平均冷却速度で冷却する必要がある。平均冷却速度の上限は特に限定されないが、設備投資負担の軽減の観点から、2000℃/s以下とすることが好ましい。冷却開始温度がこれより低いとフェライトが多く生成する。冷却速度が遅い、又は冷却停止温度が300℃を超えると上部ベイナイトや下部ベイナイトが生成する。なお、焼鈍温度から冷却開始温度までの冷却速度は特に限定されない。
 ここで、平均冷却速度は、「(冷却開始温度(℃)-300(℃))/(冷却開始温度から300℃までの冷却時間(秒))」により得られる。
 150℃以上260℃以下の温度域で20秒以上1500秒以下保持
 マルテンサイトの靭性は焼戻しによって改善することが知られており、優れた耐端面割れ性を確保するために、150℃以上260℃以下の温度域で20秒以上1500秒以下保持する必要がある。急冷後の冷却停止温度を150℃以上260℃以下の温度域にしてもよく、150℃未満に冷却した後に再加熱して150℃以上260℃以下の温度域にしてもよい。150℃未満又は20秒未満で保持した場合は焼戻しによる材料均質化の効果が不十分になる可能性があるため、耐端面割れ性が劣化する。また、保持温度が260℃を超えると、粗大な炭化物が多量に生成し曲げ性が劣化する。また、保持時間が1500秒を超えると、焼戻しの効果が飽和するだけでなく製造コストの増加を招く。
 本発明の鋼板の製造方法は、焼鈍工程後の鋼板に、めっき処理を施すめっき工程を有してもよい。めっき処理を施すことで鋼板の表面にめっき層を有する鋼板が得られる。本発明の鋼板の製造方法では、めっき処理として鋼板の表面に電気亜鉛めっき処理を施すことが好ましい。
 なお、鋼板には、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点から調質圧延を施すことができる。なお、上記めっき処理を施す際に調質圧延を行う場合は、めっき処理後に調質圧延を行う。
 また、本発明の製造方法における一連の熱処理においては、上述した温度範囲内であれば保持温度は一定である必要はなく、また冷却速度が冷却中に変化した場合においても規定した範囲内であれば本発明の趣旨を損なわない。また、熱履歴さえ満足されれば、鋼板はいかなる設備で熱処理を施されてもかまわない。
 次に、本発明の部材及びその製造方法について説明する。
 本発明の部材は、本発明の鋼板に対して、成形加工及び溶接の少なくとも一方を施してなるものである。また、本発明の部材の製造方法は、本発明の鋼板の製造方法によって製造された鋼板に対して、成形加工及び溶接の少なくとも一方を施す工程を有する。
 本発明の鋼板は、引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有している。そのため、本発明の鋼板を用いて得た部材も高強度であり、従来の高強度部材に比べて成形時や車体衝突時の割れが非常に少ない。また、本発明の部材を用いれば、軽量化可能である。したがって、本発明の部材は、例えば、車体骨格部品に好適に用いることができる。
 成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。また、溶接は、スポット溶接、アーク溶接等の一般的な溶接を制限なく用いることができる。
 [実施例1]
 本発明を、実施例を参照しながら具体的に説明するが、本発明はこれらに限定されるものではない。
 表1に示す成分組成の鋼を溶製後、スラブに鋳造し、表2に示すスラブ加熱条件でスラブを加熱した後、スラブを熱間圧延した。熱間圧延において、仕上げ圧延終了温度は840~950℃の範囲内とし、巻取温度は400~700℃の範囲内とした。得られた熱延鋼板を酸洗後、冷間圧延を施し、冷延鋼板とした。得られた冷延鋼板を表2に示す連続焼鈍条件で熱処理した後、0.1%の調質圧延を行い、鋼板を得た。鋼板の板厚は全て1.4mmであった。No.18の冷延鋼板(CR)は電気亜鉛めっき処理を施して、電気亜鉛めっき鋼板(EG)とした。表2において、スラブの表面温度は放射温度計により実測し、スラブの中心温度は伝熱計算により求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板について、以下の測定及び評価を行った。
 (鋼組織における各組織の面積率の測定)
 鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後ナイタールで腐食し、鋼板表面から1/4厚み位置においてSEM(走査電子顕微鏡)で2000倍の倍率にて4視野観察し、撮影した組織写真を画像解析して鋼組織の面積率を測定した。この測定では、マルテンサイト、ベイナイトは灰色を呈する領域として観察される。また、フェライトは黒色を呈する領域として観察される。なお、マルテンサイトやベイナイトの内部には微量の炭化物、窒化物、硫化物、酸化物を含むが、これらを除外することは困難なので、これらを含めた領域により面積率を測定した。
 残留オーステナイトの測定は、鋼板の表面~板厚200μm位置をシュウ酸で化学研磨し、板面を対象に、X線回折強度法により求めた。Mo-Kα線によって測定した(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γ回折面ピークの積分強度より、残留オーステナイトの体積率を計算した。そして、当該残留オーステナイトの体積率を、残留オーステナイトの面積率とみなした。
 マルテンサイトとベイナイトは、内部に含まれる炭化物の位置や結晶方位関係をSEMで10000倍の倍率にて観察することにより区別できる。ベイナイトは、ラス状組織の界面又はラス内に炭化物が生成しており、ベイニティックフェライトとセメンタイトとの結晶方位関係が1種類であるので、生成した炭化物は一方向に伸びている。一方、マルテンサイトは、ラス内に炭化物が生成しており、ラスと炭化物との結晶方位関係が2種類以上あるため、生成した炭化物は複数方向に伸びている。またベイナイトは組織のアスペクト比が比較的高く、Cが濃化して生成したと考えられる残留オーステナイトがラス間に白色を呈する領域として観察できる。
 (炭化物の個数密度の測定)
 鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後ピクラールで腐食し、鋼板表面から1/4厚み位置においてSEM(走査電子顕微鏡)で10000倍の倍率にて10視野観察し、長径が0.5μm以上の炭化物の個数密度を測定した。
 (介在物の個数密度の測定)
 鋼板のL断面(圧延方向に平行で、鋼板表面に対し垂直な断面)を研磨後、腐食せずに光学顕微鏡で100倍の倍率にて20視野撮影した。得られた写真を画像解析して、鋼板の板厚1/4~3/4の範囲及び鋼板の表面~板厚1/4の範囲のそれぞれにおいて、円相当径が4.0μm以上の介在物粒子の個数密度の平均を求めた。
 (引張強さの測定)
 引張試験は圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、JIS Z2241(2011)に準拠した引張試験を実施して引張強さを評価した。引張試験のクロスヘッドスピードは10mm/minとした。
 (耐端面割れ性の評価)
 鋼板の圧延直角方向(幅方向)の中央付近から、圧延方向の長さが110mm、圧延直角方向の長さが500mmの試験片10を切り出した。図1に示すような切断加工装置100によって、試験片10を下刃30と板押さえ40で挟持しながら上刃20を下降させて、試験片10をせん断した。せん断加工条件は、クリアランスCLを板厚tの15%とし、シャー角(鋼板の板面に対する傾き)を0°とした。このせん断加工条件で、圧延直角方向の長さが30mmの間隔で試験片10を5回せん断し、図2に示すような5個の短冊状試験片50を得た。短冊状試験片50は、それぞれ、せん断加工した際に上刃20側であったせん断面S1を有している。5個の短冊状試験片50を、それぞれ、圧延方向に10mmずつ間隔をあけて切断した。この切断により、短冊状試験片50は11個に分割された。短冊状試験片50の切断位置は、図3に破線で示している。計11個に切断された短冊状試験片50のうち10個を観察用試験片60として採取した。したがって、5個の短冊状試験片50から、合計50個の観察用試験片60を採取し、端面割れの観察に用いた。観察用試験片60は、せん断面S1を研磨し腐食せずに光学顕微鏡で端面割れの有無を観察した。図4に示すように、観察用試験片60を、それぞれ、せん断面S1を同じ方向の板厚面側から観察した。本発明では、せん断面S1の表面から深さ方向に30μm以上進展している亀裂70が1つ以上存在する観察用試験片60を、端面割れが発生していると判定した。そして、本発明では、端面割れが発生している観察用試験片60の割合が50%未満の鋼板を耐端面割れ性に優れると評価した。耐端面割れ性に優れると評価された鋼板は、表3で「A」と示す。一方、端面割れ発生頻度が50%以上の鋼板を耐端面割れ性が劣位と評価した。耐端面割れ性が劣位と評価された鋼板は、表3で「F」と示す。
 なお、観察用試験片60は、せん断加工した際に上刃20側であったせん断面S1の対向する面に、せん断加工した際に下刃30側であったせん断面を有している。せん断加工した際に下刃30側であったせん断面も、上記せん断面S1と同様の観察したところ、端面割れはほとんど発生していなかった。そのため、本発明ではせん断面S1で評価を行った。
 (曲げ性の評価)
 各鋼板から圧延方向と直角方向(コイル幅方向)を長手方向とするJIS3号試験片を採取し、JIS Z 2248の規定に準拠したVブロック法による90°V曲げ試験を曲げ半径を変えて行った。そして、試験片表面に亀裂を生じない最小の曲げ半径Rを板厚tで除した値(R/t)により曲げ性を評価した。なお、曲げ稜線方向を圧延方向と平行になるようにした。本発明では、R/tが4.0以下の鋼板を曲げ性に優れると評価し、表3に「A」で示す。また、R/tが4.0を超える鋼板を曲げ性が劣位と評価し、表3に「F」で示す。
Figure JPOXMLDOC01-appb-T000003
 本発明例の鋼板は、引張強さが1310MPa以上であり、優れた耐端面割れ性と曲げ性を有している。一方で比較例の鋼板は、いずれかの項目で発明例に劣っている。
 [実施例2]
 実施例1の表2の製造条件No.1(本発明例)に対して、亜鉛めっき処理を行った亜鉛めっき鋼板をプレス成形して、本発明例の部材を製造した。さらに、実施例1の表2の製造条件No.1(本発明例)に対して亜鉛めっき処理を行った亜鉛めっき鋼板と、実施例1の表2の製造条件No.2(本発明例)に対して亜鉛めっき処理を行った亜鉛めっき鋼板とをスポット溶接により接合して本発明例の部材を製造した。これら本発明例の部材は、上述した耐端面割れ性が評価「A」と優れており、かつ、曲げ性も評価「A」と優れているので、これらの部材は、自動車部品等に好適に用いられることがわかる。
 同様に、実施例1の表2の製造条件No.1(本発明例)による鋼板をプレス成形して、本発明例の部材を製造した。さらに、実施例1の表2の製造条件No.1(本発明例)による鋼板と、実施例1の表2の製造条件No.2(本発明例)による鋼板とをスポット溶接により接合して本発明例の部材を製造した。これら本発明例の部材は、上述した耐端面割れ性が評価「A」と優れており、かつ、曲げ性も評価「A」と優れているので、これらの部材は、自動車部品等に好適に用いられることがわかる。
 10  試験片
 20  上刃
 30  下刃
 40  板押さえ
 50  短冊状試験片
 60  観察用試験片
 70  亀裂
 100 切断加工装置
 CL  クリアランス
 t   板厚

Claims (7)

  1.  質量%で、
     C:0.12%以上0.40%以下、
     Si:0.01%以上1.5%以下、
     Mn:0.2%以上1.7%以下、
     P:0.05%以下、
     S:0.010%以下、
     sol.Al:1.00%以下、
     N:0.010%以下、
     B:0.0002%以上0.0050%以下、並びに
     Nb及びTiのうち1種又は2種を合計で0.010%以上0.080%以下、を含有し、残部がFe及び不可避的不純物からなる成分組成と、
     マルテンサイトの面積率が70%以上であり、ベイナイトの面積率が30%以下であり、かつフェライト及び残留オーステナイトの面積率の合計が5%以下である鋼組織と、を有し、
     鋼板の板厚1/4位置における長径が0.5μm以上の炭化物の個数密度が60000個/mm以下であり、
     鋼板の板厚1/4~3/4の範囲における円相当径が4.0μm以上の介在物粒子の個数密度が10個/mm以上30個/mm以下であり、
     鋼板の表面~板厚1/4の範囲における円相当径4.0μm以上の介在物粒子の個数密度が27個/mm以下であり、
     引張強さが1310MPa以上である鋼板。
  2.  前記成分組成が、質量%で、さらに、
     Mo:0.350%以下、
     Cr:0.350%以下、
     Zr:0.350%以下、
     Ca:0.0050%以下、
     V:0.500%以下、
     W:0.200%以下
     Cu:1.00%以下、
     Ni:1.00%以下、
     Sb:0.100%以下、
     Sn:0.100%以下、
     Mg:0.01%以下、及び
     REM:0.01%以下のうちから選択される少なくとも一種を含有する請求項1に記載の鋼板。
  3.  鋼板の表面にめっき層を有する請求項1又は請求項2に記載の鋼板。
  4.  請求項1~3のいずれか一項に記載の鋼板に対して、成形加工及び溶接の少なくとも一方を施してなる部材。
  5.  請求項1又は請求項2に記載の成分組成を有するスラブを、スラブの表面温度が300℃から1220℃までとなる温度域で平均加熱速度が0.10℃/s以上であり、かつ当該温度域でスラブの表面温度Tsに対するスラブの中心温度Tcの平均温度比(Tc/Ts)が0.85以下となる条件で加熱した後、スラブの表面温度を1220℃以上で30分以上、かつスラブの中心温度を1220℃以上で30分以下の条件で保持するスラブ加熱工程と、
     前記スラブ加熱工程後のスラブを熱間圧延して熱延鋼板とする熱間圧延工程と、
     前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、
     前記冷延鋼板を800℃以上の焼鈍温度で240秒以上保持した後、680℃以上の冷却開始温度から300℃までの温度域を70℃/s以上の平均冷却速度で冷却し、その後、150℃以上260℃以下の温度域で20秒以上1500秒以下保持する焼鈍工程と、を有する鋼板の製造方法。
  6.  前記焼鈍工程後の鋼板の表面にめっき処理を施すめっき工程を有する請求項5に記載の鋼板の製造方法。
  7.  請求項5又は請求項6に記載の鋼板の製造方法によって製造された鋼板に対して、成形加工及び溶接の少なくとも一方を施す工程を有する部材の製造方法。
PCT/JP2021/001935 2020-01-31 2021-01-21 鋼板、部材及びそれらの製造方法 WO2021153392A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180010944.5A CN115003841B (zh) 2020-01-31 2021-01-21 钢板、部件及它们的制造方法
EP21747814.8A EP4067524A4 (en) 2020-01-31 2021-01-21 STEEL SHEET, ELEMENT AND METHOD OF MAKING THE SAME
US17/794,418 US20230069838A1 (en) 2020-01-31 2021-01-21 Steel sheet, member, and production methods therefor
MX2022009184A MX2022009184A (es) 2020-01-31 2021-01-21 Lamina de acero, elemento, y metodos para producir los mismos.
JP2021521864A JP7001198B2 (ja) 2020-01-31 2021-01-21 鋼板、部材及びそれらの製造方法
KR1020227025465A KR20220112299A (ko) 2020-01-31 2021-01-21 강판, 부재 및 그들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014442 2020-01-31
JP2020-014442 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153392A1 true WO2021153392A1 (ja) 2021-08-05

Family

ID=77078533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001935 WO2021153392A1 (ja) 2020-01-31 2021-01-21 鋼板、部材及びそれらの製造方法

Country Status (7)

Country Link
US (1) US20230069838A1 (ja)
EP (1) EP4067524A4 (ja)
JP (1) JP7001198B2 (ja)
KR (1) KR20220112299A (ja)
CN (1) CN115003841B (ja)
MX (1) MX2022009184A (ja)
WO (1) WO2021153392A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138894A1 (ja) * 2020-12-25 2022-06-30 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7311070B1 (ja) * 2022-03-30 2023-07-19 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
JP7311067B1 (ja) * 2022-03-30 2023-07-19 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
WO2023188505A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
WO2023188504A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001197B2 (ja) * 2020-01-31 2022-01-19 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215958A (ja) * 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
JP5136182B2 (ja) 2008-04-22 2013-02-06 新日鐵住金株式会社 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP6056790B2 (ja) 2014-02-27 2017-01-11 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2018062381A1 (ja) * 2016-09-28 2018-04-05 Jfeスチール株式会社 鋼板およびその製造方法
WO2018123356A1 (ja) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
WO2019181950A1 (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 高強度冷延鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136182B2 (ja) 1972-10-12 1976-10-07
JPS6056790B2 (ja) 1982-07-28 1985-12-11 川崎製鉄株式会社 片面のみ合金化処理した溶融亜鉛めつき鋼板の製造方法
JP4445365B2 (ja) * 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5463715B2 (ja) * 2009-04-06 2014-04-09 Jfeスチール株式会社 自動車構造部材用高強度溶接鋼管の製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
JP5667471B2 (ja) * 2011-03-02 2015-02-12 株式会社神戸製鋼所 温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP5943164B1 (ja) * 2014-12-24 2016-06-29 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
MX2017012194A (es) * 2015-03-25 2017-12-15 Jfe Steel Corp Lamina de acero laminada en frio y metodo de fabricacion para la misma.
ES2788163T3 (es) * 2015-04-08 2020-10-20 Nippon Steel Corp Miembro de lámina de acero tratado térmicamente, y método de producción para el mismo
EP3415653B1 (en) * 2016-02-10 2020-03-04 JFE Steel Corporation High-strength galvanized steel sheet and method for producing same
US11193180B2 (en) * 2016-04-14 2021-12-07 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US10982297B2 (en) * 2016-09-28 2021-04-20 Jfe Steel Corporation Steel sheet and method for producing the same
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
MX2022002486A (es) * 2019-09-03 2022-03-22 Nippon Steel Corp Lamina de acero.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136182B2 (ja) 2008-04-22 2013-02-06 新日鐵住金株式会社 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2010215958A (ja) * 2009-03-16 2010-09-30 Jfe Steel Corp 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
JP6056790B2 (ja) 2014-02-27 2017-01-11 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2018062381A1 (ja) * 2016-09-28 2018-04-05 Jfeスチール株式会社 鋼板およびその製造方法
JP6388085B2 (ja) 2016-09-28 2018-09-12 Jfeスチール株式会社 鋼板およびその製造方法
WO2018123356A1 (ja) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
WO2019181950A1 (ja) * 2018-03-19 2019-09-26 日本製鉄株式会社 高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGATAKI YASUNOBU, TSUYAMA SEISHI, HOSOYA YOSHIHIRO: "Bendability of Martensitic Steels", vol. 99, 2013, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 245 - 253

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138894A1 (ja) * 2020-12-25 2022-06-30 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7140302B1 (ja) * 2020-12-25 2022-09-21 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7311070B1 (ja) * 2022-03-30 2023-07-19 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
JP7311067B1 (ja) * 2022-03-30 2023-07-19 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
WO2023188505A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法
WO2023188504A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 鋼板および部材、ならびに、それらの製造方法

Also Published As

Publication number Publication date
US20230069838A1 (en) 2023-03-09
EP4067524A1 (en) 2022-10-05
EP4067524A4 (en) 2023-01-11
CN115003841A (zh) 2022-09-02
MX2022009184A (es) 2022-08-17
CN115003841B (zh) 2023-11-21
KR20220112299A (ko) 2022-08-10
JP7001198B2 (ja) 2022-01-19
JPWO2021153392A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7001198B2 (ja) 鋼板、部材及びそれらの製造方法
JP7001197B2 (ja) 鋼板、部材及びそれらの製造方法
CN113195755B (zh) 钢板、构件和它们的制造方法
KR102654714B1 (ko) 고강도 부재, 고강도 부재의 제조 방법 및 고강도 부재용 강판의 제조 방법
CN117178069A (zh) 钢板、部件以及它们的制造方法
US20240011114A1 (en) Steel sheet and method for producing same
CN113227415B (zh) 钢板、构件和它们的制造方法
CN115151669B (zh) 热冲压成形体
JP6773251B1 (ja) 高強度部材及び高強度部材の製造方法
CN105102659A (zh) 氮化处理用钢板及其制造方法
WO2022138894A1 (ja) 鋼板、部材およびそれらの製造方法
JP4696853B2 (ja) 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
EP3733911B1 (en) Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing methods therefor
JP7287592B1 (ja) 鋼板および部材、ならびに、それらの製造方法
JP7140301B1 (ja) 鋼板、部材およびそれらの製造方法
CN117062934A (zh) 钢板、部件以及它们的制造方法
WO2023189183A1 (ja) ホットスタンプ成形体
WO2023181485A1 (ja) 鋼板および部材、ならびに、それらの製造方法
JP5447776B2 (ja) 熱間打抜き性に優れたダイクエンチ用鋼板
CN116897217A (zh) 钢板、构件和它们的制造方法
JP2010174295A (ja) 熱間打抜き性に優れたダイクエンチ用鋼板
JP2010174292A (ja) 熱間打抜き性に優れたダイクエンチ用鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521864

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021747814

Country of ref document: EP

Effective date: 20220628

ENP Entry into the national phase

Ref document number: 20227025465

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE