US20070240796A1 - Cast Aluminium Alloy - Google Patents

Cast Aluminium Alloy Download PDF

Info

Publication number
US20070240796A1
US20070240796A1 US10/579,075 US57907504A US2007240796A1 US 20070240796 A1 US20070240796 A1 US 20070240796A1 US 57907504 A US57907504 A US 57907504A US 2007240796 A1 US2007240796 A1 US 2007240796A1
Authority
US
United States
Prior art keywords
weight
alloy
cast aluminium
aluminium alloy
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/579,075
Other languages
English (en)
Inventor
Hubert Koch
Blanka Lenczowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Aluminium Rheinfelden GmbH
Original Assignee
EADS Deutschland GmbH
Aluminium Rheinfelden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH, Aluminium Rheinfelden GmbH filed Critical EADS Deutschland GmbH
Assigned to ALUMINIUM-RHEINFELDEN GMBH, EADS DEUTSCHLAND GMBH reassignment ALUMINIUM-RHEINFELDEN GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOCH, HUBERT, LENCZOWSKI, BLANKA
Publication of US20070240796A1 publication Critical patent/US20070240796A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to a cast aluminium alloy suitable particularly for thermally highly stressed cast parts.
  • the efficiency of cast parts produced therefrom is improved considerably, their thermal stability being guaranteed up to temperatures of 400° C.
  • cast parts for example, can be produced which meet high demands with respect to quality.
  • the quality of a diecast part depends not only on the machine adjustment and the selected method but to a great extent also on the chemical composition and the structure of the used cast alloy. It is known that the two latter parameters influence the castability, the feeding behavior, the mechanical characteristics and, which is particularly important in diecasting, the useful life of the casting tools.
  • European Patent Document EP 0 687 742 A1 discloses a diecast alloy on an aluminium silicon base, which contain 9.5-11.5% in weight silicon, 0.1-0.5% in weight magnesium, 0.5-0.8% in weight manganese, max. 0.15% in weight iron, max. 0.03% in weight copper, max. 0.10% in weight zinc, max. 0.15% in weight titanium as well as a remainder of aluminium and a permanent finishing with 30 to 300 ppm strontium.
  • an aluminium alloy which consists of 5.4-5.8% in weight magnesium, 1.8-2.5% in weight silicon, 0.5-0.9% in weight manganese, max. 0.2% in weight titanium, max. 0.15% in weight iron and aluminium as the remainder with further impurities to an individual max. of 0.02% in weight and totally maximally 0.2% in weight, which are suitable particularly for thixocasting or thixoforging.
  • a cast aluminium alloy which is suitable mainly for permanent mold casting and sand casting, and contains at least 0.05-0.5% in weight manganese, 0.2-1.0% in weight magnesium, 4-7% in weight zinc and 0.15-0.45% in weight chromium.
  • cast aluminum alloys are conceived mainly for safety-relevant vehicle components, such as control arms, supports, frame parts and wheels, in the case of which a high ductile yield is primarily in the foreground. These alloys are not suitable for thermal stresses of up to 400° C.
  • the classical cast aluminium alloys are thermally stable only up to approximately 200° C.
  • One object of the present invention is to provide a cast aluminium alloy which is suitable for thermally highly stressed cast parts.
  • the high-temperature stability that is the thermal stability, of the mechanical characteristics is to be ensured up to temperatures of 400° C.
  • the cast aluminium alloy according to the invention preferable has a good weldability and should be producible by means of a plurality of methods while the castability is good.
  • Zr zirconium
  • Hf hafnium
  • Mo molybdenum
  • Tb terbium
  • Nb niobium
  • Gd gadolinium
  • Er erbium
  • V vanadium
  • % in weight or “% by weight” refers to the weight percentage based on the total weight of the composition.
  • the magnesium content in this case is preferably between 2-7% in weight, particularly preferably between 3-6% in weight.
  • the silicon content is advantageously between 1.1-4.0% in weight, particularly advantageously between 1.1-3.0% in weight.
  • the addition of scandium is essential.
  • the scandium causes a grain refining of the cast structure and a recrystallization inhibition as a result of the thermally very stable Al 3 Sc particles.
  • Cast parts produced from the alloy according to the invention therefore have the advantage that their mechanical characteristics are stable up to temperatures of 400° C.
  • the cast alloy according to the invention is therefore predestined mainly for thermally highly stressed cast parts. It is also advantageous, that, as a result of the high thermal stability, a replacement of aluminium materials by materials of a high density is not required.
  • the component weight is guaranteed while the conductivity is increased, which component weight can even be reduced by cast parts which have thinner walls.
  • the weldability is also improved by means of the scandium fraction.
  • the scandium content is preferably between 0.01-0.45% in weight, particularly preferably between 0.015-0.4% in weight.
  • titanium Like scandium, titanium also causes a grain refining and therefore contributes in a corresponding manner to the improvement of the thermal stability. In addition, titanium lowers the electric conductivity.
  • the titanium content preferably amounts to between 0.01-0.2% in weight, particularly between 0.05-0.15% in weight.
  • zirconium Since zirconium has the same effect as scandium or titanium, it is also advantageous to additionally admix zirconium to the alloy.
  • the effect of the scandium of causing an intensive particle hardening by the thermally very stable Al 3 Sc particles, a grain refining of the structure as well as a recrystallization inhibition is further increased by the combined effect of scandium and zirconium.
  • Zirconium substitutes Sc atoms and forms particles of the ternary compound Al 3 (Sc 1-x Zr x ) which have less of a tendency to coagulate at higher temperatures than the Al 3 Sc particles.
  • the scandium and zirconium constituents again improve the thermal stability of the alloy in comparison to an alloy which contains only scandium. This permits a further optimization in the direction of lower scandium contents for lowering the cost.
  • the zirconium content of preferred embodiments is between 0.01-0.3% in weight or 0.05-0.1% in weight.
  • hafnium, molybdenum, terbium, niobium, gadolinium, erbium and/or vanadium may be added to the alloy.
  • the alloy contains one or more elements selected from the group consisting of zirconium, hafnium, molybdenum, terbium, niobium, gadolinium, erbium and vanadium. In this case, the sum of the selected elements amounts to maximally 0.5% in weight, preferably, however, 0.01-0.3% in weight.
  • the alloy it is particularly advantageous for the alloy to contain at least 0.001% in weight, preferably at least 0.008% in weight vanadium. Vanadium acts as a grain refiner, similarly to titanium. Furthermore, it improves the weldability and reduces the scratching tendency of the molten material.
  • the alloy contains at least 0.001% in weight gadolinium.
  • Chromium 0.001-0.3% in weight, particularly 0.0015-0.2% in weight
  • copper 0.001-1.0% in weight, particularly 0.5-1.0% in weight
  • zinc 0.001-0.1% in weight, particularly 0.001-0.05% in weight.
  • iron and/or manganese it is known that by adding iron and/or manganese, the adhesive effect is reduced.
  • a manganese content of maximally 0.01% in weight and an iron content of from 0.05-0.6% in weight is used.
  • the technical iron content is typically at least 0.12% in weight.
  • the addition of iron and/or manganese is not absolutely necessary for permanent mold casting and sand casting.
  • the diecasting method in order to reduce the adhesive effect of the diecast part in the mold.
  • the manganese content for the diecasting is preferably between 0.4-0.8% in weight.
  • the sum of the manganese and iron content should amount to at least 0.8% in weight.
  • sample rods for determining the mechanical characteristics were cast by means of the permanent Diez rod mold.
  • the first alloy also contains zirconium.
  • the second alloy has a higher scandium content than the first alloy but contains no zirconium.
  • the third alloy is a variant with a higher magnesium and silicon content.
  • a fourth alloy which also contains copper, was produced by means of diecasting.
  • This alloy was obtained by melting in a 200 kg electrically heated crucible furnace. The casting temperature was 700° C. The casting took place on a 400 t (tension holding force) diecasting machine. A plate of the measurements 220 ⁇ 60 ⁇ 3 mm was used as the sample shape. Sample rods for tension tests were taken from the plates. The sample rods were machined only on the narrow sides.
  • the mechanical characteristics of the different alloys according to the invention cast by means of a permanent Diez rod mold were measured as cast, after a 3-hour heat treatment at 300° C. and subsequently at different thermal stresses (200E/500 h, 250° C./500 h, 350° C./500 h and 400° C./500 h), for determining the thermal stability.
  • the mechanical characteristics of alloy 4 (diecast alloy) were measured only as cast and after a 1-hour 300° C. heat treatment.
  • the reference alloy was subjected to a conventional annealing.
  • the reference alloy was solution treated at 540° C. for 12 hours; was then quenched with water and was then artificially aged at 165° C. for 6 hours.
  • the measuring results are summarized in Table 2, Rp0.2 being the yield strength in MPa, Rm being the tensile strength in MPa, and A5 being the breaking tension in %.
  • the tests show that the alloy according to the invention already has good mechanical characteristics as cast.
  • a heat treatment here, 300° C. for 3 hours or 300° C. for 1 hour
  • the mechanical characteristics are further increased, which is a result of particle hardening by segregation from the oversaturated solid solution during “artificial aging”; thus the formation of secondary precipitations Al 3 (Sc 1-x Zr x ).
  • the thermal stability of alloys 1-3 up to temperatures of 400° C. is easily recognizable.
  • Particularly the values for the yield strength and the tensile strength are quite high up to temperatures of 400° C.
  • the alloy according to the invention has a very good weldability. It has an excellent casting behavior and can be produced by means of conventional casting methods (diecasting, sand casting, permanent mold casting, thixocasting, rheocasting or derivatives of these methods).
  • the alloy according to the invention is preferably used for thermally highly stressed cast parts.
  • thermally highly stressed cast parts are, for example, cylinder heads, crankcases, components for air conditioners; structural airplane parts, particularly for supersonic aircraft, engine segments, pylons, which are highly stressed connection components between the engine and the wings, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Mold Materials And Core Materials (AREA)
  • Supercharger (AREA)
  • Continuous Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
US10/579,075 2003-11-11 2004-11-03 Cast Aluminium Alloy Abandoned US20070240796A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10352932.2 2003-11-11
DE10352932A DE10352932B4 (de) 2003-11-11 2003-11-11 Aluminium-Gusslegierung
PCT/DE2004/002425 WO2005047554A1 (de) 2003-11-11 2004-11-03 Al-mg-si-aluminium-gusslegierung mit scandium

Publications (1)

Publication Number Publication Date
US20070240796A1 true US20070240796A1 (en) 2007-10-18

Family

ID=34585030

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/579,075 Abandoned US20070240796A1 (en) 2003-11-11 2004-11-03 Cast Aluminium Alloy

Country Status (6)

Country Link
US (1) US20070240796A1 (es)
EP (1) EP1682688B1 (es)
AT (1) ATE454480T1 (es)
DE (2) DE10352932B4 (es)
ES (1) ES2339356T3 (es)
WO (1) WO2005047554A1 (es)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129559A1 (en) * 2008-04-22 2009-10-29 Joka Buha Magnesium grain refining using vanadium
US20100074796A1 (en) * 2005-08-22 2010-03-25 Aluminium Rheinfelden Gmbh High temperature aluminium alloy
CN101831578A (zh) * 2010-06-02 2010-09-15 东北轻合金有限责任公司 铝镁铒合金铸锭及其制备方法
CN102031424A (zh) * 2009-09-29 2011-04-27 贵州铝厂 Cr-Tb高强耐热铝合金材料及其制备方法
US20110203343A1 (en) * 2010-02-23 2011-08-25 Airbus Operations (S.A.S.) Method To Achieve A Stiffened Curved Metallic Structure And Structure Obtained Accordingly
GB2500825A (en) * 2012-03-30 2013-10-02 Jaguar Land Rover Ltd An Al-Mg-Si-Mn alloy and a method of producing such an alloy
CN103938038A (zh) * 2014-04-12 2014-07-23 北京工业大学 一种耐长期晶间腐蚀的含Zn、Er高Mg铝合金板材稳定化热处理工艺
CN104032192A (zh) * 2014-03-18 2014-09-10 北京工业大学 一种提高含铒铝合金板材抗疲劳损伤性能的轧制及热处理工艺
CN104218756A (zh) * 2013-04-26 2014-12-17 通用汽车环球科技运作有限责任公司 用于电磁装置的铝合金转子
CN104313414A (zh) * 2014-11-06 2015-01-28 广西柳州银海铝业股份有限公司 铝镁合金及其板材的制备方法
CN104674083A (zh) * 2015-03-10 2015-06-03 苏州圣谱拉新材料科技有限公司 一种轮毂用铝合金材料及其制备方法
CN104862552A (zh) * 2015-05-28 2015-08-26 马鸿斌 一种新型铝合金及其制备方法
CN105112742A (zh) * 2015-09-01 2015-12-02 合肥工业大学 一种Al-Si-Mg-Cu-Ti-Sc铸锻合金及其制备方法
CN105256192A (zh) * 2015-11-13 2016-01-20 无锡清杨机械制造有限公司 一种铝合金板材及其制备方法
CN105420564A (zh) * 2015-12-15 2016-03-23 深圳市鑫雅豪精密五金有限公司 一种高端铝合金材料mh-03及其制备方法
KR101606525B1 (ko) 2014-10-29 2016-03-25 주식회사 케이엠더블유 내식성이 개선된 다이캐스팅용 알루미늄 합금
CN105734364A (zh) * 2016-03-25 2016-07-06 广州市华峰有色金属有限公司 一种高端铝合金材料jh9及其制备方法
US20170121794A1 (en) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-mg-si alloy with scandium for the integral construction of alm structures
CN108034871A (zh) * 2017-11-21 2018-05-15 保定隆达铝业有限公司 一种两幅式方向盘骨架铸造用的铝镁合金及其制备方法
US10030293B2 (en) 2013-07-24 2018-07-24 Airbus Defence and Space GmbH Aluminum material having improved precipitation hardening
US20180298471A1 (en) * 2015-10-19 2018-10-18 Trimet Aluminium Se Aluminum alloy
CN109072356A (zh) * 2016-04-19 2018-12-21 莱茵费尔登合金有限责任两合公司 压铸合金
CN109112368A (zh) * 2018-09-20 2019-01-01 辽宁工业大学 一种含Sc铸造亚共晶Al-Mg2Si合金及其生产方法
CN109778028A (zh) * 2019-01-21 2019-05-21 宁波市鄞州迪信机械制造有限公司 一种缝纫机铝合金盖板
CN109844151A (zh) * 2016-10-17 2019-06-04 伊苏瓦尔肯联铝业 用于航空航天应用的由铝-镁-钪合金制成的薄板
CN110453119A (zh) * 2019-09-05 2019-11-15 安徽鑫发铝业有限公司 一种防腐耐磨型高强度电泳铝型材及其制备工艺
CN111155003A (zh) * 2020-02-25 2020-05-15 广西大学 一种高强韧性高镁铝合金及其制备方法
CN111575545A (zh) * 2020-05-30 2020-08-25 苏州慧金新材料科技有限公司 手机中板用高强度压铸合金材料及其制备方法和应用
CN111809083A (zh) * 2019-04-12 2020-10-23 通用汽车环球科技运作有限责任公司 简化半固态铸造工艺的铝合金组合物和半固态铸造方法
CN112063899A (zh) * 2020-09-14 2020-12-11 肇庆新联昌金属实业有限公司 一种高塑性铝合金及其制备方法
US20220228242A1 (en) * 2017-02-23 2022-07-21 Magna International Inc. Process for low-cost tempering of aluminum casting
US11421305B2 (en) 2016-04-19 2022-08-23 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy
US11433489B2 (en) 2015-12-14 2022-09-06 Airbus Defence and Space GmbH Scandium-containing aluminium alloy for powder metallurgical technologies
CN115418538A (zh) * 2022-08-18 2022-12-02 昆明理工大学 一种高强耐蚀铝合金材料及制备方法
CN116732374A (zh) * 2023-06-15 2023-09-12 湘潭大学 一种掺杂钪和锆制备6061铝合金的方法及6061铝合金
CN117926087A (zh) * 2024-03-20 2024-04-26 广东鸿图汽车零部件有限公司 一种铸造铝合金及其制备方法和应用
CN118291824A (zh) * 2024-06-05 2024-07-05 小米汽车科技有限公司 高折弯性能压铸铝镁合金及其制备方法和应用

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501867B1 (de) * 2005-05-19 2009-07-15 Aluminium Lend Gmbh & Co Kg Aluminiumlegierung
DE102005047435A1 (de) * 2005-09-30 2007-04-05 Ks Aluminium-Technologie Ag Verfahren zur Herstellung eines Zylinderkurbelgehäuses aus übereutektischer Aluminium-Silizium-Legierung im Rheocast/Thixocast-Verfahren
DE102006039684B4 (de) * 2006-08-24 2008-08-07 Audi Ag Aluminium-Sicherheitsbauteil
US7875133B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7879162B2 (en) 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US8002912B2 (en) 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
US8017072B2 (en) 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US20090260724A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation Heat treatable L12 aluminum alloys
US7811395B2 (en) 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US7871477B2 (en) 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US8409373B2 (en) 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US7875131B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US8778098B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US8778099B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US8728389B2 (en) 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US9194027B2 (en) 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
UA96812C2 (ru) * 2010-01-21 2011-12-12 Юлий Викторович Мильман Литейный сплав алюминия, содержащий магний и кремний
AT511207B1 (de) * 2011-09-20 2012-10-15 Salzburger Aluminium Ag Aluminiumlegierung mit scandium und zirkon
GB201402323D0 (en) 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting
DE102015200632A1 (de) 2015-01-16 2016-07-21 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung eines Kornfeiners zur Herstellung eines Motorbauteils
CN105256182A (zh) * 2015-10-20 2016-01-20 安徽天祥空调科技有限公司 一种空调散热器用高耐腐蚀轻薄型铝合金片及其制备方法
EP3235917B1 (de) * 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Druckgusslegierung
CN106591649A (zh) * 2016-12-14 2017-04-26 沈阳工业大学 一种高强Al‑Cu‑Mg‑Mn‑Er变形铝合金及其制备方法
CN108165907B (zh) * 2018-02-22 2020-03-27 山东南山铝业股份有限公司 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材
CN109022956B (zh) * 2018-08-30 2020-01-21 河南明泰铝业股份有限公司 5a12铝合金铸锭及其生产方法与应用
CN109680192A (zh) * 2019-01-29 2019-04-26 北京工业大学 一种Al-Mg-Mn-Er-Zr合金热变形及稳定化退火工艺及材料
CN111809086B (zh) * 2019-04-12 2021-12-07 比亚迪股份有限公司 一种压铸铝合金及其制备方法和应用
US11958140B2 (en) 2019-05-10 2024-04-16 General Cable Technologies Corporation Aluminum welding alloys with improved performance
CN111500906B (zh) * 2020-06-04 2021-06-04 福建祥鑫股份有限公司 一种高强耐腐蚀铝合金及其制备方法
CN114000017A (zh) * 2020-07-27 2022-02-01 湖南稀土金属材料研究院 一种高强高导铝合金导体材料及其制备方法
CN115011846B (zh) * 2022-06-17 2022-12-02 吉林大学 一种高强度、高稳定性Al-Mg-Si-Cu-Sc铝合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) * 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US5620652A (en) * 1994-05-25 1997-04-15 Ashurst Technology Corporation (Ireland) Limited Aluminum alloys containing scandium with zirconium additions
US6004506A (en) * 1998-03-02 1999-12-21 Aluminum Company Of America Aluminum products containing supersaturated levels of dispersoids

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH689143A5 (de) * 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminium-Silizium Druckgusslegierung mit hoher Korrosionsbestaendigkeit, insbesondere fuer Sicherheitsbauteile.
ATE177158T1 (de) * 1994-11-15 1999-03-15 Rheinfelden Aluminium Gmbh Aluminium-gusslegierung
JP3594270B2 (ja) * 1996-04-12 2004-11-24 古河スカイ株式会社 溶接性に優れたAl−Mg−Si系合金
EP0918095B1 (de) * 1997-11-20 2003-03-26 Alcan Technology & Management AG Verfahren zur Herstellung eines Strukturbauteiles aus einer Aluminium-Druckgusslegierung
JP2000328209A (ja) * 1999-05-18 2000-11-28 Furukawa Electric Co Ltd:The アルミニウム合金ばね材の製造方法
ES2280300T3 (es) * 2000-03-31 2007-09-16 Corus Aluminium Voerde Gmbh Producto de aleacion de aluminio colado en coquilla.
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
EP1229141A1 (de) * 2001-02-05 2002-08-07 ALUMINIUM RHEINFELDEN GmbH Aluminiumgusslegierung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) * 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
US5055257A (en) * 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US5620652A (en) * 1994-05-25 1997-04-15 Ashurst Technology Corporation (Ireland) Limited Aluminum alloys containing scandium with zirconium additions
US6004506A (en) * 1998-03-02 1999-12-21 Aluminum Company Of America Aluminum products containing supersaturated levels of dispersoids

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074796A1 (en) * 2005-08-22 2010-03-25 Aluminium Rheinfelden Gmbh High temperature aluminium alloy
WO2009129559A1 (en) * 2008-04-22 2009-10-29 Joka Buha Magnesium grain refining using vanadium
CN102031424A (zh) * 2009-09-29 2011-04-27 贵州铝厂 Cr-Tb高强耐热铝合金材料及其制备方法
US20110203343A1 (en) * 2010-02-23 2011-08-25 Airbus Operations (S.A.S.) Method To Achieve A Stiffened Curved Metallic Structure And Structure Obtained Accordingly
CN101831578A (zh) * 2010-06-02 2010-09-15 东北轻合金有限责任公司 铝镁铒合金铸锭及其制备方法
GB2500825A (en) * 2012-03-30 2013-10-02 Jaguar Land Rover Ltd An Al-Mg-Si-Mn alloy and a method of producing such an alloy
WO2013144343A1 (en) * 2012-03-30 2013-10-03 Jaguar Land Rover Limited Alloy and method of production thereof
GB2500825B (en) * 2012-03-30 2016-07-27 Jaguar Land Rover Ltd Alloy and method of production thereof
US9601978B2 (en) 2013-04-26 2017-03-21 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
CN104218756A (zh) * 2013-04-26 2014-12-17 通用汽车环球科技运作有限责任公司 用于电磁装置的铝合金转子
US10030293B2 (en) 2013-07-24 2018-07-24 Airbus Defence and Space GmbH Aluminum material having improved precipitation hardening
CN104032192A (zh) * 2014-03-18 2014-09-10 北京工业大学 一种提高含铒铝合金板材抗疲劳损伤性能的轧制及热处理工艺
CN103938038A (zh) * 2014-04-12 2014-07-23 北京工业大学 一种耐长期晶间腐蚀的含Zn、Er高Mg铝合金板材稳定化热处理工艺
KR101606525B1 (ko) 2014-10-29 2016-03-25 주식회사 케이엠더블유 내식성이 개선된 다이캐스팅용 알루미늄 합금
CN104313414A (zh) * 2014-11-06 2015-01-28 广西柳州银海铝业股份有限公司 铝镁合金及其板材的制备方法
CN104674083A (zh) * 2015-03-10 2015-06-03 苏州圣谱拉新材料科技有限公司 一种轮毂用铝合金材料及其制备方法
CN104862552A (zh) * 2015-05-28 2015-08-26 马鸿斌 一种新型铝合金及其制备方法
CN105112742A (zh) * 2015-09-01 2015-12-02 合肥工业大学 一种Al-Si-Mg-Cu-Ti-Sc铸锻合金及其制备方法
US20180298471A1 (en) * 2015-10-19 2018-10-18 Trimet Aluminium Se Aluminum alloy
CN106801171A (zh) * 2015-11-04 2017-06-06 空中客车防务和空间有限责任公司 用于ALM结构的整体构造的具有钪的Al‑Mg‑Si合金
US20170121794A1 (en) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-mg-si alloy with scandium for the integral construction of alm structures
EP3165620A1 (en) * 2015-11-04 2017-05-10 Airbus Defence and Space GmbH Al-mg-si alloy with scandium for the integral construction of alm structures
CN105256192A (zh) * 2015-11-13 2016-01-20 无锡清杨机械制造有限公司 一种铝合金板材及其制备方法
US11724313B2 (en) 2015-12-14 2023-08-15 Airbus Defence and Space GmbH Scandium-containing aluminum alloy for powder metallurgical technologies
US11433489B2 (en) 2015-12-14 2022-09-06 Airbus Defence and Space GmbH Scandium-containing aluminium alloy for powder metallurgical technologies
CN105420564A (zh) * 2015-12-15 2016-03-23 深圳市鑫雅豪精密五金有限公司 一种高端铝合金材料mh-03及其制备方法
CN105734364A (zh) * 2016-03-25 2016-07-06 广州市华峰有色金属有限公司 一种高端铝合金材料jh9及其制备方法
US11421305B2 (en) 2016-04-19 2022-08-23 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy
US10669615B2 (en) * 2016-04-19 2020-06-02 Rheinfelden Alloys Gmbh & Co. Kg Alloy for pressure die-casting
US20190136350A1 (en) * 2016-04-19 2019-05-09 Rheinfelden Alloys Gmbh & Co. Kg Alloy for Pressure Die-Casting
CN109072356A (zh) * 2016-04-19 2018-12-21 莱茵费尔登合金有限责任两合公司 压铸合金
CN109844151A (zh) * 2016-10-17 2019-06-04 伊苏瓦尔肯联铝业 用于航空航天应用的由铝-镁-钪合金制成的薄板
US20220228242A1 (en) * 2017-02-23 2022-07-21 Magna International Inc. Process for low-cost tempering of aluminum casting
CN108034871A (zh) * 2017-11-21 2018-05-15 保定隆达铝业有限公司 一种两幅式方向盘骨架铸造用的铝镁合金及其制备方法
CN109112368A (zh) * 2018-09-20 2019-01-01 辽宁工业大学 一种含Sc铸造亚共晶Al-Mg2Si合金及其生产方法
CN109778028A (zh) * 2019-01-21 2019-05-21 宁波市鄞州迪信机械制造有限公司 一种缝纫机铝合金盖板
CN111809083A (zh) * 2019-04-12 2020-10-23 通用汽车环球科技运作有限责任公司 简化半固态铸造工艺的铝合金组合物和半固态铸造方法
CN110453119A (zh) * 2019-09-05 2019-11-15 安徽鑫发铝业有限公司 一种防腐耐磨型高强度电泳铝型材及其制备工艺
CN111155003A (zh) * 2020-02-25 2020-05-15 广西大学 一种高强韧性高镁铝合金及其制备方法
CN111575545A (zh) * 2020-05-30 2020-08-25 苏州慧金新材料科技有限公司 手机中板用高强度压铸合金材料及其制备方法和应用
CN112063899A (zh) * 2020-09-14 2020-12-11 肇庆新联昌金属实业有限公司 一种高塑性铝合金及其制备方法
CN115418538A (zh) * 2022-08-18 2022-12-02 昆明理工大学 一种高强耐蚀铝合金材料及制备方法
CN116732374A (zh) * 2023-06-15 2023-09-12 湘潭大学 一种掺杂钪和锆制备6061铝合金的方法及6061铝合金
CN117926087A (zh) * 2024-03-20 2024-04-26 广东鸿图汽车零部件有限公司 一种铸造铝合金及其制备方法和应用
CN118291824A (zh) * 2024-06-05 2024-07-05 小米汽车科技有限公司 高折弯性能压铸铝镁合金及其制备方法和应用

Also Published As

Publication number Publication date
DE10352932B4 (de) 2007-05-24
EP1682688A1 (de) 2006-07-26
WO2005047554A1 (de) 2005-05-26
EP1682688B1 (de) 2010-01-06
ES2339356T3 (es) 2010-05-19
WO2005047554B1 (de) 2005-07-14
DE10352932A1 (de) 2005-06-16
ATE454480T1 (de) 2010-01-15
DE502004010622D1 (de) 2010-02-25

Similar Documents

Publication Publication Date Title
US20070240796A1 (en) Cast Aluminium Alloy
CN102796925B (zh) 一种压力铸造用的高强韧压铸铝合金
JP3194742B2 (ja) 改良リチウムアルミニウム合金系
CN109072356B (zh) 压铸合金
JP2697400B2 (ja) 鍛造用アルミニウム合金
US20040191111A1 (en) Er strengthening aluminum alloy
CN102994835B (zh) 一种耐热镁合金
EP4067521A1 (en) Aluminum alloy and preparation method therefor
EP1882754B1 (en) Aluminium alloy
WO2011090451A1 (en) CASTING ALLOY OF THE AIMgSI TYPE
US20050238529A1 (en) Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
CN115305392B (zh) 高强韧性压铸铝硅合金及其制备方法和应用
US20220290281A1 (en) Method of manufacturing aluminum alloy forged material
CN102994847B (zh) 一种耐热镁合金
CN112779443A (zh) 一种铝合金及铝合金结构件
JP2003221636A (ja) 耐衝撃破壊性に優れたAl−Mg−Si系アルミニウム合金押出形材
JP4994734B2 (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP2006322062A (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JPWO2003023080A1 (ja) 鋳物用アルミニウム合金、アルミニウム合金製鋳物およびアルミニウム合金製鋳物の製造方法
JPH1112673A (ja) アルミニウム合金鋳物及びその製造法
JPH07145440A (ja) アルミニウム合金鍛造素材
JPH07150312A (ja) アルミニウム合金鍛造素材の製造方法
CN111118358B (zh) 一种含Er的可铸造的变形Al-Cu合金
RU2441091C2 (ru) Литейный алюминиевый сплав-(экономнолегированный высокопрочный силумин)
EP4083248A1 (en) Aluminum alloy and preparation method thereof, and aluminum alloy structural member

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALUMINIUM-RHEINFELDEN GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOCH, HUBERT;LENCZOWSKI, BLANKA;REEL/FRAME:019463/0843;SIGNING DATES FROM 20070613 TO 20070615

Owner name: EADS DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOCH, HUBERT;LENCZOWSKI, BLANKA;REEL/FRAME:019463/0843;SIGNING DATES FROM 20070613 TO 20070615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION