EP4067521A1 - Aluminum alloy and preparation method therefor - Google Patents
Aluminum alloy and preparation method therefor Download PDFInfo
- Publication number
- EP4067521A1 EP4067521A1 EP20894656.6A EP20894656A EP4067521A1 EP 4067521 A1 EP4067521 A1 EP 4067521A1 EP 20894656 A EP20894656 A EP 20894656A EP 4067521 A1 EP4067521 A1 EP 4067521A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminum alloy
- content
- present disclosure
- mass
- refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 132
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 29
- 238000007670 refining Methods 0.000 claims description 26
- 239000002893 slag Substances 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 238000004512 die casting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 8
- 238000007872 degassing Methods 0.000 claims description 7
- 230000032683 aging Effects 0.000 claims description 6
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 33
- 239000000956 alloy Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910016343 Al2Cu Inorganic materials 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- VPSXHKGJZJCWLV-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(1-ethylpiperidin-4-yl)oxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OC1CCN(CC1)CC VPSXHKGJZJCWLV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present disclosure relates to the technical field of die-casting aluminum alloy, and more specifically, to an aluminum alloy and a preparation method thereof.
- Die casting is a precision casting process that is characterized by forcing molten metal under high pressure into a metal mold cavity with a complex shape. Die castings are characterized by a very small dimensional tolerance and a high surface precision. In most cases, die castings can be directly assembled for use without turning.
- Die casting of aluminum alloys has high requirements on their mechanical properties, such as yield strength, tensile strength, elongation, and melt fluidity.
- existing die-casting aluminum alloy materials are highly dependent on the accuracy of control conditions for the formation process and are greatly affected by slight variation in process parameters, so that it is difficult to give consideration to the requirements of both the strength and elongation for die casting.
- the present disclosure discloses an aluminum alloy and a preparation method.
- the present disclosure provides an aluminum alloy.
- the aluminum alloy includes: 8-11% of Si, 2-3% of Cu, 0.7-1.1% of Mg, 0.7-1.5% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.02-0.1% of Ti, 0.01-0.02% of Ga, 0.004-0.02% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- the aluminum alloy in percentage by mass, includes: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- the mass ratio of Ti to B is (5-10):1.
- the content of Ga in percentage by mass is greater than the content of Sr in percentage by mass.
- the other elements include one or more of Zr, Ni, Ce, Sc, and Er.
- the present disclosure provides a method for preparing the foregoing aluminum alloy.
- the method includes the following steps: weighing out various raw materials in required proportions based on proportions of all elements in the aluminum alloy, melting the raw materials in a melting furnace to obtain a molten metal, and subjecting the molten metal to slag removal and refining and degassing, and then casting, to obtain an aluminum alloy ingot.
- the slag removal includes adding a slag remover into the molten metal, the slag remover including one or more of an aluminum alloy slag remover agent NF-1 and an aluminum alloy slag-removal agent DSG.
- the refining is carried out at 700-710°C, and the refining includes adding a refining agent into the molten metal, the refining agent including one or more of hexafluoroethane and an aluminum refining agent ZS-AJ01C.
- the method further includes die casting the aluminum alloy ingot for formation.
- the method includes carrying out artificial aging on the die-cast aluminum alloy.
- the artificial aging is carried out at 100-200°C for 1.5-3 h.
- the aluminum alloy provided in the present disclosure has high yield strength and thermal conductivity, and ensures good elongation without sacrificing the strength.
- the yield strength is about 240-260 MPa
- the tensile strength is about 380-410 MPa
- the elongation is 3-6%
- the thermal conductivity is about 130-142 W/(k•m).
- the aluminum alloy material has low process requirements, and has good process adaptability in die casting.
- the present disclosure provides an aluminum alloy.
- the aluminum alloy includes: 8-11% of Si, 2-3% of Cu, 0.7-1.1% of Mg, 0.7-1.5% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.02-0.1% of Ti, 0.01-0.02% of Ga, 0.004-0.02% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- the aluminum alloy provided in the present disclosure has high yield strength and thermal conductivity, and ensures good elongation without sacrificing the strength.
- the yield strength is about 240-260 MPa (for example, 240 MPa, 242 MPa, 245 MPa, 248 MPa, 250 MPa, 251 MPa, 253 MPa, 255 MPa, 258 MPa, or 260 MPa)
- the tensile strength is about 380-410 MPa (for example, 380 MPa, 385 MPa, 390 MPa, 395 MPa, 400 MPa, 405 MPa, or 410 MPa)
- the elongation is about 3-6% (for example, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, or 6%)
- the thermal conductivity is about 130-142 W/(k•m) (for example, 130 W/(k•m), 132 W/(k•m), 135 W/(k•m),
- the aluminum alloy in percentage by mass, includes: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- the aluminum alloy is composed of the following components in percentage by mass: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al.
- the content of Si is 9%, 9.8%, 10%, 10.5%, or 10.8%
- the content of Cu is 2.5%, 2.6%, or 2.8%
- the content of Mg is 0.7%, 0.8%, 0.9%, 1%, or 1.1%
- the content of Mn is 0.9%, 1%, 1.1%, 1.2%, or 1.3%
- the content of Sr is 0.01%, 0.013%, 0.015%, or 0.02%
- the content of Cr is 0.01%, 0.013%, or 0.015%
- the content of Fe is 0, 0.1%, 0.2%, 0.3%, or 0.4%
- the content of Ti is 0.03%, 0.04%, 0.05%, or 0.06%
- the content of Ga is 0.01%, 0.013%, or 0.015%
- the content of B is 0.004%, 0.005%, 0.006%, 0.007%, or 0.008%
- the content of Zn is 0, 0.3%, 0.6%, 0.9%, 1.3%, 1.7%, or 2%.
- Si and Al form eutectic Si and primary Si. Dispersed primary Si and fine ⁇ -Al grains are formed under the effect of Sr, increasing the strength and fluidity of the aluminum alloy.
- Cu is solubilized into Al to form a solid solution phase, and precipitated Al 2 Cu strengthening phase is dispersed on the grain boundary.
- the yield strength increases and the elongation decreases gradually.
- the Mg content is more than 0.7%
- a dispersion strengthening phase (with a particle size below 10 ⁇ m) mainly composed of Al 2 Cu is precipitated.
- the area occupied by this phase in the aluminum alloy gradually increases.
- the Mg content is more than 1.1%
- the grains of this phase in the aluminum alloy will increase sharply, and the elongation will decrease greatly.
- Mn and Cr are solubilized into the aluminum alloy matrix to inhibit the grain growth of primary Si and ⁇ -Al, so that the primary Si is dispersed among grains.
- Ti and B are dispersed among the grains, so that primary Si can uniformly distribute into ⁇ -Al, which greatly inhibits the growth of ⁇ -Al (the particle size of ⁇ -Al is reduced by one-third compared with that in the aluminum alloy without the addition of Ti and B).
- an excessively high content of Zn is easily solubilized into the aluminum alloy, thereby affecting the solubilization of Cu, Mn, and Mg, which will affect the precipitated second phase and greatly change the thermal conductivity of the aluminum alloy.
- an excessively high content of Fe will make the aluminum alloy brittle and thus affect the elongation of the aluminum alloy.
- the mechanical properties, thermal conductivity, and elongation of the aluminum alloy are the result of the combined effect of the foregoing elements. Any element that deviates from the scope provided by the present disclosure deviates from the disclosure intent of the present disclosure, resulting in a reduction in mechanical properties, thermal conductivity, or elongation of the aluminum alloy, thereby detrimental to the use of the aluminum alloy as a die-casting material.
- the mass ratio of Ti to B is (5-10):1, for example 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1. It was found through further experiments that Ti and B in this ratio ensure the high strength and thermal conductivity of the aluminum alloy. The reason is that Ti within this content range is uniformly distributed around the eutectic Si, increasing the strength of the aluminum alloy, and the addition of B in this ratio ensures the high strength with good thermal conductivity.
- the content of Ga in percentage by mass is greater than the content of Sr in percentage by mass.
- a high-strength ⁇ solid solution is formed in the aluminum alloy.
- Ti, Ga, and B form a fine strengthening phase evenly distributed between the eutectic Si and ⁇ solid solution, which greatly increases the yield strength of the aluminum alloy while ensuring the elongation of the aluminum alloy.
- the other elements include one or more of Zr, Ni, Ce, Sc, and Er.
- Zr, Ni, Ce, Sc, and Er are harmful elements that need to be reduced as impurities from the aluminum alloy as much as possible.
- the aluminum alloy does not include the other elements.
- the solubilization of Ni into ⁇ solid solution of the alloy will have a greater impact on Cu, Mn, and Mg, resulting in severe segregation, thereby making the aluminum alloy brittle.
- Zr, Ce, Er, and Sc form a second phase that cannot be solubilized in the aluminum alloy, so that the distribution of composition of the aluminum alloy is uneven, making the aluminum alloy brittle.
- the present disclosure provides a method for preparing the foregoing aluminum alloy.
- the method includes the following steps: weighing out various raw materials in required proportions based on proportions of all elements in the aluminum alloy, melting the raw materials in a melting furnace to obtain a molten metal, and subjecting the molten metal to slag removal and refining and degassing, and then casting, to obtain an aluminum alloy ingot.
- the raw materials include an Al-containing material, a Si-containing material, a Mgcontaining material, a Fe-containing material, a Sr-containing material, a Ti-containing material, a B-containing material, a Cu-containing material, a Mn-containing material, a Ga-containing material, a Cr-containing material, and a Zn-containing material.
- the raw materials are selected from alloys or elements containing the foregoing elements.
- the slag removal includes adding a slag remover into the molten metal, the slag remover including one or more of an aluminum alloy slag remover agent NF-1 and an aluminum alloy slag-removal agent DSG.
- the refining is carried out at 700-710°C (specifically 700°C, 701°C, 702°C, 703°C, 704°C, 705°C, 706°C, 707°C, 708°C, 709°C, or 710°C).
- the refining includes adding a refining agent into the molten metal and stirring.
- the refining agent includes one or more of hexafluoroethane and an aluminum refining agent ZS-AJ01C.
- the method further includes die casting the aluminum alloy ingot for formation.
- the casting is carried out at 680-720°C (for example 680°C, 690°C, 700°C, 710°C, or 720°C).
- artificial aging is carried out on the die-cast aluminum alloy at 100-200°C (for example 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, or 200°C) for 1.5-3 h (for example 1.5 h, 2 h, 2.5 h, or 3 h).
- the aluminum alloy is precipitation-hardened by the artificial aging, and the precipitation hardening effect can be observed by testing the mechanical properties of the aluminum alloy.
- the precipitation of Al 2 Cu phase is accelerated at 100-200°C, increasing the strength of the grain boundary, thereby increasing the strength and hardness of the alloy.
- Example 1 Si Cu Mn Mg Ti Sr Cr Fe Ga B Zn Inevitable impurities and Al
- Example 1 9.5 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 2 10 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 3 10.5 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 4 10 2.5 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 5 10 2.6 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 6 10 2.8 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 7 10 2.5 0.9 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 9 10 2.5 1.1 1 0.04 0.013 0.012 0 0.014 0.005 0
- Example 10 10
- This example is used to describe the aluminum alloy and the preparation method thereof in the present disclosure, including the following steps:
- the components of the aluminum alloy in percentage by mass include: 9.5% of Si, 2.7% of Cu, 1% of Mg, 1.2% of Mn, 0.013% of Sr, 0.012% of Cr, 0% of Fe, 0.04% of Ti, 0.014% of Ga, 0.005% of B, 0% of Zn, and the balance of Al and less than 0.1% of inevitable impurities.
- the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- Examples 2-34 are used to describe the aluminum alloy and the preparation method thereof in the present disclosure, including most of the steps in Example 1, and the difference is as follows:
- compositions of the aluminum alloy in Examples 2-34 are shown in Table 1, the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- This comparative example is used to compare with the aluminum alloy and the preparation method thereof in the present disclosure, including the following steps:
- the components of the aluminum alloy in percentage by mass include: 7.8% of Si, 2.7% of Cu, 1% of Mg, 1.2% of Mn, 0.013% of Sr, 0.012% of Cr, 0% of Fe, 0.04% of Ti, 0.014% of Ga, 0.005% of B, 0% of Zn, and the balance of Al and less than 0.1% of inevitable impurities.
- the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- Comparative Examples 2-13 are used to compare with the aluminum alloy and the preparation method thereof in the present disclosure, including most of the steps in Example 1, and the difference is as follows:
- the compositions of the aluminum alloy in Comparative Examples 2-13 are shown in Table 1, the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot.
- the aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- Example 2 The aluminum alloy prepared in Example 1 was imaged by using a scanning electron microscope (SEM) to obtain SEM images shown in FIG. 1 and FIG. 2 .
- SEM scanning electron microscope
- the area marked with the cross in FIG. 2 was subjected to diffraction to obtain an SEM-diffraction spectrum shown in FIG. 3 .
- the EDS spectrum was analyzed to obtain the composition of the area marked with the cross in FIG. 2 , as shown in Table 2.
- Table 2 Element wt% at% CK 02.52 05.94 OK 01.42 02.52 MgK 00.81 00.95 AlK 71.05 74.60 SiK 07.69 07.76 MnK 12.40 06.39 CuK 04.11 01.83 Matrix Correction ZAF
- the aluminum alloys prepared in Examples 1-34 and Comparative Examples 1-13 were subjected to the following performance tests: Tensile test: The yield strength, tensile strength, and elongation were tested according to GBT 228.1-2010 Metallic Materials Tensile Testing Part 1: Room Temperature Test Methods.
- Thermal conductivity test A thermally conductive ingot wafer of ⁇ 12.7 ⁇ 3 mm was prepared as a to-be-tested piece, and graphite was evenly sprayed on both sides of the to-be-tested piece to form a coating. The coated piece was tested by using a laser thermal conductivity instrument. The laser thermal conductivity test was carried out in accordance with ASTM E1461 Standard Test Method for Thermal Diffusivity by the Flash Method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
Abstract
Description
- The present disclosure claims priority to and benefits of
Chinese Patent Application No. 201911174477.0 filed on November 26, 2019 - The present disclosure relates to the technical field of die-casting aluminum alloy, and more specifically, to an aluminum alloy and a preparation method thereof.
- Die casting is a precision casting process that is characterized by forcing molten metal under high pressure into a metal mold cavity with a complex shape. Die castings are characterized by a very small dimensional tolerance and a high surface precision. In most cases, die castings can be directly assembled for use without turning.
- Die casting of aluminum alloys has high requirements on their mechanical properties, such as yield strength, tensile strength, elongation, and melt fluidity. During die casting, existing die-casting aluminum alloy materials are highly dependent on the accuracy of control conditions for the formation process and are greatly affected by slight variation in process parameters, so that it is difficult to give consideration to the requirements of both the strength and elongation for die casting.
- To resolve the problem that it is difficult to give consideration to process requirements for existing die-casting aluminum alloy materials, the present disclosure discloses an aluminum alloy and a preparation method.
- The technical solutions adopted by the present disclosure to resolve the foregoing technical problem are as follows:
- According to an aspect, the present disclosure provides an aluminum alloy. In percentage by mass, the aluminum alloy includes: 8-11% of Si, 2-3% of Cu, 0.7-1.1% of Mg, 0.7-1.5% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.02-0.1% of Ti, 0.01-0.02% of Ga, 0.004-0.02% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- In some embodiments, in percentage by mass, the aluminum alloy includes: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- According to the aluminum alloy in some embodiments of the present disclosure, the mass ratio of Ti to B is (5-10):1.
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Ga in percentage by mass is greater than the content of Sr in percentage by mass.
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Si and the content of Cu satisfy the following condition: Wt(Si) = (Wt(Cu) - 0.2) × (3-5).
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Mn and the content of Cu satisfy the following condition: Wt(Cu) = (Wt(Mn) - 0.3) × (2.5-4).
- According to the aluminum alloy in some embodiments of the present disclosure, the other elements include one or more of Zr, Ni, Ce, Sc, and Er.
- According to another aspect, the present disclosure provides a method for preparing the foregoing aluminum alloy. The method includes the following steps: weighing out various raw materials in required proportions based on proportions of all elements in the aluminum alloy, melting the raw materials in a melting furnace to obtain a molten metal, and subjecting the molten metal to slag removal and refining and degassing, and then casting, to obtain an aluminum alloy ingot.
- According to the method in some embodiments of the present disclosure, the slag removal includes adding a slag remover into the molten metal, the slag remover including one or more of an aluminum alloy slag remover agent NF-1 and an aluminum alloy slag-removal agent DSG.
- According to the method in some embodiments of the present disclosure, the refining is carried out at 700-710°C, and the refining includes adding a refining agent into the molten metal, the refining agent including one or more of hexafluoroethane and an aluminum refining agent ZS-AJ01C.
- According to the method in some embodiments of the present disclosure, the method further includes die casting the aluminum alloy ingot for formation.
- According to the method in some embodiments of the present disclosure, the method includes carrying out artificial aging on the die-cast aluminum alloy.
- According to the method in some embodiments of the present disclosure, the artificial aging is carried out at 100-200°C for 1.5-3 h.
- By adjusting proportions of all strengthening elements in the aluminum alloy, the aluminum alloy provided in the present disclosure has high yield strength and thermal conductivity, and ensures good elongation without sacrificing the strength. For the aluminum alloy in the present disclosure, the yield strength is about 240-260 MPa, the tensile strength is about 380-410 MPa, the elongation is 3-6%, and the thermal conductivity is about 130-142 W/(k•m). In addition, the aluminum alloy material has low process requirements, and has good process adaptability in die casting.
-
-
FIG. 1 is a metallographic image of an aluminum alloy prepared in Example 1 of the present disclosure; -
FIG. 2 is an SEM image of an aluminum alloy prepared in Example 1 of the present disclosure; and -
FIG. 3 is an SEM-diffraction spectrum of the area marked with the cross inFIG. 2 . - To make the technical problems to be resolved by the present disclosure, technical solutions, and beneficial effects more comprehensible, the following further describes the present disclosure in detail with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely used for explaining the present disclosure instead of limiting the present disclosure.
- According to an aspect, the present disclosure provides an aluminum alloy. In percentage by mass, the aluminum alloy includes: 8-11% of Si, 2-3% of Cu, 0.7-1.1% of Mg, 0.7-1.5% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.02-0.1% of Ti, 0.01-0.02% of Ga, 0.004-0.02% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- By adjusting proportions of all strengthening elements in the aluminum alloy, the aluminum alloy provided in the present disclosure has high yield strength and thermal conductivity, and ensures good elongation without sacrificing the strength. For the aluminum alloy in the present disclosure, the yield strength is about 240-260 MPa (for example, 240 MPa, 242 MPa, 245 MPa, 248 MPa, 250 MPa, 251 MPa, 253 MPa, 255 MPa, 258 MPa, or 260 MPa), the tensile strength is about 380-410 MPa (for example, 380 MPa, 385 MPa, 390 MPa, 395 MPa, 400 MPa, 405 MPa, or 410 MPa), the elongation is about 3-6% (for example, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, or 6%), and the thermal conductivity is about 130-142 W/(k•m) (for example, 130 W/(k•m), 132 W/(k•m), 135 W/(k•m), 138 W/(k•m), 140 W/(k•m), or 142 W/(k•m)). In addition, the aluminum alloy material has low process requirements, and has good process adaptability in die casting.
- In some embodiments, in percentage by mass, the aluminum alloy includes: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements.
- In some other embodiments, the aluminum alloy is composed of the following components in percentage by mass: 9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al.
- In some embodiments, the content of Si is 9%, 9.8%, 10%, 10.5%, or 10.8%, the content of Cu is 2.5%, 2.6%, or 2.8%, the content of Mg is 0.7%, 0.8%, 0.9%, 1%, or 1.1%, the content of Mn is 0.9%, 1%, 1.1%, 1.2%, or 1.3%, the content of Sr is 0.01%, 0.013%, 0.015%, or 0.02%, the content of Cr is 0.01%, 0.013%, or 0.015%, the content of Fe is 0, 0.1%, 0.2%, 0.3%, or 0.4%, the content of Ti is 0.03%, 0.04%, 0.05%, or 0.06%, the content of Ga is 0.01%, 0.013%, or 0.015%, the content of B is 0.004%, 0.005%, 0.006%, 0.007%, or 0.008%, and the content of Zn is 0, 0.3%, 0.6%, 0.9%, 1.3%, 1.7%, or 2%.
- In the materials involved in the present disclosure, Si and Al form eutectic Si and primary Si. Dispersed primary Si and fine α-Al grains are formed under the effect of Sr, increasing the strength and fluidity of the aluminum alloy.
- According to the aluminum alloy in some embodiments of the present disclosure, Cu is solubilized into Al to form a solid solution phase, and precipitated Al2Cu strengthening phase is dispersed on the grain boundary.
- According to the aluminum alloy in some embodiments of the present disclosure, with the increase of Mg content, the yield strength increases and the elongation decreases gradually. When the Mg content is more than 0.7%, a dispersion strengthening phase (with a particle size below 10 µm) mainly composed of Al2Cu is precipitated. With the increase of the Mg content, the area occupied by this phase in the aluminum alloy gradually increases. When the Mg content is more than 1.1%, the grains of this phase in the aluminum alloy will increase sharply, and the elongation will decrease greatly.
- According to the aluminum alloy in some embodiments of the present disclosure, Mn and Cr are solubilized into the aluminum alloy matrix to inhibit the grain growth of primary Si and α-Al, so that the primary Si is dispersed among grains.
- According to the aluminum alloy in some embodiments of the present disclosure, Ti and B are dispersed among the grains, so that primary Si can uniformly distribute into α-Al, which greatly inhibits the growth of α-Al (the particle size of α-Al is reduced by one-third compared with that in the aluminum alloy without the addition of Ti and B).
- According to the aluminum alloy in some embodiments of the present disclosure, an excessively high content of Zn is easily solubilized into the aluminum alloy, thereby affecting the solubilization of Cu, Mn, and Mg, which will affect the precipitated second phase and greatly change the thermal conductivity of the aluminum alloy.
- According to the aluminum alloy in some embodiments of the present disclosure, an excessively high content of Fe will make the aluminum alloy brittle and thus affect the elongation of the aluminum alloy.
- The mechanical properties, thermal conductivity, and elongation of the aluminum alloy are the result of the combined effect of the foregoing elements. Any element that deviates from the scope provided by the present disclosure deviates from the disclosure intent of the present disclosure, resulting in a reduction in mechanical properties, thermal conductivity, or elongation of the aluminum alloy, thereby detrimental to the use of the aluminum alloy as a die-casting material.
- According to the aluminum alloy in some embodiments of the present disclosure, the mass ratio of Ti to B is (5-10):1, for example 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1. It was found through further experiments that Ti and B in this ratio ensure the high strength and thermal conductivity of the aluminum alloy. The reason is that Ti within this content range is uniformly distributed around the eutectic Si, increasing the strength of the aluminum alloy, and the addition of B in this ratio ensures the high strength with good thermal conductivity.
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Ga in percentage by mass is greater than the content of Sr in percentage by mass.
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Si and the content of Cu satisfy the following condition: Wt(Si) = (Wt(Cu) - 0.2) × (3-5). Under this condition, the formed eutectic Si and Al2Cu inhibit the growth of the α-Al grains, which become small in diameter.
- According to the aluminum alloy in some embodiments of the present disclosure, the content of Mn and the content of Cu satisfy the following condition: Wt(Cu) = (Wt(Mn) - 0.3) × (2.5-4). Under this condition, through the induction of Ti-B, Si, Cu, and Mn form a new spherical Si7Mn6Cu phase uniformly distributed at the grain boundary, greatly increasing the strength and elongation of the aluminum alloy.
- Under the foregoing conditions, a high-strength α solid solution is formed in the aluminum alloy. In this case, Ti, Ga, and B form a fine strengthening phase evenly distributed between the eutectic Si and α solid solution, which greatly increases the yield strength of the aluminum alloy while ensuring the elongation of the aluminum alloy.
- According to the aluminum alloy in some embodiments of the present disclosure, the other elements include one or more of Zr, Ni, Ce, Sc, and Er. Zr, Ni, Ce, Sc, and Er are harmful elements that need to be reduced as impurities from the aluminum alloy as much as possible. In some specific embodiments, the aluminum alloy does not include the other elements.
- For example, as an impurity element, the solubilization of Ni into α solid solution of the alloy will have a greater impact on Cu, Mn, and Mg, resulting in severe segregation, thereby making the aluminum alloy brittle. Zr, Ce, Er, and Sc form a second phase that cannot be solubilized in the aluminum alloy, so that the distribution of composition of the aluminum alloy is uneven, making the aluminum alloy brittle.
- According to another aspect, the present disclosure provides a method for preparing the foregoing aluminum alloy. The method includes the following steps: weighing out various raw materials in required proportions based on proportions of all elements in the aluminum alloy, melting the raw materials in a melting furnace to obtain a molten metal, and subjecting the molten metal to slag removal and refining and degassing, and then casting, to obtain an aluminum alloy ingot. The raw materials include an Al-containing material, a Si-containing material, a Mgcontaining material, a Fe-containing material, a Sr-containing material, a Ti-containing material, a B-containing material, a Cu-containing material, a Mn-containing material, a Ga-containing material, a Cr-containing material, and a Zn-containing material. The raw materials are selected from alloys or elements containing the foregoing elements.
- In some embodiments, the slag removal includes adding a slag remover into the molten metal, the slag remover including one or more of an aluminum alloy slag remover agent NF-1 and an aluminum alloy slag-removal agent DSG.
- In some embodiments, the refining is carried out at 700-710°C (specifically 700°C, 701°C, 702°C, 703°C, 704°C, 705°C, 706°C, 707°C, 708°C, 709°C, or 710°C). The refining includes adding a refining agent into the molten metal and stirring. The refining agent includes one or more of hexafluoroethane and an aluminum refining agent ZS-AJ01C.
- According to the method in some embodiments of the present disclosure, the method further includes die casting the aluminum alloy ingot for formation.
- In some embodiments, the casting is carried out at 680-720°C (for example 680°C, 690°C, 700°C, 710°C, or 720°C).
- In some embodiments, artificial aging is carried out on the die-cast aluminum alloy at 100-200°C (for example 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, or 200°C) for 1.5-3 h (for example 1.5 h, 2 h, 2.5 h, or 3 h).
- The aluminum alloy is precipitation-hardened by the artificial aging, and the precipitation hardening effect can be observed by testing the mechanical properties of the aluminum alloy. The precipitation of Al2Cu phase is accelerated at 100-200°C, increasing the strength of the grain boundary, thereby increasing the strength and hardness of the alloy.
- The present disclosure is further described through the following examples.
Table 1 Si Cu Mn Mg Ti Sr Cr Fe Ga B Zn Inevitable impurities and Al Example 1 9.5 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 2 10 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 3 10.5 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 4 10 2.5 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 5 10 2.6 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 6 10 2.8 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 7 10 2.5 0.9 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 9 10 2.5 1.1 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 10 10 2.5 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 11 10.5 2.5 0.95 0.8 0.04 0.013 0.012 0 0.014 0.005 0 Example 12 10.5 2.5 1 0.9 0.04 0.013 0.012 0 0.014 0.005 0 Example 13 10.5 2.5 0.95 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 14 10.5 2.5 1.1 0.8 0.03 0.013 0.012 0 0.014 0.004 0 Example 15 10.5 2.5 1.1 0.8 0.07 0.013 0.012 0 0.014 0.005 0 Example 16 10.5 2.5 1.1 0.8 0.08 0.013 0.012 0 0.014 0.005 0 Example 17 10.5 2.5 1.1 0.8 0.05 0.013 0.012 0 0.014 0.005 0 Example 18 10.5 2.5 1.1 0.8 0.03 0.013 0.012 0 0.014 0.005 0 Example 19 10.5 2.5 1.1 0.8 0.03 0.013 0.01 0 0.014 0.005 0 Example 20 10.5 2.5 1.1 0.8 0.03 0.013 0.015 0.1 0.014 0.005 0 Example 21 10.5 2.5 1.1 0.8 0.05 0.013 0.012 0.2 0.014 0.005 0.5 Example 22 10.5 2.5 1.1 0.8 0.05 0.013 0.012 0.3 0.014 0.005 1 Example 23 8.5 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 24 10 2.2 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 25 10 2.8 1.4 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 27 10.5 2.5 1.1 0.8 0.03 0.015 0.012 0 0.02 0.005 0 Example 28 10.5 2.5 1.1 1 0.02 0.013 0.012 0 0.014 0.005 0 Example 29 10.5 2.5 1.1 1 0.1 0.013 0.012 0 0.014 0.005 0 Example 30 10.5 2.5 1.1 1 0.04 0.013 0.012 0 0.01 0.005 0 Example 31 10.5 2 1.1 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 32 8 3 1.1 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 33 10.5 2.5 0.8 1 0.04 0.013 0.012 0 0.014 0.005 0 Example 34 10.5 2.5 1.5 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 1 7.8 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 2 12 2.7 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 3 10 1.8 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 4 10 3.5 1.2 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 5 10 2.5 0.5 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 6 10 2.5 2 1 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 7 10 2.5 1 1 0.04 0.013 0.012 0 0 0.005 0 Comparative Example 8 10.5 2.5 1 0.5 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 9 10.5 2.5 1 1.5 0.04 0.013 0.012 0 0.014 0.005 0 Comparative Example 10 10.5 2.5 1 0.7 0.15 0.013 0.012 0 0.014 0.005 0 Comparative Example 11 10.5 2.5 1 0.7 0.03 0.005 0.012 0 0.01 0.005 0 Comparative Example 12 10.5 2.5 1 0.7 0.03 0.013 0 0 0.014 0.005 0 Comparative Example 13 10.5 2.5 1.1 0.7 0.05 0.013 0.012 0 0.014 0.005 2.3 Note: Each composition in Table 1 is in percentage by weight, and the total weight of inevitable impurity elements is less than 0.1%. - This example is used to describe the aluminum alloy and the preparation method thereof in the present disclosure, including the following steps:
- As shown in Table 1, the components of the aluminum alloy in percentage by mass include: 9.5% of Si, 2.7% of Cu, 1% of Mg, 1.2% of Mn, 0.013% of Sr, 0.012% of Cr, 0% of Fe, 0.04% of Ti, 0.014% of Ga, 0.005% of B, 0% of Zn, and the balance of Al and less than 0.1% of inevitable impurities. The required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- Examples 2-34 are used to describe the aluminum alloy and the preparation method thereof in the present disclosure, including most of the steps in Example 1, and the difference is as follows:
- The compositions of the aluminum alloy in Examples 2-34 are shown in Table 1, the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- This comparative example is used to compare with the aluminum alloy and the preparation method thereof in the present disclosure, including the following steps:
- As shown in Table 1, the components of the aluminum alloy in percentage by mass include: 7.8% of Si, 2.7% of Cu, 1% of Mg, 1.2% of Mn, 0.013% of Sr, 0.012% of Cr, 0% of Fe, 0.04% of Ti, 0.014% of Ga, 0.005% of B, 0% of Zn, and the balance of Al and less than 0.1% of inevitable impurities. The required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy.
- Comparative Examples 2-13 are used to compare with the aluminum alloy and the preparation method thereof in the present disclosure, including most of the steps in Example 1, and the difference is as follows:
The compositions of the aluminum alloy in Comparative Examples 2-13 are shown in Table 1, the required mass of intermediate alloys or metal elements was calculated based on the mass of the foregoing components of the aluminum alloy, the intermediate alloys or metal elements were melted in a melting furnace to obtain a molten metal, and the molten metal was subjected to slag removal by using a slag remover and was subjected to refining and degassing by using a refining agent at 700-710°C, and then was cast to obtain an aluminum alloy ingot. The aluminum alloy ingot was naturally aged for 7 d to obtain an aluminum alloy. - The aluminum alloy prepared in Example 1 was imaged by using a scanning electron microscope (SEM) to obtain SEM images shown in
FIG. 1 andFIG. 2 . The area marked with the cross inFIG. 2 was subjected to diffraction to obtain an SEM-diffraction spectrum shown inFIG. 3 . The EDS spectrum was analyzed to obtain the composition of the area marked with the cross inFIG. 2 , as shown in Table 2.Table 2 Element wt% at% CK 02.52 05.94 OK 01.42 02.52 MgK 00.81 00.95 AlK 71.05 74.60 SiK 07.69 07.76 MnK 12.40 06.39 CuK 04.11 01.83 Matrix Correction ZAF - It can be learned that a spherical Si7Mn6Cu phase is formed herein in
FIG. 2 and is evenly distributed at the grain boundary, increasing the strength and elongation of the aluminum alloy. - The aluminum alloys prepared in Examples 1-34 and Comparative Examples 1-13 were subjected to the following performance tests:
Tensile test: The yield strength, tensile strength, and elongation were tested according to GBT 228.1-2010 Metallic Materials Tensile Testing Part 1: Room Temperature Test Methods. - Thermal conductivity test: A thermally conductive ingot wafer of φ 12.7×3 mm was prepared as a to-be-tested piece, and graphite was evenly sprayed on both sides of the to-be-tested piece to form a coating. The coated piece was tested by using a laser thermal conductivity instrument. The laser thermal conductivity test was carried out in accordance with ASTM E1461 Standard Test Method for Thermal Diffusivity by the Flash Method.
- The test results are shown in Table 3.
Table 3 Yield strength (MPa) Tensile strength (MPa) Elongation (%) Die-casting formability Thermal conductivity of ingot W/(m•k) Example 1 243 415 5.12 Excellent 137 Example 2 251 418 4.83 Excellent 138 Example 3 255 411 4.53 Excellent 135 Example 4 248 410 4.54 Excellent 132 Example 5 249 413 4.2 Excellent 134 Example 6 252 410 4.48 Excellent 133 Example 7 248 412 4.52 Excellent 138 Example 8 249 418 5.03 Excellent 136 Example 9 251 417 4.93 Excellent 134 Example 10 253 418 4.28 Excellent 132 Example 11 243 418 5.21 Excellent 138 Example 12 249 418 5.02 Excellent 136 Example 13 254 415 4.35 Excellent 135 Example 14 245 413 4.2 Excellent 135 Example 15 251 410 4.35 Excellent 133 Example 16 250 407 4.38 Excellent 135 Example 17 251 421 5.02 Excellent 133 Example 18 245 411 4.82 Excellent 138 Example 19 245 410 4.53 Excellent 136 Example 20 245 413 4.82 Excellent 135 Example 21 247 412 4.35 Excellent 133 Example 22 252 410 4.32 Excellent 132 Example 23 242 403 4.5 Good 135 Example 24 241 405 4.68 Good 136 Example 25 252 401 3.52 Good 130 Example 26 242 398 4.25 Excellent 137 Example 27 243 405 4.52 Excellent 134 Example 28 241 403 4.32 Excellent 132 Example 29 241 405 4.35 Excellent 130 Example 30 251 395 3.8 Excellent 131 Example 31 242 395 3.2 Excellent 131 Example 32 241 385 3.1 Good 131 Example 33 241 386 3.92 Good 132 Example 34 252 392 3.53 Excellent 130 Comparative Example 1 241 373 2.8 Average 121 Comparative Example 2 252 382 2.3 Good 118 Comparative Example 3 235 375 3.1 Good 118 Comparative Example 4 252 379 2.23 Average 115 Comparative Example 5 235 381 2.82 Average 127 Comparative Example 6 261 370 2.31 Average 115 Comparative Example 7 241 373 2.85 Good 123 Comparative Example 8 223 372 3.5 Good 135 Comparative Example 9 261 371 2.22 Average 115 Comparative Example 10 236 370 3.38 Good 121 Comparative Example 11 238 372 3.26 Good 123 Comparative Example 12 237 369 3.17 Good 125 Comparative Example 13 237 372 3.18 Good 123 - It can be learned by comparing the test results of Examples 1-34 with the test results of Comparative Examples 1-13 that, the mechanical strength, thermal conductivity, elongation, and die-casting formability of the aluminum alloy provided in the present disclosure is better than the aluminum alloys beyond the element range provided in the present disclosure. And the aluminum alloy provided in the present disclosure can meet the requirements of the die-casting process.
- The foregoing descriptions are merely embodiments of the present disclosure, but are not intended to limit the present disclosure. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present disclosure shall fall within the protection scope of the present disclosure.
Claims (13)
- An aluminum alloy, in percentage by mass, the aluminum alloy comprising:
8-11% of Si, 2-3% of Cu, 0.7-1.1% of Mg, 0.7-1.5% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.02-0.1% of Ti, 0.01-0.02% of Ga, 0.004-0.02% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements. - The aluminum alloy according to claim 1, in percentage by mass, the aluminum alloy comprising:
9-10.8% of Si, 2.5-2.8% of Cu, 0.7-1.1% of Mg, 0.9-1.3% of Mn, 0.01-0.015% of Sr, 0.01-0.015% of Cr, 0-0.4% of Fe, 0.03-0.1% of Ti, 0.01-0.015% of Ga, 0.004-0.01% of B, 0-2% of Zn, and the balance of Al and less than 0.1% of other elements. - The aluminum alloy according to claim 1 or 2, wherein in the aluminum alloy, a mass ratio of Ti to B is (5-10):1.
- The aluminum alloy according to any one of claims 1 to 3, wherein in the aluminum alloy, a content of Ga in percentage by mass is greater than a content of Sr in percentage by mass.
- The aluminum alloy according to any one of claims 1 to 6, wherein the other elements comprise one or more of Zr, Ni, Ce, Sc, and Er.
- A method for preparing the aluminum alloy according to any one of claims 1 to 7, comprising the following steps:
weighing out various raw materials in required proportions based on proportions of all elements in the aluminum alloy, melting the raw materials in a melting furnace to obtain a molten metal, and subjecting the molten metal to slag removal and refining and degassing, and then casting, to obtain an aluminum alloy ingot. - The method according to claim 8, wherein the slag removal comprises adding a slag remover into the molten metal, the slag remover comprising one or more of an aluminum alloy slag remover agent NF-1 and an aluminum alloy slag-removal agent DSG.
- The method according to claim 8 or 9, wherein the refining is carried out at 700-710°C, and the refining comprises adding a refining agent into the molten metal, the refining agent comprising one or more of hexafluoroethane and an aluminum refining agent ZS-AJ01C.
- The method according to any one of claims 8 to 10, further comprising:
die casting the aluminum alloy ingot for formation. - The method according to claim 11, comprising carrying out artificial aging on the die-cast aluminum alloy.
- The method according to claim 12, wherein the artificial aging is carried out at 100-200°C for 1.5-3 h.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911174477.0A CN112391562B (en) | 2019-11-26 | 2019-11-26 | Aluminum alloy and preparation method thereof |
PCT/CN2020/081455 WO2021103362A1 (en) | 2019-11-26 | 2020-03-26 | Aluminum alloy and preparation method therefor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4067521A1 true EP4067521A1 (en) | 2022-10-05 |
EP4067521A4 EP4067521A4 (en) | 2023-01-04 |
EP4067521B1 EP4067521B1 (en) | 2024-07-31 |
Family
ID=74603736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20894656.6A Active EP4067521B1 (en) | 2019-11-26 | 2020-03-26 | Aluminum alloy and preparation method therefor |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230002864A1 (en) |
EP (1) | EP4067521B1 (en) |
CN (1) | CN112391562B (en) |
WO (1) | WO2021103362A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113774257B (en) * | 2021-08-26 | 2023-06-02 | 山东创新金属科技有限公司 | Short-process production process of aluminum-silicon-magnesium cast aluminum alloy |
JP2023054459A (en) * | 2021-10-04 | 2023-04-14 | トヨタ自動車株式会社 | Aluminum alloy material and method for manufacturing the same |
CN114015914B (en) * | 2021-10-28 | 2023-01-17 | 上海嘉朗实业南通智能科技有限公司 | High-strength high-thermal-conductivity die-casting aluminum alloy material and preparation method thereof |
CN114323849B (en) * | 2021-12-22 | 2023-01-17 | 河北新立中有色金属集团有限公司 | Preparation method of cast aluminum alloy 333Z.1 as-cast spectrum single-point standard sample |
CN116121574B (en) * | 2023-02-08 | 2024-06-28 | 内蒙古蒙泰集团有限公司 | Iron phase reshaping method suitable for aluminum-silicon casting alloy |
CN116987936A (en) * | 2023-09-22 | 2023-11-03 | 广东辉煌金属制品有限公司 | Al-Si series heat treatment-free aluminum alloy, and preparation method and application thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5330448A (en) * | 1976-09-02 | 1978-03-22 | Sumitomo Light Metal Ind | Brazing aluminum alloy clad with pseudooanode effect |
JPS59100249A (en) * | 1982-11-26 | 1984-06-09 | Showa Alum Corp | Aluminum alloy brazing sheet having high strength characteristics at high temperature and sacrificial anticorrosive effect |
CN1250758C (en) * | 2002-10-01 | 2006-04-12 | 西南铝业(集团)有限责任公司 | High silicon cast aluminium spectrum standard sample and its preparation method |
PT1443122E (en) * | 2003-01-23 | 2009-10-20 | Rheinfelden Aluminium Gmbh | Die cast aluminium alloy |
EP3235917B1 (en) * | 2016-04-19 | 2018-08-15 | Rheinfelden Alloys GmbH & Co. KG | Alloy for pressure die casting |
CN106119626A (en) * | 2016-08-30 | 2016-11-16 | 苏州梅克卡斯汽车科技有限公司 | A kind of automotive light weight technology chassis aluminum alloy junction component and preparation method thereof |
CN108531754B (en) * | 2017-03-04 | 2020-04-17 | 河北立中有色金属集团有限公司 | High-conductivity cast aluminum alloy |
CN108624788A (en) * | 2017-03-17 | 2018-10-09 | 姚晓宁 | High-toughness casting aluminum alloy and preparation method thereof |
CN107937768B (en) * | 2017-12-18 | 2019-12-17 | 广州致远新材料科技有限公司 | Extrusion casting aluminum alloy material and preparation method thereof |
-
2019
- 2019-11-26 CN CN201911174477.0A patent/CN112391562B/en active Active
-
2020
- 2020-03-26 EP EP20894656.6A patent/EP4067521B1/en active Active
- 2020-03-26 WO PCT/CN2020/081455 patent/WO2021103362A1/en unknown
- 2020-03-26 US US17/780,493 patent/US20230002864A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN112391562A (en) | 2021-02-23 |
EP4067521B1 (en) | 2024-07-31 |
WO2021103362A1 (en) | 2021-06-03 |
EP4067521A4 (en) | 2023-01-04 |
CN112391562B (en) | 2021-09-21 |
US20230002864A1 (en) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4067521A1 (en) | Aluminum alloy and preparation method therefor | |
US20190390301A1 (en) | Methods and process to improve mechanical properties of cast aluminum alloys at ambient temperature and at elevated temperatures | |
JP4923498B2 (en) | High strength and low specific gravity aluminum alloy | |
CN111041290B (en) | Aluminum alloy and application thereof | |
WO2013144343A1 (en) | Alloy and method of production thereof | |
EP4206342A1 (en) | Aluminum alloy and use thereof | |
KR102337486B1 (en) | Manufacturing method of aluminum die casting products and aluminum die casting products manufactured by the method | |
CN114829643A (en) | Heat-resistant aluminum powder material | |
EP3842558A1 (en) | Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor | |
JP2020158788A (en) | Aluminum alloy | |
KR20200072618A (en) | Aluminum alloy having excellent strength and wear resistance | |
EP3842557A1 (en) | Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor | |
CN110195176A (en) | A kind of high tough pack alloy and preparation method thereof | |
EP3878991A1 (en) | Aluminum alloy for die casting and die cast aluminum alloy material | |
KR101274089B1 (en) | High strength aluminum alloys for die casting | |
EP3862449A1 (en) | Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same | |
JP2004002987A (en) | Aluminum alloy material for forging superior in high-temperature property | |
KR20170141212A (en) | Composite materials with improved mechanical properties at elevated temperatures | |
EP3943629A1 (en) | Aluminum alloy and aluminum alloy die casting material | |
EP4170051A1 (en) | Aluminum alloy, preparation method therefor and application thereof | |
EP4079880B1 (en) | Aluminum alloy and application thereof | |
JP4058398B2 (en) | Aluminum alloy forging with excellent high-temperature fatigue strength | |
KR20070114658A (en) | High-strength wrought aluminum alloy | |
CN113444925B (en) | Aluminum alloy and preparation method thereof | |
KR101269516B1 (en) | Scandium free high strength aluminum alloys for die casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220527 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20221207 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 1/03 20060101ALI20221201BHEP Ipc: C22F 1/043 20060101ALI20221201BHEP Ipc: B22D 21/04 20060101ALI20221201BHEP Ipc: C22C 1/06 20060101ALI20221201BHEP Ipc: C22C 1/02 20060101ALI20221201BHEP Ipc: C22C 21/02 20060101AFI20221201BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240411 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_36088/2024 Effective date: 20240617 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020035079 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |