US20070122614A1 - Surface modified bi-component polymeric fiber - Google Patents
Surface modified bi-component polymeric fiber Download PDFInfo
- Publication number
- US20070122614A1 US20070122614A1 US11/290,145 US29014505A US2007122614A1 US 20070122614 A1 US20070122614 A1 US 20070122614A1 US 29014505 A US29014505 A US 29014505A US 2007122614 A1 US2007122614 A1 US 2007122614A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- filler
- bicomponent fiber
- composite
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 240
- 239000002245 particle Substances 0.000 claims abstract description 163
- 239000000945 filler Substances 0.000 claims abstract description 62
- 239000002131 composite material Substances 0.000 claims abstract description 59
- 229920000642 polymer Polymers 0.000 claims abstract description 59
- 230000003746 surface roughness Effects 0.000 claims abstract description 21
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 78
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 38
- 238000009826 distribution Methods 0.000 claims description 23
- 229920000098 polyolefin Polymers 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- -1 ethylene, propylene, 1-butene Chemical class 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 6
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 claims description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 5
- 235000021355 Stearic acid Nutrition 0.000 claims description 4
- 229920001198 elastomeric copolymer Polymers 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 4
- 239000008117 stearic acid Substances 0.000 claims description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical group CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 claims description 2
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims 2
- 239000004744 fabric Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 23
- 239000012764 mineral filler Substances 0.000 description 18
- 239000000523 sample Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 210000004177 elastic tissue Anatomy 0.000 description 11
- 230000008447 perception Effects 0.000 description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 description 10
- 239000011707 mineral Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 238000009987 spinning Methods 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000004745 nonwoven fabric Substances 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 229920002994 synthetic fiber Polymers 0.000 description 6
- 239000012209 synthetic fiber Substances 0.000 description 6
- 239000013013 elastic material Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 229920002334 Spandex Polymers 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000010410 dusting Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 239000004759 spandex Substances 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000012632 extractable Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920002397 thermoplastic olefin Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- BBKFSSMUWOMYPI-UHFFFAOYSA-N gold palladium Chemical compound [Pd].[Au] BBKFSSMUWOMYPI-UHFFFAOYSA-N 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000003655 tactile properties Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/34—Core-skin structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
- Y10T428/2931—Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
Definitions
- the invention relates generally to fibers and processes to produce the same. More specifically, the invention relates to synthetic fibers having increased surface roughness and an improved hand feel.
- thermoplastics Many forms of fibers and fabrics have been made from thermoplastics.
- the properties of the fibers and fabrics are a function, at least in part, of the polymer(s) from and the processes by which they are made.
- Representative of these various polymers, fiber and fabric types, and processes for making the fibers and fabrics are those described in U.S. Pat. Nos. 4,076,698, 4,644,045, 4,830,907, 4,909,975, 4,578,414, 4,842,922, 4,990,204, 5,112,686, 5,322,728, 4,425,393, 5,068,141 and 6,190,768. the entirety of each is incorporated herein by reference.
- Mineral additives can advantageously be used to affect the properties of the fibers produced from thermoplastics.
- fibers are produced by incorporating silica ranging in size from 10 to 200 millimicrons. The silica is then extracted from the fiber to produce surface irregularities or recesses in the fiber.
- the effective fiber surface area and coefficient of friction can be increased, which can reduce the slick, waxy feel, the glossy appearance, and the perception of color depth of the fiber.
- U.S. Pat. Nos. 5,413,655 and 5,344,862 describe the use of silica as an encapsulated additive in mono-component fibers for nonwoven applications.
- the additive system includes two components: polysiloxane polyether and hydrophobic fumed silica.
- the silica is added in an amount from 3 to 1500 ppm of the thermoplastic polyolefin, and the polyether is added in an amount from 0.1 to 3 weight percent of the thermoplastic polyolefin.
- the claimed benefit is a significant increase of tensile strength of spunbond nonwoven fabrics.
- the present invention relates to a bicomponent fiber having increased surface roughness.
- the bicomponent fiber can comprise a first polymer and a composite.
- the composite can form a layer which forms at least a portion of the fiber's surface.
- the composite can comprise a second polymer and a filler.
- An average particle size of the filler can be greater than a thickness of the layer formed by the composite.
- the present invention also provides a method of forming a bicomponent fiber including the steps of blending a first polymer and a filler to form a composite, and coextruding under thermal bonding conditions a second polymer and the composite to form the bicomponent fiber.
- the second polymer may form the polymeric core
- the composite may form a layer that forms at least a portion of a surface of the fiber.
- An average particle size of the filler may be greater than a thickness of the composite layer.
- the present invention also provides an improvement of a method for manufacturing a bicomponent fiber including coextruding under thermal bonding conditions (a) a first polymer, and (b) a second polymer which forms a layer which forms at least a portion of the fiber's surface.
- the improvement includes blending a filler with the second polymer to form a composite, wherein the average particle size of the filler is greater than a thickness of the layer formed by the composite.
- FIG. 1 is a schematic representation of an embodiment of the core/sheath bicomponent fibers of the present invention.
- FIG. 2 is a schematic representation of an embodiment of the side-by-side bicomponent fibers of the present invention.
- FIG. 3 illustrates simplified particle distribution formats used in developing a model useful in manufacturing embodiments of the bicomponent fibers of the present invention.
- FIGS. 4 through 6 are SEM pictures of embodiments of the bicomponent fibers of the present invention.
- Typical synthetic fibers which are extruded and drawn, have a very smooth surface with very few imperfections, thus creating a slick, oily feel.
- embodiments of the invention relate to modifying fiber surface roughness to improve the hand feeling perception of synthetic fibers.
- the present invention provides a method to impart surface roughness to synthetic fibers, where the surface roughness extending out of the sheath of a bicomponent fiber results in an improved hand feel perception, decreasing the slick, oily feel of the fiber.
- adding mineral fillers such as calcium carbonate (CaCO 3 ) to the polymeric sheath, where the mineral fillers have an average particle size being greater than sheath thickness can provide a “stick-out” effect, providing a rougher surface, and improving the hand feel perception.
- CaCO 3 calcium carbonate
- a “fiber” means a material in which the length to diameter ratio is greater than about 10. Fibers are typically classified according to their diameter.
- a filament fiber is generally defined as having an individual fiber diameter greater than about 15 denier, usually greater than about 30 denier.
- a fine denier fiber generally refers to a fiber having a diameter less than about 15 denier.
- Microdenier fiber is generally defined as fiber having a diameter less than about 100 microns.
- “Filament fiber” or “monofilament fiber” means a continuous strand of material of indefinite (i.e., not predetermined) length, as opposed to a “staple fiber” which is a discontinuous strand of material of definite length (i.e., a strand which has been cut or otherwise divided into segments of a predetermined length).
- Polyolefin polymer means a thermoplastic polymer derived from one or more olefins.
- the polyolefin polymer can bear one or more substituents, e.g., a functional group such as a carbonyl, sulfide, etc.
- substituents e.g., a functional group such as a carbonyl, sulfide, etc.
- olefins include aliphatic, alicyclic and aromatic compounds having one or more double bonds.
- Representative olefins include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, butadiene, cyclohexene, dicyclopentadiene, styrene, toluene, alpha-methylstyrene and the like.
- Temporal-stable and similar terms mean that the fiber or other structure or article comprising the polyolefin polymer of this invention will substantially maintain its elasticity during repeated extensions and retractions after exposure to about 90° C. (about 200° F.), e.g., temperatures such as those experienced during the manufacture, processing (e.g., dying) and/or cleaning of a fabric made from the structure or article.
- Elastic means that a fiber will recover at least about 50 percent of its stretched length after the first pull and after the fourth to 100 percent strain (doubled the length). Elasticity can also be described by the “permanent set” of the fiber. Permanent set is the converse of elasticity. A fiber is stretched to a certain point and subsequently released to the original position before stretch, and then stretched again. The point at which the fiber begins to pull a load is designated as the percent permanent set. “Elastic materials” are also referred to in the art as “elastomers” and “elastomeric”.
- Elastic material (sometimes referred to as an elastic article) includes a polyolefin polymer itself as well as, but not limited to, the polyolefin polymer in the form of a fiber, film, strip, tape, ribbon, sheet, coating, molding and the like.
- the preferred elastic material is fiber.
- the elastic material can be cured or uncured, radiated or unradiated, and/or crosslinked or uncrosslinked.
- “Nonelastic material” means a material, such as a fiber, that is not elastic as defined above.
- substantially crosslinked and similar terms mean that the polyolefin polymer, shaped or in the form of an article, has xylene extractables of less than or equal to 70 weight percent (i.e., greater than or equal to 30 weight percent gel content), preferably less than or equal to 40 weight percent (i.e., greater than or equal to 60 weight percent gel content).
- Xylene extractables (and gel content) are determined in accordance with ASTM D-2765.
- Fibers of the present invention can be cured or crosslinked by various methods known to those skilled in the art.
- “Curable” and “crosslinkable” mean that the polyolefin polymer, shaped or in the form of an article, is not cured or crosslinked and has not been subjected or exposed to treatment that has induced substantial crosslinking (although the polyolefin polymer, shaped or in the form of an article, comprises additive(s) or functionality which will effectuate substantial crosslinking upon subjection or exposure to such treatment).
- curing, irradiation or crosslinking can be accomplished by UV-radiation.
- Homofil fiber means a fiber that has a single polymer region or domain, and that does not have any other distinct polymer regions (as do bicomponent fibers).
- Bicomponent fiber means a fiber that has two or more distinct polymer regions or domains. Bicomponent fibers are also known as conjugated or multicomponent fibers.
- the polymers are usually different from each other although two or more components may comprise the same polymer.
- the polymers are arranged in substantially distinct zones across the cross-section of the bicomponent fiber, and usually extend continuously along the length of the bicomponent fiber.
- the configuration of a bicomponent fiber can be, for example, a sheath/core arrangement (in which one polymer is surrounded by another), a side by side arrangement, a pie arrangement or an “islands-in-the sea” arrangement.
- Bicomponent fibers are further described in U.S. Pat. Nos. 6,225,243, 6,140,442, 5,382,400, 5,336,552 and 5,108,820. These patents are incorporated by reference in their entirety.
- Meltblown fibers are fibers formed by extruding a molten thermoplastic polymer composition through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas streams (e.g. air) which function to attenuate the threads or filaments to reduced diameters.
- the filaments or threads are carried by the high velocity gas streams and deposited on a collecting surface to form a web of randomly dispersed fibers with average diameters generally smaller than 10 microns.
- Meltspun fibers are fibers formed by melting at least one polymer and then drawing the fiber in the melt to a diameter (or other cross-section shape) less than the diameter (or other cross-section shape) of the die.
- spunbond fibers are fibers formed by extruding a molten thermoplastic polymer composition as filaments through a plurality of fine, usually circular, die capillaries of a spinneret. The diameter of the extruded filaments is rapidly reduced, and then the filaments are deposited onto a collecting surface to form a web of randomly dispersed fibers with average diameters generally between about 7 and about 30 microns.
- Nonwoven means a web or fabric having a structure of individual fibers or threads which are randomly interlaid, but not in an identifiable manner as is the case of a knitted fabric.
- the elastic fiber of the present invention can be employed to prepare nonwoven structures as well as composite structures of elastic nonwoven fabric in combination with nonelastic materials.
- Yam means a continuous length of twisted or otherwise entangled filaments which can be used in the manufacture of woven or knitted fabrics and other articles. Yarn can be covered or uncovered. Covered yarn is yarn at least partially wrapped within an outer covering of another fiber or material, typically a natural fiber such as cotton or wool.
- fiber or “fibrous” means a particulate material in which the length to diameter ratio of such material is greater than about 10. Conversely, “nonfiber” or “nonfibrous” means a particulate material in which the length to diameter ratio is about 10 or less.
- a bicomponent fiber may include at least two components, i.e., those having at least two distinct polymeric regimes.
- the first component i.e., “Component A”
- the second component i.e., “Component B”
- Component A can have a higher melting point than Component B.
- Component A can have a melt temperature at least about 20° C., preferably at least 40° C., higher than the temperature at which component B will melt.
- Component A and Component B can have similar melting points.
- component B can have a higher melting point than Component A.
- the structure of the bicomponent fibers will be referred to herein as a core/sheath structure.
- the structure of the fiber can have any one of a number of multi-component configurations, as described above, such as core/sheath, side by side, pie or “islands-in-the sea” arrangements, where Component B forms a layer which forms at least a portion of the surface of the fiber.
- the core may include a thermoplastic polymer, such as a polyolefin.
- the core may include an elastomeric polymer illustrative of which are homogenously branched polyolefins, di-block, tri-block or multi-block elastomeric copolymers such as olefinic copolymers such as styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene/butylene-styrene or styrene-ethylene/propylene-styrene; polyurethanes; polyamides; and polyesters.
- the core may include the olefin block copolymers disclosed in WO2005/090427, herein incorporated by reference.
- the sheath may also be elastomeric, such as a homogeneously branched polyolefin, preferably a homogeneously branched ethylene or propylene.
- a homogeneously branched polyolefin preferably a homogeneously branched ethylene or propylene.
- Mineral fillers may be added to the sheath to form a composite and to enhance desired properties.
- the average particle size of the mineral filler is greater than the sheath thickness, providing a “stick-out” effect.
- the “stick-out” effect can be illustrated for a core/sheath bicomponent fiber as shown in FIG. 1 , where a polymeric core 10 is surrounded by a composite sheath that includes a polymeric matrix 12 and mineral filler 14.
- FIG. 2 illustrates the “stick-out” effect for a side-by-side bicomponent fiber.
- Other forms of bicomponent fibers will have similar characteristics, where the composite Component B will form at least a portion of the surface of the fiber so as to provide a “stick-out” effect, generating surface roughness on the fiber.
- the mineral filler may make up from about 1 to about 25 percent by weight of the sheath. In other embodiments, the mineral filler may make up from about 2 to about 20 percent; from about 3 to about 15 percent; or, from about 5 to about 10 percent by weight of the sheath.
- the sheath may also include other additives, ranging from about 0 to about 5 weight percent of the sheath, including plasticizers, compatibilizers, and other additives common in the art.
- Fillers useful in the present invention to enhance coefficient of friction characteristics of the fiber or to produce a “stick-out” effect include, but are not limited to, untreated and treated silica, alumina, silicon dioxide, talc, calcium carbonate, and clay.
- the preferred mineral filler is a calcium carbonate (CaCO 3 ).
- the mineral filler may be a compatibilized mineral, where the mineral is coated with a compound to enhance the dispersibility and compatibility of the mineral in the polymer matrix.
- the mineral may be calcium carbonate, where the calcium carbonate is coated with stearic acid to enhance the dispersibility and compatibility of the calcium carbonate in the polymer matrix.
- the average particle size of the mineral filler used in the sheath composite may be selected based upon the desired sheath thickness, and may typically range from about 0.1 to about 20 microns. For example, for a fiber having a sheath thickness of 1 micron, mineral filler having an average particle size greater than about 1 micron can produce the desired “stick-out” effect.
- a ratio of the average particle size of the mineral filler to the sheath thickness may be equal to or greater than about 1.0. In other embodiments, the ratio may be greater than about 1 but less than about 2; in other embodiments, the ratio may be greater than about 1.2 but less than about 1.8.
- the mineral filler may have a particle size distribution, where some particles are smaller than the average particle size and other particles are larger than the average particle size.
- the particle size distribution may affect the “stick-out” effect realized; for example, many particles smaller than then sheath thickness may be encapsulated within the sheath, such as particles 16 in FIGS. 1 and 2 . Particles having a size well in excess of the sheath thickness may result in adhesion problems, where the particles do not remain in the composite matrix. A larger particle size distribution may also lead to a greater spacing between particles sticking out from the sheath (as described further below).
- a preferred particle size distribution may be less than about 5. In other embodiments, a preferred particle size distribution may be less than about 3; less than about 2.5, less than about 2.0, or less than about 1.5 in other embodiments.
- Fiber diameter can be measured and reported in a variety of fashions. Generally, fiber diameter is measured in denier per filament. Denier is a textile term which is defined as the grams of the fiber per 9000 meters of that fiber's length. Monofilament generally refers to an extruded strand having a denier per filament greater than 15, usually greater than 30. Fine denier fiber generally refers to fiber having a denier of about 15 or less. Microdenier (or microfiber) generally refers to fiber having a diameter not greater than about 100 micrometers. For the fibers of this invention, the diameter may be widely varied, with little impact upon the elasticity of the fiber.
- the fiber denier may be adjusted to suit the capabilities of the finished article and as such, would preferably be from about 0.5 to about 30 denier/filament for melt blown fiber; from about 1 to about 30 denier/filament for spunbond fiber; and, from about 1 to about 20,000 denier/filament for continuous wound filament.
- the sheath thickness and mineral filler average particle size may be selected based upon the desired filament diameter or denier.
- the bicomponent fibers of the present invention can have a core that comprises from 80 to 99 percent by weight of the fiber. In other embodiments, the core can be from 85 to 95 percent by weight of the fiber.
- the bicomponent fibers of the present invention can have a sheath that comprises from about 1 to about 20 percent by weight of the fiber. In other embodiments, the sheath comprises from about 5 to about 15 percent by weight of the fiber.
- the shape of the fiber is not limited.
- typical fibers have a circular cross-sectional shape, but sometimes fibers have different shapes, such as a trilobal shape, or a flat (i.e., “ribbon” like) shape.
- the bicomponent fibers disclosed herein are not limited by the shape of the fiber.
- the bicomponent fiber of the present invention may be used with other fibers such as PET, nylon, cotton, KEVLAR® (available from E.I. Du Pont de Nemours Co.), etc. to make elastic fabrics.
- other fibers such as PET, nylon, cotton, KEVLAR® (available from E.I. Du Pont de Nemours Co.), etc.
- the heat (and moisture) resistance of certain bicomponent fibers can enable polyester-PET fibers to be dyed at ordinary PET dyeing conditions.
- Other commonly used elastic fibers, especially spandex e.g., LYCRA®, a spandex available from E. I. Du Pont de Nemours Co.
- spandex e.g., LYCRA®, a spandex available from E. I. Du Pont de Nemours Co.
- Nonwoven fabrics include woven, nonwoven and knit fabrics.
- Nonwoven fabrics can be made by various methods, e.g., spunlaced (or hydrodynamically entangled) fabrics as disclosed in U.S. Pat. Nos. 3,485,706 and 4,939,016, carding and thermally bonding staple fibers; spunbonding continuous fibers in one continuous operation; or by melt blowing fibers into fabric and subsequently calendering or thermally bonding the resultant web.
- These various nonwoven fabric manufacturing techniques are well known to those skilled in the art and the scope of the present invention is not limited to any particular method.
- Other structures made from such fibers are also included within the scope of the invention, including, for example, blends of the fibers of the present invention with other fibers (e.g., PET, cotton, etc.).
- Fabricated articles which may be made using the bicomponent fibers and fabrics of this invention include elastic composite articles (e.g., diapers) that have elastic portions.
- elastic portions are typically constructed into diaper waist band portions to prevent the diaper from falling and leg band portions to prevent leakage (as shown in U.S. Pat. No. 4,381,781, which is herein incorporated by reference in its entirety).
- the elastic portions promote better form fitting and/or fastening systems for a good combination of comfort and reliability.
- the fibers and fabrics of the present invention may also produce structures that combine elasticity with breathability.
- the inventive elastic fibers, fabrics and/or films may be incorporated into the structures disclosed in U.S. Pat. No. 6,176,952, which is herein incorporated by reference in its entirety.
- inventive elastic fibers and fabrics can also be used in various structures as described in U.S. Pat. No. 2,957,512 (the '512 Patent), which is herein incorporated by reference in its entirety.
- layer 50 of the structure described in the '512 Patent i.e., the elastic component
- the inventive elastic fibers and fabrics especially where flat, pleated, creped, crimped, etc., nonelastic materials are made into elastic structures.
- Attachment of the inventive elastic fibers and/or fabric to nonelastic fibers, fabrics or other structures may be performed by melt bonding or with adhesives.
- Gathered or shirted elastic structures may be produced from the inventive elastic fibers and/or fabrics and nonelastic components by pleating the non-elastic component (as described in the '512 Patent) prior to attachment, pre-stretching the elastic component prior to attachment, or heat shrinking the elastic component after attachment.
- inventive fibers may also be used in a spunlaced (or hydrodynamically entangled) process to make novel structures.
- U.S. Pat. No. 4,801,482 which is herein incorporated by reference in its entirety, discloses an elastic sheet (12) which can now be made with the novel elastic fibers and/or fabric described herein.
- Continuous elastic filaments as described herein may also be used in woven applications where high resilience is desired.
- Elastic panels may also be made from the inventive elastic fibers and fabrics disclosed herein, and may be used, for example, as members 18, 20, 14, and/or 26 of U.S.
- the elastic materials of the present invention may also be rendered pervious or “breathable” by any method well known in the art including by aperturing, slitting, microperforating, mixing with fibers or foams, or the like and combinations thereof.
- the bicomponent fibers of the present invention may include a sheath that includes a polymeric material and a filler producing a “stick-out” effect.
- a simple model describing the fiber surface roughness in terms of the ratio of particle size to sheath thickness and the particle spacing distance in sheath is presented below to allow a better understanding of the present invention.
- the hand-feel perception of a PP nonwoven fabric can be related to the surface roughness of the fabrics at the microscopic level, as in the Kawabata measurement system.
- the surface roughness may be defined as the departure of the surface shape from some ideal or prescribed form.
- the roughness could be defined in terms of the ratio of the true overall area of the projected nominal area, or as the slope of a profile taken along some prescribed line, or as the distance between high points and low points on the surface.
- Two terms are used herein to describe the roughness of a fiber surface: the ratio of average particle size to sheath thickness and the particle spacing in the sheath. As will be shown below, the roughness is directly correlated to the physical properties of the fiber and filler.
- the sheath is assumed to be a two-phase filled composite system, while the core is assumed to be a homogeneous polymeric resin, such as homogeneous polypropylene (hPP).
- hPP homogeneous polypropylene
- the density of PP is assumed as 0.90, the density of calcium carbonate is 2.7, and the volume percentage of CaCO 3 to be used is 2 percent. From equation (2), the filling level of this calcium carbonate filled hPP composite is equivalent to 5.77 percent by weight.
- Assumptions used for the prediction of thickness include: (1) the cross section of a bicomponent fiber consists of two perfect concentric circles; and, (2) the composite sheath and homogeneous core sections of the bi-component fiber form as two distinctive phases without intrusion from one to another.
- the requisite formulas for estimating the thickness of the composite sheath are:
- dpf is denier per filament, or grams of a filament in 9000 meters; k is a parameter relating the sheath to the core; h is the thickness of the sheath in microns; D c is the diameter of the core section in microns; and, D f is the diameter of the bicomponent fiber in microns.
- Examples of estimated values of sheath thickness of a calcium carbonate filled bicomponent hPP fiber based on known filler content by weight percent (w f ) are shown in Table 1.
- TABLE 1 Estimated sheath thickness for a calcium carbonate filled PP sheath based on w f .
- the formulation for calculating the thickness of composite sheath is modified based upon the relationship between volume percentage and weight percentage as given above.
- the filler content in the sheath can be expressed either as a weight percent or as a volume percent, thus the formulas for estimating sheath thickness can be developed accordingly. It should be noted that the formulas only approximate sheath thickness as the volume of the “stick-out” portion of particles was included as if submerged in the polymer matrix. As a result, the actual sheath thicknesses should be less than the predicted thickness. However, because the volume percent of the filler in the sheath is typically low (15% or less), the error involved is small and can be neglected in most instances.
- the fiber surface roughness represented by the filler particle “stick-out” effect may be partially described in terms of the ratio of the filler particle size to the sheath thickness. If this ratio is less than 1, the particle would be submerged in the polymeric sheath matrix and less effective in creating surface unevenness. On other hand, if the ratio exceeds 2, more than one-half of the volume of a mineral particle could stick out of the sheath and be exposed to air, possibly causing the sheath to lose its holding power to the imbedded particle. It should be noted, however, that this approximation does not consider mechanical and adhesion effects that, when present, may allow the ratio to be significantly higher.
- the ratio of the filler particle size to sheath thickness may range from about 1 to about 2. In another embodiment, the ratio may range from about 1.2 to about 1.8. In yet other embodiments, the ratio may be greater than about 2.
- the averaged value of 0.86 ⁇ ⁇ 1/3 d can be used.
- the particle size variation in the thickness direction can be effectively eliminated by assuming that the particle size is in the same order of magnitude of the thickness of the sheath, resulting in the model simplifying to a planar or 2 dimensional particle size distribution.
- Four possible cases are considered: particle in cubic and spherical shapes, and particle distribution in square and equilateral triangle arrangements.
- the thickness of sheath is in same order of average particle size of CaCO 3 fillers, i.e., if the average particle size is 1 ⁇ m, the thickness of the sheath is also 1 ⁇ m.
- the distribution of fillers in the sheath can be considered two-dimensional.
- filler particles are uniformly distributed in the polymer matrix of the sheath.
- all particles are evenly distributed in the sheath, either formed as squares or equilateral triangles.
- the particle sizes are very narrow distributed, thus only the average particle size is used for modeling the spacing distance.
- Particle spacing can then be estimated based upon the formatting of the particles in space. Particles can be in a square format or an equilateral triangle format, as illustrated in the left and right sides of FIG. 3 , respectively. The results also depend upon whether the particles are assumed to be spheres or cubes (affecting the characteristic length of the particle).
- the resulting formulas to calculate particle spacing are given in Table 2, where L is the particle spacing, d is the particle size (characteristic length: the side length for a cubic particle or the diameter for a spherical particle), and ⁇ av is the ratio of particle volume percentage to the polymer matrix volume percentage. TABLE 2 Filler particle spacing estimates.
- particle spacing is directly proportional to the particle size.
- the particle spacing distance is determined by the characteristic dimension of the particles for each of the above formulas.
- the ratio of particle spacing to the particle characteristic dimension (L/d) is listed in Table 3 for systems having 3 to 15 weight percent filler. It should be pointed out that the maximum filling level of particles in the polymer matrix will also depend on the mixing capacity of the extruder. TABLE 3 L/d Ratio for 3 to 15 weight percent filler Particles in Cubes Particles in Spheres Wt. vol.
- the particles of the filler are modeled as small cubes or spheres.
- the distribution of particles in the sheath is treated as in arrangement of square or equilateral triangle. In real life, the particles are most likely random packed, and the shapes of the particles are more or less irregular.
- One way to treat this variation is to use an averaged value for the packing arrangement.
- the particle diameter is also replaced by an aggregate diameter (as described in Wang et al.).
- a mean particle spacing distance was adopted for the model by averaging the four values of particle spacing distances shown in Table 3 (alternatively, L/d ⁇ (0.8/ ⁇ av ) 1/2 ).
- the required ratio of particle spacing to particle size, L/d may vary based upon particle size.
- the L/d ratio may range from 1 to 10.
- the ratio may be chosen to be from 3 to 6 to generate the desired roughness.
- the ratio may be chosen to be from 2 to 4. It is thus seen from Table 3 that when a filler loading level is less than 5 percent by weight, the particle spacing may be too large to be effective for improving the fiber's tactile properties.
- the actual particle size is typically not the same for all filling particles, as fillers are generally available having an average particle size and a particle size distribution, from narrow to broad.
- the above calculations relating particle size to the sheath thickness can be determined by using averaged (or mean) particle size, noting that particle size distribution will affect the actual spacing and fiber surface roughness. For mineral fillers with narrow particle size distribution (less than about 2.0), the effect of the distribution on particle spacing can be neglected. For fillers with a broader particle size distribution (greater than about 3.0), the broader particle size distribution would lead to a greater distance between the particles.
- the surface roughness of a fiber with a narrow particle size distribution will be different than that with a broader particle size distribution because the fiber incorporating the broad size distribution has more particles that are smaller than the average particle size.
- these smaller particles could possibly be submerged in the sheath, potentially resulting in a decreased “stick-out” effect.
- a broad size distribution also has a greater number of particles larger than the average particle size than does a narrow distribution.
- the effect of having a greater number of particles larger than the average particle size might be negated by the increased particle spacing for particles that do in fact create a “stick-out” effect and the increased likelihood of potential adhesion problems.
- the model can be used for estimating the ratio of average particle size to the sheath thickness and the particle spacing distance in the sheath, the model should be used qualitatively rather than quantitatively as many approximations were used to derive the formulas.
- the general principles for using mineral filler for changing fiber surface morphology are, however, clearly represented by the model, and the model can provide initial design guidance.
- a spinning trial was conducted by producing bicomponent fibers, with the sheath being a calcium carbonate filled polymer micro-composite.
- the core was Polypropylene 5D49, a commercially available homopolymer available from the Dow Chemical Company (38 MFR; 0.90 g/cm 3 density).
- the sheath was 5D49 compounded with various grades of calcium carbonate, as shown in Table 4. These fibers were compared to a 5D49 homofil fiber (2 or 4 dpf, as appropriate) as a control (comparative) sample.
- TUFFGARD® a precipitated calcium carbonate having a 0.4 micron average particle size and a top cut at about 2 microns, commercially available from Specialty Minerals Inc., Adams, Mass.
- SUPER-PFLEX® 200 a precipitated calcium carbonate having a 0.7 micron average particle size and a top cut at about 4 microns, surface coated with 2% stearic acid to promote dispersion in the polymer, also commercially available from Specialty Minerals Inc., Adams, Mass.
- FILMLINK® 400 a ground calcium carbonate having a 1.2 micron average particle size and a top cut at about 8 microns, surface coated with 0.8 to 1.2% stearic acid, commercially available from Imerys, Roswell, Ga.
- Compounding was performed in two steps to ensure dispersion of calcium carbonate in the hPP.
- the fiber samples were prepared with a fiber spinning line consisting of two 1′′ single screw extruders, two Zenith gear pumps, a 144-hole spinneret, a fiber quenching cabinet, and a wind-up station.
- the capillary hole of the spinneret was 0.65 mm in diameter with a length to diameter ratio of 4:1.
- the melt temperature was setup at 240° C.
- the throughput was 0.4 grams per hole per minute.
- the spinning speed was set at 1000 m/min for producing 4 dpf (denier per filament) fiber and 2000 m/min for 2 dpf fiber, respectively. Fibers were collected in spools for subsequent property testing. The fiber spinning ran very smoothly, and no fiber breaks were detected in producing any of the samples.
- FIGS. 4-6 SEM images of the surface of three representative surface modified bicomponent fibers, Samples 4, 8, and 10, are displayed in FIGS. 4-6 , respectively. All three fibers are 2 dpf (17.7 micron in diameter) and contain 10% sheath by volume.
- the SEM image of fiber Sample 4 indicates that the calcium carbonate particles in this sample were smaller and more concentrated when compared to the SEM images of the other two fiber samples ( FIGS. 5 and 6 ).
- This observation is in accord with the predictions from the model—because the grade of calcium carbonate, TUFFGARD®, has a smaller particle size (0.4 micron), and the ratio of particle size to the sheath thickness is less than 1, the model predicts a less significant “stick-out” effect, and a closer particle spacing distance. Further, the differences in topography were not discemable between the 5% (Sample 2. SEM image not presented) and 10% samples, with the images of the fiber surfaces appearing very similar.
- the image of Sample 8 indicates that this fiber has the most overall surface roughness.
- the fiber not only has calcium carbonate “bumps”, but also has craters or depressions formed around the calcium carbonate particles, which were not evident in FIG. 4 .
- SUPER-PFLEX® 100 has a particle size of 0.7 micron. Thus the ratio of size to sheath thickness is greater than 1, and the improvement in “stick-out” effect over Sample 4 is anticipated from model.
- the particle size of Sample 10 appears the largest and the least concentrated on the fiber. There was some evidence of depressions or craters, but less severe than Sample 8.
- the calcium carbonate, FILMLINK® 400, in this fiber has the largest particle size (1.2 micron), and the ratio of particle size to sheath thickness is greater than 1.
- the SEM images appear to validate the model, as the “stick-out” effect appears to be the strongest of the three fiber samples, and the spacing distance also appears to be the largest.
- craters or depressions on the fiber surface is not fully understood.
- One hypothesis is that craters or depressions may be generated when some large calcium carbonate particles are sloughed due to centrifugal force or other causes encountered during the spinning process.
- a loss of some calcium carbonate particles during fiber spinning does not hinder the creation of surface roughness, as craters left by the discarded particles do provide surface roughness.
- the discarding of particles during the spinning process may cause a concern of dusting.
- dusting should not be an issue, as there are suction fans underneath the forming web where the fibers are hitting the web and forming the pre-form nonwovens.
- improved ventilation conditions around the fabrication line may be needed; however, as the filling content of calcium carbonate in the fiber is low, about 1% of fiber by weight, any dusting that might occur should not be severe and could be easily overcome.
- the 2 dpf fiber samples including the hPP control, were knitted on a Lawson-Hemphill sock knitter.
- the wales and courses per inch are a measure of the knit density.
- the wales go in the machine direction of the fabric, the courses in the cross direction.
- the fabric density is defined as the product of wales and courses.
- the wpi and cpi of the six samples were measured as 26 and 32, respectively. The density of each sample was 832.
- the Hand feel Result The hand feel perception of the knitted socks made from the 2 dpf fibers are given in Table 5. Samples 2 and 4, with a particle to sheath thickness ratio less than 1, did not generate a significant improvement in hand feel. There is no significant “stick-out” effect, as predicted by the model and observed in the SEM image of Sample 4 in FIG. 4 . Samples 8 and 10 did have an improved hand feel perception as compared to the control sample, which is made of hPP (5D49) mono fibers without the surface modifications.
- bicomponent fibers having a micro-composite surface component can improve the hand feel perception of synthetic fibers.
- mineral fillers having a particle size larger than the thickness of the micro-composite polymer matrix By incorporating mineral fillers having a particle size larger than the thickness of the micro-composite polymer matrix, a “stick-out” effect can be obtained, resulting in surface roughness and an improved feel.
- the bicomponent fibers having an improved feel are useful in end products such as carpets, synthetic hair, feminine hygiene products, diapers, athletic sportswear, apparel, upholstery, bandages and sterilizable medical apparel and instrument wraps
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Multicomponent Fibers (AREA)
- Knitting Of Fabric (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Woven Fabrics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/290,145 US20070122614A1 (en) | 2005-11-30 | 2005-11-30 | Surface modified bi-component polymeric fiber |
TW095143723A TW200724739A (en) | 2005-11-30 | 2006-11-27 | A surface modified bi-component polymeric fiber |
KR1020087015656A KR101035480B1 (ko) | 2005-11-30 | 2006-11-29 | 표면 변형된 이성분 중합체 섬유 |
CN200680044733.9A CN101316955B (zh) | 2005-11-30 | 2006-11-29 | 表面改性的双组分聚合物纤维 |
JP2008543430A JP2009518547A (ja) | 2005-11-30 | 2006-11-29 | 表面修飾された二成分ポリマー繊維 |
RU2008126250/04A RU2392362C2 (ru) | 2005-11-30 | 2006-11-29 | Двухкомпонентное полимерное волокно с модифицированной поверхностью |
EP06838602.8A EP1966418B1 (en) | 2005-11-30 | 2006-11-29 | Surface modified bi-component polymeric fiber |
PCT/US2006/045725 WO2007064728A1 (en) | 2005-11-30 | 2006-11-29 | Surface modified bi-component polymeric fiber |
JP2013168983A JP2014012919A (ja) | 2005-11-30 | 2013-08-15 | 表面修飾された二成分ポリマー繊維 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/290,145 US20070122614A1 (en) | 2005-11-30 | 2005-11-30 | Surface modified bi-component polymeric fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070122614A1 true US20070122614A1 (en) | 2007-05-31 |
Family
ID=37769418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/290,145 Abandoned US20070122614A1 (en) | 2005-11-30 | 2005-11-30 | Surface modified bi-component polymeric fiber |
Country Status (8)
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080289156A1 (en) * | 2007-05-25 | 2008-11-27 | Mitchell Lewis | Zipper construction |
US20080314402A1 (en) * | 2006-01-30 | 2008-12-25 | Yutaka Shirakashi | Artificial Hair, Wig Using the Same, and Method of Making Artificial Hair |
US7635745B2 (en) | 2006-01-31 | 2009-12-22 | Eastman Chemical Company | Sulfopolyester recovery |
US20100035045A1 (en) * | 2008-01-21 | 2010-02-11 | Imerys Pigments, Inc. | Fibers comprising at least one filler and processes for their production |
US20100184348A1 (en) * | 2006-12-20 | 2010-07-22 | Imerys Pigments, Inc. | Spunlaid Fibers Comprising Coated Calcium Carbonate, Processes For Their Production, and Nonwoven Products |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110052913A1 (en) * | 2008-01-21 | 2011-03-03 | Mcamish Larry | Monofilament fibers comprising at least one filler, and processes for their production |
US7902094B2 (en) | 2003-06-19 | 2011-03-08 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110059287A1 (en) * | 2008-01-21 | 2011-03-10 | Imerys Pigments, Inc. | Fibers comprising at least one filler, processes for their production, and uses thereof |
US8178199B2 (en) | 2003-06-19 | 2012-05-15 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
EP2826895A1 (de) * | 2013-07-15 | 2015-01-21 | Ewald Dörken Ag | Bikomponentenfaser zur Herstellung von Spinnvliesen |
US20150044448A1 (en) * | 2010-05-26 | 2015-02-12 | Invista North America S.A.R.L. | Bicomponent spandex with reduced friction |
US20150191853A1 (en) * | 2006-04-28 | 2015-07-09 | Fitesa Germany Gmbh | Polymer Fiber and Nonwoven |
CN105269913A (zh) * | 2014-07-08 | 2016-01-27 | 扬州金凯利体育用品有限公司 | 一种增强型复合pp跳床布及制造方法 |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US9303357B2 (en) | 2013-04-19 | 2016-04-05 | Eastman Chemical Company | Paper and nonwoven articles comprising synthetic microfiber binders |
US9447531B2 (en) | 2007-06-03 | 2016-09-20 | Imerys Pigments, Inc. | Process for producing nonwoven fabric |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9845555B1 (en) | 2015-08-11 | 2017-12-19 | Parkdale, Incorporated | Stretch spun yarn and yarn spinning method |
US20180002851A1 (en) * | 2016-03-10 | 2018-01-04 | Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik | Weldable spunbond fabric, method of making same, and packaging made therefrom |
CN108085780A (zh) * | 2017-12-15 | 2018-05-29 | 浙江华峰氨纶股份有限公司 | 一种高均一性易粘合氨纶纤维及其制备方法 |
US20190119831A1 (en) * | 2016-04-29 | 2019-04-25 | Beaulieu International Group Nv | Bi-component staple or short-cut trilobal fibres and their uses |
CN111960768A (zh) * | 2020-08-24 | 2020-11-20 | 杭州五友建材有限公司 | 一种环保型抗裂保温混凝土 |
WO2021005182A1 (en) | 2019-07-11 | 2021-01-14 | Omya International Ag | Nonwoven fabric and process for the production thereof |
CN112442754A (zh) * | 2020-11-09 | 2021-03-05 | 华峰化学股份有限公司 | 一种氨纶纤维及其制备方法和应用 |
US20220195645A1 (en) * | 2020-12-21 | 2022-06-23 | O&M Halyard, Inc. | Higher Strength Calcium Carbonate Filled Fiber Spunbond and SMS Nonwoven Material |
WO2022152867A1 (en) * | 2021-01-15 | 2022-07-21 | Indorama Ventures Public Company Ltd | Biologically degradable multi-component polymer fibres |
US11610829B2 (en) * | 2018-02-14 | 2023-03-21 | Sekisui Polymatech Co., Ltd. | Heat-conductive sheet |
EP4558672A1 (en) | 2022-08-22 | 2025-05-28 | Berry Global, Inc. | Small-sized calcium carbonate particles in nonwovens and films |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006042635A1 (de) * | 2006-08-31 | 2008-03-06 | Twd Fibres Gmbh | Textilprodukt und Verfahren zu seiner Herstellung |
JP5317276B2 (ja) * | 2009-03-23 | 2013-10-16 | 株式会社セラフト | 複合モノフィラメント及びその製造方法 |
JP2011042908A (ja) * | 2009-08-24 | 2011-03-03 | Teijin Fibers Ltd | 消臭性芯鞘型複合繊維およびその製造方法 |
KR101439582B1 (ko) * | 2010-09-30 | 2014-09-12 | 코오롱인더스트리 주식회사 | 심초형 필라멘트 및 그 제조방법, 이를 이용하여 제조한 스펀본드 부직포 및 그 제조방법 |
US20140187114A1 (en) * | 2012-12-28 | 2014-07-03 | Dow Brasil S.A. | Elastic nonwovens with improved haptics and mechanical properties |
EP3006609A1 (en) * | 2014-10-09 | 2016-04-13 | Construction Research & Technology GmbH | Stretched polyolefin fibers |
CN104452306B (zh) * | 2014-12-10 | 2017-01-11 | 东莞市雄林新材料科技股份有限公司 | 一种tpu复合材料及其制备方法 |
JP6455534B2 (ja) * | 2017-02-02 | 2019-01-23 | トヨタ紡織株式会社 | 熱可塑性樹脂繊維及びその製造方法並びに布帛 |
RU2635128C1 (ru) * | 2017-03-14 | 2017-11-09 | Акционерное общество "ГОЗНАК" | Бикомпонентное извитое окрашенное полимерное волокно для защиты бумаги от подделки |
SK8509Y1 (sk) * | 2018-04-06 | 2019-08-05 | Bjv Res S R O | Syntetické vlákno s prímesou prírodného materiálu a spôsob jeho výroby |
WO2020054348A1 (ja) * | 2018-09-10 | 2020-03-19 | 三洋化成工業株式会社 | ポリウレタン樹脂組成物 |
CN114846073A (zh) * | 2019-12-03 | 2022-08-02 | 菲伯维森斯有限公司 | 纤维、用该纤维形成的复合材料以及用于形成该复合材料的方法 |
CN112941700B (zh) * | 2021-01-29 | 2022-10-18 | 浙江鹏越纺织有限公司 | 一种透气吸湿面料的生产工艺 |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2957512A (en) * | 1953-12-24 | 1960-10-25 | American Viscose Corp | Method of producing elastic composite sheet material |
US3156242A (en) * | 1962-03-29 | 1964-11-10 | Johnson & Johnson | Flexible absorbent sheet |
US3485706A (en) * | 1968-01-18 | 1969-12-23 | Du Pont | Textile-like patterned nonwoven fabrics and their production |
US3881489A (en) * | 1973-08-20 | 1975-05-06 | Procter & Gamble | Breathable, liquid inpervious backsheet for absorptive devices |
US3989867A (en) * | 1973-02-16 | 1976-11-02 | The Procter & Gamble Company | Absorptive devices having porous backsheet |
US3998988A (en) * | 1970-12-24 | 1976-12-21 | Teijin Limited | Conjugate fiber, fibrous material and fibrous article made therefrom and process for production thereof |
US4076698A (en) * | 1956-03-01 | 1978-02-28 | E. I. Du Pont De Nemours And Company | Hydrocarbon interpolymer compositions |
US4254182A (en) * | 1978-03-08 | 1981-03-03 | Kuraray Co., Ltd. | Polyester synthetic fiber containing particulate material and a method for producing an irregularly uneven random surface having recesses and projections on said fiber by chemically extracting said particulate material |
US4381781A (en) * | 1981-01-05 | 1983-05-03 | Kimberly-Clark Corporation | Flexible waist diaper |
US4411854A (en) * | 1980-12-23 | 1983-10-25 | Stamicarbon B.V. | Process for the production of filaments with high tensile strength and modulus |
US4425393A (en) * | 1979-04-26 | 1984-01-10 | Brunswick Corporation | Low modulus, small diameter fibers and products made therefrom |
US4457973A (en) * | 1980-06-06 | 1984-07-03 | Kanebo Synthetic Fibers Ltd. | Conductive composite filaments and methods for producing said composite filaments |
US4578414A (en) * | 1984-02-17 | 1986-03-25 | The Dow Chemical Company | Wettable olefin polymer fibers |
US4610905A (en) * | 1982-11-24 | 1986-09-09 | Bluecher Hubert | Yarn having specific properties |
US4644045A (en) * | 1986-03-14 | 1987-02-17 | Crown Zellerbach Corporation | Method of making spunbonded webs from linear low density polyethylene |
US4801482A (en) * | 1986-10-15 | 1989-01-31 | Kimberly-Clark Corporation | Elastic nonwoven pad |
US4830907A (en) * | 1984-11-16 | 1989-05-16 | The Dow Chemical Company | Fine denier fibers of olefin polymers |
US4842922A (en) * | 1987-10-27 | 1989-06-27 | The Dow Chemical Company | Polyethylene fibers and spunbonded fabric or web |
US4909975A (en) * | 1984-02-17 | 1990-03-20 | The Dow Chemical Company | Fine denier fibers of olefin polymers |
US4939016A (en) * | 1988-03-18 | 1990-07-03 | Kimberly-Clark Corporation | Hydraulically entangled nonwoven elastomeric web and method of forming the same |
US4940464A (en) * | 1987-12-16 | 1990-07-10 | Kimberly-Clark Corporation | Disposable incontinence garment or training pant |
US4990204A (en) * | 1987-10-27 | 1991-02-05 | The Dow Chemical Company | Improved spunbonding of linear polyethylenes |
US5037416A (en) * | 1989-03-09 | 1991-08-06 | The Procter & Gamble Company | Disposable absorbent article having elastically extensible topsheet |
US5068141A (en) * | 1986-05-31 | 1991-11-26 | Unitika Ltd. | Polyolefin-type nonwoven fabric and method of producing the same |
US5085654A (en) * | 1982-11-15 | 1992-02-04 | The Procter & Gamble Company | Disposable garment with breathable leg cuffs |
US5108820A (en) * | 1989-04-25 | 1992-04-28 | Mitsui Petrochemical Industries, Ltd. | Soft nonwoven fabric of filaments |
US5112686A (en) * | 1987-10-27 | 1992-05-12 | The Dow Chemical Company | Linear ethylene polymer staple fibers |
US5322728A (en) * | 1992-11-24 | 1994-06-21 | Exxon Chemical Patents, Inc. | Fibers of polyolefin polymers |
US5336552A (en) * | 1992-08-26 | 1994-08-09 | Kimberly-Clark Corporation | Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer |
US5344862A (en) * | 1991-10-25 | 1994-09-06 | Kimberly-Clark Corporation | Thermoplastic compositions and nonwoven webs prepared therefrom |
US5382400A (en) * | 1992-08-21 | 1995-01-17 | Kimberly-Clark Corporation | Nonwoven multicomponent polymeric fabric and method for making same |
US6140442A (en) * | 1991-10-15 | 2000-10-31 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US6176952B1 (en) * | 1998-05-01 | 2001-01-23 | The Dow Chemical Company | Method of making a breathable, meltblown nonwoven |
US6190768B1 (en) * | 1998-03-11 | 2001-02-20 | The Dow Chemical Company | Fibers made from α-olefin/vinyl or vinylidene aromatic and/or hindered cycloaliphatic or aliphatic vinyl or vinylidene interpolymers |
US6225243B1 (en) * | 1998-08-03 | 2001-05-01 | Bba Nonwovens Simpsonville, Inc. | Elastic nonwoven fabric prepared from bi-component filaments |
US20020148060A1 (en) * | 1999-03-12 | 2002-10-17 | Needham Michael Christopher | Glitter containing filaments for use in brushes |
US6500540B1 (en) * | 1998-05-18 | 2002-12-31 | The Dow Chemical Company | Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same |
US6797377B1 (en) * | 1998-06-30 | 2004-09-28 | Kimberly-Clark Worldwide, Inc. | Cloth-like nonwoven webs made from thermoplastic polymers |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3998998A (en) * | 1975-01-13 | 1976-12-21 | Phillips Petroleum Company | Novel copolymers of dicyano-substituted 1,3-dienes |
JPS60252712A (ja) * | 1984-05-28 | 1985-12-13 | Teijin Ltd | 保温材用繊維 |
JPS60249995A (ja) * | 1984-05-28 | 1985-12-10 | 帝人株式会社 | 保温材 |
JPS60249994A (ja) * | 1984-05-24 | 1985-12-10 | 帝人株式会社 | 詰綿構造体 |
EP0162564A3 (en) * | 1984-05-24 | 1988-08-03 | Teijin Limited | Fiber for insulating material, non-woven fabric, wadding structure and net-like fiber sheet |
JPH02127511A (ja) * | 1988-10-28 | 1990-05-16 | Kanebo Ltd | 遠赤外線放射アクリル系繊維及びその製造方法 |
JPH02169718A (ja) * | 1988-12-15 | 1990-06-29 | Mitsubishi Rayon Co Ltd | ポリオレフイン系熱融着性繊維及びその不織布 |
US6194532B1 (en) * | 1991-10-15 | 2001-02-27 | The Dow Chemical Company | Elastic fibers |
JPH05321028A (ja) * | 1992-05-15 | 1993-12-07 | Teijin Ltd | 耐磨耗性に優れた遠赤外線放射性複合繊維 |
JPH07328421A (ja) * | 1994-06-06 | 1995-12-19 | Nippon Shokubai Co Ltd | 無機化合物微粒子、その製造方法およびその用途 |
JPH08188923A (ja) * | 1994-12-27 | 1996-07-23 | Kanebo Ltd | 表面に凸部を有する芯鞘型複合繊維 |
TW324031B (en) * | 1996-02-12 | 1998-01-01 | Danaklon As | Fiber or filament suitable for producing non-woven fabric, a non-woven fabric and process of producing non-woven fabric the invention relates to a fiber or filament suitable for producing non-woven fabric, in which the fiber or filament comprises a polymer and 0.01-20 wt% of inorganic particles. |
WO1997049853A1 (fr) * | 1996-06-26 | 1997-12-31 | Chisso Corporation | Non-tisse a base de fibres longues et article absorbant constitue desdites fibres |
JPH1088459A (ja) * | 1996-09-11 | 1998-04-07 | Chisso Corp | 長繊維不織布 |
JPH10140420A (ja) * | 1996-11-07 | 1998-05-26 | Japan Exlan Co Ltd | 無機微粒子含有繊維とその製造方法 |
JP3821256B2 (ja) * | 1996-11-22 | 2006-09-13 | チッソ株式会社 | 長繊維不織布、その製造方法、及び吸収性物品 |
JP2002219761A (ja) * | 2001-01-25 | 2002-08-06 | Shinshu Ceramics:Kk | 光触媒加工物 |
EP1412566B1 (en) * | 2001-07-17 | 2006-09-27 | Dow Global Technologies Inc. | Elastic bicomponent and biconstituent fibers, and methods of making cellulosic structures from the same |
JP2003041438A (ja) * | 2001-07-24 | 2003-02-13 | Masudaya:Kk | 複合繊維及びその製造方法並びにこの複合繊維を用いてなる繊維製品 |
US20050100733A1 (en) * | 2003-08-15 | 2005-05-12 | Foss Manufacturing Co., Inc. | Synthetic fibers modified with PTFE to improve performance |
-
2005
- 2005-11-30 US US11/290,145 patent/US20070122614A1/en not_active Abandoned
-
2006
- 2006-11-27 TW TW095143723A patent/TW200724739A/zh unknown
- 2006-11-29 JP JP2008543430A patent/JP2009518547A/ja not_active Withdrawn
- 2006-11-29 KR KR1020087015656A patent/KR101035480B1/ko active Active
- 2006-11-29 CN CN200680044733.9A patent/CN101316955B/zh active Active
- 2006-11-29 EP EP06838602.8A patent/EP1966418B1/en active Active
- 2006-11-29 RU RU2008126250/04A patent/RU2392362C2/ru not_active IP Right Cessation
- 2006-11-29 WO PCT/US2006/045725 patent/WO2007064728A1/en active Application Filing
-
2013
- 2013-08-15 JP JP2013168983A patent/JP2014012919A/ja active Pending
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2957512A (en) * | 1953-12-24 | 1960-10-25 | American Viscose Corp | Method of producing elastic composite sheet material |
US4076698B1 (enrdf_load_stackoverflow) * | 1956-03-01 | 1993-04-27 | Du Pont | |
US4076698A (en) * | 1956-03-01 | 1978-02-28 | E. I. Du Pont De Nemours And Company | Hydrocarbon interpolymer compositions |
US3156242A (en) * | 1962-03-29 | 1964-11-10 | Johnson & Johnson | Flexible absorbent sheet |
US3485706A (en) * | 1968-01-18 | 1969-12-23 | Du Pont | Textile-like patterned nonwoven fabrics and their production |
US3998988A (en) * | 1970-12-24 | 1976-12-21 | Teijin Limited | Conjugate fiber, fibrous material and fibrous article made therefrom and process for production thereof |
US3989867A (en) * | 1973-02-16 | 1976-11-02 | The Procter & Gamble Company | Absorptive devices having porous backsheet |
US3881489A (en) * | 1973-08-20 | 1975-05-06 | Procter & Gamble | Breathable, liquid inpervious backsheet for absorptive devices |
US4254182A (en) * | 1978-03-08 | 1981-03-03 | Kuraray Co., Ltd. | Polyester synthetic fiber containing particulate material and a method for producing an irregularly uneven random surface having recesses and projections on said fiber by chemically extracting said particulate material |
US4425393A (en) * | 1979-04-26 | 1984-01-10 | Brunswick Corporation | Low modulus, small diameter fibers and products made therefrom |
US4457973B1 (en) * | 1980-06-06 | 1995-05-09 | Kanebo Synthetic Fibert Ltd | Conductive composite filaments and methods for producing said composite filaments |
US4457973A (en) * | 1980-06-06 | 1984-07-03 | Kanebo Synthetic Fibers Ltd. | Conductive composite filaments and methods for producing said composite filaments |
US4411854A (en) * | 1980-12-23 | 1983-10-25 | Stamicarbon B.V. | Process for the production of filaments with high tensile strength and modulus |
US4381781A (en) * | 1981-01-05 | 1983-05-03 | Kimberly-Clark Corporation | Flexible waist diaper |
US5085654A (en) * | 1982-11-15 | 1992-02-04 | The Procter & Gamble Company | Disposable garment with breathable leg cuffs |
US4610905A (en) * | 1982-11-24 | 1986-09-09 | Bluecher Hubert | Yarn having specific properties |
US4578414A (en) * | 1984-02-17 | 1986-03-25 | The Dow Chemical Company | Wettable olefin polymer fibers |
US4909975A (en) * | 1984-02-17 | 1990-03-20 | The Dow Chemical Company | Fine denier fibers of olefin polymers |
US4830907A (en) * | 1984-11-16 | 1989-05-16 | The Dow Chemical Company | Fine denier fibers of olefin polymers |
US4644045A (en) * | 1986-03-14 | 1987-02-17 | Crown Zellerbach Corporation | Method of making spunbonded webs from linear low density polyethylene |
US5068141A (en) * | 1986-05-31 | 1991-11-26 | Unitika Ltd. | Polyolefin-type nonwoven fabric and method of producing the same |
US4801482A (en) * | 1986-10-15 | 1989-01-31 | Kimberly-Clark Corporation | Elastic nonwoven pad |
US4842922A (en) * | 1987-10-27 | 1989-06-27 | The Dow Chemical Company | Polyethylene fibers and spunbonded fabric or web |
US4990204A (en) * | 1987-10-27 | 1991-02-05 | The Dow Chemical Company | Improved spunbonding of linear polyethylenes |
US5112686A (en) * | 1987-10-27 | 1992-05-12 | The Dow Chemical Company | Linear ethylene polymer staple fibers |
US4940464A (en) * | 1987-12-16 | 1990-07-10 | Kimberly-Clark Corporation | Disposable incontinence garment or training pant |
US4939016A (en) * | 1988-03-18 | 1990-07-03 | Kimberly-Clark Corporation | Hydraulically entangled nonwoven elastomeric web and method of forming the same |
US5037416A (en) * | 1989-03-09 | 1991-08-06 | The Procter & Gamble Company | Disposable absorbent article having elastically extensible topsheet |
US5108820A (en) * | 1989-04-25 | 1992-04-28 | Mitsui Petrochemical Industries, Ltd. | Soft nonwoven fabric of filaments |
US6140442A (en) * | 1991-10-15 | 2000-10-31 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US5344862A (en) * | 1991-10-25 | 1994-09-06 | Kimberly-Clark Corporation | Thermoplastic compositions and nonwoven webs prepared therefrom |
US5413655A (en) * | 1991-10-25 | 1995-05-09 | Kimberly-Clark Corporation | Thermoplastic compositions and nonwoven webs prepared therefrom |
US5382400A (en) * | 1992-08-21 | 1995-01-17 | Kimberly-Clark Corporation | Nonwoven multicomponent polymeric fabric and method for making same |
US5336552A (en) * | 1992-08-26 | 1994-08-09 | Kimberly-Clark Corporation | Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer |
US5322728A (en) * | 1992-11-24 | 1994-06-21 | Exxon Chemical Patents, Inc. | Fibers of polyolefin polymers |
US6190768B1 (en) * | 1998-03-11 | 2001-02-20 | The Dow Chemical Company | Fibers made from α-olefin/vinyl or vinylidene aromatic and/or hindered cycloaliphatic or aliphatic vinyl or vinylidene interpolymers |
US6176952B1 (en) * | 1998-05-01 | 2001-01-23 | The Dow Chemical Company | Method of making a breathable, meltblown nonwoven |
US6500540B1 (en) * | 1998-05-18 | 2002-12-31 | The Dow Chemical Company | Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same |
US6797377B1 (en) * | 1998-06-30 | 2004-09-28 | Kimberly-Clark Worldwide, Inc. | Cloth-like nonwoven webs made from thermoplastic polymers |
US6225243B1 (en) * | 1998-08-03 | 2001-05-01 | Bba Nonwovens Simpsonville, Inc. | Elastic nonwoven fabric prepared from bi-component filaments |
US20020148060A1 (en) * | 1999-03-12 | 2002-10-17 | Needham Michael Christopher | Glitter containing filaments for use in brushes |
Non-Patent Citations (2)
Title |
---|
Definition of "cubical" www.webster-dictionary.org/definition/cubical, no date. * |
JP 08188923, English Translation, May 2012. * |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277706B2 (en) | 2003-06-19 | 2012-10-02 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8314041B2 (en) | 2003-06-19 | 2012-11-20 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8444895B2 (en) | 2003-06-19 | 2013-05-21 | Eastman Chemical Company | Processes for making water-dispersible and multicomponent fibers from sulfopolyesters |
US8444896B2 (en) | 2003-06-19 | 2013-05-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8435908B2 (en) | 2003-06-19 | 2013-05-07 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8398907B2 (en) | 2003-06-19 | 2013-03-19 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US7902094B2 (en) | 2003-06-19 | 2011-03-08 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8691130B2 (en) | 2003-06-19 | 2014-04-08 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8623247B2 (en) | 2003-06-19 | 2014-01-07 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8148278B2 (en) | 2003-06-19 | 2012-04-03 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8158244B2 (en) | 2003-06-19 | 2012-04-17 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8163385B2 (en) | 2003-06-19 | 2012-04-24 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8388877B2 (en) | 2003-06-19 | 2013-03-05 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8216953B2 (en) | 2003-06-19 | 2012-07-10 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8513147B2 (en) | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8227362B2 (en) | 2003-06-19 | 2012-07-24 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8236713B2 (en) | 2003-06-19 | 2012-08-07 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8247335B2 (en) | 2003-06-19 | 2012-08-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8257628B2 (en) | 2003-06-19 | 2012-09-04 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8262958B2 (en) | 2003-06-19 | 2012-09-11 | Eastman Chemical Company | Process of making woven articles comprising water-dispersible multicomponent fibers |
US8273451B2 (en) | 2003-06-19 | 2012-09-25 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8178199B2 (en) | 2003-06-19 | 2012-05-15 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8557374B2 (en) | 2003-06-19 | 2013-10-15 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20080314402A1 (en) * | 2006-01-30 | 2008-12-25 | Yutaka Shirakashi | Artificial Hair, Wig Using the Same, and Method of Making Artificial Hair |
US7635745B2 (en) | 2006-01-31 | 2009-12-22 | Eastman Chemical Company | Sulfopolyester recovery |
US10087555B2 (en) * | 2006-04-28 | 2018-10-02 | Fitesa Germany Gmbh | Polymer fiber and nonwoven |
US20150191853A1 (en) * | 2006-04-28 | 2015-07-09 | Fitesa Germany Gmbh | Polymer Fiber and Nonwoven |
US20100184348A1 (en) * | 2006-12-20 | 2010-07-22 | Imerys Pigments, Inc. | Spunlaid Fibers Comprising Coated Calcium Carbonate, Processes For Their Production, and Nonwoven Products |
US20080289156A1 (en) * | 2007-05-25 | 2008-11-27 | Mitchell Lewis | Zipper construction |
US9447531B2 (en) | 2007-06-03 | 2016-09-20 | Imerys Pigments, Inc. | Process for producing nonwoven fabric |
US20110052913A1 (en) * | 2008-01-21 | 2011-03-03 | Mcamish Larry | Monofilament fibers comprising at least one filler, and processes for their production |
US20100035045A1 (en) * | 2008-01-21 | 2010-02-11 | Imerys Pigments, Inc. | Fibers comprising at least one filler and processes for their production |
US20110059287A1 (en) * | 2008-01-21 | 2011-03-10 | Imerys Pigments, Inc. | Fibers comprising at least one filler, processes for their production, and uses thereof |
EP2245077B1 (en) | 2008-01-21 | 2018-06-06 | Imerys Pigments, Inc. | Monofilament fibers comprising ground calcium carbonate |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
WO2011028934A1 (en) | 2009-09-04 | 2011-03-10 | Imerys Pigments, Inc. | Fibers comprising at least one filler, processes for their production, and uses thereof |
EP2977492B1 (en) | 2009-09-04 | 2018-11-07 | Imerys Pigments, Inc. | Carded web |
EP2977492A1 (en) * | 2009-09-04 | 2016-01-27 | Imerys Pigments, Inc. | Fibers comprising at least one filler, processes for their production, and uses thereof |
EP2473656B1 (en) | 2009-09-04 | 2015-05-13 | Imerys Pigments, Inc. | Carpet |
CN102575386A (zh) * | 2009-09-04 | 2012-07-11 | 英默里斯颜料公司 | 包含至少一种填料的纤维、它们的制造方法及其用途 |
CN105369381A (zh) * | 2009-09-04 | 2016-03-02 | 英默里斯颜料公司 | 包含至少一种填料的纤维、它们的制造方法及其用途 |
US10907279B2 (en) * | 2010-05-26 | 2021-02-02 | The Lycra Company Llc | Bicomponent spandex with reduced friction |
US20150044448A1 (en) * | 2010-05-26 | 2015-02-12 | Invista North America S.A.R.L. | Bicomponent spandex with reduced friction |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8906200B2 (en) | 2012-01-31 | 2014-12-09 | Eastman Chemical Company | Processes to produce short cut microfibers |
US9175440B2 (en) | 2012-01-31 | 2015-11-03 | Eastman Chemical Company | Processes to produce short-cut microfibers |
US8840758B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8871052B2 (en) | 2012-01-31 | 2014-10-28 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8882963B2 (en) | 2012-01-31 | 2014-11-11 | Eastman Chemical Company | Processes to produce short cut microfibers |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
US9303357B2 (en) | 2013-04-19 | 2016-04-05 | Eastman Chemical Company | Paper and nonwoven articles comprising synthetic microfiber binders |
EP2826895A1 (de) * | 2013-07-15 | 2015-01-21 | Ewald Dörken Ag | Bikomponentenfaser zur Herstellung von Spinnvliesen |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
CN105269913A (zh) * | 2014-07-08 | 2016-01-27 | 扬州金凯利体育用品有限公司 | 一种增强型复合pp跳床布及制造方法 |
US9845555B1 (en) | 2015-08-11 | 2017-12-19 | Parkdale, Incorporated | Stretch spun yarn and yarn spinning method |
US20180002851A1 (en) * | 2016-03-10 | 2018-01-04 | Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik | Weldable spunbond fabric, method of making same, and packaging made therefrom |
US20210054550A1 (en) * | 2016-03-10 | 2021-02-25 | Claudio Cinquemani | Method of making a spun-bonded nonwoven for packaging |
US20190119831A1 (en) * | 2016-04-29 | 2019-04-25 | Beaulieu International Group Nv | Bi-component staple or short-cut trilobal fibres and their uses |
CN108085780A (zh) * | 2017-12-15 | 2018-05-29 | 浙江华峰氨纶股份有限公司 | 一种高均一性易粘合氨纶纤维及其制备方法 |
US11610829B2 (en) * | 2018-02-14 | 2023-03-21 | Sekisui Polymatech Co., Ltd. | Heat-conductive sheet |
WO2021005182A1 (en) | 2019-07-11 | 2021-01-14 | Omya International Ag | Nonwoven fabric and process for the production thereof |
US12060666B2 (en) | 2019-07-11 | 2024-08-13 | Omya International Ag | Nonwoven fabric and process for the production thereof |
CN111960768A (zh) * | 2020-08-24 | 2020-11-20 | 杭州五友建材有限公司 | 一种环保型抗裂保温混凝土 |
CN112442754A (zh) * | 2020-11-09 | 2021-03-05 | 华峰化学股份有限公司 | 一种氨纶纤维及其制备方法和应用 |
US20220195645A1 (en) * | 2020-12-21 | 2022-06-23 | O&M Halyard, Inc. | Higher Strength Calcium Carbonate Filled Fiber Spunbond and SMS Nonwoven Material |
US12168843B2 (en) * | 2020-12-21 | 2024-12-17 | O&M Halyard, Inc. | Higher strength calcium carbonate filled fiber spunbond and SMS nonwoven material |
WO2022152867A1 (en) * | 2021-01-15 | 2022-07-21 | Indorama Ventures Public Company Ltd | Biologically degradable multi-component polymer fibres |
EP4558672A1 (en) | 2022-08-22 | 2025-05-28 | Berry Global, Inc. | Small-sized calcium carbonate particles in nonwovens and films |
Also Published As
Publication number | Publication date |
---|---|
KR101035480B1 (ko) | 2011-05-18 |
CN101316955B (zh) | 2011-11-16 |
RU2392362C2 (ru) | 2010-06-20 |
CN101316955A (zh) | 2008-12-03 |
JP2014012919A (ja) | 2014-01-23 |
EP1966418A1 (en) | 2008-09-10 |
WO2007064728A1 (en) | 2007-06-07 |
RU2008126250A (ru) | 2010-01-10 |
TW200724739A (en) | 2007-07-01 |
EP1966418B1 (en) | 2017-02-01 |
JP2009518547A (ja) | 2009-05-07 |
KR20080071618A (ko) | 2008-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1966418B1 (en) | Surface modified bi-component polymeric fiber | |
US5244724A (en) | Self-bonded fibrous nonwoven webs having improved softness | |
AU2014396148B2 (en) | Hollow porous fibers | |
US7927698B2 (en) | Fibers and nonwovens comprising polyethylene blends and mixtures | |
JP3678652B2 (ja) | 2成分フィラメントから製造される弾性不織布 | |
US20090111347A1 (en) | Soft and extensible polypropylene based spunbond nonwovens | |
EP1641853A4 (en) | FIBERS OBTAINED FROM BLOCK COPOLYMER | |
US20030181119A1 (en) | Nonwoven- fabric laminate and use thereof | |
KR20220073790A (ko) | 필라멘트 조성물 | |
JP2002069820A (ja) | スパンボンド不織布および吸収性物品 | |
AU2016368453B2 (en) | Method for forming porous fibers | |
US20170362757A1 (en) | Fiber Bundle | |
AU2016368586A1 (en) | Multi-stage drawing technique for forming porous fibers | |
US11667776B2 (en) | Fiber with odor control component | |
MX2008007007A (en) | Surface modified bi-component polymeric fiber | |
JP2002069753A (ja) | 芯鞘型ポリオレフィン複合繊維およびそれからなる不織布 | |
AU2015353887B2 (en) | Annealed porous polyolefin material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DOW GLOBAL TECHNOLOGIES INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PENG, HONG;PEPPER, RANDY E.;KNICKERBOCKER, EDWARD;REEL/FRAME:017687/0143;SIGNING DATES FROM 20060127 TO 20060201 Owner name: DCOMCO, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN DUN, JOZEF J.;REEL/FRAME:017683/0615 Effective date: 20060130 Owner name: DOW CHEMICAL COMPANY, THE, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DCOMCO;REEL/FRAME:017690/0956 Effective date: 20060216 Owner name: DOW GLOBAL TECHNOLOGIES, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW CHEMICAL COMPANY, THE;REEL/FRAME:017683/0605 Effective date: 20060217 |
|
AS | Assignment |
Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:DOW GLOBAL TECHNOLOGIES INC.;REEL/FRAME:026047/0372 Effective date: 20101231 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |