US20070069276A1 - Multi-use memory cell and memory array - Google Patents
Multi-use memory cell and memory array Download PDFInfo
- Publication number
- US20070069276A1 US20070069276A1 US11/496,985 US49698506A US2007069276A1 US 20070069276 A1 US20070069276 A1 US 20070069276A1 US 49698506 A US49698506 A US 49698506A US 2007069276 A1 US2007069276 A1 US 2007069276A1
- Authority
- US
- United States
- Prior art keywords
- memory cell
- memory
- state
- resistivity
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015654 memory Effects 0.000 title claims abstract description 555
- 239000000463 material Substances 0.000 claims abstract description 86
- 239000004065 semiconductor Substances 0.000 claims abstract description 81
- 230000002441 reversible effect Effects 0.000 claims abstract description 55
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 229920005591 polysilicon Polymers 0.000 claims description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 69
- 238000000034 method Methods 0.000 description 35
- 229910052710 silicon Inorganic materials 0.000 description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- 230000007704 transition Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002019 doping agent Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000003989 dielectric material Substances 0.000 description 12
- 229910021332 silicide Inorganic materials 0.000 description 11
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 9
- 238000003491 array Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000005387 chalcogenide glass Substances 0.000 description 3
- 150000004770 chalcogenides Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910000927 Ge alloy Inorganic materials 0.000 description 2
- 229910018281 LaSrMnO3 Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- -1 tungsten nitride Chemical class 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000013080 microcrystalline material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5692—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5685—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/003—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/005—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor comprising combined but independently operative RAM-ROM, RAM-PROM, RAM-EPROM cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/564—Miscellaneous aspects
- G11C2211/5641—Multilevel memory having cells with different number of storage levels
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/564—Miscellaneous aspects
- G11C2211/5646—Multilevel memory with flag bits, e.g. for showing that a "first page" of a word line is programmed but not a "second page"
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/30—Resistive cell, memory material aspects
- G11C2213/32—Material having simple binary metal oxide structure
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/71—Three dimensional array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/76—Array using an access device for each cell which being not a transistor and not a diode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/884—Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
Definitions
- Nonvolatile memory arrays maintain their data even when power to the device is turned off.
- each memory cell is formed in an initial unprogrammed state, and can be converted to a programmed state. This change is permanent, and such cells are not erasable. In other types of memories, the memory cells are erasable, and can be rewritten many times.
- Cells may also vary in the number of data states each cell can achieve.
- a data state may be stored by altering some characteristic of the cell which can be detected, such as current flowing through the cell under a given applied voltage or the threshold voltage of a transistor within the cell.
- a data state is a distinct value of the cell, such as a data ‘ 0 ’ or a data ‘ 1 ’.
- Floating gate and SONOS memory cells operate by storing charge, where the presence, absence or amount of stored charge changes a transistor threshold voltage. These memory cells are three-terminal devices which are relatively difficult to fabricate and operate at the very small dimensions required for competitiveness in modern integrated circuits.
- Chalcogenides are difficult to work with and can present challenges in most semiconductor production facilities.
- a substantial advantage would be provided by a nonvolatile memory array having erasable or multi-state memory cells formed using conventional semiconductor materials in structures that are readily scaled to small size.
- a memory cell is operable as a one-time programmable memory cell or a rewritable memory cell.
- the memory cell comprises a memory element comprising a semiconductor material configurable to one of at least three resistivity states, wherein a first resistivity state is used to represent a data state of the memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- a memory array with such memory cells is also disclosed.
- a memory cell comprising a switchable resistance material, wherein the memory cell is operable in a first mode in which the memory cell is programmed with a forward bias and a second mode in which the memory cell is programmed with a reverse bias.
- Other embodiments are disclosed, and each of the embodiments can be used alone or together in combination.
- FIG. 1 is a circuit diagram illustrating the need for electrical isolation between memory cells in a memory array.
- FIG. 2 is a perspective view of a multi-state or rewriteable memory cell formed according to a preferred embodiment of the present invention.
- FIG. 3 is a perspective view of a portion of a memory level comprising the memory cells of FIG. 2 .
- FIG. 4 is a graph showing change in read current for a memory cell of the present invention as voltage in reverse bias across the diode increases.
- FIG. 5 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the R state, and from the R state to the S state.
- FIG. 6 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the S state, and from the S state to the R state.
- FIG. 7 is a probability plot showing memory cells transformed from the V state to the R state, from the R state to the S state, and from the S state to the P state.
- FIG. 8 is a perspective view of a vertically oriented p-i-n diode that may be used in embodiments of the present invention.
- FIG. 9 is a probability plot showing memory cells transformed from the V state to the P state, and from the P state to the M state.
- FIG. 10 is a perspective view of a multi-state or rewriteable memory cell formed according to a preferred embodiment of the present invention.
- FIG. 11 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the R state, and from the R state to the S state, then repeatably between the S state and the R state.
- FIG. 12 is a circuit diagram showing a biasing scheme to bias the S cell in forward bias.
- FIG. 13 is a circuit diagram showing one biasing scheme to bias the S cell in reverse bias.
- FIG. 14 illustrates iterative read-verify-write cycles to move a cell into a data state.
- FIGS. 15 a - 15 c are cross-sectional views illustrating stages in formation of a memory level formed according to an embodiment of the present invention.
- FIG. 16 is cross-sectional view illustrating a diode and resistive switching element that may be used an alternative embodiment of the present invention.
- FIG. 17 is an illustration of a mixed-use memory array of a preferred embodiment in which a first set of memory cells operate as one-time programmable memory cells and a second set of memory cells operate as rewritable memory cells.
- FIG. 18 is an illustration of a mixed-use memory array of a preferred embodiment in which multiple sets of one-time programmable and rewritable memory cells are interleaved.
- FIG. 19 is an illustration of a circuit of a preferred embodiment showing a set of memory cells that are programmed with forward bias.
- FIG. 20 is an illustration of a circuit of a preferred embodiment showing a set of memory cells that are programmed with reverse bias.
- FIG. 21 is an illustration of a memory array of a preferred embodiment in which a first portion of the memory array stores two data states per memory cell and a second portion of the memory array stores four data states per memory cell.
- FIG. 22 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by flag bits on each physical page.
- FIG. 23 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by a translation table stored in the memory array.
- FIG. 24 is an illustration of a memory array of a preferred embodiment in which a two-state-per-cell one-time programmable portion, a two-state-per-cell rewritable portion, and a four-state-per-cell one-time programmable portion are indicated by flag bits on each physical page.
- FIG. 25 is a flow chart of a preferred embodiment for using chip flags and an off-chip bad block mechanism.
- trimmable resistors have been used as elements in integrated circuits.
- Leakage current can be greatly reduced by forming each memory cell as a two-terminal device including a diode.
- a diode has a non-linear I-V characteristic, allowing very little current flow below a turn-on voltage, and substantially higher current flow above the turn-on voltage.
- a diode also acts as one-way valves passing current more easily in one direction than the other.
- a memory element formed of doped semiconductor material for example the semiconductor diode of the '549 application, can achieve three, four, or more stable resistivity states.
- semiconductor material can be converted from an initial high-resistivity state to a lower-resistivity state; then, upon application of an appropriate electrical pulse, can be returned to a higher-resistivity state.
- These embodiments can be employed independently or combined to form a memory cell which can have two or more data states, and can be one-time-programmable or rewriteable.
- a diode between conductors in the memory cell allows its formation in a highly dense cross-point memory array.
- a polycrystalline, amorphous, or microcrystalline semiconductor memory element either is formed in series with a diode or, more preferably, is formed as the diode itself.
- transition from a higher- to a lower-resistivity state will be called a set transition, affected by a set current, a set voltage, or a set pulse; while the reverse transition, from a lower- to a higher-resistivity state, will be called a reset transition, affected by a reset current, a reset voltage, or a reset pulse.
- a polycrystalline semiconductor diode is paired with a dielectric rupture antifuse, though in other embodiments the antifuse may be omitted.
- FIG. 2 illustrates a memory cell formed according to a preferred embodiment of the present invention.
- a bottom conductor 12 is formed of a conductive material, for example tungsten, and extends in a first direction. Barrier and adhesion layers may be included in bottom conductor 12 .
- Polycrystalline semiconductor diode 2 has a bottom heavily doped n-type region 4 ; an intrinsic region 6 , which is not intentionally doped; and a top heavily doped region 8 , though the orientation of this diode may be reversed. Such a diode, regardless of its orientation, will be referred to as a p-i-n diode.
- Dielectric rupture antifuse 14 is included in some embodiments.
- Top conductor 16 may be formed in the same manner and of the same materials as bottom conductor 12 , and extends in a second direction different from the first direction.
- Polycrystalline semiconductor diode 2 is vertically disposed between bottom conductor 12 and top conductor 16 .
- Polycrystalline semiconductor diode 2 is formed in a high-resistivity state.
- This memory cell can be formed above a suitable substrate, for example above a monocrystalline silicon wafer.
- FIG. 3 shows a portion of a memory level of such devices formed in a cross-point array, where diodes 2 are disposed between bottom conductors 12 and top conductors 16 (antifuses 14 are omitted in this view.)
- Multiple memory levels can be stacked over a substrate to form a highly dense monolithic three dimensional memory array.
- an intrinsic region may in fact include a low concentration of p-type or n-type dopants. Dopants may diffuse into the intrinsic region from adjacent regions, or may be present in the deposition chamber during deposition due to contamination from an earlier deposition. It will further be understood that deposited intrinsic semiconductor material (such as silicon) may include defects which cause it to behave as if slightly n-doped. Use of the term “intrinsic” to describe silicon, germanium, a silicon-germanium alloy, or some other semiconductor material is not meant to imply that this region contains no dopants whatsoever, nor that such a region is perfectly electrically neutral.
- the resistivity of doped polycrystalline or microcrystalline semiconductor material can be changed between stable states by applying appropriate electrical pulses. It has been found that in preferred embodiments, set transitions are advantageously performed with the diode under forward bias, while reset transitions are most readily achieved and controlled with the diode under reverse bias. In some instances, however, set transitions may be achieved with the diode under reverse bias, while reset transitions are achieved with the diode under forward bias.
- Switching under reverse bias shows a distinct behavior.
- a polysilicon p-i-n diode like the one shown in FIG. 2 is subjected to a relatively large switching pulse under reverse bias.
- a smaller read pulse for example 2 volts
- the read current is measured.
- the subsequent read current at two volts changes as shown in FIG. 4 . It will be seen that initially as the reverse voltage and current of the switching pulse are increased, the read current, when a read voltage is applied after each switching pulse, increases; i.e.
- the initial transition of the semiconductor material (silicon, in this case) is in the set direction toward lower resistivity.
- the switching pulse reaches a certain reverse bias voltage, at point K in FIG. 4 , about ⁇ 14.6 volts in this example, the read current abruptly begins to drop as reset is achieved and resistivity of the silicon increases.
- the switching voltage at which the set trend is reversed and the silicon of the diode begins to reset varies, depending on, for example, the resistivity state of the silicon making up the diode when application of the reverse bias switching pulse is begun. It will be seen, then, that by selecting appropriate voltages, either set or reset of the semiconductor material making up the diode can be achieved with the diode under reverse bias.
- Distinct data states of the memory cell of the present invention correspond to resistivity states of polycrystalline or microcrystalline semiconductor material making up the diode, which are distinguished by detecting current flow through the memory cell (between top conductor 16 and bottom conductor 12 ) when a read voltage is applied.
- the current flowing between any one distinct data state and any different distinct data state is at least a factor of two, to allow the difference between the states to be readily detectable.
- the memory cell can be used as a one-time programmable cell or a rewriteable memory cell, and may have two, three, four, or more distinct data states.
- the cell can be converted from any of its data states to any other of its data states in any order, and under either forward or reverse bias.
- a diode formed of polycrystalline semiconductor material and a dielectric rupture antifuse are arranged in series disposed between a top and bottom conductor.
- the two-terminal device is used as a one-time-programmable multilevel cell, in preferred embodiments having three or four distinct data states.
- Diode 2 is preferably formed of a polycrystalline or microcrystalline semiconductor material, for example silicon, germanium, or an alloy of silicon and/or germanium. Diode 2 is most preferably polysilicon. In this example, bottom heavily doped region 4 is n-type and top heavily doped region 8 is p-type, though the polarity of the diode may be reversed.
- the memory cell comprises a portion of the top conductor, a portion of the bottom conductor, and a diode, the diode disposed between the conductors.
- FIG. 5 is a probability plot showing current of a memory cells in various states.
- a read voltage for example 2 volts
- the read current flowing between top conductor 16 and bottom conductor 12 is preferably in the range of nanoamps, for example less than about about 5 nanoamps.
- Area V on the graph of FIG. 5 corresponds to a first data state of the memory cell. For some memory cells in the array, this cell will not be subjected to set or reset pulses, and this state will be read as a data state of the memory cell. This first data state will be referred to as the V state.
- a first electrical pulse preferably with diode 2 under forward bias, is applied between top conductor 16 and bottom conductor 12 .
- This pulse is, for example, between about 8 volts and about 12 volts, for example about 10 volts.
- the current is, for example, between about 80 and about 200 microamps.
- the pulse width is preferably between about 100 and about 500 nsec.
- This first electrical pulse ruptures dielectric rupture antifuse 14 and switches the semiconductor material of diode 2 from a first resistivity state to a second resistivity state, the second state lower resistivity than the first.
- This second data state will be referred to as the P state, and this transition is labeled “V ⁇ P” in FIG. 5 .
- the current flowing between top conductor 16 and bottom conductor 12 at a read voltage of 2 volts is about 10 microamps or more.
- the resistivity of the semiconductor material making up diode 2 is reduced by a factor of about 1000 to about 2000. In other embodiments the change in resistivity will be less, but between any data state and any other data state will be at least a factor of two, preferably at least a factor of three or five, and more typically a factor of 100 or more. Some memory cells in the array will be read at this data state, and will not be subjected to additional set or reset pulses. This second data state will be referred to as the P state.
- a second electrical pulse preferably with diode 2 under reverse bias, is applied between top conductor 16 and bottom conductor 12 .
- This pulse is, for example, between about ⁇ 8 volts and about ⁇ 14 volts, preferably about between about ⁇ 10 and about ⁇ 12 volts, preferably about ⁇ 11 volts.
- the current is, for example, between about 80 and about 200 microamps.
- the pulse width is, for example, between about 100 nanosec and about 10 microseconds; preferably between about 100 nsec and about 1 microsecond, most preferably between about 200 and about 800 nsec.
- This second electrical pulse switches the semiconductor material of diode 2 from the second resistivity state to a third resistivity state, the third resistivity state higher resistivity than the second.
- the current flowing between top conductor 16 and bottom conductor 12 at a read voltage of 2 volts is between about 10 and about 500 nanoamps, preferably between about 100 and about 500 nanoamps. Some memory cells in the array will be read at this data state, and will not be subjected to additional set or reset pulses.
- This third data state will be referred to as the R state, and this transition is labeled “ ⁇ R” in FIG. 5 .
- a third electrical pulse preferably with diode 2 under forward bias, is applied between top conductor 16 and bottom conductor 12 .
- This pulse is, for example, between about 8 volts and about 12 volts, for example about 10 volts, with current between about 5 and about 20 microamps.
- This third electrical pulse switches the semiconductor material of diode 2 from the third resistivity state to a fourth resistivity state, the fourth resistivity state lower resistivity than the third, and preferably higher resistivity than the second resistivity state.
- the current flowing between top conductor 16 and bottom conductor 12 at a read voltage of 2 volts is between about 1.5 and about 4.5 microamps.
- the difference in current at the read voltage is preferably at least a factor of two between any two adjacent data states.
- the read current of any cell in data state R is preferably at least two times that of any cell in data state V
- the read current of any cell in data state S is preferably at least two times that of any cell in data state R
- the read current of a cell in data state P is preferably at least two times that of any cell in data state S.
- the read current at data state R may be two times the read current at data state V
- the read current at data state S may be two times the read current at data state R
- the read current at data state P may be two times the read current at data state S.
- the difference could be considerably larger; for example, if the highest-current V state cell can have a read current of 5 nanoamps and the lowest-current R state call can have a read current of 100 nanoamps, the difference in current is at least a factor of 20. By selecting other limits, it can be assured that the difference in read current between adjacent memory states will be at least a factor of three.
- an iterative read-verify-write process may be applied to assure that a memory cell is in one of the defined data states after a set or reset pulse, and not between them.
- a memory cell having four distinct data states has been described. To aid in distinguishing between the data states, it may be preferred for three rather than four data states to be selected.
- a three-state memory cell can be formed in data state V, set to data state P, then reset to data state R. This cell will have no fourth data state S.
- the difference between adjacent data states for example between the R and P data states, can be significantly larger.
- the cells may be programmed in a variety of ways, however.
- the memory cell of FIG. 2 may be formed in a first state, the V state.
- a first electrical pulse preferably under forward bias, ruptures antifuse 14 and switches the polysilicon of the diode from a first resistivity state to a second resistivity state lower than the first, placing the memory cell in the P state, which in this example is the lowest resistivity state.
- a second electrical pulse preferably under reverse bias, switches the polysilicon of the diode from the second resistivity state to a third resistivity state, the third resistivity state higher resistivity than the second, placing the memory cell in the S state.
- a third electrical pulse preferably also under reverse bias, switches the polysilicon of the diode from the third resistivity state to a fourth resistivity state, the third resistivity state higher resistivity than the second, placing the memory cell in the R state.
- any of the data states, the V state, the R state, the S state, and the P state can be read as a data state of the memory cell.
- Each transition is labeled in FIG. 6 . Four distinct states are shown; there could be three or more than four states as desired.
- each successive electrical pulse can switch the semiconductor material of the diode to a successively lower resistivity state.
- the memory cell can proceed from the initial V state to the R state, from the R state to the S state, and from the S state to the P state, where for each state the read current is at least two times the read current at the previous state, each corresponding to a distinct data state.
- This scheme may be most advantageous when there is no antifuse included in the cell.
- the pulses may be applied under either forward or reverse bias. In alternative embodiments there may be three data states or more than four data states.
- a memory cell includes the polysilicon or microcrystalline diode 2 shown in FIG. 8 , including bottom heavily doped p-type region 4 , middle intrinsic or lightly doped region 6 , and top heavily doped n-type region 8 .
- this diode 2 can be arranged in series with a dielectric rupture antifuse, the two disposed between top and bottom conductors.
- Bottom heavily doped p-type region 4 may be in situ doped, i.e. doped by flowing a gas that provides a p-type dopant such as boron during deposition of the polysilicon, such that dopant atoms are incorporated into the film as it forms.
- this memory cell is formed in the V state, where the current between top conductor 16 and bottom conductor 12 is less than about 80 nanoamps at a read voltage of 2 volts.
- a first electrical pulse preferably applied under forward bias of, for example, about 8 volts, ruptures dielectric rupture antifuse 14 , if it is present, and switches the polysilicon of diode 2 from a first resistivity state to a second resistivity state, the second resistivity state lower than the first, placing the memory cell in data state P.
- data state P the current between top conductor 16 and bottom conductor 12 at the read voltage is between about 1 microamp and about 4 microamps.
- a second electrical pulse preferably applied in reverse bias, switches the polysilicon of diode 2 from the second resistivity state to a third resistivity state, the third resistivity state lower than the first.
- the third resistivity state corresponds to data state M.
- data state M the current between top conductor 16 and bottom conductor 12 at the read voltage is above about 10 microamps.
- the difference in current between any cell in adjacent data states is preferably at least a factor of two, preferably a factor of three or more. Any of the data states V, P, or M can be detected as a data state of the memory cell.
- FIG. 4 showed that when a semiconductor diode is subjected to reverse bias, in general the semiconductor material initially undergoes a set transition to lower resistivity, then, as voltage is increased, undergoes a reset transition to higher resistivity.
- the switch from set transition to reset transition with increasing reverse bias voltage does not occur as abruptly or as steeply as with other embodiments of the diode. This means a set transition under reverse bias is easier to control with such a diode.
- the memory cell behaves as a rewriteable memory cell, which is repeatably switchable between two or between three data states.
- FIG. 10 shows a memory cell that may serve as a rewriteable memory cell. This memory cell is the same as the one shown in FIG. 2 , except no dielectric rupture antifuse is included. Most rewriteable embodiments do not include an antifuse in the memory cell, though one may be included if desired.
- the memory cell is formed in a high resistivity state V, with current at 2 volts about 5 nanoamps or less.
- V high resistivity state
- the initial V state does not serve as a data state of the memory cell.
- a first electrical pulse preferably with diode 2 under forward bias, is applied between top conductor 16 and bottom conductor 12 . This pulse is, for example, between about 8 and about 12 volts, preferably about 10 volts. This first electrical pulse switches the semiconductor material of diode 2 from a first resistivity state to a second resistivity state P, the second state lower resistivity than the first.
- the P state also will not serve as a data state of the memory cell. In other embodiments, the P state will serve as a data state of the memory cell.
- a second electrical pulse preferably with diode 2 under reverse bias, is applied between top conductor 16 and bottom conductor 12 .
- This pulse is, for example, between about ⁇ 8 and about ⁇ 14 volts, preferably between about ⁇ 9 and about ⁇ 13 volts, more preferably about ⁇ 10 or ⁇ 11 volts.
- the voltage required will vary with the thickness of the intrinsic region.
- This second electrical pulse switches the semiconductor material of diode 2 from the second resistivity state to a third resistivity state R, the third state higher resistivity than the second.
- the R state corresponds to a data state of the memory cell.
- a third electrical pulse can be applied between top conductor 16 and bottom conductor 12 , preferably under forward bias.
- This pulse is, for example, between about 5.5 and about 9 volts, preferably about 6.5 volts, with current between about 10 and about 200 microamps, preferably between about 50 and about 100 microamps.
- This third electrical pulse switches the semiconductor material of diode 2 from the third resistivity state R to a fourth resistivity state S, the fourth state lower resistivity than the third.
- the S state corresponds to a data state of the memory cell.
- the R state and the S state are sensed, or read, as data states.
- the memory cell can repeatedly be switched between these two states. For example, a fourth electrical pulse, preferably with diode 2 under reverse bias, switches the semiconductor material of the diode from the fourth resistivity state S to the fifth resistivity state R, which is substantially the same as the third resistivity state R.
- a fifth electrical pulse preferably with diode 2 under forward bias, switches the semiconductor material of the diode from the fifth resistivity state R to the sixth resistivity state S, which is substantially the same as the fourth resistivity state S, and so on.
- both the first electrical pulse, which switches the cell from the initial V state to the P state, and the second electrical pulse, which switches the cell from the P state to the R state, may be performed before the memory array reaches the end user, for example in a factory or test facility, or by a distributor before sale.
- the difference between current flow under read voltage, for example of 2 volts, between top conductor 16 and bottom conductor 12 between any cell in one data state and any cell in an adjacent data states, in this case the R data state (between about 10 and about 500 nanoamps) and the S data state (between about 1.5 and about 4.5 microamps), is at least a factor of three.
- the difference may be a factor of two, three, five, or more.
- a rewriteable memory cell can be switched between three or more data states, in any order. Either set or reset transitions can be performed with the diode under either forward or reverse bias.
- the data state corresponds to the resistivity state of polycrystalline or microcrystalline semiconductor material making up a diode.
- the data states does not correspond to the resistivity state of a resistivity-switching metal oxide or nitride, as in Herner et al., U.S. patent application Ser. No. 11/395,995, “Nonvolatile Memory Cell Comprising a Diode and a Resistance-Switching Material,” filed Mar. 31, 2006, owned by the assignee of the present invention and hereby incorporated by reference.
- any step in which cells are subjected to large voltages in reverse bias has reduced leakage current as compared to a forward bias step.
- Bitline B 0 is set at 10 volts and wordline W 0 is set at ground.
- wordline W 1 is set less than but relatively close to the voltage of bitline B 0 ; for example wordline W 1 may be set to 9.3 volts, so that 0.7 volts is applied across the F cells (only one F cell is shown, but there may be hundreds, thousands or more.)
- bitline B 1 is set higher than but relatively close to the voltage of wordline W 0 ; for example bitline B 1 may be set to 0.7 volts, so that 0.7 volts is applied across cell H (again, there may be thousands of H cells.)
- the unselected cells U which share neither wordline W 0 or bitline B 0 with selected cell S, are subjected to ⁇ 8.6 volts. As there may be millions of unselected cells U
- FIG. 13 shows an advantageous biasing scheme to apply a large reverse bias across a memory cell, for example as a reset pulse.
- Bitline B 0 is set at ⁇ 5 volts and wordline W 0 at 5 volts, so that ⁇ 10 volts is applied across selected cell S; the diode is in reverse bias.
- Setting wordline W 1 and bitline B 1 at ground subjects both half-selected cells F and H to ⁇ 5 volts, at a reverse bias low enough not to cause unintentional set or reset of these cells.
- Set or reset in reverse bias generally seems to take place at or near the voltage at which the diode goes into reverse breakdown, which is generally higher than ⁇ 5 volts.
- bitline B 0 can be set at 0 volts, wordline W 0 at ⁇ 10 volts, and bitline B 1 and wordline W 1 at ⁇ 5 volts.
- the voltage across selected cell S, half-selected cells H and F, and unselected cells U will be the same as in the scheme of FIG. 13 .
- bitline B 0 is set at ground, wordline W 0 at 10 volts, and bitline B 1 and wordline W 1 each at 5 volts.
- the difference between current flow during read in adjacent data states is preferably at least a factor of two; in many embodiments, it may be preferred to establish current ranges for each data state which are separated by a factor of three, five, ten, or more.
- data state V may be defined as read current of 5 nanoamps or less at a read voltage of 2 volts, data state R as read current between about 10 and about 500 nanoamps, data state S as read current between about 1.5 and about 4.5 microamps, and data state P as read current above about 10 microamps.
- data state V may be defined in a smaller range, with read current about 5 nanoamps or less at a read voltage of 2 volts. Actual read currents will vary with characteristics of the cell, construction of the array, read voltage selected, and many other factors.
- a one-time programmable memory cell is in data state P.
- An electrical pulse in reverse bias is applied to the memory cell to switch the cell into data state S.
- the read current is not in the desired range; i.e. the resistivity state of the semiconductor material of the diode is higher or lower than intended.
- the read current of the memory cell is at the point on the graph shown at Q, in between the S state and P state current ranges.
- the memory cell may be read to determine if the desired data state was reached. If the desired data state was not reached, an additional pulse is applied. For example, when the current Q is sensed, an additional reset pulse is applied to increase the resistivity of the semiconductor material, decreasing the read current into the range corresponding to the S data state. As described earlier, this set pulse may be applied in either forward or reverse bias. The additional pulse or pulses may have a higher amplitude (voltage or current) or longer or shorter pulse width than the original pulse. After the additional set pulse, the cell is read again, then set or reset pulses applied as appropriate until the read current is in the desired range.
- a two-terminal device such as the memory cell including a diode described
- Applying a large reverse bias across the diode may damage the diode; thus when performing a set or reset with the diode under reverse bias, it is advantageous to minimize the reverse bias voltage.
- an amorphous or microcrystalline silicon material is crystallized not in contact with a silicon having a silicide with which it has a good lattice match, for example in contact only with materials such as silicon dioxide and titanium nitride, with which it has a significant lattice mismatch, the resulting polysilicon will have many more defects, and doped polysilicon crystallized this way will be much less conductive as formed.
- the semiconductor material forming a diode is switched between two or more resistivity states, changing the current flowing through the diode at a given read voltage, the different currents (and resistivity states) corresponding to distinct data states. It has been found that diodes formed of high-defect silicon (or other appropriate semiconductor materials such as germanium or silicon-germanium alloys) which has not been crystallized adjacent to a silicide or analogous material providing a crystallization template exhibit the most advantageous switching behavior.
- the resistivity state of very low-defect silicon crystallized adjacent to an appropriate silicide cannot be switched as readily as when the semiconductor material has a higher level of defects. It may be that the presence of defects, or of a larger number of grain boundaries, allows for easier switching.
- the polycrystalline or microcrystalline material forming the diode is not crystallized adjacent to a material with which it has a small lattice mismatch.
- a small lattice mismatch is, for example, a lattice mismatch of about three percent or less.
- switching behavior may be centered on changes in the intrinsic region. Switching behavior has been observed in resistors and p-n diodes as well, and is not limited to p-i-n diodes, but it is believed that the use of p-i-n diodes may be particularly advantageous.
- Fabrication of a single memory level will be described in detail. Additional memory levels can be stacked, each monolithically formed above the one below it. In this embodiment, a polycrystalline semiconductor diode will serve as the switchable memory element.
- This substrate 100 can be any semiconducting substrate as known in the art, such as monocrystalline silicon, IV-IV compounds like silicon-germanium or silicon-germanium-carbon, III-V compounds, II-VII compounds, epitaxial layers over such substrates, or any other semiconducting material.
- the substrate may include integrated circuits fabricated therein.
- the insulating layer 102 is formed over substrate 100 .
- the insulating layer 102 can be silicon oxide, silicon nitride, high-dielectric film, Si—C—O—H film, or any other suitable insulating material.
- the first conductors 200 are formed over the substrate and insulator.
- An adhesion layer 104 may be included between the insulating layer 102 and the conducting layer 106 to help conducting layer 106 adhere to insulating layer 102 . If the overlying conducting layer is tungsten, titanium nitride is preferred as adhesion layer 104 .
- Conducting layer 106 can comprise any conducting material known in the art, such as tungsten, or other materials, including tantalum, titanium, copper, cobalt, or alloys thereof.
- the layers will be patterned and etched using any suitable masking and etching process to form substantially parallel, substantially coplanar conductors 200 , shown in FIG. 15 a in cross-section.
- photoresist is deposited, patterned by photolithography and the layers etched, and then the photoresist removed using standard process techniques.
- Conductors 200 could be formed by a Damascene method instead.
- Dielectric material 108 is deposited over and between conductor rails 200 .
- Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used as dielectric material 108 .
- FIG. 15 a This removal of dielectric overfill to form planar surface 109 can be performed by any process known in the art, such as chemical mechanical planarization (CMP) or etchback.
- CMP chemical mechanical planarization
- An etchback technique that may advantageously be used is described in Raghuram et al., U.S. application Ser. No. 10/883417, “Nonselective Unpatterned Etchback to Expose Buried Patterned Features,” filed Jun. 30, 2004 and hereby incorporated by reference.
- a plurality of substantially parallel first conductors have been formed at a first height above substrate 100 .
- a barrier layer 110 is deposited as the first layer after planarization of the conductor rails.
- Any suitable material can be used in the barrier layer, including tungsten nitride, tantalum nitride, titanium nitride, or combinations of these materials.
- titanium nitride is used as the barrier layer.
- the barrier layer is titanium nitride, it can be deposited in the same manner as the adhesion layer described earlier.
- the semiconductor material can be silicon, germanium, a silicon-germanium alloy, or other suitable semiconductors, or semiconductor alloys.
- silicon germanium
- a silicon-germanium alloy or other suitable semiconductors, or semiconductor alloys.
- this description will refer to the semiconductor material as silicon, but it will be understood that the skilled practitioner may select any of these other suitable materials instead.
- the pillar comprises a semiconductor junction diode.
- junction diode is used herein to refer to a semiconductor device with the property of non-ohmic conduction, having two terminal electrodes, and made of semiconducting material which is p-type at one electrode and n-type at the other. Examples include p-n diodes and n-p diodes, which have p-type semiconductor material and n-type semiconductor material in contact, such as Zener diodes, and p-i-n diodes, in which intrinsic (undoped) semiconductor material is interposed between p-type semiconductor material and n-type semiconductor material.
- Bottom heavily doped region 112 can be formed by any deposition and doping method known in the art.
- the silicon can be deposited and then doped, but is preferably doped in situ by flowing a donor gas providing n-type dopant atoms, for example phosphorus, during deposition of the silicon.
- Heavily doped region 112 is preferably between about 100 and about 800 angstroms thick.
- Intrinsic layer 114 can be formed by any method known in the art.
- Layer 114 can be silicon, germanium, or any alloy of silicon or germanium and has a thickness between about 1100 and about 3300 angstroms, preferably about 2000 angstroms.
- Pillars 300 should have about the same pitch and about the same width as conductors 200 below, such that each pillar 300 is formed on top of a conductor 200 . Some misalignment can be tolerated.
- the pillars 300 can be formed using any suitable masking and etching process.
- photoresist can be deposited, patterned using standard photolithography techniques, and etched, then the photoresist removed.
- a hard mask of some other material for example silicon dioxide, can be formed on top of the semiconductor layer stack, with bottom antireflective coating (BARC) on top, then patterned and etched.
- BARC bottom antireflective coating
- DARC dielectric antireflective coating
- Dielectric material 108 is deposited over and between the semiconductor pillars 300 , filling the gaps between them.
- Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used as the insulating material.
- dielectric material on top of the pillars 300 is removed, exposing the tops of pillars 300 separated by dielectric material 108 , and leaving a substantially planar surface.
- This removal of dielectric overfill can be performed by any process known in the art, such as CMP or etchback.
- CMP or etchback ion implantation is performed, forming heavily doped p-type top region 116 .
- the p-type dopant is preferably boron or BCl 3 .
- This implant step completes formation of diodes 111 .
- the resulting structure is shown in FIG. 15 b . In the diodes just formed, bottom heavily doped regions 112 are n-type while top heavily doped regions 116 are p-type; clearly the polarity could be reversed.
- next dielectric rupture antifuse layer 118 is formed on top of each heavily doped region 116 .
- Antifuse 118 is preferably a silicon dioxide layer formed by oxidizing the underlying silicon in a rapid thermal anneal, for example at about 600 degrees.
- Antifuse 118 may be about 20 angstroms thick. Alternatively, antifuse 118 can be deposited.
- Top conductors 400 can be formed in the same manner as bottom conductors 200 , for example by depositing adhesion layer 120 , preferably of titanium nitride, and conductive layer 122 , preferably of tungsten. Conductive layer 122 and adhesion layer 120 are then patterned and etched using any suitable masking and etching technique to form substantially parallel, substantially coplanar conductors 400 , shown in FIG. 15 c extending left-to-right across the page. In a preferred embodiment, photoresist is deposited, patterned by photolithography and the layers etched, and then the photoresist removed using standard process techniques.
- the dielectric material can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon oxide is used as this dielectric material.
- Formation of a first memory level has been described. Additional memory levels can be formed above this first memory level to form a monolithic three dimensional memory array.
- conductors can be shared between memory levels; i.e. top conductor 400 would serve as the bottom conductor of the next memory level.
- an interlevel dielectric (not shown) is formed above the first memory level of FIG. 15 c , its surface planarized, and construction of a second memory level begins on this planarized interlevel dielectric, with no shared conductors.
- a monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a wafer, with no intervening substrates.
- the layers forming one memory level are deposited or grown directly over the layers of an existing level or levels.
- stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Pat. No. 5,915,167, “Three dimensional structure memory.”
- the substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
- a monolithic three dimensional memory array formed above a substrate comprises at least a first memory level formed at a first height above the substrate and a second memory level formed at a second height different from the first height. Three, four, eight, or indeed any number of memory levels can be formed above the substrate in such a multilevel array.
- FIG. 16 shows a switchable memory element 117 formed in series with a diode 111 .
- the switchable memory element 117 is formed of semiconductor material which is switched between resistivity states using electrical pulses as described.
- the diode is preferably crystallized adjacent to a silicide such as cobalt silicide, which provides a crystallization template, as described earlier, such that the semiconductor material of the diode is very low-defect and exhibits little or no switching behavior.
- Switchable memory element 117 is preferably doped, and should be doped to the same conductivity type as top heavily doped region 116 . Methods to fabricate this device are described in the ' 167 application.
- the above embodiments describe how a single memory cell can be used as a two-data-state memory cell, a more-than-two-data-state memory cell, a one-time programmable memory cell, or a rewritable memory cell.
- This versatility allows a common memory cell architecture to be used to provide multiple types of memory products. The following is a discussion of the multi-use nature of the memory cell and its potential to provide a mixed-use memory array.
- the memory cell described above has a memory element comprising a switchable resistance material, such as a semiconductor material, that is configurable to one of at least three resistivity states.
- a memory element can be “configured” to a resistivity state during the formation of the memory element (e.g., the initial, unprogrammed state of a memory element has an initial resistivity state) or by subsequently subjecting the memory element to set or reset pulses. Because of this characteristic, a single memory cell can act in two different ways: as a one-time programmable memory cell or a rewritable memory cell. Also because of this characteristic, a single memory cell can use two data states or more than two data states. Accordingly, any given manufactured memory cell has the potential of being operable as a one-time programmable memory cell or a rewritable memory cell with two or more data states.
- resistivity state that is used to represent a data state of a memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- the memory cell is manufactured in an initial resistivity state (the V state), and this resistivity state is used when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- R and S states Two other data states (the R and S states) are used to represent data states of the memory cell when the memory cell operates as a rewritable memory cell. (As described below, these data states can also be used in a one-time programmable memory cell.) These data states are achieved by varying the resistance of the switchable resistance material. Again, these other data states do not include the data state that is only used to represent a data state when the memory cell operates as a one-time programmable memory cell. Additional data state(s) (e.g., an “R 2 ” data state between the R state and the S state) can be used to allow a rewritable memory cell to achieve three or more respective data states.
- Additional data state(s) e.g., an “R 2 ” data state between the R state and the S state
- the memory element comprises a switchable resistance material (e.g., a semiconductor material) in series with an antifuse
- the V state is the resistivity state used only when the memory cell operates as a one-time programmable memory cell. This is because, once the antifuse is blown, the memory element cannot go back to the V state.
- one resistivity state can be designated as the state that is only used when the memory cell operates as a one-time programmable memory cell.
- the P state can also be a resistivity state that is used when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- one or both of the R and S states are used to represent a data state of a one-time programmable memory cell, such as when the one-time programmable memory cell stores three or four data states. In such a situation, the one-time programmable and rewritable uses of the memory cell would have a resistivity state in common.
- a one-time programmable memory cell can have one state in common with a rewritable memory cell (e.g., where there is no distinction between the S state and the P state). Nevertheless, there would still be at least one resistivity state (e.g., the V state) that would be used to represent a data state of the memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- One advantage of this versatility is that a single integrated circuit with such memory cells can be designated either as a one-time programmable memory array or as a rewritable memory array. This provides flexibility in manufacturing and yield enhancement.
- a set of test memory cells e.g., test rows and columns
- the test memory cells can be exercised by repeatedly programming, reseting, and setting the memory cells.
- the part will probably not program correctly as a rewritable memory array.
- the cells in the memory array can operate as either one-time programmable memory cells or rewritable memory cells, instead of discarding the part because it did not provide the expected rewritable yield, the part can be designated as a one-time programmable memory array. Accordingly, the common backbone architecture of the memory cells provides flexibility in manufacturing and yield enhancement.
- Memory arrays passing the test can go on to further formatting (e.g., all the memory cells being programmed from the V state to the P state, then exercised between the R and S states as a final qualification test) and then shipping to a store or end user as a rewritable memory array (e.g., a memory card for a digital camera).
- Memory arrays failing the test can be packaged and sent to a different part of the factory for programming one-time programmable content. Alternatively, the part can be sent to a store, with a store employee or end user field programming one-time programmable content (e.g., using a kiosk). The unprogrammed part can also be sold to the end user for use as archival memory.
- a flag be used to signal a device that reads and writes to the memory array (e.g., a controller on the memory device that includes the memory array or hardware/software in a host device) that the memory array is one-time programmable or rewritable.
- the “flag” can be one or more bits stored in the memory array.
- a flag can be set in a special address location in the memory array (e.g., address 0000). When the host device detects the flag, it can adapt to the one-time programmable nature of the memory array by not attempting to reprogram it.
- the memory array can be a “mixed-use” memory array. Since every single memory cell in the array can act either as a one-time programmable memory cell or as a rewritable memory cell, in this embodiment, a first set of memory cells operates as one-time programmable memory cells and a second, different set of memory cells operates as rewritable memory cells. In this way, one-time programmable memory cells and rewritable memory cells can be provided on the same integrated circuit. As above, testing can be performed to determine whether a given set of memory cells should be designated as one-time programmable memory cells or rewritable memory cells.
- FIG. 17 is an illustration of a mixed use array 200 of a preferred embodiment.
- a first set of memory cells 210 operates as one-time programmable memory cells and a second, different set of memory cells 220 operates as rewritable memory cells.
- the memory cells in both sets 210 , 220 contain the same number of data states per cell, although variations in the number of data states per memory cell are possible, as described below.
- the first set of memory cells stores data that is considered permanent and can relate to the operation of the memory array. Examples of such information includes, but is not limited to, one or more of the following: content management bits, trim bits, manufacturer data, and format data.
- “Content management bits” refers to information that relates to the management of programmed content.
- “Trim bits” are customized information that set various options in on-chip circuitry. In operation, the on-chip circuitry reads the trim bits in the first set of memory cells 210 , and the read trim bits control the further operation of the circuitry. For example, the trim bits could contain a setting for the preferred write/read value (current or voltage) of the write/read circuitry of the memory device.
- “Manufacturer data” can include the manufacturer's name and serial number.
- “Format data” indicates bad portions of the memory array; specifically, that a particular row and/or column in the memory array is bad and the location of a redundant row and/or column. Further information regarding redundancy can be found in U.S.
- the first set of memory cells 210 can contain game content data (i.e., computer program code for a game), and the second set of memory cells 220 can contain game state data (i.e., an indication of the user's location in the game when the user requests that the game be saved).
- game content data i.e., computer program code for a game
- game state data i.e., an indication of the user's location in the game when the user requests that the game be saved.
- the data in either the first or second sets 210 , 220 can be programmed at the factory or by a subsequent user.
- FIG. 17 there is only one section of one-time programmable memory cells and only one section of rewritable memory cells.
- FIG. 18 shows such an embodiment, with two one-time programmable sections 230 , 250 interleaved with two rewritable sections 240 , 260 (i.e., two adjacent sets of memory cells are not both one-time programmable or both rewritable).
- any data can be stored in any of the sections.
- game content data can be stored in the one-time programmable sections 230 , 250
- game state data can be stored in the rewritable sections 240 , 260 .
- FIGS. 17 and 18 show the sets of memory cells being horizontally oriented
- one or more sets of memory cells can be vertically oriented.
- the format data can be in a vertical column of memory cells. In this way, the redundancy data would go across many pages.
- a mixed use of horizontally-oriented and vertically-oriented information can also be used.
- the manufacturing data can be horizontally oriented, while the format data can be vertically oriented.
- each page of data can include one or more flag bits 270 that indicate whether a page is one-time programmable or rewritable.
- a “1” flag indicates one-time programmable
- a “0” flag indicates rewritable.
- the flag is stored in a one-time programmable memory cell (even if the memory cell is in a rewritable section).
- the default read conditions are optimized for one-time programmable data (so the one-time programmable flag bit and the trim bits, manufacturing data, etc.
- flag bits are interpreted by on-chip write circuitry, which is programmed to prevent writing to a memory cell more than one time if the flag bit indicates that the memory cell is one-time programmable.
- the calculation of address space and write control can be moved off-chip, for example, to hardware/software in a host device.
- a host device For example, if the memory device is used as a game cartridge, software in the host device can use a pre-designated address space (known to the host device but not the memory) for storing game state data.
- the host device can be informed of the address space for game state data by information stored in the game content data in the memory array, in another one-time programmable portion of the memory array (e.g., a special address location in the memory array (e.g., address 0000)), or in a device controller, separate from the memory array, in the memory device.
- the memory arrays were “mixed use” in the sense that some of the memory cells were one-time programmable and others were rewritable.
- a “mixed use” memory array contains other “mixed” features instead of or in addition to the one-time programmable/rewritable feature.
- a flag bit or other mechanism can be used to determine the nature of a given set of memory cells. For example, a first set of memory cells can be more reliable and have a wider temperature and voltage range than a second set of memory cells in the same memory array.
- a given memory cell can either be (i) programmed with forward bias (e.g., as with a one-time programmable or rewritable memory cell) or (ii) programmed with reverse bias (e.g., as with a rewritable memory cell but not with a two-state one-time programmable memory cell).
- forward bias e.g., as with a one-time programmable or rewritable memory cell
- reverse bias e.g., as with a rewritable memory cell but not with a two-state one-time programmable memory cell.
- a one-time programmable memory cell can receive forward biasing programming only, while a rewritable memory cell can receive both forward and reverse biasing programming. This is shown in the circuit diagrams of FIGS. 19 and 20 .
- Forward bias writing is described in more detail in U.S. Pat. No.
- a “mixed use” memory array can contain a first set of memory cells that are programmed with forward bias and a second set of memory cells that are programmed with reverse bias.
- the memory cells that are programmed with reverse bias can also be erased with forward bias.
- Erase operations are described in more detail in U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0048) entitled “Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders” and U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0054) entitled “Method for Using a Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders,” each of which is assigned to the assignee of the present invention and is hereby incorporated by reference.
- the discussion so far has related to the use of a memory cell as either one-time programmable or rewritable and memory arrays having a mixture of one-time programmable and rewritable memory cells.
- the memory cell (whether one-time programmable or rewritable) can store two data states or more than two data states.
- Multiple test memory cells can be tested for each possible data state to determine how many data states can be stored in a memory array. For example, test memory cells can be tested at the V, P, S, and R data states to project whether the memory cell operates acceptably as a four-state one-time programmable memory array. If the test fails, the memory array can be used as a two-state memory array, with the appropriate flag being stored in the memory array.
- a mixed-use array can be used with one set of memory cells using X number of resistivity states to represent X data states, and a second set of memory cells using Y number of resistivity states to represent Y data states, where X ⁇ Y.
- the number of data states stored in a memory cell can vary between sets of memory cells in the memory array.
- first and second sets of memory cells in a memory array can use different numbers of data states and be both one-time programmable, be both rewritable, or be a mixture of one-time programmable and rewritable.
- multiple portions of a memory array can be any combination of one-time programmable memory cells and rewritable memory cells, with one portion storing X data states (e.g., two data states) and another portion storing Y data states (e.g., more than two data states).
- a memory array can have a first set of memory cells that are one-time programmable and have more than two data states (e.g., for program data) and a second set of memory cells that are rewritable and have more than two data states (e.g., for use as a scratch pad memory). There can be more than two portions.
- the choice of how many data states to use in any set of memory cells can be determined by testing, as described above. For example, if testing for a four-state one-time programmable memory cell fails because the read circuitry could not distinguish between the V, P, and R states, the portion of the memory array containing those test cells can be used as a two-state rewritable portion. In that situation, the write circuitry can use an iterative write program, as described above, to verify and then re-program again to “push” the R state toward the V state and “push” the S state toward the P state. In other words, the iterative feedback mechanism “opens the space” between the R state and the S state.
- a mixed-use array of different data states recognizes the fact that, although each memory cell has the potential of storing more than two data states, the most efficient use of memory cells in a memory array may occur when not all the memory cells in the memory array store more than two states.
- a first set of memory cells are used as two-state one-time programmable memory cells, and a second set of memory cells are used as four-state one-time programmable memory cells.
- FIG. 21 optimum circuit configuration settings for reading the four-state memory cells are stored in the two-state memory cells. For example, as shown in FIG.
- configuration bits in page 0 indicate which pages are to be read with a two-state-per-cell read circuitry operation versus a four-state-per-cell read circuitry operation.
- the configuration bits also determine the limitation in useable bits in the two-state-per-cell pages.
- page 0 When page 0 is written, the portion of the chip for the two-state data and the four-state data is configured. For one-time programmable memory cell usage, page 0 can be written several times adding additional configuration bits indicating additional portions for two-state data because configuration bits all set to logic one indicate that all but page zero are to be read as four-state data (i.e., the default configuration is to only read page 0 as two-state data).
- the virgin one-time programmable memory cell state (the V state) is logical one.
- the default configuration and the interpretation of configuration bits is done by logic coding on the memory chip.
- Row numbers and page numbers are not necessarily equal, but a simple multiple (e.g., four pages to one row) is preferred.
- another application can have a third portion also as two-state per cell data based on manufacturing testing indicating less than optimum cells in the third portion of the memory array.
- the memory array has two-state one-time programmable memory cells in a first portion and more than two-state rewritable memory cells (e.g., using the R, S, and R 1 states).
- the optimum circuit configurations are preferably stored in two-state one-time programmable memory cells.
- the memory array can have two-state rewritable memory cells in a first portion and more than two-state rewritable memory cells in a second portion.
- FIG. 22 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by flag bits on each physical page.
- the flag bit is preferably two-state-per-cell data.
- An even number of pages are associated with each row.
- a flag bit for odd pages read as one indicate the page is not available.
- Unavailable pages are also stored off the memory chip in control logic or software and can be reassigned by known redundancy/bad block mechanisms.
- shared flag bit or bits per row can be used, where the flag is associated with multiple pages and indicates the number of states per cell for the row and the unavailability of some pages. It is preferred that an even number of pages per row be used.
- the block for bad block table use is preferably defined as half the row for a number of adjacent rows.
- FIG. 23 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by a translation table stored in the memory array.
- the table has a correspondence between the logical page address and physical rows in the memory array.
- the table also contains the flag bit for the number of bits stored at a physical row.
- the table could also have a flag that indicates certain pages are one-time programmable or rewritable data.
- the flag bits preferably control read and write circuitry to the optimum setting for the indicated data type.
- FIG. 24 is an illustration of a memory array of a preferred embodiment in which a two-state-per-cell one-time programmable portion, a two-state-per-cell rewritable portion, and a four-state-per-cell one-time programmable portion are indicated by flag bits on each physical page.
- the flag bits are stored as two-state per cell data. An even number of pages are associated with each row. An off-chip controller scans the flag information to create a bad block table. Flag bits for some pages indicate the page is not available. Flag bits also preferably control on-chip read and write circuitry to provide an optimum configuration for more than two-state-per-cell operations and rewritable versus one-time programmable operations.
- the flag bits indicated in FIG. 24 contain at least one bit to indicate the number of states per cell and one bit to indicate one-time programmable or rewritable. More than two bits can be used in some embodiments.
- FIG. 25 is a flow chart of a preferred embodiment for using chip flags and an off-chip bad block mechanism.
- a logical page address is provided (step 300 ).
- a bad block table and translation logic in the controller chip of the memory device determines a preliminary physical address associated with the logical page address (step 310 ). Then, the flag bit at the preliminary physical address is read with the two-state-per-cell default setting (step 320 ). If the page is unavailable, a feedback mechanism is used to update the write status for unavailable pages (step 330 ), which causes the controller chip to update the bad block table. Otherwise, the read or write circuitry is set to a two-state mode or a more-than-two-state mode (act 340 ). Then, page data is read or written (act 350 ).
- the memory cell comprises a passive memory element comprising a switchable resistance material, preferably a semiconductor material; specifically, a polysilicon diode.
- switchable resistance materials include, but are not limited to, binary metal oxides, phase change materials as shown in U.S. Pat. Nos. 5,751,012 and 4,646,266, and organic material resistors, for example a memory cell comprising layers of organic materials including at least one layer that has a diode-like characteristic conduction and at least one organic material that changes conductivity with the application of an electric field.
- U.S. Pat. No. 6,055,180 describes organic passive element arrays.
- variable resistance material is amorphous silicon doped with V, Co, Ni, Pd, Fe or Mn, for example as described more fully in U.S. Pat. No. 5,541,869.
- Another class of material is taught by U.S. Pat. No. 6,473,332.
- perovskite materials such as Pr 1 ⁇ X Ca X MnO 3 (PCMO), La 1 ⁇ X Ca X MnO 3 (LCMO), LaSrMnO 3 (LSMO), or GdBaCo X O Y (GBCO).
- Another option for this variable-resistance material is a carbon-polymer film comprising carbon black particulates or graphite, for example, mixed into a plastic polymer, as taught in U.S. Pat. No.
- a switchable resistance material is taught in U.S. patent application Ser. No. 09/943,190 and in U.S. patent application Ser. No. 09/941,544.
- This material is doped chalcogenide glass of the formula A X B Y , where A includes at least one element from Group IIIA (B, Al, Ga, In, Ti), Group IVA (C, Si, Ge, Sn, Pb), Group VA (N, P, As, Sb, Bi), or Group VIIA (F, Cl, Br, I, At) of the periodic table, where B is selected from among S, Se and Te and mixtures thereof.
- the dopant is selected from among the noble metals and transition metals, including Ag, Au, Pt, Cu, Cd, If, Ru, Co, Cr, Mn or Ni.
- This chalcogenide glass (amorphous chalcogenide, not in as crystalline state) is preferably formed in a memory cell adjacent to a reservoir of mobile metal ions. Some other solid electrolyte material could substitute for chalcogenide glass.
- the element comprises an antifuse in series with the semiconductor material.
- the memory element comprises an antifuse, a binary metal oxide, and a polysilicon diode isolation device.
- the memory cells can be part of a two-dimensional array, it is preferred that the memory cells be part of a monolithic three-dimensional memory array, with the memory cells arranged in a plurality of memory levels, each formed above a single substrate with no intervening substrates.
- the memory element be non-volatile.
- the memory element can be volatile in the data states used when the memory cell operates as a rewritable memory cell.
- a memory element may allow the V state and the P state to be permanent but may allow the R and S states to slowly fade away. With such a memory element, the R state and S state data would be refreshed over time.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
- This application is a continuation-in-part of Kumar et al., U.S. application Ser. No. 11/237,167, “Memory Cell Comprising Switchable Semiconductor Memory Element with Trimmable Resistance,” filed Sep. 28, 2005 and hereinafter the '167 application, which is assigned to the assignee of the present invention and hereby incorporated by reference in its entirety.
- This application is related to Kumar et al., U. S. application Ser. No. xx/xxx,xxx, “Method for Using a Memory Cell Comprising Switchable Semiconductor Memory Element with Trimmable Resistance,” (Attorney Docket No. MA-163-1); to Fasoli et al., U.S. application Ser. No. xx/xxx,xxx, “Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders,” (Attorney Docket No. 023-0048); to Fasoli et al., U. S. application Ser. No. xx/xxx,xxx, “Method for Using a Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders,” (Attorney Docket No. 023-0054); to Scheuerlein et al., U. S. application Ser. No. xx/xxx,xxx, “Apparatus for Reading a Multi-Level Passive Element Memory Cell Array,” (Attorney Docket No. 023-0049); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Method for Reading a Multi-Level Passive Element Memory Cell Array,” (Attorney Docket No. 023-0055); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Dual Data-Dependent Busses for Coupling Read/Write Circuits to a Memory Array”, (Attorney Docket No. 023-0051); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Method for Using Dual Data-Dependent Busses for Coupling Read/Write Circuits to a Memory Array,” (Attorney Docket No. 023-0056); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Memory Array Incorporating Two Data Busses for Memory Array Block Selection,” (Attorney Docket No. 023-0052); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Method for Using Two Data Busses for Memory Array Block Selection,” (Attorney Docket No. 023-0057); Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Hierarchical Bit Line Bias Bus for Block Selectable Memory Array,” (Attorney Docket No. 023-0053); to Scheuerlein et al., U.S. application No. xx/xxx,xxx, “Method for Using a Hierarchical Bit Line Bias Bus for Block Selectable Memory Array,” (Attorney Docket No. 023-0058); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Method for Using a Multi-Use Memory Cell and Memory Array,” (Attorney Docket No. 10519-150); to Scheuerlein, U.S. application Ser. No. xx/xxx,xxx, “Mixed-Use Memory Array,” (Attorney Docket No. 10519-142); to Scheuerlein, U.S. application Ser. No. xx/xxx,xxx, “Method for Using a Mixed-Use Memory Array,” (Attorney Docket No. 10519-151); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Mixed-Use Memory Array with Different Data States,” (Attorney Docket No. 10519-149); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Method for Using a Mixed-Use Memory Array with Different Data States,” (Attorney Docket No. 10519-152); to Scheuerlein, U.S. application Ser. No. xx/xxx,xxx, “Controlled Pulse Operations in Non-Volatile Memory,” (Attorney Docket No. SAND-01114US0); to Scheuerlein, U.S. application Ser. No. xx/xxx,xxx, “Systems For Controlled Pulse Operations In Non-Volatile Memory,” (Attorney Docket No. SAND-01114US1); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “High Bandwidth One Time Field-Programmable Memory,” (Attorney Docket No. SAND-0115US0); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Systems for High Bandwidth One Time Field-Programmable Memory,” (Attorney Docket No. SAND-01115US1); to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Reverse Bias Trim Operations In Non-Volatile Memory,” (Attorney Docket No. SAND-01117US0); and to Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Systems For Reverse Bias Trim Operations In Non-Volatile Memory,” (Attorney Docket No. SAND-01117US1), all filed on even day herewith, all owned by the assignee of the present invention, and all hereby incorporated by reference.
- Nonvolatile memory arrays maintain their data even when power to the device is turned off. In one-time-programmable arrays, each memory cell is formed in an initial unprogrammed state, and can be converted to a programmed state. This change is permanent, and such cells are not erasable. In other types of memories, the memory cells are erasable, and can be rewritten many times.
- Cells may also vary in the number of data states each cell can achieve. A data state may be stored by altering some characteristic of the cell which can be detected, such as current flowing through the cell under a given applied voltage or the threshold voltage of a transistor within the cell. A data state is a distinct value of the cell, such as a data ‘0’ or a data ‘1’.
- Some solutions for achieving erasable or multi-state cells are complex. Floating gate and SONOS memory cells, for example, operate by storing charge, where the presence, absence or amount of stored charge changes a transistor threshold voltage. These memory cells are three-terminal devices which are relatively difficult to fabricate and operate at the very small dimensions required for competitiveness in modern integrated circuits.
- Other memory cells operate by changing the resistivity of relatively exotic materials, like chalcogenides. Chalcogenides are difficult to work with and can present challenges in most semiconductor production facilities.
- A substantial advantage would be provided by a nonvolatile memory array having erasable or multi-state memory cells formed using conventional semiconductor materials in structures that are readily scaled to small size.
- Summary of the Preferred Embodiments
- The present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims.
- By way of introduction, the preferred embodiments described below provide a multi-use memory cell and memory array. In one preferred embodiment, a memory cell is operable as a one-time programmable memory cell or a rewritable memory cell. The memory cell comprises a memory element comprising a semiconductor material configurable to one of at least three resistivity states, wherein a first resistivity state is used to represent a data state of the memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell. A memory array with such memory cells is also disclosed. In another preferred embodiment, a memory cell is provided comprising a switchable resistance material, wherein the memory cell is operable in a first mode in which the memory cell is programmed with a forward bias and a second mode in which the memory cell is programmed with a reverse bias. Other embodiments are disclosed, and each of the embodiments can be used alone or together in combination.
- The preferred embodiments will now be described with reference to the attached drawings.
-
FIG. 1 is a circuit diagram illustrating the need for electrical isolation between memory cells in a memory array. -
FIG. 2 is a perspective view of a multi-state or rewriteable memory cell formed according to a preferred embodiment of the present invention. -
FIG. 3 is a perspective view of a portion of a memory level comprising the memory cells ofFIG. 2 . -
FIG. 4 is a graph showing change in read current for a memory cell of the present invention as voltage in reverse bias across the diode increases. -
FIG. 5 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the R state, and from the R state to the S state. -
FIG. 6 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the S state, and from the S state to the R state. -
FIG. 7 is a probability plot showing memory cells transformed from the V state to the R state, from the R state to the S state, and from the S state to the P state. -
FIG. 8 is a perspective view of a vertically oriented p-i-n diode that may be used in embodiments of the present invention. -
FIG. 9 is a probability plot showing memory cells transformed from the V state to the P state, and from the P state to the M state. -
FIG. 10 is a perspective view of a multi-state or rewriteable memory cell formed according to a preferred embodiment of the present invention. -
FIG. 11 is a probability plot showing memory cells transformed from the V state to the P state, from the P state to the R state, and from the R state to the S state, then repeatably between the S state and the R state. -
FIG. 12 is a circuit diagram showing a biasing scheme to bias the S cell in forward bias. -
FIG. 13 is a circuit diagram showing one biasing scheme to bias the S cell in reverse bias. -
FIG. 14 illustrates iterative read-verify-write cycles to move a cell into a data state. -
FIGS. 15 a-15 c are cross-sectional views illustrating stages in formation of a memory level formed according to an embodiment of the present invention. -
FIG. 16 is cross-sectional view illustrating a diode and resistive switching element that may be used an alternative embodiment of the present invention. -
FIG. 17 is an illustration of a mixed-use memory array of a preferred embodiment in which a first set of memory cells operate as one-time programmable memory cells and a second set of memory cells operate as rewritable memory cells. -
FIG. 18 is an illustration of a mixed-use memory array of a preferred embodiment in which multiple sets of one-time programmable and rewritable memory cells are interleaved. -
FIG. 19 is an illustration of a circuit of a preferred embodiment showing a set of memory cells that are programmed with forward bias. -
FIG. 20 is an illustration of a circuit of a preferred embodiment showing a set of memory cells that are programmed with reverse bias. -
FIG. 21 is an illustration of a memory array of a preferred embodiment in which a first portion of the memory array stores two data states per memory cell and a second portion of the memory array stores four data states per memory cell. -
FIG. 22 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by flag bits on each physical page. -
FIG. 23 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by a translation table stored in the memory array. -
FIG. 24 is an illustration of a memory array of a preferred embodiment in which a two-state-per-cell one-time programmable portion, a two-state-per-cell rewritable portion, and a four-state-per-cell one-time programmable portion are indicated by flag bits on each physical page. -
FIG. 25 is a flow chart of a preferred embodiment for using chip flags and an off-chip bad block mechanism. - It has been known that by applying electrical pulses, the resistance of a resistor formed of doped polycrystalline silicon, or polysilicon, can be trimmed, adjusting it between stable resistance states. Such trimmable resistors have been used as elements in integrated circuits.
- It is not conventional to use a trimmable polysilicon resistor to store a data state in a nonvolatile memory cell, however. Making a memory array of polysilicon resistors presents difficulties. If resistors are used as memory cells in a large cross-point array, when voltage is applied to a selected cell, there will be undesired leakage through half-selected and unselected cells throughout the array. For example, turning to
FIG. 1 , suppose a voltage is applied between bitline B and wordline A to set, reset, or sense selected cell S. Current is intended to flow through selected cell S. Some leakage current, however, may flow on alternate paths, for example between bitline B and wordline A through unselected cells U1, U2, and U3. Many such alternate paths may exist. - Leakage current can be greatly reduced by forming each memory cell as a two-terminal device including a diode. A diode has a non-linear I-V characteristic, allowing very little current flow below a turn-on voltage, and substantially higher current flow above the turn-on voltage. In general a diode also acts as one-way valves passing current more easily in one direction than the other. Thus, so long as biasing schemes are selected that assure that only the selected cell is subjected to a forward current above the turn-on voltage, leakage current along unintended paths (such as the U1-U2-U3 sneak path of
FIG. 1 ) can be greatly reduced. - Herner et al., U.S. patent application Ser. No. 10/955,549, “Nonvolatile Memory Cell Without a Dielectric Antifuse Having High- and Low-Impedance States,” filed Sep. 29, 2004, hereinafter the '549 application and hereby incorporated by reference, describes a monolithic three dimensional memory array in which the data state of a memory cell is stored in the resistivity state of the polycrystalline semiconductor material of a semiconductor junction diode. This memory cell is a one-time-programmable cell having two data states. The diode is formed in a high-resistivity state; application of a programming voltage permanently transforms the diode to a low-resistivity state.
- In embodiments of the present invention, by applying appropriate electrical pulses, a memory element formed of doped semiconductor material, for example the semiconductor diode of the '549 application, can achieve three, four, or more stable resistivity states. In other embodiments of the present invention, semiconductor material can be converted from an initial high-resistivity state to a lower-resistivity state; then, upon application of an appropriate electrical pulse, can be returned to a higher-resistivity state. These embodiments can be employed independently or combined to form a memory cell which can have two or more data states, and can be one-time-programmable or rewriteable.
- As noted, including a diode between conductors in the memory cell allows its formation in a highly dense cross-point memory array. In preferred embodiments of the present invention, then, a polycrystalline, amorphous, or microcrystalline semiconductor memory element either is formed in series with a diode or, more preferably, is formed as the diode itself.
- In this discussion, transition from a higher- to a lower-resistivity state will be called a set transition, affected by a set current, a set voltage, or a set pulse; while the reverse transition, from a lower- to a higher-resistivity state, will be called a reset transition, affected by a reset current, a reset voltage, or a reset pulse.
- In preferred one-time-programmable embodiments, a polycrystalline semiconductor diode is paired with a dielectric rupture antifuse, though in other embodiments the antifuse may be omitted.
-
FIG. 2 illustrates a memory cell formed according to a preferred embodiment of the present invention. Abottom conductor 12 is formed of a conductive material, for example tungsten, and extends in a first direction. Barrier and adhesion layers may be included inbottom conductor 12.Polycrystalline semiconductor diode 2 has a bottom heavily doped n-type region 4; anintrinsic region 6, which is not intentionally doped; and a top heavily dopedregion 8, though the orientation of this diode may be reversed. Such a diode, regardless of its orientation, will be referred to as a p-i-n diode. Dielectric rupture antifuse 14 is included in some embodiments.Top conductor 16 may be formed in the same manner and of the same materials asbottom conductor 12, and extends in a second direction different from the first direction.Polycrystalline semiconductor diode 2 is vertically disposed betweenbottom conductor 12 andtop conductor 16.Polycrystalline semiconductor diode 2 is formed in a high-resistivity state. This memory cell can be formed above a suitable substrate, for example above a monocrystalline silicon wafer.FIG. 3 shows a portion of a memory level of such devices formed in a cross-point array, wherediodes 2 are disposed betweenbottom conductors 12 and top conductors 16 (antifuses 14 are omitted in this view.) Multiple memory levels can be stacked over a substrate to form a highly dense monolithic three dimensional memory array. - In this discussion a region of semiconductor material which is not intentionally doped is described as an intrinsic region. It will be understood by those skilled in the art, however, that an intrinsic region may in fact include a low concentration of p-type or n-type dopants. Dopants may diffuse into the intrinsic region from adjacent regions, or may be present in the deposition chamber during deposition due to contamination from an earlier deposition. It will further be understood that deposited intrinsic semiconductor material (such as silicon) may include defects which cause it to behave as if slightly n-doped. Use of the term “intrinsic” to describe silicon, germanium, a silicon-germanium alloy, or some other semiconductor material is not meant to imply that this region contains no dopants whatsoever, nor that such a region is perfectly electrically neutral.
- The resistivity of doped polycrystalline or microcrystalline semiconductor material, for example silicon, can be changed between stable states by applying appropriate electrical pulses. It has been found that in preferred embodiments, set transitions are advantageously performed with the diode under forward bias, while reset transitions are most readily achieved and controlled with the diode under reverse bias. In some instances, however, set transitions may be achieved with the diode under reverse bias, while reset transitions are achieved with the diode under forward bias.
- Semiconductor switching behavior is complex. For a diode, both set and reset transitions have been achieved with the diode under forward bias. Generally a reset pulse applied with the diode under forward bias which is sufficient to switch the polycrystalline semiconductor material making up a diode from a given resistivity state to a higher resistivity state will be lower amplitude than a corresponding set pulse (which will switch the same polysilicon semiconductor material from the same resistivity state to a lower resistivity state) and will have a longer pulse width.
- Switching under reverse bias shows a distinct behavior. Suppose a polysilicon p-i-n diode like the one shown in
FIG. 2 is subjected to a relatively large switching pulse under reverse bias. After application of the switching pulse a smaller read pulse, for example 2 volts, is applied, and the current flowing through the diode at the read voltage, called the read current, is measured. As the voltage of the switching pulse under reverse bias is increased in subsequent pulses, the subsequent read current at two volts changes as shown inFIG. 4 . It will be seen that initially as the reverse voltage and current of the switching pulse are increased, the read current, when a read voltage is applied after each switching pulse, increases; i.e. the initial transition of the semiconductor material (silicon, in this case) is in the set direction toward lower resistivity. Once the switching pulse reaches a certain reverse bias voltage, at point K inFIG. 4 , about −14.6 volts in this example, the read current abruptly begins to drop as reset is achieved and resistivity of the silicon increases. The switching voltage at which the set trend is reversed and the silicon of the diode begins to reset varies, depending on, for example, the resistivity state of the silicon making up the diode when application of the reverse bias switching pulse is begun. It will be seen, then, that by selecting appropriate voltages, either set or reset of the semiconductor material making up the diode can be achieved with the diode under reverse bias. - Distinct data states of the memory cell of the present invention correspond to resistivity states of polycrystalline or microcrystalline semiconductor material making up the diode, which are distinguished by detecting current flow through the memory cell (between
top conductor 16 and bottom conductor 12) when a read voltage is applied. Preferably the current flowing between any one distinct data state and any different distinct data state is at least a factor of two, to allow the difference between the states to be readily detectable. - The memory cell can be used as a one-time programmable cell or a rewriteable memory cell, and may have two, three, four, or more distinct data states. The cell can be converted from any of its data states to any other of its data states in any order, and under either forward or reverse bias.
- Several examples of preferred embodiments will be provided. It will be understood, however, that these examples are not intended to be limiting. It will be apparent to those skilled in the art that other methods of programming a two-terminal device comprising a diode and polycrystalline or microcrystalline semiconductor material will fall within the scope of the invention.
- One-time Programmable Multilevel Cell
- In a preferred embodiment of the present invention, a diode formed of polycrystalline semiconductor material and a dielectric rupture antifuse are arranged in series disposed between a top and bottom conductor. The two-terminal device is used as a one-time-programmable multilevel cell, in preferred embodiments having three or four distinct data states.
- A preferred memory cell is shown in
FIG. 2 .Diode 2 is preferably formed of a polycrystalline or microcrystalline semiconductor material, for example silicon, germanium, or an alloy of silicon and/or germanium.Diode 2 is most preferably polysilicon. In this example, bottom heavily dopedregion 4 is n-type and top heavily dopedregion 8 is p-type, though the polarity of the diode may be reversed. The memory cell comprises a portion of the top conductor, a portion of the bottom conductor, and a diode, the diode disposed between the conductors. - As formed, the polysilicon of
diode 2 is in a high-resistivity state, and dielectric rupture antifuse 14 is intact.FIG. 5 is a probability plot showing current of a memory cells in various states. Turning toFIG. 5 , when a read voltage, for example 2 volts, is applied betweentop conductor 16 and bottom conductor 12 (withdiode 2 under forward bias) the read current flowing betweentop conductor 16 andbottom conductor 12 is preferably in the range of nanoamps, for example less than about about 5 nanoamps. Area V on the graph ofFIG. 5 corresponds to a first data state of the memory cell. For some memory cells in the array, this cell will not be subjected to set or reset pulses, and this state will be read as a data state of the memory cell. This first data state will be referred to as the V state. - A first electrical pulse, preferably with
diode 2 under forward bias, is applied betweentop conductor 16 andbottom conductor 12. This pulse is, for example, between about 8 volts and about 12 volts, for example about 10 volts. The current is, for example, between about 80 and about 200 microamps. The pulse width is preferably between about 100 and about 500 nsec. This first electrical pulse ruptures dielectric rupture antifuse 14 and switches the semiconductor material ofdiode 2 from a first resistivity state to a second resistivity state, the second state lower resistivity than the first. This second data state will be referred to as the P state, and this transition is labeled “V→P” inFIG. 5 . The current flowing betweentop conductor 16 andbottom conductor 12 at a read voltage of 2 volts is about 10 microamps or more. The resistivity of the semiconductor material making updiode 2 is reduced by a factor of about 1000 to about 2000. In other embodiments the change in resistivity will be less, but between any data state and any other data state will be at least a factor of two, preferably at least a factor of three or five, and more typically a factor of 100 or more. Some memory cells in the array will be read at this data state, and will not be subjected to additional set or reset pulses. This second data state will be referred to as the P state. - A second electrical pulse, preferably with
diode 2 under reverse bias, is applied betweentop conductor 16 andbottom conductor 12. This pulse is, for example, between about −8 volts and about −14 volts, preferably about between about −10 and about −12 volts, preferably about −11 volts. The current is, for example, between about 80 and about 200 microamps. The pulse width is, for example, between about 100 nanosec and about 10 microseconds; preferably between about 100 nsec and about 1 microsecond, most preferably between about 200 and about 800 nsec. This second electrical pulse switches the semiconductor material ofdiode 2 from the second resistivity state to a third resistivity state, the third resistivity state higher resistivity than the second. The current flowing betweentop conductor 16 andbottom conductor 12 at a read voltage of 2 volts is between about 10 and about 500 nanoamps, preferably between about 100 and about 500 nanoamps. Some memory cells in the array will be read at this data state, and will not be subjected to additional set or reset pulses. This third data state will be referred to as the R state, and this transition is labeled “→R” inFIG. 5 . - To achieve the fourth data state, a third electrical pulse, preferably with
diode 2 under forward bias, is applied betweentop conductor 16 andbottom conductor 12. This pulse is, for example, between about 8 volts and about 12 volts, for example about 10 volts, with current between about 5 and about 20 microamps. This third electrical pulse switches the semiconductor material ofdiode 2 from the third resistivity state to a fourth resistivity state, the fourth resistivity state lower resistivity than the third, and preferably higher resistivity than the second resistivity state. The current flowing betweentop conductor 16 andbottom conductor 12 at a read voltage of 2 volts is between about 1.5 and about 4.5 microamps. Some memory cells in the array will be read at this data state, which will be referred to as the S state, and this transition is labeled “→S” inFIG. 5 . - The difference in current at the read voltage (for example 2 volts) is preferably at least a factor of two between any two adjacent data states. For example, the read current of any cell in data state R is preferably at least two times that of any cell in data state V, the read current of any cell in data state S is preferably at least two times that of any cell in data state R, and the read current of a cell in data state P is preferably at least two times that of any cell in data state S. For example, the read current at data state R may be two times the read current at data state V, the read current at data state S may be two times the read current at data state R, and the read current at data state P may be two times the read current at data state S. If the ranges are defined to be smaller, the difference could be considerably larger; for example, if the highest-current V state cell can have a read current of 5 nanoamps and the lowest-current R state call can have a read current of 100 nanoamps, the difference in current is at least a factor of 20. By selecting other limits, it can be assured that the difference in read current between adjacent memory states will be at least a factor of three.
- As will be described later, an iterative read-verify-write process may be applied to assure that a memory cell is in one of the defined data states after a set or reset pulse, and not between them.
- So far the difference between the highest current in one data state and the lowest current in the next highest adjacent data state has been discussed. The difference in read current in most cells in adjacent data states will be larger still; for example a memory cell in the V state may have a read current of 1 nanoamp, a cell in the R state may have a read current of 100 nanoamps, a cell in the S state may have a read current of 2 microamps (2000 nanoamps), and a cell in the P state may have a read current of 20 microamps. These currents in each adjacent state differ by a factor of ten or more.
- A memory cell having four distinct data states has been described. To aid in distinguishing between the data states, it may be preferred for three rather than four data states to be selected. Four example, a three-state memory cell can be formed in data state V, set to data state P, then reset to data state R. This cell will have no fourth data state S. In this case the difference between adjacent data states, for example between the R and P data states, can be significantly larger.
- A one-time programmable memory array of memory cells as described, each cell programmed to one of three distinct data states (in one embodiment) or one of four distinct data states (in an alternative embodiment), can be programmed as described. These are only examples; clearly there could be more than three or four distinct resistivity states and corresponding data states.
- In a memory array of one-time programmable memory cells, the cells may be programmed in a variety of ways, however. For example, turning to
FIG. 6 , the memory cell ofFIG. 2 may be formed in a first state, the V state. A first electrical pulse, preferably under forward bias, ruptures antifuse 14 and switches the polysilicon of the diode from a first resistivity state to a second resistivity state lower than the first, placing the memory cell in the P state, which in this example is the lowest resistivity state. A second electrical pulse, preferably under reverse bias, switches the polysilicon of the diode from the second resistivity state to a third resistivity state, the third resistivity state higher resistivity than the second, placing the memory cell in the S state. A third electrical pulse, preferably also under reverse bias, switches the polysilicon of the diode from the third resistivity state to a fourth resistivity state, the third resistivity state higher resistivity than the second, placing the memory cell in the R state. For any given memory cell, any of the data states, the V state, the R state, the S state, and the P state, can be read as a data state of the memory cell. Each transition is labeled inFIG. 6 . Four distinct states are shown; there could be three or more than four states as desired. - In still other embodiments, each successive electrical pulse can switch the semiconductor material of the diode to a successively lower resistivity state. As in
FIG. 7 , for example, the memory cell can proceed from the initial V state to the R state, from the R state to the S state, and from the S state to the P state, where for each state the read current is at least two times the read current at the previous state, each corresponding to a distinct data state. This scheme may be most advantageous when there is no antifuse included in the cell. In this example the pulses may be applied under either forward or reverse bias. In alternative embodiments there may be three data states or more than four data states. - In one embodiment, a memory cell includes the polysilicon or
microcrystalline diode 2 shown inFIG. 8 , including bottom heavily doped p-type region 4, middle intrinsic or lightly dopedregion 6, and top heavily doped n-type region 8. As in prior embodiments, thisdiode 2 can be arranged in series with a dielectric rupture antifuse, the two disposed between top and bottom conductors. Bottom heavily doped p-type region 4 may be in situ doped, i.e. doped by flowing a gas that provides a p-type dopant such as boron during deposition of the polysilicon, such that dopant atoms are incorporated into the film as it forms. - Turning to
FIG. 9 , it has been found that this memory cell is formed in the V state, where the current betweentop conductor 16 andbottom conductor 12 is less than about 80 nanoamps at a read voltage of 2 volts. A first electrical pulse, preferably applied under forward bias of, for example, about 8 volts, ruptures dielectric rupture antifuse 14, if it is present, and switches the polysilicon ofdiode 2 from a first resistivity state to a second resistivity state, the second resistivity state lower than the first, placing the memory cell in data state P. In data state P, the current betweentop conductor 16 andbottom conductor 12 at the read voltage is between about 1 microamp and about 4 microamps. A second electrical pulse, preferably applied in reverse bias, switches the polysilicon ofdiode 2 from the second resistivity state to a third resistivity state, the third resistivity state lower than the first. The third resistivity state corresponds to data state M. In data state M, the current betweentop conductor 16 andbottom conductor 12 at the read voltage is above about 10 microamps. As in prior embodiments, the difference in current between any cell in adjacent data states (the highest-current cell of state V and the lowest-current cell of state P, or between the highest-current cell of state P and and the lowest-current cell of state M) is preferably at least a factor of two, preferably a factor of three or more. Any of the data states V, P, or M can be detected as a data state of the memory cell. -
FIG. 4 showed that when a semiconductor diode is subjected to reverse bias, in general the semiconductor material initially undergoes a set transition to lower resistivity, then, as voltage is increased, undergoes a reset transition to higher resistivity. For this particular diode, with top heavily doped n-type region 8, and preferably with bottom heavily dopedregion 4 formed by in situ doping with a p-type dopant, the switch from set transition to reset transition with increasing reverse bias voltage does not occur as abruptly or as steeply as with other embodiments of the diode. This means a set transition under reverse bias is easier to control with such a diode. - Rewritable Memory Cell
- In another set of embodiments, the memory cell behaves as a rewriteable memory cell, which is repeatably switchable between two or between three data states.
-
FIG. 10 shows a memory cell that may serve as a rewriteable memory cell. This memory cell is the same as the one shown inFIG. 2 , except no dielectric rupture antifuse is included. Most rewriteable embodiments do not include an antifuse in the memory cell, though one may be included if desired. - Turning to
FIG. 11 , in a first preferred embodiment, the memory cell is formed in a high resistivity state V, with current at 2 volts about 5 nanoamps or less. For most rewriteable embodiments the initial V state does not serve as a data state of the memory cell. A first electrical pulse, preferably withdiode 2 under forward bias, is applied betweentop conductor 16 andbottom conductor 12. This pulse is, for example, between about 8 and about 12 volts, preferably about 10 volts. This first electrical pulse switches the semiconductor material ofdiode 2 from a first resistivity state to a second resistivity state P, the second state lower resistivity than the first. In preferred embodiments, the P state also will not serve as a data state of the memory cell. In other embodiments, the P state will serve as a data state of the memory cell. - A second electrical pulse, preferably with
diode 2 under reverse bias, is applied betweentop conductor 16 andbottom conductor 12. This pulse is, for example, between about −8 and about −14 volts, preferably between about −9 and about −13 volts, more preferably about −10 or −11 volts. The voltage required will vary with the thickness of the intrinsic region. This second electrical pulse switches the semiconductor material ofdiode 2 from the second resistivity state to a third resistivity state R, the third state higher resistivity than the second. In preferred embodiments the R state corresponds to a data state of the memory cell. - A third electrical pulse can be applied between
top conductor 16 andbottom conductor 12, preferably under forward bias. This pulse is, for example, between about 5.5 and about 9 volts, preferably about 6.5 volts, with current between about 10 and about 200 microamps, preferably between about 50 and about 100 microamps. This third electrical pulse switches the semiconductor material ofdiode 2 from the third resistivity state R to a fourth resistivity state S, the fourth state lower resistivity than the third. In preferred embodiments the S state corresponds to a data state of the memory cell. - In this rewriteable, two-state embodiment, the R state and the S state are sensed, or read, as data states. The memory cell can repeatedly be switched between these two states. For example, a fourth electrical pulse, preferably with
diode 2 under reverse bias, switches the semiconductor material of the diode from the fourth resistivity state S to the fifth resistivity state R, which is substantially the same as the third resistivity state R. A fifth electrical pulse, preferably withdiode 2 under forward bias, switches the semiconductor material of the diode from the fifth resistivity state R to the sixth resistivity state S, which is substantially the same as the fourth resistivity state S, and so on. It may be more difficult to return the memory cell to the initial V state and the second P state; thus these states may not be used as data states in a rewriteable memory cell. It may be preferred for both the first electrical pulse, which switches the cell from the initial V state to the P state, and the second electrical pulse, which switches the cell from the P state to the R state, to be performed before the memory array reaches the end user, for example in a factory or test facility, or by a distributor before sale. In other embodiments, it may be preferred for only the first electric pulse, which switches the cell from the initial V state to the P state, to be performed before the memory array reaches the end user. - As will be seen from
FIG. 11 , in the example provided, the difference between current flow under read voltage, for example of 2 volts, betweentop conductor 16 andbottom conductor 12 between any cell in one data state and any cell in an adjacent data states, in this case the R data state (between about 10 and about 500 nanoamps) and the S data state (between about 1.5 and about 4.5 microamps), is at least a factor of three. Depending on the ranges selected for each data state, the difference may be a factor of two, three, five, or more. - In alternative embodiments, a rewriteable memory cell can be switched between three or more data states, in any order. Either set or reset transitions can be performed with the diode under either forward or reverse bias.
- In both the one-time programmable and rewriteable embodiments described, note that the data state corresponds to the resistivity state of polycrystalline or microcrystalline semiconductor material making up a diode. The data states does not correspond to the resistivity state of a resistivity-switching metal oxide or nitride, as in Herner et al., U.S. patent application Ser. No. 11/395,995, “Nonvolatile Memory Cell Comprising a Diode and a Resistance-Switching Material,” filed Mar. 31, 2006, owned by the assignee of the present invention and hereby incorporated by reference.
- Reverse Bias Set and Reset
- In an array of memory cells formed and programmed according to the embodiments described so far, any step in which cells are subjected to large voltages in reverse bias has reduced leakage current as compared to a forward bias step.
- Turning to
FIG. 12 , suppose 10 volts is to be applied in forward bias across the selected cell S. (The actual voltage to be used will depend on many factors, including the construction of the cell, dopant levels, height of the intrinsic region, etc.; 10 volts is merely an example.) Bitline B0 is set at 10 volts and wordline W0 is set at ground. To assure that half-selected cells F (which share bitline B0 with selected cell S) remain below the turn-on voltage of the diode, wordline W1 is set less than but relatively close to the voltage of bitline B0; for example wordline W1 may be set to 9.3 volts, so that 0.7 volts is applied across the F cells (only one F cell is shown, but there may be hundreds, thousands or more.) Similarly, to assure that half-selected cells H (which share wordline W0 with selected cell S) remain below the turn-on voltage of the diode, bitline B1 is set higher than but relatively close to the voltage of wordline W0; for example bitline B1 may be set to 0.7 volts, so that 0.7 volts is applied across cell H (again, there may be thousands of H cells.) The unselected cells U, which share neither wordline W0 or bitline B0 with selected cell S, are subjected to −8.6 volts. As there may be millions of unselected cells U, this results in significant leakage current within the array. -
FIG. 13 shows an advantageous biasing scheme to apply a large reverse bias across a memory cell, for example as a reset pulse. Bitline B0 is set at −5 volts and wordline W0 at 5 volts, so that −10 volts is applied across selected cell S; the diode is in reverse bias. Setting wordline W1 and bitline B1 at ground subjects both half-selected cells F and H to −5 volts, at a reverse bias low enough not to cause unintentional set or reset of these cells. Set or reset in reverse bias generally seems to take place at or near the voltage at which the diode goes into reverse breakdown, which is generally higher than −5 volts. - With this scheme, there is no voltage across the unselected cells U, resulting in no reverse leakage. As a result, as described further in, for example, Scheuerlein et al., U.S. application Ser. No. xx/xxx,xxx, “Dual Data-Dependent Busses for Coupling Read/Write Circuits to a Memory Array,” (Attorney Docket No. 023-0051), filed on even day herewith and earlier incorporated by reference, bandwidth can be increased significantly.
- The biasing scheme of
FIG. 13 is just one example; clearly many other schemes can be used. For example bitline B0 can be set at 0 volts, wordline W0 at −10 volts, and bitline B1 and wordline W1 at −5 volts. The voltage across selected cell S, half-selected cells H and F, and unselected cells U will be the same as in the scheme ofFIG. 13 . In another example, bitline B0 is set at ground, wordline W0 at 10 volts, and bitline B1 and wordline W1 each at 5 volts. - Iterative Set and Reset
- So far this discussion has described applying an appropriate electrical pulse to switch the semiconductor material of a diode from one resistivity state to a different resistivity state, thus switching the memory cell between two distinct data states. In practice, these set and reset steps may be iterative processes.
- As described, the difference between current flow during read in adjacent data states is preferably at least a factor of two; in many embodiments, it may be preferred to establish current ranges for each data state which are separated by a factor of three, five, ten, or more.
- Turning to
FIG. 14 , as described, data state V may be defined as read current of 5 nanoamps or less at a read voltage of 2 volts, data state R as read current between about 10 and about 500 nanoamps, data state S as read current between about 1.5 and about 4.5 microamps, and data state P as read current above about 10 microamps. Those skilled in the art will appreciate that these are examples only. In another embodiment, for example, data state V may be defined in a smaller range, with read current about 5 nanoamps or less at a read voltage of 2 volts. Actual read currents will vary with characteristics of the cell, construction of the array, read voltage selected, and many other factors. - Suppose a one-time programmable memory cell is in data state P. An electrical pulse in reverse bias is applied to the memory cell to switch the cell into data state S. In some instances, however, it may be that after application of the electrical pulse, the read current is not in the desired range; i.e. the resistivity state of the semiconductor material of the diode is higher or lower than intended. For example, suppose after application of the electrical pulse, the read current of the memory cell is at the point on the graph shown at Q, in between the S state and P state current ranges.
- After an electrical pulse is applied to switch the memory cell to a desired data state, the memory cell may be read to determine if the desired data state was reached. If the desired data state was not reached, an additional pulse is applied. For example, when the current Q is sensed, an additional reset pulse is applied to increase the resistivity of the semiconductor material, decreasing the read current into the range corresponding to the S data state. As described earlier, this set pulse may be applied in either forward or reverse bias. The additional pulse or pulses may have a higher amplitude (voltage or current) or longer or shorter pulse width than the original pulse. After the additional set pulse, the cell is read again, then set or reset pulses applied as appropriate until the read current is in the desired range.
- In a two-terminal device, such as the memory cell including a diode described, it will be particularly advantageous to read in order to verify the set or reset and to adjust if necessary. Applying a large reverse bias across the diode may damage the diode; thus when performing a set or reset with the diode under reverse bias, it is advantageous to minimize the reverse bias voltage.
- Fabrication Considerations
- Herner et al., U.S. patent application Ser. No. 11/148,530, “Nonvolatile Memory Cell Operating by Increasing Order in Polycrystalline Semiconductor Material,” filed Jun. 8, 2006; and Herner, U.S. patent application Ser. No. 10/954,510, “Memory Cell Comprising a Semiconductor Junction Diode Crystallized Adjacent to a Silicide,” filed Sep. 29, 2004, both owned by the assignee of the present invention and both hereby incorporated by reference, describe that crystallization of polysilicon adjacent to an appropriate silicide affects the properties of the polysilicon. Certain metal silicides, such as cobalt silicide and titanium silicide, have a lattice structure very close to that of silicon. When amorphous or microcrystalline silicon is crystallized in contact with one of these silicides, the crystal lattice of the silicide provides a template to the silicon during crystallization. The resulting polysilicon will be highly ordered, and relatively low in defects. This high-quality polysilicon, when doped with a conductivity-enhancing dopant, is relatively highly conductive as formed.
- When, in contrast, an amorphous or microcrystalline silicon material is crystallized not in contact with a silicon having a silicide with which it has a good lattice match, for example in contact only with materials such as silicon dioxide and titanium nitride, with which it has a significant lattice mismatch, the resulting polysilicon will have many more defects, and doped polysilicon crystallized this way will be much less conductive as formed.
- In aspects of the present invention, the semiconductor material forming a diode is switched between two or more resistivity states, changing the current flowing through the diode at a given read voltage, the different currents (and resistivity states) corresponding to distinct data states. It has been found that diodes formed of high-defect silicon (or other appropriate semiconductor materials such as germanium or silicon-germanium alloys) which has not been crystallized adjacent to a silicide or analogous material providing a crystallization template exhibit the most advantageous switching behavior.
- Without wishing to be bound by any particular theory, it is believed that one possible mechanism behind the observed changes in resistivity is that set pulses above the threshold amplitude cause dopant atoms to move out of grain boundaries, where they are inactive, into the body of a crystal where they will increase conductivity and lower the resistance of the semiconductor material. In contrast, reset pulses may cause dopant atoms to move back to the grain boundaries, lowering conductivity and increasing resistance. It may be, however, that other mechanisms, such as an increase and decrease in degree of order of the polycrystalline material, are operating as well or instead.
- It has been found that the resistivity state of very low-defect silicon crystallized adjacent to an appropriate silicide cannot be switched as readily as when the semiconductor material has a higher level of defects. It may be that the presence of defects, or of a larger number of grain boundaries, allows for easier switching. In preferred embodiments, then, the polycrystalline or microcrystalline material forming the diode is not crystallized adjacent to a material with which it has a small lattice mismatch. A small lattice mismatch is, for example, a lattice mismatch of about three percent or less.
- Evidence has suggested that switching behavior may be centered on changes in the intrinsic region. Switching behavior has been observed in resistors and p-n diodes as well, and is not limited to p-i-n diodes, but it is believed that the use of p-i-n diodes may be particularly advantageous. The embodiments described so far included a p-i-n diode. In other embodiments, however, the diode may be a p-n diode instead, with little or no intrinsic region.
- A detailed example will be provided describing fabrication of a preferred embodiment of the present invention. Fabrication details from Herner et al., U.S. patent application Ser. No. 10/320,470, “An Improved Method for Making High Density Nonvolatile Memory,” filed Dec. 19, 2002, and since abandoned, hereby incorporated by reference, will be useful in formation of the diode of these embodiments, as will information from the '549 application. Useful information may also be derived from Herner et al., U.S. patent application Ser. No. 11/015,824, “Nonvolatile Memory Cell Comprising a Reduced Height Vertical Diode,” filed Dec. 17, 2004, assigned to the assignee of the present invention and hereby incorporated by reference. To avoid obscuring the invention not all of the detail from these applications will be included, but it will be understood that no information from these applications is intended to be excluded.
- Fabrication of a single memory level will be described in detail. Additional memory levels can be stacked, each monolithically formed above the one below it. In this embodiment, a polycrystalline semiconductor diode will serve as the switchable memory element.
- Turning to
FIG. 15 a, formation of the memory begins with asubstrate 100. Thissubstrate 100 can be any semiconducting substrate as known in the art, such as monocrystalline silicon, IV-IV compounds like silicon-germanium or silicon-germanium-carbon, III-V compounds, II-VII compounds, epitaxial layers over such substrates, or any other semiconducting material. The substrate may include integrated circuits fabricated therein. - An insulating
layer 102 is formed oversubstrate 100. The insulatinglayer 102 can be silicon oxide, silicon nitride, high-dielectric film, Si—C—O—H film, or any other suitable insulating material. - The
first conductors 200 are formed over the substrate and insulator. Anadhesion layer 104 may be included between the insulatinglayer 102 and theconducting layer 106 to help conductinglayer 106 adhere to insulatinglayer 102. If the overlying conducting layer is tungsten, titanium nitride is preferred asadhesion layer 104. - The next layer to be deposited is conducting
layer 106. Conductinglayer 106 can comprise any conducting material known in the art, such as tungsten, or other materials, including tantalum, titanium, copper, cobalt, or alloys thereof. - Once all the layers that will form the conductor rails have been deposited, the layers will be patterned and etched using any suitable masking and etching process to form substantially parallel, substantially
coplanar conductors 200, shown inFIG. 15 a in cross-section. In one embodiment, photoresist is deposited, patterned by photolithography and the layers etched, and then the photoresist removed using standard process techniques.Conductors 200 could be formed by a Damascene method instead. - Next a
dielectric material 108 is deposited over and between conductor rails 200.Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used asdielectric material 108. - Finally, excess
dielectric material 108 on top ofconductor rails 200 is removed, exposing the tops ofconductor rails 200 separated bydielectric material 108, and leaving a substantiallyplanar surface 109. The resulting structure is shown inFIG. 15 a. This removal of dielectric overfill to formplanar surface 109 can be performed by any process known in the art, such as chemical mechanical planarization (CMP) or etchback. An etchback technique that may advantageously be used is described in Raghuram et al., U.S. application Ser. No. 10/883417, “Nonselective Unpatterned Etchback to Expose Buried Patterned Features,” filed Jun. 30, 2004 and hereby incorporated by reference. At this stage, a plurality of substantially parallel first conductors have been formed at a first height abovesubstrate 100. - Next, turning to
FIG. 15 b, vertical pillars will be formed above completed conductor rails 200. (To savespace substrate 100 is not shown inFIG. 15 b; its presence will be assumed.) Preferably abarrier layer 110 is deposited as the first layer after planarization of the conductor rails. Any suitable material can be used in the barrier layer, including tungsten nitride, tantalum nitride, titanium nitride, or combinations of these materials. In a preferred embodiment, titanium nitride is used as the barrier layer. Where the barrier layer is titanium nitride, it can be deposited in the same manner as the adhesion layer described earlier. - Next semiconductor material that will be patterned into pillars is deposited. The semiconductor material can be silicon, germanium, a silicon-germanium alloy, or other suitable semiconductors, or semiconductor alloys. For simplicity, this description will refer to the semiconductor material as silicon, but it will be understood that the skilled practitioner may select any of these other suitable materials instead.
- In preferred embodiments, the pillar comprises a semiconductor junction diode. The term junction diode is used herein to refer to a semiconductor device with the property of non-ohmic conduction, having two terminal electrodes, and made of semiconducting material which is p-type at one electrode and n-type at the other. Examples include p-n diodes and n-p diodes, which have p-type semiconductor material and n-type semiconductor material in contact, such as Zener diodes, and p-i-n diodes, in which intrinsic (undoped) semiconductor material is interposed between p-type semiconductor material and n-type semiconductor material.
- Bottom heavily doped
region 112 can be formed by any deposition and doping method known in the art. The silicon can be deposited and then doped, but is preferably doped in situ by flowing a donor gas providing n-type dopant atoms, for example phosphorus, during deposition of the silicon. Heavily dopedregion 112 is preferably between about 100 and about 800 angstroms thick. -
Intrinsic layer 114 can be formed by any method known in the art.Layer 114 can be silicon, germanium, or any alloy of silicon or germanium and has a thickness between about 1100 and about 3300 angstroms, preferably about 2000 angstroms. - Returning to
FIG. 15 b, semiconductor layers 114 and 112 just deposited, along withunderlying barrier layer 110, will be patterned and etched to formpillars 300.Pillars 300 should have about the same pitch and about the same width asconductors 200 below, such that eachpillar 300 is formed on top of aconductor 200. Some misalignment can be tolerated. - The
pillars 300 can be formed using any suitable masking and etching process. For example, photoresist can be deposited, patterned using standard photolithography techniques, and etched, then the photoresist removed. Alternatively, a hard mask of some other material, for example silicon dioxide, can be formed on top of the semiconductor layer stack, with bottom antireflective coating (BARC) on top, then patterned and etched. Similarly, dielectric antireflective coating (DARC) can be used as a hard mask. - The photolithography techniques described in Chen, U.S. application Ser. No. 10/728436, “Photomask Features with Interior Nonprinting Window Using Alternating Phase Shifting,” filed Dec. 5, 2003; or Chen, U.S. application Ser. No. 10/815312, Photomask Features with Chromeless Nonprinting Phase Shifting Window,” filed Apr. 1, 2004, both owned by the assignee of the present invention and hereby incorporated by reference, can advantageously be used to perform any photolithography step used in formation of a memory array according to the present invention.
-
Dielectric material 108 is deposited over and between thesemiconductor pillars 300, filling the gaps between them.Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used as the insulating material. - Next the dielectric material on top of the
pillars 300 is removed, exposing the tops ofpillars 300 separated bydielectric material 108, and leaving a substantially planar surface. This removal of dielectric overfill can be performed by any process known in the art, such as CMP or etchback. After CMP or etchback, ion implantation is performed, forming heavily doped p-type top region 116. The p-type dopant is preferably boron or BCl3. This implant step completes formation ofdiodes 111. The resulting structure is shown inFIG. 15 b. In the diodes just formed, bottom heavily dopedregions 112 are n-type while top heavily dopedregions 116 are p-type; clearly the polarity could be reversed. - Turning to
FIG. 15 c, next dielectric rupture antifuselayer 118 is formed on top of each heavily dopedregion 116.Antifuse 118 is preferably a silicon dioxide layer formed by oxidizing the underlying silicon in a rapid thermal anneal, for example at about 600 degrees.Antifuse 118 may be about 20 angstroms thick. Alternatively, antifuse 118 can be deposited. -
Top conductors 400 can be formed in the same manner asbottom conductors 200, for example by depositingadhesion layer 120, preferably of titanium nitride, andconductive layer 122, preferably of tungsten.Conductive layer 122 andadhesion layer 120 are then patterned and etched using any suitable masking and etching technique to form substantially parallel, substantiallycoplanar conductors 400, shown inFIG. 15 c extending left-to-right across the page. In a preferred embodiment, photoresist is deposited, patterned by photolithography and the layers etched, and then the photoresist removed using standard process techniques. - Next a dielectric material (not shown) is deposited over and between conductor rails 400. The dielectric material can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon oxide is used as this dielectric material.
- Formation of a first memory level has been described. Additional memory levels can be formed above this first memory level to form a monolithic three dimensional memory array. In some embodiments, conductors can be shared between memory levels; i.e.
top conductor 400 would serve as the bottom conductor of the next memory level. In other embodiments, an interlevel dielectric (not shown) is formed above the first memory level ofFIG. 15 c, its surface planarized, and construction of a second memory level begins on this planarized interlevel dielectric, with no shared conductors. - A monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a wafer, with no intervening substrates. The layers forming one memory level are deposited or grown directly over the layers of an existing level or levels. In contrast, stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Pat. No. 5,915,167, “Three dimensional structure memory.” The substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
- A monolithic three dimensional memory array formed above a substrate comprises at least a first memory level formed at a first height above the substrate and a second memory level formed at a second height different from the first height. Three, four, eight, or indeed any number of memory levels can be formed above the substrate in such a multilevel array.
- An alternative method for forming a similar array in which conductors are formed using Damascene construction is described in Radigan et al., U.S. patent application Ser. No. 11/444,936, “Conductive Hard Mask to Protect Patterned Features During Trench Etch,” filed May 31, 2006, assigned to the assignee of the present invention and hereby incorporated by reference. The methods of Radigan et al. may be used instead to form an array according to the present invention.
- Alternative Embodiments
- In addition to those already described, many alternative embodiments of a memory cell having its data state stored in the resistivity state of polycrystalline or microcrystalline semiconductor material are possible and fall within the scope of the invention. A few other possible embodiments will be mentioned, but this list cannot and is not intended to be exhaustive.
-
FIG. 16 shows aswitchable memory element 117 formed in series with adiode 111. Theswitchable memory element 117 is formed of semiconductor material which is switched between resistivity states using electrical pulses as described. The diode is preferably crystallized adjacent to a silicide such as cobalt silicide, which provides a crystallization template, as described earlier, such that the semiconductor material of the diode is very low-defect and exhibits little or no switching behavior.Switchable memory element 117 is preferably doped, and should be doped to the same conductivity type as top heavily dopedregion 116. Methods to fabricate this device are described in the '167 application. - Detailed methods of fabrication have been described herein, but any other methods that form the same structures can be used while the results fall within the scope of the invention.
- Exemplary Applications
- The above embodiments describe how a single memory cell can be used as a two-data-state memory cell, a more-than-two-data-state memory cell, a one-time programmable memory cell, or a rewritable memory cell. This versatility allows a common memory cell architecture to be used to provide multiple types of memory products. The following is a discussion of the multi-use nature of the memory cell and its potential to provide a mixed-use memory array.
- The memory cell described above has a memory element comprising a switchable resistance material, such as a semiconductor material, that is configurable to one of at least three resistivity states. A memory element can be “configured” to a resistivity state during the formation of the memory element (e.g., the initial, unprogrammed state of a memory element has an initial resistivity state) or by subsequently subjecting the memory element to set or reset pulses. Because of this characteristic, a single memory cell can act in two different ways: as a one-time programmable memory cell or a rewritable memory cell. Also because of this characteristic, a single memory cell can use two data states or more than two data states. Accordingly, any given manufactured memory cell has the potential of being operable as a one-time programmable memory cell or a rewritable memory cell with two or more data states.
- As shown in the figures and discussion above, there is one resistivity state that is used to represent a data state of a memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell. In other words, there is an “extra” state possible in the memory cell when the memory cell is used as a one-time programmable memory cell. For example, with reference to the memory cell described above and in conjunction with
FIGS. 5 and 11 , the memory cell is manufactured in an initial resistivity state (the V state), and this resistivity state is used when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell. Two other data states (the R and S states) are used to represent data states of the memory cell when the memory cell operates as a rewritable memory cell. (As described below, these data states can also be used in a one-time programmable memory cell.) These data states are achieved by varying the resistance of the switchable resistance material. Again, these other data states do not include the data state that is only used to represent a data state when the memory cell operates as a one-time programmable memory cell. Additional data state(s) (e.g., an “R2” data state between the R state and the S state) can be used to allow a rewritable memory cell to achieve three or more respective data states. - It should be noted that, in one preferred embodiment, the memory element comprises a switchable resistance material (e.g., a semiconductor material) in series with an antifuse, and the V state is the resistivity state used only when the memory cell operates as a one-time programmable memory cell. This is because, once the antifuse is blown, the memory element cannot go back to the V state. However, even when an antifuse is not used, one resistivity state can be designated as the state that is only used when the memory cell operates as a one-time programmable memory cell. It should also be noted that the P state can also be a resistivity state that is used when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell. However, in some embodiments, instead of or in addition to the P state, one or both of the R and S states are used to represent a data state of a one-time programmable memory cell, such as when the one-time programmable memory cell stores three or four data states. In such a situation, the one-time programmable and rewritable uses of the memory cell would have a resistivity state in common. For example, instead of a one-time programmable memory cell and a rewritable memory cell having unique states (e.g., the V state and the P state for one-time programmable, and the R state and the S state for rewritable), a one-time programmable memory cell can have one state in common with a rewritable memory cell (e.g., where there is no distinction between the S state and the P state). Nevertheless, there would still be at least one resistivity state (e.g., the V state) that would be used to represent a data state of the memory cell when the memory cell operates as a one-time programmable memory cell but not when the memory cell operates as a rewritable memory cell.
- One advantage of this versatility is that a single integrated circuit with such memory cells can be designated either as a one-time programmable memory array or as a rewritable memory array. This provides flexibility in manufacturing and yield enhancement. To determine whether a memory array should be used as a one-time programmable memory array or as a rewritable memory array, a set of test memory cells (e.g., test rows and columns) in the memory array can be tested during manufacturing (or after). For example, the test memory cells can be exercised by repeatedly programming, reseting, and setting the memory cells. U.S. Pat. No. 6,407,953, which is assigned to the assignee of the present invention and is hereby incorporated by reference, describes a suitable testing technique. Based on the results of this testing, one can predict whether or not the memory array will program correctly as a rewritable memory array. For example, if the testing shows difficultly in distinguishing between the R and S states, which are used when the memory array operates as a rewritable memory array, the part will probably not program correctly as a rewritable memory array. However, because the cells in the memory array can operate as either one-time programmable memory cells or rewritable memory cells, instead of discarding the part because it did not provide the expected rewritable yield, the part can be designated as a one-time programmable memory array. Accordingly, the common backbone architecture of the memory cells provides flexibility in manufacturing and yield enhancement.
- At this point, there can be a divergence in manufacturing. Memory arrays passing the test can go on to further formatting (e.g., all the memory cells being programmed from the V state to the P state, then exercised between the R and S states as a final qualification test) and then shipping to a store or end user as a rewritable memory array (e.g., a memory card for a digital camera). Memory arrays failing the test can be packaged and sent to a different part of the factory for programming one-time programmable content. Alternatively, the part can be sent to a store, with a store employee or end user field programming one-time programmable content (e.g., using a kiosk). The unprogrammed part can also be sold to the end user for use as archival memory.
- It is preferred that a flag be used to signal a device that reads and writes to the memory array (e.g., a controller on the memory device that includes the memory array or hardware/software in a host device) that the memory array is one-time programmable or rewritable. The “flag” can be one or more bits stored in the memory array. For example, a flag can be set in a special address location in the memory array (e.g., address 0000). When the host device detects the flag, it can adapt to the one-time programmable nature of the memory array by not attempting to reprogram it.
- Instead of using the entire memory array as either a one-time programmable memory array or a rewritable memory array, the memory array can be a “mixed-use” memory array. Since every single memory cell in the array can act either as a one-time programmable memory cell or as a rewritable memory cell, in this embodiment, a first set of memory cells operates as one-time programmable memory cells and a second, different set of memory cells operates as rewritable memory cells. In this way, one-time programmable memory cells and rewritable memory cells can be provided on the same integrated circuit. As above, testing can be performed to determine whether a given set of memory cells should be designated as one-time programmable memory cells or rewritable memory cells.
-
FIG. 17 is an illustration of amixed use array 200 of a preferred embodiment. A first set ofmemory cells 210 operates as one-time programmable memory cells and a second, different set ofmemory cells 220 operates as rewritable memory cells. In this embodiment, the memory cells in bothsets - “Content management bits” refers to information that relates to the management of programmed content. “Trim bits” are customized information that set various options in on-chip circuitry. In operation, the on-chip circuitry reads the trim bits in the first set of
memory cells 210, and the read trim bits control the further operation of the circuitry. For example, the trim bits could contain a setting for the preferred write/read value (current or voltage) of the write/read circuitry of the memory device. “Manufacturer data” can include the manufacturer's name and serial number. “Format data” indicates bad portions of the memory array; specifically, that a particular row and/or column in the memory array is bad and the location of a redundant row and/or column. Further information regarding redundancy can be found in U.S. patent application Ser. Nos. 10/402,385 and 10/024,646, which are assigned to the assignee of the present invention and are hereby incorporated by reference. Of course, these are merely examples, and other forms of information can be stored in the one-timeprogrammable memory cells 210. For example, the first set ofmemory cells 210 can contain game content data (i.e., computer program code for a game), and the second set ofmemory cells 220 can contain game state data (i.e., an indication of the user's location in the game when the user requests that the game be saved). Also, the data in either the first orsecond sets - In
FIG. 17 , there is only one section of one-time programmable memory cells and only one section of rewritable memory cells. In another embodiment, there is at least one additional set of memory cells operating as one-time programmable memory cells or rewritable memory cells.FIG. 18 shows such an embodiment, with two one-timeprogrammable sections rewritable sections 240, 260 (i.e., two adjacent sets of memory cells are not both one-time programmable or both rewritable). As above, any data can be stored in any of the sections. For example, game content data can be stored in the one-timeprogrammable sections rewritable sections - It should be noted that while
FIGS. 17 and 18 show the sets of memory cells being horizontally oriented, in an alternate embodiment, one or more sets of memory cells can be vertically oriented. For example, instead of having format data being in a horizontal row of memory cells, as shown inFIG. 17 , the format data can be in a vertical column of memory cells. In this way, the redundancy data would go across many pages. A mixed use of horizontally-oriented and vertically-oriented information can also be used. For example, the manufacturing data can be horizontally oriented, while the format data can be vertically oriented. - As shown in
FIG. 18 , each page of data can include one ormore flag bits 270 that indicate whether a page is one-time programmable or rewritable. InFIG. 18 , a “1” flag indicates one-time programmable, and a “0” flag indicates rewritable. Preferably, the flag is stored in a one-time programmable memory cell (even if the memory cell is in a rewritable section). Also, preferably, the default read conditions are optimized for one-time programmable data (so the one-time programmable flag bit and the trim bits, manufacturing data, etc. stored in the one-time programmable section(s) can be successfully read), and the read conditions are modified if the flag indicates rewritable data. One advantage of using flag bits is that it is virtually impossible for a one-time programmable memory cell to be used as a rewritable memory cell, and vice versa, because the flag is interpreted by on-chip write circuitry, which is programmed to prevent writing to a memory cell more than one time if the flag bit indicates that the memory cell is one-time programmable. - As an alternative to using flag bits, the calculation of address space and write control can be moved off-chip, for example, to hardware/software in a host device. For example, if the memory device is used as a game cartridge, software in the host device can use a pre-designated address space (known to the host device but not the memory) for storing game state data. Alternatively, the host device can be informed of the address space for game state data by information stored in the game content data in the memory array, in another one-time programmable portion of the memory array (e.g., a special address location in the memory array (e.g., address 0000)), or in a device controller, separate from the memory array, in the memory device.
- In the embodiments shown in
FIGS. 17 and 18 , the memory arrays were “mixed use” in the sense that some of the memory cells were one-time programmable and others were rewritable. In other embodiments, a “mixed use” memory array contains other “mixed” features instead of or in addition to the one-time programmable/rewritable feature. As before, a flag bit or other mechanism can be used to determine the nature of a given set of memory cells. For example, a first set of memory cells can be more reliable and have a wider temperature and voltage range than a second set of memory cells in the same memory array. - As another example, with the preferred memory cell structure described above, a given memory cell can either be (i) programmed with forward bias (e.g., as with a one-time programmable or rewritable memory cell) or (ii) programmed with reverse bias (e.g., as with a rewritable memory cell but not with a two-state one-time programmable memory cell). Stated another way, a one-time programmable memory cell can receive forward biasing programming only, while a rewritable memory cell can receive both forward and reverse biasing programming. This is shown in the circuit diagrams of
FIGS. 19 and 20 . Forward bias writing is described in more detail in U.S. Pat. No. 6,618,295, and reverse bias writing is described in more detail in U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0048) entitled “Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders” and U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0054) entitled “Method for Using a Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders,” each of which is assigned to the assignee of the present invention and is hereby incorporated by reference. Accordingly, a “mixed use” memory array can contain a first set of memory cells that are programmed with forward bias and a second set of memory cells that are programmed with reverse bias. The memory cells that are programmed with reverse bias can also be erased with forward bias. In an erase operation (as compared to a write operation), individual data bits in a page are not variable, as all bits are erased in the operation. Erase operations are described in more detail in U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0048) entitled “Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders” and U.S. patent application Ser. No. ______, (Attorney Docket No. 023-0054) entitled “Method for Using a Passive Element Memory Array Incorporating Reversible Polarity Word Line and Bit Line Decoders,” each of which is assigned to the assignee of the present invention and is hereby incorporated by reference. - The discussion so far has related to the use of a memory cell as either one-time programmable or rewritable and memory arrays having a mixture of one-time programmable and rewritable memory cells. However, as noted above, another multi-use aspect of the preferred memory cell is that the memory cell (whether one-time programmable or rewritable) can store two data states or more than two data states. Multiple test memory cells can be tested for each possible data state to determine how many data states can be stored in a memory array. For example, test memory cells can be tested at the V, P, S, and R data states to project whether the memory cell operates acceptably as a four-state one-time programmable memory array. If the test fails, the memory array can be used as a two-state memory array, with the appropriate flag being stored in the memory array.
- A mixed-use array can be used with one set of memory cells using X number of resistivity states to represent X data states, and a second set of memory cells using Y number of resistivity states to represent Y data states, where X≠Y. In this way, the number of data states stored in a memory cell can vary between sets of memory cells in the memory array. The various multi-uses and mixed uses described above can be combined. For example, first and second sets of memory cells in a memory array can use different numbers of data states and be both one-time programmable, be both rewritable, or be a mixture of one-time programmable and rewritable. In other words, multiple portions of a memory array can be any combination of one-time programmable memory cells and rewritable memory cells, with one portion storing X data states (e.g., two data states) and another portion storing Y data states (e.g., more than two data states). For example, a memory array can have a first set of memory cells that are one-time programmable and have more than two data states (e.g., for program data) and a second set of memory cells that are rewritable and have more than two data states (e.g., for use as a scratch pad memory). There can be more than two portions.
- The choice of how many data states to use in any set of memory cells can be determined by testing, as described above. For example, if testing for a four-state one-time programmable memory cell fails because the read circuitry could not distinguish between the V, P, and R states, the portion of the memory array containing those test cells can be used as a two-state rewritable portion. In that situation, the write circuitry can use an iterative write program, as described above, to verify and then re-program again to “push” the R state toward the V state and “push” the S state toward the P state. In other words, the iterative feedback mechanism “opens the space” between the R state and the S state.
- A mixed-use array of different data states recognizes the fact that, although each memory cell has the potential of storing more than two data states, the most efficient use of memory cells in a memory array may occur when not all the memory cells in the memory array store more than two states. For example, in one preferred embodiment, a first set of memory cells are used as two-state one-time programmable memory cells, and a second set of memory cells are used as four-state one-time programmable memory cells. This embodiment is illustrated in
FIG. 21 . In this embodiment, optimum circuit configuration settings for reading the four-state memory cells are stored in the two-state memory cells. For example, as shown inFIG. 21 , configuration bits inpage 0 indicate which pages are to be read with a two-state-per-cell read circuitry operation versus a four-state-per-cell read circuitry operation. The configuration bits also determine the limitation in useable bits in the two-state-per-cell pages. Whenpage 0 is written, the portion of the chip for the two-state data and the four-state data is configured. For one-time programmable memory cell usage,page 0 can be written several times adding additional configuration bits indicating additional portions for two-state data because configuration bits all set to logic one indicate that all but page zero are to be read as four-state data (i.e., the default configuration is to only readpage 0 as two-state data). The virgin one-time programmable memory cell state (the V state) is logical one. The default configuration and the interpretation of configuration bits is done by logic coding on the memory chip. Row numbers and page numbers are not necessarily equal, but a simple multiple (e.g., four pages to one row) is preferred. - Of course, other configurations are possible. For example, another application can have a third portion also as two-state per cell data based on manufacturing testing indicating less than optimum cells in the third portion of the memory array. In yet another application, the memory array has two-state one-time programmable memory cells in a first portion and more than two-state rewritable memory cells (e.g., using the R, S, and R1 states). The optimum circuit configurations are preferably stored in two-state one-time programmable memory cells. Further, the memory array can have two-state rewritable memory cells in a first portion and more than two-state rewritable memory cells in a second portion.
- Turning again to the drawings,
FIG. 22 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by flag bits on each physical page. The flag bit is preferably two-state-per-cell data. An even number of pages are associated with each row. A flag bit for odd pages read as one indicate the page is not available. Unavailable pages are also stored off the memory chip in control logic or software and can be reassigned by known redundancy/bad block mechanisms. Optionally, shared flag bit or bits per row can be used, where the flag is associated with multiple pages and indicates the number of states per cell for the row and the unavailability of some pages. It is preferred that an even number of pages per row be used. The block for bad block table use is preferably defined as half the row for a number of adjacent rows. -
FIG. 23 is an illustration of a memory array of a preferred embodiment in which two-state-per-cell portions and four-state-per-cell portions are indicated by a translation table stored in the memory array. The table has a correspondence between the logical page address and physical rows in the memory array. The table also contains the flag bit for the number of bits stored at a physical row. Optionally, the table could also have a flag that indicates certain pages are one-time programmable or rewritable data. The flag bits preferably control read and write circuitry to the optimum setting for the indicated data type. -
FIG. 24 is an illustration of a memory array of a preferred embodiment in which a two-state-per-cell one-time programmable portion, a two-state-per-cell rewritable portion, and a four-state-per-cell one-time programmable portion are indicated by flag bits on each physical page. In this embodiment, the flag bits are stored as two-state per cell data. An even number of pages are associated with each row. An off-chip controller scans the flag information to create a bad block table. Flag bits for some pages indicate the page is not available. Flag bits also preferably control on-chip read and write circuitry to provide an optimum configuration for more than two-state-per-cell operations and rewritable versus one-time programmable operations. In this case, the flag bits indicated inFIG. 24 contain at least one bit to indicate the number of states per cell and one bit to indicate one-time programmable or rewritable. More than two bits can be used in some embodiments. -
FIG. 25 is a flow chart of a preferred embodiment for using chip flags and an off-chip bad block mechanism. A logical page address is provided (step 300). A bad block table and translation logic in the controller chip of the memory device determines a preliminary physical address associated with the logical page address (step 310). Then, the flag bit at the preliminary physical address is read with the two-state-per-cell default setting (step 320). If the page is unavailable, a feedback mechanism is used to update the write status for unavailable pages (step 330), which causes the controller chip to update the bad block table. Otherwise, the read or write circuitry is set to a two-state mode or a more-than-two-state mode (act 340). Then, page data is read or written (act 350). - While any suitable memory cell can be used with these embodiment, it is presently preferred that the memory cell comprises a passive memory element comprising a switchable resistance material, preferably a semiconductor material; specifically, a polysilicon diode. Other switchable resistance materials include, but are not limited to, binary metal oxides, phase change materials as shown in U.S. Pat. Nos. 5,751,012 and 4,646,266, and organic material resistors, for example a memory cell comprising layers of organic materials including at least one layer that has a diode-like characteristic conduction and at least one organic material that changes conductivity with the application of an electric field. U.S. Pat. No. 6,055,180 describes organic passive element arrays. Another variable resistance material is amorphous silicon doped with V, Co, Ni, Pd, Fe or Mn, for example as described more fully in U.S. Pat. No. 5,541,869. Another class of material is taught by U.S. Pat. No. 6,473,332. These are perovskite materials such as Pr1−XCaXMnO3 (PCMO), La1−XCaXMnO3 (LCMO), LaSrMnO3 (LSMO), or GdBaCoXOY (GBCO). Another option for this variable-resistance material is a carbon-polymer film comprising carbon black particulates or graphite, for example, mixed into a plastic polymer, as taught in U.S. Pat. No. 6,072,716. Another switchable resistance material is taught in U.S. patent application Ser. No. 09/943,190 and in U.S. patent application Ser. No. 09/941,544. This material is doped chalcogenide glass of the formula AXBY, where A includes at least one element from Group IIIA (B, Al, Ga, In, Ti), Group IVA (C, Si, Ge, Sn, Pb), Group VA (N, P, As, Sb, Bi), or Group VIIA (F, Cl, Br, I, At) of the periodic table, where B is selected from among S, Se and Te and mixtures thereof. The dopant is selected from among the noble metals and transition metals, including Ag, Au, Pt, Cu, Cd, If, Ru, Co, Cr, Mn or Ni. This chalcogenide glass (amorphous chalcogenide, not in as crystalline state) is preferably formed in a memory cell adjacent to a reservoir of mobile metal ions. Some other solid electrolyte material could substitute for chalcogenide glass.
- In one preferred embodiment, the element comprises an antifuse in series with the semiconductor material. In another preferred embodiment, the memory element comprises an antifuse, a binary metal oxide, and a polysilicon diode isolation device. Further, while the memory cells can be part of a two-dimensional array, it is preferred that the memory cells be part of a monolithic three-dimensional memory array, with the memory cells arranged in a plurality of memory levels, each formed above a single substrate with no intervening substrates.
- It is presently preferred that the memory element be non-volatile. However, in an alternate embodiment, the memory element can be volatile in the data states used when the memory cell operates as a rewritable memory cell. For example, a memory element may allow the V state and the P state to be permanent but may allow the R and S states to slowly fade away. With such a memory element, the R state and S state data would be refreshed over time.
- The foregoing detailed description has described only a few of the many forms that this invention can take. For this reason, this detailed description is intended by way of illustration, and not by way of limitation. It is only the following claims, including all equivalents, which are intended to define the scope of this invention.
Claims (22)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/496,985 US20070069276A1 (en) | 2005-09-28 | 2006-07-31 | Multi-use memory cell and memory array |
PCT/US2007/013770 WO2008016420A2 (en) | 2006-07-31 | 2007-06-12 | Multi-use memory cell and memory array and method for use therewith |
TW96123304A TWI441182B (en) | 2006-07-31 | 2007-06-27 | Multi-use memory cell and memory array and method for use therewith |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/237,167 US7800932B2 (en) | 2005-09-28 | 2005-09-28 | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US11/496,985 US20070069276A1 (en) | 2005-09-28 | 2006-07-31 | Multi-use memory cell and memory array |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/237,167 Continuation-In-Part US7800932B2 (en) | 2002-12-19 | 2005-09-28 | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070069276A1 true US20070069276A1 (en) | 2007-03-29 |
Family
ID=37594954
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/237,167 Active 2026-01-18 US7800932B2 (en) | 2002-12-19 | 2005-09-28 | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US11/496,984 Active 2027-03-26 US7447056B2 (en) | 2005-09-28 | 2006-07-31 | Method for using a multi-use memory cell and memory array |
US11/496,985 Abandoned US20070069276A1 (en) | 2005-09-28 | 2006-07-31 | Multi-use memory cell and memory array |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/237,167 Active 2026-01-18 US7800932B2 (en) | 2002-12-19 | 2005-09-28 | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US11/496,984 Active 2027-03-26 US7447056B2 (en) | 2005-09-28 | 2006-07-31 | Method for using a multi-use memory cell and memory array |
Country Status (4)
Country | Link |
---|---|
US (3) | US7800932B2 (en) |
CN (1) | CN101288169B (en) |
TW (1) | TWI309083B (en) |
WO (1) | WO2007038665A1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070070690A1 (en) * | 2005-09-28 | 2007-03-29 | Scheuerlein Roy E | Method for using a multi-use memory cell and memory array |
US20070072360A1 (en) * | 2005-09-28 | 2007-03-29 | Tanmay Kumar | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance |
US20070164309A1 (en) * | 2002-12-19 | 2007-07-19 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US20070164388A1 (en) * | 2002-12-19 | 2007-07-19 | Sandisk 3D Llc | Memory cell comprising a diode fabricated in a low resistivity, programmed state |
US20080007989A1 (en) * | 2005-09-28 | 2008-01-10 | Sandisk 3D Llc | Programming methods to increase window for reverse write 3D cell |
US20080013364A1 (en) * | 2002-12-19 | 2008-01-17 | Sandisk 3D Llc | Method of making non-volatile memory cell with embedded antifuse |
US20080017912A1 (en) * | 2002-12-19 | 2008-01-24 | Sandisk 3D Llc | Non-volatile memory cell with embedded antifuse |
US20080025068A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Reverse bias trim operations in non-volatile memory |
US20080025094A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a hierarchical bit line bias bus for block selectable memory array |
US20080025118A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a mixed-use memory array |
US20080025134A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using two data busses for memory array block selection |
US20080025078A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for reverse bias trim operations in non-volatile memory |
US20080025131A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Dual data-dependent busses for coupling read/write circuits to a memory array |
US20080025069A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array with different data states |
US20080025093A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Hierarchical bit line bias bus for block selectable memory array |
US20080025076A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Controlled pulse operations in non-volatile memory |
US20080025061A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | High bandwidth one time field-programmable memory |
US20080025067A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for high bandwidth one time field-programmable memory |
US20080023790A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array |
US20080025085A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Memory array incorporating two data busses for memory array block selection |
US20080025062A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a mixed-use memory array with different data states |
US20080025077A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for controlled pulse operations in non-volatile memory |
US20080025066A1 (en) * | 2006-07-31 | 2008-01-31 | Fasoli Luca G | Passive element memory array incorporating reversible polarity word line and bit line decoders |
US20080025132A1 (en) * | 2006-07-31 | 2008-01-31 | Fasoli Luca G | Method for using a passive element memory array incorporating reversible polarity word line and bit line decoders |
US20080025133A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using dual data-dependent busses for coupling read/write circuits to a memory array |
WO2008016844A2 (en) * | 2006-07-31 | 2008-02-07 | Sandisk 3D Llc | Non-volatile memory capable of correcting overwritten cell |
US20080159052A1 (en) * | 2006-12-31 | 2008-07-03 | Tianhong Yan | Method for using a reversible polarity decoder circuit |
US20080159053A1 (en) * | 2006-12-31 | 2008-07-03 | Tianhong Yan | Reversible polarity decoder circuit |
US20080253168A1 (en) * | 2007-04-13 | 2008-10-16 | Philippe Blanchard | Integrated circuit, resistivity changing memory device, memory module, and method of fabricating an integrated circuit |
US20080272363A1 (en) * | 2007-05-01 | 2008-11-06 | Chandra Mouli | Selectively Conducting Devices, Diode Constructions, Constructions, and Diode Forming Methods |
WO2008134205A1 (en) * | 2007-05-01 | 2008-11-06 | Micron Technology, Inc. | Semiconductor constructions, electronic systems, and methods of forming cross-point memory arrays |
US20080316809A1 (en) * | 2007-06-25 | 2008-12-25 | Sandisk 3D Llc | High forward current diodes for reverse write 3D cell |
US20080316796A1 (en) * | 2007-06-25 | 2008-12-25 | Sandisk 3D Llc | Method of making high forward current diodes for reverse write 3D cell |
WO2009002477A1 (en) | 2007-06-25 | 2008-12-31 | Sandisk 3D Llc | High forward current diodes for reverse write 3d cell and method of making thereof |
US20090001347A1 (en) * | 2007-06-29 | 2009-01-01 | Sandisk 3D Llc | 3D R/W cell with reduced reverse leakage |
US20090003036A1 (en) * | 2007-06-29 | 2009-01-01 | Sandisk 3D Llc | Method of making 3D R/W cell with reduced reverse leakage |
WO2009005614A2 (en) | 2007-06-29 | 2009-01-08 | Sandisk 3D Llc | 3d r/w cell with diode and resistive semiconductor element and method of making thereof |
US7542338B2 (en) | 2006-07-31 | 2009-06-02 | Sandisk 3D Llc | Method for reading a multi-level passive element memory cell array |
US7542337B2 (en) | 2006-07-31 | 2009-06-02 | Sandisk 3D Llc | Apparatus for reading a multi-level passive element memory cell array |
US20090168507A1 (en) * | 2007-12-28 | 2009-07-02 | Sandisk 3D Llc | Method of programming cross-point diode memory array |
US20090168486A1 (en) * | 2007-12-27 | 2009-07-02 | Sandisk 3D Llc | Large capacity one-time programmable memory cell using metal oxides |
US20090290407A1 (en) * | 2008-05-22 | 2009-11-26 | Chandra Mouli | Memory Cells, Memory Cell Constructions, and Memory Cell Programming Methods |
US20090290412A1 (en) * | 2008-05-22 | 2009-11-26 | Chandra Mouli | Memory Devices, Memory Device Constructions, Constructions, Memory Device Forming Methods, Current Conducting Devices, and Memory Cell Programming Methods |
US20090323394A1 (en) * | 2008-06-27 | 2009-12-31 | Scheuerlein Roy E | Pulse reset for non-volatile storage |
US20110065243A1 (en) * | 2007-09-28 | 2011-03-17 | Sandisk 3D Llc | Diode Array and Method of Making Thereof |
WO2012044433A1 (en) | 2010-09-30 | 2012-04-05 | Sandisk 3D Llc | Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same |
US20120080656A1 (en) * | 2010-09-30 | 2012-04-05 | Electronics And Telecommunications Research Institute | Graphene oxide memory devices and method of fabricating the same |
EP2919236A1 (en) * | 2014-03-14 | 2015-09-16 | Nxp B.V. | One-time programming in reprogrammable memory |
US20160149127A1 (en) * | 2011-09-14 | 2016-05-26 | Intel Corporation | Dielectric thin film on electrodes for resistance change memory devices |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1312120A1 (en) * | 2000-08-14 | 2003-05-21 | Matrix Semiconductor, Inc. | Dense arrays and charge storage devices, and methods for making same |
US9680686B2 (en) * | 2006-05-08 | 2017-06-13 | Sandisk Technologies Llc | Media with pluggable codec methods |
US20070260615A1 (en) * | 2006-05-08 | 2007-11-08 | Eran Shen | Media with Pluggable Codec |
JP2008123330A (en) * | 2006-11-14 | 2008-05-29 | Toshiba Corp | Nonvolatile semiconductor storage device |
CN100576472C (en) * | 2006-12-12 | 2009-12-30 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacture method thereof with amorphous silicon MONOS storage unit structure |
US7495500B2 (en) * | 2006-12-31 | 2009-02-24 | Sandisk 3D Llc | Method for using a multiple polarity reversible charge pump circuit |
US7477093B2 (en) * | 2006-12-31 | 2009-01-13 | Sandisk 3D Llc | Multiple polarity reversible charge pump circuit |
US7554406B2 (en) | 2007-03-31 | 2009-06-30 | Sandisk 3D Llc | Spatially distributed amplifier circuit |
US7558140B2 (en) * | 2007-03-31 | 2009-07-07 | Sandisk 3D Llc | Method for using a spatially distributed amplifier circuit |
EP2155769B1 (en) * | 2007-05-04 | 2012-06-27 | Katholieke Universiteit Leuven KU Leuven Research & Development | Tissue degeneration protection |
US20090113116A1 (en) * | 2007-10-30 | 2009-04-30 | Thompson E Earle | Digital content kiosk and methods for use therewith |
US7764534B2 (en) * | 2007-12-28 | 2010-07-27 | Sandisk 3D Llc | Two terminal nonvolatile memory using gate controlled diode elements |
US7906392B2 (en) | 2008-01-15 | 2011-03-15 | Sandisk 3D Llc | Pillar devices and methods of making thereof |
US7745312B2 (en) * | 2008-01-15 | 2010-06-29 | Sandisk 3D, Llc | Selective germanium deposition for pillar devices |
KR101573270B1 (en) * | 2008-01-15 | 2015-12-01 | 쌘디스크 3디 엘엘씨 | Pillar devices and methods of making thereof |
US8212281B2 (en) * | 2008-01-16 | 2012-07-03 | Micron Technology, Inc. | 3-D and 3-D schottky diode for cross-point, variable-resistance material memories, processes of forming same, and methods of using same |
US7812335B2 (en) * | 2008-04-11 | 2010-10-12 | Sandisk 3D Llc | Sidewall structured switchable resistor cell |
US7961494B2 (en) * | 2008-04-11 | 2011-06-14 | Sandisk 3D Llc | Non-volatile multi-level re-writable memory cell incorporating a diode in series with multiple resistors and method for writing same |
US7830698B2 (en) * | 2008-04-11 | 2010-11-09 | Sandisk 3D Llc | Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same |
US7859887B2 (en) * | 2008-04-11 | 2010-12-28 | Sandisk 3D Llc | Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same |
KR20090111619A (en) * | 2008-04-22 | 2009-10-27 | 삼성전자주식회사 | Memory device capable of writing one time and then of reproducing repeatedly, display apparatus for operating and method of operating the same |
US8139391B2 (en) * | 2009-04-03 | 2012-03-20 | Sandisk 3D Llc | Multi-bit resistance-switching memory cell |
US7978498B2 (en) * | 2009-04-03 | 2011-07-12 | Sandisk 3D, Llc | Programming non-volatile storage element using current from other element |
US8270199B2 (en) * | 2009-04-03 | 2012-09-18 | Sandisk 3D Llc | Cross point non-volatile memory cell |
US7927977B2 (en) * | 2009-07-15 | 2011-04-19 | Sandisk 3D Llc | Method of making damascene diodes using sacrificial material |
US8461566B2 (en) | 2009-11-02 | 2013-06-11 | Micron Technology, Inc. | Methods, structures and devices for increasing memory density |
US8149607B2 (en) * | 2009-12-21 | 2012-04-03 | Sandisk 3D Llc | Rewritable memory device with multi-level, write-once memory cells |
US8946046B1 (en) | 2012-05-02 | 2015-02-03 | Crossbar, Inc. | Guided path for forming a conductive filament in RRAM |
US9601692B1 (en) | 2010-07-13 | 2017-03-21 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
US9570678B1 (en) | 2010-06-08 | 2017-02-14 | Crossbar, Inc. | Resistive RAM with preferental filament formation region and methods |
US9012307B2 (en) | 2010-07-13 | 2015-04-21 | Crossbar, Inc. | Two terminal resistive switching device structure and method of fabricating |
WO2011156787A2 (en) | 2010-06-11 | 2011-12-15 | Crossbar, Inc. | Pillar structure for memory device and method |
US8374018B2 (en) | 2010-07-09 | 2013-02-12 | Crossbar, Inc. | Resistive memory using SiGe material |
US8168506B2 (en) | 2010-07-13 | 2012-05-01 | Crossbar, Inc. | On/off ratio for non-volatile memory device and method |
US8947908B2 (en) | 2010-11-04 | 2015-02-03 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
US8884261B2 (en) | 2010-08-23 | 2014-11-11 | Crossbar, Inc. | Device switching using layered device structure |
US8569172B1 (en) | 2012-08-14 | 2013-10-29 | Crossbar, Inc. | Noble metal/non-noble metal electrode for RRAM applications |
US8467227B1 (en) | 2010-11-04 | 2013-06-18 | Crossbar, Inc. | Hetero resistive switching material layer in RRAM device and method |
US8404553B2 (en) | 2010-08-23 | 2013-03-26 | Crossbar, Inc. | Disturb-resistant non-volatile memory device and method |
US8889521B1 (en) | 2012-09-14 | 2014-11-18 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US8492195B2 (en) | 2010-08-23 | 2013-07-23 | Crossbar, Inc. | Method for forming stackable non-volatile resistive switching memory devices |
US9401475B1 (en) | 2010-08-23 | 2016-07-26 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US8391049B2 (en) | 2010-09-29 | 2013-03-05 | Crossbar, Inc. | Resistor structure for a non-volatile memory device and method |
US8558212B2 (en) | 2010-09-29 | 2013-10-15 | Crossbar, Inc. | Conductive path in switching material in a resistive random access memory device and control |
USRE46335E1 (en) | 2010-11-04 | 2017-03-07 | Crossbar, Inc. | Switching device having a non-linear element |
US8502185B2 (en) | 2011-05-31 | 2013-08-06 | Crossbar, Inc. | Switching device having a non-linear element |
US8930174B2 (en) | 2010-12-28 | 2015-01-06 | Crossbar, Inc. | Modeling technique for resistive random access memory (RRAM) cells |
US8791010B1 (en) | 2010-12-31 | 2014-07-29 | Crossbar, Inc. | Silver interconnects for stacked non-volatile memory device and method |
US8815696B1 (en) | 2010-12-31 | 2014-08-26 | Crossbar, Inc. | Disturb-resistant non-volatile memory device using via-fill and etchback technique |
US9153623B1 (en) | 2010-12-31 | 2015-10-06 | Crossbar, Inc. | Thin film transistor steering element for a non-volatile memory device |
US9620206B2 (en) | 2011-05-31 | 2017-04-11 | Crossbar, Inc. | Memory array architecture with two-terminal memory cells |
US8619459B1 (en) | 2011-06-23 | 2013-12-31 | Crossbar, Inc. | High operating speed resistive random access memory |
US9564587B1 (en) | 2011-06-30 | 2017-02-07 | Crossbar, Inc. | Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects |
US9627443B2 (en) | 2011-06-30 | 2017-04-18 | Crossbar, Inc. | Three-dimensional oblique two-terminal memory with enhanced electric field |
US8659929B2 (en) | 2011-06-30 | 2014-02-25 | Crossbar, Inc. | Amorphous silicon RRAM with non-linear device and operation |
US9166163B2 (en) | 2011-06-30 | 2015-10-20 | Crossbar, Inc. | Sub-oxide interface layer for two-terminal memory |
US8946669B1 (en) | 2012-04-05 | 2015-02-03 | Crossbar, Inc. | Resistive memory device and fabrication methods |
CN103828047A (en) * | 2011-07-22 | 2014-05-28 | 科洛斯巴股份有限公司 | Seed layer for a p + silicon germanium material for non-volatile memory device and method |
US8674724B2 (en) | 2011-07-29 | 2014-03-18 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US10056907B1 (en) | 2011-07-29 | 2018-08-21 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US9729155B2 (en) | 2011-07-29 | 2017-08-08 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US20130188410A1 (en) * | 2012-01-20 | 2013-07-25 | Qualcomm Incorporated | Method and apparatus for testing one time programmable (otp) arrays |
US8658997B2 (en) * | 2012-02-14 | 2014-02-25 | Intermolecular, Inc. | Bipolar multistate nonvolatile memory |
US8716098B1 (en) | 2012-03-09 | 2014-05-06 | Crossbar, Inc. | Selective removal method and structure of silver in resistive switching device for a non-volatile memory device |
US9087576B1 (en) | 2012-03-29 | 2015-07-21 | Crossbar, Inc. | Low temperature fabrication method for a three-dimensional memory device and structure |
US9685608B2 (en) | 2012-04-13 | 2017-06-20 | Crossbar, Inc. | Reduced diffusion in metal electrode for two-terminal memory |
US8658476B1 (en) | 2012-04-20 | 2014-02-25 | Crossbar, Inc. | Low temperature P+ polycrystalline silicon material for non-volatile memory device |
US8796658B1 (en) | 2012-05-07 | 2014-08-05 | Crossbar, Inc. | Filamentary based non-volatile resistive memory device and method |
US8765566B2 (en) | 2012-05-10 | 2014-07-01 | Crossbar, Inc. | Line and space architecture for a non-volatile memory device |
US10096653B2 (en) | 2012-08-14 | 2018-10-09 | Crossbar, Inc. | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
US9583701B1 (en) | 2012-08-14 | 2017-02-28 | Crossbar, Inc. | Methods for fabricating resistive memory device switching material using ion implantation |
US8946673B1 (en) | 2012-08-24 | 2015-02-03 | Crossbar, Inc. | Resistive switching device structure with improved data retention for non-volatile memory device and method |
US9312483B2 (en) | 2012-09-24 | 2016-04-12 | Crossbar, Inc. | Electrode structure for a non-volatile memory device and method |
US9576616B2 (en) | 2012-10-10 | 2017-02-21 | Crossbar, Inc. | Non-volatile memory with overwrite capability and low write amplification |
US11068620B2 (en) | 2012-11-09 | 2021-07-20 | Crossbar, Inc. | Secure circuit integrated with memory layer |
US8982647B2 (en) | 2012-11-14 | 2015-03-17 | Crossbar, Inc. | Resistive random access memory equalization and sensing |
US9412790B1 (en) | 2012-12-04 | 2016-08-09 | Crossbar, Inc. | Scalable RRAM device architecture for a non-volatile memory device and method |
US9406379B2 (en) | 2013-01-03 | 2016-08-02 | Crossbar, Inc. | Resistive random access memory with non-linear current-voltage relationship |
US9112145B1 (en) | 2013-01-31 | 2015-08-18 | Crossbar, Inc. | Rectified switching of two-terminal memory via real time filament formation |
US9324942B1 (en) | 2013-01-31 | 2016-04-26 | Crossbar, Inc. | Resistive memory cell with solid state diode |
US8934280B1 (en) | 2013-02-06 | 2015-01-13 | Crossbar, Inc. | Capacitive discharge programming for two-terminal memory cells |
US9218509B2 (en) | 2013-02-08 | 2015-12-22 | Everspin Technologies, Inc. | Response to tamper detection in a memory device |
WO2014124271A1 (en) | 2013-02-08 | 2014-08-14 | Everspin Technologies, Inc. | Tamper detection and response in a memory device |
US8885400B2 (en) * | 2013-02-21 | 2014-11-11 | Sandisk 3D Llc | Compensation scheme for non-volatile memory |
US9093635B2 (en) | 2013-03-14 | 2015-07-28 | Crossbar, Inc. | Controlling on-state current for two-terminal memory |
KR102102175B1 (en) | 2013-11-05 | 2020-04-21 | 삼성전자 주식회사 | Testing method of nonvolatile memory device using variable resistive element |
US10290801B2 (en) | 2014-02-07 | 2019-05-14 | Crossbar, Inc. | Scalable silicon based resistive memory device |
US9196373B2 (en) * | 2014-02-26 | 2015-11-24 | Sandisk 3D Llc | Timed multiplex sensing |
US20150279479A1 (en) * | 2014-04-01 | 2015-10-01 | Qualcomm Incorporated | Anti-fuse one-time programmable resistive random access memories |
US9923139B2 (en) * | 2016-03-11 | 2018-03-20 | Micron Technology, Inc. | Conductive hard mask for memory device formation |
US10034407B2 (en) * | 2016-07-22 | 2018-07-24 | Intel Corporation | Storage sled for a data center |
US10622063B2 (en) | 2018-06-27 | 2020-04-14 | Sandisk Technologies Llc | Phase change memory device with reduced read disturb and method of making the same |
CN114528226A (en) * | 2018-09-17 | 2022-05-24 | 慧荣科技股份有限公司 | High-efficiency garbage collection method, data storage device and controller thereof |
US10884954B2 (en) | 2018-09-17 | 2021-01-05 | Silicon Motion, Inc. | Method for performing adaptive locking range management, associated data storage device and controller thereof |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4646266A (en) * | 1984-09-28 | 1987-02-24 | Energy Conversion Devices, Inc. | Programmable semiconductor structures and methods for using the same |
US5541869A (en) * | 1991-10-22 | 1996-07-30 | British Telecommunications, Plc | Resistive memory element |
US5714795A (en) * | 1994-11-11 | 1998-02-03 | Tadahiro Ohmi | Semiconductor device utilizing silicide reaction |
US5751012A (en) * | 1995-06-07 | 1998-05-12 | Micron Technology, Inc. | Polysilicon pillar diode for use in a non-volatile memory cell |
US5915167A (en) * | 1997-04-04 | 1999-06-22 | Elm Technology Corporation | Three dimensional structure memory |
US5943264A (en) * | 1997-04-29 | 1999-08-24 | Sgs Microelectronics S.A. | Method for the control of a memory cell and one-time programmable non-volatile memory using CMOS technology |
US6034882A (en) * | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6051851A (en) * | 1994-04-28 | 2000-04-18 | Canon Kabushiki Kaisha | Semiconductor devices utilizing silicide reaction |
US6055180A (en) * | 1997-06-17 | 2000-04-25 | Thin Film Electronics Asa | Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
US6130835A (en) * | 1997-12-02 | 2000-10-10 | International Business Machines Corporation | Voltage biasing for magnetic RAM with magnetic tunnel memory cells |
US6407953B1 (en) * | 2001-02-02 | 2002-06-18 | Matrix Semiconductor, Inc. | Memory array organization and related test method particularly well suited for integrated circuits having write-once memory arrays |
US6420215B1 (en) * | 2000-04-28 | 2002-07-16 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6473332B1 (en) * | 2001-04-04 | 2002-10-29 | The University Of Houston System | Electrically variable multi-state resistance computing |
US6478231B1 (en) * | 2001-06-29 | 2002-11-12 | Hewlett Packard Company | Methods for reducing the number of interconnects to the PIRM memory module |
US6483734B1 (en) * | 2001-11-26 | 2002-11-19 | Hewlett Packard Company | Memory device having memory cells capable of four states |
US6483736B2 (en) * | 1998-11-16 | 2002-11-19 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US20030047765A1 (en) * | 2001-08-30 | 2003-03-13 | Campbell Kristy A. | Stoichiometry for chalcogenide glasses useful for memory devices and method of formation |
US6545891B1 (en) * | 2000-08-14 | 2003-04-08 | Matrix Semiconductor, Inc. | Modular memory device |
US6552409B2 (en) * | 2001-06-05 | 2003-04-22 | Hewlett-Packard Development Company, Lp | Techniques for addressing cross-point diode memory arrays |
US6567299B2 (en) * | 2001-02-06 | 2003-05-20 | Mitsubishi Denki Kabushiki Kaisha | Magnetic memory device and magnetic substrate |
US20030115518A1 (en) * | 2001-12-14 | 2003-06-19 | Bendik Kleveland | Memory device and method for redundancy/self-repair |
US6584541B2 (en) * | 2000-09-15 | 2003-06-24 | Matrix Semiconductor, Inc. | Method for storing digital information in write-once memory array |
US6618295B2 (en) * | 2001-03-21 | 2003-09-09 | Matrix Semiconductor, Inc. | Method and apparatus for biasing selected and unselected array lines when writing a memory array |
US6646912B2 (en) * | 2001-06-05 | 2003-11-11 | Hewlett-Packard Development Company, Lp. | Non-volatile memory |
US6694415B2 (en) * | 2000-09-15 | 2004-02-17 | Matrix Semiconductor, Inc. | Methods for permanently preventing modification of a partition or file |
US6711043B2 (en) * | 2000-08-14 | 2004-03-23 | Matrix Semiconductor, Inc. | Three-dimensional memory cache system |
US6731528B2 (en) * | 2002-05-03 | 2004-05-04 | Micron Technology, Inc. | Dual write cycle programmable conductor memory system and method of operation |
US6754098B2 (en) * | 2002-04-12 | 2004-06-22 | Renesas Technology Corp. | Semiconductor memory device |
US6765813B2 (en) * | 2000-08-14 | 2004-07-20 | Matrix Semiconductor, Inc. | Integrated systems using vertically-stacked three-dimensional memory cells |
US6768661B2 (en) * | 2002-06-27 | 2004-07-27 | Matrix Semiconductor, Inc. | Multiple-mode memory and method for forming same |
US6791885B2 (en) * | 2002-02-19 | 2004-09-14 | Micron Technology, Inc. | Programmable conductor random access memory and method for sensing same |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6825489B2 (en) * | 2001-04-06 | 2004-11-30 | Axon Technologies Corporation | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same |
US6834008B2 (en) * | 2002-08-02 | 2004-12-21 | Unity Semiconductor Corporation | Cross point memory array using multiple modes of operation |
US6836433B2 (en) * | 2002-07-04 | 2004-12-28 | Nec Electronics Corporation | Rewrite disable control method for determining rewrite enable/disable based on result of majority decision |
US6839263B2 (en) * | 2003-02-05 | 2005-01-04 | Hewlett-Packard Development Company, L.P. | Memory array with continuous current path through multiple lines |
US20050027928A1 (en) * | 2003-07-31 | 2005-02-03 | M-Systems Flash Disk Pioneers, Ltd. | SDRAM memory device with an embedded NAND flash controller |
US6856570B2 (en) * | 2002-01-18 | 2005-02-15 | Hewlett-Packard Development Company L.P. | Apparatus for writing data bits to a memory array |
US6858883B2 (en) * | 2003-06-03 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Partially processed tunnel junction control element |
US20050052915A1 (en) * | 2002-12-19 | 2005-03-10 | Matrix Semiconductor, Inc. | Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states |
US6868022B2 (en) * | 2003-03-28 | 2005-03-15 | Matrix Semiconductor, Inc. | Redundant memory structure using bad bit pointers |
US6879508B2 (en) * | 2002-03-14 | 2005-04-12 | Hewlett-Packard Development Company, L.P. | Memory device array having a pair of magnetic bits sharing a common conductor line |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US6885604B1 (en) * | 2004-08-10 | 2005-04-26 | Intel Corporation | Cascode fuse design |
US20050098800A1 (en) * | 2002-12-19 | 2005-05-12 | Matrix Semiconductor, Inc. | Nonvolatile memory cell comprising a reduced height vertical diode |
US6903361B2 (en) * | 2003-09-17 | 2005-06-07 | Micron Technology, Inc. | Non-volatile memory structure |
US20050123837A1 (en) * | 2003-12-05 | 2005-06-09 | Matrix Semiconductor, Inc. | Photomask features with interior nonprinting window using alternating phase shifting |
US20050121743A1 (en) * | 2003-12-03 | 2005-06-09 | Matrix Semiconductor, Inc. | Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide |
US6917532B2 (en) * | 2002-06-21 | 2005-07-12 | Hewlett-Packard Development Company, L.P. | Memory storage device with segmented column line array |
US6930909B2 (en) * | 2003-06-25 | 2005-08-16 | Micron Technology, Inc. | Memory device and methods of controlling resistance variation and resistance profile drift |
US6947318B1 (en) * | 2002-09-25 | 2005-09-20 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
US6952030B2 (en) * | 2002-12-19 | 2005-10-04 | Matrix Semiconductor, Inc. | High-density three-dimensional memory cell |
US20050221200A1 (en) * | 2004-04-01 | 2005-10-06 | Matrix Semiconductor, Inc. | Photomask features with chromeless nonprinting phase shifting window |
US20050226067A1 (en) * | 2002-12-19 | 2005-10-13 | Matrix Semiconductor, Inc. | Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material |
US6961262B2 (en) * | 2002-05-22 | 2005-11-01 | Hewlett-Packard Development Company, L.P. | Memory cell isolation |
US20060003586A1 (en) * | 2004-06-30 | 2006-01-05 | Matrix Semiconductor, Inc. | Nonselective unpatterned etchback to expose buried patterned features |
US6996660B1 (en) * | 2001-04-09 | 2006-02-07 | Matrix Semiconductor, Inc. | Memory device and method for storing and reading data in a write-once memory array |
US7000063B2 (en) * | 2001-10-05 | 2006-02-14 | Matrix Semiconductor, Inc. | Write-many memory device and method for limiting a number of writes to the write-many memory device |
US7003619B1 (en) * | 2001-04-09 | 2006-02-21 | Matrix Semiconductor, Inc. | Memory device and method for storing and reading a file system structure in a write-once memory array |
US20060047920A1 (en) * | 2004-08-24 | 2006-03-02 | Matrix Semiconductor, Inc. | Method and apparatus for using a one-time or few-time programmable memory with a host device designed for erasable/rewriteable memory |
US7031182B2 (en) * | 2000-11-28 | 2006-04-18 | Beigel Michael L | Rectifying charge storage memory circuit |
US7046569B2 (en) * | 2004-04-07 | 2006-05-16 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device including OTP memory, and method of programming OTP memory |
US7062602B1 (en) * | 2001-04-09 | 2006-06-13 | Matrix Semiconductor, Inc. | Method for reading data in a write-once memory device using a write-many file system |
US7071008B2 (en) * | 2002-08-02 | 2006-07-04 | Unity Semiconductor Corporation | Multi-resistive state material that uses dopants |
US7116573B2 (en) * | 2003-07-18 | 2006-10-03 | Nec Corporation | Switching element method of driving switching element rewritable logic integrated circuit and memory |
US7132350B2 (en) * | 2003-07-21 | 2006-11-07 | Macronix International Co., Ltd. | Method for manufacturing a programmable eraseless memory |
US7161218B2 (en) * | 2003-06-09 | 2007-01-09 | Nantero, Inc. | One-time programmable, non-volatile field effect devices and methods of making same |
US7190611B2 (en) * | 2003-01-07 | 2007-03-13 | Grandis, Inc. | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization |
US20070070690A1 (en) * | 2005-09-28 | 2007-03-29 | Scheuerlein Roy E | Method for using a multi-use memory cell and memory array |
US7205564B2 (en) * | 2003-11-11 | 2007-04-17 | Kabushiki Kaisha Toshiba | Resistance change memory having organic semiconductor layer |
US20070101131A1 (en) * | 2005-11-01 | 2007-05-03 | Microsoft Corporation | Trusted store tamper detection |
US7218550B2 (en) * | 1998-10-30 | 2007-05-15 | Nikolai Franz Gregor Schwabe | Magnetic storage device |
US7224632B2 (en) * | 2002-01-04 | 2007-05-29 | Micron Technology, Inc. | Rewrite prevention in a variable resistance memory |
US20080023790A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8400959D0 (en) | 1984-01-13 | 1984-02-15 | British Petroleum Co Plc | Semiconductor device |
US5166760A (en) | 1990-02-28 | 1992-11-24 | Hitachi, Ltd. | Semiconductor Schottky barrier device with pn junctions |
CN100370555C (en) * | 1991-08-19 | 2008-02-20 | 能源变换设备有限公司 | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
WO1994026083A1 (en) | 1993-04-23 | 1994-11-10 | Irvine Sensors Corporation | Electronic module comprising a stack of ic chips |
US5555204A (en) | 1993-06-29 | 1996-09-10 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device |
US5535156A (en) | 1994-05-05 | 1996-07-09 | California Institute Of Technology | Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same |
US5559732A (en) | 1994-12-27 | 1996-09-24 | Syracuse University | Branched photocycle optical memory device |
US5693556A (en) | 1995-12-29 | 1997-12-02 | Cypress Semiconductor Corp. | Method of making an antifuse metal post structure |
DE69635105D1 (en) | 1996-01-31 | 2005-09-29 | St Microelectronics Srl | Multi-stage memory circuits and corresponding reading and writing methods |
US5723358A (en) | 1996-04-29 | 1998-03-03 | Vlsi Technology, Inc. | Method of manufacturing amorphous silicon antifuse structures |
US5835396A (en) | 1996-10-17 | 1998-11-10 | Zhang; Guobiao | Three-dimensional read-only memory |
NO973993L (en) | 1997-09-01 | 1999-03-02 | Opticom As | Reading memory and reading memory devices |
US6111784A (en) | 1997-09-18 | 2000-08-29 | Canon Kabushiki Kaisha | Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element |
US5991193A (en) | 1997-12-02 | 1999-11-23 | International Business Machines Corporation | Voltage biasing for magnetic ram with magnetic tunnel memory cells |
US6377502B1 (en) | 1999-05-10 | 2002-04-23 | Kabushiki Kaisha Toshiba | Semiconductor device that enables simultaneous read and write/erase operation |
US6777254B1 (en) * | 1999-07-06 | 2004-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and fabrication method thereof |
US6187617B1 (en) | 1999-07-29 | 2001-02-13 | International Business Machines Corporation | Semiconductor structure having heterogeneous silicide regions and method for forming same |
US6306718B1 (en) * | 2000-04-26 | 2001-10-23 | Dallas Semiconductor Corporation | Method of making polysilicon resistor having adjustable temperature coefficients |
US8575719B2 (en) | 2000-04-28 | 2013-11-05 | Sandisk 3D Llc | Silicon nitride antifuse for use in diode-antifuse memory arrays |
US7247876B2 (en) * | 2000-06-30 | 2007-07-24 | Intel Corporation | Three dimensional programmable device and method for fabricating the same |
EP1312120A1 (en) | 2000-08-14 | 2003-05-21 | Matrix Semiconductor, Inc. | Dense arrays and charge storage devices, and methods for making same |
US6777773B2 (en) | 2000-08-14 | 2004-08-17 | Matrix Semiconductor, Inc. | Memory cell with antifuse layer formed at diode junction |
US6486065B2 (en) | 2000-12-22 | 2002-11-26 | Matrix Semiconductor, Inc. | Method of forming nonvolatile memory device utilizing a hard mask |
US6541312B2 (en) | 2000-12-22 | 2003-04-01 | Matrix Semiconductor, Inc. | Formation of antifuse structure in a three dimensional memory |
US6916740B2 (en) * | 2001-06-25 | 2005-07-12 | Hewlett-Packard Development Company, L.P. | Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices |
US6584029B2 (en) | 2001-08-09 | 2003-06-24 | Hewlett-Packard Development Company, L.P. | One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells |
US6567301B2 (en) | 2001-08-09 | 2003-05-20 | Hewlett-Packard Development Company, L.P. | One-time programmable unit memory cell based on vertically oriented fuse and diode and one-time programmable memory using the same |
US6525953B1 (en) | 2001-08-13 | 2003-02-25 | Matrix Semiconductor, Inc. | Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication |
JP3603188B2 (en) * | 2001-12-12 | 2004-12-22 | 松下電器産業株式会社 | Nonvolatile memory and method of manufacturing the same |
US6693823B2 (en) | 2002-01-02 | 2004-02-17 | Intel Corporation | Minimization of metal migration in magnetic random access memory |
US6735111B2 (en) | 2002-01-16 | 2004-05-11 | Micron Technology, Inc. | Magnetoresistive memory devices and assemblies |
US6559516B1 (en) | 2002-01-16 | 2003-05-06 | Hewlett-Packard Development Company | Antifuse structure and method of making |
US7038248B2 (en) | 2002-02-15 | 2006-05-02 | Sandisk Corporation | Diverse band gap energy level semiconductor device |
US6952043B2 (en) | 2002-06-27 | 2005-10-04 | Matrix Semiconductor, Inc. | Electrically isolated pillars in active devices |
US6965137B2 (en) * | 2002-08-02 | 2005-11-15 | Unity Semiconductor Corporation | Multi-layer conductive memory device |
US6813177B2 (en) | 2002-12-13 | 2004-11-02 | Ovoynx, Inc. | Method and system to store information |
US7618850B2 (en) | 2002-12-19 | 2009-11-17 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US6946719B2 (en) | 2003-12-03 | 2005-09-20 | Matrix Semiconductor, Inc | Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide |
US20050158950A1 (en) * | 2002-12-19 | 2005-07-21 | Matrix Semiconductor, Inc. | Non-volatile memory cell comprising a dielectric layer and a phase change material in series |
US8008700B2 (en) * | 2002-12-19 | 2011-08-30 | Sandisk 3D Llc | Non-volatile memory cell with embedded antifuse |
US7295564B2 (en) * | 2003-01-06 | 2007-11-13 | Intel Corporation | Virtual output queue (VoQ) management method and apparatus |
DE60323202D1 (en) | 2003-02-21 | 2008-10-09 | St Microelectronics Srl | Phase change memory device |
US6914801B2 (en) * | 2003-05-13 | 2005-07-05 | Ovonyx, Inc. | Method of eliminating drift in phase-change memory |
US7511352B2 (en) | 2003-05-19 | 2009-03-31 | Sandisk 3D Llc | Rail Schottky device and method of making |
US6873543B2 (en) * | 2003-05-30 | 2005-03-29 | Hewlett-Packard Development Company, L.P. | Memory device |
TWI225716B (en) | 2003-06-27 | 2004-12-21 | Taiwan Semiconductor Mfg | Magnetoresistive random access memory structure and method for manufacturing the same |
JP2005109659A (en) | 2003-09-29 | 2005-04-21 | Toshiba Corp | Semiconductor integrated circuit device |
US6847544B1 (en) * | 2003-10-20 | 2005-01-25 | Hewlett-Packard Development Company, L.P. | Magnetic memory which detects changes between first and second resistive states of memory cell |
US6999366B2 (en) * | 2003-12-03 | 2006-02-14 | Hewlett-Packard Development Company, Lp. | Magnetic memory including a sense result category between logic states |
US6951780B1 (en) | 2003-12-18 | 2005-10-04 | Matrix Semiconductor, Inc. | Selective oxidation of silicon in diode, TFT, and monolithic three dimensional memory arrays |
JP4499740B2 (en) | 2003-12-26 | 2010-07-07 | パナソニック株式会社 | Memory element, memory circuit, semiconductor integrated circuit |
DE102004029939A1 (en) | 2004-06-21 | 2006-01-12 | Infineon Technologies Ag | Memory cell component with non-volatile memory (NVM) cells with cells distributed in memory sections so configured that cells of a memory section |
US7812404B2 (en) | 2005-05-09 | 2010-10-12 | Sandisk 3D Llc | Nonvolatile memory cell comprising a diode and a resistance-switching material |
US20060250836A1 (en) | 2005-05-09 | 2006-11-09 | Matrix Semiconductor, Inc. | Rewriteable memory cell comprising a diode and a resistance-switching material |
US7453755B2 (en) * | 2005-07-01 | 2008-11-18 | Sandisk 3D Llc | Memory cell with high-K antifuse for reverse bias programming |
US7808810B2 (en) | 2006-03-31 | 2010-10-05 | Sandisk 3D Llc | Multilevel nonvolatile memory cell comprising a resistivity-switching oxide or nitride and an antifuse |
-
2005
- 2005-09-28 US US11/237,167 patent/US7800932B2/en active Active
-
2006
- 2006-07-31 US US11/496,984 patent/US7447056B2/en active Active
- 2006-07-31 US US11/496,985 patent/US20070069276A1/en not_active Abandoned
- 2006-09-27 CN CN200680035454.6A patent/CN101288169B/en not_active Expired - Fee Related
- 2006-09-27 WO PCT/US2006/037803 patent/WO2007038665A1/en active Application Filing
- 2006-09-27 TW TW095135851A patent/TWI309083B/en not_active IP Right Cessation
Patent Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4646266A (en) * | 1984-09-28 | 1987-02-24 | Energy Conversion Devices, Inc. | Programmable semiconductor structures and methods for using the same |
US5541869A (en) * | 1991-10-22 | 1996-07-30 | British Telecommunications, Plc | Resistive memory element |
US6051851A (en) * | 1994-04-28 | 2000-04-18 | Canon Kabushiki Kaisha | Semiconductor devices utilizing silicide reaction |
US5714795A (en) * | 1994-11-11 | 1998-02-03 | Tadahiro Ohmi | Semiconductor device utilizing silicide reaction |
US5751012A (en) * | 1995-06-07 | 1998-05-12 | Micron Technology, Inc. | Polysilicon pillar diode for use in a non-volatile memory cell |
US5915167A (en) * | 1997-04-04 | 1999-06-22 | Elm Technology Corporation | Three dimensional structure memory |
US5943264A (en) * | 1997-04-29 | 1999-08-24 | Sgs Microelectronics S.A. | Method for the control of a memory cell and one-time programmable non-volatile memory using CMOS technology |
US6055180A (en) * | 1997-06-17 | 2000-04-25 | Thin Film Electronics Asa | Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method |
US6130835A (en) * | 1997-12-02 | 2000-10-10 | International Business Machines Corporation | Voltage biasing for magnetic RAM with magnetic tunnel memory cells |
US7218550B2 (en) * | 1998-10-30 | 2007-05-15 | Nikolai Franz Gregor Schwabe | Magnetic storage device |
US6034882A (en) * | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6483736B2 (en) * | 1998-11-16 | 2002-11-19 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
US6420215B1 (en) * | 2000-04-28 | 2002-07-16 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6545891B1 (en) * | 2000-08-14 | 2003-04-08 | Matrix Semiconductor, Inc. | Modular memory device |
US6765813B2 (en) * | 2000-08-14 | 2004-07-20 | Matrix Semiconductor, Inc. | Integrated systems using vertically-stacked three-dimensional memory cells |
US6711043B2 (en) * | 2000-08-14 | 2004-03-23 | Matrix Semiconductor, Inc. | Three-dimensional memory cache system |
US6694415B2 (en) * | 2000-09-15 | 2004-02-17 | Matrix Semiconductor, Inc. | Methods for permanently preventing modification of a partition or file |
US6584541B2 (en) * | 2000-09-15 | 2003-06-24 | Matrix Semiconductor, Inc. | Method for storing digital information in write-once memory array |
US7031182B2 (en) * | 2000-11-28 | 2006-04-18 | Beigel Michael L | Rectifying charge storage memory circuit |
US6407953B1 (en) * | 2001-02-02 | 2002-06-18 | Matrix Semiconductor, Inc. | Memory array organization and related test method particularly well suited for integrated circuits having write-once memory arrays |
US6950369B2 (en) * | 2001-02-06 | 2005-09-27 | Mitsubishi Denki Kabushiki Kaisha | Magnetic memory device capable of passing bidirectional currents through the bit lines |
US6567299B2 (en) * | 2001-02-06 | 2003-05-20 | Mitsubishi Denki Kabushiki Kaisha | Magnetic memory device and magnetic substrate |
US6741495B2 (en) * | 2001-02-06 | 2004-05-25 | Mitsubishi Denki Kabushiki Kaisha | Magnetic memory device and magnetic substrate |
US6618295B2 (en) * | 2001-03-21 | 2003-09-09 | Matrix Semiconductor, Inc. | Method and apparatus for biasing selected and unselected array lines when writing a memory array |
US6473332B1 (en) * | 2001-04-04 | 2002-10-29 | The University Of Houston System | Electrically variable multi-state resistance computing |
US6825489B2 (en) * | 2001-04-06 | 2004-11-30 | Axon Technologies Corporation | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same |
US6996660B1 (en) * | 2001-04-09 | 2006-02-07 | Matrix Semiconductor, Inc. | Memory device and method for storing and reading data in a write-once memory array |
US7003619B1 (en) * | 2001-04-09 | 2006-02-21 | Matrix Semiconductor, Inc. | Memory device and method for storing and reading a file system structure in a write-once memory array |
US7062602B1 (en) * | 2001-04-09 | 2006-06-13 | Matrix Semiconductor, Inc. | Method for reading data in a write-once memory device using a write-many file system |
US6552409B2 (en) * | 2001-06-05 | 2003-04-22 | Hewlett-Packard Development Company, Lp | Techniques for addressing cross-point diode memory arrays |
US6646912B2 (en) * | 2001-06-05 | 2003-11-11 | Hewlett-Packard Development Company, Lp. | Non-volatile memory |
US6478231B1 (en) * | 2001-06-29 | 2002-11-12 | Hewlett Packard Company | Methods for reducing the number of interconnects to the PIRM memory module |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US20030047765A1 (en) * | 2001-08-30 | 2003-03-13 | Campbell Kristy A. | Stoichiometry for chalcogenide glasses useful for memory devices and method of formation |
US7000063B2 (en) * | 2001-10-05 | 2006-02-14 | Matrix Semiconductor, Inc. | Write-many memory device and method for limiting a number of writes to the write-many memory device |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6483734B1 (en) * | 2001-11-26 | 2002-11-19 | Hewlett Packard Company | Memory device having memory cells capable of four states |
US20030115518A1 (en) * | 2001-12-14 | 2003-06-19 | Bendik Kleveland | Memory device and method for redundancy/self-repair |
US7224632B2 (en) * | 2002-01-04 | 2007-05-29 | Micron Technology, Inc. | Rewrite prevention in a variable resistance memory |
US6856570B2 (en) * | 2002-01-18 | 2005-02-15 | Hewlett-Packard Development Company L.P. | Apparatus for writing data bits to a memory array |
US6954385B2 (en) * | 2002-02-19 | 2005-10-11 | Micron Technology, Inc. | Method and apparatus for sensing resistive memory state |
US6791885B2 (en) * | 2002-02-19 | 2004-09-14 | Micron Technology, Inc. | Programmable conductor random access memory and method for sensing same |
US6879508B2 (en) * | 2002-03-14 | 2005-04-12 | Hewlett-Packard Development Company, L.P. | Memory device array having a pair of magnetic bits sharing a common conductor line |
US6754098B2 (en) * | 2002-04-12 | 2004-06-22 | Renesas Technology Corp. | Semiconductor memory device |
US6731528B2 (en) * | 2002-05-03 | 2004-05-04 | Micron Technology, Inc. | Dual write cycle programmable conductor memory system and method of operation |
US6961262B2 (en) * | 2002-05-22 | 2005-11-01 | Hewlett-Packard Development Company, L.P. | Memory cell isolation |
US6917532B2 (en) * | 2002-06-21 | 2005-07-12 | Hewlett-Packard Development Company, L.P. | Memory storage device with segmented column line array |
US6768661B2 (en) * | 2002-06-27 | 2004-07-27 | Matrix Semiconductor, Inc. | Multiple-mode memory and method for forming same |
US6839262B2 (en) * | 2002-06-27 | 2005-01-04 | Matrix Semiconductor, Inc. | Multiple-mode memory and method for forming same |
US6836433B2 (en) * | 2002-07-04 | 2004-12-28 | Nec Electronics Corporation | Rewrite disable control method for determining rewrite enable/disable based on result of majority decision |
US6834008B2 (en) * | 2002-08-02 | 2004-12-21 | Unity Semiconductor Corporation | Cross point memory array using multiple modes of operation |
US7071008B2 (en) * | 2002-08-02 | 2006-07-04 | Unity Semiconductor Corporation | Multi-resistive state material that uses dopants |
US6947318B1 (en) * | 2002-09-25 | 2005-09-20 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
US20050226067A1 (en) * | 2002-12-19 | 2005-10-13 | Matrix Semiconductor, Inc. | Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material |
US20050052915A1 (en) * | 2002-12-19 | 2005-03-10 | Matrix Semiconductor, Inc. | Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states |
US6952030B2 (en) * | 2002-12-19 | 2005-10-04 | Matrix Semiconductor, Inc. | High-density three-dimensional memory cell |
US20050098800A1 (en) * | 2002-12-19 | 2005-05-12 | Matrix Semiconductor, Inc. | Nonvolatile memory cell comprising a reduced height vertical diode |
US7190611B2 (en) * | 2003-01-07 | 2007-03-13 | Grandis, Inc. | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization |
US6839263B2 (en) * | 2003-02-05 | 2005-01-04 | Hewlett-Packard Development Company, L.P. | Memory array with continuous current path through multiple lines |
US6868022B2 (en) * | 2003-03-28 | 2005-03-15 | Matrix Semiconductor, Inc. | Redundant memory structure using bad bit pointers |
US6858883B2 (en) * | 2003-06-03 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Partially processed tunnel junction control element |
US7161218B2 (en) * | 2003-06-09 | 2007-01-09 | Nantero, Inc. | One-time programmable, non-volatile field effect devices and methods of making same |
US6930909B2 (en) * | 2003-06-25 | 2005-08-16 | Micron Technology, Inc. | Memory device and methods of controlling resistance variation and resistance profile drift |
US7116573B2 (en) * | 2003-07-18 | 2006-10-03 | Nec Corporation | Switching element method of driving switching element rewritable logic integrated circuit and memory |
US7132350B2 (en) * | 2003-07-21 | 2006-11-07 | Macronix International Co., Ltd. | Method for manufacturing a programmable eraseless memory |
US20050027928A1 (en) * | 2003-07-31 | 2005-02-03 | M-Systems Flash Disk Pioneers, Ltd. | SDRAM memory device with an embedded NAND flash controller |
US6903361B2 (en) * | 2003-09-17 | 2005-06-07 | Micron Technology, Inc. | Non-volatile memory structure |
US7205564B2 (en) * | 2003-11-11 | 2007-04-17 | Kabushiki Kaisha Toshiba | Resistance change memory having organic semiconductor layer |
US20050121743A1 (en) * | 2003-12-03 | 2005-06-09 | Matrix Semiconductor, Inc. | Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide |
US20050123837A1 (en) * | 2003-12-05 | 2005-06-09 | Matrix Semiconductor, Inc. | Photomask features with interior nonprinting window using alternating phase shifting |
US20050221200A1 (en) * | 2004-04-01 | 2005-10-06 | Matrix Semiconductor, Inc. | Photomask features with chromeless nonprinting phase shifting window |
US7046569B2 (en) * | 2004-04-07 | 2006-05-16 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device including OTP memory, and method of programming OTP memory |
US20060003586A1 (en) * | 2004-06-30 | 2006-01-05 | Matrix Semiconductor, Inc. | Nonselective unpatterned etchback to expose buried patterned features |
US6885604B1 (en) * | 2004-08-10 | 2005-04-26 | Intel Corporation | Cascode fuse design |
US20060047920A1 (en) * | 2004-08-24 | 2006-03-02 | Matrix Semiconductor, Inc. | Method and apparatus for using a one-time or few-time programmable memory with a host device designed for erasable/rewriteable memory |
US20070070690A1 (en) * | 2005-09-28 | 2007-03-29 | Scheuerlein Roy E | Method for using a multi-use memory cell and memory array |
US20070101131A1 (en) * | 2005-11-01 | 2007-05-03 | Microsoft Corporation | Trusted store tamper detection |
US20080023790A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7618850B2 (en) | 2002-12-19 | 2009-11-17 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US20070164388A1 (en) * | 2002-12-19 | 2007-07-19 | Sandisk 3D Llc | Memory cell comprising a diode fabricated in a low resistivity, programmed state |
US8008700B2 (en) | 2002-12-19 | 2011-08-30 | Sandisk 3D Llc | Non-volatile memory cell with embedded antifuse |
US20070164309A1 (en) * | 2002-12-19 | 2007-07-19 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US7660181B2 (en) | 2002-12-19 | 2010-02-09 | Sandisk 3D Llc | Method of making non-volatile memory cell with embedded antifuse |
US7915094B2 (en) | 2002-12-19 | 2011-03-29 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US20080013364A1 (en) * | 2002-12-19 | 2008-01-17 | Sandisk 3D Llc | Method of making non-volatile memory cell with embedded antifuse |
US20100110752A1 (en) * | 2002-12-19 | 2010-05-06 | Sandisk 3D Llc | Method of making a diode read/write memory cell in a programmed state |
US20080017912A1 (en) * | 2002-12-19 | 2008-01-24 | Sandisk 3D Llc | Non-volatile memory cell with embedded antifuse |
US20080007989A1 (en) * | 2005-09-28 | 2008-01-10 | Sandisk 3D Llc | Programming methods to increase window for reverse write 3D cell |
US20070090425A1 (en) * | 2005-09-28 | 2007-04-26 | Matrix Semiconductor, Inc. | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7800934B2 (en) | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Programming methods to increase window for reverse write 3D cell |
US7800933B2 (en) | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7800932B2 (en) | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Memory cell comprising switchable semiconductor memory element with trimmable resistance |
US20070072360A1 (en) * | 2005-09-28 | 2007-03-29 | Tanmay Kumar | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance |
US20070070690A1 (en) * | 2005-09-28 | 2007-03-29 | Scheuerlein Roy E | Method for using a multi-use memory cell and memory array |
US7447056B2 (en) | 2005-09-28 | 2008-11-04 | Sandisk 3D Llc | Method for using a multi-use memory cell and memory array |
US20080025069A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array with different data states |
US20080025131A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Dual data-dependent busses for coupling read/write circuits to a memory array |
US20080023790A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Mixed-use memory array |
US20080025085A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Memory array incorporating two data busses for memory array block selection |
US20080025062A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a mixed-use memory array with different data states |
US20080025077A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for controlled pulse operations in non-volatile memory |
US20080025066A1 (en) * | 2006-07-31 | 2008-01-31 | Fasoli Luca G | Passive element memory array incorporating reversible polarity word line and bit line decoders |
US20080025132A1 (en) * | 2006-07-31 | 2008-01-31 | Fasoli Luca G | Method for using a passive element memory array incorporating reversible polarity word line and bit line decoders |
US20080025133A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using dual data-dependent busses for coupling read/write circuits to a memory array |
WO2008016844A2 (en) * | 2006-07-31 | 2008-02-07 | Sandisk 3D Llc | Non-volatile memory capable of correcting overwritten cell |
WO2008016844A3 (en) * | 2006-07-31 | 2008-03-27 | Sandisk 3D Llc | Non-volatile memory capable of correcting overwritten cell |
US20080025061A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | High bandwidth one time field-programmable memory |
US8509025B2 (en) | 2006-07-31 | 2013-08-13 | Sandisk 3D Llc | Memory array circuit incorporating multiple array block selection and related method |
US8279704B2 (en) | 2006-07-31 | 2012-10-02 | Sandisk 3D Llc | Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same |
US20080025076A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Controlled pulse operations in non-volatile memory |
US20080025093A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Hierarchical bit line bias bus for block selectable memory array |
US8004927B2 (en) | 2006-07-31 | 2011-08-23 | Sandisk 3D Llc | Reversible-polarity decoder circuit and method |
US7554832B2 (en) | 2006-07-31 | 2009-06-30 | Sandisk 3D Llc | Passive element memory array incorporating reversible polarity word line and bit line decoders |
US7450414B2 (en) | 2006-07-31 | 2008-11-11 | Sandisk 3D Llc | Method for using a mixed-use memory array |
US7463536B2 (en) | 2006-07-31 | 2008-12-09 | Sandisk 3D Llc | Memory array incorporating two data busses for memory array block selection |
US7463546B2 (en) | 2006-07-31 | 2008-12-09 | Sandisk 3D Llc | Method for using a passive element memory array incorporating reversible polarity word line and bit line decoders |
US20080025067A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for high bandwidth one time field-programmable memory |
US20080025078A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Systems for reverse bias trim operations in non-volatile memory |
US20080025134A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using two data busses for memory array block selection |
US7719874B2 (en) | 2006-07-31 | 2010-05-18 | Sandisk 3D Llc | Systems for controlled pulse operations in non-volatile memory |
US20080025118A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a mixed-use memory array |
US20080025094A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Method for using a hierarchical bit line bias bus for block selectable memory array |
US7633828B2 (en) | 2006-07-31 | 2009-12-15 | Sandisk 3D Llc | Hierarchical bit line bias bus for block selectable memory array |
US7486587B2 (en) | 2006-07-31 | 2009-02-03 | Sandisk 3D Llc | Dual data-dependent busses for coupling read/write circuits to a memory array |
US7486537B2 (en) | 2006-07-31 | 2009-02-03 | Sandisk 3D Llc | Method for using a mixed-use memory array with different data states |
US7492630B2 (en) | 2006-07-31 | 2009-02-17 | Sandisk 3D Llc | Systems for reverse bias trim operations in non-volatile memory |
US7495947B2 (en) | 2006-07-31 | 2009-02-24 | Sandisk 3D Llc | Reverse bias trim operations in non-volatile memory |
US7499304B2 (en) | 2006-07-31 | 2009-03-03 | Sandisk 3D Llc | Systems for high bandwidth one time field-programmable memory |
US7499355B2 (en) | 2006-07-31 | 2009-03-03 | Sandisk 3D Llc | High bandwidth one time field-programmable memory |
US7499366B2 (en) | 2006-07-31 | 2009-03-03 | Sandisk 3D Llc | Method for using dual data-dependent busses for coupling read/write circuits to a memory array |
US20080025068A1 (en) * | 2006-07-31 | 2008-01-31 | Scheuerlein Roy E | Reverse bias trim operations in non-volatile memory |
US7522448B2 (en) | 2006-07-31 | 2009-04-21 | Sandisk 3D Llc | Controlled pulse operations in non-volatile memory |
US7596050B2 (en) | 2006-07-31 | 2009-09-29 | Sandisk 3D Llc | Method for using a hierarchical bit line bias bus for block selectable memory array |
US7570523B2 (en) | 2006-07-31 | 2009-08-04 | Sandisk 3D Llc | Method for using two data busses for memory array block selection |
US7542338B2 (en) | 2006-07-31 | 2009-06-02 | Sandisk 3D Llc | Method for reading a multi-level passive element memory cell array |
US7542337B2 (en) | 2006-07-31 | 2009-06-02 | Sandisk 3D Llc | Apparatus for reading a multi-level passive element memory cell array |
US20090161474A1 (en) * | 2006-07-31 | 2009-06-25 | Scheuerlein Roy E | Reversible-polarity decoder circuit and method |
US20080159052A1 (en) * | 2006-12-31 | 2008-07-03 | Tianhong Yan | Method for using a reversible polarity decoder circuit |
US7525869B2 (en) | 2006-12-31 | 2009-04-28 | Sandisk 3D Llc | Method for using a reversible polarity decoder circuit |
US20080159053A1 (en) * | 2006-12-31 | 2008-07-03 | Tianhong Yan | Reversible polarity decoder circuit |
US7542370B2 (en) | 2006-12-31 | 2009-06-02 | Sandisk 3D Llc | Reversible polarity decoder circuit |
US8178379B2 (en) * | 2007-04-13 | 2012-05-15 | Qimonda Ag | Integrated circuit, resistivity changing memory device, memory module, and method of fabricating an integrated circuit |
US20080253168A1 (en) * | 2007-04-13 | 2008-10-16 | Philippe Blanchard | Integrated circuit, resistivity changing memory device, memory module, and method of fabricating an integrated circuit |
US8487450B2 (en) | 2007-05-01 | 2013-07-16 | Micron Technology, Inc. | Semiconductor constructions comprising vertically-stacked memory units that include diodes utilizing at least two different dielectric materials, and electronic systems |
US9614006B2 (en) | 2007-05-01 | 2017-04-04 | Micron Technology, Inc. | Semiconductor constructions, and methods of forming cross-point memory arrays |
US8987702B2 (en) | 2007-05-01 | 2015-03-24 | Micron Technology, Inc. | Selectively conducting devices, diode constructions, constructions, and diode forming methods |
US9159375B2 (en) | 2007-05-01 | 2015-10-13 | Micron Technology, Inc. | Selectively conducting devices, diode constructions, methods of forming diodes and methods of current modulation |
US20080273363A1 (en) * | 2007-05-01 | 2008-11-06 | Chandra Mouli | Semiconductor Constructions, Electronic Systems, And Methods of Forming Cross-Point Memory Arrays |
US9923029B2 (en) | 2007-05-01 | 2018-03-20 | Micron Technology, Inc. | Semiconductor constructions, electronic systems, and methods of forming cross-point memory arrays |
US20080272363A1 (en) * | 2007-05-01 | 2008-11-06 | Chandra Mouli | Selectively Conducting Devices, Diode Constructions, Constructions, and Diode Forming Methods |
WO2008134205A1 (en) * | 2007-05-01 | 2008-11-06 | Micron Technology, Inc. | Semiconductor constructions, electronic systems, and methods of forming cross-point memory arrays |
US7684226B2 (en) | 2007-06-25 | 2010-03-23 | Sandisk 3D Llc | Method of making high forward current diodes for reverse write 3D cell |
US20080316796A1 (en) * | 2007-06-25 | 2008-12-25 | Sandisk 3D Llc | Method of making high forward current diodes for reverse write 3D cell |
US7830697B2 (en) | 2007-06-25 | 2010-11-09 | Sandisk 3D Llc | High forward current diodes for reverse write 3D cell |
WO2009002475A1 (en) | 2007-06-25 | 2008-12-31 | Sandisk 3D Llc | Programming methods of a diode using forward bias |
CN101720485A (en) * | 2007-06-25 | 2010-06-02 | 桑迪士克3D公司 | High forward current diodes for reverse write 3d cell and method of making thereof |
US20080316809A1 (en) * | 2007-06-25 | 2008-12-25 | Sandisk 3D Llc | High forward current diodes for reverse write 3D cell |
WO2009002477A1 (en) | 2007-06-25 | 2008-12-31 | Sandisk 3D Llc | High forward current diodes for reverse write 3d cell and method of making thereof |
WO2009005614A3 (en) * | 2007-06-29 | 2009-03-26 | Sandisk 3D Llc | 3d r/w cell with diode and resistive semiconductor element and method of making thereof |
US7800939B2 (en) | 2007-06-29 | 2010-09-21 | Sandisk 3D Llc | Method of making 3D R/W cell with reduced reverse leakage |
US7759666B2 (en) | 2007-06-29 | 2010-07-20 | Sandisk 3D Llc | 3D R/W cell with reduced reverse leakage |
JP2010532564A (en) * | 2007-06-29 | 2010-10-07 | サンディスク スリーディー,エルエルシー | 3D read / write cell with reduced reverse leakage and method of making it |
US20090001347A1 (en) * | 2007-06-29 | 2009-01-01 | Sandisk 3D Llc | 3D R/W cell with reduced reverse leakage |
US20090003036A1 (en) * | 2007-06-29 | 2009-01-01 | Sandisk 3D Llc | Method of making 3D R/W cell with reduced reverse leakage |
WO2009005614A2 (en) | 2007-06-29 | 2009-01-08 | Sandisk 3D Llc | 3d r/w cell with diode and resistive semiconductor element and method of making thereof |
US20110065243A1 (en) * | 2007-09-28 | 2011-03-17 | Sandisk 3D Llc | Diode Array and Method of Making Thereof |
US8268678B2 (en) * | 2007-09-28 | 2012-09-18 | Sandisk 3D Llc | Diode array and method of making thereof |
WO2009085076A1 (en) * | 2007-12-27 | 2009-07-09 | Sandisk 3D Llc | Large capacity one-time programmable memory cell using metal oxides |
US20090168486A1 (en) * | 2007-12-27 | 2009-07-02 | Sandisk 3D Llc | Large capacity one-time programmable memory cell using metal oxides |
US7706169B2 (en) | 2007-12-27 | 2010-04-27 | Sandisk 3D Llc | Large capacity one-time programmable memory cell using metal oxides |
US7706177B2 (en) | 2007-12-28 | 2010-04-27 | Sandisk 3D Llc | Method of programming cross-point diode memory array |
US20090168507A1 (en) * | 2007-12-28 | 2009-07-02 | Sandisk 3D Llc | Method of programming cross-point diode memory array |
WO2009085079A1 (en) * | 2007-12-28 | 2009-07-09 | Sandisk 3D Llc | Method of programming cross-point diode memory array |
US8134194B2 (en) | 2008-05-22 | 2012-03-13 | Micron Technology, Inc. | Memory cells, memory cell constructions, and memory cell programming methods |
US20090290412A1 (en) * | 2008-05-22 | 2009-11-26 | Chandra Mouli | Memory Devices, Memory Device Constructions, Constructions, Memory Device Forming Methods, Current Conducting Devices, and Memory Cell Programming Methods |
US8120951B2 (en) | 2008-05-22 | 2012-02-21 | Micron Technology, Inc. | Memory devices, memory device constructions, constructions, memory device forming methods, current conducting devices, and memory cell programming methods |
US20110194336A1 (en) * | 2008-05-22 | 2011-08-11 | Chandra Mouli | Memory Cells, Memory Cell Constructions, and Memory Cell Programming Methods |
US9466361B2 (en) | 2008-05-22 | 2016-10-11 | Micron Technology, Inc. | Memory devices |
US20090290407A1 (en) * | 2008-05-22 | 2009-11-26 | Chandra Mouli | Memory Cells, Memory Cell Constructions, and Memory Cell Programming Methods |
US8502291B2 (en) | 2008-05-22 | 2013-08-06 | Micron Technology, Inc. | Memory cells, memory cell constructions, and memory cell programming methods |
US10535711B2 (en) | 2008-05-22 | 2020-01-14 | Micron Technology, Inc. | Memory devices and memory device forming methods |
US8867267B2 (en) | 2008-05-22 | 2014-10-21 | Micron Technology, Inc. | Memory devices, memory device constructions, constructions, memory device forming methods, current conducting devices, and memory cell programming methods |
US8871574B2 (en) | 2008-05-22 | 2014-10-28 | Micron Technology, Inc. | Memory cells, memory cell constructions, and memory cell programming methods |
US20090323394A1 (en) * | 2008-06-27 | 2009-12-31 | Scheuerlein Roy E | Pulse reset for non-volatile storage |
US8270210B2 (en) | 2008-06-27 | 2012-09-18 | Sandisk 3D, Llc | Pulse reset for non-volatile storage |
US20110235404A1 (en) * | 2008-06-27 | 2011-09-29 | Scheuerlein Roy E | Pulse reset for non-volatile storage |
US7978507B2 (en) | 2008-06-27 | 2011-07-12 | Sandisk 3D, Llc | Pulse reset for non-volatile storage |
WO2012044433A1 (en) | 2010-09-30 | 2012-04-05 | Sandisk 3D Llc | Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same |
US20120080656A1 (en) * | 2010-09-30 | 2012-04-05 | Electronics And Telecommunications Research Institute | Graphene oxide memory devices and method of fabricating the same |
US20160149127A1 (en) * | 2011-09-14 | 2016-05-26 | Intel Corporation | Dielectric thin film on electrodes for resistance change memory devices |
US9698344B2 (en) * | 2011-09-14 | 2017-07-04 | Intel Corporation | Dielectric thin film on electrodes for resistance change memory devices |
US9823860B2 (en) | 2014-03-14 | 2017-11-21 | Nxp B.V. | One-time programming in reprogrammable memory |
EP2919236A1 (en) * | 2014-03-14 | 2015-09-16 | Nxp B.V. | One-time programming in reprogrammable memory |
Also Published As
Publication number | Publication date |
---|---|
CN101288169A (en) | 2008-10-15 |
TWI309083B (en) | 2009-04-21 |
US20070070690A1 (en) | 2007-03-29 |
US7447056B2 (en) | 2008-11-04 |
CN101288169B (en) | 2012-04-11 |
US20070090425A1 (en) | 2007-04-26 |
TW200733358A (en) | 2007-09-01 |
WO2007038665A1 (en) | 2007-04-05 |
US7800932B2 (en) | 2010-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7447056B2 (en) | Method for using a multi-use memory cell and memory array | |
US7450414B2 (en) | Method for using a mixed-use memory array | |
US7486537B2 (en) | Method for using a mixed-use memory array with different data states | |
US20080023790A1 (en) | Mixed-use memory array | |
US7800933B2 (en) | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance | |
US20080025069A1 (en) | Mixed-use memory array with different data states | |
US7660181B2 (en) | Method of making non-volatile memory cell with embedded antifuse | |
US7830697B2 (en) | High forward current diodes for reverse write 3D cell | |
US7800934B2 (en) | Programming methods to increase window for reverse write 3D cell | |
US8008700B2 (en) | Non-volatile memory cell with embedded antifuse | |
US7684226B2 (en) | Method of making high forward current diodes for reverse write 3D cell | |
US8072791B2 (en) | Method of making nonvolatile memory device containing carbon or nitrogen doped diode | |
US8102694B2 (en) | Nonvolatile memory device containing carbon or nitrogen doped diode | |
US20070164388A1 (en) | Memory cell comprising a diode fabricated in a low resistivity, programmed state | |
US7800939B2 (en) | Method of making 3D R/W cell with reduced reverse leakage | |
WO2009002477A1 (en) | High forward current diodes for reverse write 3d cell and method of making thereof | |
EP2168161B1 (en) | Nonvolatile memory device containing carbon or nitrogen doped diode and method of making thereof | |
WO2008016420A2 (en) | Multi-use memory cell and memory array and method for use therewith | |
WO2008016421A2 (en) | Mixed-use memory array with different data states and method for use therewith | |
WO2008016419A2 (en) | Mixed-use memory array and method for use therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANDISK 3D LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHEUERLEIN, ROY E.;KUMAR, TANMAY;REEL/FRAME:018763/0747 Effective date: 20060728 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK 3D LLC.;REEL/FRAME:038300/0665 Effective date: 20160324 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES INC., TEXAS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED PATENT NUMBER 8853569 TO THE CORRECT PATENT NUMBER 8883569 PREVIOUSLY RECORDED ON REEL 038300 FRAME 0665. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDISK 3D LLC;REEL/FRAME:038520/0552 Effective date: 20160324 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038807/0980 Effective date: 20160516 |
|
AS | Assignment |
Owner name: WODEN TECHNOLOGIES INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK TECHNOLOGIES LLC;REEL/FRAME:058871/0928 Effective date: 20210729 |