US20060154186A1 - Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings - Google Patents
Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings Download PDFInfo
- Publication number
- US20060154186A1 US20060154186A1 US11/031,118 US3111805A US2006154186A1 US 20060154186 A1 US20060154186 A1 US 20060154186A1 US 3111805 A US3111805 A US 3111805A US 2006154186 A1 US2006154186 A1 US 2006154186A1
- Authority
- US
- United States
- Prior art keywords
- triazine
- composition
- deionized water
- formulation
- chaotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/34—Imagewise removal by selective transfer, e.g. peeling away
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
Definitions
- the present invention relates to aqueous-based compositions useful in semiconductor manufacturing for the removal of hardened photoresist and/or bottom anti-reflection coatings (BARCs) from substrates having such layers thereon, and to methods of using such compositions for removal of hardened photoresist and/or BARC layers from semiconductor substrates.
- BARCs bottom anti-reflection coatings
- Photolithography techniques comprise the steps of coating, exposure, and development.
- a wafer is coated with a positive or negative photoresist substance and subsequently covered with a mask that defines patterns to be retained or removed in subsequent processes.
- the mask has directed therethrough a beam of monochromatic radiation, such as ultraviolet (UV) light or deep UV (DUV) light ( ⁇ 250 nm), to make the exposed photoresist material more or less soluble in a selected rinsing solution.
- UV ultraviolet
- DUV deep UV
- the transmissivity of photoresist combined with the high reflectivity of the substrates to the DUV wavelengths results in the reflection of the DUV radiation back into the photoresist thereby producing standing waves in the photoresist layer.
- the standing waves trigger further photochemical reactions in the photoresist causing an uneven exposure of the photoresist, including in masked portions not intended to be exposed to the radiation, which results in variations in linewidths, spacing and other critical dimensions.
- bottom anti-reflective coatings both inorganic and organic in nature
- organic BARCs including, but not limited to, polysulfones, polyureas, polyurea sulfones, polyacrylates and poly(vinyl pyridine)
- organic BARCs are typically 600-1200 ⁇ thick and deposited using spin-on coating techniques.
- organic BARCs are planarizing layers, filling up the vias evenly, and highly cross-linked.
- Organic BARCs prevent light reflection by matching the reflective index of the BARC layer with that of the photoresist layer while simultaneously absorbing radiation thereby preventing radiation reflection and standing waves.
- gas-phase plasma etching is used to transfer the patterns of the developed photoresist coating to an underlying dielectric coating.
- the reactive plasma gases react with the developed photoresist, resulting in the formation of a hardened, crosslinked polymeric material, or “crust,” on the surface of the photoresist.
- the reactive plasma gases react with the sidewalls of the BARC and the features etched into the dielectric.
- FEOL front-end-of-line
- ion implantation is used to add dopant atoms to the exposed wafer layers. Ion implant-exposed photoresist is also highly cross-linked similar to plasma etched photoresist.
- the clean removal of hardened photoresist and/or BARC materials from the semiconductor wafer has proven to be difficult and/or costly. If not removed, the layers may interfere with subsequent silicidation or contact formation. Typically, the layers are removed by oxidative or reductive plasma ashing or wet cleaning. However, plasma ashing, whereby the substrate is exposed to an oxidative or reductive plasma etch, may result in damage to the dielectric material, either by changing the feature shapes and dimensions, or by an increase in the dielectric constant of the dielectric material. The latter problem is more pronounced when low-k dielectric materials, such as organosilicate glasses (OSG) or carbon-doped oxide glasses, are the underlying dielectric material. As such, it is often desirable to avoid the use of plasma ashing to remove the hardened photoresist and/or BARC layers.
- OSG organosilicate glasses
- a cleaner/etchant composition When a cleaner/etchant composition is used in BEOL applications to process surfaces having aluminum or copper interconnected wires, it is important that the composition possess good metal compatibility, e.g., a low etch rate on copper, aluminum, cobalt, etc.
- Aqueous removal solutions are preferred because of the simpler disposal techniques, however, the photoresist “crust” is typically extremely insoluble in aqueous cleaners, especially cleaners that do not damage the dielectric. Often substantial quantities of co-solvents, wetting agents and/or surfactants are added to the aqueous solutions to improve the cleaning ability of the solution.
- co-solvents may increase the ability to remove hardened photoresist by increasing the solubility of the photoresist material in the composition and/or decreasing the solution surface tension, i.e., increasing wettability, however, the inclusion of co-solvents may increase the undesirable corrosion of other materials such as metals and low-k dielectrics.
- a co-solvent-free aqueous solution is desirable, preferably one that completely and efficiently removes hardened photoresist and/or BARC layers from the underlying dielectric.
- the present invention relates to removal compositions including chaotropic solutes. It is theorized that a chaotropic solute destructures or breaks-up the hydrogen-bonded structure of liquid water thus increasing the solubility of other species, e.g., polymers, in water.
- chaotropes were first noted by Hofineister in 1888 (Hofineister, F., Arch. Exp. Pathol. Pharmakol., 24, 247-260 (1888)) as a function of protein solubility and a “series” of anions was developed based on protein solubilities in solutions containing those anions (Collins, K. D., Washabaugh, M. W., Quart. Rev. Biophysics, 18(4), 323-422 (1985)).
- chaotropic anions include Cl ⁇ , NO 3 ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , and SCN ⁇ .
- Other chaotropic species include the guanidinium ion and nonionic urea, which have been demonstrated to increase the solubility of hydrocarbons in aqueous solutions (Wetlaufer, D. B., Malik, S. K., Stoller, L., Coffin, R. L., J. Am. Chem. Soc., 86, 508-514 (1964)).
- aqueous based composition including a chaotropic solute to increase the solubility of the hardened photoresist and/or BARC layers in said composition to effectuate removal of the layers from semiconductor substrates.
- the present invention relates to aqueous-based compositions useful in semiconductor manufacturing for the removal of hardened photoresist and/or BARC layers from substrates having same thereon, and to methods of using such compositions for removal of hardened photoresist and/or BARC layers from semiconductor substrates.
- the invention relates to a aqueous-based removal composition useful for removing photoresist and/or bottom anti-reflective coating (BARC) materials from a substrate having such material(s) thereon, said composition comprising at least one chaotropic solute and at least one alkaline salt in an aqueous medium.
- BARC bottom anti-reflective coating
- the invention in another aspect, relates to a method of removing photoresist and/or BARC material from a substrate having said material thereon, said method comprising contacting the substrate with an aqueous-based removal composition for sufficient time to at least partially remove said material from the substrate, wherein the aqueous-based removal composition comprises at least one chaotropic solute and at least one alkaline salt in an aqueous medium.
- the present invention is based on the discovery of an aqueous-based composition that is highly efficacious for the removal of hardened photoresist and BARC layers from patterned semiconductor wafers having same thereon. Specifically, the present invention relates to the removal of hardened photoresist and/or BARC layers from plasma etched and/or ion implanted semiconductor wafers.
- Hardened photoresist as used herein includes, but is not limited to, photoresist that has been plasma etched, e.g., during BEOL dual-damascene processing of integrated circuits, and/or ion implanted, e.g., during front-end-of-line (FEOL) processing to implant dopant species in the appropriate layers of the semiconductor wafer.
- FEOL front-end-of-line
- the present invention relates to aqueous-based removal compositions useful in removing hardened photoresist and/or BARC layers from a semiconductor substrate.
- the formulation of the present invention comprises at least one chaotropic solute and at least one alkaline salt in an aqueous medium, present in the following ranges, based on the total weight of the composition: component of % by weight chaotropic solute(s) about 1.0% to about 30.0% alkaline salt(s) about 1.0% to about 10.0% aqueous medium about 60.0% to about 98.0%
- the aqueous-based removal composition may comprise, consist of, or consist essentially of at least one chaotropic solute and at least one alkaline salt in an aqueous medium.
- the specific proportions and amounts of chaotropic solute(s), alkaline salt(s) and aqueous medium, in relation to each other may be suitably varied to provide the desired removal action of the aqueous-based composition for the hardened photoresist and/or BARC layer species and/or processing equipment, as readily determinable within the skill of the art without undue effort.
- aqueous medium may be any aqueous-based medium which does not alter the removal efficacy of the at least one chaotropic solute and at least one alkaline salt.
- the aqueous medium is water, most preferably deionized water.
- the chaotropic solute serves to increase the solubility of the hardened photoresist and/or BARC constituent species in the aqueous-based composition.
- “Chaotropic solutes,” as defined herein, refer to water soluble or aqueous alkaline soluble neutral and anionic species which increase the ability of an aqueous alkaline composition to remove hardened photoresist and/or BARC layers.
- “Chaotropic anions” preferably have an atomic or molecular radius of greater than or equal to 1.6 ⁇ , for example those anions conventionally known to be chaotropic including, but not limited to, chloride, bromide, iodide, nitrate, thiocyanide and chlorate.
- solutes contemplated herein for use as chaotropic solutes include, but are not limited to: urea; and guanidinium salts, e.g., guanidinium chloride. Additionally, we expect certain solutes to act as chaotropes based on structural similarities to known chaotropes.
- Such solutes may include, but are not limited to: anionic benzoate salts and benzoate derivatives such as 2-, 3-, or 4-aminobenzoic acids, 2-, 3-, or 4-nitrobenzoic acid, 2-, 3-, or 4-anisic acid, 2-, 3-, or 4-fluoro-, chloro-, bromo-, or iodo-benzoic acid, 2-, 3-, or 4-methylthio-benzoic acid, and other mono- or poly-substituted benzoic acid salts; 2,4-diamino-6-methyl-1,3,5-triazine; aniline or substituted aniline such as 2-, 3-, or 4methylthio-aniline or 2-, 3-, or 4-anisidine; 1,2-, 1,3-, or 1,4-phenylenediamine, nitrogen-containing heterocyclic compounds such as 1,3,5-triazine or substituted 1,3,5-triazines such as melamine, acetoguanamine, 2,4-diamino-6-phen
- the cations associated with the chaotropic anions are metal-ion free, e.g., (NR 1 R 2 R 3 R 4 ) + where R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of hydrogen and C 1 -C 6 alkyl groups.
- the cation associated with the chaotropic anion is tetramethylammonium.
- the alkaline salt(s) serve to attack the hardened photoresist and/or BARC layer.
- the chaotropic solute swells the polymeric layer allowing the alkaline salts to attack every interface of the hardened photoresist and/or BARC layer.
- the interface between the substrate and the hardened photoresist and/or BARC layer is compromised and the hardened photoresist and/or BARC layer delaminates from the substrate.
- Alkaline salt(s) contemplated herein include metal-ion free hydroxides, e.g., (NR 1 R 2 R 3 R 4 )OH where R 1 , R 2 , R 3 and R 4 may be the same as or different from one another and each is independently selected from the group consisting of hydrogen and C 1 -C 6 alkyl groups.
- the alkaline salt is tetramethylammonium hydroxide and the pH of the aqueous-based removal composition is at least about 13.
- chaotropic solute(s), alkaline salt(s), and deionized water in relation to each other may be suitably varied to provide the desired solubilizing action of the aqueous-based composition for the specific photoresist and/or BARC layers to be cleaned from the substrate.
- Such specific proportions and amounts are readily determinable by simple experiment within the skill of the art without undue effort.
- the removal efficiency of the aqueous-based removal composition of the present invention may be enhanced by use of elevated temperature conditions in the contacting of the photoresist and/or BARC layers to be removed with the aqueous-based removal composition.
- the aqueous-based removal compositions of the invention may optionally be formulated with additional components to further enhance the removal capability of the composition, or to otherwise improve the character of the composition. Accordingly, the composition may be formulated with surfactants, stabilizers, chelating agents, corrosion inhibitors, complexing agents, etc. Although the aqueous-based removal compositions of the invention normally contain no organic co-solvents, an organic co-solvent may be included so long as they do not corrode other materials such as metals and low-k dielectrics. Co-solvents contemplated herein include alkanols (e.g., straight chained or branched C 1 -C 6 alcohols), butyl carbitol and sulfolane-w.
- alkanols e.g., straight chained or branched C 1 -C 6 alcohols
- butyl carbitol sulfolane-w.
- Preferred aqueous-based removal compositions include formulations (A)-(G) enumerated hereinbelow:
- aqueous-based compositions of the invention are easily formulated by simple addition of the respective ingredients and mixing to homogeneous condition.
- the invention relates to methods of removal of hardened photoresist and/or BARC layers from a semiconductor wafer surface using the aqueous-based removal compositions described herein.
- the aqueous-based composition is applied in any suitable manner to the material to be cleaned, e.g., by spraying the aqueous-based composition on the surface of the material to be cleaned, by dipping (in a volume of the aqueous-based composition) of the material or article including the material to be cleaned, by contacting the material or article to be cleaned with another material, e.g., a pad, or fibrous sorbent applicator element, that is saturated with the aqueous-based composition, or by any other suitable means, manner or technique by which the aqueous-based composition is brought into removal contact with material to be cleaned.
- a suitable manner or technique by which the aqueous-based composition is brought into removal contact with material to be cleaned.
- the aqueous-based compositions of the present invention are usefully employed to remove hardened photoresist and/or BARC materials from substrates and semiconductor device structures on which such material(s) have been deposited.
- compositions of the present invention by virtue of their selectivity for such hardened photoresist and/or BARC materials relative to other materials that may be present on the semiconductor substrate, e.g., ILD structures, metallization, barrier layers, etc., achieve removal of the hardened photoresist and/or BARC material(s) in a highly efficient manner.
- the aqueous-based composition typically is contacted with the substrate for a time of from about 1 minute to about 60 minutes, at temperature in a range of from about 40° C. to about 80° C.
- Such contacting times and temperatures are illustrative, and any other suitable time and temperature conditions may be employed that are efficacious to completely remove the hardened photoresist and/or BARC material from the substrate using the aqueous-based compositions of the present invention, within the broad practice of the invention.
- the aqueous-based composition is readily removed from the substrate or article to which it has previously been applied, e.g., by rinse, wash, or other removal step(s), as may be desired and efficacious in a given end use application of the compositions of the present invention.
- the substrate or article is rinsed with copious amounts of deionized water and blown dry with nitrogen gas prior to subsequent processing.
- Plasma etching had been previously performed to transfer a pattern of lines, spaces, and holes of varying dimensions, from about 100 nanometers to greater than 10 microns, from a pattern formed in a top coating of photoresist to the underlying materials.
- the pattern consisted of spaces etched into the substrate, stopping at the silicon nitride etch-stop layer.
- the hardened photoresist and BARC was present as a coating of between 10 to 50 nanometers.
- a section of the substrate was cleaned by immersion for a fixed time at a fixed temperature in a static bath of the Formulation A cleaning solution described hereinabove. After immersion for the set time the sample was removed, rinsed with copious amounts of de-ionized water, and blown dry with nitrogen. A cleaning time of 30 minutes at 55° C. was sufficient to remove 100% of the hardened photoresist and BARC. Cleaning was observed by top-down optical microscopy and confirmed by scanning electron microscopy (SEM).
- Cleaning using Formulation B was performed on a sample of patterned semiconductor substrate such as that described in Example 1 using the same method described in Example 1.
- An immersion time of greater than 20 minutes but less than 30 minutes at 55° C. was sufficient to clean 100% of the hardened photoresist and BARC material from the substrate as observed by top-down optical microscopy and confirmed by scanning electron microscopy (SEM).
- Cleaning using Formulation C was performed on a sample of patterned semiconductor substrate such as that described in Example 1 using the same method described in Example 1.
- An immersion time of greater than 20 minutes but less than 30 minutes at 55° C. was sufficient to clean close to 100% of the hardened photoresist and BARC material from the substrate as observed by top-down optical microscopy and confirmed by scanning electron microscopy (SEM).
- Cleaning using Formulation D was performed on a sample of patterned semiconductor substrate such as that described in Example 1 using the same method described in Example 1.
- An immersion time of greater than 20 minutes but less than 30 minutes at 55° C. was sufficient to clean about 90% of the photoresist and BARC material from the substrate as observed by top-down optical microscopy and confirmed by scanning electron microscopy (SEM).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/031,118 US20060154186A1 (en) | 2005-01-07 | 2005-01-07 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
PCT/US2006/000366 WO2006074316A1 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
EP12157762A EP2482134A3 (de) | 2005-01-07 | 2006-01-09 | Zusammensetzung zur Entfernung von Fotolackresten nach dem Ätzen und von Antireflexions-Unterbeschichtungen |
KR1020077017990A KR101365784B1 (ko) | 2005-01-07 | 2006-01-09 | 에칭 후 포토레지스트 및 바닥 반사 방지 코팅의 제거에 유용한 조성물 |
EP06717549A EP1844367A4 (de) | 2005-01-07 | 2006-01-09 | Zusammensetzung zur entfernung von fotolackresten nach dem ätzen und antireflexions-unterbeschichtungen |
US11/813,497 US7994108B2 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
TW095100721A TWI426361B (zh) | 2005-01-07 | 2006-01-09 | 用於有效地移除後蝕刻光阻劑及底層抗反射塗料之組成物 |
CN201410384014.8A CN104199261B (zh) | 2005-01-07 | 2006-01-09 | 适用于去除蚀刻后的光致抗蚀剂和底部抗反射涂层的组合物 |
SG201005348-6A SG164385A1 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti- reflection coatings |
JP2007550476A JP2008527447A (ja) | 2005-01-07 | 2006-01-09 | エッチング後のフォトレジスト及び底部反射防止膜の除去に有用な組成物 |
CN200680007314.8A CN101137939B (zh) | 2005-01-07 | 2006-01-09 | 适用于去除蚀刻后的光致抗蚀剂和底部抗反射涂层的组合物 |
IL184483A IL184483A0 (en) | 2005-01-07 | 2007-07-08 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/031,118 US20060154186A1 (en) | 2005-01-07 | 2005-01-07 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/813,497 Continuation-In-Part US7994108B2 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060154186A1 true US20060154186A1 (en) | 2006-07-13 |
Family
ID=36647826
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/031,118 Abandoned US20060154186A1 (en) | 2005-01-07 | 2005-01-07 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
US11/813,497 Active US7994108B2 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/813,497 Active US7994108B2 (en) | 2005-01-07 | 2006-01-09 | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
Country Status (9)
Country | Link |
---|---|
US (2) | US20060154186A1 (de) |
EP (2) | EP2482134A3 (de) |
JP (1) | JP2008527447A (de) |
KR (1) | KR101365784B1 (de) |
CN (2) | CN101137939B (de) |
IL (1) | IL184483A0 (de) |
SG (1) | SG164385A1 (de) |
TW (1) | TWI426361B (de) |
WO (1) | WO2006074316A1 (de) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080242574A1 (en) * | 2005-06-07 | 2008-10-02 | Advanced Technology Materials, Inc | Metal and Dielectric Compatible Sacrificial Anti-Reflective Coating Cleaning and Removal Composition |
US20080261847A1 (en) * | 2005-11-09 | 2008-10-23 | Advanced Technology Materials, Inc. | Composition and Method for Recycling Semiconductor Wafers Having Low-K Dielectric Materials Thereon |
US20080305443A1 (en) * | 2007-06-11 | 2008-12-11 | Hiroko Nakamura | Pattern forming method using relacs process |
US20090212021A1 (en) * | 2005-06-13 | 2009-08-27 | Advanced Technology Materials, Inc. | Compositions and methods for selective removal of metal or metal alloy after metal silicide formation |
US20090215658A1 (en) * | 2005-10-05 | 2009-08-27 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US20100065530A1 (en) * | 2007-02-06 | 2010-03-18 | Advanced Technology Materials, Inc | COMPOSITION AND PROCESS FOR THE SELECTIVE REMOVE OF TiSiN |
US20100112728A1 (en) * | 2007-03-31 | 2010-05-06 | Advanced Technology Materials, Inc. | Methods for stripping material for wafer reclamation |
US20100163788A1 (en) * | 2006-12-21 | 2010-07-01 | Advanced Technology Materials, Inc. | Liquid cleaner for the removal of post-etch residues |
US20100261632A1 (en) * | 2007-08-02 | 2010-10-14 | Advanced Technology Materials, Inc. | Non-fluoride containing composition for the removal of residue from a microelectronic device |
US20110151653A1 (en) * | 2009-12-21 | 2011-06-23 | International Business Machines Corporation | Spin-on formulation and method for stripping an ion implanted photoresist |
US9063431B2 (en) | 2010-07-16 | 2015-06-23 | Advanced Technology Materials, Inc. | Aqueous cleaner for the removal of post-etch residues |
US9238850B2 (en) | 2010-08-20 | 2016-01-19 | Advanced Technology Materials, Inc. | Sustainable process for reclaiming precious metals and base metals from e-waste |
US9546321B2 (en) | 2011-12-28 | 2017-01-17 | Advanced Technology Materials, Inc. | Compositions and methods for selectively etching titanium nitride |
US9765288B2 (en) | 2012-12-05 | 2017-09-19 | Entegris, Inc. | Compositions for cleaning III-V semiconductor materials and methods of using same |
US9831088B2 (en) | 2010-10-06 | 2017-11-28 | Entegris, Inc. | Composition and process for selectively etching metal nitrides |
US10138117B2 (en) | 2013-07-31 | 2018-11-27 | Entegris, Inc. | Aqueous formulations for removing metal hard mask and post-etch residue with Cu/W compatibility |
US10340150B2 (en) | 2013-12-16 | 2019-07-02 | Entegris, Inc. | Ni:NiGe:Ge selective etch formulations and method of using same |
US10347504B2 (en) | 2013-12-20 | 2019-07-09 | Entegris, Inc. | Use of non-oxidizing strong acids for the removal of ion-implanted resist |
US10428271B2 (en) | 2013-08-30 | 2019-10-01 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10472567B2 (en) | 2013-03-04 | 2019-11-12 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10475658B2 (en) | 2013-12-31 | 2019-11-12 | Entegris, Inc. | Formulations to selectively etch silicon and germanium |
US10557107B2 (en) | 2014-01-29 | 2020-02-11 | Entegris, Inc. | Post chemical mechanical polishing formulations and method of use |
US10920141B2 (en) | 2013-06-06 | 2021-02-16 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10947484B2 (en) | 2016-05-23 | 2021-03-16 | Fujifilm Electronic Materials U.S.A., Inc. | Stripping compositions for removing photoresists from semiconductor substrates |
US11127587B2 (en) | 2014-02-05 | 2021-09-21 | Entegris, Inc. | Non-amine post-CMP compositions and method of use |
US11208616B2 (en) | 2019-04-24 | 2021-12-28 | Fujifilm Electronic Materials U.S.A., Inc. | Stripping compositions for removing photoresists from semiconductor substrates |
US11413662B2 (en) | 2017-01-05 | 2022-08-16 | SCREEN Holdings Co., Ltd. | Substrate cleaning apparatus and substrate cleaning method |
US11919051B2 (en) | 2017-01-05 | 2024-03-05 | SCREEN Holdings Co., Ltd. | Substrate cleaning apparatus and substrate cleaning method |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060154186A1 (en) * | 2005-01-07 | 2006-07-13 | Advanced Technology Materials, Inc. | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
KR20080059442A (ko) * | 2005-10-13 | 2008-06-27 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | 금속 상용성 포토레지스트 및/또는 희생 반사방지 코팅제거 조성물 |
KR101382700B1 (ko) * | 2007-08-22 | 2014-04-08 | 다이킨 고교 가부시키가이샤 | 반도체 드라이 프로세스 후의 잔사 제거액 및 이를 이용한 잔사 제거 방법 |
KR20110018775A (ko) * | 2009-08-18 | 2011-02-24 | 삼성전자주식회사 | 컬러 필터 박리용 조성물 및 이를 이용한 컬러 필터 재생 방법 |
JP5321389B2 (ja) * | 2009-09-28 | 2013-10-23 | 東ソー株式会社 | レジスト剥離剤及びそれを用いた剥離方法 |
JP6101421B2 (ja) | 2010-08-16 | 2017-03-22 | インテグリス・インコーポレーテッド | 銅または銅合金用エッチング液 |
JP5933950B2 (ja) | 2011-09-30 | 2016-06-15 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | 銅または銅合金用エッチング液 |
SG11201404930SA (en) | 2012-02-15 | 2014-09-26 | Advanced Tech Materials | Post-cmp removal using compositions and method of use |
JP2015517691A (ja) | 2012-05-18 | 2015-06-22 | インテグリス,インコーポレイテッド | 窒化チタンを含む表面からフォトレジストを剥離するための組成物およびプロセス |
TWI546850B (zh) * | 2014-11-14 | 2016-08-21 | 群創光電股份有限公司 | 顯示面板之製備方法 |
TWI690780B (zh) * | 2014-12-30 | 2020-04-11 | 美商富士軟片電子材料美國股份有限公司 | 用於自半導體基板去除光阻之剝離組成物 |
US10072237B2 (en) | 2015-08-05 | 2018-09-11 | Versum Materials Us, Llc | Photoresist cleaning composition used in photolithography and a method for treating substrate therewith |
KR20240121812A (ko) * | 2021-12-15 | 2024-08-09 | 버슘머트리얼즈 유에스, 엘엘씨 | 구리 부식 억제제를 함유한 기판으로부터 포토레지스트 및 에칭 잔류물을 제거하기 위한 조성물 및 이의 용도 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4744834A (en) * | 1986-04-30 | 1988-05-17 | Noor Haq | Photoresist stripper comprising a pyrrolidinone, a diethylene glycol ether, a polyglycol and a quaternary ammonium hydroxide |
US5279771A (en) * | 1990-11-05 | 1994-01-18 | Ekc Technology, Inc. | Stripping compositions comprising hydroxylamine and alkanolamine |
US5390356A (en) * | 1992-05-05 | 1995-02-14 | The United States Of America As Represented By The Secretary Of The Navy | Rapid reprogramming terminal |
US5419779A (en) * | 1993-12-02 | 1995-05-30 | Ashland Inc. | Stripping with aqueous composition containing hydroxylamine and an alkanolamine |
US5468423A (en) * | 1992-02-07 | 1995-11-21 | The Clorox Company | Reduced residue hard surface cleaner |
US5849467A (en) * | 1996-01-29 | 1998-12-15 | Tokyo Ohka Kogyo Co., Ltd. | Method for the pre-treatment of a photoresist layer on a substrate surface |
US5972862A (en) * | 1996-08-09 | 1999-10-26 | Mitsubishi Gas Chemical | Cleaning liquid for semiconductor devices |
US6120978A (en) * | 2000-01-06 | 2000-09-19 | Air Products And Chemicals, Inc. | Use of N,N-dialkyl ureas in photoresist developers |
US20010014534A1 (en) * | 2000-01-25 | 2001-08-16 | Nec Corporation | Stripper composition and stripping method |
US20010021488A1 (en) * | 1999-12-27 | 2001-09-13 | Naoki Ichiki | Remover composition |
US6326130B1 (en) * | 1993-10-07 | 2001-12-04 | Mallinckrodt Baker, Inc. | Photoresist strippers containing reducing agents to reduce metal corrosion |
US6375822B1 (en) * | 2000-10-03 | 2002-04-23 | Lev Taytsas | Method for enhancing the solderability of a surface |
US20020128164A1 (en) * | 2000-11-30 | 2002-09-12 | Tosoh Corporation | Resist stripper |
US6500270B2 (en) * | 1997-10-28 | 2002-12-31 | Sharp Corporation | Resist film removing composition and method for manufacturing thin film circuit element using the composition |
US20030083214A1 (en) * | 2000-03-21 | 2003-05-01 | Masahiko Kakizawa | Semiconductor wafer cleaning agent and cleaning method |
US6599370B2 (en) * | 2000-10-16 | 2003-07-29 | Mallinckrodt Inc. | Stabilized alkaline compositions for cleaning microelectronic substrates |
US20040180300A1 (en) * | 2002-12-20 | 2004-09-16 | Minsek David W. | Photoresist removal |
US20040224866A1 (en) * | 2003-02-19 | 2004-11-11 | Hiroshi Matsunaga | Cleaning solution and cleaning process using the solution |
US20050176603A1 (en) * | 2004-02-11 | 2005-08-11 | Hsu Chien-Pin S. | Microelectronic cleaning composition containing halogen oxygen acids, salts and derivatives thereof |
US20050197265A1 (en) * | 2004-03-03 | 2005-09-08 | Rath Melissa K. | Composition and process for post-etch removal of photoresist and/or sacrificial anti-reflective material deposited on a substrate |
US20050263743A1 (en) * | 1998-07-06 | 2005-12-01 | Lee Wai M | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
US7994108B2 (en) * | 2005-01-07 | 2011-08-09 | Advanced Technology Materials, Inc. | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
US8058219B2 (en) * | 2005-10-13 | 2011-11-15 | Advanced Technology Materials, Inc. | Metals compatible post-etch photoresist remover and/or sacrificial antireflective coating etchant |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3821231A1 (de) * | 1987-06-25 | 1989-01-05 | Siemens Ag | Entschichterloesung fuer gehaertete positivlacke |
JP3315749B2 (ja) * | 1993-02-24 | 2002-08-19 | 日立化成工業株式会社 | 水溶性レジストの剥離方法及び剥離液 |
JPH07247498A (ja) * | 1994-03-09 | 1995-09-26 | Mitsubishi Gas Chem Co Inc | 半導体装置用洗浄剤及び配線パターンの形成方法 |
US5466389A (en) * | 1994-04-20 | 1995-11-14 | J. T. Baker Inc. | PH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates |
US6531436B1 (en) * | 2000-02-25 | 2003-03-11 | Shipley Company, L.L.C. | Polymer removal |
DE60108286T2 (de) * | 2000-03-27 | 2005-12-29 | Shipley Co., L.L.C., Marlborough | Entfernungsmittel für Polymer |
JP2002072505A (ja) * | 2000-08-29 | 2002-03-12 | Nagase Kasei Kogyo Kk | フォトレジスト剥離剤組成物およびその使用方法 |
JP2003005383A (ja) * | 2000-11-30 | 2003-01-08 | Tosoh Corp | レジスト剥離剤 |
US6927266B2 (en) * | 2001-02-22 | 2005-08-09 | Nissan Chemical Industries, Ltd. | Bottom anti-reflective coat forming composition for lithography |
TWI275903B (en) * | 2001-03-13 | 2007-03-11 | Nagase Chemtex Corp | A composition for stripping photo resist |
JP2003213463A (ja) * | 2002-01-17 | 2003-07-30 | Sumitomo Chem Co Ltd | 金属腐食防止剤および洗浄液 |
JP3854523B2 (ja) * | 2002-03-29 | 2006-12-06 | メルテックス株式会社 | レジスト剥離剤 |
JP4752270B2 (ja) * | 2002-11-08 | 2011-08-17 | 和光純薬工業株式会社 | 洗浄液及びそれを用いた洗浄方法 |
US20060094613A1 (en) * | 2004-10-29 | 2006-05-04 | Lee Wai M | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
-
2005
- 2005-01-07 US US11/031,118 patent/US20060154186A1/en not_active Abandoned
-
2006
- 2006-01-09 US US11/813,497 patent/US7994108B2/en active Active
- 2006-01-09 SG SG201005348-6A patent/SG164385A1/en unknown
- 2006-01-09 CN CN200680007314.8A patent/CN101137939B/zh active Active
- 2006-01-09 WO PCT/US2006/000366 patent/WO2006074316A1/en active Application Filing
- 2006-01-09 EP EP12157762A patent/EP2482134A3/de not_active Withdrawn
- 2006-01-09 TW TW095100721A patent/TWI426361B/zh not_active IP Right Cessation
- 2006-01-09 JP JP2007550476A patent/JP2008527447A/ja active Pending
- 2006-01-09 CN CN201410384014.8A patent/CN104199261B/zh active Active
- 2006-01-09 EP EP06717549A patent/EP1844367A4/de not_active Withdrawn
- 2006-01-09 KR KR1020077017990A patent/KR101365784B1/ko active IP Right Grant
-
2007
- 2007-07-08 IL IL184483A patent/IL184483A0/en unknown
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4744834A (en) * | 1986-04-30 | 1988-05-17 | Noor Haq | Photoresist stripper comprising a pyrrolidinone, a diethylene glycol ether, a polyglycol and a quaternary ammonium hydroxide |
US5279771A (en) * | 1990-11-05 | 1994-01-18 | Ekc Technology, Inc. | Stripping compositions comprising hydroxylamine and alkanolamine |
US5468423A (en) * | 1992-02-07 | 1995-11-21 | The Clorox Company | Reduced residue hard surface cleaner |
US5390356A (en) * | 1992-05-05 | 1995-02-14 | The United States Of America As Represented By The Secretary Of The Navy | Rapid reprogramming terminal |
US6326130B1 (en) * | 1993-10-07 | 2001-12-04 | Mallinckrodt Baker, Inc. | Photoresist strippers containing reducing agents to reduce metal corrosion |
US5419779A (en) * | 1993-12-02 | 1995-05-30 | Ashland Inc. | Stripping with aqueous composition containing hydroxylamine and an alkanolamine |
US5849467A (en) * | 1996-01-29 | 1998-12-15 | Tokyo Ohka Kogyo Co., Ltd. | Method for the pre-treatment of a photoresist layer on a substrate surface |
US5972862A (en) * | 1996-08-09 | 1999-10-26 | Mitsubishi Gas Chemical | Cleaning liquid for semiconductor devices |
US6500270B2 (en) * | 1997-10-28 | 2002-12-31 | Sharp Corporation | Resist film removing composition and method for manufacturing thin film circuit element using the composition |
US20050263743A1 (en) * | 1998-07-06 | 2005-12-01 | Lee Wai M | Compositions and processes for photoresist stripping and residue removal in wafer level packaging |
US20010021488A1 (en) * | 1999-12-27 | 2001-09-13 | Naoki Ichiki | Remover composition |
US6120978A (en) * | 2000-01-06 | 2000-09-19 | Air Products And Chemicals, Inc. | Use of N,N-dialkyl ureas in photoresist developers |
US20010014534A1 (en) * | 2000-01-25 | 2001-08-16 | Nec Corporation | Stripper composition and stripping method |
US20030083214A1 (en) * | 2000-03-21 | 2003-05-01 | Masahiko Kakizawa | Semiconductor wafer cleaning agent and cleaning method |
US6375822B1 (en) * | 2000-10-03 | 2002-04-23 | Lev Taytsas | Method for enhancing the solderability of a surface |
US6599370B2 (en) * | 2000-10-16 | 2003-07-29 | Mallinckrodt Inc. | Stabilized alkaline compositions for cleaning microelectronic substrates |
US20020128164A1 (en) * | 2000-11-30 | 2002-09-12 | Tosoh Corporation | Resist stripper |
US20040180300A1 (en) * | 2002-12-20 | 2004-09-16 | Minsek David W. | Photoresist removal |
US20040224866A1 (en) * | 2003-02-19 | 2004-11-11 | Hiroshi Matsunaga | Cleaning solution and cleaning process using the solution |
US20050176603A1 (en) * | 2004-02-11 | 2005-08-11 | Hsu Chien-Pin S. | Microelectronic cleaning composition containing halogen oxygen acids, salts and derivatives thereof |
US20050197265A1 (en) * | 2004-03-03 | 2005-09-08 | Rath Melissa K. | Composition and process for post-etch removal of photoresist and/or sacrificial anti-reflective material deposited on a substrate |
US7994108B2 (en) * | 2005-01-07 | 2011-08-09 | Advanced Technology Materials, Inc. | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings |
US8058219B2 (en) * | 2005-10-13 | 2011-11-15 | Advanced Technology Materials, Inc. | Metals compatible post-etch photoresist remover and/or sacrificial antireflective coating etchant |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080242574A1 (en) * | 2005-06-07 | 2008-10-02 | Advanced Technology Materials, Inc | Metal and Dielectric Compatible Sacrificial Anti-Reflective Coating Cleaning and Removal Composition |
US8951948B2 (en) | 2005-06-07 | 2015-02-10 | Advanced Technology Materials, Inc. | Metal and dielectric compatible sacrificial anti-reflective coating cleaning and removal composition |
US9422513B2 (en) | 2005-06-07 | 2016-08-23 | Advanced Technology Materials, Inc. | Metal and dielectric compatible sacrificial anti-reflective coating cleaning and removal composition |
US20090212021A1 (en) * | 2005-06-13 | 2009-08-27 | Advanced Technology Materials, Inc. | Compositions and methods for selective removal of metal or metal alloy after metal silicide formation |
US7922824B2 (en) | 2005-10-05 | 2011-04-12 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US9443713B2 (en) | 2005-10-05 | 2016-09-13 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US20090215658A1 (en) * | 2005-10-05 | 2009-08-27 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US8765654B2 (en) | 2005-10-05 | 2014-07-01 | Advanced Technology Materials, Inc. | Oxidizing aqueous cleaner for the removal of post-etch residues |
US8642526B2 (en) | 2005-11-09 | 2014-02-04 | Advanced Technology Materials, Inc. | Composition and method for recycling semiconductor wafers having low-k dielectric materials thereon |
US7960328B2 (en) | 2005-11-09 | 2011-06-14 | Advanced Technology Materials, Inc. | Composition and method for recycling semiconductor wafers having low-k dielectric materials thereon |
US20080261847A1 (en) * | 2005-11-09 | 2008-10-23 | Advanced Technology Materials, Inc. | Composition and Method for Recycling Semiconductor Wafers Having Low-K Dielectric Materials Thereon |
US20100163788A1 (en) * | 2006-12-21 | 2010-07-01 | Advanced Technology Materials, Inc. | Liquid cleaner for the removal of post-etch residues |
US20100065530A1 (en) * | 2007-02-06 | 2010-03-18 | Advanced Technology Materials, Inc | COMPOSITION AND PROCESS FOR THE SELECTIVE REMOVE OF TiSiN |
US20100112728A1 (en) * | 2007-03-31 | 2010-05-06 | Advanced Technology Materials, Inc. | Methods for stripping material for wafer reclamation |
US20080305443A1 (en) * | 2007-06-11 | 2008-12-11 | Hiroko Nakamura | Pattern forming method using relacs process |
US20100261632A1 (en) * | 2007-08-02 | 2010-10-14 | Advanced Technology Materials, Inc. | Non-fluoride containing composition for the removal of residue from a microelectronic device |
US20110151653A1 (en) * | 2009-12-21 | 2011-06-23 | International Business Machines Corporation | Spin-on formulation and method for stripping an ion implanted photoresist |
US8252673B2 (en) * | 2009-12-21 | 2012-08-28 | International Business Machines Corporation | Spin-on formulation and method for stripping an ion implanted photoresist |
US8455420B2 (en) | 2009-12-21 | 2013-06-04 | International Business Machines Corporation | Spin-on formulation and method for stripping an ion implanted photoresist |
US8563408B2 (en) | 2009-12-21 | 2013-10-22 | International Business Machines Corporation | Spin-on formulation and method for stripping an ion implanted photoresist |
US9063431B2 (en) | 2010-07-16 | 2015-06-23 | Advanced Technology Materials, Inc. | Aqueous cleaner for the removal of post-etch residues |
US9238850B2 (en) | 2010-08-20 | 2016-01-19 | Advanced Technology Materials, Inc. | Sustainable process for reclaiming precious metals and base metals from e-waste |
US9831088B2 (en) | 2010-10-06 | 2017-11-28 | Entegris, Inc. | Composition and process for selectively etching metal nitrides |
US10392560B2 (en) | 2011-12-28 | 2019-08-27 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US9546321B2 (en) | 2011-12-28 | 2017-01-17 | Advanced Technology Materials, Inc. | Compositions and methods for selectively etching titanium nitride |
US9765288B2 (en) | 2012-12-05 | 2017-09-19 | Entegris, Inc. | Compositions for cleaning III-V semiconductor materials and methods of using same |
US10472567B2 (en) | 2013-03-04 | 2019-11-12 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10920141B2 (en) | 2013-06-06 | 2021-02-16 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10138117B2 (en) | 2013-07-31 | 2018-11-27 | Entegris, Inc. | Aqueous formulations for removing metal hard mask and post-etch residue with Cu/W compatibility |
US10428271B2 (en) | 2013-08-30 | 2019-10-01 | Entegris, Inc. | Compositions and methods for selectively etching titanium nitride |
US10340150B2 (en) | 2013-12-16 | 2019-07-02 | Entegris, Inc. | Ni:NiGe:Ge selective etch formulations and method of using same |
US10347504B2 (en) | 2013-12-20 | 2019-07-09 | Entegris, Inc. | Use of non-oxidizing strong acids for the removal of ion-implanted resist |
US10475658B2 (en) | 2013-12-31 | 2019-11-12 | Entegris, Inc. | Formulations to selectively etch silicon and germanium |
US10557107B2 (en) | 2014-01-29 | 2020-02-11 | Entegris, Inc. | Post chemical mechanical polishing formulations and method of use |
US11127587B2 (en) | 2014-02-05 | 2021-09-21 | Entegris, Inc. | Non-amine post-CMP compositions and method of use |
US10947484B2 (en) | 2016-05-23 | 2021-03-16 | Fujifilm Electronic Materials U.S.A., Inc. | Stripping compositions for removing photoresists from semiconductor substrates |
US11413662B2 (en) | 2017-01-05 | 2022-08-16 | SCREEN Holdings Co., Ltd. | Substrate cleaning apparatus and substrate cleaning method |
US11919051B2 (en) | 2017-01-05 | 2024-03-05 | SCREEN Holdings Co., Ltd. | Substrate cleaning apparatus and substrate cleaning method |
US11208616B2 (en) | 2019-04-24 | 2021-12-28 | Fujifilm Electronic Materials U.S.A., Inc. | Stripping compositions for removing photoresists from semiconductor substrates |
Also Published As
Publication number | Publication date |
---|---|
CN104199261A (zh) | 2014-12-10 |
JP2008527447A (ja) | 2008-07-24 |
CN101137939B (zh) | 2014-09-03 |
US7994108B2 (en) | 2011-08-09 |
EP2482134A2 (de) | 2012-08-01 |
KR101365784B1 (ko) | 2014-02-20 |
TWI426361B (zh) | 2014-02-11 |
TW200629012A (en) | 2006-08-16 |
CN104199261B (zh) | 2019-07-09 |
EP2482134A3 (de) | 2012-11-07 |
US20090215659A1 (en) | 2009-08-27 |
IL184483A0 (en) | 2007-10-31 |
KR20070099012A (ko) | 2007-10-08 |
WO2006074316A1 (en) | 2006-07-13 |
SG164385A1 (en) | 2010-09-29 |
CN101137939A (zh) | 2008-03-05 |
EP1844367A4 (de) | 2011-08-31 |
EP1844367A1 (de) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7994108B2 (en) | Composition useful for removal of post-etch photoresist and bottom anti-reflection coatings | |
US7888301B2 (en) | Resist, barc and gap fill material stripping chemical and method | |
CN101233456B (zh) | 金属和电介质相容的牺牲性抗反射涂层清洗及去除组合物 | |
US6825156B2 (en) | Semiconductor process residue removal composition and process | |
US8772214B2 (en) | Aqueous cleaning composition for removing residues and method using same | |
US8058219B2 (en) | Metals compatible post-etch photoresist remover and/or sacrificial antireflective coating etchant | |
RU2551841C2 (ru) | Композиции для удаления резиста и способы изготовления электрических устройств | |
US20070149430A1 (en) | Formulation for removal of photoresist, etch residue and BARC | |
KR100849913B1 (ko) | 수성 세정 조성물 및 이를 이용하는 방법 | |
KR20200088821A (ko) | 반도체 기판으로부터 식각 후 또는 애싱 후 잔여물을 제거하는 세정 조성물 및 상응하는 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MINSEK, DAVID W.;WANG, WEIHUA;BERNHARD, DAVID D.;AND OTHERS;REEL/FRAME:016178/0392 Effective date: 20050104 |
|
AS | Assignment |
Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT Free format text: CORRECTED ASSIGNMENT FOR REEL/FRAME 016178/0392 RECORDED 1/7/05;ASSIGNORS:MINSEK, DAVID W.;WANG, WEIHUA;BERNHARD, DAVID D.;AND OTHERS;REEL/FRAME:017427/0456 Effective date: 20050104 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |