US20050021043A1 - Apparatus for digitizing intramedullary canal and method - Google Patents

Apparatus for digitizing intramedullary canal and method Download PDF

Info

Publication number
US20050021043A1
US20050021043A1 US10/677,321 US67732103A US2005021043A1 US 20050021043 A1 US20050021043 A1 US 20050021043A1 US 67732103 A US67732103 A US 67732103A US 2005021043 A1 US2005021043 A1 US 2005021043A1
Authority
US
United States
Prior art keywords
intramedullary canal
orientation
stem portion
bone
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/677,321
Other languages
English (en)
Inventor
Herbert Andre Jansen
Louis-Philippe Amiot
Sebastien Cossette
Sebastien Jutras
Benoit Pelletier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orthosoft ULC
Original Assignee
Orthosoft ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthosoft ULC filed Critical Orthosoft ULC
Priority to US10/677,321 priority Critical patent/US20050021043A1/en
Assigned to ORTHOSOFT, INC. reassignment ORTHOSOFT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMIOT, LUIS-PHILIPPE, COSSETTE, SEBASTIEN, JANSEN, HERBERT ANDRE, JUTRAS, SEBASTIEN, PELLETIER, BENOIT
Publication of US20050021043A1 publication Critical patent/US20050021043A1/en
Assigned to ORTHOSOFT INC. reassignment ORTHOSOFT INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ORTHOSOFT HOLDINGS INC.
Assigned to ORTHOSOFT HOLDINGS INC. reassignment ORTHOSOFT HOLDINGS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORTHOSOFT INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1664Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
    • A61B17/1666Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the acetabulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1703Guides or aligning means for drills, mills, pins or wires using imaging means, e.g. by X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1717Guides or aligning means for drills, mills, pins or wires for applying intramedullary nails or pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1742Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip
    • A61B17/1746Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip for the acetabulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1742Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip
    • A61B17/175Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip for preparing the femur for hip prosthesis insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1735Guides or aligning means for drills, mills, pins or wires for rasps or chisels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/252User interfaces for surgical systems indicating steps of a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • A61B2034/256User interfaces for surgical systems having a database of accessory information, e.g. including context sensitive help or scientific articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6878Bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4607Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of hip femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4609Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4658Measuring instruments used for implanting artificial joints for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4668Measuring instruments used for implanting artificial joints for measuring angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4681Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor by applying mechanical shocks, e.g. by hammering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4688Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means
    • A61F2002/4696Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means optical

Definitions

  • the present invention generally relates to computer-assisted hip replacement surgery and, more precisely, to hip replacement surgery with minimal preoperative procedures.
  • the artificial hip joint typically consists of a pelvic implant and a femoral implant.
  • the pelvic implant is a cup received in the acetabulum.
  • the femoral implant consists of a spherical portion received at an end of a longitudinal implant portion.
  • the longitudinal implant portion is introduced into the intramedullary canal of the resected femur, with the spherical portion being generally centered with respect to the previous position of the femoral head. Therefore, the femoral head (i.e., spherical portion of the femoral implant) and the cup (i.e., pelvic implant) coact to create the artificial hip joint.
  • CT computerized tomography
  • CT uses X-rays, which are known to be hazardous to health.
  • a method of doing surgical treatment with a position tracking system in computer-assisted surgery for guiding an operator in inserting a femoral implant of a hip joint implant in a femur as a function of a limb length and orientation of the femoral implant, comprising the steps of: obtaining a frame of reference of the femur, the frame of reference being trackable in space for position and orientation; providing a digital model of a femoral implant; calculating a desired implant position for the femoral implant with respect to the frame of reference of the femur, as a function of the limb length; and guiding an operator in altering the femur for a subsequent insertion of the femoral implant in the femur by providing information about a current implant position and orientation with respect to the desired implant position, the current implant position and orientation being calculated as a function of the digital model of the femoral implant and of a real-time tracking for position and orientation of at
  • a method of doing surgical treatment in computer-assisted surgery for guiding an operator in inserting a pelvic implant of a hip joint implant in an acetabulum of a pelvis as a function of a position and orientation of the pelvic implant with respect to the pelvis, comprising the steps of: creating a frame of reference of a pelvis by registering points on the pelvis, the frame of reference being trackable in space for position and orientation; creating a digital model of a surface of an exposed acetabulum of the pelvis by registering points on the surface of the acetabulum as a function of the frame of reference; providing a digital model of a pelvic implant; calculating an initial center of rotation of the acetabulum as a function of the digital model of the surface of the acetabulum; and guiding an operator in altering the acetabulum for a subsequent insertion of the pelvic implant in the acetabulum by providing information about a current implant position and orientation-with respect
  • a method for digitizing an intramedullary canal axis of a bone in computer-assisted surgery comprising the steps of: performing an opening in a bone to expose an intramedullary canal of the bone; providing a tool trackable in space for position and orientation and a frame of reference on the bone, said tool having a leading end thereof being positionable in a determined way with respect to a surface of the intramedullary canal; and obtaining the axis of the intramedullary canal with respect to the frame of reference by calculating and relating reference points in the intramedullary canal by inserting the leading end of the tool at given depths in the intramedullary canal and calculating a reference point of the intramedullary canal for each said given depths as a function of a position and orientation of said tool having the leading end positioned in said determined way.
  • an apparatus for obtaining an axis of an intramedullary canal of an exposed bone with a position tracking system in computer-assisted surgery comprising: a detectable device trackable in space for position and orientation; a stem portion secured to the detectable device so as to be tracked for position and orientation, the stem portion having a leading end insertable in an intramedullary canal of the bone through an opening in the bone, and being adapted to be handled by a following end thereof; and a tip portion at the leading end of the stem portion, the tip portion being positionable in a determined way with respect to a surface of the intramedullary canal, such that reference points with respect to the intramedullary canal are calculable as a function of the position and orientation of the detectable device, said reference points being related to define an axis of the intramedullary canal.
  • a computer-assisted surgery system for guiding an operator in inserting a femoral implant of a hip joint implant in a femur as a function of a limb length and orientation of the femoral implant with respect to the femur, comprising: a reference tool securable to the femur and trackable in space for position and orientation; a registration tool trackable in space for position and orientation and handled by the operator to register surface information; a bone altering tool trackable in space for position and orientation; a sensing apparatus, for tracking any one of the tools for position and orientation; a controller connected to the sensing apparatus, the controller being provided to: i) register a frame of reference of the femur by at least one of calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus, and retrieving in a database a model of the femur; ii) calculate a desired implant position with respect to the
  • a computer-assisted surgery system for guiding an operator in inserting a pelvic implant of a hip joint implant in an acetabulum as a function of an orientation of the pelvic implant with respect to the pelvis, comprising: a reference tool securable to the femur and trackable in space for position and orientation; a registration tool trackable in space for position and orientation and handled by the operator to register surface information; a bone altering tool trackable in space for position and orientation; a sensing apparatus, for tracking any one of the tools for position and orientation; a controller connected to the sensing apparatus, the controller being provided to: i) register a frame of reference of the pelvis by calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus; ii) register a digital model of a surface of an exposed acetabulum of the pelvis with respect to the frame of reference by calculating surface information provided by the registration tool as a function of the
  • FIG. 1 is a front elevation view of leg bones involved in a hip replacement method in accordance with the present invention
  • FIG. 2 is a block diagram of a computer-assisted surgery system in accordance with the present invention.
  • FIG. 3 is a flow chart of a method of hip replacement surgery in accordance with the present invention.
  • FIG. 4 is a front elevation view of a canal digitizer in accordance with the present invention.
  • FIG. 5A is a longitudinal cross-section view of the canal digitizer
  • FIG. 5B is a side elevation view of a handle portion of the canal digitizer
  • FIG. 6 is a front elevation view of fingers of the canal digitizer
  • FIG. 7 is a front elevation view of one of the fingers having a stopper.
  • FIG. 8 is a front elevation view of the fingers of the canal digitizer centering the canal digitizer.
  • FIG. 1 is provided as reference for the description of the steps of the hip replacement surgery method described herein.
  • the bones are the pelvis 10 , the femur 20 , the tibia 30 and the fibula 40 .
  • parts of these bones will each be referenced by numerals from the same numeric decade.
  • parts of the pelvis e.g., the acetabulum 11
  • a computer-assisted surgery system is generally shown at 50 (hereinafter CAS system 50 ) and generally consists of a CAS controller 52 connected to sensor apparatus 54 .
  • the sensor apparatus 54 tracks for position and orientation tools 56 , to be described in detail with the description of the hip replacement surgery method of the present invention.
  • the controller 52 is typically a PC unit that has user interfaces by which a surgeon will receive or send information that will guide him during the hip replacement surgery. For instance, monitors, keyboard, mouse, and foot pedals are a few of the user interfaces that can be provided with the controller 52 .
  • a database of the controller 52 is illustrated separately as database 58 , and is typically the hard disk drive of the controller 52 .
  • a discussion of the preferred system configuration will follow the description of the method 100 .
  • a method for hip replacement surgery in accordance with the present invention is generally shown at 100 .
  • the method 100 is referred to in the singular, various choices of procedure will be given to the surgeon, as will be set forth in the forthcoming description, according to the preferences of the surgeon.
  • a plurality of methods can be derived from the method 100 according to the decisions of the surgeon.
  • Step 102 preparative steps for surgery are effected.
  • general patient information can be entered into the CAS system 50 ( FIG. 2 ) for opening a patient file.
  • a general patient profile can be entered, consisting of the name, birth date, identification number, sex and the like, as well as more specific data pertaining to the surgery, such as leg length discrepancy (with the identification of the longer leg), if applicable.
  • leg length discrepancy is measured using X-rays of the hip joint. More precisely, the leg length discrepancy is measured from the vertical comparison between the lesser trochanters. These X-rays are typically taken during the diagnostic stages leading to surgery, so they are usually available for hip joint surgery.
  • the calibration of the various surgical tools to be used is done.
  • a calibration base and method as set forth in International Publication No. WO 01/67979 A1 by Jutras et al., can be used for the calibration.
  • correspondence between the tracking of the tools 56 and the display on the CAS controller 52 can be verified in further calibration steps included in Step 102 .
  • the general patient information can be entered preoperatively. Moreover, the entering of the general patient information is straightforward such that the surgeon need not be involved. However, in order to minimize the preoperative procedures, all steps of method 100 can be performed at the beginning of the surgical session, during short time span preceding the surgery.
  • Step 102 Surgery is initiated between Step 102 and subsequent Decision 104 -, by the surgeon exposing the hip joint. No computer assistance is required thereat.
  • dislocation (A) of the femur 20 shows some level of difficulty, and involves risks such as fracture of the femur 20 (e.g., at the neck 22 ), and damage (e.g., hyperextension) to ligaments and muscle.
  • Resection (B) of the femoral head 21 can be preferred by surgeons as a safer procedure.
  • Procedure (A) will initially be described in detail, followed by a description of procedure (B).
  • Step 106 following the choice of (A) dislocating the femur 20 from the pelvis 10 , the femoral head 21 is removed from the acetabulum 11 . Therefore, both the acetabulum 11 and the femoral head 21 are exposed.
  • Step 108 tracking references (included in the tools 56 ) are secured to the pelvis 10 and the femur 20 . Therefore, both the pelvis 10 and the femur 20 can be tracked for position and orientation in space simultaneously as a function of their respective tracking references, by the CAS system 50 of FIG. 2 .
  • the tracking references will remain anchored to their respective bones throughout the computer-assisted steps of surgery. It is pointed out that Step 108 could have been performed prior to Step 106 in procedure (A), although it is preferred that the tracking references not interfere with the dislocation of the femur 20 .
  • the CAS system 50 must thus be adapted to track at least two tracking references simultaneously, and in real-time.
  • the tracking reference may take the form of a marked point on one of the bone elements.
  • a tracking reference of the type being screwed to the bone element, can be secured to the pelvis 10 to be tracked for position and orientation, while the femur 20 is solely marked with a point (e.g., from a physical or visual marker).
  • the marked point is registered when the pelvis 10 and the femur 20 are in a known and reproducible posture. Thereafter, to update the position and orientation information relating to the femur 20 during surgery, the known and reproducible posture is reproduced and the marked point is digitized with a registration pointer.
  • the femur 20 may be marked with three nonlinear points to be used to position the portable tracking reference thereon.
  • position and orientation information for the femur 20 can be obtained by positioning the portable tracking reference with respect to the three nonlinear points.
  • the portable tracking reference is advantageous in that no screw holes are performed in the bone element.
  • the method 100 will be described with a tracking reference anchored to the femur 20 in accordance with a preferred embodiment of the present invention. Yet it is appreciated that the above described alternatives could be used instead of the anchored tracking reference of the femur 20 .
  • Step 110 digitization of a center of the femoral head 21 is performed.
  • a registration pointer from the tools 56 ) having its tip tracked in space is used to register points on the surface of the femoral head 21 . Therefore, points of contact between the tip and a given surface can be registered as a function of the tracking reference (Step 108 ).
  • the points on the surface of the femoral head 21 are known as a function of the tracking of the respective tracking reference of the femur 20 .
  • the CAS controller 52 is equipped with software that will enable it to calculate the center of a sphere (i.e., the femoral head 21 ) from the collected points. Moreover, the center calculation software is adapted to perform a validation of the center calculation with the standard and maximum deviations. A rejection criterion for the validation of the center calculation can be recorded, for instance, during the setting of parameters in Step 102 .
  • Step 110 is preferred for obtaining a 3D model from which the femoral center of rotation will be calculated
  • other equivalent methods are contemplated for obtaining the femoral center of rotation.
  • photogrammetric scans can be used to rapidly create 3D models, or preoperative computerized tomography images can be gathered, from which the femoral head geometry can be established.
  • the diameter of the sphere (i.e., of the femoral head 21 ) can be displayed, as such information can guide the surgeon in the choice of a femoral implant.
  • the femoral center of rotation and the diameter of the femoral head 21 can be used to correct displays on the CAS controller 52 .
  • CT images can be shown on the display unit of the CAS controller 52
  • the method 100 is preferably free of CT images. Accordingly, general visual images of the pelvis 10 and of the femur 20 can be displayed for general reference, but these images can be scaled as a function of the center of rotation and diameters, calculated in Step 110 for the femur 20 in procedure (A), and to be calculated in Step 114 for the pelvis 10 .
  • Step 112 with the center of the femoral head 21 now identified in procedure (A) as a function of the tracking reference (Step 108 ), resection of the femoral head 21 is performed.
  • Step 114 digitization of the acetabular center of rotation is performed, by taking reference points on the surface of the acetabulum 11 , and using the center calculation software of the CAS controller 52 , set forth in Step 110 to find the acetabular center of rotation.
  • the acetabular center of rotation is therefore known as a function of the tracking reference on the pelvis 10 . It is noted that in procedure (A) the digitization of the acetabular center of rotation (Step 114 ) is done independently from the digitization of the femoral center of rotation (Step 110 ).
  • Step 116 consists in the digitization of the acetabular and femoral coordinate systems, i.e., the acetabular and femoral frames of reference.
  • the acetabular coordinate system is digitized with the registration pointer.
  • three points are taken on the pelvis 10 to create the acetabular coordinate system.
  • FIG. 1 there is one point on the iliac crest 12 of the operated side, one point on the contra lateral iliac crest 13 , and one point on one of the two pubic tubercles 14 of the pelvis 10 .
  • the points digitized on the iliac crests 12 and 13 are taken at the outermost anterior point of the iliac crests 12 and 13 .
  • the points digitized on the iliac crests 12 and 13 are preferably taken directly on the soft tissue covering the bone pelvis on the iliac crests, as the soft tissue is relatively thin thereon.
  • the point on the pubic tubercle 14 completes a first plane, the frontal plane.
  • a second plane, the transverse plane is perpendicular to the frontal plane and includes the points on the iliac crests.
  • a third plane, the sagittal plane, is perpendicular to the frontal and transverse planes.
  • Supplemental information regarding the frontal plane can be obtained for various postures of a patient.
  • trackable references can be used to gather information about sitting, standing and walking postures. This information can be used to adjust the orientation of the frontal plane, as these postures can provide information not available from the typical lying posture in which a patient is during surgery. This information can influence the anteversion positioning of the implants.
  • the femoral coordinate system is digitized in Step 116 by providing five points of reference on the leg to the CAS controller 52 , which is equipped with software that will create the femoral coordinate system.
  • a first point is taken on the tip of the greater trochanter 23 of the femur 20 , and will be defined as a starting point of an anatomical axis of the femur 20 .
  • points are taken on the medial and lateral epicondyles 24 and 25 of the femur 20 , respectively.
  • an aligned midpoint of the medial and lateral malleoli points is said to define a plane (i.e., sagittal plane) with the anatomical axis, with an axis of the knee being normal to the sagittal plane.
  • the frontal plane is perpendicular to the sagittal plane, with the anatomical axis lying therein.
  • the transverse plane is perpendicular to the sagittal and frontal planes, and can be positioned at any height.
  • the projection values described herein are based on the acetabular and the femoral coordinate systems.
  • the projection values would be related to the alternative acetabular and femoral coordinate system.
  • Step 108 the first step of the surgical procedure following the decision to proceed with the resection (B) is Step 108 , wherein tracking references are secured to the pelvis 10 and to the femur 20 .
  • Step 200 consists in a registration of a relative position between the pelvis 10 and the femur 20 , as a function of the tracking references on each.
  • the leg is simply left in a straight position, and a relative position is acquired between tracking references secured to their respective bones.
  • Step 112 of resecting the femoral head 21 from the femur follows Step 200 . Accordingly, the acetabulum 11 of the pelvis 10 is exposed, and Step 114 , consisting in the digitization of the acetabular center of rotation, follows. As mentioned previously, the digitization of the acetabular center of rotation is as a function of the tracking reference secured to the pelvis 10 .
  • Step 202 includes the calculation of the femoral center of rotation.
  • an assumption is made that the acetabular center of rotation, calculated in the previous Step 114 in procedure (B), coincides with the femoral center of rotation.
  • the position of the femoral center of rotation is calculated as a function of the relative position between the pelvis 10 and the femur 20 , obtained in Step 200 .
  • Step 116 follows, with the digitization of acetabular and femoral coordinate systems, i.e., acetabular and femoral frames of reference.
  • Procedure (C) is the preferred embodiment and will most likely involve at least one fewer step. Some surgeons may prefer the procedure (D) as it involves work on the femur 20 , which has just been resected to lose its femoral head 21 (Step 112 ).
  • Procedure (C) will initially be described, followed by a description of procedure (D).
  • Step 152 is the first step of procedure (C), and consists in the preparation of the acetabulum for insertion of the pelvic implant.
  • the preparation of the acetabulum is performed by a reamer (from amongst the tools 56 of the CAS system 50 ).
  • the previous acetabular center of rotation is known as a function of the tracking reference secured to the pelvis 10 , as it was acquired in previous.
  • Step 114 Preferably, the reamer is tracked for position and orientation, such that an axis of actuation of the cup tool on the reamer is displayed on the CAS controller 52 .
  • the diameter of the pelvic implant chosen by the surgeon will be used to display a position of the new acetabular center of rotation in comparison to the digitized acetabular center of rotation (Step 114 ).
  • the distance between the centers of rotation can be displayed numerically (e.g., in mm) as a function of the acetabular coordinate system digitized in previous Step 116 .
  • the anteversion and inclination of the actuation axis of the reamer, both as a function of the acetabular coordinate system can be given numerically (e.g., in degrees) to guide the surgeon in the reaming.
  • the pelvic implant is secured at this point to the pelvis 10 , it is possible to adjust the position and orientation of the pelvic implant.
  • the tracked impactor may be reconnected to the pelvic implant to serve as a lever in manipulating the pelvic implant with the tracked impactor, allowing position and orientation information (e.g., anteversion and inclination) to be calculated from the tracking of the impactor.
  • position and orientation information e.g., anteversion and inclination
  • points on the circular edge of the pelvic implant may be digitized to define a plane, with the normal to this plane being used to calculate the anteversion and the inclination, as suggested previously to obtain this information for the acetabulum.
  • This alternative approach is well suited for pelvic implants having screw holes for additional fixation, through which the implants can be altered in position and orientation.
  • Step 158 consists in the preparation of the femur 20 for the insertion of the femoral implant. More precisely, an axis of the intramedullary canal 27 is digitized as a function of the tracking reference secured to the femur 20 by relating points in the canal 27 . The intramedullary canal 27 is exposed by the resection of the femoral head 21 performed in Step 112 . In an embodiment of the present invention, the points in the canal 27 are digitized by the insertion and tracking of a pointer (from amongst the tools 56 ) in the canal 27 , to various depths.
  • a tool such as an awl
  • the awl can be inserted in the intramedullary canal to a depth wherein the inner diameter of the intramedullary canal is generally equivalent to the awl.
  • the awl can be considered to be generally centered in the intramedullary canal, whereby the axis of the awl can be registered as being the axis of the intramedullary canal.
  • Step 158 also includes the rasping of the intramedullary canal 27 in view of the insertion of the femoral implant therein.
  • the rasp is part of the tools 56 of the CAS system 50 , and is therefore tracked for position and orientation.
  • the tooling portion of the rasp, which will alter the intramedullary canal 27 , and the femoral implant both have a predetermined geometry. It is preferred to have rasps each having a tooling end with a generally similar geometry to the bone-engaging portion of the femoral implants.
  • the rasps can be provided in different sizes, with an equivalent femoral implant for each size of rasp.
  • the tracking of the rasp for position and orientation relative to the femoral coordinate system during alteration of the canal is used to calculate the current position and orientation of the femoral implant.
  • a plurality of guiding parameters are displayed to the surgeon to quantify the current position and orientation of the femoral implant, and are listed below.
  • the current leg length discrepancy can be displayed by the CAS system 50 as an overall leg length, or as a relative value between leg lengths, with the value 0 representing legs of equal length.
  • the offset is the distance between the acetabular center of rotation and the axis of the implant (i.e., the anatomical axis of the femur as defined previously) on the transverse plane, and is thus directly related to the size of the femoral implant. It is pointed out that a type of femoral implant contemplated for the above described method 100 can be provided in various sizes, and a size of femoral implant can have various femoral centers of rotation along the neck of the implant. A proper identification of the size of the femoral implant must therefore be provided as it will have an effect on both the offset and the limb length.
  • procedure (D) comprises Steps 152 , 154 and 156 , as performed in procedure (C). It is pointed out that in Step 154 , the actual pelvic implant center of rotation is obtained.
  • Steps 162 and 164 follow to end procedure (D).
  • a bone altering tool is included in the required tools 56 , such as a reamer and a rasp, for which uses have been described previously in Steps 152 and 158 , respectively.
  • the tools 56 include the pelvic (impactor) and the femoral implant, that can be tracked for position and orientation, to guide the operator during the insertion. It is pointed out that information relating to the tools (e.g., geometry, position of tip) is either known by the controller 52 (or retrievable from the database 58 ) or determinable using various steps of calibration.
  • the CAS system 50 can operate with active or passive tracking.
  • the sensor apparatus 54 is a NDI Polaris® optical tracking apparatus, with appropriate operating software in the controller 52 .
  • the Polaris® optical tracking apparatus passive detectable devices, such as retro-reflective spheres, are used in patterns to be tracked in space for position and orientation.
  • Each one of the tools 56 that requires to be tracked has an own detectable pattern.
  • the CAS system 50 must guide the surgeon throughout the method 100 , and relevant information is displayed to ensure the surgeon follows the proper Steps of operation. For instance, when leg length discrepancy values are given, the cranial-caudal convention can be displayed to explain the reading obtained. Animations can be initiated automatically to guide the surgeon, for example, in taking reference points on the various bones, such that the reference points are taken in a given order, or at the right locations.
  • the canal digitizer 300 is shown having an elongated shaft 302 , a handle portion 304 , a piston 306 , a detectable device base 308 , and a centering mechanism 309 .
  • the handle portion 304 has a pair of radial flanges 320 .
  • the detectable device base 308 projects outwardly from a distal one of the radial flanges 320 .
  • the proximal flange 320 is adjacent to the piston 306 , and is used as leverage by the tool handler to push the piston 306 inwardly.
  • a flared tip 322 is adjacent to the distal flange 320 , and will enable the digitizer 300 to be centered when abutting against walls of a canal, if the elongated shaft 302 is completely inserted in the canal.
  • the handle portion 304 also defines an inner cavity 324 , having a guiding channel 325 adjacent to the proximal flange 320 , for a purpose to be described hereinafter.
  • a flared adapter 323 can be optionally provided in sliding engagement on the shaft 302 .
  • the flared adapter 323 serves the same purpose as the flared tip 322 of the handle portion 304 , but is displaceable on the shaft 302 so as be used at various depths of insertion of the shaft 302 in the canal.
  • the centering mechanism 309 has a slender rod 326 , concentrically disposed in the shaft 302 .
  • the rod 326 is connected to the piston 306 at a proximal end thereof, and has a pair of fingers, 328 and 330 , pivotally mounted thereto at a distal end thereof, as best seen in FIG. 6 .
  • a spring 332 surrounds a proximal portion of the rod 326 , and interacts with a surface of the inner cavity 324 of the handle portion 304 such that the rod 326 is biased in the proximal direction, i.e., the piston 306 is held away from the handle portion 304 .
  • the piston 306 /centering mechanism 309 assembly is captive and free to translate in the straight portion 325 ′′, being held captive with respect to the handle portion 304 .
  • This assembly is preferred to facilitate the sterilization of the inner cavity 324 and of the interior of the shaft 302 .
  • the fingers 328 and 330 at the distal end of the rod 326 , are kept with their respective tips 329 and 331 separated from one another by a stopper 334 protruding from the finger 328 . Therefore, the fingers 328 and 330 define a slot 336 .
  • the fingers 328 and 330 are held by pivot 338 .
  • the tips 329 and 331 are both at a same distance from the pivot 338 .
  • the rod 326 has a given length, such that the fingers 328 and 330 at an end thereof do not interfere with the splitter 314 when the assembly of the piston 306 /centering mechanism 309 (including the rod 326 ) is screwingly inserted in the shaft 302 /handle portion 304 . Such interference would prevent the pin 327 from going past the elbow portion 325 ′ of the guiding channel 325 in the inner cavity 324 .
  • Another possible configuration is to provide an axial rotational degree of freedom between the piston 306 and the rod 326 . Therefore, an engagement of the fingers 328 and 330 with the splitter 314 would not prevent the engagement of the pin 327 of the piston 306 in the guiding channel 325 of the inner cavity 324 . This can be achieved by providing an annular groove 339 on an end of the rod 326 , and corresponding engagement pins 341 between the grooves 339 and the piston 306 .
  • the tracking system used with the digitizer 300 must know the relation between the detectable device on the base 308 and the tip of the shaft 302 .
  • the relation can be determined in calibration using a calibration base (as explained previously for the tools 56 of FIG. 2 ). Accordingly, when the digitizer 300 is stabilized in the canal, the position and orientation of the detectable device can be registered, and a center point of the canal can be calculated thereafter, where the tip of the shaft 302 is located.
US10/677,321 2002-10-04 2003-10-03 Apparatus for digitizing intramedullary canal and method Abandoned US20050021043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/677,321 US20050021043A1 (en) 2002-10-04 2003-10-03 Apparatus for digitizing intramedullary canal and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41580902P 2002-10-04 2002-10-04
US46580503P 2003-04-28 2003-04-28
US10/677,321 US20050021043A1 (en) 2002-10-04 2003-10-03 Apparatus for digitizing intramedullary canal and method

Publications (1)

Publication Number Publication Date
US20050021043A1 true US20050021043A1 (en) 2005-01-27

Family

ID=32738083

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/677,432 Active 2031-02-15 US9339277B2 (en) 2002-10-04 2003-10-03 Computer-assisted hip replacement surgery
US10/677,321 Abandoned US20050021043A1 (en) 2002-10-04 2003-10-03 Apparatus for digitizing intramedullary canal and method
US10/530,192 Active 2027-09-22 US7877131B2 (en) 2002-10-04 2003-10-06 Method for providing pelvic orientation information in computer-assisted surgery
US15/131,552 Active 2024-08-24 US10219865B2 (en) 2002-10-04 2016-04-18 Computer-assisted hip replacement surgery
US16/249,333 Active 2024-05-07 US11311339B2 (en) 2002-10-04 2019-01-16 Computer-assisted hip replacement surgery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/677,432 Active 2031-02-15 US9339277B2 (en) 2002-10-04 2003-10-03 Computer-assisted hip replacement surgery

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/530,192 Active 2027-09-22 US7877131B2 (en) 2002-10-04 2003-10-06 Method for providing pelvic orientation information in computer-assisted surgery
US15/131,552 Active 2024-08-24 US10219865B2 (en) 2002-10-04 2016-04-18 Computer-assisted hip replacement surgery
US16/249,333 Active 2024-05-07 US11311339B2 (en) 2002-10-04 2019-01-16 Computer-assisted hip replacement surgery

Country Status (7)

Country Link
US (5) US9339277B2 (de)
EP (4) EP1545368B1 (de)
JP (2) JP2006509609A (de)
AT (4) ATE452591T1 (de)
AU (2) AU2003273680A1 (de)
DE (2) DE60330719D1 (de)
WO (2) WO2004030556A2 (de)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069591A1 (en) * 2001-02-27 2003-04-10 Carson Christopher Patrick Computer assisted knee arthroplasty instrumentation, systems, and processes
US20030181918A1 (en) * 2002-02-11 2003-09-25 Crista Smothers Image-guided fracture reduction
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
US20050085822A1 (en) * 2003-10-20 2005-04-21 Thornberry Robert C. Surgical navigation system component fault interfaces and related processes
US20050113846A1 (en) * 2001-02-27 2005-05-26 Carson Christopher P. Surgical navigation systems and processes for unicompartmental knee arthroplasty
US20050113659A1 (en) * 2003-11-26 2005-05-26 Albert Pothier Device for data input for surgical navigation system
US20050119639A1 (en) * 2003-10-20 2005-06-02 Mccombs Daniel L. Surgical navigation system component fault interfaces and related processes
US20050124988A1 (en) * 2003-10-06 2005-06-09 Lauralan Terrill-Grisoni Modular navigated portal
US20050149041A1 (en) * 2003-11-14 2005-07-07 Mcginley Brian J. Adjustable surgical cutting systems
US20050159759A1 (en) * 2004-01-20 2005-07-21 Mark Harbaugh Systems and methods for performing minimally invasive incisions
US20050197569A1 (en) * 2004-01-22 2005-09-08 Mccombs Daniel Methods, systems, and apparatuses for providing patient-mounted surgical navigational sensors
US20050228404A1 (en) * 2004-04-12 2005-10-13 Dirk Vandevelde Surgical navigation system component automated imaging navigation and related processes
US20050228266A1 (en) * 2004-03-31 2005-10-13 Mccombs Daniel L Methods and Apparatuses for Providing a Reference Array Input Device
US20050234466A1 (en) * 2004-03-31 2005-10-20 Jody Stallings TLS adjustable block
US20050234332A1 (en) * 2004-01-16 2005-10-20 Murphy Stephen B Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
US20050234468A1 (en) * 2001-02-27 2005-10-20 Carson Christopher P Total knee arthroplasty systems and processes
US20050234465A1 (en) * 2004-03-31 2005-10-20 Mccombs Daniel L Guided saw with pins
US20050245808A1 (en) * 2004-04-21 2005-11-03 Carson Christopher P Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US20050267353A1 (en) * 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
US20050279368A1 (en) * 2004-06-16 2005-12-22 Mccombs Daniel L Computer assisted surgery input/output systems and processes
US20060161051A1 (en) * 2005-01-18 2006-07-20 Lauralan Terrill-Grisoni Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
US20060173293A1 (en) * 2003-02-04 2006-08-03 Joel Marquart Method and apparatus for computer assistance with intramedullary nail procedure
US20060190011A1 (en) * 2004-12-02 2006-08-24 Michael Ries Systems and methods for providing a reference plane for mounting an acetabular cup during a computer-aided surgery
US20060200025A1 (en) * 2004-12-02 2006-09-07 Scott Elliott Systems, methods, and apparatus for automatic software flow using instrument detection during computer-aided surgery
WO2006109022A2 (en) * 2005-04-09 2006-10-19 Depuy International Ltd Acetabular Cup Positioning
US20070016008A1 (en) * 2005-06-23 2007-01-18 Ryan Schoenefeld Selective gesturing input to a surgical navigation system
US20070038059A1 (en) * 2005-07-07 2007-02-15 Garrett Sheffer Implant and instrument morphing
US20070038223A1 (en) * 2003-02-04 2007-02-15 Joel Marquart Computer-assisted knee replacement apparatus and method
US20070073133A1 (en) * 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US20070073137A1 (en) * 2005-09-15 2007-03-29 Ryan Schoenefeld Virtual mouse for use in surgical navigation
US20070073306A1 (en) * 2004-03-08 2007-03-29 Ryan Lakin Cutting block for surgical navigation
US20070118055A1 (en) * 2005-11-04 2007-05-24 Smith & Nephew, Inc. Systems and methods for facilitating surgical procedures involving custom medical implants
US20070287910A1 (en) * 2004-04-15 2007-12-13 Jody Stallings Quick Disconnect and Repositionable Reference Frame for Computer Assisted Surgery
US20080319491A1 (en) * 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
US20090183740A1 (en) * 2008-01-21 2009-07-23 Garrett Sheffer Patella tracking method and apparatus for use in surgical navigation
US20090209851A1 (en) * 2008-01-09 2009-08-20 Stryker Leibinger Gmbh & Co. Kg Stereotactic computer assisted surgery method and system
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US20110092979A1 (en) * 2008-02-28 2011-04-21 Depuy International Ltd Acetabular alignment guide
US20110213379A1 (en) * 2010-03-01 2011-09-01 Stryker Trauma Gmbh Computer assisted surgery system
US20110268325A1 (en) * 2010-04-30 2011-11-03 Medtronic Navigation, Inc Method and Apparatus for Image-Based Navigation
WO2012033823A1 (en) * 2010-09-08 2012-03-15 Synthes Usa, Llc Intramedullary rod tracking
US8165659B2 (en) 2006-03-22 2012-04-24 Garrett Sheffer Modeling method and apparatus for use in surgical navigation
US8177788B2 (en) 2005-02-22 2012-05-15 Smith & Nephew, Inc. In-line milling system
US20130189663A1 (en) * 2012-01-23 2013-07-25 Eidgenossische Technische Hochschule Zurich Medical training systems and methods
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
WO2015076942A1 (en) 2013-11-19 2015-05-28 Polaris Surgical, Llc. Prosthetic placement tool and associated methods
WO2016061148A1 (en) * 2014-10-16 2016-04-21 Additive Innovations, Llc Additive manufactured titanium bone device
US9424761B2 (en) 2012-01-23 2016-08-23 Virtamed Ag Medical simulation system and method with configurable anatomy model manufacturing
US20160294321A1 (en) * 2013-03-04 2016-10-06 Siemens Aktiengesellschaft Cabling method
US20160342097A1 (en) * 2011-01-20 2016-11-24 Carl Zeiss Smt Gmbh Method of operating a projection exposure tool for microlithography
US9517107B2 (en) 2010-07-16 2016-12-13 Stryker European Holdings I, Llc Surgical targeting system and method
US10039606B2 (en) 2012-09-27 2018-08-07 Stryker European Holdings I, Llc Rotational position determination
US20180311051A1 (en) * 2017-04-28 2018-11-01 Warsaw Orthopedic, Inc Surgical instrument and method
US10198968B2 (en) 2015-12-07 2019-02-05 Hospital For Special Surgery Method for creating a computer model of a joint for treatment planning
WO2021216244A1 (en) * 2020-04-22 2021-10-28 Warsaw Orthopedic, Inc Surgical instrument and method

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481780B2 (en) * 2001-12-11 2009-01-27 ECOLE DE TECHNOLOGIE SUPéRIEURE Method of calibration for the representation of knee kinematics and harness for use therewith
EP2151215B1 (de) * 2002-08-09 2012-09-19 Kinamed, Inc. Nicht bildgebende Ortungswerkzeuge für eine Hüftoperation
AU2003273680A1 (en) * 2002-10-04 2004-04-23 Orthosoft Inc. Computer-assisted hip replacement surgery
CA2439850A1 (en) 2003-09-04 2005-03-04 Orthosoft Inc. Universal method for determining acetabular and femoral implant positions during navigation
FR2865928B1 (fr) * 2004-02-10 2006-03-17 Tornier Sa Dispositif chirurgical d'implantation d'une prothese totale de hanche
WO2005084541A1 (en) * 2004-03-05 2005-09-15 Depuy International Ltd Pelvis registration method and apparatus
US20060004284A1 (en) * 2004-06-30 2006-01-05 Frank Grunschlager Method and system for generating three-dimensional model of part of a body from fluoroscopy image data and specific landmarks
US8290570B2 (en) 2004-09-10 2012-10-16 Stryker Leibinger Gmbh & Co., Kg System for ad hoc tracking of an object
DE102005003317A1 (de) * 2005-01-17 2006-07-27 Aesculap Ag & Co. Kg Verfahren zur Bestimmung der neutralen Position eines Oberschenkelknochens relativ zu einem Beckenknochen und Vorrichtung zur Durchführung dieses Verfahrens
DE102005003318A1 (de) * 2005-01-17 2006-07-27 Aesculap Ag & Co. Kg Verfahren zur Anzeige der Position und Orientierung eines chirurgischen Werkzeuges und Vorrichtung zur Durchführung dieses Verfahrens
CA2594994C (en) * 2005-01-26 2013-07-02 Orthosoft Inc. Computer-assisted hip joint resurfacing method and system
US20070021644A1 (en) * 2005-03-02 2007-01-25 Woolson Steven T Noninvasive methods, apparatus, kits, and systems for intraoperative position and length determination
ES2668844T3 (es) * 2005-06-02 2018-05-22 Orthosoft, Inc. Alineación de piernas para la medición de parámetros quirúrgicos en cirugía de reemplazo de cadera
DE102005028831A1 (de) 2005-06-15 2006-12-28 Aesculap Ag & Co. Kg Verfahren und chirurgisches Navigationssystem zur Herstellung einer Aufnahmevertiefung für eine Hüftgelenkpfanne
US7458989B2 (en) 2005-06-30 2008-12-02 University Of Florida Rearch Foundation, Inc. Intraoperative joint force measuring device, system and method
WO2007010330A1 (fr) * 2005-07-15 2007-01-25 Gulhivair Holding Sa Dispositif et procede de numerisation interne de l'os pour la chirurgie orthopedique et traumatologique assistee par ordinateur
US7407075B2 (en) * 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
WO2007087351A2 (en) * 2006-01-24 2007-08-02 Carnegie Mellon University Method, apparatus, and system for computer-aided tracking, navigation, and motion teaching
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8337426B2 (en) * 2009-03-24 2012-12-25 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8167823B2 (en) 2009-03-24 2012-05-01 Biomet Manufacturing Corp. Method and apparatus for aligning and securing an implant relative to a patient
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
JP5407014B2 (ja) 2006-03-17 2014-02-05 ジンマー,インコーポレイティド 切除する骨の表面の輪郭線をあらかじめ決定し、骨へのプロテーゼのフィット状態を評価する方法
US10765356B2 (en) * 2006-03-23 2020-09-08 Orthosoft Ulc Method and system for tracking tools in computer-assisted surgery
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8152726B2 (en) 2006-07-21 2012-04-10 Orthosoft Inc. Non-invasive tracking of bones for surgery
EP1882457B1 (de) * 2006-07-25 2012-03-28 BrainLAB AG Verfahren und Vorrichtung zur Darstellung von Objektausrichtung an Kugelgelenken
AU2007281000A1 (en) * 2006-08-03 2008-02-07 Orthosoft Inc. Computer-assisted surgery tools and system
WO2008017648A1 (en) 2006-08-08 2008-02-14 Aesculap Ag & Co. Kg Method and apparatus for positioning a bone prosthesis using a localization system
US7594933B2 (en) * 2006-08-08 2009-09-29 Aesculap Ag Method and apparatus for positioning a bone prosthesis using a localization system
US8400312B2 (en) * 2006-10-10 2013-03-19 Saga University Operation assisting system
US20080146969A1 (en) * 2006-12-15 2008-06-19 Kurtz William B Total joint replacement component positioning as predetermined distance from center of rotation of the joint using pinless navigation
EP1952779B1 (de) * 2007-02-01 2012-04-04 BrainLAB AG Medizintechnische Instrumenten-Identifizierung
US8784425B2 (en) 2007-02-28 2014-07-22 Smith & Nephew, Inc. Systems and methods for identifying landmarks on orthopedic implants
EP2114264B1 (de) 2007-02-28 2019-07-03 Smith & Nephew, Inc. Instrumentiertes orthopädisches implantat zur identifizierung einer markierung
ES2610595T3 (es) 2007-06-07 2017-04-28 Sam Hakki Aparato y procedimiento de determinación del eje central acetabular
JP2009056299A (ja) 2007-08-07 2009-03-19 Stryker Leibinger Gmbh & Co Kg 外科手術をプランニングするための方法及びシステム
US9179983B2 (en) 2007-08-14 2015-11-10 Zimmer, Inc. Method of determining a contour of an anatomical structure and selecting an orthopaedic implant to replicate the anatomical structure
DE102007049671A1 (de) * 2007-10-17 2009-04-30 Aesculap Ag Verfahren und Vorrichtung zur Bestimmung der Frontalebene des Beckenknochens
DE102007049668B3 (de) 2007-10-17 2009-04-16 Aesculap Ag Verfahren und Vorrichtung zur Bestimmung der Winkellage einer Hüftgelenkpfanne in einem Beckenknochen
US10335236B1 (en) 2007-11-01 2019-07-02 Stephen B. Murphy Surgical system using a registration device
US8267938B2 (en) 2007-11-01 2012-09-18 Murphy Stephen B Method and apparatus for determining acetabular component positioning
US8986309B1 (en) 2007-11-01 2015-03-24 Stephen B. Murphy Acetabular template component and method of using same during hip arthrosplasty
US20090125117A1 (en) * 2007-11-14 2009-05-14 Francois Paradis Leg alignment and length measurement in hip replacement surgery
EP2227719B1 (de) * 2007-11-19 2020-01-08 Blue Ortho Hüftimplantationsregistration bei der computergestützten chirurgie
US8617171B2 (en) * 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US9220514B2 (en) 2008-02-28 2015-12-29 Smith & Nephew, Inc. System and method for identifying a landmark
GB0803725D0 (en) 2008-02-29 2008-04-09 Depuy Int Ltd Surgical apparatus and procedure
US8494825B2 (en) * 2008-03-13 2013-07-23 Robert L. Thornberry Computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery
FR2932677B1 (fr) * 2008-06-20 2010-06-25 Univ Bretagne Occidentale Systeme d'aide a l'implantation d'une prothese de hanche sur un individu.
DK2361045T3 (da) * 2008-09-17 2021-05-25 Gyder Surgical Pty Ltd Kirurgisk orienteringssystem
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
GB0820219D0 (en) 2008-11-05 2008-12-10 Imp Innovations Ltd Hip resurfacing
US8588892B2 (en) 2008-12-02 2013-11-19 Avenir Medical Inc. Method and system for aligning a prosthesis during surgery using active sensors
EP2216728B1 (de) * 2009-02-04 2012-04-04 BrainLAB AG Verfahren und Vorrichtung zur Bestimmung einer charakteristischen Eigenschaft einer anatomischen Struktur
US9031637B2 (en) 2009-04-27 2015-05-12 Smith & Nephew, Inc. Targeting an orthopaedic implant landmark
US8945147B2 (en) 2009-04-27 2015-02-03 Smith & Nephew, Inc. System and method for identifying a landmark
GB0907650D0 (en) 2009-05-05 2009-07-22 Depuy Int Ltd Alignment guide
WO2010128409A2 (en) 2009-05-06 2010-11-11 Blue Ortho Reduced invasivity fixation system for trackers in computer assisted surgery
EP2448514B1 (de) * 2009-06-30 2015-06-24 Blue Ortho Einstellbare lehre für computergestützte orthopädische chirurgie
US9839486B2 (en) * 2010-04-14 2017-12-12 Smith & Nephew, Inc. Systems and methods for patient-based computer assisted surgical procedures
US9358130B2 (en) 2012-03-29 2016-06-07 DePuy Synthes Products, Inc. Surgical instrument and method of positioning an acetabular prosthetic component
US9295566B2 (en) * 2010-05-04 2016-03-29 Depuy International Limited Alignment guide
US20120330319A1 (en) 2010-05-04 2012-12-27 Depuy International Limited Alignment guide with spirit level
CN103096839A (zh) 2010-06-03 2013-05-08 史密夫和内修有限公司 骨科植入物
EP2582328B1 (de) * 2010-06-18 2017-09-13 Howmedica Osteonics Corp. Patientenspezifische hüfttotalarthroplastik
WO2012021895A2 (en) * 2010-08-13 2012-02-16 Smith & Nephew, Inc. Systems and methods for optimizing parameters of orthopaedic procedures
US8551108B2 (en) 2010-08-31 2013-10-08 Orthosoft Inc. Tool and method for digital acquisition of a tibial mechanical axis
EP2611379B1 (de) * 2010-08-31 2017-12-27 Orthosoft Inc. Werkzeug zur digitalen aufnahme einer mechanischen tibiaachse
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
AU2011342900A1 (en) 2010-12-17 2013-07-18 Intellijoint Surgical Inc. Method and system for aligning a prosthesis during surgery
WO2012097873A1 (en) * 2011-01-20 2012-07-26 Brainlab Ag Method for planning the positioning of a ball joint prosthesis
US8890511B2 (en) 2011-01-25 2014-11-18 Smith & Nephew, Inc. Targeting operation sites
EP2672916A4 (de) * 2011-02-08 2015-01-14 Gen Hospital Corp Patientenpositionierungssysteme und -verfahren
US20120209419A1 (en) 2011-02-14 2012-08-16 Mako Surgical Corporation System and Method for Surgical Planning
BR112013028627A2 (pt) 2011-05-06 2017-01-24 Smith & Nephew Inc limites-alvo de dispositivos ortopédicos
AU2012270983B2 (en) 2011-06-16 2016-09-22 Smith & Nephew, Inc. Surgical alignment using references
JP6172534B2 (ja) 2011-09-29 2017-08-02 アースロメダ、 インコーポレイテッド 股関節形成術における精密なプロテーゼ位置決めに用いるシステム
US9877847B2 (en) 2012-02-29 2018-01-30 Smith & Nephew, Inc. Determining anatomical orientations
US9539112B2 (en) 2012-03-28 2017-01-10 Robert L. Thornberry Computer-guided system for orienting a prosthetic acetabular cup in the acetabulum during total hip replacement surgery
US9314188B2 (en) * 2012-04-12 2016-04-19 Intellijoint Surgical Inc. Computer-assisted joint replacement surgery and navigation systems
DE102012208389A1 (de) * 2012-05-18 2013-11-21 Fiagon Gmbh Registrierverfahren und -vorrichtung für ein Positionserfassungssystem
RU2493774C1 (ru) * 2012-06-05 2013-09-27 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии" Министерства здравоохранения и социального развития Российской Федерации (ФГБУ "ННИИТО" Минздравсоцразвития России) Способ оценки положения проксимального отдела бедренной кости
CA2910261C (en) 2012-07-03 2020-09-15 7D Surgical Inc. Attachments for tracking handheld implements
CN104220021B (zh) 2012-07-30 2019-02-19 奥尔索夫特公司 具有惯性传感器单元的骨盆数字化装置和方法
US9320603B2 (en) 2012-09-20 2016-04-26 Depuy (Ireland) Surgical instrument system with multiple lengths of broaches sharing a common geometry
WO2014165060A2 (en) 2013-03-13 2014-10-09 Stryker Corporation Systems and methods for establishing virtual constraint boundaries
US9247998B2 (en) 2013-03-15 2016-02-02 Intellijoint Surgical Inc. System and method for intra-operative leg position measurement
US9597096B2 (en) 2013-03-15 2017-03-21 Arthromeda, Inc. Systems and methods for providing alignment in total knee arthroplasty
US9585768B2 (en) 2013-03-15 2017-03-07 DePuy Synthes Products, Inc. Acetabular cup prosthesis alignment system and method
WO2014161574A1 (en) 2013-04-03 2014-10-09 Brainlab Ag Method and device for determining the orientation of a co-ordinate system of an anatomical object in a global co-ordinate system
DE102013207463A1 (de) * 2013-04-24 2014-10-30 Siemens Aktiengesellschaft Steuerung zur Positionierung einer Endoprothese
EP3019109B1 (de) 2013-07-08 2022-09-28 Brainlab AG Single-marker-navigation
FR3010628B1 (fr) 2013-09-18 2015-10-16 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
US9248002B2 (en) 2013-09-26 2016-02-02 Howmedica Osteonics Corp. Method for aligning an acetabular cup
FR3012030B1 (fr) 2013-10-18 2015-12-25 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
DE102013222230A1 (de) 2013-10-31 2015-04-30 Fiagon Gmbh Chirurgisches Instrument
US10350022B2 (en) 2014-04-30 2019-07-16 Zimmer, Inc. Acetabular cup impacting using patient-specific instrumentation
CN107072741B (zh) * 2014-11-06 2020-07-14 奥尔索夫特无限责任公司 计算机辅助的髋部手术中的器械导航
FR3036516B1 (fr) * 2015-05-20 2017-05-19 Beguec Pierre Le Procede de simulation d'implantation
EP3322337B1 (de) * 2015-07-13 2023-12-20 Mako Surgical Corp. Computer-implementiertes verfahren zur berechnung der beinlängen der unteren extremitäten
WO2017079655A2 (en) 2015-11-04 2017-05-11 Mcafee Paul C Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
US10321961B2 (en) 2015-11-05 2019-06-18 Howmedica Osteonics Corp. Patient specific implantation method for range of motion hip impingement
WO2017102530A1 (en) 2015-12-18 2017-06-22 Koninklijke Philips N.V. Image processing for improved marker positioning on a line-shaped image feature
KR20180099702A (ko) 2015-12-31 2018-09-05 스트리커 코포레이션 가상 객체에 의해 정의된 타깃 부위에서 환자에게 수술을 수행하기 위한 시스템 및 방법
CN113303907A (zh) 2016-07-15 2021-08-27 马科外科公司 用于机器人辅助修正程序的系统
WO2018081795A1 (en) 2016-10-31 2018-05-03 Zipline Medical, Inc. Systems and methods for monitoring physical therapy of the knee and other joints
WO2018109556A1 (en) 2016-12-12 2018-06-21 Medicrea International Systems and methods for patient-specific spinal implants
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
CA3061132A1 (en) 2017-04-07 2018-10-11 Orthosoft Ulc Non-invasive system and method for tracking bones
EP4108201B1 (de) 2017-04-21 2024-03-27 Medicrea International System zur entwicklung einer oder mehrerer patientenspezifischen wirbelsäulenimplantate
RU2688438C2 (ru) * 2017-06-14 2019-05-21 Олег Анатольевич Каплунов Способ обработки дна вертлужной впадины при эндопротезировании тазобедренного сустава
US10806529B2 (en) 2017-07-20 2020-10-20 Mako Surgical Corp. System and method for robotically assisting a surgical procedure
WO2019032828A2 (en) * 2017-08-11 2019-02-14 Think Surgical, Inc. SYSTEM AND METHOD FOR VERIFYING IMPLANT
US11737893B2 (en) * 2017-10-06 2023-08-29 Intellijoint Surgical Inc. System and method for preoperative planning for total hip arthroplasty
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
US10925598B2 (en) 2018-07-16 2021-02-23 Ethicon Llc Robotically-assisted surgical suturing systems
GB2574074B (en) 2018-07-27 2020-05-20 Mclaren Applied Tech Ltd Time synchronisation
US11684426B2 (en) 2018-08-31 2023-06-27 Orthosoft Ulc System and method for tracking bones
CN109124763B (zh) * 2018-09-20 2020-09-08 创辉医疗器械江苏有限公司 一种个性化脊柱矫形棒及其制作方法
WO2020072799A1 (en) 2018-10-05 2020-04-09 Orthosensor Inc. A measurement system configured to support installation of a ball and socket joint and method therefor
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11877801B2 (en) 2019-04-02 2024-01-23 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
EP3719749A1 (de) 2019-04-03 2020-10-07 Fiagon AG Medical Technologies Registrierungsverfahren und -einrichtung
KR20210012819A (ko) 2019-07-26 2021-02-03 경상대학교산학협력단 인공 고관절용 베어링
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) * 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
GB2588236B (en) 2019-10-18 2024-03-20 Mclaren Applied Ltd Gyroscope bias estimation
CN110811829B (zh) * 2019-11-06 2020-12-08 中国人民解放军总医院第四医学中心 一种基于股骨旋转轴与内翻轴分析模型的构建方法及系统
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
US11219501B2 (en) 2019-12-30 2022-01-11 Cilag Gmbh International Visualization systems using structured light
US11896442B2 (en) 2019-12-30 2024-02-13 Cilag Gmbh International Surgical systems for proposing and corroborating organ portion removals
US11759283B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto
US11776144B2 (en) 2019-12-30 2023-10-03 Cilag Gmbh International System and method for determining, adjusting, and managing resection margin about a subject tissue
US11744667B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Adaptive visualization by a surgical system
US11832996B2 (en) 2019-12-30 2023-12-05 Cilag Gmbh International Analyzing surgical trends by a surgical system
US11648060B2 (en) 2019-12-30 2023-05-16 Cilag Gmbh International Surgical system for overlaying surgical instrument data onto a virtual three dimensional construct of an organ
US11284963B2 (en) 2019-12-30 2022-03-29 Cilag Gmbh International Method of using imaging devices in surgery
EP3977949A1 (de) * 2020-10-01 2022-04-06 Globus Medical, Inc. Systeme und verfahren zur fixierung einer navigationsanordnung
TWI793767B (zh) * 2020-10-23 2023-02-21 聯合骨科器材股份有限公司 髖骨手術植入物導引系統
CN112402075B (zh) * 2020-11-19 2021-08-20 北京积水潭医院 一种预测髋关节置换术后骨盆矢状位平衡状态的方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519100A (en) * 1982-09-30 1985-05-28 Orthopedic Equipment Co. Inc. Distal locking intramedullary nail
US5037424A (en) * 1989-12-21 1991-08-06 Aboczsky Robert I Instrument for orienting, inserting and impacting an acetabular cup prosthesis
US5171248A (en) * 1991-02-27 1992-12-15 Intermedics Orthopedics, Inc. Medullary caliper
US5269785A (en) * 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5385566A (en) * 1992-02-20 1995-01-31 Ullmark; Goesta Device and a method for use in transplantation of bone tissue material
US5628315A (en) * 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5643268A (en) * 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5702406A (en) * 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US5769861A (en) * 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5806518A (en) * 1995-09-11 1998-09-15 Integrated Surgical Systems Method and system for positioning surgical robot
US5858020A (en) * 1995-12-05 1999-01-12 Metagen, Llc Modular prosthesis
US5880976A (en) * 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US5889834A (en) * 1995-09-28 1999-03-30 Brainlab Med. Computersysteme Gmbh Blade collimator for radiation therapy
US6178345B1 (en) * 1998-06-30 2001-01-23 Brainlab Med. Computersysteme Gmbh Method for detecting the exact contour of targeted treatment areas, in particular, the external contour
US6205411B1 (en) * 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US6214014B1 (en) * 1998-05-19 2001-04-10 Mcgann William A. Acetabular total hip component alignment system for accurate intraoperative positioning in inclination
US6223067B1 (en) * 1997-04-11 2001-04-24 Brainlab Med. Computersysteme Gmbh Referencing device including mouthpiece
US6351659B1 (en) * 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6358253B1 (en) * 1997-02-11 2002-03-19 Smith & Newhew Inc Repairing cartilage
US6450978B1 (en) * 1998-05-28 2002-09-17 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6609022B2 (en) * 2000-01-12 2003-08-19 Brainlab Ag Intraoperative navigation updating
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703080A (en) * 1951-01-29 1955-03-01 Helen E Sanders Table with posture correction apparatus
US5007936A (en) * 1988-02-18 1991-04-16 Cemax, Inc. Surgical method for hip joint replacement
US6405072B1 (en) * 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
DE19508228B4 (de) 1995-03-08 2005-12-29 Brainlab Ag Verfahren zur Bestrahlung eines in einem Zielobjekt liegenden Zielpunktes
DE19639615C5 (de) 1996-09-26 2008-11-06 Brainlab Ag Reflektorenreferenzierungssystem für chirurgische und medizinische Instrumente
DE19536180C2 (de) 1995-09-28 2003-05-08 Brainlab Ag Verfahren und Vorrichtungen zur Lokalisierung eines Instruments
DE19640283C2 (de) 1996-09-30 2001-06-28 Brainlab Med Computersyst Gmbh Röhrenkollimator-Herstellungswerkzeug und -Verfahren
US7302288B1 (en) * 1996-11-25 2007-11-27 Z-Kat, Inc. Tool position indicator
DE19751761B4 (de) 1997-04-11 2006-06-22 Brainlab Ag System und Verfahren zur aktuell exakten Erfassung von Behandlungszielpunkten
DE19829224B4 (de) 1998-06-30 2005-12-15 Brainlab Ag Verfahren zur Lokalisation von Behandlungszielen im Bereich weicher Körperteile
DE19848765C2 (de) 1998-10-22 2000-12-21 Brainlab Med Computersyst Gmbh Positionsverifizierung in Kamerabildern
DE19917867B4 (de) 1999-04-20 2005-04-21 Brainlab Ag Verfahren und Vorrichtung zur Bildunterstützung bei der Behandlung von Behandlungszielen mit Integration von Röntgenerfassung und Navigationssystem
DE19944516B4 (de) 1999-09-16 2006-08-17 Brainlab Ag Dreidimensionale Formerfassung mit Kamerabildern
DE19953177A1 (de) 1999-11-04 2001-06-21 Brainlab Ag Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern
DE19956814B4 (de) 1999-11-25 2004-07-15 Brainlab Ag Formerfassung von Behandlungsvorrichtungen
US6611700B1 (en) 1999-12-30 2003-08-26 Brainlab Ag Method and apparatus for positioning a body for radiation using a position sensor
DE10003269A1 (de) 2000-01-26 2001-08-09 Brainlab Ag Vorrichtung und Verfahren zur Positionierung von Behandlungsgeräten bzw. behandlungsunterstützenden Geräten
US6996487B2 (en) 2000-03-15 2006-02-07 Orthosoft Inc. Automatic calibration system for computer-aided surgical instruments
ES2180481T3 (es) 2000-04-05 2003-02-16 Brainlab Ag Referenciacion de un paciente en un sistema de navegacion medica, utilizando puntos luminosos proyectados.
EP1153572B1 (de) 2000-05-09 2002-08-07 BrainLAB AG Verfahren zur Registrierung eines Patientendatensatzes aus einem bildgebenden Verfahren bei navigationsunterstützen chirurgischen Eingriffen mittels Röntgenbildzuordnung
JP2004507288A (ja) * 2000-07-06 2004-03-11 ジンテーズ アクチエンゲゼルシャフト クール ぶつかり検知方法およびぶつかり検知装置
DE10033063A1 (de) 2000-07-07 2002-01-24 Brainlab Ag Verfahren zur atmungskompensierten Strahlenbehandlung
DE50000345D1 (de) 2000-09-01 2002-09-05 Brainlab Ag Stufenfreie Darstellung von zwei- oder dreidimensionalen Datensätzen durch krümmungsminimierende Verschiebung von Pixelwerten
US20020032375A1 (en) 2000-09-11 2002-03-14 Brainlab Ag Method and system for visualizing a body volume and computer program product
DE20016635U1 (de) 2000-09-26 2001-02-22 Brainlab Ag System zur navigationsgestützten Ausrichtung von Elementen
DE50006264D1 (de) 2000-09-26 2004-06-03 Brainlab Ag System zur navigationsgestützten Ausrichtung von Elementen auf einem Körper
EP1190676B1 (de) 2000-09-26 2003-08-13 BrainLAB AG Vorrichtung zum Bestimmen der Position eines Schneidblocks
DE10051370A1 (de) 2000-10-17 2002-05-02 Brainlab Ag Verfahren und Vorrichtung zur exakten Patientenpositionierung in der Strahlentherapie und Radiochirurgie
US6514219B1 (en) * 2000-11-17 2003-02-04 Biotonix Inc. System and method for automated biomechanical analysis and the detection and correction of postural deviations
US6917827B2 (en) * 2000-11-17 2005-07-12 Ge Medical Systems Global Technology Company, Llc Enhanced graphic features for computer assisted surgery system
DE50001418D1 (de) 2000-11-22 2003-04-10 Brainlab Ag Verfahren zur Bestimmung der Lungenfüllung
EP1208808B1 (de) 2000-11-24 2003-06-18 BrainLAB AG Vorrichtung und Verfahren zur Navigation
DE50002672D1 (de) 2000-12-19 2003-07-31 Brainlab Ag Verfahren und Vorrichtung zur navigationsgestüzten Zahnbehandlung
EP1216651A1 (de) 2000-12-21 2002-06-26 BrainLAB AG Kabelloses medizinisches Erfassungs- und Behandlungssystem
US6514259B2 (en) * 2001-02-02 2003-02-04 Carnegie Mellon University Probe and associated system and method for facilitating planar osteotomy during arthoplasty
CA2334495A1 (en) * 2001-02-06 2002-08-06 Surgical Navigation Specialists, Inc. Computer-aided positioning method and system
WO2002062250A1 (de) * 2001-02-07 2002-08-15 Synthes Ag Chur Vorrichtung und verfahren für die intraoperative navigation
AU2001228255B2 (en) * 2001-02-07 2005-05-19 Ao Technology Ag Method for establishing a three-dimensional representation of bone X-ray images
WO2002067800A2 (en) * 2001-02-27 2002-09-06 Smith & Nephew, Inc. Surgical navigation systems and processes for high tibial osteotomy
US6711431B2 (en) * 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
DE10221273A1 (de) * 2002-05-14 2003-12-04 Peter Brehm Intramedulläre Führung
AU2003215562A1 (en) * 2002-05-21 2003-12-02 Plus Endoprothetik Ag Arrangement for determining function-determined geometric variables of a joint of a vertebrate
AU2003245758A1 (en) * 2002-06-21 2004-01-06 Cedara Software Corp. Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement
ATE274886T1 (de) * 2002-09-24 2004-09-15 Brainlab Ag Vorrichtung und verfahren zum bestimmen des öffnungswinkels eines gelenks
AU2003273680A1 (en) * 2002-10-04 2004-04-23 Orthosoft Inc. Computer-assisted hip replacement surgery
US20050065617A1 (en) * 2003-09-05 2005-03-24 Moctezuma De La Barrera Jose Luis System and method of performing ball and socket joint arthroscopy

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519100A (en) * 1982-09-30 1985-05-28 Orthopedic Equipment Co. Inc. Distal locking intramedullary nail
US5037424A (en) * 1989-12-21 1991-08-06 Aboczsky Robert I Instrument for orienting, inserting and impacting an acetabular cup prosthesis
US5269785A (en) * 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5171248A (en) * 1991-02-27 1992-12-15 Intermedics Orthopedics, Inc. Medullary caliper
US5385566A (en) * 1992-02-20 1995-01-31 Ullmark; Goesta Device and a method for use in transplantation of bone tissue material
US5702406A (en) * 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US5628315A (en) * 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5643268A (en) * 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5806518A (en) * 1995-09-11 1998-09-15 Integrated Surgical Systems Method and system for positioning surgical robot
US5769861A (en) * 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US6351659B1 (en) * 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US5889834A (en) * 1995-09-28 1999-03-30 Brainlab Med. Computersysteme Gmbh Blade collimator for radiation therapy
US5858020A (en) * 1995-12-05 1999-01-12 Metagen, Llc Modular prosthesis
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US6358253B1 (en) * 1997-02-11 2002-03-19 Smith & Newhew Inc Repairing cartilage
US5880976A (en) * 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US6205411B1 (en) * 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US6002859A (en) * 1997-02-21 1999-12-14 Carnegie Mellon University Apparatus and method facilitating the implantation of artificial components in joints
US5995738A (en) * 1997-02-21 1999-11-30 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US6223067B1 (en) * 1997-04-11 2001-04-24 Brainlab Med. Computersysteme Gmbh Referencing device including mouthpiece
US6214014B1 (en) * 1998-05-19 2001-04-10 Mcgann William A. Acetabular total hip component alignment system for accurate intraoperative positioning in inclination
US6450978B1 (en) * 1998-05-28 2002-09-17 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6178345B1 (en) * 1998-06-30 2001-01-23 Brainlab Med. Computersysteme Gmbh Method for detecting the exact contour of targeted treatment areas, in particular, the external contour
US6609022B2 (en) * 2000-01-12 2003-08-19 Brainlab Ag Intraoperative navigation updating
US6620162B2 (en) * 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110071530A1 (en) * 2001-02-27 2011-03-24 Carson Christopher P Total knee arthroplasty systems and processes
US20050234468A1 (en) * 2001-02-27 2005-10-20 Carson Christopher P Total knee arthroplasty systems and processes
US20110071528A1 (en) * 2001-02-27 2011-03-24 Carson Christopher P Systems Using Imaging Data to Facilitate Surgical Procedures
US20110071531A1 (en) * 2001-02-27 2011-03-24 Carson Christopher P Systems using imaging data to facilitate surgical procedures
US20030069591A1 (en) * 2001-02-27 2003-04-10 Carson Christopher Patrick Computer assisted knee arthroplasty instrumentation, systems, and processes
US20070123912A1 (en) * 2001-02-27 2007-05-31 Carson Christopher P Surgical navigation systems and processes for unicompartmental knee arthroplasty
US20050113846A1 (en) * 2001-02-27 2005-05-26 Carson Christopher P. Surgical navigation systems and processes for unicompartmental knee arthroplasty
US20070169782A1 (en) * 2002-02-11 2007-07-26 Crista Smothers Image-guided fracture reduction
US20030181918A1 (en) * 2002-02-11 2003-09-25 Crista Smothers Image-guided fracture reduction
US20070038223A1 (en) * 2003-02-04 2007-02-15 Joel Marquart Computer-assisted knee replacement apparatus and method
US20060173293A1 (en) * 2003-02-04 2006-08-03 Joel Marquart Method and apparatus for computer assistance with intramedullary nail procedure
US20060241416A1 (en) * 2003-02-04 2006-10-26 Joel Marquart Method and apparatus for computer assistance with intramedullary nail procedure
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
US8491597B2 (en) 2003-10-03 2013-07-23 Smith & Nephew, Inc. (partial interest) Surgical positioners
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US20050124988A1 (en) * 2003-10-06 2005-06-09 Lauralan Terrill-Grisoni Modular navigated portal
US20050119639A1 (en) * 2003-10-20 2005-06-02 Mccombs Daniel L. Surgical navigation system component fault interfaces and related processes
US20100249581A1 (en) * 2003-10-20 2010-09-30 Mccombs Daniel L Surgical Navigation System Component Fault Interfaces and Related Processes
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
US20050085822A1 (en) * 2003-10-20 2005-04-21 Thornberry Robert C. Surgical navigation system component fault interfaces and related processes
US7794467B2 (en) 2003-11-14 2010-09-14 Smith & Nephew, Inc. Adjustable surgical cutting systems
US20050149041A1 (en) * 2003-11-14 2005-07-07 Mcginley Brian J. Adjustable surgical cutting systems
US20050113659A1 (en) * 2003-11-26 2005-05-26 Albert Pothier Device for data input for surgical navigation system
US20050234332A1 (en) * 2004-01-16 2005-10-20 Murphy Stephen B Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
US20100010506A1 (en) * 2004-01-16 2010-01-14 Murphy Stephen B Method of Computer-Assisted Ligament Balancing and Component Placement in Total Knee Arthroplasty
US20050159759A1 (en) * 2004-01-20 2005-07-21 Mark Harbaugh Systems and methods for performing minimally invasive incisions
US20050197569A1 (en) * 2004-01-22 2005-09-08 Mccombs Daniel Methods, systems, and apparatuses for providing patient-mounted surgical navigational sensors
US20050267353A1 (en) * 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
US20070073306A1 (en) * 2004-03-08 2007-03-29 Ryan Lakin Cutting block for surgical navigation
US20050234465A1 (en) * 2004-03-31 2005-10-20 Mccombs Daniel L Guided saw with pins
US20050234466A1 (en) * 2004-03-31 2005-10-20 Jody Stallings TLS adjustable block
US20050228266A1 (en) * 2004-03-31 2005-10-13 Mccombs Daniel L Methods and Apparatuses for Providing a Reference Array Input Device
US20050228404A1 (en) * 2004-04-12 2005-10-13 Dirk Vandevelde Surgical navigation system component automated imaging navigation and related processes
US20070287910A1 (en) * 2004-04-15 2007-12-13 Jody Stallings Quick Disconnect and Repositionable Reference Frame for Computer Assisted Surgery
US8109942B2 (en) 2004-04-21 2012-02-07 Smith & Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US20050245808A1 (en) * 2004-04-21 2005-11-03 Carson Christopher P Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US20050279368A1 (en) * 2004-06-16 2005-12-22 Mccombs Daniel L Computer assisted surgery input/output systems and processes
US20060200025A1 (en) * 2004-12-02 2006-09-07 Scott Elliott Systems, methods, and apparatus for automatic software flow using instrument detection during computer-aided surgery
US20060190011A1 (en) * 2004-12-02 2006-08-24 Michael Ries Systems and methods for providing a reference plane for mounting an acetabular cup during a computer-aided surgery
US20060161051A1 (en) * 2005-01-18 2006-07-20 Lauralan Terrill-Grisoni Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
US8177788B2 (en) 2005-02-22 2012-05-15 Smith & Nephew, Inc. In-line milling system
WO2006109022A3 (en) * 2005-04-09 2007-01-18 Depuy Int Ltd Acetabular cup positioning
US20080255584A1 (en) * 2005-04-09 2008-10-16 David Beverland Acetabular Cup Positioning
US8206405B2 (en) 2005-04-09 2012-06-26 Depuy International Limited Acetabular cup positioning
JP2008534208A (ja) * 2005-04-09 2008-08-28 デピュー インターナショナル リミテッド 寛骨臼カップの位置付け
JP4943419B2 (ja) * 2005-04-09 2012-05-30 デピュー インターナショナル リミテッド 寛骨臼カップの位置付け
WO2006109022A2 (en) * 2005-04-09 2006-10-19 Depuy International Ltd Acetabular Cup Positioning
US20070016008A1 (en) * 2005-06-23 2007-01-18 Ryan Schoenefeld Selective gesturing input to a surgical navigation system
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US20070038059A1 (en) * 2005-07-07 2007-02-15 Garrett Sheffer Implant and instrument morphing
US20070073133A1 (en) * 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US20070073137A1 (en) * 2005-09-15 2007-03-29 Ryan Schoenefeld Virtual mouse for use in surgical navigation
US20070118055A1 (en) * 2005-11-04 2007-05-24 Smith & Nephew, Inc. Systems and methods for facilitating surgical procedures involving custom medical implants
US20110092978A1 (en) * 2005-11-04 2011-04-21 Mccombs Daniel L Systems and methods for facilitating surgical procedures involving custom medical implants
US8165659B2 (en) 2006-03-22 2012-04-24 Garrett Sheffer Modeling method and apparatus for use in surgical navigation
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US9775625B2 (en) 2007-06-19 2017-10-03 Biomet Manufacturing, Llc. Patient-matched surgical component and methods of use
US20080319491A1 (en) * 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
US10136950B2 (en) 2007-06-19 2018-11-27 Biomet Manufacturing, Llc Patient-matched surgical component and methods of use
US10786307B2 (en) 2007-06-19 2020-09-29 Biomet Manufacturing, Llc Patient-matched surgical component and methods of use
US10070903B2 (en) 2008-01-09 2018-09-11 Stryker European Holdings I, Llc Stereotactic computer assisted surgery method and system
US20090209851A1 (en) * 2008-01-09 2009-08-20 Stryker Leibinger Gmbh & Co. Kg Stereotactic computer assisted surgery method and system
US11642155B2 (en) 2008-01-09 2023-05-09 Stryker European Operations Holdings Llc Stereotactic computer assisted surgery method and system
US10105168B2 (en) 2008-01-09 2018-10-23 Stryker European Holdings I, Llc Stereotactic computer assisted surgery based on three-dimensional visualization
US20110019884A1 (en) * 2008-01-09 2011-01-27 Stryker Leibinger Gmbh & Co. Kg Stereotactic Computer Assisted Surgery Based On Three-Dimensional Visualization
US8571637B2 (en) 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
US20090183740A1 (en) * 2008-01-21 2009-07-23 Garrett Sheffer Patella tracking method and apparatus for use in surgical navigation
US9017337B2 (en) 2008-02-28 2015-04-28 DuPuy Orthopadie GmbH Acetabular alignment guide
US20110092979A1 (en) * 2008-02-28 2011-04-21 Depuy International Ltd Acetabular alignment guide
US10588647B2 (en) 2010-03-01 2020-03-17 Stryker European Holdings I, Llc Computer assisted surgery system
US20110213379A1 (en) * 2010-03-01 2011-09-01 Stryker Trauma Gmbh Computer assisted surgery system
US8842893B2 (en) * 2010-04-30 2014-09-23 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US20110268325A1 (en) * 2010-04-30 2011-11-03 Medtronic Navigation, Inc Method and Apparatus for Image-Based Navigation
US9504531B2 (en) 2010-04-30 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US9517107B2 (en) 2010-07-16 2016-12-13 Stryker European Holdings I, Llc Surgical targeting system and method
WO2012033823A1 (en) * 2010-09-08 2012-03-15 Synthes Usa, Llc Intramedullary rod tracking
US20160342097A1 (en) * 2011-01-20 2016-11-24 Carl Zeiss Smt Gmbh Method of operating a projection exposure tool for microlithography
US20130189663A1 (en) * 2012-01-23 2013-07-25 Eidgenossische Technische Hochschule Zurich Medical training systems and methods
US20150154889A1 (en) * 2012-01-23 2015-06-04 Virtamed Ag Medical training systems and methods
US9424761B2 (en) 2012-01-23 2016-08-23 Virtamed Ag Medical simulation system and method with configurable anatomy model manufacturing
US8992230B2 (en) * 2012-01-23 2015-03-31 Virtamed Ag Medical training systems and methods
US9142145B2 (en) * 2012-01-23 2015-09-22 Virtamed Ag Medical training systems and methods
US10039606B2 (en) 2012-09-27 2018-08-07 Stryker European Holdings I, Llc Rotational position determination
US20160294321A1 (en) * 2013-03-04 2016-10-06 Siemens Aktiengesellschaft Cabling method
EP3071104A4 (de) * 2013-11-19 2017-11-29 MiRus LLC Prothesenplatzierungswerkzeug und zugehörige verfahren
WO2015076942A1 (en) 2013-11-19 2015-05-28 Polaris Surgical, Llc. Prosthetic placement tool and associated methods
US10117746B2 (en) 2014-10-16 2018-11-06 Ht Medical, Llc Additive manufactured titanium bone device
WO2016061148A1 (en) * 2014-10-16 2016-04-21 Additive Innovations, Llc Additive manufactured titanium bone device
US10898333B2 (en) 2014-10-16 2021-01-26 Ht Medical Llc Additive manufactured titanium bone device
US10198968B2 (en) 2015-12-07 2019-02-05 Hospital For Special Surgery Method for creating a computer model of a joint for treatment planning
US10789858B2 (en) 2015-12-07 2020-09-29 Hospital For Special Surgery Method for creating a computer model of a joint for treatment planning
US10881530B2 (en) * 2017-04-28 2021-01-05 Warsaw Orthopedic, Inc. Surgical instrument and method
US20180311051A1 (en) * 2017-04-28 2018-11-01 Warsaw Orthopedic, Inc Surgical instrument and method
WO2021216244A1 (en) * 2020-04-22 2021-10-28 Warsaw Orthopedic, Inc Surgical instrument and method
US11696839B2 (en) 2020-04-22 2023-07-11 Warsaw Orthopedic, Inc. Surgical instrument and method

Also Published As

Publication number Publication date
EP1870053B1 (de) 2009-12-23
US20060100504A1 (en) 2006-05-11
WO2004030556A2 (en) 2004-04-15
EP1545368A2 (de) 2005-06-29
ATE452591T1 (de) 2010-01-15
WO2004030556A3 (en) 2004-07-29
EP1545368B1 (de) 2009-03-11
ATE424776T1 (de) 2009-03-15
EP1870053A3 (de) 2008-05-21
ATE523159T1 (de) 2011-09-15
EP2168526A1 (de) 2010-03-31
US7877131B2 (en) 2011-01-25
US20040230199A1 (en) 2004-11-18
EP2168526B1 (de) 2011-09-07
US11311339B2 (en) 2022-04-26
AU2003273680A1 (en) 2004-04-23
DE60326608D1 (de) 2009-04-23
ATE513526T1 (de) 2011-07-15
DE60330719D1 (de) 2010-02-04
US10219865B2 (en) 2019-03-05
JP2006501972A (ja) 2006-01-19
US9339277B2 (en) 2016-05-17
US20190307509A1 (en) 2019-10-10
AU2003273692A1 (en) 2004-04-23
JP2006509609A (ja) 2006-03-23
EP1545369A1 (de) 2005-06-29
US20160228192A1 (en) 2016-08-11
EP1545369B1 (de) 2011-06-22
EP1870053A2 (de) 2007-12-26
WO2004030559A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US11311339B2 (en) Computer-assisted hip replacement surgery
CA2607036C (en) Leg alignment for surgical parameter measurement in hip replacement surgery
JP4754215B2 (ja) コンピュータ支援膝関節形成術の器具類、システム、および方法
US20170112508A1 (en) Computer-assisted hip joint resurfacing method and system
US9220510B2 (en) System and method for bone preparation for an implant
US8007448B2 (en) System and method for performing arthroplasty of a joint and tracking a plumb line plane
US6205411B1 (en) Computer-assisted surgery planner and intra-operative guidance system
US20090125117A1 (en) Leg alignment and length measurement in hip replacement surgery
AU2002246466A1 (en) Computer assisted insertion of an artifical hip joint
EP1372542A1 (de) Computergestützte einführung eines künstlichen hüftgelenks
JP2008539885A (ja) 脛骨の回転を判断するためのシステムおよび方法
Stockheim et al. 11 Hip Cup Implantation Using the SurgiGATE System

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHOSOFT, INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANSEN, HERBERT ANDRE;AMIOT, LUIS-PHILIPPE;COSSETTE, SEBASTIEN;AND OTHERS;REEL/FRAME:015558/0611

Effective date: 20031003

AS Assignment

Owner name: ORTHOSOFT HOLDINGS INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOSOFT INC.;REEL/FRAME:020010/0169

Effective date: 20070727

Owner name: ORTHOSOFT INC., CANADA

Free format text: CHANGE OF NAME;ASSIGNOR:ORTHOSOFT HOLDINGS INC.;REEL/FRAME:020010/0198

Effective date: 20050601

Owner name: ORTHOSOFT HOLDINGS INC.,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOSOFT INC.;REEL/FRAME:020010/0169

Effective date: 20070727

Owner name: ORTHOSOFT INC.,CANADA

Free format text: CHANGE OF NAME;ASSIGNOR:ORTHOSOFT HOLDINGS INC.;REEL/FRAME:020010/0198

Effective date: 20050601

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION