US20040106741A1 - Nanofilm compositions with polymeric components - Google Patents
Nanofilm compositions with polymeric components Download PDFInfo
- Publication number
- US20040106741A1 US20040106741A1 US10/426,475 US42647503A US2004106741A1 US 20040106741 A1 US20040106741 A1 US 20040106741A1 US 42647503 A US42647503 A US 42647503A US 2004106741 A1 US2004106741 A1 US 2004106741A1
- Authority
- US
- United States
- Prior art keywords
- nanofilm
- amphiphilic
- composition
- nanofilm composition
- macrocyclic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002120 nanofilm Substances 0.000 title claims abstract description 560
- 239000000203 mixture Substances 0.000 title claims description 332
- 239000000758 substrate Substances 0.000 claims abstract description 99
- 238000001914 filtration Methods 0.000 claims abstract description 26
- 241000894007 species Species 0.000 claims description 131
- -1 poly(maleic anhydride) Polymers 0.000 claims description 124
- 229920000642 polymer Polymers 0.000 claims description 121
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 114
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 claims description 88
- 229910052739 hydrogen Inorganic materials 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 78
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 74
- 239000001257 hydrogen Substances 0.000 claims description 54
- 230000035699 permeability Effects 0.000 claims description 48
- 239000012071 phase Substances 0.000 claims description 44
- 239000000178 monomer Substances 0.000 claims description 42
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 35
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 30
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 30
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 25
- 150000002148 esters Chemical class 0.000 claims description 23
- 239000007795 chemical reaction product Substances 0.000 claims description 22
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 22
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 19
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 19
- 150000001412 amines Chemical class 0.000 claims description 18
- 230000003993 interaction Effects 0.000 claims description 18
- 239000004202 carbamide Substances 0.000 claims description 17
- 229920001451 polypropylene glycol Polymers 0.000 claims description 17
- 239000012530 fluid Substances 0.000 claims description 15
- 229920000515 polycarbonate Polymers 0.000 claims description 15
- 239000004417 polycarbonate Substances 0.000 claims description 15
- 229920000728 polyester Polymers 0.000 claims description 15
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 14
- 229910052740 iodine Inorganic materials 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 13
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 13
- 229910052794 bromium Inorganic materials 0.000 claims description 13
- 229910052801 chlorine Inorganic materials 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 13
- 239000008103 glucose Substances 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- 239000010409 thin film Substances 0.000 claims description 13
- 229940109239 creatinine Drugs 0.000 claims description 11
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 10
- 229920006393 polyether sulfone Polymers 0.000 claims description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 10
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 10
- 108010088751 Albumins Proteins 0.000 claims description 9
- 102000009027 Albumins Human genes 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000000017 hydrogel Substances 0.000 claims description 9
- 229920002492 poly(sulfone) Polymers 0.000 claims description 9
- 229920001721 polyimide Polymers 0.000 claims description 9
- 229920002635 polyurethane Polymers 0.000 claims description 9
- 239000004814 polyurethane Substances 0.000 claims description 9
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 229920001567 vinyl ester resin Polymers 0.000 claims description 9
- 239000004711 α-olefin Substances 0.000 claims description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 8
- 239000004952 Polyamide Substances 0.000 claims description 8
- 229920002678 cellulose Polymers 0.000 claims description 8
- 150000005690 diesters Chemical class 0.000 claims description 8
- 150000004676 glycans Chemical class 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 8
- 229920002647 polyamide Polymers 0.000 claims description 8
- 229920000656 polylysine Polymers 0.000 claims description 8
- 229920001184 polypeptide Polymers 0.000 claims description 8
- 229920001282 polysaccharide Polymers 0.000 claims description 8
- 239000005017 polysaccharide Substances 0.000 claims description 8
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 8
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 8
- 229920000936 Agarose Polymers 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 7
- 102000004877 Insulin Human genes 0.000 claims description 7
- 108090001061 Insulin Proteins 0.000 claims description 7
- 108010058846 Ovalbumin Proteins 0.000 claims description 7
- 235000021355 Stearic acid Nutrition 0.000 claims description 7
- 150000003926 acrylamides Chemical class 0.000 claims description 7
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 claims description 7
- 150000001993 dienes Chemical class 0.000 claims description 7
- 150000002009 diols Chemical class 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 229940125396 insulin Drugs 0.000 claims description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 7
- 229940092253 ovalbumin Drugs 0.000 claims description 7
- 229920000058 polyacrylate Polymers 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000008117 stearic acid Substances 0.000 claims description 7
- 239000011715 vitamin B12 Substances 0.000 claims description 7
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims description 6
- 150000001253 acrylic acids Chemical class 0.000 claims description 6
- 150000001448 anilines Chemical class 0.000 claims description 6
- 235000010980 cellulose Nutrition 0.000 claims description 6
- 229920002301 cellulose acetate Polymers 0.000 claims description 6
- 235000013985 cinnamic acid Nutrition 0.000 claims description 6
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid group Chemical class C(C=CC1=CC=CC=C1)(=O)O WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 claims description 6
- 150000002924 oxiranes Chemical class 0.000 claims description 6
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 229920001195 polyisoprene Polymers 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 6
- 108091033319 polynucleotide Proteins 0.000 claims description 6
- 102000040430 polynucleotide Human genes 0.000 claims description 6
- 239000002157 polynucleotide Substances 0.000 claims description 6
- 229920005862 polyol Polymers 0.000 claims description 6
- 150000003077 polyols Chemical class 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 239000011118 polyvinyl acetate Substances 0.000 claims description 6
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 6
- 229920000945 Amylopectin Polymers 0.000 claims description 5
- 229920000856 Amylose Polymers 0.000 claims description 5
- 229920002101 Chitin Polymers 0.000 claims description 5
- 229920001661 Chitosan Polymers 0.000 claims description 5
- 229920002307 Dextran Polymers 0.000 claims description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 5
- 229920002527 Glycogen Polymers 0.000 claims description 5
- 229930186217 Glycolipid Natural products 0.000 claims description 5
- 102000003886 Glycoproteins Human genes 0.000 claims description 5
- 108090000288 Glycoproteins Proteins 0.000 claims description 5
- 229920002683 Glycosaminoglycan Polymers 0.000 claims description 5
- 108010062374 Myoglobin Proteins 0.000 claims description 5
- 102000036675 Myoglobin Human genes 0.000 claims description 5
- 229920000954 Polyglycolide Polymers 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 108010067787 Proteoglycans Proteins 0.000 claims description 5
- 102000016611 Proteoglycans Human genes 0.000 claims description 5
- 108091034057 RNA (poly(A)) Proteins 0.000 claims description 5
- 150000001720 carbohydrates Chemical class 0.000 claims description 5
- 235000014633 carbohydrates Nutrition 0.000 claims description 5
- 229920000554 ionomer Polymers 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 5
- 108020004707 nucleic acids Proteins 0.000 claims description 5
- 102000039446 nucleic acids Human genes 0.000 claims description 5
- 150000007523 nucleic acids Chemical class 0.000 claims description 5
- 229920002401 polyacrylamide Polymers 0.000 claims description 5
- 229920001601 polyetherimide Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 229920000136 polysorbate Polymers 0.000 claims description 5
- 229940068965 polysorbates Drugs 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 4
- 241000700605 Viruses Species 0.000 claims description 4
- 229940027941 immunoglobulin g Drugs 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 229920000141 poly(maleic anhydride) Polymers 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000003618 dip coating Methods 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 3
- 239000010954 inorganic particle Substances 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 claims description 2
- 239000007863 gel particle Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 109
- 238000010168 coupling process Methods 0.000 abstract description 104
- 230000008878 coupling Effects 0.000 abstract description 102
- 125000000524 functional group Chemical group 0.000 description 148
- 239000011148 porous material Substances 0.000 description 127
- 239000000243 solution Substances 0.000 description 116
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 90
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 89
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 86
- 125000005647 linker group Chemical group 0.000 description 70
- 0 */C=C/C1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(/C=C/*)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(/C=C/*)=C1)CNC1CCCCC1NC2 Chemical compound */C=C/C1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(/C=C/*)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(/C=C/*)=C1)CNC1CCCCC1NC2 0.000 description 69
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 69
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 62
- 125000000217 alkyl group Chemical group 0.000 description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 51
- 239000012528 membrane Substances 0.000 description 49
- 239000002904 solvent Substances 0.000 description 49
- 239000010408 film Substances 0.000 description 48
- 125000004122 cyclic group Chemical group 0.000 description 47
- 239000010410 layer Substances 0.000 description 40
- 125000004429 atom Chemical group 0.000 description 39
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 34
- 235000019439 ethyl acetate Nutrition 0.000 description 34
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 32
- RZVGUUMNWCDIBV-UHFFFAOYSA-N diethyl propanediimidate Chemical compound CCOC(=N)CC(=N)OCC RZVGUUMNWCDIBV-UHFFFAOYSA-N 0.000 description 32
- 125000003118 aryl group Chemical group 0.000 description 31
- 238000005160 1H NMR spectroscopy Methods 0.000 description 30
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 30
- 239000002253 acid Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 29
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 28
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 28
- 238000002360 preparation method Methods 0.000 description 28
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 239000000047 product Substances 0.000 description 27
- 229920006395 saturated elastomer Polymers 0.000 description 27
- 239000007787 solid Substances 0.000 description 27
- 125000000753 cycloalkyl group Chemical group 0.000 description 26
- 150000002466 imines Chemical class 0.000 description 26
- 239000004215 Carbon black (E152) Substances 0.000 description 25
- 229930195733 hydrocarbon Natural products 0.000 description 25
- 229910052757 nitrogen Inorganic materials 0.000 description 25
- 125000001424 substituent group Chemical group 0.000 description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 125000006850 spacer group Chemical group 0.000 description 24
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 23
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 21
- 229910052786 argon Inorganic materials 0.000 description 21
- 229910052736 halogen Inorganic materials 0.000 description 21
- 150000002367 halogens Chemical class 0.000 description 21
- 230000002829 reductive effect Effects 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 229910052717 sulfur Inorganic materials 0.000 description 21
- 239000000377 silicon dioxide Substances 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 18
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 150000002739 metals Chemical class 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000012044 organic layer Substances 0.000 description 16
- 230000002441 reversible effect Effects 0.000 description 16
- 238000000926 separation method Methods 0.000 description 16
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003513 alkali Substances 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 229910052698 phosphorus Inorganic materials 0.000 description 15
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 14
- HQALMCRHKZQISO-UHFFFAOYSA-N CCC1CO1.CCC1CO1 Chemical compound CCC1CO1.CCC1CO1 HQALMCRHKZQISO-UHFFFAOYSA-N 0.000 description 14
- 238000013459 approach Methods 0.000 description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 238000000151 deposition Methods 0.000 description 14
- 125000001072 heteroaryl group Chemical group 0.000 description 14
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 description 14
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 14
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 14
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 13
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical group [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 12
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 12
- 150000008064 anhydrides Chemical class 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- 239000011541 reaction mixture Substances 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- 238000004483 ATR-FTIR spectroscopy Methods 0.000 description 11
- 238000006969 Curtius rearrangement reaction Methods 0.000 description 11
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 11
- 229910052681 coesite Inorganic materials 0.000 description 11
- 229910052906 cristobalite Inorganic materials 0.000 description 11
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 11
- 230000000717 retained effect Effects 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 229910052682 stishovite Inorganic materials 0.000 description 11
- 229910052905 tridymite Inorganic materials 0.000 description 11
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 10
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 10
- 238000000518 rheometry Methods 0.000 description 10
- 229910052938 sodium sulfate Inorganic materials 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 238000004630 atomic force microscopy Methods 0.000 description 9
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000000741 silica gel Substances 0.000 description 9
- 229910002027 silica gel Inorganic materials 0.000 description 9
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000000089 atomic force micrograph Methods 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 238000004440 column chromatography Methods 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 235000017557 sodium bicarbonate Nutrition 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 8
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 7
- RHPWLVNGOZMLKB-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)C(=O)NC1CC(C(=O)NC3=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C3O)C(=O)NC3CC(C(=O)NC4=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C4O)C(=O)NC4CC(C(=O)N2)C(N)CC4N)C(N)CC3N)C(N)CC1N Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)C(=O)NC1CC(C(=O)NC3=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C3O)C(=O)NC3CC(C(=O)NC4=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C4O)C(=O)NC4CC(C(=O)N2)C(N)CC4N)C(N)CC3N)C(N)CC1N RHPWLVNGOZMLKB-UHFFFAOYSA-N 0.000 description 7
- YLGYACDQVQQZSW-UHFFFAOYSA-N C=CC(=O)N(C)C Chemical compound C=CC(=O)N(C)C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 150000007942 carboxylates Chemical group 0.000 description 7
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 229960001404 quinidine Drugs 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000007790 solid phase Substances 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 6
- 230000002153 concerted effect Effects 0.000 description 6
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000000527 sonication Methods 0.000 description 6
- 125000003107 substituted aryl group Chemical group 0.000 description 6
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 125000003396 thiol group Chemical class [H]S* 0.000 description 6
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 5
- ZLTWIJREHQCJJL-UHFFFAOYSA-N 1-trimethylsilylethanol Chemical compound CC(O)[Si](C)(C)C ZLTWIJREHQCJJL-UHFFFAOYSA-N 0.000 description 5
- ZNGINKJHQQQORD-UHFFFAOYSA-N 2-trimethylsilylethanol Chemical compound C[Si](C)(C)CCO ZNGINKJHQQQORD-UHFFFAOYSA-N 0.000 description 5
- ULUUSMRXCYLLEL-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2 ULUUSMRXCYLLEL-UHFFFAOYSA-N 0.000 description 5
- PBOSTUDLECTMNL-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC Chemical compound C=CC(=O)OCCCCCCCCCCCC PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 5
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 5
- 239000007832 Na2SO4 Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 229920002873 Polyethylenimine Polymers 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 150000001299 aldehydes Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 235000019445 benzyl alcohol Nutrition 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 238000010511 deprotection reaction Methods 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 5
- 238000000572 ellipsometry Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 5
- 125000001165 hydrophobic group Chemical group 0.000 description 5
- 150000002596 lactones Chemical class 0.000 description 5
- 229940041616 menthol Drugs 0.000 description 5
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 5
- 150000004702 methyl esters Chemical class 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Chemical group COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 description 5
- 239000012279 sodium borohydride Substances 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 4
- OEHFPZMUTXRLFE-UHFFFAOYSA-N 5-bromo-2-hydroxybenzene-1,3-dicarbaldehyde Chemical compound OC1=C(C=O)C=C(Br)C=C1C=O OEHFPZMUTXRLFE-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- VJQKTZRRDZBLOF-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)C2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)C2 VJQKTZRRDZBLOF-UHFFFAOYSA-N 0.000 description 4
- LAJPAJXRDOOSMZ-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CNC1CCCC(C1)NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CNC1CCCC(C1)NCC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCC(C1)NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CNC1CCCC(C1)NC2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CNC1CCCC(C1)NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CNC1CCCC(C1)NCC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCC(C1)NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CNC1CCCC(C1)NC2 LAJPAJXRDOOSMZ-UHFFFAOYSA-N 0.000 description 4
- OTPGDTWMWVINJZ-UHFFFAOYSA-N C.COC(=N)CC(=N)OC Chemical compound C.COC(=N)CC(=N)OC OTPGDTWMWVINJZ-UHFFFAOYSA-N 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N C=CC Chemical compound C=CC QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- UYEONFDQIKLPFV-KTKRTIGZSA-N CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 UYEONFDQIKLPFV-KTKRTIGZSA-N 0.000 description 4
- ABVVEAHYODGCLZ-UHFFFAOYSA-N CCCCCCCCCCCCCN Chemical compound CCCCCCCCCCCCCN ABVVEAHYODGCLZ-UHFFFAOYSA-N 0.000 description 4
- BRLQWZUYTZBJKN-UHFFFAOYSA-N ClCC1CO1 Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- ARUKYTASOALXFG-UHFFFAOYSA-N cycloheptylcycloheptane Chemical compound C1CCCCCC1C1CCCCCC1 ARUKYTASOALXFG-UHFFFAOYSA-N 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000006345 epimerization reaction Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- HUEBIMLTDXKIPR-UHFFFAOYSA-N methyl heptadecanoate Chemical compound CCCCCCCCCCCCCCCCC(=O)OC HUEBIMLTDXKIPR-UHFFFAOYSA-N 0.000 description 4
- 238000005580 one pot reaction Methods 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 229920001308 poly(aminoacid) Polymers 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Substances [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000007363 ring formation reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- QIAAZWPFGHTXNZ-QWHCGFSZSA-N (1s,6r)-6-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylic acid Chemical compound OC(=O)[C@H]1CC=CC[C@H]1NC(=O)OCC1=CC=CC=C1 QIAAZWPFGHTXNZ-QWHCGFSZSA-N 0.000 description 3
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 3
- PLBFWWFJXYCJDJ-UHFFFAOYSA-N 5-dodec-1-ynyl-2-hydroxybenzene-1,3-dicarbaldehyde Chemical compound CCCCCCCCCCC#CC1=CC(C=O)=C(O)C(C=O)=C1 PLBFWWFJXYCJDJ-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- HGUOYJNRRJCGAS-UHFFFAOYSA-N C.COC(=O)CC(=O)OC Chemical compound C.COC(=O)CC(=O)OC HGUOYJNRRJCGAS-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N CC(C)O Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- IGHXQNDUQCTKSH-UHFFFAOYSA-N CCC(C)(C)C(=O)OC Chemical compound CCC(C)(C)C(=O)OC IGHXQNDUQCTKSH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 235000001258 Cinchona calisaya Nutrition 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 101000913968 Ipomoea purpurea Chalcone synthase C Proteins 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical group CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- WOGITNXCNOTRLK-VOTSOKGWSA-N O=C(Cl)/C=C/C1=CC=CC=C1 Chemical compound O=C(Cl)/C=C/C1=CC=CC=C1 WOGITNXCNOTRLK-VOTSOKGWSA-N 0.000 description 3
- 101000907988 Petunia hybrida Chalcone-flavanone isomerase C Proteins 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- NNPPMTNAJDCUHE-UHFFFAOYSA-N [H]C(C)(C)C Chemical compound [H]C(C)(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 3
- ROSDSFDQCJNGOL-UHFFFAOYSA-N [H]N(C)C Chemical compound [H]N(C)C ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000013213 extrapolation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 3
- 229960000948 quinine Drugs 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000013638 trimer Substances 0.000 description 3
- 238000010626 work up procedure Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- XININOJUAQNYNN-BZUAXINKSA-N (1r,2r,5s)-5-[(2-methylpropan-2-yl)oxycarbonylamino]-2-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylic acid Chemical compound C1=C[C@@H](NC(=O)OC(C)(C)C)C[C@@H](C(O)=O)[C@@H]1NC(=O)OCC1=CC=CC=C1 XININOJUAQNYNN-BZUAXINKSA-N 0.000 description 2
- MYYLMIDEMAPSGH-RQJHMYQMSA-N (1r,6s)-6-methoxycarbonylcyclohex-3-ene-1-carboxylic acid Chemical compound COC(=O)[C@H]1CC=CC[C@H]1C(O)=O MYYLMIDEMAPSGH-RQJHMYQMSA-N 0.000 description 2
- AEBWATHAIVJLTA-UHFFFAOYSA-N 1,2,3,3a,4,5,6,6a-octahydropentalene Chemical compound C1CCC2CCCC21 AEBWATHAIVJLTA-UHFFFAOYSA-N 0.000 description 2
- WGGHTQJCLFQFTA-UHFFFAOYSA-N 1,2,3,3a,4,5-hexahydropentalene Chemical compound C1CC=C2CCCC21 WGGHTQJCLFQFTA-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- DUXAVVSOUJIVFH-UHFFFAOYSA-N 1,3-diazabicyclo[2.2.1]heptane Chemical compound C1NC2CCN1C2 DUXAVVSOUJIVFH-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- JLIDVCMBCGBIEY-UHFFFAOYSA-N 1-penten-3-one Chemical compound CCC(=O)C=C JLIDVCMBCGBIEY-UHFFFAOYSA-N 0.000 description 2
- SEFYJVFBMNOLBK-UHFFFAOYSA-N 2-[2-[2-(oxiran-2-ylmethoxy)ethoxy]ethoxymethyl]oxirane Chemical compound C1OC1COCCOCCOCC1CO1 SEFYJVFBMNOLBK-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- ZGHFDIIVVIFNPS-UHFFFAOYSA-N 3-Methyl-3-buten-2-one Chemical compound CC(=C)C(C)=O ZGHFDIIVVIFNPS-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- MSHFRERJPWKJFX-UHFFFAOYSA-N 4-Methoxybenzyl alcohol Chemical compound COC1=CC=C(CO)C=C1 MSHFRERJPWKJFX-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- VUIOWOPNGDTWES-UHFFFAOYSA-N 5-dodec-1-ynyl-2-hydroxybenzene-1,3-dicarbonyl chloride Chemical compound CCCCCCCCCCC#CC1=CC(C(Cl)=O)=C(O)C(C(Cl)=O)=C1 VUIOWOPNGDTWES-UHFFFAOYSA-N 0.000 description 2
- SNZSSCZJMVIOCR-UHFFFAOYSA-N 7-azabicyclo[2.2.1]heptane Chemical compound C1CC2CCC1N2 SNZSSCZJMVIOCR-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- FLYLVAOYZNMBDM-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C Chemical compound C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C FLYLVAOYZNMBDM-UHFFFAOYSA-N 0.000 description 2
- CNRGEULAFUXWLD-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC(C=O)=C(O)C(C=O)=C1.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NC2.NC1CCCCC1N Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC(C=O)=C(O)C(C=O)=C1.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NC2.NC1CCCCC1N CNRGEULAFUXWLD-UHFFFAOYSA-N 0.000 description 2
- IPZLCOCIHUAKHZ-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=CC(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)C2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=CC(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)C2 IPZLCOCIHUAKHZ-UHFFFAOYSA-N 0.000 description 2
- NINCIMCVSCBKQO-PWGGMGNBSA-N C#CC#CC#CC#CC#CC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C#CC#CC#CC#CC#CC#C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CC)=C1)/C=N/C1CCCCC1/N=C/2 Chemical compound C#CC#CC#CC#CC#CC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C#CC#CC#CC#CC#CC#C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CC)=C1)/C=N/C1CCCCC1/N=C/2 NINCIMCVSCBKQO-PWGGMGNBSA-N 0.000 description 2
- FKVPHUIHVLEAPZ-UHFFFAOYSA-N C.CNC(=O)CC(=O)NC Chemical compound C.CNC(=O)CC(=O)NC FKVPHUIHVLEAPZ-UHFFFAOYSA-N 0.000 description 2
- QROGIFZRVHSFLM-QHHAFSJGSA-N C/C=C/C1=CC=CC=C1 Chemical compound C/C=C/C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 2
- UUORTJUPDJJXST-UHFFFAOYSA-N C=CC(=O)NCCO Chemical compound C=CC(=O)NCCO UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 description 2
- UHBGLDMTENIXKG-UHFFFAOYSA-M CC(=O)C1CC(C)(C(=O)[O-])C1 Chemical compound CC(=O)C1CC(C)(C(=O)[O-])C1 UHBGLDMTENIXKG-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N CC1CO1 Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- RBACIKXCRWGCBB-UHFFFAOYSA-N CCC1CO1 Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical group C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 238000006683 Mannich reaction Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 238000004639 Schlenk technique Methods 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 101000977048 Streptomyces cinnamonensis Uncharacterized protein in mutB 3'region Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 239000003875 Wang resin Substances 0.000 description 2
- WFKDPJRCBCBQNT-UHFFFAOYSA-N [H]N(C)C(=O)C(=C)C Chemical compound [H]N(C)C(=O)C(=C)C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 2
- YPHQUSNPXDGUHL-UHFFFAOYSA-N [H]N(C)C(=O)C=C Chemical compound [H]N(C)C(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 2
- RMKZLFMHXZAGTM-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethyl prop-2-enoate Chemical compound CCC[Si](OC)(OC)OCOC(=O)C=C RMKZLFMHXZAGTM-UHFFFAOYSA-N 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- AWTFUQLMGOBAHA-JHJVBQTASA-N benzyl n-[(1r,4s,6r)-4,6-diaminocyclohex-2-en-1-yl]carbamate Chemical compound C1=C[C@@H](N)C[C@@H](N)[C@@H]1NC(=O)OCC1=CC=CC=C1 AWTFUQLMGOBAHA-JHJVBQTASA-N 0.000 description 2
- HSJLOERWIQRJLS-UMSGYPCISA-N benzyl n-[(1s,2r,4r,5r)-4-iodo-7-oxo-6-oxabicyclo[3.2.1]octan-2-yl]carbamate Chemical compound N([C@H]1[C@@]2(C[C@]([C@@H](C1)I)(OC2=O)[H])[H])C(=O)OCC1=CC=CC=C1 HSJLOERWIQRJLS-UMSGYPCISA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- VIQRCOQXIHFJND-UHFFFAOYSA-N bicyclo[2.2.2]oct-2-ene Chemical compound C1CC2CCC1C=C2 VIQRCOQXIHFJND-UHFFFAOYSA-N 0.000 description 2
- GPRLTFBKWDERLU-UHFFFAOYSA-N bicyclo[2.2.2]octane Chemical compound C1CC2CCC1CC2 GPRLTFBKWDERLU-UHFFFAOYSA-N 0.000 description 2
- UTODCSRVEOLXKS-UHFFFAOYSA-N bicyclo[3.2.2]non-4-ene Chemical compound C1CC(CC2)CCC2=C1 UTODCSRVEOLXKS-UHFFFAOYSA-N 0.000 description 2
- GNTFBMAGLFYMMZ-UHFFFAOYSA-N bicyclo[3.2.2]nonane Chemical compound C1CC2CCC1CCC2 GNTFBMAGLFYMMZ-UHFFFAOYSA-N 0.000 description 2
- SIVKZPBURVINMX-UHFFFAOYSA-N bicyclo[3.3.1]non-4-ene Chemical compound C1CC=C2CCCC1C2 SIVKZPBURVINMX-UHFFFAOYSA-N 0.000 description 2
- WNTGVOIBBXFMLR-UHFFFAOYSA-N bicyclo[3.3.1]nonane Chemical compound C1CCC2CCCC1C2 WNTGVOIBBXFMLR-UHFFFAOYSA-N 0.000 description 2
- ZUDPATVLKVXKSZ-UHFFFAOYSA-N bicyclo[4.2.2]decane Chemical compound C1CC2CCC1CCCC2 ZUDPATVLKVXKSZ-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001733 carboxylic acid esters Chemical group 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000006352 cycloaddition reaction Methods 0.000 description 2
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 2
- VMFHCJPMKUTMMQ-UHFFFAOYSA-N cyclopenta-2,4-dien-1-yl(trimethyl)silane Chemical compound C[Si](C)(C)C1C=CC=C1 VMFHCJPMKUTMMQ-UHFFFAOYSA-N 0.000 description 2
- DHVIVNRYFOAZFF-UHFFFAOYSA-N cyclopenta-2,4-dien-1-ylmethoxymethylbenzene Chemical compound C1=CC=CC1COCC1=CC=CC=C1 DHVIVNRYFOAZFF-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002118 epoxides Chemical group 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 2
- 229960002442 glucosamine Drugs 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 2
- 229920000140 heteropolymer Polymers 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 125000000879 imine group Chemical group 0.000 description 2
- 238000010952 in-situ formation Methods 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000008384 membrane barrier Effects 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- KMFNLFVEJUMRDF-BRWVUGGUSA-N methyl (1r,2r,5s)-5-[(2-methylpropan-2-yl)oxycarbonylamino]-2-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylate Chemical compound COC(=O)[C@@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1NC(=O)OCC1=CC=CC=C1 KMFNLFVEJUMRDF-BRWVUGGUSA-N 0.000 description 2
- UPLOCAFFUZDQMT-MELADBBJSA-N methyl (1s,2r,5r)-5-hydroxy-2-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylate Chemical compound COC(=O)[C@H]1C[C@@H](O)C=C[C@H]1NC(=O)OCC1=CC=CC=C1 UPLOCAFFUZDQMT-MELADBBJSA-N 0.000 description 2
- OPRIUZGIQNQKGL-UONOGXRCSA-N methyl (1s,6r)-6-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylate Chemical compound COC(=O)[C@H]1CC=CC[C@H]1NC(=O)OCC1=CC=CC=C1 OPRIUZGIQNQKGL-UONOGXRCSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- CNWVYEGPPMQTKA-UHFFFAOYSA-N n-octadecylprop-2-enamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)C=C CNWVYEGPPMQTKA-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 125000003186 propargylic group Chemical group 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- PHICBFWUYUCFKS-UHFFFAOYSA-N spiro[4.4]nonane Chemical compound C1CCCC21CCCC2 PHICBFWUYUCFKS-UHFFFAOYSA-N 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- NDVRKEKNSBMTAX-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O NDVRKEKNSBMTAX-BTVCFUMJSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- VMSLCPKYRPDHLN-UHFFFAOYSA-N (R)-Humulone Chemical compound CC(C)CC(=O)C1=C(O)C(CC=C(C)C)=C(O)C(O)(CC=C(C)C)C1=O VMSLCPKYRPDHLN-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- GWYPDXLJACEENP-UHFFFAOYSA-N 1,3-cycloheptadiene Chemical compound C1CC=CC=CC1 GWYPDXLJACEENP-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- VOCDJQSAMZARGX-UHFFFAOYSA-N 1-ethenylpyrrolidine-2,5-dione Chemical compound C=CN1C(=O)CCC1=O VOCDJQSAMZARGX-UHFFFAOYSA-N 0.000 description 1
- KUIZKZHDMPERHR-UHFFFAOYSA-N 1-phenylprop-2-en-1-one Chemical compound C=CC(=O)C1=CC=CC=C1 KUIZKZHDMPERHR-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- IGDLZDCWMRPMGL-UHFFFAOYSA-N 2-ethenylisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(C=C)C(=O)C2=C1 IGDLZDCWMRPMGL-UHFFFAOYSA-N 0.000 description 1
- OMMMFIJGPKOCGG-UHFFFAOYSA-N 2-ethenyloctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(C=C)C(O)=O OMMMFIJGPKOCGG-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- 125000004352 2-phenylcyclohexyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])* 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- FPSPPRZKBUVEJQ-UHFFFAOYSA-N 4,6-dimethoxypyrimidine Chemical compound COC1=CC(OC)=NC=N1 FPSPPRZKBUVEJQ-UHFFFAOYSA-N 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N 4-Methyl-3-penten-2-one, 9CI Chemical compound CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- VAKNOIVYCKYMNO-UHFFFAOYSA-N 5-dodec-1-enyl-2-hydroxybenzene-1,3-dicarbaldehyde Chemical compound CCCCCCCCCCC=CC1=CC(C=O)=C(O)C(C=O)=C1 VAKNOIVYCKYMNO-UHFFFAOYSA-N 0.000 description 1
- JXYJKUBIBLOFRL-UHFFFAOYSA-N 5-dodecyl-2-methoxybenzene-1,3-dicarbaldehyde Chemical compound CCCCCCCCCCCCC1=CC(C=O)=C(OC)C(C=O)=C1 JXYJKUBIBLOFRL-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- SFAFDSJQHMUUOE-WDENZEPZSA-N B.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)/C=N/C1CCCCC1/N=C/2.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CCCCC1NC2.[NaH] Chemical compound B.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)/C=N/C1CCCCC1/N=C/2.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CCCCC1NC2.[NaH] SFAFDSJQHMUUOE-WDENZEPZSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OPNVCMHFUDDAOM-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#CC(C)(CC)C(=O)OC Chemical compound C#CC#CC#CC#CC#CC#CC#CC#CC(C)(CC)C(=O)OC OPNVCMHFUDDAOM-UHFFFAOYSA-N 0.000 description 1
- IWYAJPNKCCELLN-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl Chemical compound C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl IWYAJPNKCCELLN-UHFFFAOYSA-N 0.000 description 1
- MXKLJVFTTMIJAS-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.CCC(C)(C)C(C)=O.O=C(Cl)CC(=O)Cl Chemical compound C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.CCC(C)(C)C(C)=O.O=C(Cl)CC(=O)Cl MXKLJVFTTMIJAS-UHFFFAOYSA-N 0.000 description 1
- JAUKHBYCDULQQN-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.O=C(Cl)CC(=O)Cl Chemical compound C#CC#CC#CC#CC#CC#CC#CC#CC(C)CC1C(=O)OC(=O)C1C.O=C(Cl)CC(=O)Cl JAUKHBYCDULQQN-UHFFFAOYSA-N 0.000 description 1
- XCFXOEGIIJQJAC-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)C2.C=CC(C)=O Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)C2.C=CC(C)=O XCFXOEGIIJQJAC-UHFFFAOYSA-N 0.000 description 1
- JIZJOFLMXOPEJO-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NC2.C=CC(C)=O.C=CC(C)=O.CCN(CC)CC Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2.C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NC2.C=CC(C)=O.C=CC(C)=O.CCN(CC)CC JIZJOFLMXOPEJO-UHFFFAOYSA-N 0.000 description 1
- SAOWAJCYSZSVEP-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2.C=CC(C)=O Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(C)C(=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)CC1=C(C)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CN(C(=O)C=C)C1CCCCC1N(C(=O)C=C)C2.C=CC(C)=O SAOWAJCYSZSVEP-UHFFFAOYSA-N 0.000 description 1
- FXFOHZWMPRGNBQ-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)NC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)NC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)N2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)NC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)NC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)C(=O)NC1CC(N)C(C(=O)OC)CC1C(=O)N2 FXFOHZWMPRGNBQ-UHFFFAOYSA-N 0.000 description 1
- NYEALPMWXLKMHT-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC(=O)C1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1O)C(=O)NC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC(=O)C1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)C(=O)NC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC(=O)C1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1O)C(=O)NC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC(=O)C1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)C(=O)NC1CC(CN(C(=O)CC(N)C(=O)OC)C1)NC2 NYEALPMWXLKMHT-UHFFFAOYSA-N 0.000 description 1
- CSPIQPHQITVWQP-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CCCCC1NC2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CNC1CCCCC1NC2 CSPIQPHQITVWQP-UHFFFAOYSA-N 0.000 description 1
- FYONQVRYONQVDU-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NC2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=C(O)C(=C1)CNC1CCCCC1NCC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=C1)CNC1CCCCC1NC2 FYONQVRYONQVDU-UHFFFAOYSA-N 0.000 description 1
- GUMHWJPORWBDSR-UHFFFAOYSA-N C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=CC(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)C2 Chemical compound C#CC#CC#CC#CC#CC#CC#CC#COC(=O)CC1=CC2=CC(=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=CC(=C1C)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(=CC(CC(=O)OC#CC#CC#CC#CC#CC#CC#CC#C)=C1)CN(C(=O)C=C)C1CCCC(C1)N(C(=O)C=C)CC1=CC(CC(=O)OCC#CC#CC#CC#CC#CC#CC#CC)=CC(=C1C)C(C(=O)C=C)NC1CCCC(C1)N(C(=O)C=C)C2 GUMHWJPORWBDSR-UHFFFAOYSA-N 0.000 description 1
- UVWZMAYDGMQRAH-UHFFFAOYSA-N C.C(CC1CO1)CC1CO1 Chemical compound C.C(CC1CO1)CC1CO1 UVWZMAYDGMQRAH-UHFFFAOYSA-N 0.000 description 1
- LPVJRCMUTUMVSN-UHFFFAOYSA-N C.C.C.C.CCOC(=O)C1(C)CC(C)(C(=O)OCC)C1 Chemical compound C.C.C.C.CCOC(=O)C1(C)CC(C)(C(=O)OCC)C1 LPVJRCMUTUMVSN-UHFFFAOYSA-N 0.000 description 1
- SALTYCURCGHGSL-UHFFFAOYSA-N C.C.C.C.CCOC(=O)C1CC(C(=O)OCC)C1 Chemical compound C.C.C.C.CCOC(=O)C1CC(C(=O)OCC)C1 SALTYCURCGHGSL-UHFFFAOYSA-N 0.000 description 1
- NDCGSSOQYSVJCQ-UHFFFAOYSA-N C.C.C.C.[H]N(CC)C(=O)C1(C)CC(C)(C(=O)N([H])CC)C1 Chemical compound C.C.C.C.[H]N(CC)C(=O)C1(C)CC(C)(C(=O)N([H])CC)C1 NDCGSSOQYSVJCQ-UHFFFAOYSA-N 0.000 description 1
- JUWVSDCGDMIIEW-UHFFFAOYSA-N C.C.C.C.[H]N(CC)C(=O)C1CC(C(=O)N([H])CC)C1 Chemical compound C.C.C.C.[H]N(CC)C(=O)C1CC(C(=O)N([H])CC)C1 JUWVSDCGDMIIEW-UHFFFAOYSA-N 0.000 description 1
- KTLLHVCXMVUHAB-UHFFFAOYSA-N C.C.C.C=C(C)C(=O)OCC Chemical compound C.C.C.C=C(C)C(=O)OCC KTLLHVCXMVUHAB-UHFFFAOYSA-N 0.000 description 1
- MBHGMNUTMKWXKL-UHFFFAOYSA-N C.C.C.C=CC(=O)OCC Chemical compound C.C.C.C=CC(=O)OCC MBHGMNUTMKWXKL-UHFFFAOYSA-N 0.000 description 1
- VDPVAXUIIRAZNL-UHFFFAOYSA-N C.C.C.[H]N(CC)C(=O)C(=C)C Chemical compound C.C.C.[H]N(CC)C(=O)C(=C)C VDPVAXUIIRAZNL-UHFFFAOYSA-N 0.000 description 1
- DSUROYOFTLQWQC-UHFFFAOYSA-N C.C.C.[H]N(CC)C(=O)C=C Chemical compound C.C.C.[H]N(CC)C(=O)C=C DSUROYOFTLQWQC-UHFFFAOYSA-N 0.000 description 1
- RDEWKXDMBGSVGM-RXPOMEPDSA-L C.C.C1CCOC1.COC(=O)[C@H]1CC=CC[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C(=O)O.COC(=O)[C@H]1CC=CC[C@H]1C(=O)OC.COC(=O)[C@H]1C[C@@H](O)[C@H](N=[N+]=[N-])C[C@H]1C.COC(=O)[C@H]1C[C@@H]2N[C@@H]2C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](N)C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](N=[N+]=[N-])C[C@H]1C.COC(=O)[C@H]1C[C@H]2O[C@H]2C[C@H]1C.C[C@H]1C[C@@H](C)[C@@H](C(=O)O)C[C@@H]1NC(=O)OC(C)(C)C.Cl[Sn]Cl.O.O.O=C1OC(=O)[C@@H]2CC=CC[C@H]12 Chemical compound C.C.C1CCOC1.COC(=O)[C@H]1CC=CC[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C(=O)O.COC(=O)[C@H]1CC=CC[C@H]1C(=O)OC.COC(=O)[C@H]1C[C@@H](O)[C@H](N=[N+]=[N-])C[C@H]1C.COC(=O)[C@H]1C[C@@H]2N[C@@H]2C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](N)C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)[C@@H](N=[N+]=[N-])C[C@H]1C.COC(=O)[C@H]1C[C@H]2O[C@H]2C[C@H]1C.C[C@H]1C[C@@H](C)[C@@H](C(=O)O)C[C@@H]1NC(=O)OC(C)(C)C.Cl[Sn]Cl.O.O.O=C1OC(=O)[C@@H]2CC=CC[C@H]12 RDEWKXDMBGSVGM-RXPOMEPDSA-L 0.000 description 1
- GHRAHLZSKOASPR-UHFFFAOYSA-N C.C=C(C)C(=O)OCC Chemical compound C.C=C(C)C(=O)OCC GHRAHLZSKOASPR-UHFFFAOYSA-N 0.000 description 1
- BJMAPEBVFWFPMX-UHFFFAOYSA-N C.C=CC(=O)OCC Chemical compound C.C=CC(=O)OCC BJMAPEBVFWFPMX-UHFFFAOYSA-N 0.000 description 1
- ULVITQVMQALHIG-UHFFFAOYSA-N C.CNC(=N)CC(=N)NC Chemical compound C.CNC(=N)CC(=N)NC ULVITQVMQALHIG-UHFFFAOYSA-N 0.000 description 1
- RMRGBMGKMVXKCT-UHFFFAOYSA-N C.CNC(O)CCCC(O)NC Chemical compound C.CNC(O)CCCC(O)NC RMRGBMGKMVXKCT-UHFFFAOYSA-N 0.000 description 1
- YXZCYBZCRYFTLU-UHFFFAOYSA-N C.O=C(CC(=O)N1C=CN=C1)N1C=CN=C1 Chemical compound C.O=C(CC(=O)N1C=CN=C1)N1C=CN=C1 YXZCYBZCRYFTLU-UHFFFAOYSA-N 0.000 description 1
- YGJIGGZCFICMKA-UHFFFAOYSA-N C.[H]N(CC)C(=O)C(=C)C Chemical compound C.[H]N(CC)C(=O)C(=C)C YGJIGGZCFICMKA-UHFFFAOYSA-N 0.000 description 1
- RPRXMTLGLNTNPF-UHFFFAOYSA-N C.[H]N(CC)C(=O)C=C Chemical compound C.[H]N(CC)C(=O)C=C RPRXMTLGLNTNPF-UHFFFAOYSA-N 0.000 description 1
- GUCXPCHNQVXYSB-AICVLYLKSA-N C/C=C/C1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(/C=C\CCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(/C=C\CCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2.CC.CC.CC.CCC Chemical compound C/C=C/C1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(/C=C\CCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(/C=C\CCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2.CC.CC.CC.CCC GUCXPCHNQVXYSB-AICVLYLKSA-N 0.000 description 1
- QNGMOTVACINCBM-HIBYKVQGSA-N C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C=CCOC(=O)C1=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]2C)=CC(CC)=C1.C=CCOC(=O)C1=CC(CC)=CC(N)=C1OCC1=CC=CC=C1.CC1=CC=C(CNC(=O)CCCS(N)(=O)=O)C=C1.CCC1=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC2=CC=C(C)C=C2)=C(OCC2=CC=CC=C2)C(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C1.CCC1=CC(C(=O)O)=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]2C)=C1.CCC1=CC(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)O)=C1.C[C@H]1C[C@@H](C)[C@H](C(=O)O)C[C@@H]1NC(=O)OC(C)(C)C.[Pd] Chemical compound C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C=CCOC(=O)C1=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]2C)=CC(CC)=C1.C=CCOC(=O)C1=CC(CC)=CC(N)=C1OCC1=CC=CC=C1.CC1=CC=C(CNC(=O)CCCS(N)(=O)=O)C=C1.CCC1=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC2=CC=C(C)C=C2)=C(OCC2=CC=CC=C2)C(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C1.CCC1=CC(C(=O)O)=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)OC(C)(C)C)[C@@H](C)C[C@H]2C)=C1.CCC1=CC(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)O)=C1.C[C@H]1C[C@@H](C)[C@H](C(=O)O)C[C@@H]1NC(=O)OC(C)(C)C.[Pd] QNGMOTVACINCBM-HIBYKVQGSA-N 0.000 description 1
- WUHQVXMQTZTHMD-OILWAHEMSA-N C1=CCC=CC1.C1[C@@H]2O[C@@H]2C[C@@H]2O[C@H]12.CC(C)(C)OC(=O)NC1=C(O)C[C@@H](O)[C@H](N)C1.CC(C)(C)OC(=O)N[C@@H]1CC(N)=C(O)C[C@H]1O.CCC.NC1=C(O)C[C@@H](O)[C@H](N)C1.O[C@@H]1CC=CC[C@H]1Br.O[C@@H]1C[C@@H]2O[C@@H]2C[C@H]1Br Chemical compound C1=CCC=CC1.C1[C@@H]2O[C@@H]2C[C@@H]2O[C@H]12.CC(C)(C)OC(=O)NC1=C(O)C[C@@H](O)[C@H](N)C1.CC(C)(C)OC(=O)N[C@@H]1CC(N)=C(O)C[C@H]1O.CCC.NC1=C(O)C[C@@H](O)[C@H](N)C1.O[C@@H]1CC=CC[C@H]1Br.O[C@@H]1C[C@@H]2O[C@@H]2C[C@H]1Br WUHQVXMQTZTHMD-OILWAHEMSA-N 0.000 description 1
- LJIVXUCRABYVCU-UHFFFAOYSA-N C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC Chemical compound C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC LJIVXUCRABYVCU-UHFFFAOYSA-N 0.000 description 1
- PKWNBNFVMPRYAU-UHFFFAOYSA-N C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCN Chemical compound C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCN PKWNBNFVMPRYAU-UHFFFAOYSA-N 0.000 description 1
- IKBCXTQMVLNQBV-UHFFFAOYSA-N C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl Chemical compound C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl IKBCXTQMVLNQBV-UHFFFAOYSA-N 0.000 description 1
- MTHOTQNDHJYLHD-UHFFFAOYSA-N C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCCCC Chemical compound C=C(C)C(=O)OCCO.C=CC(=O)OCCCCCCCCCCCCCC MTHOTQNDHJYLHD-UHFFFAOYSA-N 0.000 description 1
- ZBKLYOSXOGNZPV-KVVVOXFISA-N C=C(C)C(=O)OCCO.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound C=C(C)C(=O)OCCO.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 ZBKLYOSXOGNZPV-KVVVOXFISA-N 0.000 description 1
- NRGGHRKHQJUDOM-UHFFFAOYSA-N C=C(C)C(=O)OCCO.CCCCCCCCCCCCCCN Chemical compound C=C(C)C(=O)OCCO.CCCCCCCCCCCCCCN NRGGHRKHQJUDOM-UHFFFAOYSA-N 0.000 description 1
- VEKHVVYUPVIPCR-UHFFFAOYSA-N C=C(C)C(=O)OCCO.O=C(Cl)CC(=O)Cl Chemical compound C=C(C)C(=O)OCCO.O=C(Cl)CC(=O)Cl VEKHVVYUPVIPCR-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N C=CC(=C)C Chemical compound C=CC(=C)C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- ZOTWHNWBICCBPC-UHFFFAOYSA-N C=CC(=O)N(C)CC Chemical compound C=CC(=O)N(C)CC ZOTWHNWBICCBPC-UHFFFAOYSA-N 0.000 description 1
- DBLNSVZHOZOZQX-UHFFFAOYSA-N C=CC(=O)NCCCCCCCCCCCCCC Chemical compound C=CC(=O)NCCCCCCCCCCCCCC DBLNSVZHOZOZQX-UHFFFAOYSA-N 0.000 description 1
- JNOAIZKOTPFAFS-SVMKZPJVSA-N C=CC(=O)NCCCCCCCCCCCCCC.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound C=CC(=O)NCCCCCCCCCCCCCC.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1 JNOAIZKOTPFAFS-SVMKZPJVSA-N 0.000 description 1
- CONQHJWTBUZFPH-SVMKZPJVSA-N C=CC(=O)NCCCCCCCCCCCCCC.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound C=CC(=O)NCCCCCCCCCCCCCC.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 CONQHJWTBUZFPH-SVMKZPJVSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N C=CC(=O)OC(C)C Chemical compound C=CC(=O)OC(C)C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- AYDCTSDRACSEIV-MEILSSRFSA-N C=CC(=O)OCCCCCCCCCCCC.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.CCCCCCCCCCCCCN Chemical compound C=CC(=O)OCCCCCCCCCCCC.CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.CCCCCCCCCCCCCN AYDCTSDRACSEIV-MEILSSRFSA-N 0.000 description 1
- PTASSBUMBOFSJM-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC.CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCN Chemical compound C=CC(=O)OCCCCCCCCCCCC.CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCN PTASSBUMBOFSJM-UHFFFAOYSA-N 0.000 description 1
- IPWHOAVMTISJEG-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC.CCC(C)(C)C(=O)OC.O=C(Cl)CC(=O)Cl Chemical compound C=CC(=O)OCCCCCCCCCCCC.CCC(C)(C)C(=O)OC.O=C(Cl)CC(=O)Cl IPWHOAVMTISJEG-UHFFFAOYSA-N 0.000 description 1
- ISDACJSHIXXODK-SVMKZPJVSA-N C=CC(=O)OCCCCCCCCCCCC.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound C=CC(=O)OCCCCCCCCCCCC.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 ISDACJSHIXXODK-SVMKZPJVSA-N 0.000 description 1
- PGXAEJFUAGWGBZ-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCCN Chemical compound C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCCN PGXAEJFUAGWGBZ-UHFFFAOYSA-N 0.000 description 1
- PNNDXOUZPPEFKR-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCCN.O=C(Cl)CC(=O)Cl Chemical compound C=CC(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCCCN.O=C(Cl)CC(=O)Cl PNNDXOUZPPEFKR-UHFFFAOYSA-N 0.000 description 1
- QBJLJUCQSHOLED-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl Chemical compound C=CC(=O)OCCCCCCCCCCCC.O=C(Cl)CC(=O)Cl QBJLJUCQSHOLED-UHFFFAOYSA-N 0.000 description 1
- LDBXKPMYLNTUJW-UHFFFAOYSA-N C=CC(=O)OCCCCCCCCCCCCCC.CCCCCCCCCCCCCCN Chemical compound C=CC(=O)OCCCCCCCCCCCCCC.CCCCCCCCCCCCCCN LDBXKPMYLNTUJW-UHFFFAOYSA-N 0.000 description 1
- QQHQTCGEZWTSEJ-UHFFFAOYSA-N C=CC1=CC=C(C(C)C)C=C1 Chemical compound C=CC1=CC=C(C(C)C)C=C1 QQHQTCGEZWTSEJ-UHFFFAOYSA-N 0.000 description 1
- IZHBYIAZXCYIMS-UHFFFAOYSA-N CC(=O)C(C)=C(C)C Chemical compound CC(=O)C(C)=C(C)C IZHBYIAZXCYIMS-UHFFFAOYSA-N 0.000 description 1
- DFYJCXSOGSYMAJ-UHFFFAOYSA-N CC(C)(C)C1=CC=C(C(=O)C2=CC=CC=C2)C=C1 Chemical compound CC(C)(C)C1=CC=C(C(=O)C2=CC=CC=C2)C=C1 DFYJCXSOGSYMAJ-UHFFFAOYSA-N 0.000 description 1
- WGLLSSPDPJPLOR-UHFFFAOYSA-N CC(C)=C(C)C Chemical compound CC(C)=C(C)C WGLLSSPDPJPLOR-UHFFFAOYSA-N 0.000 description 1
- HUEHTBSATOWQAW-QZOPMXJLSA-N CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.CCC(C)OC(=O)/C=C\C1=CC=CC=C1 HUEHTBSATOWQAW-QZOPMXJLSA-N 0.000 description 1
- UKCLQNQHGGDCRV-SVMKZPJVSA-N CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.[H]N(CCCCCCCCCCCC)C(=O)C=C Chemical compound CC(C)C(C)OC(=O)/C=C\C1=CC=CC=C1.[H]N(CCCCCCCCCCCC)C(=O)C=C UKCLQNQHGGDCRV-SVMKZPJVSA-N 0.000 description 1
- WOHCOPIZYBHVRP-UHFFFAOYSA-N CC(C)C1CC1CC1CC(CC2CC2C(C)C)C1C.CC(C)C1CC1CC1CC(CC2CC2C(C)C)C1C.[CH2-][C+]1CC1CC1CC(CC2C[C+]2[CH2-])C1.[CH2-][C+]1CC1CC1CC(CC2C[C+]2[CH2-])C1 Chemical compound CC(C)C1CC1CC1CC(CC2CC2C(C)C)C1C.CC(C)C1CC1CC1CC(CC2CC2C(C)C)C1C.[CH2-][C+]1CC1CC1CC(CC2C[C+]2[CH2-])C1.[CH2-][C+]1CC1CC1CC(CC2C[C+]2[CH2-])C1 WOHCOPIZYBHVRP-UHFFFAOYSA-N 0.000 description 1
- RGACABDFLVLVCT-CMDGGOBGSA-N CC(C)OC(=O)/C=C/C1=CC=CC=C1 Chemical compound CC(C)OC(=O)/C=C/C1=CC=CC=C1 RGACABDFLVLVCT-CMDGGOBGSA-N 0.000 description 1
- NFCGQVAGIWPZKP-HRNDJLQDSA-N CC(C)OC(=O)/C=C/C1=CC=CC=C1.CN(C)C(=O)C=CC1=CC=CC=C1 Chemical compound CC(C)OC(=O)/C=C/C1=CC=CC=C1.CN(C)C(=O)C=CC1=CC=CC=C1 NFCGQVAGIWPZKP-HRNDJLQDSA-N 0.000 description 1
- UARPPIRBTQKOOV-BBCGKGAJSA-N CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)/C=C/C(=O)O[C@H]1C[C@@H](C)CC[C@@H]1C(C)C.C[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1C.C[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1C.N[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1N.O=C([IH]OCC1C2C=CC1[C@@H](C(=O)O)[C@@H]2C(=O)O)C1=CC=CC=C1.O=C([IH]OCC1C=CC=C1)C1=CC=CC=C1 Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)/C=C/C(=O)O[C@H]1C[C@@H](C)CC[C@@H]1C(C)C.C[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1C.C[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1C.N[C@@H]1C2C=CC(C2CO[IH]C(=O)C2=CC=CC=C2)[C@H]1N.O=C([IH]OCC1C2C=CC1[C@@H](C(=O)O)[C@@H]2C(=O)O)C1=CC=CC=C1.O=C([IH]OCC1C=CC=C1)C1=CC=CC=C1 UARPPIRBTQKOOV-BBCGKGAJSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-M CC([NH-])=O Chemical compound CC([NH-])=O DLFVBJFMPXGRIB-UHFFFAOYSA-M 0.000 description 1
- XBGLBAOGXZHIAN-GJIKKRSWSA-N CC.CCC1=CC(N)=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)C3=C(OCC4=CC=CC=C4)C(NC(=O)[C@H]4C[C@@H](N(C(=O)OC(C)(C)C)C(=O)C5=CC(CC)=CC(NC(=O)[C@@H]6C[C@H](N)[C@@H](C)C[C@H]6C)=C5OCC5=CC=CC=C5)[C@H](C)C[C@@H]4C)=CC(CC)=C3)[C@@H](C)C[C@H]2C)=C1.CCC1=CC2=C(OCC3=CC=CC=C3)C(=C1)NCC(O)CN[C@H]1C[C@@H](C(=O)NC3=C(OCC4=CC=CC=C4)C(=CC(CC)=C3)C(=O)N[C@H]3CC(C(=O)NC4=C(OCC5=CC=CC=C5)C(=CC(CC)=C4)C(=O)N[C@H]4C[C@@H](C(=O)N2)[C@H](C)C[C@@H]4C)[C@H](C)C[C@@H]3C)[C@H](C)C[C@@H]1C.ClCC1CO1 Chemical compound CC.CCC1=CC(N)=C(OCC2=CC=CC=C2)C(NC(=O)[C@@H]2C[C@H](NC(=O)C3=C(OCC4=CC=CC=C4)C(NC(=O)[C@H]4C[C@@H](N(C(=O)OC(C)(C)C)C(=O)C5=CC(CC)=CC(NC(=O)[C@@H]6C[C@H](N)[C@@H](C)C[C@H]6C)=C5OCC5=CC=CC=C5)[C@H](C)C[C@@H]4C)=CC(CC)=C3)[C@@H](C)C[C@H]2C)=C1.CCC1=CC2=C(OCC3=CC=CC=C3)C(=C1)NCC(O)CN[C@H]1C[C@@H](C(=O)NC3=C(OCC4=CC=CC=C4)C(=CC(CC)=C3)C(=O)N[C@H]3CC(C(=O)NC4=C(OCC5=CC=CC=C5)C(=CC(CC)=C4)C(=O)N[C@H]4C[C@@H](C(=O)N2)[C@H](C)C[C@@H]4C)[C@H](C)C[C@@H]3C)[C@H](C)C[C@@H]1C.ClCC1CO1 XBGLBAOGXZHIAN-GJIKKRSWSA-N 0.000 description 1
- AISBUQOQGANUIW-DMTJJMSZSA-N CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C)=C1)/C=N/C1CCCCC1/N=C/2 Chemical compound CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C)=C1)/C=N/C1CCCCC1/N=C/2 AISBUQOQGANUIW-DMTJJMSZSA-N 0.000 description 1
- BVEANHAJSNCKPB-MHGIFROISA-N CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C)=C1)/C=N/C1CCCCC1/N=C/2.CCCCCCCCCCCCCCCC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(CCCCCCCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(CCCCCCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2 Chemical compound CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C)=C1)/C=N/C1CCCCC1/N=C/2.CCCCCCCCCCCCCCCC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(CCCCCCCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(CCCCCCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2 BVEANHAJSNCKPB-MHGIFROISA-N 0.000 description 1
- KMGDYKOGDOVDCW-UHFFFAOYSA-N CC1=CCC(C)CC1 Chemical compound CC1=CCC(C)CC1 KMGDYKOGDOVDCW-UHFFFAOYSA-N 0.000 description 1
- KWDFVLFLHBVLBG-AEUQKIRISA-N CC1C2C=CC1[C@H](C(=O)O)[C@H]2C.CC1C2C=CC1[C@H](C)[C@H]2C.CC1C2[C@@H]3C(=O)OC(=O)[C@@H]3C1[C@H](C)[C@H]2C.COC(=O)C1=C(N)C2C(C)C1[C@H](C)[C@H]2N.COC(=O)[C@H]1C2C(C)C([C@H](C)[C@H]2C)[C@H]1C.COC(=O)[C@H]1C2C(C)C([C@H]1C(=O)O)[C@H](C)[C@H]2C.COC(=O)[C@H]1C2C(C)C([C@H]1C(=O)OC)[C@H](C)[C@H]2C.COC(=O)[C@H]1C2C=CC(C2C)[C@@H]1C.COC(=O)[C@H]1C2C=CC(C2O)[C@@H]1C.C[C@@H]1C2C([Si](C)(C)C)C3[C@H](OC(=O)[C@H]31)[C@H]2Br.C[C@@H]1C2C=CC(C2[Si](C)(C)C)[C@H]1C.C[Si](C)(C)C1C=CC=C1 Chemical compound CC1C2C=CC1[C@H](C(=O)O)[C@H]2C.CC1C2C=CC1[C@H](C)[C@H]2C.CC1C2[C@@H]3C(=O)OC(=O)[C@@H]3C1[C@H](C)[C@H]2C.COC(=O)C1=C(N)C2C(C)C1[C@H](C)[C@H]2N.COC(=O)[C@H]1C2C(C)C([C@H](C)[C@H]2C)[C@H]1C.COC(=O)[C@H]1C2C(C)C([C@H]1C(=O)O)[C@H](C)[C@H]2C.COC(=O)[C@H]1C2C(C)C([C@H]1C(=O)OC)[C@H](C)[C@H]2C.COC(=O)[C@H]1C2C=CC(C2C)[C@@H]1C.COC(=O)[C@H]1C2C=CC(C2O)[C@@H]1C.C[C@@H]1C2C([Si](C)(C)C)C3[C@H](OC(=O)[C@H]31)[C@H]2Br.C[C@@H]1C2C=CC(C2[Si](C)(C)C)[C@H]1C.C[Si](C)(C)C1C=CC=C1 KWDFVLFLHBVLBG-AEUQKIRISA-N 0.000 description 1
- WKHRDGKOKYBNDZ-UHFFFAOYSA-N CC1CC(C)C1 Chemical compound CC1CC(C)C1 WKHRDGKOKYBNDZ-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N CC=C(C)C Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- GSKQKFRZKBBXKY-MPGISEFESA-N CC=N[C@H]1CCCC[C@@H]1N=CC1=C(OC)C(C)=CC(CC)=C1.NC1CCCCC1N.[H]C(=O)C1=C(OC)C(C(C)=O)=CC(CC)=C1 Chemical compound CC=N[C@H]1CCCC[C@@H]1N=CC1=C(OC)C(C)=CC(CC)=C1.NC1CCCCC1N.[H]C(=O)C1=C(OC)C(C(C)=O)=CC(CC)=C1 GSKQKFRZKBBXKY-MPGISEFESA-N 0.000 description 1
- QTLYPQZWYOHATR-UHFFFAOYSA-N CCC(=O)C(C)C(=O)O Chemical compound CCC(=O)C(C)C(=O)O QTLYPQZWYOHATR-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N CCC(=O)OC Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- DMKBJPOFUIYQKL-UHFFFAOYSA-N CCC(=O)OCC1=CC(OC)=C(C)C=C1[N+](=O)[O-] Chemical compound CCC(=O)OCC1=CC(OC)=C(C)C=C1[N+](=O)[O-] DMKBJPOFUIYQKL-UHFFFAOYSA-N 0.000 description 1
- XMBUYVUYHRCDIX-UHFFFAOYSA-N CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCCN Chemical compound CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCCN XMBUYVUYHRCDIX-UHFFFAOYSA-N 0.000 description 1
- SAOUQGZRORISPE-UHFFFAOYSA-N CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCN.O=C(Cl)CC(=O)Cl Chemical compound CCC(C)(C)C(=O)OC.CCCCCCCCCCCCCN.O=C(Cl)CC(=O)Cl SAOUQGZRORISPE-UHFFFAOYSA-N 0.000 description 1
- FEVLHMZQUYLQQJ-UHFFFAOYSA-N CCC(C)(C)C(=O)OC.O=C(Cl)CC(=O)Cl Chemical compound CCC(C)(C)C(=O)OC.O=C(Cl)CC(=O)Cl FEVLHMZQUYLQQJ-UHFFFAOYSA-N 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N CCC(C)O Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- KAUQDJKVXUKALZ-KTKRTIGZSA-N CCC(C)OC(=O)/C=C\C1=CC=CC=C1 Chemical compound CCC(C)OC(=O)/C=C\C1=CC=CC=C1 KAUQDJKVXUKALZ-KTKRTIGZSA-N 0.000 description 1
- NXYVDJCFCFHKGS-SVMKZPJVSA-N CCC(C)OC(=O)/C=C\C1=CC=CC=C1.CCCCCCCCCCCCCCN Chemical compound CCC(C)OC(=O)/C=C\C1=CC=CC=C1.CCCCCCCCCCCCCCN NXYVDJCFCFHKGS-SVMKZPJVSA-N 0.000 description 1
- JFUBRJVMZZMUQT-SVMKZPJVSA-N CCC(C)OC(=O)/C=C\C1=CC=CC=C1.[H]N(CCCCCCCCCCCC)C(=O)C=C Chemical compound CCC(C)OC(=O)/C=C\C1=CC=CC=C1.[H]N(CCCCCCCCCCCC)C(=O)C=C JFUBRJVMZZMUQT-SVMKZPJVSA-N 0.000 description 1
- GHEYEQVCSSTWEY-VDYORAIWSA-N CCC1=CC(C(=O)N[C@H]2C[C@@H](C(=O)NC3=CC(CC)=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC4=CC=C(C)C=C4)=C3OCC3=CC=CC=C3)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C1.CCC1=CC(NC(=O)[C@@H]2C[C@H](C)[C@@H](C)C[C@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)N(C(=O)OC(C)(C)C)[C@@H]2C[C@H](C(=O)NC3=CC(CC)=CC(C(=O)N[C@H]4C[C@@H](C(=O)NC5=CC(CC)=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC6=CC=C(C)C=C6)=C5OCC5=CC=CC=C5)[C@H](C)C[C@@H]4C)=C3OCC3=CC=CC=C3)[C@@H](C)C[C@H]2C)=C1.CCC1=CC(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)O)=C1 Chemical compound CCC1=CC(C(=O)N[C@H]2C[C@@H](C(=O)NC3=CC(CC)=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC4=CC=C(C)C=C4)=C3OCC3=CC=CC=C3)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C1.CCC1=CC(NC(=O)[C@@H]2C[C@H](C)[C@@H](C)C[C@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)N(C(=O)OC(C)(C)C)[C@@H]2C[C@H](C(=O)NC3=CC(CC)=CC(C(=O)N[C@H]4C[C@@H](C(=O)NC5=CC(CC)=CC(C(=O)NS(=O)(=O)CCCC(=O)NCC6=CC=C(C)C=C6)=C5OCC5=CC=CC=C5)[C@H](C)C[C@@H]4C)=C3OCC3=CC=CC=C3)[C@@H](C)C[C@H]2C)=C1.CCC1=CC(NC(=O)[C@H]2C[C@@H](NC(=O)OC(C)(C)C)[C@H](C)C[C@@H]2C)=C(OCC2=CC=CC=C2)C(C(=O)O)=C1 GHEYEQVCSSTWEY-VDYORAIWSA-N 0.000 description 1
- QFTQSBAOPJTPAG-KMLJZBMZSA-N CCC1=CC2=C(O)C(=C1)C(=O)N[C@H]1C[C@@H](C(=O)NC3=C(O)C(=CC(CC)=C3)C(=O)N[C@H]3C[C@@H](C(=O)NC4=C(O)C(=CC(CC)=C4)C(=O)N[C@H]4CC(C(=O)N2)[C@H](N)C[C@@H]4N)[C@H](N)C[C@@H]3N)[C@H](N)C[C@@H]1N Chemical compound CCC1=CC2=C(O)C(=C1)C(=O)N[C@H]1C[C@@H](C(=O)NC3=C(O)C(=CC(CC)=C3)C(=O)N[C@H]3C[C@@H](C(=O)NC4=C(O)C(=CC(CC)=C4)C(=O)N[C@H]4CC(C(=O)N2)[C@H](N)C[C@@H]4N)[C@H](N)C[C@@H]3N)[C@H](N)C[C@@H]1N QFTQSBAOPJTPAG-KMLJZBMZSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N CCCC(=O)OC Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- TYDHKYYKYIEXLX-UHFFFAOYSA-N CCCC1C(=O)OC(=O)C1C Chemical compound CCCC1C(=O)OC(=O)C1C TYDHKYYKYIEXLX-UHFFFAOYSA-N 0.000 description 1
- ROEYUIAEHUDOBQ-SVUITRBOSA-N CCCCCCCCCCC#CC1=CC(C=O)=C(O)C(C=O)=C1.CCCCCCCCCCC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/C1=C\C(C#CCCCCCCCCCC)=C\C(=C1\O)/C=N/C1CCCCC1/N=C/2.NC1CCCCC1N Chemical compound CCCCCCCCCCC#CC1=CC(C=O)=C(O)C(C=O)=C1.CCCCCCCCCCC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/C1=C\C(C#CCCCCCCCCCC)=C\C(=C1\O)/C=N/C1CCCCC1/N=C/2.NC1CCCCC1N ROEYUIAEHUDOBQ-SVUITRBOSA-N 0.000 description 1
- AVGGRCGWPOJJPT-KQPJAWPCSA-N CCCCCCCCCCC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C#CCCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2 Chemical compound CCCCCCCCCCC#CC1=CC2=C(O)C(=C1)/C=N/C1CCCCC1/N=C/C1=CC(C#CCCCCCCCCCC)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(C#CCCCCCCCCCC)=C1)/C=N/C1CCCCC1/N=C/2 AVGGRCGWPOJJPT-KQPJAWPCSA-N 0.000 description 1
- 125000006519 CCH3 Chemical group 0.000 description 1
- WQZPBERJRNAJOU-UHFFFAOYSA-N CCN(C)C(C=N)=C Chemical compound CCN(C)C(C=N)=C WQZPBERJRNAJOU-UHFFFAOYSA-N 0.000 description 1
- OEEWZFBYOCGKIF-UHFFFAOYSA-N CCOC1=C2C=CC=C1CNC1CCCCC1NCC1=CC=CC(=C1OCC)CNC1CCCCC1NCC1=C(OCC)C(=CC=C1)CNC1CCCCC1NC2.OC1=C2C=CC=C1CNC1CCCCC1NCC1=CC=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC=C1)CNC1CCCCC1NC2 Chemical compound CCOC1=C2C=CC=C1CNC1CCCCC1NCC1=CC=CC(=C1OCC)CNC1CCCCC1NCC1=C(OCC)C(=CC=C1)CNC1CCCCC1NC2.OC1=C2C=CC=C1CNC1CCCCC1NCC1=CC=CC(=C1O)CNC1CCCCC1NCC1=C(O)C(=CC=C1)CNC1CCCCC1NC2 OEEWZFBYOCGKIF-UHFFFAOYSA-N 0.000 description 1
- AGTDAKUUKGHNCK-HJWRWDBZSA-N CN(C)C(=O)/C=C\C1=CC=CC=C1 Chemical compound CN(C)C(=O)/C=C\C1=CC=CC=C1 AGTDAKUUKGHNCK-HJWRWDBZSA-N 0.000 description 1
- VSFWWKRXOSFHEF-UHFFFAOYSA-N CN(C)C(=O)C1CC(C(=O)N(C)C)C1 Chemical compound CN(C)C(=O)C1CC(C(=O)N(C)C)C1 VSFWWKRXOSFHEF-UHFFFAOYSA-N 0.000 description 1
- AEKHFLDILSDXBL-UHFFFAOYSA-N CNCC(C)O Chemical compound CNCC(C)O AEKHFLDILSDXBL-UHFFFAOYSA-N 0.000 description 1
- HKQRKLJWAQVSBC-UHFFFAOYSA-N CNCNC Chemical compound CNCNC HKQRKLJWAQVSBC-UHFFFAOYSA-N 0.000 description 1
- IZLAFAPADUHVEE-UHFFFAOYSA-N COC(=O)C(C)(C)C(C)O Chemical compound COC(=O)C(C)(C)C(C)O IZLAFAPADUHVEE-UHFFFAOYSA-N 0.000 description 1
- UQHIPPLDEXOCLJ-UHFFFAOYSA-N COC(=O)C1(C)CC(C)(C(=O)OC)C1 Chemical compound COC(=O)C1(C)CC(C)(C(=O)OC)C1 UQHIPPLDEXOCLJ-UHFFFAOYSA-N 0.000 description 1
- SCRMVSIHJFQTLT-LPJGLMBISA-N COC(=O)[C@@H]1C2C=CC(C2)[C@H]1C.COC(=O)[C@@H]1C2C=CC(C2)[C@H]1C(=O)O.COC(=O)[C@H]1C2C=CC(C2)[C@H]1C(=O)O.C[C@@H]1C2C=CC(C2)[C@H]1C.C[C@@H]1C2C=CC(C2)[C@H]1C(=O)O.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 Chemical compound COC(=O)[C@@H]1C2C=CC(C2)[C@H]1C.COC(=O)[C@@H]1C2C=CC(C2)[C@H]1C(=O)O.COC(=O)[C@H]1C2C=CC(C2)[C@H]1C(=O)O.C[C@@H]1C2C=CC(C2)[C@H]1C.C[C@@H]1C2C=CC(C2)[C@H]1C(=O)O.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 SCRMVSIHJFQTLT-LPJGLMBISA-N 0.000 description 1
- LRAAWSNBBWZBMA-IRXHZOGQSA-N COC(=O)[C@@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C.COC(=O)[C@@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C(=O)O.COC(=O)[C@@H]1C2CC(C[C@H]2O)[C@@H]1C.COC(=O)[C@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C.COC(=O)[C@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C(=O)O.C[C@H]1C2C=CC(C2)[C@H]1C(=O)O.C[C@H]1C2CC([C@@H](N)C2)[C@@H]1N.C[C@H]1C2CC([C@@H](NC(=O)OC(C)(C)C)C2)[C@@H]1C.C[C@H]1C2CC([C@@H](NC(=O)OC(C)(C)C)C2)[C@@H]1C(=O)O.C[C@H]1C2CC3[C@H](OC(=O)[C@H]31)[C@H]2I.C[C@H]1C2CC3[C@H]1C(=O)O[C@@H]3C2.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 Chemical compound COC(=O)[C@@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C.COC(=O)[C@@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C(=O)O.COC(=O)[C@@H]1C2CC(C[C@H]2O)[C@@H]1C.COC(=O)[C@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C.COC(=O)[C@H]1C2CC(C[C@@H]2NC(=O)OC(C)(C)C)[C@@H]1C(=O)O.C[C@H]1C2C=CC(C2)[C@H]1C(=O)O.C[C@H]1C2CC([C@@H](N)C2)[C@@H]1N.C[C@H]1C2CC([C@@H](NC(=O)OC(C)(C)C)C2)[C@@H]1C.C[C@H]1C2CC([C@@H](NC(=O)OC(C)(C)C)C2)[C@@H]1C(=O)O.C[C@H]1C2CC3[C@H](OC(=O)[C@H]31)[C@H]2I.C[C@H]1C2CC3[C@H]1C(=O)O[C@@H]3C2.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 LRAAWSNBBWZBMA-IRXHZOGQSA-N 0.000 description 1
- HHADZWXLRLLSRC-FCJGNHQNSA-N COC(=O)[C@@H]1C2CC([C@H]1C)[C@@H](C)[C@@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@@H]1C2CC([C@H]1N)[C@@H](N)[C@@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C(=O)O)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C(=O)OC)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC1=CC=C(COC(=O)[C@H]2C3C=CC(C3)[C@H]2C(=O)O)C=C1.COC1=CC=C(COC(=O)[C@H]2C3C=CC(C3)[C@H]2C)C=C1.COC1=CC=C(COC(=O)[C@H]2C3CC([C@H]4C(=O)OC(=O)[C@@H]34)[C@H]2C)C=C1.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 Chemical compound COC(=O)[C@@H]1C2CC([C@H]1C)[C@@H](C)[C@@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@@H]1C2CC([C@H]1N)[C@@H](N)[C@@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C(=O)O)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C(=O)OC)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC(=O)[C@H]1C2CC([C@H]1C)[C@@H](C)[C@H]2C(=O)OCC1=CC=C(OC)C=C1.COC1=CC=C(COC(=O)[C@H]2C3C=CC(C3)[C@H]2C(=O)O)C=C1.COC1=CC=C(COC(=O)[C@H]2C3C=CC(C3)[C@H]2C)C=C1.COC1=CC=C(COC(=O)[C@H]2C3CC([C@H]4C(=O)OC(=O)[C@@H]34)[C@H]2C)C=C1.O=C1OC(=O)[C@@H]2C3C=CC(C3)[C@H]12 HHADZWXLRLLSRC-FCJGNHQNSA-N 0.000 description 1
- JKESVLZBVRZYIB-GMLLCPNISA-N COC(=O)[C@@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C(=O)O.COC(=O)[C@H]1CC=CC[C@H]1C(=O)OC.COC(=O)[C@H]1C[C@@H](O)C=C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1C.C[C@@H]1C=C[C@@H](N)C[C@H]1N.C[C@@H]1C=C[C@@H](NC(=O)OC(C)(C)C)C[C@H]1C.C[C@@H]1C=C[C@@H](NC(=O)OC(C)(C)C)C[C@H]1C(=O)O.C[C@@H]1C=C[C@H]2C[C@@H]1C(=O)O2.C[C@@H]1CC=CC[C@@H]1C(=O)O.C[C@@H]1C[C@@H](I)[C@H]2C[C@@H]1C(=O)O2 Chemical compound COC(=O)[C@@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C.COC(=O)[C@H]1CC=CC[C@H]1C(=O)O.COC(=O)[C@H]1CC=CC[C@H]1C(=O)OC.COC(=O)[C@H]1C[C@@H](O)C=C[C@H]1C.COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1C.C[C@@H]1C=C[C@@H](N)C[C@H]1N.C[C@@H]1C=C[C@@H](NC(=O)OC(C)(C)C)C[C@H]1C.C[C@@H]1C=C[C@@H](NC(=O)OC(C)(C)C)C[C@H]1C(=O)O.C[C@@H]1C=C[C@H]2C[C@@H]1C(=O)O2.C[C@@H]1CC=CC[C@@H]1C(=O)O.C[C@@H]1C[C@@H](I)[C@H]2C[C@@H]1C(=O)O2 JKESVLZBVRZYIB-GMLLCPNISA-N 0.000 description 1
- AUNQXXJGFDKEMS-UHFFFAOYSA-N CSC(C)C(C)C Chemical compound CSC(C)C(C)C AUNQXXJGFDKEMS-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 241000252506 Characiformes Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000006117 Diels-Alder cycloaddition reaction Methods 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 206010029719 Nonspecific reaction Diseases 0.000 description 1
- JLCXENCCSNMXIR-UHFFFAOYSA-N O=C1NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC1=CC=C2 Chemical compound O=C1NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC1=CC=C2 JLCXENCCSNMXIR-UHFFFAOYSA-N 0.000 description 1
- SUQWOTNEDJWCSD-UHFFFAOYSA-N O=C1NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC1=CC=C2 Chemical compound O=C1NC2CCCCC2NC(=O)C2=CC(=CC=C2)C(=O)NC2CCCCC2NC(=O)C2=CC1=CC=C2 SUQWOTNEDJWCSD-UHFFFAOYSA-N 0.000 description 1
- SMTYIPDVGRCHBX-YWQUYQRNSA-N OC1=C2C=C(Br)C=C1/C=N/C1CCCCC1/N=C/C1=CC(Br)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(Br)=C1)/C=N/C1CCCCC1/N=C/2 Chemical compound OC1=C2C=C(Br)C=C1/C=N/C1CCCCC1/N=C/C1=CC(Br)=CC(=C1O)/C=N/C1CCCCC1/N=C/C1=C(O)C(=CC(Br)=C1)/C=N/C1CCCCC1/N=C/2 SMTYIPDVGRCHBX-YWQUYQRNSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical group C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 229910006074 SO2NH2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NERFNHBZJXXFGY-UHFFFAOYSA-N [4-[(4-methylphenyl)methoxy]phenyl]methanol Chemical compound C1=CC(C)=CC=C1COC1=CC=C(CO)C=C1 NERFNHBZJXXFGY-UHFFFAOYSA-N 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N [H]C#CC Chemical compound [H]C#CC MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- USCSRAJGJYMJFZ-UHFFFAOYSA-N [H]C#CC(C)C Chemical compound [H]C#CC(C)C USCSRAJGJYMJFZ-UHFFFAOYSA-N 0.000 description 1
- PLGPDWUYKSHACT-UHFFFAOYSA-N [H]C(C)(C)C(O)(C1=CC=CC=C1)C1=CC=C(C(C)(C)C)C=C1 Chemical compound [H]C(C)(C)C(O)(C1=CC=CC=C1)C1=CC=C(C(C)(C)C)C=C1 PLGPDWUYKSHACT-UHFFFAOYSA-N 0.000 description 1
- OCCMQEQPBOPKKC-UHFFFAOYSA-N [H]N(C)C(=O)C1(C)CC(C)(C(=O)N([H])C)C1 Chemical compound [H]N(C)C(=O)C1(C)CC(C)(C(=O)N([H])C)C1 OCCMQEQPBOPKKC-UHFFFAOYSA-N 0.000 description 1
- CFYHDZFGZLJEEA-UHFFFAOYSA-N [H]N(C)C(=O)C1CC(C(=O)N([H])C)C1 Chemical compound [H]N(C)C(=O)C1CC(C(=O)N([H])C)C1 CFYHDZFGZLJEEA-UHFFFAOYSA-N 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N [H]N(C)CC Chemical compound [H]N(C)CC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- XQPVIMDDIXCFFS-UHFFFAOYSA-N [H]N(CCCCCCCCCCCC)C(=O)C=C Chemical compound [H]N(CCCCCCCCCCCC)C(=O)C=C XQPVIMDDIXCFFS-UHFFFAOYSA-N 0.000 description 1
- AYYSGGODZQILIT-UHFFFAOYSA-N [O].C1=CCCCC1 Chemical compound [O].C1=CCCCC1 AYYSGGODZQILIT-UHFFFAOYSA-N 0.000 description 1
- ZIHWZESOBQURLM-UHFFFAOYSA-N [O].[O].N[O] Chemical compound [O].[O].N[O] ZIHWZESOBQURLM-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 238000010640 amide synthesis reaction Methods 0.000 description 1
- 125000006242 amine protecting group Chemical group 0.000 description 1
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 238000010945 base-catalyzed hydrolysis reactiony Methods 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- AIPZAZCNFMXDLI-RWMBFGLXSA-N benzyl n-[(1r,4r,5s)-6-oxo-7-oxabicyclo[3.2.1]oct-2-en-4-yl]carbamate Chemical compound N([C@H]1[C@@]2(C[C@](C=C1)(OC2=O)[H])[H])C(=O)OCC1=CC=CC=C1 AIPZAZCNFMXDLI-RWMBFGLXSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 238000010722 bromolactonization reaction Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- HAMNKKUPIHEESI-UHFFFAOYSA-O carbamohydrazonoylazanium Chemical compound NC(N)=N[NH3+] HAMNKKUPIHEESI-UHFFFAOYSA-O 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012679 convergent method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- CHVJITGCYZJHLR-UHFFFAOYSA-N cyclohepta-1,3,5-triene Chemical compound C1C=CC=CC=C1 CHVJITGCYZJHLR-UHFFFAOYSA-N 0.000 description 1
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 1
- CRMAYNAXFWKCHJ-UHFFFAOYSA-N cyclohex-4-ene-1,3-diamine Chemical compound NC1CC=CC(N)C1 CRMAYNAXFWKCHJ-UHFFFAOYSA-N 0.000 description 1
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- 150000001934 cyclohexanes Chemical class 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- BMFYCFSWWDXEPB-UHFFFAOYSA-N cyclohexyl(phenyl)methanone Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1 BMFYCFSWWDXEPB-UHFFFAOYSA-N 0.000 description 1
- ICPMUWPXCAVOOQ-UHFFFAOYSA-N cycloocta-1,3,5-triene Chemical compound C1CC=CC=CC=C1 ICPMUWPXCAVOOQ-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- KDUIUFJBNGTBMD-VXMYFEMYSA-N cyclooctatetraene Chemical compound C1=C\C=C/C=C\C=C1 KDUIUFJBNGTBMD-VXMYFEMYSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000002897 diene group Chemical group 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- ZVDBUOGYYYNMQI-UHFFFAOYSA-N dodec-1-yne Chemical compound CCCCCCCCCCC#C ZVDBUOGYYYNMQI-UHFFFAOYSA-N 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HPTMZNZYFRTOKS-UHFFFAOYSA-N ethenesulfinic acid Chemical compound OS(=O)C=C HPTMZNZYFRTOKS-UHFFFAOYSA-N 0.000 description 1
- ZBGRMWIREQJHPK-UHFFFAOYSA-N ethenyl 2,2,2-trifluoroacetate Chemical compound FC(F)(F)C(=O)OC=C ZBGRMWIREQJHPK-UHFFFAOYSA-N 0.000 description 1
- ZBCLTORTGNOIGM-UHFFFAOYSA-N ethenyl 2,2-dichloroacetate Chemical compound ClC(Cl)C(=O)OC=C ZBCLTORTGNOIGM-UHFFFAOYSA-N 0.000 description 1
- ONSHBCMUUXTPOJ-UHFFFAOYSA-N ethenyl 2,2-difluoroacetate Chemical compound FC(F)C(=O)OC=C ONSHBCMUUXTPOJ-UHFFFAOYSA-N 0.000 description 1
- XJELOQYISYPGDX-UHFFFAOYSA-N ethenyl 2-chloroacetate Chemical compound ClCC(=O)OC=C XJELOQYISYPGDX-UHFFFAOYSA-N 0.000 description 1
- XNOJDQOUSSPETL-UHFFFAOYSA-N ethenyl 2-fluoroacetate Chemical compound FCC(=O)OC=C XNOJDQOUSSPETL-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 229920000587 hyperbranched polymer Polymers 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N icosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Chemical group CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Chemical group C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical group C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000003328 mesylation reaction Methods 0.000 description 1
- 238000006140 methanolysis reaction Methods 0.000 description 1
- KMFNLFVEJUMRDF-IXDOHACOSA-N methyl (1s,2r,5s)-5-[(2-methylpropan-2-yl)oxycarbonylamino]-2-(phenylmethoxycarbonylamino)cyclohex-3-ene-1-carboxylate Chemical compound COC(=O)[C@H]1C[C@H](NC(=O)OC(C)(C)C)C=C[C@H]1NC(=O)OCC1=CC=CC=C1 KMFNLFVEJUMRDF-IXDOHACOSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000324 molecular mechanic Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 150000002847 norbornane derivatives Chemical class 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- QJPQVXSHYBGQGM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 QJPQVXSHYBGQGM-UHFFFAOYSA-N 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- GCSHUYKULREZSJ-UHFFFAOYSA-N phenyl(pyridin-2-yl)methanone Chemical compound C=1C=CC=NC=1C(=O)C1=CC=CC=C1 GCSHUYKULREZSJ-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical group C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000005182 potential energy surface Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000024769 regulation of transport Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- YZHUMGUJCQRKBT-UHFFFAOYSA-M sodium chlorate Chemical compound [Na+].[O-]Cl(=O)=O YZHUMGUJCQRKBT-UHFFFAOYSA-M 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- XBXCNNQPRYLIDE-UHFFFAOYSA-N tert-butylcarbamic acid Chemical compound CC(C)(C)NC(O)=O XBXCNNQPRYLIDE-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- NNBZCPXTIHJBJL-MGCOHNPYSA-N trans-decalin Chemical compound C1CCC[C@@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- SGVPGVFMABKMOL-UHFFFAOYSA-N trimethoxysilylmethyl but-2-enoate Chemical compound CO[Si](OC)(OC)COC(=O)C=CC SGVPGVFMABKMOL-UHFFFAOYSA-N 0.000 description 1
- PGAJYUDRKAPMPA-UHFFFAOYSA-N trimethylsilyl n-ethylcarbamate Chemical compound CCNC(=O)O[Si](C)(C)C PGAJYUDRKAPMPA-UHFFFAOYSA-N 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
Definitions
- This invention relates to thin layer compositions which are nanofilms prepared from various macrocyclic module components and various polymeric and amphiphilic components.
- This invention also relates to the fields of organic chemistry and nanotechnology, in particular, it relates to nanofilm compositions useful for filtration.
- Nanotechnology involves the ability to engineer novel structures at the atomic and molecular level.
- One area of nanotechnology is to develop chemical building blocks from which hierarchical molecules of predicted properties can be assembled.
- An approach to making chemical building blocks or nanostructures begins at the atomic and molecular level by designing and synthesizing starting materials with highly tailored properties. Precise control at the atomic level is the foundation for development of rationally tailored synthesis-structure-property relationships which can provide materials of unique structure and predictable properties.
- This approach to nanotechnology is inspired by nature. For example, biological organization is based on a hierarchy of structural levels: atoms formed into biological molecules which are arranged into organelles, cells, and ultimately, into organisms. These building block capabilities are unparalleled by conventional materials and methods such as polymerizations which produce statistical mixtures or confinement of reactants to enhance certain reaction pathways. For example, from twenty common amino acids found in natural proteins, more than 105 stable and unique proteins are made.
- membranes used in a variety of separation processes can be made selectively permeable to various molecular species.
- the permeation properties of conventional membranes generally depend on the pathways of transport of species through the membrane structure. For example, while the diffusion pathway in conventional selectively permeable materials can be made tortuous in order to control permeation, porosity is not well defined or controlled by conventional methods.
- the ability to fabricate regular or unique pore structures of membranes is a long-standing goal of separation technology.
- Resistance to flow of species through a membrane may also be governed by the flow path length. Resistance can be greatly reduced by using a very thin film as a membrane, at the cost of reduced mechanical strength of the membrane material.
- Conventional membranes may have a barrier thickness of at least one to two hundred nanometers, and often up to millimeter thickness. In general, a thin film of membrane barrier material can be deposited on a porous substrate of greater thickness to restore material strength.
- Membrane separation processes are used to separate components from a fluid in which atomic or molecular components having sizes smaller than a certain “cut-off” size can be separated from components of larger size. Normally, species smaller than the cut-off size are passed by the membrane.
- the cut-off size may be an approximate empirical value which reflects the phenomenon that the rate of transport of components smaller than the cut-off size is merely faster than the rate of transport of larger components.
- the primary factors affecting separation of components are size, charge, and diffusivity of the components in the membrane structure.
- the driving force for separation is a concentration gradient, while in electrodialysis electromotive force is applied to ion selective membranes.
- the invention provides nanofilm compositions.
- the nanofilm composition comprises a reaction product of macrocyclic modules and at least one polymeric component.
- the nanofilm composition comprises a reaction product of a polymeric component and an amphiphile.
- the nanofilm composition comprises a reaction product of a polymeric component, wherein the polymeric components are linked by linker molecules.
- the nanofilm composition comprises a reaction product of at least two polymeric components, wherein the first polymeric component is a polymerizable amphiphile, and the second polymeric component is a polymerizable monomer.
- the macrocyclic modules are selected from the group consisting of Hexamer 1a, Hexamer 1dh, Hexamer 3j-amine, Hexamer 1jh, Hexamer 1jh-AC, Hexamer 2j-amine/ester, Hexamer 1dh-acryl, Octamer 5j-haspartic, Octamer 4jh-acryl, and mixtures thereof
- the macrocyclic modules are Hexamer 1dh.
- the polymerizable amphiphile is selected from the group consisting of amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
- the polymeric component is a polymer. In some embodiments, the polymeric component is amphiphilic.
- the polymeric component is selected from the group consisting of poly(maleic anhydride)s, poly(ethylene-co-maleic anhydride)s, poly(maleic anhydride-co-alpha olefin)s, polyacrylates, polymethylmethacrylate, polymers containing at least one oxacyclopropane group, polyethyleneimides, polyetherimides, polyethylene oxides, polypropylene oxides, polyurethanes, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyethylenes, polypropylenes, ethylene-propylene copolymers, polyisoprenes, polyneopropenes, polyamides, polyimides, polysulfones, polyethersulfones, polyethylene terephthalates, polybutylene terephthalates, polysulfonamides, polysulfoxides, polyglycolic acids, polyacrylamides, polyvin
- the amphiphile is a polymerizable amphiphile.
- the polymerizable amphiphile is selected from the group consisting of amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
- the amphiphile is non-polymerizable.
- the non-polymerizable amphiphile is selected from the group consisting of decylamine and stearic acid.
- the nanofilm composition may further comprise a non-polymerizable amphiphile.
- the non-polymerizable amphiphile is selected from the group consisting of decylamine and stearic acid.
- the polymeric component is a polymer, and the non-polymerizable amphiphiles are coupled to the polymer.
- the macrocyclic modules are coupled to each other. In some embodiments, the macrocyclic modules are coupled to the at least one polymeric component. In some embodiments, the polymeric components are coupled to each other. In some embodiments, the at least one polymeric component is coupled to an amphiphile. In some embodiments, the coupling is through linker molecules. In some embodiments, the linker molecules are selected from the group consisting of
- n is 1-6
- R is —H or —CH 3
- R′ is —(CH 2 ) n — or phenyl
- R′′ is —(CH 2 ) n —, polyethylene glycol (PEG), or polypropylene glycol (PPG)
- X is Br, Cl, I, or other leaving group.
- the nanofilm composition is prepared by a process comprising polymerizing the at least one polymeric component at an air-water interface. In some embodiments, the nanofilm composition is prepared by a process comprising polymerizing polymerizable amphiphiles at an air-water interface.
- the area fraction of the polymeric components is from 0.5 to 98 percent. In other embodiments, the area fraction of the polymeric components is less than about 20 percent. In yet other embodiments, the area fraction of the polymeric components is less than about 5 percent.
- the thickness of the nanofilm composition is less than about 30 nanometers. In other embodiments, the thickness of the nanofilm composition is less than about 6 nanometers. In yet other embodiments, the thickness of the nanofilm composition is less than about 2 nanometers.
- the nanofilm composition comprises at least two layers of a nanofilm. In some embodiments, the nanofilm composition further comprises at least one spacing layer between any two of the nanofilm layers. In some embodiments, the spacing layer comprises a layer of a polymer, a gel, or inorganic particles.
- the nanofilm composition is deposited on a substrate.
- the nanofilm is coupled to the substrate through the polymeric component.
- the substrate is porous.
- the substrate is non-porous.
- the nanofilm is coupled to the substrate through biotin-strepavidin mediated interaction.
- the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 50% of the surface loss modulus of the same nanofilm composition made without the polymeric components. In other embodiments, the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 30% of the surface loss modulus of the same nanofilm composition made without the polymeric components. In yet other embodiments, the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 20% of the surface loss modulus of the same nanofilm composition made without the polymeric components.
- the nanofilm compositions may have a filtration function which may be used to describe the species that pass through the nanofilm compositions.
- a nanofilm composition may be permeable only to a particular species, including anions, cations, and neutral solutes in a particular fluid, and species smaller than the particular species.
- a particular nanofllm composition may have high permeability for a certain species in a certain solvent.
- a nanofilm composition may have low permeability for certain species in a certain solvent.
- a nanofilm composition may have high permeability for certain species and low permeability for other species in a certain solvent.
- a nanofilm composition may have the following filtration function: MOLECULAR SOLUTE WEIGHT PASS/NO PASS Albumin 68 kDa NP Ovalbumin 44 kDa P Myoglobin 17 kDa P ⁇ 2 -Microglobulin 12 kDa P Insulin 5.2 kDa P Vitamin B 12 1350 Da P Urea, H 2 O, ions ⁇ 1000 Da P
- a nanofilm composition may have the following filtration function: MOLECULAR SOLUTE WEIGHT PASS/NO PASS ⁇ 2 -Microglobulin 12 kDa NP Insulin 5.2 kDa NP Vitamin B 12 1350 Da NP Glucose 180 Da NP Creatinine 131 Da NP H 2 PO 4 ⁇ , HPO 4 2 ⁇ ⁇ 97 Da NP HCO 3 ⁇ 61 Da NP Urea 60 Da NP K+ 39 Da P Na+ 23 Da P
- the nanofilm composition is impermeable to viruses and larger species.
- the nanofilm composition is impermeable to immunoglobulin G and larger species.
- the nanofilm composition is impermeable to albumin and larger species.
- the nanofilm composition is impermeable to ⁇ 2 -Microglobulin and larger species.
- the nanofilm composition is permeable only to water and smaller species.
- the nanofilm composition has permeability for water molecules and Na + , K + , and Cs + in water.
- the nanofilm composition has low permeability for glucose and urea.
- the nanofilm composition has high permeability for water molecules and Cl ⁇ in water.
- the nanofilm composition has high permeability for water molecules and K + in water, and low permeability for Na + in water. In another embodiment, the nanofilm composition has high permeability for water molecules and Na + in water, and low permeability for K + in water. In another embodiment, the nanofilm composition has low permeability for urea, creatinine, Li + , Ca 2+ , and Mg 2+ in water. In another embodiment, the nanofilm composition has high permeability for Na + , K + , hydrogen phosphate, and dihydrogen phosphate in water. In another embodiment, the nanofilm composition has high permeability for Na + , K + , and glucose in water.
- the nanofilm composition has low permeability for myoglobin, ovalbumin, and albumin in water. In another embodiment, the nanofilm composition has high permeability for organic compounds and low permeability for water. In another embodiment, the nanofilm composition has low permeability for organic compounds and high permeability for water. In another embodiment, the nanofilm composition has low permeability for water molecules and high permeability for helium and hydrogen gases.
- a nanofilm composition may have a molecular weight cut off.
- the nanofilm composition has a molecular weight cut-off of about 13 kDa.
- the nanofilm composition has a molecular weight cut-off of about 190 Da.
- the nanofilm composition has a molecular weight cut-off of about 100 Da.
- the nanofilm composition has a molecular weight cut-off of about 45 Da.
- the nanofilm composition has a molecular weight cut-off of about 20 Da.
- compositions comprising a mixture of macrocyclic modules and at least one polymeric component in organic solvent.
- compositions comprising a thin film of a reaction product of macrocyclic modules and at least one polymeric component, wherein the composition is prepared by a process comprising contacting the macrocyclic modules and the at least one polymeric component at an air-liquid or liquid-liquid interface.
- the polymeric component is polymerizable, further comprising polymerizing the polymeric component at the air-liquid or liquid-liquid interface.
- a method for making a nanofilm composition comprises: (a) providing a first liquid phase comprising the macrocyclic modules; (b) providing a second liquid phase comprising the at least one polymeric component; and (c) forming a liquid-liquid interface from the first liquid phase and the second liquid phase.
- the nanofilm compositions may be prepared by spin coating, spray coating, dip coating, grafting, casting, phase inversion, electroplating, or knife-edge coating.
- the method comprises using the nanofilm composition to separate one or more components from a fluid. In another embodiment, the method comprises using the nanofilm composition to separate one or more components from a mixture of at least two gases.
- FIGS. 1 (A-C) illustrates examples of ellipsometric images of a nanofilm of Hexamer 1dh and poly(maleic anhydride-alt-1-octadecene) (PMAOD).
- FIGS. 2 (A-C) illustrates examples of ellipsometric images of a nanofilm of Hexamer 1dh and PMAOD after sonication in various solvents.
- FIGS. 3 (A-D) illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of Hexamer 1dh and PMAOD.
- FIGS. 4 (A-D) illustrates examples of scanning electron micrographs of a nanofilm of Hexamer 1dh and PMAOD on a polycarbonate substrate.
- FIGS. 5 illustrates examples of scanning electron micrographs of a polycarbonate substrate.
- FIG. 6 illustrates an example of an attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectrum of CHCl3 rinsings of a nanofilm of PMAOD.
- FTIR-ATR Fourier transform infrared
- FIG. 7 illustrates an example of an FTIR-ATR spectrum of Hexamer 1dh.
- FIG. 8 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1dh and PMAOD.
- FIG. 9 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1dh prepared on a water subphase containing diethyl malonimidate (DEM).
- DEM diethyl malonimidate
- FIG. 10 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1 dh and PMAOD prepared on a water subphase containing DEM.
- FIG. 11 illustrates examples of atomic force microscopy (AFM) images of a polycarbonate substrate.
- FIGS. 12 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMAOD on a (3-aminopropyl)triethoxysilane (APTES) modified SiO 2 substrate.
- APTES (3-aminopropyl)triethoxysilane
- FIG. 13 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMAOD prepared on a water subphase containing DEM deposited on a polycarbonate substrate.
- FIG. 14 illustrates examples of surface pressure-area isotherms of a nanofilm of octadecylamine (ODA) and polymethylmethacrylate (PMMA).
- ODA octadecylamine
- PMMA polymethylmethacrylate
- FIG. 15 illustrates examples of surface pressure-area isotherms of a nanofilm of ODA and PMAOD.
- FIG. 16 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMMA on a silicon substrate.
- FIG. 17 illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of Hexamer 1dh and PMAOD made on a subphase containing 2 mg/ml DEM.
- FIG. 18 illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of polyglycidyl methacrylate (PGM) made on a subphase containing 1% ethylene diamine compared with a nanofilm of PGM made on a basic subphase.
- PGM polyglycidyl methacrylate
- FIGS. 19A and 19B show representations of examples of the structure of embodiments of a hexamer macrocyclic module.
- FIG. 20A shows an example of the Langmuir isotherm of an embodiment of a hexamer macrocyclic module.
- FIG. 20B shows an example of the isobaric creep of an embodiment of a hexamer macrocyclic module.
- FIG. 21A shows an example of the Langmuir isotherm of an embodiment of a hexamer macrocyclic module.
- FIG. 21B shows an example of the isobaric creep of an embodiment of a hexamer macrocyclic module.
- reaction product refers to a product formed from the indicated components. Coupling may or may not occur between the components in forming a reaction product.
- Polymeric components may or may not be polymerized in forming a reaction product.
- a nanofilm comprising a reaction product of macrocyclic modules and a polymeric component may have coupling between the modules, and/or coupling between the modules and the polymeric component, and/or coupling between the polymeric components, or may have no coupling at all.
- the polymeric components are polymerized. The polymeric components may be fully or partially polymerized. Alternatively, the polymeric components may not be polymerized.
- synthon refers to a monomeric molecular unit from which a macrocyclic module may be made; a macrocyclic module is a closed ring of coupled synthons. Structures arid syntheses of synthons and macrocyclic modules are described in greater detail hereinbelow.
- polymer and “polymeric molecule” refer to a polymer or a molecule which is predominantly a polymer, but may have some non-polymer atoms or species attached.
- polymer includes copolymers, terpolymers, and polymers containing any number of different monomers.
- polymeric component refers to a molecule or species which is either a polymer, or may form a polymer by polymerization.
- a polymerizable monomer or polymerizable molecule may be a polymeric component.
- the polymeric component may be amphiphilic.
- polymerizable indicates a molecular species which may polymerize under the reaction conditions in which the nanofilm is prepared.
- Non-polymerizable is used herein to indicate a molecular species which will not polymerize under the reaction conditions in which the nanofilm is prepared.
- a species which is “non-polymerizable” under one set of reaction conditions may be “polymerizable” under another set of reaction conditions.
- amphiphile or “amphiphilic” refer to a molecule or species which exhibits both hydrophilic and lipophilic character. In general, an amphiphile contains a lipophilic moiety and a hydrophilic moiety. The terms “lipophilic” and “hydrophobic” are interchangeable as used herein. An amphiphile may form a Langmuir film. An amphiphile may be polymerizable. Alternatively, the amphiphile may not be polymerizable.
- Non-limiting examples of hydrophobic groups or moieties include lower alkyl groups, alkyl groups having 7, 8, 9, 10, 11, 12, or more carbon atoms, including alkyl groups with 14-30, or 30 or more carbon atoms, substituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, substituted aryl, saturated or unsaturated cyclic hydrocarbons, heteroaryl, heteroarylalkyl, heterocyclic, and corresponding substituted groups.
- a hydrophobic group may contain some hydrophilic groups or substituents insofar as the hydrophobic character of the group is not outweighed.
- a hydrophobic group may include substituted silicon atoms, and may include fluorine atoms.
- the lipophilic moieties may be linear, branched, or cyclic.
- Non-limiting examples of groups which may be coupled to a synthon or macrocyclic module as a lipophilic group include alkyls, —CH ⁇ CH—R, —C ⁇ C—R, —OC(O)—R, —C(O)O—R, —NHC(O)—R, —C(O)NH—R, and —O—R, where R is 4-18C alkyl.
- Non-limiting examples of hydrophilic groups or moieties include hydroxyl, methoxy, phenol, carboxylic acids and salts thereof, methyl, ethyl, and vinyl esters of carboxylic acids, amides, amino, cyano, isocyano, nitrile, ammonium salts, sulfonium salts, phosphonium salts, mono- and di-alkyl substituted amino groups, polypropyleneglycols, polyethylene glycols, epoxy groups, acrylates, sulfonamides, nitro, —OP(O)(OCH 2 CH 2 N + RR′R′′)O ⁇ , guanidinium, aminate, acrylamide, pyridinium, piperidine, and combinations thereof, wherein R, R′ and R′′ are each independently selected from H or alkyl.
- a hydrophilic group may contain some hydrophobic groups or substituents insofar as the hydrophilic character of the group is not outweighed. Further examples include poly
- Hydrophilic moieties may also include alkyl chains having internal amino or substituted amino groups, for example, internal —NH—, —NC(O)R—, or —NC(O)CH ⁇ CH 2 — groups.
- Hydrophilic moieties may also include polycaprolactones, polycaprolactone diols, poly(acetic acid)s, poly(vinyl acetates)s, poly(2-vinyl pyridine)s, cellulose esters, cellulose hydroxyl ethers, poly(L-lysine hydrobromide)s, poly(itaconic acid)s, poly(maleic acid)s, poly(styrenesulfonic acid)s, poly(aniline)s, or poly(vinyl phosphonic acid)s.
- the terms “coupling” and “coupled” with respect to molecular moieties or species, polymeric components, synthons, and macrocyclic modules refers to their attachment or association with other molecular moieties or species, molecules, synthons, or macrocyclic modules.
- the attachment or association may be specific or non-specific, reversible or non-reversible, the result of chemical reaction, or complexation.
- the bonds formed by a coupling reaction are often covalent bonds, or polar-covalent bonds, or mixed ionic-covalent bonds, and may sometimes be Coulombic forces, ionic or electrostatic forces or interactions. In some preferred embodiments, the bonds formed by a coupling reaction are covalent.
- the terms “R,” “R′,” “R′′”, and “R′′” in a chemical formula refer to a hydrogen or a functional group, each independently selected, unless stated otherwise.
- the fuinctional group may be an organic group.
- the term “functional group” includes, but is not limited to, chemical groups, organic groups, inorganic groups, organometallic groups, aryl groups, heteroaryl groups, cyclic hydrocarbon groups, amino (—NH 2 ), hydroxyl (—OH), cyano (—C ⁇ N), nitro (—NO 2 ), carboxyl (—COOH), formyl (—CHO), keto (—CH 2 C(O)CH 2 —), alkenyl (—C ⁇ C—), alkynyl, (—C ⁇ C—), and halo (F, Cl, Br and I) groups.
- the functional group is an organic group.
- alkyl refers to a branched or unbranched monovalent hydrocarbon radical.
- An “n-mC” alkyl or “(nC-mC)alkyl” refers to all alkyl groups containing from n to m carbon atoms.
- a 1-4C alkyl refers to a methyl, ethyl, propyl, or butyl group. All possible isomers of an indicated alkyl are also included.
- propyl includes isopropyl
- butyl includes n-butyl, isobutyl and t-butyl, and so on.
- alkyl group with from 1-6 carbon atoms is referred to as “lower alkyl.”
- the term alkyl includes substituted alkyls.
- substituted alkyl refers to an alkyl group with an additional group or groups attached to any carbon of the alkyl group. Additional groups attached to a substituted alkyl may include one or more functional groups such as alkyl, lower alkyl, aryl, acyl, halogen, alkylhalo, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, mercapto, both saturated and unsaturated cyclic hydrocarbons, heterocycles, and others.
- alkenyl refers to any structure or moiety having the unsaturation C ⁇ C.
- alkynyl refers to any structure or moiety having the unsaturation C ⁇ C.
- aryl refers to an aromatic group which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene, ethylene, or carbonyl, and includes polynuclear ring structures.
- An aromatic ring or rings may include substituted or unsubstituted phenyl, naphthyl, biphenyl, diphenylmethyl, and benzophenone groups, among others.
- aryl includes substituted aryls.
- substituted aryl refers to an aryl group with an additional group or groups attached to any carbon of the aryl group. Additional groups may include one or more functional groups such as lower alkyl, aryl, acyl, halogen, alkylhalos, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, thioether, heterocycles, both saturated and unsaturated cyclic hydrocarbons which are fused to the aromatic ring(s), linked covalently or linked to a common group such as a methylene or ethylene group, or a carbonyl linking group such as in cyclohexyl phenyl ketone, and others.
- functional groups such as lower alkyl, aryl, acyl, halogen, alkylhalos, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalky
- heteroaryl refers to an aromatic ring(s) in which one or more carbon atoms of the aromatic ring(s) are substituted by a heteroatom such as nitrogen, oxygen, or sulfur.
- Heteroaryl refers to structures which may include a single aromatic ring, multiple aromatic rings, or one or more aromatic rings coupled to one or more nonaromatic rings. It includes structures having multiple rings, fused or unfused, linked covalently, or linked to a common group such as a methylene or ethylene group, or linked to a carbonyl as in phenyl pyridyl ketone.
- heteroaryl includes rings such as thiophene, pyridine, isoxazole, phthalimide, pyrazole, indole, fuiran, or benzo-fused analogues of these rings.
- acyl refers to a carbonyl substituent, —C(O)R, where R is alkyl or substituted alkyl, aryl or substituted aryl, which may be called an alkanoyl substituent when R is alkyl.
- amino refers to a group —NRR′, where R and R′ may independently be hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl or acyl.
- alkoxy refers to an —OR group, where R is an alkyl, substituted lower alkyl, aryl, substituted aryl. Alkoxy groups include, for example, methoxy, ethoxy, phenoxy, substituted phenoxy, benzyloxy, phenethyloxy, t-butoxy, and others.
- thioether refers to the general structure R—S—R′ in which R and R′ are the same or different and may be alkyl, aryl or heterocyclic groups.
- the group —SH may also be referred to as “sulfhydryl” or “thiol” or “mercapto.”
- saturated cyclic hydrocarbon refers to ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, and others, including substituted groups. Substituents to saturated cyclic hydrocarbons include substituting one or more carbon atoms of the ring with a heteroatom such as nitrogen, oxygen, or sulfur. Saturated cyclic hydrocarbons include bicyclic structures such as bicycloheptanes and bicyclooctanes, and multicyclic structures.
- unsaturated cyclic hydrocarbon refers to nonaromatic cyclic groups with at least one double bond, such as cyclopentenyl, cyclohexenyl, and others, including substituted groups. Substituents to unsaturated cyclic hydrocarbons include substituting one or more carbon atoms of the ring with a heteroatom such as nitrogen, oxygen, or sulfur. Unsaturated cyclic hydrocarbons include bicyclic structures such as bicycloheptenes and bicyclooctenes, and multicyclic structures.
- cyclic hydrocarbon includes substituted and unsubstituted, saturated and unsaturated cyclic hydrocarbons, and includes unicyclic and multicyclic structures.
- heteroarylalkyl refers to alkyl groups in which the heteroaryl group is attached through an alkyl group.
- heterocyclic refers to a saturated or unsaturated nonaromatic group having a single ring or multiple condensed rings comprising from 1-12 carbon atoms and from 1-4 heteroatoms selected from nitrogen, phosphorous, sulfur, or oxygen within the ring.
- heterocycles include tetrahydrofuran, morpholine, piperidine, pyrrolidine, and others.
- each chemical term described above expressly includes the corresponding substituted group.
- heterocyclic includes substituted heterocyclic groups.
- activated acid refers to a —C(O)X moiety, where X is a leaving group, in which the X group is readily displaced by a nucleophile to form a covalent bond between the —C(O)— and the nucleophile.
- activated acids include acid chlorides, acid fluorides, p-nitrophenyl esters, pentafluorophenyl esters, and N-hydroxysuccinimide esters.
- amino acid residue refers to the product formed when a species comprising at least one amino (—NH 2 ) and at least one carboxyl (—C(O)O—) group couples through either of its amino or carboxyl groups with an atom or functional group of a synthon. Whichever of the amino or carboxyl groups is not involved in the coupling may optionally be blocked with a removable protective group.
- this invention relates variously to nanotechnology in the preparation of porous structures and materials having pores that are of atomic to molecular size.
- Materials such as nanofilm compositions may be formed from macrocyclic modules. Nanofilm compositions may also be formed from macrocyclic modules in combination with one or more polymeric components. Nanofilm compositions may also be formed from a polymer and an amphiphile, wherein the amphiphile may be polymerizable or non-polymerizable. Nanofilm compositions may also be formed from polymeric components which have been coupled through linkers. In some embodiments, pores may be supplied through the structure of the nanofilm. In some embodiments, pores are supplied through the structure of the macrocyclic modules.
- the nanofilm is prepared from coupled macrocyclic modules, which may also be coupled to one or more polymeric components.
- the nanofilm includes amphiphilic molecules, which optionally may be coupled to any of the other components. These amphiphilic molecules may be polymerizable or non-polymerizable. It is to be understood that a “non-polymerizable” amphiphile is non-polymerizable under the reaction conditions in which the nanofilm is prepared.
- a nanofilm may be prepared with mixtures of different modules, or with mixtures of macrocyclic modules, amphiphilic molecules, and/or polymeric components.
- the polymeric component may be intermixed, aggregated, or phase separated from the macrocyclic modules and amphiphilic molecules, as described herein.
- Nanofilms having one or more polymeric components made with mixtures of different modules and/or amphiphilic molecules may also have interspersed arrays of pores of various sizes.
- These materials may have regions in which unique structures exist.
- the unique structures may repeat at regular intervals to provide a lattice of pores having substantially uniform dimensions.
- the unique structures may have a variety of shapes and sizes, thereby providing pores of various shapes and sizes. Because the unique structures may be formed in a monolayer of molecular thickness, the pores defined by the unique structures may include a cavity, opening, or chamber-like structure of molecular size. In general, pores of atomic to molecular size defined by those unique structures may be used for selective permeation or molecular sieving functions.
- the nanofilm may have one or more polymeric components. These nanofilms may have regions composed primarily of one or more polymeric components. In some cases, the polymeric components act as a plasticizer. In some cases, regions composed primarily of one or more polymeric components may form a barrier to permeation by fluids, small molecules, biomolecules, solvent molecules, or ions. In other cases, the porosity of the nanofilm is controlled by the type and degree of cross-linking of the polymeric components.
- a wide variety of structural features and properties such as amorphous, glassy, semicrystalline or crystalline structures, and elastomeric, pliable, thermoplastic, or deformation properties may be exhibited by the nanofilms.
- the various components may be deposited on a surface to form a nanofilm.
- Macrocyclic modules can be oriented on a surface by providing functional groups on the modules which impart amphiphilic character to the modules. For example, when the module is deposited on a hydrophilic surface, hydrophobic substituent groups or hydrophobic tails attached to the module may cause the module to reorient on the surface so that the hydrophobic substituents are oriented away from the surface, leaving a more hydrophilic facet of the module oriented toward the surface.
- Other components may also optionally similarly be oriented on the surface by providing amphiphilic groups in the component.
- the conformation of a molecule on a surface may depend on the loading, density, or state of the phase or layer in which the molecule resides on the surface.
- Surfaces which may be used to orient modules or other molecules include interfaces such as gas-liquid, air-water, immiscible liquid-liquid, liquid-solid, or gas-solid interfaces.
- the thickness of the oriented layer may, in some cases, be substantially a monomolecular layer thickness.
- the composition of the nanofilm may be solid, gel, or liquid.
- the modules of the nanofilm may be in an expanded state, a liquid state, or a liquid-expanded state.
- the state of the modules of the nanofilm may be condensed, liquid-condensed, collapsed, or may be a solid phase or close-packed state.
- the modules and/or other components of the nanofilm may interact with each other by weak forces of attraction. Alternatively, they may be coupled through, for example, covalent bonds.
- the modules of a nanofilm prepared from surface-oriented macrocyclic modules need not be linked by any strong interaction or coupling.
- the modules of the nanofilm may be linked through, for example, covalent bonds.
- This invention further includes the rational design of molecules or macrocyclic modules that may be assembled as “building blocks” for further assembly into larger species.
- Standardized molecular subunits or modules may be used from which hierarchical molecules of predicted properties can be assembled. Coupling reactions can be employed to combine or attach modules in directed syntheses.
- modules useful as molecular building blocks are shown in Table 1.
- Examples of macrocyclic modules MODULE STRUCTURE Hexamer 1a Hexamer 1dh Hexamer 3j- amine Hexamer 1jh-AC Hexamer 1jh- Hexamer 2j- amine/ester Hexamer 1dh- Octamer 5jh- Octamer 4jh- acryl
- this invention relates variously to nanofilm compositions having polymeric components.
- Polymeric components may be introduced into nanofilm compositions which contain macrocyclic modules.
- Nanofilm compositions may also be made from polymeric components coupled by linker molecules.
- Nanofilm compositions may also be made from polymeric components and amphiphilic molecules, wherein the amphiphilic molecules may optionally be polymerizable.
- a polymeric component is a polymerizable species, or a polymer or macromolecule of any molecular weight which is made of monomers.
- Polymerizable species include monomers, which are molecules that can be repeated in a polymer, and polymers, wherein the monomers or polymers have polymerizable or crosslinkable groups. Any polymeric component, polymerizable species, polymer, or monomer may also be amphiphilic.
- Examples of polymeric components include organic polymers, thermoplastics, synthetic and natural elastomers, conducting polymers, synthetic and natural biopolymers, and inorganic polymers. Examples of polymeric components of this invention include organic polymers containing atoms selected from H, C, N, O, S. F, and Cl.
- the polymeric component may be a homopolymer, or a mixed, block, or graft copolymer.
- Mixed polymers, block polymers, and copolymers include macromolecules having two, three, or more different monomers.
- the polymeric component may have any combination of the monomers or polymers which make up any of the example polymers described herein, or may be a blend of polymers. Mixtures of polymeric components may be used in variations of this invention. Examples of polymers include linear or branched, side-chain branched, or branched comb polymers.
- a polymer may be a star or dendrimeric form, or forms including microtubules, cylinders, or nanotubes of various compositions.
- Polymer branches may be long-chain branches or short-chain branches.
- the polymers may be made by synthetic methods, or may be obtained from naturally-occurring sources.
- a polymeric component may be in the form of a polymer when introduced into the mixture used to form a nanofilm.
- a polymeric component which is already in the form of a polymer when introduced into the mixture used to form a nanofilm may have amphiphilic character.
- a polymer having amphiphilic character may be more soluble in water than organic solvent, or vice-versa.
- a polymeric component may be a water soluble polymer having polar groups and amphiphilic character.
- the polymeric component may be in the form of a polymerizable molecule when introduced into the mixture used to form a nanofilm.
- Polymerizable molecules used to prepare a nanofilm include monomers.
- polymerizable molecules used to prepare a nanofilm may have amphiphilic character.
- the polymeric component of a nanofilm may be formed in-situ during preparation of the nanofilm from macrocyclic modules and/or other components. In-situ formation of the polymeric component of a nanofilm may be carried out by polymerization of a monomer or polymerizable amphiphile in a multicomponent mixture.
- Examples of a polymeric component include poly(maleic anhydrides), a copolymer of maleic anhydride, poly(ethylene-co-maleic anhydride), poly(maleic anhydride-co-alpha olefin), polyacrylates, a polymer or copolymer having acrylate side groups, a polymer or copolymer having oxacyclopropane side groups, polyethyleneimides, polyetherimides, polyethylene oxides, polypropylene oxides, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyolefins, polyethylenes, polypropylenes, ethylene-propylene copolymers, polyisoprenes, neopropenes, polyanilines, polyacetylenes, polyvinylchlorides, polyvinylidene chlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides,
- Examples of a polymeric component also include amino-branched, amino-substituted, and amino-terminal derivatives of the preceding example polymers.
- Other examples of a polymeric component include polynucleotides, synthetic or naturally-occurring polynucleotides, for example, poly(T) and poly(A), nucleic acids, as well as proteoglycans, glycoproteins, and glycolipids.
- polymeric components which are polymerizable monomers include vinyl halide compounds such as vinyl chloride; vinylidene monomers such as vinylidene chloride; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and salts thereof; acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, methoxyethyl acrylate, phenyl acrylate and cyclohexyl acrylate; methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, phenyl methacrylate and cyclohexyl methacrylate; unsaturated ketones such as methyl vinyl ketone, ethyl vinyl ketone, phenyl vinyl ketone, methyl isobutenyl ketone and methyl is
- polymeric components which are polymerizable amphiphiles include long chain alkyl derivatives of vinyl halides, vinylidene halides, unsaturated carboxylic acids and salts thereof, acrylates, methacrylates, unsaturated ketones, vinyl esters, vinyl ethers, acrylamides, acid compounds containing a vinyl group, anhydrides, styrenes, allyl alcohol or esters or ethers thereof, vinylimides, vinyl compounds, unsaturated aldehydes, and vinyl compounds.
- polymeric components which are polymerizable amphiphiles generally include amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, and amphiphilic oxiranes.
- polymeric components which are polymerizable amphiphiles include amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides, any of which may be coupled with linker molecules.
- Preferred polymeric components include poly(maleic anhydride-co-alpha olefin), PMAOD, PMMA, poly(2-hydroxyethyl methacrylate) (PHEMA), PGM, polyethylene imine (PEI) and CH 2 ⁇ CHC(O)OCH 2 CH 2 OH.
- Further preferred polymeric components which may be used in the nanofilms of the invention include those described in Tables 5-9 hereinbelow.
- the polymeric component is poly(maleic anhydride-co-alpha olefin).
- the polymeric component is PMAOD.
- the polymeric component is PMMA.
- the polymeric component is PHEMA.
- the polymeric component is PGM.
- the polymeric component is PEI.
- the polymeric component is CH 2 ⁇ CHC(O)OCH 2 CH 2 OH.
- a polymeric component may have an atom or a group of atoms which couple to other species or components of a nanofilm. Coupling of the polymeric component to other species in a nanofilm may be complete or incomplete.
- the polymeric component may couple to macrocyclic modules or linker molecules, or to other polymeric components, or to other species such as amphiphiles or monomers. Coupling of macrocyclic modules, linker molecules, or other species may be to domains of the polymeric component, occurring at the interface or surface of the domains.
- Amphiphilic molecules may be oriented on a surface such as an air-water interface in a Langmuir trough, and may be compressed to form a Langmuir thin film.
- the amphiphilic molecules of the Langmuir thin film may be coupled to each other or to other components, and may form a substantially monomolecular layer thin film material.
- Non-limiting examples of polar groups of the amphiphilic molecules include amide, amino, ester, —SH, acrylate, acrylamide, epoxy, —OH, —OCH 3 , —NH 2 , —CN, —NO 2 , —N + RR′R′′, —SO 3 ⁇ , —OPO 2 2 ⁇ , —OC(O)CH ⁇ CH 2 , —SO 2 NH 2 , —SO 2 NRR′, —OP(O)(OCH 2 CH 2 N + RR′R′′)O ⁇ , —C(O)OH, —C(O)O ⁇ , guanidinium, aminate, pyridinium, —C(O)OCH 3 , —C(O)OCH 2 CH 3 ,
- w is 1-6, —C(O)OCH ⁇ CH 2 , —O(CH 2 ) x C(O)NH 2 , where x is 1-6, —O(CH 2 ) y C(O)NHR, where y is 1-6, and —O(CH 2 CH 2 O) z R, where z is 1-6, and hydrophilic groups.
- the polar groups may be coupled together by coupling reactions to form a thin film material.
- the polar groups of the amphiphilic molecules may be linked directly to each other. For example, sulfhydryl groups may be coupled to form disulfide link, or polar groups having ester and amino groups may couple to attach the amphiphilic molecules through amide linkages.
- the coupling may attach more than two amphiphilic molecules, for example, by extended amide linkages.
- the polar groups of the amphiphilic molecules may also be linked to each other with a linker molecule.
- amino may be coupled by the Mannich reaction with formaldehyde.
- a portion of the amphiphilic molecules of the nanofilm may be coupled, while the rest are not coupled.
- the amphiphilic molecules of the nanofilm both those which are coupled and those which are not coupled, may also interact through weak non-bonding or bonding interactions such as hydrogen bonding and other interactions.
- hydrophobic tails of the amphiphilic molecules may be any length, and are sometimes from about 1 to 28 carbon atoms.
- hydrophobic tails of the amphiphilic molecules include the hydrophobic groups which may be attached to macrocyclic modules to impart amphiphilic character to the modules.
- Preferred polymerizable amphiphiles include amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
- Preferred non-polymerizable amphiphiles include decylamine and stearic acid. It is to be understood that these are “non-polymerizable amphiphiles” when they are non-polymerizable under the conditions in which the nanofilm is prepared. These may be considered polymerizable amphiphiles when included in other nanofilms, wherein the conditions of the preparation of those nanofilms could cause the amphiphiles to be polymerized.
- the amphiphile may be octadecylamine (ODA). In some embodiments, the amphiphile may be methylheptadecanoate (MHD). In some embodiments, the amphiphile may be N-octadecylacrylamide (ODAA). In some embodiments, the amphiphile may be decylamine. In some embodiments, the amphiphile may be stearic acid. In some embodiments, the amphiphile may be a methyl ester of stearic acid. In some embodiments, the amphiphile may be icosanol, or other long chain alkanol. Further examples of preferred amphiphiles may be found in the Examples, and in Tables 5-9.
- Pores and barrier properties are found in the structure of the nanofilm made by coupling amphiphilic molecules.
- the pores and barrier properties may be modified by the degree or extent of coupling or interaction of the amphiphilic molecules, and for example, by the length of the linker molecules.
- Macrocyclic modules and/or other components oriented on a surface may be coupled to form a thin layer composition or nanofilm.
- surface-oriented modules may be coupled in a two-dimensional array to form a substantially monomolecular layer nanofilm.
- the two-dimensional array is generally one molecule thick throughout the thin layer composition, and may vary locally due to physical and chemical forces.
- Coupling of modules and/or other components may be done to form a substantially two-dimensional thin film by orienting the modules and/or other components on a surface before or during the process of coupling.
- amphiphilic components may be oriented on an interface.
- water soluble components may be added to the subphase for the formation of a nanofilm. Components may also be mixed prior to orienting on an interface.
- Macrocyclic modules can be prepared to possess functional groups which permit coupling of the modules.
- the nature of the products formed by coupling modules depends, in one variation, on the relative orientations of the functional groups with respect to the module structure, and in other variations on the arrangement of complementary functional groups on different modules which can form covalent, non-covalent or other binding attachments with each other.
- a macrocyclic module includes functional groups which couple directly to complementary functional groups of other macrocyclic modules to form linkages between macrocyclic modules.
- the functional groups may in some cases contribute to the amphiphilic character of the module before or after coupling, and may be covalently or non-covalently attached to the modules.
- the functional groups are covalently attached to the modules.
- the functional groups may be attached to the modules before, during, or after orientation of the modules on the surface.
- a macrocyclic module includes functional groups which couple to polymeric components and/or other components.
- Macrocyclic modules may be prepared with functional groups which couple to complementary functional groups of polymeric and/or other components to form linkages. The coupling between macrocyclic modules and these other components may be direct, or may occur through linker molecules.
- components such as polymeric components and amphiphiles may also comprise functional groups for coupling to themselves or to other components, such as coupling a polymeric component to another polymeric component, or coupling a polymeric component to an amphiphilic component.
- the functional groups may be attached to the components before, during, or after orientation of the components on a surface or subphase. In some cases, the functional groups impart amphiphilic character to the component, either before or after coupling.
- one or more coupling linkages may be formed between macrocyclic modules, and coupling may occur between macrocyclic modules and other components. In some variations, coupling may also occur between other components, for example, between amphiphilic groups and polymeric components.
- the linkage formed between, e.g., macrocyclic modules or between a macrocyclic module and another component may be the product of the coupling of one functional group from each molecule. For example, a hydroxyl group of a first macrocyclic module may couple with an acid group or acid halide group of a second macrocyclic module to form an ester linkage between the two macrocyclic modules.
- Another example is an imine linkage, —CH ⁇ N—, resulting from the reaction of an aldehyde, —CH ⁇ O, on one macrocyclic module with an amine, —NH 2 , on another macrocyclic module. Examples of linkages between macrocyclic modules or between macrocyclic modules and other components are shown in Table 2.
- R and R′ represent hydrogen or alkyl groups
- X is halogen or other good leaving group. It is to be understood that the functional groups included in Table 2 may also be used to link a module with another component, such as a polymeric component, and may also be used to link non-module components together, such as a polymeric component to another polymeric component, or a polymeric component to an amphiphilic component.
- a macrocyclic module may have functional groups for coupling to other macrocyclic modules wherein the functional groups are coupled to the macrocyclic module after initial preparation of the closed ring of the module.
- an amine linkage between the synthons of a macrocyclic module may be substituted with one of various functional groups to produce a substituted linkage. Examples of such linkages between synthons of a macrocyclic module having functional groups for coupling other macrocyclic modules are shown in Table 3. TABLE 3 Examples of macrocyclic module linkages Macrocyclic Module Linkage Reagent Substituted Linkage
- X is halogen
- Q represents a synthon in a macrocyclic module.
- the substituted linkage of a macrocyclic module may couple to a substituted linkage of another module.
- the coupling of these linkages is done by initiating 2+2 cycloaddition.
- acrylamide linkages may couple to produce
- the functional groups used to form linkages between macrocyclic modules and/or other components may be separated from the module or component by a spacer.
- a spacer can be any atom or group of atoms which couples the functional group to the macrocyclic module or other component, and does not interfere with the linkage-forming reaction.
- a spacer is part of the functional group, and becomes part of the linkage between macrocyclic modules and/or other components.
- An example of a spacer is a polymethylene group, —(CH2)n-, where n is 1-6. The spacer may be said to extend the linkage between macrocyclic modules and/or other components.
- spacer groups are alkylene, aryl, acyl, alkoxy, saturated or unsaturated cyclic hydrocarbon, heteroaryl, heteroarylalkyl, heterocyclic, and corresponding substituted groups.
- Further examples of spacer groups are polymer, copolymer, or oligomer chains, for example, polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyacrylates, polyamines, polyimines, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyisoprenes, neopropene, polycarbonate, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, polysul
- polymer chain spacer structures include linear, branched, comb and dendrimeric polymers, random and block copolymers, homo- and heteropolymers, flexible and rigid chains.
- the spacer may be any group which does not interfere with formation of the linkage.
- a spacer group may be substantially longer or shorter than the functional group to which it is attached.
- Coupling of macrocyclic modules and/or other components to each other may occur through coupling of functional groups of the macrocyclic modules and/or other components to linker molecules.
- the functional groups involved may be, for example, those exemplified in Table 2.
- modules may couple to at least one other module through a linker molecule.
- a linker molecule is a discrete molecular species used to couple at least two modules.
- Each module may have 1 to 30 or more functional groups which may couple to a linker molecule.
- Linker molecules may have 1 to 20 or more functional groups which may couple to, for example, a module.
- a linker molecule has at least two functional groups, each of which can couple to a module and/or other component.
- linker molecules may include a variety of functional groups for coupling modules and/or other components. Non-limiting examples of functional groups of modules and linker molecules are illustrated in Table 4.
- n is 1-6
- m is 1-10
- R is —CH 3 or —H
- R′ is —(CH 2 ) n — or phenyl
- R′′ is —(CH 2 )—
- PEG polyethylene glycol
- PPG polypropylene glycol
- X is Br, Cl, I, or other good leaving groups which are organic groups containing atoms selected from the group of carbon, oxygen, nitrogen, halogen, silicon, phosphorous, sulfur, and hydrogen.
- a module may have a combination of the various functional groups exemplified in Table 4.
- linkers included in Table 4 may also be used to link a module with another component, such as a polymeric component, and may also be used to link nonmodule components together, such as a polymeric component to an amphiphilic component.
- Preferred linkers include DEM and ethylene diamine. Further examples of suitable linkers are found in the Examples, and in Tables 5-9.
- Methods of initiating coupling of the modules and/or components to linker molecules include chemical, thermal, photochemical, electrochemical, and irradiative methods.
- a nanofilm comprising coupled modules and/or other components can be made by coupling together one or more members of the collection of modules and/or other components, perhaps with other bulky or flexible components, to form a thin layer nanofilm material or composition. Coupling of modules and/or other components may be complete or incomplete, providing a variety of structural variations useful as nanoflim membranes.
- the coupling of polymeric components to macrocyclic modules to prepare a nanofilm may be done with myriad combinations of complementary functional groups.
- macrocyclic modules which may couple to other macrocyclic modules through linker molecules may also couple to polymeric components and other components having complementary functional groups.
- a polymeric component having amino functional groups for example, may couple to linker molecules and compete with the macrocyclic modules for coupling to other macrocyclic modules.
- a macrocyclic module having amino functional groups may couple to poly(ethylene-co-maleic anhydride) to form a maleimide group in the polymer.
- the various types and degrees of coupling depend on the identity of the functional groups of the polymeric components.
- the species may copolymerize. Copolymerization may involve coupling to functional groups of macrocyclic modules.
- the coupling of modules in a nanofilm may attach two or more components by a linkage or linkages.
- the coupling may attach more than two modules, for example, by an array of linkages each formed between two modules.
- Each module may form more than one linkage to another module, and each module may form several types of linkages, including those exemplified in Tables 2-4.
- a module may have direct linkages, linkages through a linker molecule, and linkages which include spacers, in any combination.
- a linkage may connect any portion of a module to any portion of another module.
- An array of linkages and an array of modules may be described in terms of the theory of Bravais lattices and theories of symmetry.
- a nanofilm may be prepared from mixtures of macrocyclic modules and other components.
- the types of coupling between the components and the phase and domain behavior of the mixture, as described herein, may influence the composition and properties of the product nanofilm. Multicomponent mixtures of these types sometimes result in phase separated or aggregated compositions.
- a macrocyclic module may participate in more than one type of coupling, and the product nanofilm may have a wide variety of compositions.
- this invention relates to the introduction of polymeric components into nanofilms comprising macrocyclic modules.
- Various types of coupling may be used to prepare a nanofilm with macrocyclic modules and polymeric components.
- a macrocyclic module may have functional groups which couple to a linker molecule which, in turn, couples to another macrocyclic module or other species, but may not effectively couple to a polymeric component.
- the macrocyclic module may couple much more rapidly to another macrocyclic module than to the polymeric component, and form a nanofilm in which the degree of coupling between macrocyclic modules and the polymeric component is limited.
- a macrocyclic module having amino functional groups may couple readily with a linker molecule such as ClC(O)CH2C(O)Cl, but not as readily with some polymeric components.
- a macrocyclic module may not have functional groups which readily couple to other components.
- An example of this type is a macrocyclic module having imine linkages and only alkyl substituents which may not readily couple to other macrocyclic modules, polymeric components, or other species.
- a macrocyclic module which does not readily couple to other species may form a nanofilm with polymeric components without substantial coupling between macrocyclic modules and polymeric components.
- this invention involves the formation of a nanofilm using multicomponent mixtures of macrocyclic modules and polymeric components, wherein the macrocyclic modules may not directly couple to other macrocyclic modules or to polymeric components in forming the nanofilm, and wherein the macrocyclic modules may be coupled through linker molecules.
- the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof.
- macrocyclic modules having amino functional groups are mixed with polymethylmethacrylate (PMMA), which is immiscible with water.
- PMMA polymethylmethacrylate
- the macrocyclic modules are then coupled with linker molecules ClC(O)CH2C(O)Cl.
- the macrocyclic modules may not couple directly to polymeric components, except at interfaces between phases. Even where the macrocyclic modules and polymeric components form a single continuous phase, the macrocyclic modules may be coupled predominantly to other macrocyclic modules. In nanofilms where macrocyclic modules and polymeric components are phase separated, surface coupling and other adhesion of various domains may occur.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic which may or may not be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof. These nanofilms may optionally include a non-polymerizable amphiphilic species.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may optionally include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
- this invention involves formation of nanofilm using multicomponent mixtures of macrocyclic modules and polymeric components, where the macrocyclic modules may not readily couple to the polymeric components or to other macrocyclic modules.
- Various schemes for the preparation of such nanofilms are illustrated in Table 6.
- n is about 3 to about 1,000,000.
- the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof. In these schemes, the macrocyclic modules may not readily couple to polymeric components or to other modules, but may undergo some degree of coupling to either the polymeric components or other modules.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic and may be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof. These nanofilms may optionally include a non-polymerizable amphiphilic species.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may further include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
- this invention relates to the formation of nanofilms using multicomponent mixtures of macrocyclic modules and polymeric components, wherein the macrocyclic modules may directly couple to the polymeric components, or to other macrocyclic modules.
- Table 7 Various schemes for the preparation of such nanofilms are illustrated in Table 7.
- R is alkyl
- n is about 3 to about 1,000,000.
- the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof In these schemes, the macrocyclic modules may in some cases couple directly to polymeric components, and may form a single phase.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic which may or may not be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof These nanofilms may optionally include a non-polymerizable amphiphilic species.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may also include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
- the type of coupling in which a macrocyclic module participates to form a nanofilm may depend on the presence of other components of the nanofilm.
- a macrocyclic module with acrylate functional groups may couple much more rapidly to itself than to a polymeric component with less reactive groups.
- a macrocyclic module may participate in more than one type of coupling.
- a macrocyclic module which may couple directly to another macrocyclic module may also couple through a linker molecule to another macrocyclic module. Both types of coupling may occur in the same multicomponent mixture used to prepare a nanofilm.
- a macrocyclic module may have functional groups which couple directly to complementary functional groups of another macrocyclic module.
- An example of this form is a macrocyclic module having acrylamide functional groups.
- the macrocyclic module may couple much more rapidly to another macrocyclic module than to any polymeric component, and form a nanofilm in which the degree of coupling between macrocyclic modules and the polymeric component is limited.
- the polymeric component may have complementary functional groups which effectively compete for the coupling groups of macrocyclic modules.
- the macrocyclic module may couple as rapidly to another macrocyclic module as it does to the polymeric component, and may form a nanofilm in which the degree of coupling between the macrocyclic modules themselves is comparable to that between the macrocyclic modules and the polymeric component.
- the degree of coupling between the macrocyclic modules and the polymeric component may exceed that between the macrocyclic modules themselves.
- a nanofilm may be prepared by various methods where the macrocyclic modules couple directly to a polymeric component.
- the macrocyclic modules and polymeric component may be dissolved in organic solvent and coupled together before preparation of a nanofilm. This scheme may result in a substantially single continuous phase within the nanofilm.
- the macrocyclic modules may be coupled to the polymeric component during or after preparation of the nanofilm layer.
- a nanofilm of this invention may be formed from macrocyclic modules having functional groups which may couple directly to complementary fuinctional groups of a polymeric component.
- the macrocyclic modules may not readily couple to other macrocyclic modules.
- Schemes for the preparation of such nanofilms are illustrated in Table 8. TABLE 8 Schemes to prepare nanoflim from macrocyclic modules which couple to polymeric components Reagents Scheme macrocyclic module polymer macrocyclic module amphiphilic polymer
- the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof.
- the macrocyclic modules directly couple to polymeric components, but may not readily couple to other modules.
- a discrete product is formed from the coupling of macrocyclic modules to a polymeric component.
- the discrete module-polymer product may be similar in molecular architecture to a side-group branched polymer, or a graft polymer.
- the discrete product may have a predominantly single continuous phase.
- secondary amine linkages between synthons of a macrocyclic module may couple to a carboxylic acid side group of a copolymer such as the diacid form of poly(ethylene-co-maleic anhydride).
- macrocyclic modules couple to polymeric components, and both may be miscible in water.
- the coupling between the macrocyclic module and the polymeric component may also be indirect, and involve a linker molecule.
- multicomponent mixtures of macrocyclic modules used to prepare nanofilm may also include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
- this invention relates to the introduction of polymeric components into nanofilms comprising amphiphiles.
- Various types of coupling may be used to prepare a nanofilm comprising amphiphiles and polymeric components.
- an amphiphile may contain a polymerizable functional group, such as an acrylate group.
- a polymeric component of a nanofilm may be formed in-situ with the nanofilm by using a multicomponent mixture which includes a polymerizable amphiphile, and which may also optionally include a polymerizable monomer.
- amphiphilic molecule which does not have a polymerizable functional group may be used.
- amphiphiles may be mixed with polymer, amphiphilic polymer, polymerizable monomer, polymerization amphiphile, or mixtures thereof to form a nanofilm having polymeric components.
- a nanofilm is prepared with polymerizable amphiphiles.
- a polymeric component may be formed in-situ from the polymerizable amphiphiles.
- the mixtures used to fonn such nanofilms may further include a polymer, or an amphiphilic polymer, a polymerizable monomer, an amphiphile, or mixtures thereof.
- a nanofilm may be prepared from a polymer, an amphiphilic polymer, or a polymerizable monomer.
- the nanofilms may optionally include an amphiphile.
- this invention relates variously to nanofilms prepared from polymeric components.
- the polymeric components may be directly linked to each other, or may be linked via linker molecules.
- a LB film of PGM may be crosslinked with ethylene diamine to form a nanofllm.
- a LB film of polyethylene imine (PEI) may be crosslinked with diethylene glycol diglycidyl ether:
- the characteristics of a nanofilm having one or more polymeric components may be substantially different than those of nanofilm prepared from macrocyclic modules alone.
- a nanofilm having polymeric components may be advantageously flexible and pliable compared to nanofilm prepared from modules alone, making it easier to fabricate articles such as membranes for filtration and other separation processes.
- Various domains of a nanofilm having polymeric components may undergo plastic deformation in response to stress, while other regions may be elastomeric.
- Nanofilms having polymeric components may be deposited on a substrate to form a continuous, substantially unbroken supported nanofilm or membrane.
- nanofilm having one or more polymeric components may be dependent, in part, on the fraction of polymeric component relative to macrocyclic modules or other components, these properties can be varied by changing the fraction of polymeric component in the nanofilm.
- components which are polymerizable may be used to prepare a polymeric component of a nanofilm in-situ during formation of the nanofilm.
- In-situ formation of a nanofilm polymeric component provides an alternative scheme in which phase and domain behavior of the multicomponent mixture may be modified.
- Schemes involving polymerizable species in a multicomponent mixture may be used to prepare, among other compositions, nanofilm having smaller domains of phase separated polymeric components as compared to nanofilm prepared with polymer or amphiphilic polymer components alone.
- Multicomponent mixtures involving a polymerizable amphiphile may be used to prepare nanofilm with fewer openings of micrometer dimension through which transport of species can occur, as compared to nanofilm prepared with polymer or amphiphilic polymer components alone.
- the polymeric molecules may not be coupled to other components of the nanofilm.
- the ability of a polymeric component to make a nanofilm flexible or pliable may not require coupling to macrocyclic modules or other components.
- the area fraction of a component of a nanofilm is the fraction of the total nanofilm area that the individual component represents.
- the nanofilm area fraction of a component is calculated from the mole fraction (Mf) of the component in the initial mixture of components used to form the nanofilm, and the mean molecular area (MMA) of the component obtained by extrapolation of the high-surface pressure region of the pressure-area Langmuir isotherm of the pure component to zero surface pressure.
- area fraction can be measured where all nanofilm components are immiscible in water or are amphiphilic, and all nanofilm components are found in the initial mixture of components.
- the uncertainty in measurement of area fraction may be up to about 20%, which includes uncertainty due to extrapolation of Langmuir isotherms, and for polymeric components which are polymers in the initial mixture of components, uncertainty due to molecular weight polydispersity of the polymer.
- the nanofilm area fraction of a component may not always be measured by the above formula.
- the area fraction of a component which was not in the initial mixture of components used to form the nanofilm, but entered the nanofilm later would not be measured by the formula above.
- the area fraction of a component may also not be measured by the formula above when the component does not form a stable Langmuir film for which MMA can be measured, or when a polymerizable component is used in the initial mixture which may have an MMA different from the polymer it produces.
- a nanofilm may have any area fraction of polymeric components.
- a nanofilm may have an area fraction of polymeric components from about 0.005 (0.5%) to about 0.98 (98%).
- a nanofilm may have an area fraction of polymeric components from about 0.005 to about 0.7, often from about 0.005 to about 0.5, sometimes from about 0.005 to about 0.3, sometimes from about 0.005 to about 0.2, sometimes from about 0.005 to about 0.1, sometimes from about 0.005 to about 0.05, sometimes from about 0.005 to about 0.02, sometimes from about 0.50 to about 0.98.
- a nanofilm may have an area fraction or weight percent of polymeric components sufficient to make it flexible and pliable so that it may be deposited on a substrate as a homogeneous film with little mechanical breakage, or to reduce the surface modulus of the nanofilm. Flexibility of a nanofilm having polymeric components may be demonstrated by depositing the nanofilm on various substrates to form a continuous, substantially unbroken film on the substrate, or by reducing surface modulus of the nanofilm.
- a nanofilm may have any molar ratio of polymeric components, as measured against the other components.
- the molar ratio of polymeric components may be, for example, about 0.005 to about 0.995, for example about 0.010 to about 0.990, for example, about 0.01 to about 0.50, for example about 0.01 to about 0.20, for example, about 0.20 to about 0.50, for example about 0.50 to about 0.99, for example, about 0.1 to about 0.9, as measured against the other components.
- the molar ratio of polymeric component: module is about 0.1:0.9, about 0.2:0.8, about 0.5:0.5, about 0.25:0.75, or about 0.90:0.10.
- the thickness of nanofilms described herein, whether through coupled or non coupled components, is exceptionally small, often being less than about 30 nanometers, sometimes less than about 20 nanometers, and sometimes from about 1-15 nanometers.
- the thickness of a nanofilm depends partly on the structure and nature of the groups on the modules or other species which impart amphiphilic character to the modules, and partly on the nature of the polymeric or other components. The thickness may be dependent on temperature, and the presence of solvent on the surface or located within the nanofilm.
- the thickness may be modified if the groups on the modules or other components which impart amphiphilic character, in particular the lipophilic moiety, to the component are removed or modified after the components have been coupled, or at other points during or after the process of preparation of a nanofilm.
- the thickness of a nanofilm may also depend on the structure and nature of the surface attachment groups on the components.
- the thickness of nanofilms may be less than about 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 or 5 ⁇ .
- the nanofilm composition may include uniquely structured regions in which modules and/or other components are coupled. Coupling of modules and/or other components provides a nanofilm in which unique structures may be formed. Nanofilm structures define pores through which atoms, molecules, or particles of only up to a certain size and composition may pass.
- One variation of a nanofilm structure includes an area of nanofilm able to face a fluid medium, either liquid or gaseous, and provide pores or openings through which atoms, ions, small molecules, biomolecules, or other species are able to pass.
- the dimensions of the pores defined by nanofilm structures may be exemplified by quantum mechanical calculations and evaluations, and physical tests, as further described in the following Examples.
- the dimensions of the pores defined by nanofilm structures are described by actual atomic and chemical structural features of the nanofilm.
- the approximate diameters of pores formed in the structure of a nanofilm are from about 1-150 ⁇ , or more. In some embodiments, the dimensions of the pores are about 1-10 ⁇ , about 3-15 ⁇ , about 10-15 ⁇ , about 15-20 ⁇ , about 20-30 ⁇ , about 30-40 ⁇ , about 40-50 ⁇ , about 50-75 ⁇ , about 75-100 ⁇ , about 100-125 ⁇ , about 125-150 ⁇ , about 150-300 ⁇ , about 600-1000 ⁇ .
- the approximate dimensions of pores formed in the structure of a nanofilm are useful to understand the porosity of the nanofilm.
- the porosity of conventional membranes is normally quantified by empirical results such as molecular weight cut-off, which reflects complex diffusive and other transport characteristics.
- a nanofilm structure may comprise an array of coupled modules which provides an array of pores of substantially uniform size.
- the pores of uniform size may be defined by the individual modules themselves.
- Each module defines a pore of a particular size, depending on the conformation and state of the module.
- the conformation of the coupled module of the nanofilm may be different from the nascent, pure macrocyclic module in a solvent, and both may be different from the conformation of the amphiphilic module oriented on a surface before coupling.
- a nanofilm structure including an array of coupled modules can provide a matrix or lattice of pores of substantially uniform dimension based on the structure and conformation of the coupled modules.
- Modules of various composition and structure may be prepared which define pores of different sizes.
- a nanofilm prepared from coupled modules may be made from any one of a variety of modules.
- nanofilms having pores of various dimensions are provided, depending on the particular module used to prepare the nanofilm.
- nanofilm structures define pores in the matrix of coupled modules or other components. Pores defined by nanofilm structures may have a wide range of dimensions, for example, dimensions capable of selectively blocking the passage of small molecules or large molecules.
- nanofilm structures may be formed from the coupling of two or more modules, in which an interstitial pore is defined by the combined structure of the linked modules.
- a nanofilm may have an extended matrix of pores of various dimensions and characteristics.
- Interstitial pores may be, for example, less than about 5 ⁇ , less than about 10 ⁇ , about 3-15 ⁇ , about 10-15 ⁇ , about 15-20 ⁇ , about 20-30 ⁇ , about 30-40 ⁇ , about 40-50 ⁇ , about 50-75 ⁇ , about 75-100 ⁇ , about 100-125 ⁇ , about 125-150 ⁇ , about 150-300 ⁇ , about 300-600 ⁇ , about 600-1000 ⁇ .
- the other components may act as a “filler” to limit the porosity of the nanofilm.
- the other components will provide porosity to the nanofilm, depending on the type and extent of cross-linking between the components.
- the coupling process may result in a nanofilm in which regions of the nanofilm are not precisely monomolecular layers.
- Local structural features may include amphiphilic components or species, including polymeric species, which are flipped over relative to their neighbors, or turned in a different orientation, having their hydrophobic and hydrophilic facets oriented differently than neighboring species.
- Local structural features may also include overlaying or stacking of molecules in which the nanofilm is two or more molecular layers thick, local regions in which the interlinking of the modules or other components is not complete so that some of the available coupling groups are not coupled to other species, or local regions in which there is an absence of a particular molecule or component.
- Other local structural features may include grain boundaries and orientational faults.
- the nanofilm has a thickness of up to 30 nanometers due to the layering of nanofilm structures.
- the nanofilms disclosed herein may be substantially uniform with respect to the orientation of their amphiphilic components, but may in some embodiments comprise regions of local structural features as indicated hereinabove. Local structural features may comprise, for example, greater than about 30%, less than about 30%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 3%, less than about 1% of the surface area of the nanofilm.
- the nanofilm may have domains in which a polymeric component or components are intermixed at the atomic level with macrocyclic modules or other species, and solubilized with each other.
- the macrocyclic modules or other species may be miscible with the polymeric component.
- the polymeric molecules, macrocyclic modules, or other components may be located in finite-sized aggregates. Above some critical concentration in a particular solvent, polymeric molecules, macrocyclic modules, or other components may collect into finite-sized aggregates. These finite-sized aggregates may persist at the air-water interface in formation of a nanofilm.
- the structure of the aggregates may be affected by the geometry and shape of the molecules, among other factors, or the capability of the molecules to couple in particular orientations with other species.
- the structure of the aggregates may be highly dynamic with motion and exchange of the molecules at various rates.
- the self assembled aggregates of one species may be interspersed in a continuous phase of another species, where the other species is not aggregated.
- Different molecules or components may form separate aggregates, or be combined in an aggregate structure. Coupling between macrocyclic modules or other components and the polymeric molecules may occur at a surface, edge, or point of the self assembled aggregates.
- the polymeric molecules may reside in domains that are substantially polymeric, which may be interspersed with domains composed substantially of other species.
- a polymeric component may be immiscible or phase separated from macrocyclic modules or other components. Phase separation may occur when the aggregation of polymeric molecules is not limited to a small finite size, but may continue until regions of polymeric molecules are separated from regions of other molecules.
- the form of a polymeric component in these variations may be a solid, gel, or liquid-like polymer melt, or an amorphous composition, in the form of layers, beads, discs or mixtures thereof, and can be homogeneous or heterogeneous in structure or composition.
- Polymeric components of such nanofilms may form hard and soft domains typical of thermoplastic elastomers, or a polymeric component may form a soft domain relative to a hard domain of macrocyclic modules.
- a polymeric component may form regions which are amorphous, glassy, semicrystalline, or crystalline, or have subregions with those characteristics.
- a region of a polymeric component may exhibit rubberlike elasticity or viscoelastic states.
- Different polymeric components may form separate phases, or may be miscible with each other while remaining immiscible with macrocyclic modules or other components. Coupling between macrocyclic modules or other components and polymeric molecules may occur at or near the interface between the phases, and may contribute to adhesion of the phases.
- a nanofilm may also be prepared with mixtures of different macrocyclic modules, or with mixtures of macrocyclic modules, polymeric components, and other species.
- a nanofilm may have an array of coupled modules and other species in which the positional ordering of the modules and other species is random, or is non-random with regions in which one type of species is predominant.
- the polymeric component maybe intermixed, aggregated, or phase separated from the macrocyclic modules and other species, as described above.
- Nanofilms made from mixtures of different modules, or with mixtures of macrocyclic modules and other amphiphilic molecules may also have interspersed arrays of pores of various sizes.
- a monolayer of oriented amphiphilic species for example amphiphilic modules, amphiphilic polymers, and/or amphiphiles, is formed on the surface of a liquid subphase.
- the amphiphilic components may be dissolved in a solvent and deposited on an air-subphase interface in a Langmuir trough to form the monolayer.
- movable plates or barriers are used to compress the monolayer and decrease its surface area to form a more dense monolayer. At various degrees of compression, having corresponding surface pressures, the monolayer may reach various condensed states.
- Surfaces which may be used to orient amphiphiles include interfaces such as gas-liquid, air-water, immiscible liquid-liquid, liquid-solid, or gas-solid interfaces.
- the thickness of the oriented layer may be substantially a monomolecular layer thickness.
- Nanofilms may be prepared by various alternative methods.
- linker molecules may be added to the solution containing the modules and/or other components, which is subsequently deposited on the surface of the Langmuir subphase.
- the linker molecules may be added to the water subphase of the Langmuir trough, and subsequently transfer to the layer phase containing macrocyclic module and/or other components for coupling.
- a water-soluble polymeric component may be added to the subphase of a Langmuir trough.
- a polymeric component may be dissolved in water or solvent and spread on an interface.
- One or more polymeric components may be co-spread on an interface with macrocyclic modules, and optionally with linker molecules.
- one or more polymeric components may be co-spread on an interface with macrocyclic modules and/or linker molecules, and/or other amphiphilic molecules.
- macrocyclic modules and/or other components may be added to the subphase of the Langmuir trough, and subsequently transfer to the interface.
- coupling of the components of a nanofilm may be initiated by chemical, thermal, photochemical, electrochemical, and irradiative methods.
- the type of coupling of the components of a nanofilm may depend on the type of initiation and the chemical process involved.
- species in the mixture which are polymerizable may produce polymeric components by non-selective chain or addition polymerization.
- the type of the coupling of macrocyclic modules to polymerizable species or polymeric components depends on the functional groups of the modules. For example, free radical polymerization of unsaturated polymeric components, amphiphiles, or monomers may couple polymeric components to benzene synthons of macrocyclic modules, or to other reactive or unsaturated sites.
- Functional groups added to the modules or other components to impart amphiphilic character may in some embodiments be removed during or after formation of the nanofilm.
- groups which impart amphiphilic character to a polymeric component may be removed after formation of the nanofilm.
- groups which impart amphiphilic character to macrocyclic modules may be removed after formation of the nanofilm. The method of removal depends on the functional group.
- the groups attached to the modules which impart amphiphilic character to the component may include functional groups which can be used to remove the groups at some point during or after the process of formation of a nanofilm. Acid or base hydrolysis may be used to remove groups attached to the component via a carboxylate or amide linkage.
- An unsaturated group located in the functional group which imparts amphiphilic character to the module may be oxidized and cleaved by hydrolysis. Photolytic cleavage of the functional group which imparts amphiphilic character to the module may also be done. Examples of cleavable functional groups include
- n is zero to four, which is cleavable by light activation
- n is zero to four, and m is 7 to 27, which is cleavable by acid or base catalyzed hydrolysis.
- Examples of functional groups added to the components to impart amphiphilic character to the modules include alkyl groups, alkoxy groups, —NHR, —OC(O)R, —C(O)OR, —NHC(O)R, —C(O)NHR, —CH ⁇ CHR, and —C ⁇ CR, where the carbon atoms of an alkyl group may be interrupted by one or more —S—, double bond, triple bond or —SiRR′— group(s), or substituted with one or more fluorine atoms, or any combination thereof, where R and R′ are independently hydrogen or alkyl.
- the multicomponent mixtures of macrocyclic modules and/or other components may include additives, dispersants, surfactants, excipients, compatiblizers, emulsifiers, suspension agents, plasticizers, or other species which modify the properties of the components.
- compatiblizers may be used to reduce domain sizes and form more continuous phase dispersion of the components of a nanofilm.
- the nanofilm may be derivatized to provide biocompatability or reduce fouling of the nanofilm by attachment or adsorption of biomolecules.
- Nanofilms may be deposited on a substrate by various methods, such as Langmuir-Schaefer, Langmuir-Blodgett, or other methods used with Langmuir systems.
- a nanofilm is deposited on a substrate in a Langmuir tank by locating the substrate in the subphase beneath the air-water interface, and lowering the level of the subphase until the nanofilm lands gently on the substrate and is therefore deposited.
- a description of Langmuir films and substrates is given in U.S. Pat. Nos. 6,036,778, 4,722,856, 4,554,076, and 5,102,798, and in R. A. Hendel et al., Vol. 119 , J. Am.
- Other methods to prepare a nanofilm having polymeric components include forced removal of solvent to prepare a film, such as spin coating methods and spray coating methods, as well as coating and deposition methods including interfacial, dip coating, knife-edge coating, grafting, casting, phase inversion, or electroplating or other plating methods.
- Nanofilms deposited on a substrate may be cured or annealed by chemical, thermal, photochemical, electrochemical, irradiative or drying methods during or after deposition on a substrate.
- chemical methods include reactions with vapor phase reagents such as ethylenediamine or solution phase reagents.
- a nanofilm treated by any method to attach or couple it to a substrate may be said to be cured.
- the deposition may result in non-covalent or weak attachment of the nanofilm to the substrate through physical interactions and weak chemical forces such as van der Waals forces and weak hydrogen bonding.
- the nanofilm may in some embodiments be bound to the substrate through ionic or covalent interaction, or other type of interaction.
- the substrate may be any surface of any material.
- Substrates may be porous or non-porous, and may be made from polymeric and inorganic substances.
- porous substrates are plastics or polymers, track-etch polycarbonate, track-etch polyester, polyethersulfone, polysulfone, gels, hydrogels, cellulose acetate, polyamide, PVDF, polyethylene terephthalate or polybutylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyethylene or polypropylene, ceramics, anodic alumina, laser ablated and other porous polyimides, and UV etched polyacrylate.
- non-porous substrates are silicon, germanium, glass, metals such as platinum, nickel, palladium, aluminum, chromium, niobium, tantalum, titanium, steel, or gold, glass, silicates, aluminosilicates, non-porous polymers, and mica.
- substrates include diamond and indium tin oxide.
- Preferred substrates include silicon, gold, SiO 2 , polyethersulfone, and track etch polycarbonate. In some embodiments, the substrate is SiO 2 . In other embodiments, the substrate is polycarbonate track etch membrane.
- Substrates may have any physical shape or form including films, sheets, plates, or cylinders, and may be particles of any shape or size.
- a nanofilm deposited on a substrate may serve as a membrane. Any number of layers of nanofilm may be deposited on the substrate to form a membrane. In some variations, nanofilm is deposited on both sides of a substrate.
- a layer or layers of various spacing materials may be deposited or attached in between layers of a nanofilm, and a spacing layer may also be used in between the substrate and the first deposited layer of nanofilm.
- spacing layer compositions include polymeric compositions, hydrogels (acrylates, poly vinyl alcohols, polyurethanes, silicones), thermoplastic polymers (polyolefins, polyacetals, polycarbonates, polyesters, cellulose esters), polymeric foams, thermosetting polymers, hyperbranched polymers, biodegradable polymers such as polylactides, liquid crystalline polymers, polymers made by atom transfer radical polymerization (ATRP), polymers made by ring opening metathesis polymerization (ROMP), polyisobutylenes and polyisobutylene star polymers, and amphiphilic polymers.
- spacing layer compositions include inorganics, such as inorganic particles such as inorganic microspheres, colloidal inorganics, inorganic minerals, silica spheres or particles, silica sols or gels, clays or clay particles, and the like.
- examples of amphiphilic molecules include amphiphiles containing polymerizable groups such as diynes, enes, or amino-esters.
- the spacing layers may serve to modify barrier properties of the nanofilm, or may serve to modify transport, flux, or flow characteristics of the membrane or nanofilm. Spacing layers may serve to modify functional characteristics of the membrane or nanofilm, such as strength, modulus, or other properties.
- the polymeric components of a nanofilm may provide a spacing layer between the nanofilm and a substrate.
- a nanofilm having polymeric components may be deposited on a surface and adhere to the surface to a degree sufficient for many applications, such as filtration and membrane separations, without coupling to the surface. Nanofilm having polymeric components may be advantageously cohesive to a substrate, which may include some coupling interactions.
- a nanofilm may be coupled to a substrate surface.
- Surface attachment groups may be provided on a polymeric component of a nanofilm, which may be used to couple the nanofilm to the substrate. Coupling of some, but not all of the surface attachment groups may be done to attach the nanofilm to the substrate.
- surface attachment groups may be provided on the macrocyclic modules and/or other components of a nanofilm.
- Examples of functional groups which may be used as surface attachment groups to couple a nanofilm to a substrate include amine groups, carboxylic acid groups, carboxylic ester groups, alcohol groups, glycol groups, vinyl groups, styrene groups, epoxide groups, thiol groups, magnesium halo or Grignard groups, acrylate groups, acrylamide groups, diene groups, aldehyde groups, and mixtures thereof.
- a substrate may have functional groups which couple to the functional groups of a nanofilm.
- the functional groups of the substrate may be surface groups or linking groups bound to the substrate, which may be formed by reactions which bind the surface groups or linking groups to the substrate.
- Surface groups may also be created on the substrate by a variety of treatments such as cold plasma treatment, surface etching methods, solid abrasion methods, or chemical treatments. Some methods of plasma treatment are given in Inagaki, Plasma Surface Modification and Plasma Polymerization , Technomic, Lancaster, Pa., 1996.
- the substrate is derivatized with APTES.
- the substrate is derivatized with methylacryloxymethyltrimethoxysilane (MAOMTMOS).
- the substrate is derivatized with acryloxypropyltrimethoxysilane (AOPTMOS).
- Surface attachment groups of the nanofilm and the surface may be blocked with protecting groups until needed.
- suitable functional groups for coupling the nanofilm to the substrate and the resulting linkages may be found in Tables 2 and 4.
- the functional groups on the nanoflim may be from any component of the nanofilm, for example, the macrocyclic modules, the polymer component, or the amphiphilic component.
- Surface attachment groups may be connected to a nanofilm by spacer groups.
- substrate functional groups may be connected to the substrate by spacer groups.
- Spacer groups for surface attachment groups may be polymeric. Examples of polymeric spacers include polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, and polysulfoxides.
- polymeric spacer structures include linear, branched, comb and dendrimeric polymers, random and block copolymers, homo- and heteropolymers, flexible and rigid chains.
- Spacer groups for surface attachment groups may also include bifunctional linker groups or heterobifunctional linker groups used to couple biomolecules and other chemical species.
- a photoreactive group such as a benzophenone is bound to the substrate.
- the photoreactive group may be activated with light, for example, ultraviolet light, to provide a reactive species which couples to a nanofilm.
- the photoreactive species may couple to any atom or group of atoms of the nanofilm.
- modules may also be achieved through ligand-receptor mediated interactions, such as biotin-streptavidin.
- the substrate may be coated with streptavidin, and biotin may be attached to the modules, for example, through linker groups such as PEG or alkyl groups.
- the nanofilms described herein may be useful, for example, as membranes.
- the membrane may be brought into contact with a fluid or solution, separating a species or component from that fluid or solution, for example, for purposes of filtration.
- a membrane is a substance which acts as a barrier to block the passage of some species, while allowing restricted or regulated passage of other species.
- permeants may traverse the membrane if they are smaller than a cut-off size, or have a molecular weight smaller than a so-called cut-off molecular weight.
- the membrane may be called impermeable to species which are larger than the cut-off molecular weight.
- the cut-off size or molecular weight is a characteristic property of the membrane.
- Selective permeation is the ability of the membrane to cut-off, restrict, or regulate passage of some species, while allowing smaller species to pass.
- the selective permeation of a membrane may be described functionally in terms of the largest species able to pass the membrane under given conditions.
- the size or molecular weight of various species may also be dependent on the conditions in the fluid to be separated, which may determine the form of the species. For example, species may have a sphere of hydration or solvation in a fluid, and the size of the species in relation to membrane applications may or may not include the water of hydration or the solvent molecules.
- a membrane is permeable to a species of a fluid if the species can traverse the membrane in the form in which it normally would be found in the fluid.
- Permeation and permeability may be affected by interaction between the species of a fluid and the membrane itself. While various theories may describe these interactions, the empirical measurement of pass/no-pass information relating to a nanofilm, membrane, or module is a useful tool to describe permeation properties.
- a membrane is impermeable to a species if the species cannot pass through the membrane.
- Pores may be provided in the nanofilms described herein, for example, pores may be supplied in the structure of the nanofilm. Pores may be supplied in the structure of the macrocyclic modules. Pores may in some cases be supplied from the packing of the macrocyclic modules and the polymeric components. The type and degree of crosslinking between components may influence pore size.
- the nanofilms described herein comprising one or more polymeric components may advantageously have reduced numbers of micrometer-sized or macroscopic openings which affect use in filtration and selective permeation.
- the nanofilms may have molecular weight species cut offs of, for example, greater than about 15 kDa, greater than about 10 kDa, greater than about 5 kDa, greater that about 1 kDa, greater than about 800 Da, greater than about 600 Da, greater than about 400 Da, greater than about 200 Da, greater than about 100 Da, greater than about 50 Da, greater than about 20 Da, less than about 15 kDa, less than about 10 kDa, less than about 5 kDa, less that about 1 kDa, less than about 800 Da, less than about 600 Da, less than about 400 Da, less than about 200 Da, less than about 100 Da, less than about 50 Da, less than about 20 Da, about 13 kDa, about 190 Da, about 100 Da, about 45 Da, about 20 Da.
- “High permeability” indicates a clearance of, for example, greater than about 70%, greater than about 80%, greater than about 90% of the solute.
- “Medium permeability” indicates a clearance of, for example, less than about 50%, less than about 60%, less than about 70% of the solute.
- “Low permeability” indicates a clearance of less than, for example, about 10%, less than about 20%, less than about 30% of the solute.
- a membrane is impermeable to a species if it has a very low clearance (for example, less than about 5%, less than about 3%) for the species, or if it has very high rejection for the species (for example, greater than about 95%, greater than about 98%).
- the passage or exclusion of a solute is measured by its clearance, which reflects the portion of solute that actually passes through the membrane.
- the no pass symbol in Tables 16-17 indicates that the solute is partly excluded by the module, sometimes less than 90% rejection, often at least 90% rejection, sometimes at least 98% rejection.
- the pass symbol indicates that the solute is partly cleared by the module, sometimes less than 90% clearance, often at least 90% clearance, sometimes at least 98% clearance.
- Examples of processes in which nanofilms may be useful include processes involving liquid or gas as a continuous fluid phase, filtration, clarification, fractionation, pervaporation, reverse osmosis, dialysis, hemodialysis, affinity separation, oxygenation, and other processes.
- Filtration applications may include ion separation, desalinization, gas separation, small molecule separation, separation of enantiomers, ultrafiltration, microfiltration, hyperfiltration, water purification, sewage treatment, removal of toxins, removal of biological species such as bacteria, viruses, or fungus.
- the term “synthon” refers to a molecule used to make a macrocyclic module.
- a synthon may be substantially one isomeric configuration, for example, a single enantiomer.
- a synthon may be substituted with functional groups which are used to couple a synthon to another synthon or synthons, and which are part of the synthon.
- a synthon may be substituted with an atom or group of atoms which are used to impart hydrophilic, lipophilic, or amphiphilic character to the synthon or to species made from the synthon.
- the synthon before being substituted with functional groups or groups used to impart hydrophilic, lipophilic, or amphiphilic character may be called the core synthon.
- the term “synthon” refers to a core synthon, and also refers to a synthon substituted with functional groups or groups used to impart hydrophilic, lipophilic, or amphiphilic character.
- cyclic synthon refers to a synthon having one or more ring structures.
- ring structures include aryl, heteroaryl, and cyclic hydrocarbon structures including bicyclic ring structures and multicyclic ring structures.
- core cyclic synthons include, but are not limited to, benzene, cyclohexadiene, cyclopentadiene, naphthalene, anthracene, phenylene, phenanthracene, pyrene, triphenylene, phenanthrene, pyridine, pyrimidine, pyridazine, biphenyl, bipyridyl, cyclohexane, cyclohexene, decalin, piperidine, pyrrolidine, morpholine, piperazine, pyrazolidine, quinuclidine, tetrahydropyran, dioxane, tetrahydrothiophene, tetrahydrofuran, pyrrole, cyclopentane, cyclopentene, triptycene, adamantane, bicyclo[2.2.1]heptane, bicyclo[2.2.1]heptene, bicyclo
- a core synthon comprises all isomers or arrangements of coupling the core synthon to other synthons.
- the core synthon benzene includes synthons such as 1,2- and 1,3-substituted benzenes, where the linkages between synthons are formed at the 1,2- and 1,3-positions of the benzene ring, respectively.
- the core synthon benzene includes 1,3-substituted synthons such as
- L is a linkage between synthons and the 2,4,5,6 positions of the benzene ring may also have substituents.
- a condensed linkage between synthons involves a direct coupling between a ring atom of one cyclic synthon to a ring atom of another cyclic synthon, for example, where synthons M—X and M—X couple to form M—M, where M is a cyclic synthon and X is halogen; as for example when M is phenyl resulting in the condensed linkage
- a macrocyclic module is a closed ring of coupled synthons.
- synthons may be substituted with functional groups to couple the synthons to form a macrocyclic module.
- Synthons may also be substituted with functional groups which will remain in the structure of the macrocyclic module.
- Functional groups which remain in the macrocyclic module may be used to couple the macrocyclic module to other macrocyclic modules or other components.
- a macrocyclic module may contain from three to about twenty-four cyclic synthons.
- a first cyclic synthon may be coupled to a second cyclic synthon
- the second cyclic synthon may be coupled to a third cyclic synthon
- the third cyclic synthon may be coupled to a fourth cyclic synthon, if four cyclic synthons are present in the macrocyclic module, the fourth to a fifth, and so on, until an nth cyclic synthon may be coupled to its predecessor, and the nth cyclic synthon may be coupled to the first cyclic synthon to form a closed ring of cyclic synthons.
- the closed ring of the macrocyclic module may be formed with a linker molecule.
- a macrocyclic module may be an amphiphilic macrocyclic module when hydrophilic and lipophilic functional groups exist in the structure.
- the amphiphilic character of a macrocyclic module may arise from atoms in the synthons, in the linkages between synthons, or in functional groups coupled to the synthons or linkages.
- one or more of the synthons of a macrocyclic module may be substituted with one or more lipophilic moieties, while one or more of the synthons may be substituted with one or more hydrophilic moieties, thereby forming an amphiphilic macrocyclic module.
- Lipophilic and hydrophilic moieties may be coupled to the same synthon or linkage in an amphiphilic macrocyclic module.
- Lipophilic and hydrophilic moieties may be coupled to the macrocyclic module before or after formation of the closed ring of the macrocyclic module.
- lipophilic or hydrophilic moieties may be added to the macrocyclic module after formation of the closed ring by substitution of a synthon or linkage.
- the amphiphilicity of a macrocyclic module may be characterized in part by its ability to form a stable Langmuir film.
- a Langmuir film may be formed on a Langmuir trough at a particular surface pressure measured in milliNewtons per meter (mN/m) with a particular barrier speed measured in millimeters per minute (mm/min), and the isobaric creep or change in film area at constant surface pressure can be measured to characterize stability of the film.
- mN/m milliNewtons per meter
- mm/min millimeters per minute
- a stable Langmuir film of macrocyclic modules on a water subphase may have an isobaric creep at 5-15 mN/m such that the majority of the film area is retained over a period of time of about one hour.
- Examples of stable Langmuir films of macrocyclic modules on a water subphase may have isobaric creep at 5-15 mN/m such that about 70% of the film area is retained over a period of time of about 30 minutes, sometimes about 70% of the film area is retained over a period of time of about 40 minutes, sometimes about 70% of the film area is retained over a period of time of about 60 minutes, and sometimes about 70% of the film area is retained over a period of time of about 120 minutes.
- stable Langmuir films of macrocyclic modules on a water subphase may have isobaric creep at 5-15 mN/m such that about 80% of the film area is retained over a period of time of about thirty minutes, sometimes about 85% of the film area is retained over a period of time of about thirty minutes, sometimes about 90% of the film area is retained over a period of time of about thirty minutes, sometimes about 95% of the film area is retained over a period of time of about thirty minutes, and sometimes about 98% of the film area is retained over a period of time of about thirty minutes.
- an individual macrocyclic module may include a pore in its structure.
- Each macrocyclic module may define a pore of a particular size, depending on the conformation and state of the module.
- Various macrocyclic modules may be prepared which define pores of different sizes.
- a macrocyclic module may have flexibility in its structure. Flexibility may permit a macrocyclic module to more easily form linkages with other macrocyclic modules and/or other components by coupling reactions. Flexibility of a macrocyclic module may also play a role in regulating passage of species through the pore of the macrocyclic module. For example, flexibility may affect the dimension of the pore of an individual macrocyclic module since various conformations may be available to the structure. For example, the macrocyclic module may have a certain pore dimension. in one conformation when no substituents are located at the pore, and the same macrocyclic module may have a different pore dimension in another conformnation when one or more substituents of that macrocycle are located at the pore.
- a macrocyclic module may have a certain pore dimension in one conformation when one group of substituents are located at the pore, and have a different pore dimension in a different conformation when a different group of substituents are located at the pore.
- the “one group” of substituents located at the pore may be three alkoxy groups arranged in one regioisomer, while the “different group” of substituents may be two alkoxy groups arranged in another regioisomer.
- the effect of the “one group” of substituents located at the pore and the “different group” of substituents located at the pore is to provide a macrocyclic module composition which may regulate transport and filtration, in conjunction with other regulating factors.
- the synthons may be used as a substantially pure single isomer, for example, as a pure single enantiomer.
- one or more coupling linkages are formed between adjacent synthons.
- the linkage formed between synthons may be the product of the coupling of one functional group on one synthon to a complementary functional group on a second synthon.
- a hydroxyl group of a first synthon may couple with an acid group or acid halide group of a second synthon to form an ester linkage between the two synthons.
- Another example is an imine linkage, —CH ⁇ N—, resulting from the reaction of an aldehyde, —CH ⁇ O, on one synthon with an amine, —NH 2 , on another synthon. Examples of suitable complementary functional groups and linkages between synthons are shown in Table 2, wherein “synthon” may substitute for “module”.
- the functional groups of synthons used to form linkages between synthons or other macrocyclic modules may be separated from the synthon by a spacer.
- a spacer can be any atom or group of atoms which couples the functional group to the synthon, and does not interfere with the linkage-formning reaction.
- a spacer is part of the functional group, and becomes part of the linkage between synthons.
- An example of a spacer is a methylene group, —CH 2 —.
- the spacer may be said to extend the linkage between synthons. For example, if one methylene spacer were inserted in an imine linkage, —CH ⁇ N—, the resulting imine linkage may be —CH 2 CH ⁇ N—.
- a linkage between synthons may also contain one or more atoms provided by an external moiety other than the two functional groups of the synthons.
- An external moiety may be a linker molecule which may couple with the functional group of one synthon to form an intermediate which couples with a finctional group on another synthon to form a linkage between the synthons, such as, for example, to form a closed ring of synthons from a series of coupled synthons.
- An example of a linker molecule is formaldehyde.
- amino groups on two synthons may undergo Mannich reaction in the presence of formaldehyde as the linker molecule to produce the linkage —NHCH 2 NH—. Examples of suitable functional groups and linker molecules are shown in Table 4, wherein “synthon” may substitute for “module.”
- a macrocyclic module may include functional groups for coupling the macrocyclic module to a solid surface, substrate, or support.
- functional groups of macrocyclic modules which can be used to couple to a substrate or surface include amine, carboxylic acid, carboxylic ester, benzophenone and other light activated crosslinkers, alcohol, glycol, vinyl, styryl, olefin styryl, epoxide, thiol, magnesium halo or Grignard, acrylate, acrylamide, diene, aldehyde, and mixtures thereof.
- These functional groups may be coupled to the closed ring of the macrocyclic module, and may optionally be attached by a spacer group.
- solid surfaces include metal surfaces, ceramic surfaces, polymer surfaces, semiconductor surfaces, silicon wafer surfaces, alumina surfaces, and so on.
- functional groups of macrocyclic modules which can be used to couple to a substrate or surface further include those described in the left hand column of Tables 2-4. Methods of initiating coupling of the modules to the substrate include chemical, thermal, photochemical, electrochemical, and irradiative methods.
- spacer groups include polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, and polysulfoxides.
- the macrocyclic module composition comprises: from three to about twenty-four cyclic synthons coupled to form a closed ring; at least two functional groups for coupling the closed ring to complementary functional groups on at least two other closed rings; wherein each functional group and each complementary functional group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
- the composition may comprise at least two closed rings coupled through said functional groups.
- the composition may comprise at least three closed rings coupled through said functional groups.
- the macrocyclic module composition comprises: from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; the closed ring having a first pore dimension in a first conformation when a first group of substituents is located at the pore and a second pore dimension in a second conformation when a second group of substituents is located at the pore; wherein each substituent of each group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
- the macrocyclic module composition comprises: (a) from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; (b) at least one functional group coupled to the closed ring at the pore and selected to transport a selected species through the pore, wherein the at least one functional group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; (c) a selected species to be transported through the pore.
- the selected species may, in one example, be selected from the group of ovalbumin, glucose, creatinine, H 2 PO 4 ⁇ , HPO 4 ⁇ 2 , HCO 3 ⁇ , urea, Na + , Li + , and K + .
- the cyclic synthons are each independently selected from the group consisting of benzene, cyclohexadiene, cyclohexene, cyclohexane, cyclopentadiene, cyclopentene, cyclopentane, cycloheptane, cycloheptene, cycloheptadiene, cycloheptatriene, cyclooctane, cyclooctene, cyclooctadiene, cyclooctatriene, cyclooctatetraene, naphthalene, anthracene, phenylene, phenanthracene, pyrene, triphenylene, phenanthrene, pyridine, pyrimidine, pyridazine, biphenyl, bipyridyl, decalin, piperidine, pyrrolidine, morpholine, piperazine, pyrazol
- each coupled cyclic synthon is independently coupled to two adjacent synthons by a linkage selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC ⁇ CH—, —NHC(O)NH—, —NHC(O)O—, —NHCH 2 NH—, —NHCH 2 CH(OH)CH 2 NH—, —N ⁇ CH(CH 2 ) p CH ⁇ N—, —CH 2 CH(OH)CH 2 —, —N ⁇ CH(CH 2
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein the linkage is independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein Q is one of the synthons connected by the linkage.
- a macrocyclic module may be a closed ring composition of the formula:
- the closed ring comprises a total of from three to twenty-four synthons Q; J is 2-23; Q 1 are synthons each independently selected from the group consisting of (a) aryl synthons, (b) heteroaryl synthons, (c) saturated cyclic hydrocarbon synthons, (d) unsaturated cyclic hydrocarbon synthons, (e) saturated bicyclic hydrocarbon synthons, (f) unsaturated bicyclic hydrocarbon synthons, (g) saturated multicyclic hydrocarbon synthons, and (h) unsaturated multicyclic hydrocarbon synthons; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; Q 2 is a synthon independently selected from the group consisting of (a) aryl synthons,
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein the linkages L are each independently configured with respect to the Q 1 and Q 2 synthons, each L having either of its two possible configurations with respect to the synthons it couples together, the forward and reverse configurations of the linkage with respect to the immediately adjacent synthons to which it couples, for example, Q 1 a —NHC(O)—Q 1 b and Q 1 a —C(O)NH—Q 1 b , if the two configurations are isomerically different structures.
- Synthons Q 1 when independently selected, may be any cyclic synthon as described, so that the J synthons Q 1 may be found in the closed ring in any order, for example, cyclohexyl--1,2-phenyl--piperidinyl--1,2-phenyl--1,2-phenyl--cyclohexyl, and so on, and the J linkages L may also be independently selected and configured in the closed ring.
- the macrocyclic modules represented and encompassed by the formula include all stereoisomers of the synthons involved, so that a wide variety of stereoisomers of the macrocyclic module are included for each closed ring composition of synthons.
- the macrocyclic module may comprise a closed ring composition of the formula:
- J is 2-23;
- Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,2-phenyl positions, (b) phenyl synthons coupled to linkages L at 1,3-phenyl positions, (c) aryl synthons other than phenyl synthons, (d) heteroaryl synthons other than pyridinium synthons, (e) saturated cyclic hydrocarbon synthons, (f) unsaturated cyclic hydrocarbon synthons, (g) saturated bicyclic hydrocarbon synthons, (h) unsaturated bicyclic hydrocarbon synthons, (i) saturated multicyclic hydrocarbon synthons, and (j) unsaturated multicyclic hydrocarbon synthons; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
- the macrocyclic module may comprise a closed ring composition of the formula:
- J is 2-23;
- Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,2-phenyl positions, (b) phenyl synthons coupled to linkages L at 1,3-phenyl positions, and (c) cyclohexane synthons coupled to linkages L at 1,2-cyclohexyl positions; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
- Q 2 is a cyclohexane synthon coupled to linkages L at 1,2-cyclohexyl positions; wherein ring positions of Q 2 which are not coupled to an L are independently substituted with hydrogen or a functional group containing atoms selected from the group consisting of C, H, N
- R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons, it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
- the macrocyclic module comprises a closed ring composition of the formula:
- J is 2-23;
- Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,4-phenyl positions, (b) aryl synthons other than phenyl synthons, (c) heteroaryl synthons, (d) saturated cyclic hydrocarbon synthons, (e) unsaturated cyclic hydrocarbon synthons, (f) saturated bicyclic hydrocarbon synthons, (g) unsaturated bicyclic hydrocarbon synthons, (h) saturated multicyclic hydrocarbon synthons, and (i) unsaturated multicyclic hydrocarbon synthons; wherein at least one of Q 1 is a phenyl synthon coupled to linkages L at 1,4-phenyl positions, and wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al,
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
- the functional groups are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- the macrocylic module may comprise a closed ring composition of the formula:
- J is from 1-22, and n is from 1-24;
- X and R n are each independently selected from the group consisting of hydrogen or a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
- Z are each independently hydrogen or a lipophilic group;
- L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —N ⁇ CR—, —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in eitherof two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- the macrocyclic module may comprise a closed ring composition of the formula:
- J is from 1-22, and n is from 1-48;
- X and R n are each independently selected from the group consisting of functional groups containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
- Z are each independently hydrogen or a lipophilic group;
- L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC ⁇ CH—
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- R are each independently selected from the group consisting of hydrogen and 1-6C alkyl; X is selected from the group consisting of Cl, Br, and I; r is 1-50; and s is 1-4.
- the macrocyclic module comprises the formula:
- J is from 1-11, and n is from 1-12;
- X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- R are each independently selected from thegroup consisting of hydrogen and 1-6C alkyl
- X is selected from the group consisting of Cl, Br, and 1
- r is 1-50
- s is 1-4
- Z are each independently hydrogen or a lipophilic group
- L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- the macrocyclic module has the formula:
- J is from 1-11, and n is from 1-12;
- X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
- X is selected from the group consisting of Cl, Br, and I
- r is 1-50
- s is 1-4
- Z are each independently hydrogen or a lipophilic group
- L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- the macrocyclic module comprises the formula:
- J is from 1-11, and n is from 1-12;
- X is —NX 1 — or —CX 2 X 3 , where X 1 is selected from the group consisting of an amino acid residue, —CH 2 C(O)CH 2 CH(NH 2 )CO 2 -alkyl, and —C(O)CH ⁇ CH 2 ;
- X 2 and X 3 are each independently selected from the group consisting of hydrogen, —OH, —NH 2 , —SH, —(CH 2 ) t OH, —(CH 2 ) t NH 2 and —(CH 2 ) t SH, wherein t is 1-4, and X 2 and X 3 are not both hydrogen;
- R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR
- R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
- X is selected from the group consisting of Cl, Br, and I
- r is 1-50
- s is 1-4
- Z are each independently hydrogen or a lipophilic group
- L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—,
- the macrocyclic module has the formula:
- J is from 1-11, and n is from 1-12;
- X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
- X is selected from the group consisting of Cl, Br, and I
- r is 1-50
- s is 1-4
- Z and Y are each independently hydrogen or a lipophilic group
- L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(CH(CH)
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- the macrocyclic module has the fonnula:
- J is from 1-11, and n is from 1-12;
- X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
- R are each independently selected from the group consisting of hydrogen and 1-6C alkyl;
- X is selected from the group consisting of Cl, Br, and I;
- r is 1-50; and
- s is 1-4;
- Z and Y are each independently hydrogen or a lipophilic group;
- L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH
- p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
- the nanofilm may be coupled to a solid support selected from the group of Wang resins, hydrogels, aluminas, metals, ceramics, polymers, silica gels, sepharose, sephadex, agarose, inorganic solids, semiconductors, and silicon wafers.
- the nanofilm retains at least 85% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m. In other embodiments, the nanofilm retains at least 95% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m. In another embodiment, the nanofilm retains at least 98% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m.
- a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) isolating the macrocyclic module composition.
- the method may further comprise contacting a linker molecule with the mixture in (a) or (b).
- a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) contacting a plurality of the first cyclic synthon with the mixture from (b).
- a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) contacting a plurality of a third cyclic synthon with the mixture from (b).
- the method may further comprise contacting a linker molecule with the mixture in (a) or (b) or (c).
- the method may further comprise supporting a cyclic synthon or coupled synthons on a solid phase.
- a method for making a macrocyclic module composition comprises: (a) contacting a plurality of cyclic synthons with a metal complex template; and (b) isolating the macrocyclic module composition.
- a method of preparing a composition for transporting a selected species through the composition comprises: selecting a first cyclic synthon, wherein the first cyclic synthon is substituted with at least one functional group comprising a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; selecting from two to about twenty-three additional cyclic synthons; incorporating the first cyclic synthon and the additional cyclic synthons into a macrocyclic module composition comprising: from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; wherein the at least one functional group of the first cyclic synthonhis located at the pore of the macrocyclic module composition and is selected to transport the selected species through the pore.
- An individual macrocyclic module may include a pore in its structure.
- the size of the pore may determine the size of molecules or other species which can pass through the macrocyclic module.
- the size of a pore in a macrocyclic module may depend on the structure of the synthons used to make the macrocyclic module, the linkages between synthons, the number of synthons in a module, the structure of any linker molecules used to make the macrocyclic module, and other structural features of the macrocyclic module whether inherent in the preparation of the macrocyclic module or added in later steps or modifications.
- Stereoisomerism of macrocyclic modules may also be used to regulate the size of a pore of a macrocyclic module by variation of the stereoisomer of each synthon used to prepare the closed ring of the macrocyclic module.
- the dimension of a pore in a macrocyclic module may be varied by changing the combination of synthons used to form the macrocyclic module, or by varying the number of synthons in the closed ring.
- the dimension of a pore may also be varied by substituents on the synthons or linkages. The pore may therefore be made large enough or small enough to achieve an effect on transport of species through the pore.
- Species which may be transported through the pore of a macrocyclic module include atoms, molecules, biomolecules, ions, charged particles, and photons.
- the size of a species may not be the sole determinant of whether it will be able to pass through a pore of a macrocyclic module.
- Groups or moieties located in or near the pore structure of a macrocyclic module may regulate or affect transport of a species through the pore by various mechanisms.
- transport of a species through the pore may be affected by groups of the macrocyclic module which interact with the species, by ionic or other interaction, such as chelating groups, or by complexing the species.
- a charged group such as a carboxylate anion or ammonium group may couple an oppositely-charged species and affect its transport.
- Substituents of synthons in a macrocyclic module may affect the passage of a species through the pore of the macrocyclic module.
- Groups of atoms which render the pore of a macrocyclic module more or less hydrophilic or lipophilic may affect transport of a species through the pore.
- An atom or group of atoms may be located within or proximate to a pore to sterically slow or block the passage of a species through the pore.
- hydroxyl or alkoxy groups may be coupled to a cyclic synthon and located in the pore of the structure of the macrocyclic module, or may be coupled to a linkage between synthons and located in the pore.
- a wide range of functional groups may be used to sterically slow or block the passage of a species through the pore, including functional groups containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
- Blocking and slowing passage of a species through the pore may involve reducing the dimension of the pore by steric blocking, as well as slowing the passage of species by creating a path through the pore which is not linear, and providing interaction between the functional group and the species to slow transport.
- the stereochemical structure of the portion of the macrocyclic module which defines the pore and its interior may also affect transport.
- Any groups or moieties which affect transport of a species through the pore of a macrocyclic module may be introduced as part of the synthons used to prepare the macrocyclic module, or may be added later by various means.
- S7-1 could be reacted with ClC(O)(CH 2 ) 2 C(O)OCH 2 CH 3 to convert the phenol groups to succinyl ester groups.
- molecular dynamical motion of the synthons and linkages of a partly flexible macrocyclic module may affect transport of a species through the pore of the module.
- Transport behavior may not be described solely by the structure of the macrocyclic module itself since the presence of the species which is to be transported through the pore affects the flexibility, conformation, and dynamical motions of a macrocyclic module.
- solvent may also affect transport of solutes through a pore.
- Reagents were obtained from Aldrich Chemical Company and VWR Scientific Products.
- the Langmuir trough used was a KSV minitrough (KSV Instruments, Trumbull, Conn.).
- Interfacial rheometry was performed using a CIR-100 Interfacial Rheometer (Rheometric Scientific, Piscataway N.J.) with a KSV Langmuir two-barrier rheology microtrough having a width of 85 mm (KSV Instruments, Trumbull, Conn.). Rates of surface compression are reported as the linear rate of barrier movement.
- Atomic force microscopy (AFM) images were obtained with a PicoSPM (Molecular Imaging, Pheonix Ariz.). Contact Mode images were typically recorded under flowing nitrogen with an Si point probe tip.
- Imaging ellipsometry revealed an APTES coating on the substrate having a thickness of 0.94 nm.
- the thickness of the uncured nanofilm itself was 1.1 nm.
- a smooth, physically homogeneous, continuous and unbroken nanofilm was deposited. After heating, the thickness of the coating and cured nanofilm was 1.57 nm, illustrated on the left in FIG. 1C, while the APTES coating of the substrate, illustrated on the right in FIG. 1C, was 0.53 nm.
- the thickness of the nanofilm itself was virtually unchanged at 1.0 nm.
- the thickness of the nanofilm itself was virtually unchanged at 0.9 nm, 1.0 nm, and 1.0 nm, respectively.
- ellipsometric measurements determined that the loss of nanofilm material from the substrate upon sonication was minimal.
- a nanofilm thickness of 1.1 nm was measured by ellipsometry before curing the nanofilm, and 0.9-1.0 nm after curing.
- a smooth, physically homogeneous, continuous and unbroken nanofilm was deposited. After sonication in CHCl 3 at room temperature a nanofilm thickness of 0.7-0.9 nm was measured by ellipsometry.
- G′′ typically exceeds G′ in the viscous nanofilm.
- the data in Table 10 indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of polymeric component PMAOD of about 5% into the nanofilm reduced the moduli of thle nanofilm by more than 50%.
- the polymeric component makes the nanofilm more flexible and less brittle.
- the data in Table 10 indicate that for a nanofilm having an area fraction of polymeric component PMAOD of about 5%, the surface loss modulus of the nanofilm at a surface pressure from 5-30 mN/m is less than about 50% of the surface loss modulus of the same nanofilm composition made without the polymeric components.
- FIG. 3A Surface rheology of a sample of nanofilm of Hexamer 1dh and DEM having polymeric component PMAOD is shown in FIG. 3A.
- Nanofilms used in FIG. 3A were prepared with a 2.0 mg/ml DEM subphase.
- the dashed line curves in FIG. 3A were obtained with a subphase heated to 33° C., while the solid line curves were obtained with a subphase at room temperature 22° C.
- the data in FIG. 3A indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of PMAOD of about 20% into the nanofilm reduced the loss modulus (G′′) of the nanofilm by about one-half at 10 mN/m surface pressure.
- the data in FIG. 3A also indicate that the modulus of the nanofilm is generally higher for the higher subphase temperature.
- FIGS. 3 B-D Surface rheology of a sample of nanofilm of Hexamer 1dh and DEM having polymeric component PMAOD is shown in FIGS. 3 B-D.
- Nanofilms used in FIGS. 3 B-D were prepared with a 2.0 mg/ml DEM subphase at room temperature.
- the data in FIGS. 3 B-D indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of polymeric component PMAOD of about 5% into the nanofilm reduced the storage and loss moduli of the nanofilm by more than one-half at 20 mN/m surface pressure or greater.
- Hexamer 1dh, PMAOD and DEM on polycarbonate track etch membrane PCTE: A nanofilm of Hexamer 1dh, PMAOD, and DEM can be made to span the pores of a 0.01 ⁇ m PCTE. A solution of Hexamer 1dh and PMAOD having 0.1 mole fraction hexamer: 0.9 mole fraction PMAOD was spread onto a subphase of 0.5 mg/ml DEM. One layer of the resulting nanofilm was deposited by vertical dip at 2 mm/min at a surface pressure of 12 mN/m and deposition rate 1 mm/min onto a PCTE having holes of 10 nm diameter. The sample was not heated. The PCTE substrates were not plasma treated, and the attachment of the nanofilm to the PCTE was not necessarily by covalent binding, but may have been by weaker types of binding or coupling.
- FIG. 4A shows an area in the center of the nanofilm in which no holes in the nanofilm were visible.
- FIG. 4B shows an area far from the edge of the nanofilm in which no holes in the nanofilm were visible.
- FIG. 4C shows an area next to that in FIG. 4D which was near the edge of the nanofilm and in which a few holes of various sizes may have been visible in the nanofilm.
- FIG. 4D is shown an area near the edge of the nanofilm in which a few holes of various sizes may have been visible in the nanofilm.
- the holes observed in the nanofilm in FIGS. 4 A- 4 D may have been as large as 30 nm in diameter.
- FIG. 5A the scanning electron micrograph of a PCTE substrate having holes of 10 nm diameter
- FIG. 5B illustrates the scanning electron micrograph of the same PCTE substrate after plasma treatment
- FIG. 5B illustrates that the holes may be widened as compared to the PCTE substrate used in FIG. 5A.
- the ratio of the areas of the peak appearing at 1450 cm ⁇ 1 to the peak at 1737 cm ⁇ 1 was about 3:1.
- the ratio for the same peaks observed in FIG. 8 was less than one, and indicated ester or amide formation because of the increase in absorbance in the carbonyl region. This indicated coupling of the module via the phenol and secondary amine groups to the PMAOD polymer.
- FIG. 10 The FTIR-ATR spectrum of CHCl 3 rinsings from a nanofilm made from Hexamer 1dh and PMAOD deposited on a SiO 2 substrate from a pH 9 DEM subphase is shown in FIG. 10.
- the carbonyl region resembles that in FIG. 8, which would be expected as the DEM can react with the amine functionality of the hexamer to form amide cross-links.
- ester formation is possible between PMAOD and the hexamer. This indicated coupling between the module and the polymer, and between the module and the cross-linker.
- FIG. 11 Contact Mode AFM images of plasma treated PCTE are shown in FIG. 11. The surface of this substrate was partially smoothed using the AFM tip, as shown in the bottom panel of FIG. 11.
- a nanofilm of 0.8:0.2 mole fraction Hexamer 1dh:PMAOD which were pre-mixed in solution was prepared, and deposited by vertical dip onto APTES coated SiO 2 substrate.
- the nanofilm was cured at 70° C. under N 2 for 15 hours.
- the Contact Mode AFM images of the nanofilm obtained under flowing N 2 are shown in FIG. 12 A.
- the top panels show the images of a continuous nanofilm, while the bottom panels show the images of the same nanofilm after a piece of the nanofilm about 250 nm 2 in area was removed by scraping with the AFM tip.
- the thickness of the film observed at the edge of the hole created by the tip was 2-3 mm.
- a second nanofilm of the same composition was cured at 70° C.
- FIG. 12B The Contact Mode AFM images of the second nanofilm obtained under flowing N 2 are shown in FIG. 12B.
- the top panels show the images of a continuous nanofilm
- the bottom panels show the images of the same nanofilm after an attempt to scrape away a piece of the nanofilm with the AFM tip.
- the nanofilm could not be scraped away, showing that the longer-cured nanofilm was more strongly attached to the substrate by annealing.
- FIG. 13 The Contact Mode AFM image of a nanofilm made from Hexamer 1dh and PMAOD and DEM, having 0.10 mole fraction of Hexamer 1dh:0.90 mole fraction PMAOD is shown in FIG. 13.
- the nanofilm was deposited by vertical dip onto PCTE having a random array of holes 0.01 ⁇ m in diameter. A depression in the nanofilm made with the AFM tip is clearly visible.
- a nanofilm was made from an amphiphile, octadecylamine (ODA), and an amphiphilic polymer, polymethylmethacrylate (PMMA) (Polysciences, Warrington Pa., MW 100,000, polydispersity 1.1), from a chloroform solution of the two components heated to 55° C. for 18 hours, then spread at the liquid-air interface of a 100 mM NaH 2 PO 4 buffer (pH 7.3) at room temperature.
- Isotherms of this nanofilm and its components made with a 1:1 mixture of ODA:PMMA, illustrated in FIG. 14, showed that the isotherms of ODA and PMMA each retained substantially the same shape in the nanofilm.
- the isotherms of FIG. 14 indicate that ODA and PMMA were immiscible in the nanofilm.
- a nanofilm was made from an amphiphile, ODA, and an amphiphilic polymer, PMAOD, by spreading a 1:1 molar ratio of ODA:PMAOD in chloroform at the liquid-air interface.
- the isotherm of this nanofilm, illustrated in FIG. 15, exhibited a different shape than either of the components alone, and a much higher mean molecular area than either of the components alone.
- the isotherm of FIG. 15 indicates that ODA and PMAOD were miscible in the nanofilm.
- a solution of Hexamer 1dh and PMMA was spread at the liquid-air interface over a water subphase to form a nanofilm having 0.6 area fraction Hexamer 1dh.
- One layer of the resulting nanofilm was deposited by vertical dip at a surface pressure of 20 mN/m onto an APTES coated silicon substrate.
- the Contact Mode AFM image of the deposited nanofilm is shown in FIG. 16 and illustrates a phase separated nanofilm composition, which confirms that the Hexamer 1dh/PMMA mixture is immiscible.
- the height of the continuous phase was about 1 nm above the discontinuous phase.
- a solution of Hexamer 1dh and PMAOD was spread at the liquid-air interface over a water subphase containing 2 mg/ml DEM to form a nanofilm.
- Surface rheology of this nanofilm is shown in FIG. 17. Referring to FIG. 17, storage and loss surface moduli of the nanofilm are illustrated over time as the temperature of the subphase was raised. T bath indicates the temperature of the surrounding circulation bath, and T° C. indicates the temperature of the subphase.
- one method to approximate pore size of a macrocyclic module is quantum mechanical (QM) and molecular mechanical (MM) computations.
- QM quantum mechanical
- MM molecular mechanical
- the root mean square deviations in the pore areas were computed over dynamic runs.
- each module was first optimized using the MM+ force field approach of Allinger (JACS, 1977, 99:8127) and Burkert, et al., (Molecular Mechanics, ACS Monograph 177, 1982). They were then re-optimized using the AM1 Hamiltonian (Dewar, et al., JACS, 1985, 107:3903; Dewar, et al., JACS, 1986, 108:8075; Stewart, J. Comp. Aided Mol. Design, 1990, 4:1). To verify the nature of the potential energy surface in the vicinity of the optimized structures, the associated Hessian matrices were computed using numerical double-differencing.
- Macrocyclic module pore areas derived from QM and MM computations for various linkages and macrocyclic module pore size are shown in Table 12.
- the macrocyclic modules had alternating synthons “A” and “B.”
- Synthon “A” is a benzene synthon coupled to linkages L at 1,3-phenyl positions, and Synthon “B” is shown in the left-hand column of the table.
- FIGS. 19A and 19B An example of the energy-minimized conformations of some hexamer macrocyclic modules having groups of substituents are shown in FIGS. 19A and 19B.
- a Hexamer 1-h-(OH) 3 is shown having a group of —OH substituents.
- FIG. 19B a Hexamer 1-h-(OEt) 3 is shown having a group of —OEt substituents.
- This macrocyclic module results in a composition which may be used to regulate pores. Selection of ethoxy synthon substituents over hydroxy synthon substituents for this hexamer composition is a method which may be used for transporting selected species.
- the pore size of macrocyclic modules was determined experimentally using a voltage-clamped bilayer procedure.
- a quantity of a macrocyclic module was inserted into a lipid bilayer formed by phosphatidylcholine and phosphatidylethanolamine.
- On one side of the bilayer was placed a solution containing the cationic species to be tested.
- On the other side was a solution containing a reference cationic species known to be able to pass through the pore of the macrocyclic module.
- Anions required for charge balance were selected which could not pass through the pores of the macrocyclic module.
- a hexameric macrocyclic module comprised of 1R,2R-( ⁇ )-transdiaminocyclohexane and 2,6-diformal-4-(1-dodec-1-ynyl)phenol synthons, having imine groups as the linkages (the first module in Table 1) was tested for transport of various ionic species. The results are shown in Table 14. TABLE 14 Voltage-clamped bilayer test for macrocyclic module pore size Calculated Calculated van der van der Waals Waals Does ionic radius of radius of ionic species ionic species with one pass through Ionic species species ( ⁇ ) water shell ( ⁇ ) pore?
- CH 3 NH 3 + having a radius of 2.0 ⁇ , passed through the pore while CH 3 CH 2 NH 3 + , with a radius of 2.6 ⁇ , did not.
- the observed ability of hydrated ions to pass through the pore may be due to partial dehydration of the species to enter the pore, transport of water molecules and ions through the pore separately or with reduced interaction during transport, and recoordination of water molecules and ions after transport.
- the details of pore structure, composition, and chemistry, the flexibility of the macrocyclic module, and other interactions may affect the transport process.
- the filtration function of a membrane may be described in terms of its solute rejection profile.
- the filtration function of some nanofilm membranes is exemplified in Tables 16-17.
- TABLE 16 Example filtration function of a G-membrane MOLECULAR SOLUTE WEIGHT PASS/NO PASS Albumin 68 kDa NP Ovalbumin 44 kDa P Myoglobin 17 kDa P ⁇ 2 -Microglobulin 12 kDa P Insulin 5.2 kDa P Vitamin B 12 1350 Da P Urea, H 2 O, ions ⁇ 1000 Da P
- the passage or exclusion of a solute is measured by its clearance, which reflects the portion of solute that actually passes through the membrane.
- the no pass symbol in Tables 16-17 indicates that the solute is partly excluded by the nanofilm, sometimes less than 90% rejection, often at least 90% rejection, sometimes at least 98% rejection.
- the pass symbol indicates that the solute is partly cleared by the nanofilm, sometimes less than 90% clearance, often at least 90% clearance, sometimes at least 98% clearance.
- stereospecific or at least stereoselective coupling reactions may be employed in the preparation of the synthons of this invention.
- the following are examples of synthetic schemes for severa classes of synthons useful in the preparation of macrocyclic modules of this invention. In general, the core synthons are illustrated, and lipophilic moieties are not shown on the structures, however, it is understood that all of the following synthetic schemes might encompass additional lipophilic or hydrophilic moieties used to prepare amphiphilic and other modified macrocyclic modules. Species are numbered in relation to the scheme in which they appear; for example, “S1-1” refers to the structure 1 in Scheme 1.
- symmetrical diester S1-1 is used to give enantiomerically pure S1-2.
- S1-2 is subjected to the Curtius reaction and then quenched with benzyl alcohol to give protected amino acid S1-3.
- lodolactonization of carboxylic acid S1-4 followed by dehyrohalogenation gives unsaturated lactone S1-6.
- Opening of the lactone ring with sodium methoxide gives alcohol S1-7, which is converted with inversion of configuration to S1-8 in a one-pot reaction involving mesylation, SN 2 displacement with azide, reduction and protection of the resulting amine with di-tert-butyl dicarbonate.
- S1-10 Epimerization of S1-8 to the more stable diequatorial configuration followed by saponification gives carboxylic acid S1-10.
- S1-10 is subjected to the Curtius reaction.
- a mixed anhydride is prepared using ethyl chlorofornate followed by reaction with aqueous NaN 3 to give the acyl azide, which is thermally rearranged to the isocyanate in refluxing benzene.
- the isocyanate is quenched with 2-trimethylsilylethanol to give differentially protected tricarbamate S1-11.
- Reaction with trifluoroacetic acid (TFA) selectively deprotects the 1,3-diamino groups to provide the desired synthon S1-12.
- TFA trifluoroacetic acid
- Norbomanes bicycloheptanes
- stereochemically controlled multifunctionalization of norbomanes can be achieved.
- Diels-Alder cycloaddition may be used to form norbornanes incorporating various functional groups having specific, predictable stereochemistry.
- Enantiomerically enhanced products may also be obtained through the use of appropriate reagents, thus limiting the need for chiral separations.
- Synthons may be coupled to one another to form macrocyclic modules.
- the coupling of synthons may be accomplished in a concerted scheme.
- Preparation of a macrocyclic module by the concerted route may be performed using, for example, at least two types of synthons, each type having at least two functional groups for coupling to other synthons.
- the functional groups may be selected so that a functional group of one type of synthon can couple only to a functional group of the other type of synthon.
- a macrocyclic module may be formed having alternating synthons of different types.
- Scheme 7 illustrates a concerted module synthesis.
- a mixture of tetramer, hexamer, and octamer macrocyclic modules may be formed in the concerted scheme.
- the yields of these macrocyclic modules can be varied by changing the concentration of various synthons in the reagent mixture, and among other factors, by changing the solvent, temperature, and reaction time.
- the imine groups of S7-3 can be reduced, e.g. with sodium borohydride, to give amine linkages. If the reaction is carried out using 2,6-di(chlorocarbonyl)-4-dodec-1-ynylphenol instead of 2,6-diformyl-4-dodec-1-ynylphenol, the resulting module will contain amide linkages. Similarly, if 1,2-dihydroxycyclohexane is reacted with 2,6-di(chlorocarbonyl)-4-dodec-1-ynylphenol, the resulting module will contain ester linkages.
- the coupling of synthons may be accomplished in a stepwise scheme.
- a first type of synthon is substituted with one protected functional group and one unprotected functional group.
- a second type of synthon is substituted with an unprotected functional group that will couple with the unprotected functional group on the first synthon.
- the product of contacting the first type of synthon with the second type of synthon may be a dimer, which is made of two coupled synthons.
- the second synthon may also be substituted with another functional group which is either protected, or which does not couple with the first synthon when the dimer is formed.
- the dimer may be isolated and purified, or the preparation may proceed as a one-pot method.
- the dimer may be contacted with a third synthon having two functional groups, only one of which may couple with the remaining functional group of either the first or second synthons to form a trimer, which is made of three coupled synthons.
- Such stepwise coupling of synthons may be repeated to form macrocyclic modules of various ring sizes.
- the n th synthon which was coupled to the product may be substituted with a second functional group which may couple with the second functional group of a previously coupled synthon that has not been coupled, which may be deprotected for that step.
- the stepwise method may be carried out with synthons on solid phase support.
- Scheme 8 illustrates a stepwise preparation of module SC8-1.
- Deprotection/coupling is repeated, alternating synthons S8-3 and S8-6 until a linear construct with eight residues is obtained.
- the remaining acid and amine protecting groups on the 8-mer are removed and the oligomer is cyclized, see e.g., Caba, J. M., et al., J. Org. Chem ., 2001, 66:7568 (PyAOP cyclization) and Tarver, J. E. et al., J. Org. Chem ., 2001, 66:7575 (active ester cyclization).
- the R group is H or an alkyl group linked via a functional group to the benzene ring, and X is N, O, or S.
- solid supports examples include Wang resin, hydrogels, silica gels, sepharose, sephadex, agarose, and inorganic solids. Using a solid support might simplify the procedure by obviating purification of intermediates along the way. The final cyclization may be done in a solid phase mode.
- a “safety-catch linker” approach (Bourne, G. T., et al., J. Org. Chem ., 2001, 66:7706) may be used to obtain cyclization and resin cleavage in a single operation.
- a concerted method involves contacting two or more different synthons and a linker molecule as shown in Scheme 9, where R may be an alkyl group or other lipophilic group.
- a stepwise linear method involves various synthons and a soil phase support as shown in Scheme 10.
- a stepwise convergent method involves synthon trimers and a solid phase support as shown in Scheme 11. This method can also be done without the solid phase support using trimers in solution.
- a template method involves synthons brought together by a template as shown in Scheme 12.
- a linker molecule method involves cyclizing synthons in solution as shown in Scheme 13.
- S1-1 (15.0 g, 75.7 mmol) was suspended in pH 7 phosphate buffer (950 mL). Pig liver esterase (2909 units) was added, and the mixture stirred at ambient temperature for 72 h with the pH maintained at 7 by addition of 2M NaOH. The reaction mixture was washed with ethyl acetate (200 mL), acidified to pH 2 with 2M HCl, and extracted with ethyl acetate (3 ⁇ 200 mL). The extracts were combined, dried, and evaporated to afford 13.8 g (99%) of S1-2.
- S1-11 (2.5 g, 4.9 mmol) was added to TFA (10 mL) and the solution stirred at ambient temperature for 16 h after which the solution was evaporated. The residue was dissolved in water (20 mL), basified to pH 14 with KOH and extracted with dichloromethane (3 ⁇ 50 mL). The extracts were combined, washed with water (20 mL), dried and evaporated to give 1.1 g (85%) of S1-12.
- the mixture was stirred at room temperature and work-up initiated when the starting material S1b-1 was completely consumed (Using a solvent system of 66% EtOAc/33% Hexane and developing with phosphomolybdic acid reagent (Aldrich #31,927-9) the starting material S1b-1 has an Rf of 0.88 and the product streaks with an Rf of approx. 0.34 to 0.64.).
- the reaction usually takes 2 days.
- Work-Up The THF was removed by vacuum transfer until about the same volume is left as water added to the reaction, in this case 50 mL. During this the reaction solution forms a white mass that adheres to the stir bar surrounded by clear yellow solution.
- a separatory funnel is set up including a funnel to pour in the reaction solution and an Erlenmeyer flask is placed underneath the separatory funnel. Into the Erlenmeyer flask is added some anhydrous Na 2 SO 4 .
- This apparatus should be set up before acidification is started. (It is important to set up the separatory funnel and Erlenmeyer flask etc. before acidification of the reaction solution to enable separation of phases and extraction of the product away from the acid quickly once the solution attains a pH close to 1.
- the stopcock is turned to release the CH 2 Cl 2 phase (bottom) into the Erlenmeyer flask and swirl the flask to allow the drying agent to absorb water in the solution.
- 80 mL of 1N HCl was used.
- the aqueous phase is extracted with CH 2 Cl 2 (2 ⁇ 100 mL), dried over anhydrous Na 2 SO 4 and the volatiles removed to produce 5.37 g/9.91 mmoles of a beautiful white microcrystals reflecting a 99.1% yield.
- This product can not be purified by chromatography since that process would also hydrolyze the Boc functional group on the column.
- S4-29 (0.220 g, 0.00050 mol) was added to a mixture of tetrahydrofuran (1.5 mL), water (0.5 mL), and methanol (0.5 mL). Potassium hydroxide (0.036 g, 0.00065 mol) was added and the solution stirred at room temperature overnight. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (10% ethyl acetate/hexanes) to give S4-30 (0.050 g, 0.00012 mol, 23% yield).
- Mass Spec calculated for C 26 H 34 O 5 426.24; found 425.4 (M ⁇ 1) and 851.3 (2M ⁇ 1).
- reaction S5-40 is converted to the corresponding mesylate with methanesulfonyl chloride, sodium azide added to displace the mesylate to give exo-azide, which is followed by reduction with tributyl phosphine to give the free amine, which is protected as the t-Boc derivative to give S5-41.
- the benzyl ether protecting group is removed by catalytic hydrogenolysis of S5-41 with 10% Pd/C in methanol at room temperature for 6 hours. Filtration of the catalyst and removal of the solvent yields crude S5-42.
- S6-50 formic acid, and a catalytic amount of p-toluenesulfonic acid is heated at 90° C. overnight. Acetic anhydride is added to the reaction mixture, and it is refluxed for an additional 6 hours. Removal of the solvents and washing with ether affords S6-51.
- Hexamer 1jh To a 100 mL pear-shaped flask with magnetic stirbar under argon, Hexamer 1j (0.387 mmol, 0.594 g) was added and dissolved in THF:MeOH (7:3, 28:12 mL, respectively). Next, NaBH 4 (2.32 mmol, 0.088 g) was added slowly in portions at room temperature for 6.5 h. The solvent was removed by roto-evaporation, the residue dissolved in 125 mL ethyl acetate and washed 3 ⁇ 50 mL of H 2 O. The organic layer was separated, dried over Na 2 SO 4 and the solvent removed by roto-evaporation.
- FIGS. 20A and 20B The Langmuir isotherm and isobaric creep for hexamer 1a-Me are shown in FIGS. 20A and 20B, respectively.
- the relative stability of the Langmuir film of Hexamer 1a-Me is illustrated by the isobaric creep data shown in FIG. 20B.
- the area of the film decreased by about 30% after about 30 min at 5 mN/m surface pressure.
- the Langmuir isotherm and isobaric creep for Hexamer 1a-C15 are shown in FIGS. 21A and 21B, respectively.
- the relative stability of the Langmuir film of Hexamer 1a-C15 is illustrated by the isobaric creep data shown in FIG. 21B.
- the area of the film decreased by about 1-2% after about 30 min at 10 mN/m surface pressure, and by about 2% after about 60 min.
- the collapse pressure was about 18 mN/m for Hexamer 1a-C15.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/426,475 US20040106741A1 (en) | 2002-09-17 | 2003-04-29 | Nanofilm compositions with polymeric components |
PCT/US2003/027749 WO2005018013A2 (en) | 2002-09-17 | 2003-09-05 | Nanofilm compositions with polymeric components |
EP03816729A EP1573833A4 (en) | 2002-09-17 | 2003-09-05 | NANOFILM COMPOSITIONS WITH POLYMERIC COMPONENTS |
AU2003304453A AU2003304453B2 (en) | 2002-09-17 | 2003-09-05 | Nanofilm compositions with polymeric components |
JP2005507914A JP2006512472A (ja) | 2002-09-17 | 2003-09-05 | ポリマー成分を有するナノフィルム組成物 |
KR1020057004632A KR20060056266A (ko) | 2002-09-17 | 2003-09-05 | 폴리머 성분을 갖는 나노필름 조성물 |
US11/202,322 US7595368B2 (en) | 2002-09-17 | 2005-08-10 | Nanofilm compositions with polymeric components |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41158802P | 2002-09-17 | 2002-09-17 | |
US10/426,475 US20040106741A1 (en) | 2002-09-17 | 2003-04-29 | Nanofilm compositions with polymeric components |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/202,322 Continuation US7595368B2 (en) | 2002-09-17 | 2005-08-10 | Nanofilm compositions with polymeric components |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040106741A1 true US20040106741A1 (en) | 2004-06-03 |
Family
ID=32396975
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/426,475 Abandoned US20040106741A1 (en) | 2002-09-17 | 2003-04-29 | Nanofilm compositions with polymeric components |
US11/202,322 Expired - Fee Related US7595368B2 (en) | 2002-09-17 | 2005-08-10 | Nanofilm compositions with polymeric components |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/202,322 Expired - Fee Related US7595368B2 (en) | 2002-09-17 | 2005-08-10 | Nanofilm compositions with polymeric components |
Country Status (6)
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030199688A1 (en) * | 2002-02-07 | 2003-10-23 | Josh Kriesel | Macrocyclic module compositions |
US20040126659A1 (en) * | 2002-09-10 | 2004-07-01 | Graetz Jason A. | High-capacity nanostructured silicon and lithium alloys thereof |
US20040260085A1 (en) * | 2002-02-07 | 2004-12-23 | Kriesel Joshua W. | Nanofilm and membrane compositions |
US20060041077A1 (en) * | 2002-09-17 | 2006-02-23 | Covalent Partners Llc | Nanofilm compositions with polymeric components |
US20060063854A1 (en) * | 2004-06-15 | 2006-03-23 | Xiaoming Jin | Low shrinkage and low stress dental compositions |
US20060128680A1 (en) * | 2002-02-07 | 2006-06-15 | Josh Kriesel | Macrocyclic module compositions |
US20060127929A1 (en) * | 2004-09-17 | 2006-06-15 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US20060287459A1 (en) * | 2004-06-15 | 2006-12-21 | Xiaoming Jin | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US20070117954A1 (en) * | 2005-11-22 | 2007-05-24 | Massachusetts Institute Of Technology | High internal free volume compositions for low-k dielectric and other applications |
WO2007102980A1 (en) * | 2006-03-08 | 2007-09-13 | 3M Innovative Properties Company | Polymer composites |
US20080085566A1 (en) * | 2006-10-05 | 2008-04-10 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US20080290034A1 (en) * | 2003-08-06 | 2008-11-27 | Covalent Partners Llc | Bridged macrocyclic module compositions |
US20090247856A1 (en) * | 2008-03-28 | 2009-10-01 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US20090246887A1 (en) * | 2005-01-07 | 2009-10-01 | Academia Sinica | Diamond Crystallites For Biotechnological Applications |
US20100157286A1 (en) * | 2006-08-04 | 2010-06-24 | University Of Memphis Research Foundation | Nanothin polymer films with selective pores and method of use thereof |
US20100190059A1 (en) * | 2004-04-22 | 2010-07-29 | Graetz Jason A | High-capacity nanostructured germanium-containing materials and lithium alloys thereof |
US7792562B2 (en) | 1997-03-04 | 2010-09-07 | Dexcom, Inc. | Device and method for determining analyte levels |
US7828728B2 (en) | 2003-07-25 | 2010-11-09 | Dexcom, Inc. | Analyte sensor |
US20110027491A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20110027497A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US7885697B2 (en) | 2004-07-13 | 2011-02-08 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8255033B2 (en) | 2003-07-25 | 2012-08-28 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8277713B2 (en) | 2004-05-03 | 2012-10-02 | Dexcom, Inc. | Implantable analyte sensor |
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8367001B2 (en) | 1998-05-05 | 2013-02-05 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US8465678B2 (en) | 1998-05-05 | 2013-06-18 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US8509871B2 (en) | 2001-07-27 | 2013-08-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US8560039B2 (en) | 2008-09-19 | 2013-10-15 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US20130295398A1 (en) * | 2010-10-14 | 2013-11-07 | Lg Chem, Ltd. | Resin blend for melting process |
US8583204B2 (en) | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8744546B2 (en) | 2005-05-05 | 2014-06-03 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US9429522B2 (en) | 2006-10-27 | 2016-08-30 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
US9439589B2 (en) | 1997-03-04 | 2016-09-13 | Dexcom, Inc. | Device and method for determining analyte levels |
US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
US10305052B2 (en) | 2014-07-15 | 2019-05-28 | Japan Science And Technology Agency | Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method |
CN109942731A (zh) * | 2019-04-08 | 2019-06-28 | 武汉轻工大学 | 一种纳米金/聚甲基丙烯酸甲酯导电材料的制备方法 |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
CN111712317A (zh) * | 2018-05-10 | 2020-09-25 | 株式会社Lg化学 | 反渗透膜、其制造方法及水处理模块 |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
CN113509848A (zh) * | 2021-04-27 | 2021-10-19 | 北京工业大学 | 一种基于液-液界面制备聚醚嵌段酰胺渗透汽化复合膜的方法 |
CN113522037A (zh) * | 2021-07-21 | 2021-10-22 | 江苏盈天化学有限公司 | 一种渗透汽化四氢呋喃脱水复合膜的制备方法 |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7829155B1 (en) | 2006-11-22 | 2010-11-09 | The University Of Memphis Research Foundation | Nanothin polymer coatings containing thiol and methods of use thereof |
TWI398353B (zh) * | 2009-03-02 | 2013-06-11 | Ind Tech Res Inst | 奈米纖維材料與脫鹽過濾材料 |
US8273306B2 (en) * | 2009-07-15 | 2012-09-25 | Kimberly-Clark Worldwide, Inc. | Color-changing materials and multiple component materials having a color-changing composition |
EP2756167B1 (en) * | 2011-09-12 | 2018-01-17 | Saudi Arabian Oil Company | Nanostructured fluid sampling device |
JP6551641B2 (ja) * | 2014-05-21 | 2019-07-31 | 凸版印刷株式会社 | 構造体および構造体の製造方法 |
KR102562973B1 (ko) * | 2015-12-31 | 2023-08-02 | 엘지디스플레이 주식회사 | 표시장치 |
KR101808122B1 (ko) | 2016-08-08 | 2017-12-14 | 휴먼켐 주식회사 | 안티블락킹 입자를 포함한 이형필름 제조 방법 및 그 이형필름 |
CN107413210B (zh) * | 2017-05-17 | 2020-04-17 | 宁波聚仁塑化材料有限公司 | 一种多巴胺和葡萄糖改性交联聚酰亚胺纳滤膜的制备方法 |
CN108854265A (zh) * | 2018-06-26 | 2018-11-23 | 桐乡守敬应用技术研究院有限公司 | 一种复合过滤材料及其制备方法 |
CN108721702B (zh) * | 2018-06-29 | 2021-06-29 | 江西理工大学 | 一种镁/左旋聚乳酸复合骨支架的制备方法 |
CN109192922B (zh) * | 2018-08-07 | 2021-06-29 | 格林美(无锡)能源材料有限公司 | 一种具有特殊结构的固态锂离子电池正极及其制备方法 |
KR102040496B1 (ko) * | 2018-08-14 | 2019-11-05 | 한국화학연구원 | 연속상 나노다공성 구조의 광확산 필름의 제조방법, 그 광확산 필름 및 이를 포함하는 광학장치 |
KR102538214B1 (ko) * | 2020-11-20 | 2023-05-31 | 고려대학교 산학협력단 | 바이러스 포집용 마스크 |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3847949A (en) * | 1970-05-12 | 1974-11-12 | Du Pont | Macrocyclic hetero imine complexing agents |
US4031111A (en) * | 1973-01-08 | 1977-06-21 | E. I. Du Pont De Nemours And Company | Macrocyclic hetero imine complexing agents |
US4155793A (en) * | 1977-11-21 | 1979-05-22 | General Electric Company | Continuous preparation of ultrathin polymeric membrane laminates |
US4379041A (en) * | 1980-04-24 | 1983-04-05 | Ceskoslovenska Akademie Ved | Polymeric membrane selective to calcium (II) ions |
US4438251A (en) * | 1983-05-16 | 1984-03-20 | Armstrong World Industries, Inc. | Polyurethane polymers comprising macrocyclic crown ethers in the polymer backbone |
US4554076A (en) * | 1982-08-18 | 1985-11-19 | Georgia Tech Research Corporation | Method of modifying membrane surface with oriented monolayers of amphiphilic compounds |
US4560599A (en) * | 1984-02-13 | 1985-12-24 | Marquette University | Assembling multilayers of polymerizable surfactant on a surface of a solid material |
US4632800A (en) * | 1984-05-10 | 1986-12-30 | Commissariat A L'energie Atomique | Process for producing a thin film having at least one monomolecular layer of non-amphiphilic molecules |
US4661526A (en) * | 1983-02-02 | 1987-04-28 | Memtec Limited | Cross linked porous membranes |
US4722856A (en) * | 1986-01-02 | 1988-02-02 | Molecular Electronics Corporation | Method and apparatus for depositing monomolecular layers on a substrate |
US4752342A (en) * | 1983-11-05 | 1988-06-21 | Perchem Limited | Organoclay materials |
US4808480A (en) * | 1986-11-25 | 1989-02-28 | Lehigh University | Polymerizable heterocyclic disulfide-based compounds and membranes made therefrom |
US4828917A (en) * | 1987-05-08 | 1989-05-09 | Basf Aktiengesellschaft | Layer of metallomacrocyclic polymer on substrate |
US4839219A (en) * | 1986-05-20 | 1989-06-13 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Thin film and device having the same |
US4902424A (en) * | 1986-10-20 | 1990-02-20 | Memetc North America Corp. | Ultrafiltration thin film membranes |
US4910293A (en) * | 1985-11-20 | 1990-03-20 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Langmuir-Blodgett films of polymers having pendent C10 -C30 hydrocarbon groups |
US4948506A (en) * | 1986-07-07 | 1990-08-14 | Bend Research, Inc. | Physicochemically functional ultrathin films by interfacial polymerization |
US4997676A (en) * | 1982-02-26 | 1991-03-05 | Limitinstant Limited | Immobilized inorganic diffusion barriers and the use thereof in the separation of small molecular species from a solution |
US5023252A (en) * | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
US5035762A (en) * | 1987-07-24 | 1991-07-30 | Basf Aktiengesellschaft | Production of thin films |
US5059510A (en) * | 1985-02-04 | 1991-10-22 | Hoechst Celanese Corp. | Media for optical information storage comprising an organic macrocyclic chromophore substituted with a film conferring organic substituent |
US5064956A (en) * | 1987-06-24 | 1991-11-12 | The Dow Chemical Company | Process for preparing mono-n-alkylated polyazamacrocycles |
US5069945A (en) * | 1986-10-20 | 1991-12-03 | Memtec America Corporation | Ultrapous thin-film membranes |
US5102798A (en) * | 1988-09-08 | 1992-04-07 | Allage Associates | Surface functionalized Langmuir-Blodgett films for immobilization of active moieties |
US5143784A (en) * | 1990-05-10 | 1992-09-01 | Nec Corporation | Soluble calixarene derivative and films thereof |
US5173365A (en) * | 1985-03-25 | 1992-12-22 | Nanofilm Corporation | Ultra-thin molecular film |
US5179213A (en) * | 1987-09-04 | 1993-01-12 | Brigham Young University | Macrocyclic ligands bonded to an inorganic support matrix and a process for selectively and quantitatively removing and concentrating ions present at low concentrations from mixtures thereof with other ions |
US5196257A (en) * | 1990-08-23 | 1993-03-23 | Commissariat A L'energie Atomique | Bidimensional organic diaphragms and their preparation processes |
US5204239A (en) * | 1990-01-09 | 1993-04-20 | Yeda Research And Development Co., Ltd. | Biosensors including lipid bilayer doped with ion channels anchored to a recording electrode by bridging molecules |
US5229465A (en) * | 1990-06-30 | 1993-07-20 | Praxair Technology, Inc. | Oxygen-permeable polymeric membranes |
US5231161A (en) * | 1992-10-22 | 1993-07-27 | General Electric Company | Method for preparation of macrocyclic poly(alkylene dicarboxylate) oligomers from bis(hydroxyalkyl) dicarboxylates |
US5237067A (en) * | 1992-02-04 | 1993-08-17 | Schumaker Robert R | Optoelectronic tautomeric compositions |
US5238570A (en) * | 1991-10-31 | 1993-08-24 | Bayer Aktiengesellschaft | Asymmetric semipermeable membranes of aromatic polycondensates, processes for their preparation and their use |
US5259957A (en) * | 1989-09-29 | 1993-11-09 | Alcan International Limited | Porous membranes suitable for separation devices and other uses |
US5342934A (en) * | 1992-06-19 | 1994-08-30 | The Trustees Of Columbia University In The City Of New York | Enantioselective receptor for amino acid derivatives, and other compounds |
US5357029A (en) * | 1993-06-24 | 1994-10-18 | General Electric Co. | Macrocyclic polyimide oligomers and method for their preparation |
US5362476A (en) * | 1984-10-18 | 1994-11-08 | Board Of Regents, The University Of Texas System | Alkyl phosphonate polyazamacrocyclic cheates for MRI |
US5364614A (en) * | 1989-11-21 | 1994-11-15 | Schering Aktiengesellschaft | Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them |
US5368889A (en) * | 1993-04-16 | 1994-11-29 | The Dow Chemical Company | Method of making thin film composite membranes |
US5368712A (en) * | 1989-11-02 | 1994-11-29 | Synporin Technologies, Inc. | Biologically mimetic synthetic ion channel transducers |
US5384168A (en) * | 1990-04-21 | 1995-01-24 | Hoechst Aktiengesellschaft | Ferroelectric liquid-crystal display of high contrast and brightness |
US5405550A (en) * | 1988-06-03 | 1995-04-11 | Josef Michl | Compounds and methods based on [1.1.1]propellane |
US5405552A (en) * | 1992-08-11 | 1995-04-11 | Hoechst Aktiengesellschaft | Modified polysugar as the alignment layer for liquid-crystal displays |
US5468851A (en) * | 1991-12-12 | 1995-11-21 | New York University | Construction of geometrical objects from polynucleotides |
US5489425A (en) * | 1987-06-24 | 1996-02-06 | The Dow Chemical Company | Functionalized polyamine chelants |
US5532129A (en) * | 1991-11-07 | 1996-07-02 | Enterprise Partners Ii, L.P. | Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use |
US5560151A (en) * | 1995-03-06 | 1996-10-01 | Polyceramics, Inc. | Building blocks forming hexagonal and pentagonal building units for modular structures |
US5561043A (en) * | 1994-01-31 | 1996-10-01 | Trustees Of Boston University | Self-assembling multimeric nucleic acid constructs |
US5593656A (en) * | 1993-09-28 | 1997-01-14 | Cytogen Corporation | Metal-binding targeted polypeptide constructs |
US5622945A (en) * | 1992-08-04 | 1997-04-22 | Board Of Regents, The University Of Texas System | Rubyrin macrocycles |
US5631368A (en) * | 1995-03-10 | 1997-05-20 | Nycomed Imaging As | Polyazacycloalkane compounds |
US5670480A (en) * | 1994-01-05 | 1997-09-23 | Arqule, Inc. | Method of making polymers having specific properties |
US5677399A (en) * | 1996-11-07 | 1997-10-14 | Bridgestone Corporation | Synthesis of macrocyclic polymers with group IIA and IIB metal cyclic organometallic initiators |
US5695887A (en) * | 1996-05-09 | 1997-12-09 | Bell Communications Research, Inc. | Chelation treatment for reduced self-discharge in Li-ion batteries |
US5788862A (en) * | 1992-05-13 | 1998-08-04 | Pall Corporation | Filtration medium |
US5798261A (en) * | 1989-10-31 | 1998-08-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Distributed pore chemistry in porous organic polymers |
US5830539A (en) * | 1995-11-17 | 1998-11-03 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon | Methods for functionalizing and coating substrates and devices made according to the methods |
US5831087A (en) * | 1994-03-02 | 1998-11-03 | Hoechst Celanese Corp. | Macrocyclic imide compounds |
US5876830A (en) * | 1995-09-08 | 1999-03-02 | Board Of Regents Of The University Of Colorado | Method of assembly of molecular-sized nets and scaffolding |
US5883246A (en) * | 1996-03-07 | 1999-03-16 | Qlt Phototherapeutics, Inc. | Synthesis of polypyrrolic macrocycles from meso-substituted tripyrrane compounds |
US5908692A (en) * | 1997-01-23 | 1999-06-01 | Wisconsin Alumni Research Foundation | Ordered organic monolayers and methods of preparation thereof |
US5912069A (en) * | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
US5919370A (en) * | 1995-05-24 | 1999-07-06 | Akzo Nobel Nv | Integral, multi-asymmetric, semi-permeable membrane |
US5919369A (en) * | 1992-02-06 | 1999-07-06 | Hemocleanse, Inc. | Hemofiltration and plasmafiltration devices and methods |
US5933819A (en) * | 1997-05-23 | 1999-08-03 | The Scripps Research Institute | Prediction of relative binding motifs of biologically active peptides and peptide mimetics |
US5936100A (en) * | 1996-12-16 | 1999-08-10 | Studiengesellschaft Kohle Mbh | Synthesis of functionalized macrocycles by ring closing metathesis |
US6024873A (en) * | 1996-03-21 | 2000-02-15 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same |
US6033773A (en) * | 1997-04-18 | 2000-03-07 | The Regents Of The University Of California | Polar self-assembled thin films for non-linear optical materials |
US6036778A (en) * | 1997-05-30 | 2000-03-14 | Canon Kabushiki Kaisha | Apparatus for producing Langmuir-Blodgett film |
US6045821A (en) * | 1994-10-10 | 2000-04-04 | Nycomed Salutar, Inc. | Liposomal agents |
US6056903A (en) * | 1999-02-08 | 2000-05-02 | Osmonics, Inc. | Preparation of polyethersulfone membranes |
US6072044A (en) * | 1996-04-26 | 2000-06-06 | New York University | Nanoconstructions of geometrical objects and lattices from antiparallel nucleic acid double crossover molecules |
US6076318A (en) * | 1995-03-06 | 2000-06-20 | Polyceramics, Inc. | Interlocking puzzle |
US6107496A (en) * | 1998-03-03 | 2000-08-22 | Huels Aktiengesellschaft | Process for the preparation of cyclic esters |
US6121466A (en) * | 1998-03-03 | 2000-09-19 | Huels Aktiengesellschaft | Process for the preparation of macrocyclic esters |
US6171497B1 (en) * | 1996-01-24 | 2001-01-09 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane |
US6177181B1 (en) * | 1996-12-10 | 2001-01-23 | Daicel Chemical Industries, Ltd. | Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films |
US6194388B1 (en) * | 1994-07-15 | 2001-02-27 | The University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6203850B1 (en) * | 1999-05-18 | 2001-03-20 | Neomecs Incorporated | Plasma-annealed porous polymers |
US6210551B1 (en) * | 1995-08-01 | 2001-04-03 | Australian Membrane And Biotechnology Research Institute | Composite membrane sensor |
US6217873B1 (en) * | 1993-05-05 | 2001-04-17 | Gryphon Sciences | Polyoxime compounds and their preparation |
US20010007771A1 (en) * | 1996-05-29 | 2001-07-12 | Sean M. Sullivan | Cationic polymers and lipids for the delivery of nucleic acids |
US6262257B1 (en) * | 1996-04-05 | 2001-07-17 | Board Of Regents, University Of Texas System | Calixpyrroles, calixpyridinopyrroles and calixpyridines |
US20010008772A1 (en) * | 1998-04-03 | 2001-07-19 | Janet G. Smith | Cationic lipid formulation delivering nucleic acid to peritoneal tumors |
US20010009904A1 (en) * | 1997-12-30 | 2001-07-26 | Jon A. Wolff | Process of delivering a polynucleotide to a cell via the vascular system |
US6275866B1 (en) * | 1997-03-14 | 2001-08-14 | Mathsoft Engineering & Education, Inc. | Manipulation and coupling of object oriented components |
US20010020011A1 (en) * | 1994-03-15 | 2001-09-06 | Edith Mathiowitz | Polymeric gene delivery system |
US6294697B1 (en) * | 1995-10-19 | 2001-09-25 | The University Of Washington | Discrete-length polyethylene glycols |
US6309723B1 (en) * | 1992-07-29 | 2001-10-30 | Baxter International Inc. | Biomaterials with hydrophilic surfaces |
US6340588B1 (en) * | 1995-04-25 | 2002-01-22 | Discovery Partners International, Inc. | Matrices with memories |
US6380347B1 (en) * | 1999-04-09 | 2002-04-30 | Honeywell International Inc. | Nanoporous polymers comprising macrocycles |
US20020066047A1 (en) * | 2000-11-30 | 2002-05-30 | Olarig Sompong P. | Memory controller with temperature sensors |
US6524613B1 (en) * | 1997-04-30 | 2003-02-25 | Regents Of The University Of Minnesota | Hepatocellular chimeraplasty |
US20030199688A1 (en) * | 2002-02-07 | 2003-10-23 | Josh Kriesel | Macrocyclic module compositions |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2155926B1 (US08182695-20120522-C00240.png) * | 1971-10-15 | 1973-11-30 | Cetrane Laboratoire | |
SU1139730A1 (ru) | 1983-10-12 | 1985-02-15 | Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского | 1 @ ,12 @ -Тетрасульфо-1 @ ,12 @ -тетраокси-2,3,10,11,13,14,21,22-октааза-5,8,16,19-тетраокса-1,12 ди(2,7)нафта-4,9,15,20-тетра(1,2)фена-циклодокоза-2,10,13,21-тетраен в качестве реагента дл фотометрического определени берилли |
SU1139731A1 (ru) | 1983-10-12 | 1985-02-15 | Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского | 1 @ ,15 @ -Тетрасульфо-1 @ ,15 @ -тетраокси-2,3,13,14,16,17,27,28-октааза-5,8,11,19,22,25-гексаокса-1,15 ди(2,7)нафта-4,12,18,26 тетра(1,2)фена-циклооктакоза-2,13,16,27-тетраен в качестве реагента дл фотометрического определени бари |
SU1266849A1 (ru) | 1985-01-31 | 1986-10-30 | Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского | Макроциклические бисазорезорцины систем ундека,-тетрадека,гептадекадиена |
SU1532560A1 (ru) | 1988-04-22 | 1989-12-30 | Институт геохимии и аналитической химии им.В.И.Вернадского | Способ получени симметричных макроциклических олигоэфиров |
DE4035378C2 (de) | 1990-11-07 | 2000-11-02 | Oeffentliche Pruefstelle Und T | Textiles Material sowie Verfahren zur Herstellung eines derartigen textilen Materials |
CA2100676A1 (en) | 1991-01-29 | 1992-07-30 | Kou M. Hwang | Anti-coagulant properties of macrocyclic compounds and method of treatment |
DE4305970A1 (de) | 1993-02-26 | 1994-09-01 | Hoechst Ag | Cyclische Strukturelemente enthaltende Silan-Koppler als Orientierungsfilme |
GB9321545D0 (en) | 1993-10-19 | 1993-12-08 | Secr Defence | Sensors for neutral molecules |
US5614099A (en) | 1994-12-22 | 1997-03-25 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same |
GB9511396D0 (en) | 1995-06-06 | 1995-08-02 | British Nuclear Fuels Plc | Chemical complexes |
US5852127A (en) * | 1996-07-09 | 1998-12-22 | Rensselner Polytechnic Institute | Modification of porous and non-porous materials using self-assembled monolayers |
DE19636337A1 (de) | 1996-08-30 | 1998-03-05 | Inst Angewandte Chemie Berlin | Polyazacalix[5]arene, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE19646537A1 (de) | 1996-10-30 | 1998-05-07 | Inst Angewandte Chemie Berlin | Polyazacalix[6]arene, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE19711078A1 (de) | 1997-01-05 | 1998-09-24 | Franz Dietrich Oeste | Organische Käfigverbindungen, Verfahren zu ihrer Herstellung und Anwendung |
US5919440A (en) * | 1997-05-05 | 1999-07-06 | Procter & Gamble Company | Personal care compositions containing an odor masking base |
NL1008789C2 (nl) | 1998-04-02 | 1999-10-05 | Stichting Tech Wetenschapp | Anion-complexerende verbinding, werkwijze voor de bereiding ervan, een ionselectief membraan alsmede een sensor voorzien van een dergelijke verbinding of membraan. |
US6048736A (en) | 1998-04-29 | 2000-04-11 | Kosak; Kenneth M. | Cyclodextrin polymers for carrying and releasing drugs |
JP2001151904A (ja) * | 1999-09-17 | 2001-06-05 | Univ Tokyo | J会合体配向分散膜及びその製造方法 |
EP1481268A4 (en) | 2002-02-07 | 2005-06-29 | Covalent Partners Llc | NANOFILM AND MEMBRANE COMPOSITIONS |
EP1480635A4 (en) | 2002-02-07 | 2005-06-29 | Covalent Partners Llc | COMPOSITIONS OF MACROCYCLIC MODULES |
WO2003072126A2 (de) * | 2002-02-28 | 2003-09-04 | Switch Biotech Ag | Verwendung eines fibroblastenwachstumsfaktor-bindeproteins zur behandlung und diagnose von diabetischen wundheilungsstörungen |
US20040106741A1 (en) | 2002-09-17 | 2004-06-03 | Kriesel Joshua W. | Nanofilm compositions with polymeric components |
EP1667965A2 (en) | 2003-08-06 | 2006-06-14 | Covalent Partners, LLC | Bridged macrocyclic module compositions |
-
2003
- 2003-04-29 US US10/426,475 patent/US20040106741A1/en not_active Abandoned
- 2003-09-05 AU AU2003304453A patent/AU2003304453B2/en not_active Ceased
- 2003-09-05 WO PCT/US2003/027749 patent/WO2005018013A2/en active Search and Examination
- 2003-09-05 EP EP03816729A patent/EP1573833A4/en not_active Withdrawn
- 2003-09-05 JP JP2005507914A patent/JP2006512472A/ja active Pending
- 2003-09-05 KR KR1020057004632A patent/KR20060056266A/ko not_active Application Discontinuation
-
2005
- 2005-08-10 US US11/202,322 patent/US7595368B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3847949A (en) * | 1970-05-12 | 1974-11-12 | Du Pont | Macrocyclic hetero imine complexing agents |
US4031111A (en) * | 1973-01-08 | 1977-06-21 | E. I. Du Pont De Nemours And Company | Macrocyclic hetero imine complexing agents |
US4155793A (en) * | 1977-11-21 | 1979-05-22 | General Electric Company | Continuous preparation of ultrathin polymeric membrane laminates |
US4379041A (en) * | 1980-04-24 | 1983-04-05 | Ceskoslovenska Akademie Ved | Polymeric membrane selective to calcium (II) ions |
US4997676A (en) * | 1982-02-26 | 1991-03-05 | Limitinstant Limited | Immobilized inorganic diffusion barriers and the use thereof in the separation of small molecular species from a solution |
US4554076A (en) * | 1982-08-18 | 1985-11-19 | Georgia Tech Research Corporation | Method of modifying membrane surface with oriented monolayers of amphiphilic compounds |
US4661526A (en) * | 1983-02-02 | 1987-04-28 | Memtec Limited | Cross linked porous membranes |
US4438251A (en) * | 1983-05-16 | 1984-03-20 | Armstrong World Industries, Inc. | Polyurethane polymers comprising macrocyclic crown ethers in the polymer backbone |
US4752342A (en) * | 1983-11-05 | 1988-06-21 | Perchem Limited | Organoclay materials |
US4560599A (en) * | 1984-02-13 | 1985-12-24 | Marquette University | Assembling multilayers of polymerizable surfactant on a surface of a solid material |
US4632800A (en) * | 1984-05-10 | 1986-12-30 | Commissariat A L'energie Atomique | Process for producing a thin film having at least one monomolecular layer of non-amphiphilic molecules |
US5362476A (en) * | 1984-10-18 | 1994-11-08 | Board Of Regents, The University Of Texas System | Alkyl phosphonate polyazamacrocyclic cheates for MRI |
US5059510A (en) * | 1985-02-04 | 1991-10-22 | Hoechst Celanese Corp. | Media for optical information storage comprising an organic macrocyclic chromophore substituted with a film conferring organic substituent |
US5173365A (en) * | 1985-03-25 | 1992-12-22 | Nanofilm Corporation | Ultra-thin molecular film |
US4910293A (en) * | 1985-11-20 | 1990-03-20 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Langmuir-Blodgett films of polymers having pendent C10 -C30 hydrocarbon groups |
US5023252A (en) * | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
US4722856A (en) * | 1986-01-02 | 1988-02-02 | Molecular Electronics Corporation | Method and apparatus for depositing monomolecular layers on a substrate |
US4839219A (en) * | 1986-05-20 | 1989-06-13 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Thin film and device having the same |
US4948506A (en) * | 1986-07-07 | 1990-08-14 | Bend Research, Inc. | Physicochemically functional ultrathin films by interfacial polymerization |
US4902424A (en) * | 1986-10-20 | 1990-02-20 | Memetc North America Corp. | Ultrafiltration thin film membranes |
US5069945A (en) * | 1986-10-20 | 1991-12-03 | Memtec America Corporation | Ultrapous thin-film membranes |
US4808480A (en) * | 1986-11-25 | 1989-02-28 | Lehigh University | Polymerizable heterocyclic disulfide-based compounds and membranes made therefrom |
US4828917A (en) * | 1987-05-08 | 1989-05-09 | Basf Aktiengesellschaft | Layer of metallomacrocyclic polymer on substrate |
US5064956A (en) * | 1987-06-24 | 1991-11-12 | The Dow Chemical Company | Process for preparing mono-n-alkylated polyazamacrocycles |
US5489425A (en) * | 1987-06-24 | 1996-02-06 | The Dow Chemical Company | Functionalized polyamine chelants |
US5035762A (en) * | 1987-07-24 | 1991-07-30 | Basf Aktiengesellschaft | Production of thin films |
US5179213A (en) * | 1987-09-04 | 1993-01-12 | Brigham Young University | Macrocyclic ligands bonded to an inorganic support matrix and a process for selectively and quantitatively removing and concentrating ions present at low concentrations from mixtures thereof with other ions |
US5405550A (en) * | 1988-06-03 | 1995-04-11 | Josef Michl | Compounds and methods based on [1.1.1]propellane |
US5102798A (en) * | 1988-09-08 | 1992-04-07 | Allage Associates | Surface functionalized Langmuir-Blodgett films for immobilization of active moieties |
US5259957A (en) * | 1989-09-29 | 1993-11-09 | Alcan International Limited | Porous membranes suitable for separation devices and other uses |
US5798261A (en) * | 1989-10-31 | 1998-08-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Distributed pore chemistry in porous organic polymers |
US5516890A (en) * | 1989-11-02 | 1996-05-14 | Synporin Technologies | Biologically mimetic synthetic ion channel transducers and methods of making the same |
US5368712A (en) * | 1989-11-02 | 1994-11-29 | Synporin Technologies, Inc. | Biologically mimetic synthetic ion channel transducers |
US5364614A (en) * | 1989-11-21 | 1994-11-15 | Schering Aktiengesellschaft | Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them |
US5204239A (en) * | 1990-01-09 | 1993-04-20 | Yeda Research And Development Co., Ltd. | Biosensors including lipid bilayer doped with ion channels anchored to a recording electrode by bridging molecules |
US5384168A (en) * | 1990-04-21 | 1995-01-24 | Hoechst Aktiengesellschaft | Ferroelectric liquid-crystal display of high contrast and brightness |
US5143784A (en) * | 1990-05-10 | 1992-09-01 | Nec Corporation | Soluble calixarene derivative and films thereof |
US5229465A (en) * | 1990-06-30 | 1993-07-20 | Praxair Technology, Inc. | Oxygen-permeable polymeric membranes |
US5196257A (en) * | 1990-08-23 | 1993-03-23 | Commissariat A L'energie Atomique | Bidimensional organic diaphragms and their preparation processes |
US5238570A (en) * | 1991-10-31 | 1993-08-24 | Bayer Aktiengesellschaft | Asymmetric semipermeable membranes of aromatic polycondensates, processes for their preparation and their use |
US5532129A (en) * | 1991-11-07 | 1996-07-02 | Enterprise Partners Ii, L.P. | Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use |
US5468851A (en) * | 1991-12-12 | 1995-11-21 | New York University | Construction of geometrical objects from polynucleotides |
US5237067A (en) * | 1992-02-04 | 1993-08-17 | Schumaker Robert R | Optoelectronic tautomeric compositions |
US5919369A (en) * | 1992-02-06 | 1999-07-06 | Hemocleanse, Inc. | Hemofiltration and plasmafiltration devices and methods |
US5788862A (en) * | 1992-05-13 | 1998-08-04 | Pall Corporation | Filtration medium |
US5342934A (en) * | 1992-06-19 | 1994-08-30 | The Trustees Of Columbia University In The City Of New York | Enantioselective receptor for amino acid derivatives, and other compounds |
US6309723B1 (en) * | 1992-07-29 | 2001-10-30 | Baxter International Inc. | Biomaterials with hydrophilic surfaces |
US5622945A (en) * | 1992-08-04 | 1997-04-22 | Board Of Regents, The University Of Texas System | Rubyrin macrocycles |
US5405552A (en) * | 1992-08-11 | 1995-04-11 | Hoechst Aktiengesellschaft | Modified polysugar as the alignment layer for liquid-crystal displays |
US5231161A (en) * | 1992-10-22 | 1993-07-27 | General Electric Company | Method for preparation of macrocyclic poly(alkylene dicarboxylate) oligomers from bis(hydroxyalkyl) dicarboxylates |
US5368889A (en) * | 1993-04-16 | 1994-11-29 | The Dow Chemical Company | Method of making thin film composite membranes |
US6217873B1 (en) * | 1993-05-05 | 2001-04-17 | Gryphon Sciences | Polyoxime compounds and their preparation |
US5357029A (en) * | 1993-06-24 | 1994-10-18 | General Electric Co. | Macrocyclic polyimide oligomers and method for their preparation |
US5593656A (en) * | 1993-09-28 | 1997-01-14 | Cytogen Corporation | Metal-binding targeted polypeptide constructs |
US5670480A (en) * | 1994-01-05 | 1997-09-23 | Arqule, Inc. | Method of making polymers having specific properties |
US5561043A (en) * | 1994-01-31 | 1996-10-01 | Trustees Of Boston University | Self-assembling multimeric nucleic acid constructs |
US5965133A (en) * | 1994-01-31 | 1999-10-12 | Trustees Of Boston University | Self-assembling multimeric nucleic acid constructs |
US5831087A (en) * | 1994-03-02 | 1998-11-03 | Hoechst Celanese Corp. | Macrocyclic imide compounds |
US20010020011A1 (en) * | 1994-03-15 | 2001-09-06 | Edith Mathiowitz | Polymeric gene delivery system |
US6194388B1 (en) * | 1994-07-15 | 2001-02-27 | The University Of Iowa Research Foundation | Immunomodulatory oligonucleotides |
US6045821A (en) * | 1994-10-10 | 2000-04-04 | Nycomed Salutar, Inc. | Liposomal agents |
US6076318A (en) * | 1995-03-06 | 2000-06-20 | Polyceramics, Inc. | Interlocking puzzle |
US5560151A (en) * | 1995-03-06 | 1996-10-01 | Polyceramics, Inc. | Building blocks forming hexagonal and pentagonal building units for modular structures |
US5677446A (en) * | 1995-03-10 | 1997-10-14 | Nycomed Imaging As | Polyazacycloalkane compounds |
US5631368A (en) * | 1995-03-10 | 1997-05-20 | Nycomed Imaging As | Polyazacycloalkane compounds |
US6340588B1 (en) * | 1995-04-25 | 2002-01-22 | Discovery Partners International, Inc. | Matrices with memories |
US5919370A (en) * | 1995-05-24 | 1999-07-06 | Akzo Nobel Nv | Integral, multi-asymmetric, semi-permeable membrane |
US6210551B1 (en) * | 1995-08-01 | 2001-04-03 | Australian Membrane And Biotechnology Research Institute | Composite membrane sensor |
US5876830A (en) * | 1995-09-08 | 1999-03-02 | Board Of Regents Of The University Of Colorado | Method of assembly of molecular-sized nets and scaffolding |
US6294697B1 (en) * | 1995-10-19 | 2001-09-25 | The University Of Washington | Discrete-length polyethylene glycols |
US5830539A (en) * | 1995-11-17 | 1998-11-03 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon | Methods for functionalizing and coating substrates and devices made according to the methods |
US6171497B1 (en) * | 1996-01-24 | 2001-01-09 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane |
US5883246A (en) * | 1996-03-07 | 1999-03-16 | Qlt Phototherapeutics, Inc. | Synthesis of polypyrrolic macrocycles from meso-substituted tripyrrane compounds |
US6024873A (en) * | 1996-03-21 | 2000-02-15 | Nitto Denko Corporation | Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same |
US6262257B1 (en) * | 1996-04-05 | 2001-07-17 | Board Of Regents, University Of Texas System | Calixpyrroles, calixpyridinopyrroles and calixpyridines |
US6072044A (en) * | 1996-04-26 | 2000-06-06 | New York University | Nanoconstructions of geometrical objects and lattices from antiparallel nucleic acid double crossover molecules |
US5695887A (en) * | 1996-05-09 | 1997-12-09 | Bell Communications Research, Inc. | Chelation treatment for reduced self-discharge in Li-ion batteries |
US20010007771A1 (en) * | 1996-05-29 | 2001-07-12 | Sean M. Sullivan | Cationic polymers and lipids for the delivery of nucleic acids |
US5677399A (en) * | 1996-11-07 | 1997-10-14 | Bridgestone Corporation | Synthesis of macrocyclic polymers with group IIA and IIB metal cyclic organometallic initiators |
US6177181B1 (en) * | 1996-12-10 | 2001-01-23 | Daicel Chemical Industries, Ltd. | Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films |
US5936100A (en) * | 1996-12-16 | 1999-08-10 | Studiengesellschaft Kohle Mbh | Synthesis of functionalized macrocycles by ring closing metathesis |
US5912069A (en) * | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
US5908692A (en) * | 1997-01-23 | 1999-06-01 | Wisconsin Alumni Research Foundation | Ordered organic monolayers and methods of preparation thereof |
US6275866B1 (en) * | 1997-03-14 | 2001-08-14 | Mathsoft Engineering & Education, Inc. | Manipulation and coupling of object oriented components |
US6033773A (en) * | 1997-04-18 | 2000-03-07 | The Regents Of The University Of California | Polar self-assembled thin films for non-linear optical materials |
US6524613B1 (en) * | 1997-04-30 | 2003-02-25 | Regents Of The University Of Minnesota | Hepatocellular chimeraplasty |
US5933819A (en) * | 1997-05-23 | 1999-08-03 | The Scripps Research Institute | Prediction of relative binding motifs of biologically active peptides and peptide mimetics |
US5933819C1 (en) * | 1997-05-23 | 2001-11-13 | Scripps Research Inst | Prediction of relative binding motifs of biologically active peptides and peptide mimetics |
US6036778A (en) * | 1997-05-30 | 2000-03-14 | Canon Kabushiki Kaisha | Apparatus for producing Langmuir-Blodgett film |
US20010009904A1 (en) * | 1997-12-30 | 2001-07-26 | Jon A. Wolff | Process of delivering a polynucleotide to a cell via the vascular system |
US6107496A (en) * | 1998-03-03 | 2000-08-22 | Huels Aktiengesellschaft | Process for the preparation of cyclic esters |
US6121466A (en) * | 1998-03-03 | 2000-09-19 | Huels Aktiengesellschaft | Process for the preparation of macrocyclic esters |
US20010008772A1 (en) * | 1998-04-03 | 2001-07-19 | Janet G. Smith | Cationic lipid formulation delivering nucleic acid to peritoneal tumors |
US6056903A (en) * | 1999-02-08 | 2000-05-02 | Osmonics, Inc. | Preparation of polyethersulfone membranes |
US6380347B1 (en) * | 1999-04-09 | 2002-04-30 | Honeywell International Inc. | Nanoporous polymers comprising macrocycles |
US6203850B1 (en) * | 1999-05-18 | 2001-03-20 | Neomecs Incorporated | Plasma-annealed porous polymers |
US20020066047A1 (en) * | 2000-11-30 | 2002-05-30 | Olarig Sompong P. | Memory controller with temperature sensors |
US20030199688A1 (en) * | 2002-02-07 | 2003-10-23 | Josh Kriesel | Macrocyclic module compositions |
US20040034223A1 (en) * | 2002-02-07 | 2004-02-19 | Covalent Partners, Llc. | Amphiphilic molecular modules and constructs based thereon |
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9439589B2 (en) | 1997-03-04 | 2016-09-13 | Dexcom, Inc. | Device and method for determining analyte levels |
US7974672B2 (en) | 1997-03-04 | 2011-07-05 | Dexcom, Inc. | Device and method for determining analyte levels |
US7970448B2 (en) | 1997-03-04 | 2011-06-28 | Dexcom, Inc. | Device and method for determining analyte levels |
US7835777B2 (en) | 1997-03-04 | 2010-11-16 | Dexcom, Inc. | Device and method for determining analyte levels |
US7792562B2 (en) | 1997-03-04 | 2010-09-07 | Dexcom, Inc. | Device and method for determining analyte levels |
US8527025B1 (en) | 1997-03-04 | 2013-09-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US9931067B2 (en) | 1997-03-04 | 2018-04-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US8676288B2 (en) | 1997-03-04 | 2014-03-18 | Dexcom, Inc. | Device and method for determining analyte levels |
US9339223B2 (en) | 1997-03-04 | 2016-05-17 | Dexcom, Inc. | Device and method for determining analyte levels |
US8367001B2 (en) | 1998-05-05 | 2013-02-05 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US8465678B2 (en) | 1998-05-05 | 2013-06-18 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US9804114B2 (en) | 2001-07-27 | 2017-10-31 | Dexcom, Inc. | Sensor head for use with implantable devices |
US8509871B2 (en) | 2001-07-27 | 2013-08-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US9328371B2 (en) | 2001-07-27 | 2016-05-03 | Dexcom, Inc. | Sensor head for use with implantable devices |
US20090114596A1 (en) * | 2002-02-07 | 2009-05-07 | Covalent Partners Llc | Nanofilm and membrane compositions |
US20060128680A1 (en) * | 2002-02-07 | 2006-06-15 | Josh Kriesel | Macrocyclic module compositions |
US7563890B2 (en) | 2002-02-07 | 2009-07-21 | Covalent Partners, Llc | Amphiphilic molecular modules and constructs based thereon |
US20040260085A1 (en) * | 2002-02-07 | 2004-12-23 | Kriesel Joshua W. | Nanofilm and membrane compositions |
US8110679B2 (en) | 2002-02-07 | 2012-02-07 | Covalent Partners Llc | Nanofilm and membrane compositions |
US20060270846A1 (en) * | 2002-02-07 | 2006-11-30 | Covalent Partners, Llc | Amphiphilic molecular modules and constructs based thereon |
US20100152438A1 (en) * | 2002-02-07 | 2010-06-17 | Covalent Partners Llc | Amphiphilic molecular modules and constructs based thereon |
US20030199688A1 (en) * | 2002-02-07 | 2003-10-23 | Josh Kriesel | Macrocyclic module compositions |
US7767810B2 (en) | 2002-02-07 | 2010-08-03 | Covalent Partners, Llc | Macrocyclic modules comprising linked cyclic synthon units for use in the formation of selectively permeable membranes |
US20040126659A1 (en) * | 2002-09-10 | 2004-07-01 | Graetz Jason A. | High-capacity nanostructured silicon and lithium alloys thereof |
US7595368B2 (en) | 2002-09-17 | 2009-09-29 | Covalent Partners, Llc | Nanofilm compositions with polymeric components |
US20060041077A1 (en) * | 2002-09-17 | 2006-02-23 | Covalent Partners Llc | Nanofilm compositions with polymeric components |
US8909314B2 (en) | 2003-07-25 | 2014-12-09 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US7828728B2 (en) | 2003-07-25 | 2010-11-09 | Dexcom, Inc. | Analyte sensor |
US10610140B2 (en) | 2003-07-25 | 2020-04-07 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8255030B2 (en) | 2003-07-25 | 2012-08-28 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8255032B2 (en) | 2003-07-25 | 2012-08-28 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8255033B2 (en) | 2003-07-25 | 2012-08-28 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US9993186B2 (en) | 2003-07-25 | 2018-06-12 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US9597027B2 (en) | 2003-07-25 | 2017-03-21 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8182695B2 (en) | 2003-08-06 | 2012-05-22 | Whiteford Jeffery A | Bridged macrocyclic module compositions |
US20080290034A1 (en) * | 2003-08-06 | 2008-11-27 | Covalent Partners Llc | Bridged macrocyclic module compositions |
US7781102B2 (en) * | 2004-04-22 | 2010-08-24 | California Institute Of Technology | High-capacity nanostructured germanium-containing materials and lithium alloys thereof |
US20100190059A1 (en) * | 2004-04-22 | 2010-07-29 | Graetz Jason A | High-capacity nanostructured germanium-containing materials and lithium alloys thereof |
US8277713B2 (en) | 2004-05-03 | 2012-10-02 | Dexcom, Inc. | Implantable analyte sensor |
US20060063854A1 (en) * | 2004-06-15 | 2006-03-23 | Xiaoming Jin | Low shrinkage and low stress dental compositions |
US8129446B2 (en) | 2004-06-15 | 2012-03-06 | Dentsply International Inc. | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US20110152569A1 (en) * | 2004-06-15 | 2011-06-23 | Xiaoming Jin | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US20080182997A1 (en) * | 2004-06-15 | 2008-07-31 | Dentsply International Inc. | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US20060287459A1 (en) * | 2004-06-15 | 2006-12-21 | Xiaoming Jin | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US20080182948A1 (en) * | 2004-06-15 | 2008-07-31 | Xiaoming Jin | Low shrinkage and low stress dental compositions |
US8461227B2 (en) | 2004-06-15 | 2013-06-11 | Dentsply International Inc. | Radical polymerizable macrocyclic resin compositions with low polymerization stress |
US10918313B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10827956B2 (en) | 2004-07-13 | 2020-11-10 | Dexcom, Inc. | Analyte sensor |
US10709362B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US10524703B2 (en) | 2004-07-13 | 2020-01-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
US11026605B1 (en) | 2004-07-13 | 2021-06-08 | Dexcom, Inc. | Analyte sensor |
US11045120B2 (en) | 2004-07-13 | 2021-06-29 | Dexcom, Inc. | Analyte sensor |
US10980452B2 (en) | 2004-07-13 | 2021-04-20 | Dexcom, Inc. | Analyte sensor |
US10799158B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
US10993641B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US10993642B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US10918314B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10918315B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10709363B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US7885697B2 (en) | 2004-07-13 | 2011-02-08 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10799159B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10722152B2 (en) | 2004-07-13 | 2020-07-28 | Dexcom, Inc. | Analyte sensor |
US8792953B2 (en) | 2004-07-13 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10932700B2 (en) | 2004-07-13 | 2021-03-02 | Dexcom, Inc. | Analyte sensor |
US11064917B2 (en) | 2004-07-13 | 2021-07-20 | Dexcom, Inc. | Analyte sensor |
US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10813576B2 (en) | 2004-07-13 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US8617819B2 (en) | 2004-09-17 | 2013-12-31 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US20060127929A1 (en) * | 2004-09-17 | 2006-06-15 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US20090246887A1 (en) * | 2005-01-07 | 2009-10-01 | Academia Sinica | Diamond Crystallites For Biotechnological Applications |
US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10300507B2 (en) | 2005-05-05 | 2019-05-28 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US8744546B2 (en) | 2005-05-05 | 2014-06-03 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US7671166B2 (en) * | 2005-11-22 | 2010-03-02 | Massachusetts Institute Of Technology | High internal free volume compositions for low-k dielectric and other applications |
US20070117954A1 (en) * | 2005-11-22 | 2007-05-24 | Massachusetts Institute Of Technology | High internal free volume compositions for low-k dielectric and other applications |
US20110144238A1 (en) * | 2006-03-08 | 2011-06-16 | 3M Innovative Properties Company | Polymer composites |
WO2007102980A1 (en) * | 2006-03-08 | 2007-09-13 | 3M Innovative Properties Company | Polymer composites |
US20100068500A1 (en) * | 2006-03-08 | 2010-03-18 | 3M Innovative Properties Company | Polymer composites |
US7863381B2 (en) * | 2006-03-08 | 2011-01-04 | 3M Innovative Properties Company | Polymer composites |
CN101400726B (zh) * | 2006-03-08 | 2013-03-13 | 3M创新有限公司 | 聚合物复合材料 |
US8557918B2 (en) | 2006-03-08 | 2013-10-15 | 3M Innovative Properties Company | Polymer composites |
US20100157286A1 (en) * | 2006-08-04 | 2010-06-24 | University Of Memphis Research Foundation | Nanothin polymer films with selective pores and method of use thereof |
US8519015B2 (en) * | 2006-08-04 | 2013-08-27 | University Of Memphis Research Foundation | Nanothin polymer films with selective pores and method of use thereof |
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8802447B2 (en) | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US20080085566A1 (en) * | 2006-10-05 | 2008-04-10 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US9429522B2 (en) | 2006-10-27 | 2016-08-30 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
US10143410B2 (en) | 2008-03-28 | 2018-12-04 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9173606B2 (en) | 2008-03-28 | 2015-11-03 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9693721B2 (en) | 2008-03-28 | 2017-07-04 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9173607B2 (en) | 2008-03-28 | 2015-11-03 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8954128B2 (en) | 2008-03-28 | 2015-02-10 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9572523B2 (en) | 2008-03-28 | 2017-02-21 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8583204B2 (en) | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US11147483B2 (en) | 2008-03-28 | 2021-10-19 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US20090247856A1 (en) * | 2008-03-28 | 2009-10-01 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9566026B2 (en) | 2008-03-28 | 2017-02-14 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US9549699B2 (en) | 2008-03-28 | 2017-01-24 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US10028683B2 (en) | 2008-09-19 | 2018-07-24 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US10028684B2 (en) | 2008-09-19 | 2018-07-24 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US9339222B2 (en) | 2008-09-19 | 2016-05-17 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US11918354B2 (en) | 2008-09-19 | 2024-03-05 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US8560039B2 (en) | 2008-09-19 | 2013-10-15 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US10561352B2 (en) | 2008-09-19 | 2020-02-18 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US20110027497A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20110027491A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8128993B2 (en) * | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US20130295398A1 (en) * | 2010-10-14 | 2013-11-07 | Lg Chem, Ltd. | Resin blend for melting process |
US20130302615A1 (en) * | 2010-10-14 | 2013-11-14 | Lg Chem, Ltd. | Resin blend for melting process |
US10305052B2 (en) | 2014-07-15 | 2019-05-28 | Japan Science And Technology Agency | Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method |
CN111712317A (zh) * | 2018-05-10 | 2020-09-25 | 株式会社Lg化学 | 反渗透膜、其制造方法及水处理模块 |
CN109942731A (zh) * | 2019-04-08 | 2019-06-28 | 武汉轻工大学 | 一种纳米金/聚甲基丙烯酸甲酯导电材料的制备方法 |
CN113509848A (zh) * | 2021-04-27 | 2021-10-19 | 北京工业大学 | 一种基于液-液界面制备聚醚嵌段酰胺渗透汽化复合膜的方法 |
CN113522037A (zh) * | 2021-07-21 | 2021-10-22 | 江苏盈天化学有限公司 | 一种渗透汽化四氢呋喃脱水复合膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2005018013A3 (en) | 2005-08-18 |
US7595368B2 (en) | 2009-09-29 |
WO2005018013A2 (en) | 2005-02-24 |
EP1573833A2 (en) | 2005-09-14 |
US20060041077A1 (en) | 2006-02-23 |
AU2003304453A1 (en) | 2005-03-07 |
EP1573833A4 (en) | 2009-12-09 |
KR20060056266A (ko) | 2006-05-24 |
AU2003304453B2 (en) | 2009-02-19 |
JP2006512472A (ja) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7595368B2 (en) | Nanofilm compositions with polymeric components | |
US8182695B2 (en) | Bridged macrocyclic module compositions | |
US8110679B2 (en) | Nanofilm and membrane compositions | |
JP2006512472A5 (US08182695-20120522-C00240.png) | ||
US7563890B2 (en) | Amphiphilic molecular modules and constructs based thereon | |
US7767810B2 (en) | Macrocyclic modules comprising linked cyclic synthon units for use in the formation of selectively permeable membranes | |
KR100686566B1 (ko) | 중합체 네트워크의 제조방법 | |
AU2003212973B2 (en) | Nanofilm and membrane compositions | |
JP4688418B2 (ja) | ナノフィルムおよび膜組成物 | |
WO2002051917A1 (de) | Oberflachenfunktionalisiertes tragermaterial, verfahren fur seine herstellung sowie festphasensyntheseverfahren | |
Singh et al. | An introduction to molecularly imprinted polymers | |
Donthongkwa | SYNTHESIS AND SUPRAMOLECULAR POLYMERIZATION OF PEPTIDE NUCLEIC ACID-CONTAINING MONOMER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COVALENT PARTNERS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRIESEL, JOSHUA W.;BIVIN, DONALD B.;OLSON, DAVID J.;AND OTHERS;REEL/FRAME:014217/0569;SIGNING DATES FROM 20031107 TO 20031201 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |