US20040106741A1 - Nanofilm compositions with polymeric components - Google Patents

Nanofilm compositions with polymeric components Download PDF

Info

Publication number
US20040106741A1
US20040106741A1 US10/426,475 US42647503A US2004106741A1 US 20040106741 A1 US20040106741 A1 US 20040106741A1 US 42647503 A US42647503 A US 42647503A US 2004106741 A1 US2004106741 A1 US 2004106741A1
Authority
US
United States
Prior art keywords
nanofilm
amphiphilic
composition
nanofilm composition
macrocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/426,475
Other languages
English (en)
Inventor
Joshua Kriesel
Donald Bivin
David Olson
Jeremy Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covalent Partners LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/426,475 priority Critical patent/US20040106741A1/en
Priority to PCT/US2003/027749 priority patent/WO2005018013A2/en
Priority to EP03816729A priority patent/EP1573833A4/en
Priority to AU2003304453A priority patent/AU2003304453B2/en
Priority to JP2005507914A priority patent/JP2006512472A/ja
Priority to KR1020057004632A priority patent/KR20060056266A/ko
Assigned to COVALENT PARTNERS LLC reassignment COVALENT PARTNERS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRIESEL, JOSHUA W., BIVIN, DONALD B., OLSON, DAVID J., HARRIS, JEREMY J.
Publication of US20040106741A1 publication Critical patent/US20040106741A1/en
Priority to US11/202,322 priority patent/US7595368B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups

Definitions

  • This invention relates to thin layer compositions which are nanofilms prepared from various macrocyclic module components and various polymeric and amphiphilic components.
  • This invention also relates to the fields of organic chemistry and nanotechnology, in particular, it relates to nanofilm compositions useful for filtration.
  • Nanotechnology involves the ability to engineer novel structures at the atomic and molecular level.
  • One area of nanotechnology is to develop chemical building blocks from which hierarchical molecules of predicted properties can be assembled.
  • An approach to making chemical building blocks or nanostructures begins at the atomic and molecular level by designing and synthesizing starting materials with highly tailored properties. Precise control at the atomic level is the foundation for development of rationally tailored synthesis-structure-property relationships which can provide materials of unique structure and predictable properties.
  • This approach to nanotechnology is inspired by nature. For example, biological organization is based on a hierarchy of structural levels: atoms formed into biological molecules which are arranged into organelles, cells, and ultimately, into organisms. These building block capabilities are unparalleled by conventional materials and methods such as polymerizations which produce statistical mixtures or confinement of reactants to enhance certain reaction pathways. For example, from twenty common amino acids found in natural proteins, more than 105 stable and unique proteins are made.
  • membranes used in a variety of separation processes can be made selectively permeable to various molecular species.
  • the permeation properties of conventional membranes generally depend on the pathways of transport of species through the membrane structure. For example, while the diffusion pathway in conventional selectively permeable materials can be made tortuous in order to control permeation, porosity is not well defined or controlled by conventional methods.
  • the ability to fabricate regular or unique pore structures of membranes is a long-standing goal of separation technology.
  • Resistance to flow of species through a membrane may also be governed by the flow path length. Resistance can be greatly reduced by using a very thin film as a membrane, at the cost of reduced mechanical strength of the membrane material.
  • Conventional membranes may have a barrier thickness of at least one to two hundred nanometers, and often up to millimeter thickness. In general, a thin film of membrane barrier material can be deposited on a porous substrate of greater thickness to restore material strength.
  • Membrane separation processes are used to separate components from a fluid in which atomic or molecular components having sizes smaller than a certain “cut-off” size can be separated from components of larger size. Normally, species smaller than the cut-off size are passed by the membrane.
  • the cut-off size may be an approximate empirical value which reflects the phenomenon that the rate of transport of components smaller than the cut-off size is merely faster than the rate of transport of larger components.
  • the primary factors affecting separation of components are size, charge, and diffusivity of the components in the membrane structure.
  • the driving force for separation is a concentration gradient, while in electrodialysis electromotive force is applied to ion selective membranes.
  • the invention provides nanofilm compositions.
  • the nanofilm composition comprises a reaction product of macrocyclic modules and at least one polymeric component.
  • the nanofilm composition comprises a reaction product of a polymeric component and an amphiphile.
  • the nanofilm composition comprises a reaction product of a polymeric component, wherein the polymeric components are linked by linker molecules.
  • the nanofilm composition comprises a reaction product of at least two polymeric components, wherein the first polymeric component is a polymerizable amphiphile, and the second polymeric component is a polymerizable monomer.
  • the macrocyclic modules are selected from the group consisting of Hexamer 1a, Hexamer 1dh, Hexamer 3j-amine, Hexamer 1jh, Hexamer 1jh-AC, Hexamer 2j-amine/ester, Hexamer 1dh-acryl, Octamer 5j-haspartic, Octamer 4jh-acryl, and mixtures thereof
  • the macrocyclic modules are Hexamer 1dh.
  • the polymerizable amphiphile is selected from the group consisting of amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
  • the polymeric component is a polymer. In some embodiments, the polymeric component is amphiphilic.
  • the polymeric component is selected from the group consisting of poly(maleic anhydride)s, poly(ethylene-co-maleic anhydride)s, poly(maleic anhydride-co-alpha olefin)s, polyacrylates, polymethylmethacrylate, polymers containing at least one oxacyclopropane group, polyethyleneimides, polyetherimides, polyethylene oxides, polypropylene oxides, polyurethanes, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyethylenes, polypropylenes, ethylene-propylene copolymers, polyisoprenes, polyneopropenes, polyamides, polyimides, polysulfones, polyethersulfones, polyethylene terephthalates, polybutylene terephthalates, polysulfonamides, polysulfoxides, polyglycolic acids, polyacrylamides, polyvin
  • the amphiphile is a polymerizable amphiphile.
  • the polymerizable amphiphile is selected from the group consisting of amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
  • the amphiphile is non-polymerizable.
  • the non-polymerizable amphiphile is selected from the group consisting of decylamine and stearic acid.
  • the nanofilm composition may further comprise a non-polymerizable amphiphile.
  • the non-polymerizable amphiphile is selected from the group consisting of decylamine and stearic acid.
  • the polymeric component is a polymer, and the non-polymerizable amphiphiles are coupled to the polymer.
  • the macrocyclic modules are coupled to each other. In some embodiments, the macrocyclic modules are coupled to the at least one polymeric component. In some embodiments, the polymeric components are coupled to each other. In some embodiments, the at least one polymeric component is coupled to an amphiphile. In some embodiments, the coupling is through linker molecules. In some embodiments, the linker molecules are selected from the group consisting of
  • n is 1-6
  • R is —H or —CH 3
  • R′ is —(CH 2 ) n — or phenyl
  • R′′ is —(CH 2 ) n —, polyethylene glycol (PEG), or polypropylene glycol (PPG)
  • X is Br, Cl, I, or other leaving group.
  • the nanofilm composition is prepared by a process comprising polymerizing the at least one polymeric component at an air-water interface. In some embodiments, the nanofilm composition is prepared by a process comprising polymerizing polymerizable amphiphiles at an air-water interface.
  • the area fraction of the polymeric components is from 0.5 to 98 percent. In other embodiments, the area fraction of the polymeric components is less than about 20 percent. In yet other embodiments, the area fraction of the polymeric components is less than about 5 percent.
  • the thickness of the nanofilm composition is less than about 30 nanometers. In other embodiments, the thickness of the nanofilm composition is less than about 6 nanometers. In yet other embodiments, the thickness of the nanofilm composition is less than about 2 nanometers.
  • the nanofilm composition comprises at least two layers of a nanofilm. In some embodiments, the nanofilm composition further comprises at least one spacing layer between any two of the nanofilm layers. In some embodiments, the spacing layer comprises a layer of a polymer, a gel, or inorganic particles.
  • the nanofilm composition is deposited on a substrate.
  • the nanofilm is coupled to the substrate through the polymeric component.
  • the substrate is porous.
  • the substrate is non-porous.
  • the nanofilm is coupled to the substrate through biotin-strepavidin mediated interaction.
  • the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 50% of the surface loss modulus of the same nanofilm composition made without the polymeric components. In other embodiments, the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 30% of the surface loss modulus of the same nanofilm composition made without the polymeric components. In yet other embodiments, the surface loss modulus of the nanofilm composition at a surface pressure from 5-30 mN/m is less than about 20% of the surface loss modulus of the same nanofilm composition made without the polymeric components.
  • the nanofilm compositions may have a filtration function which may be used to describe the species that pass through the nanofilm compositions.
  • a nanofilm composition may be permeable only to a particular species, including anions, cations, and neutral solutes in a particular fluid, and species smaller than the particular species.
  • a particular nanofllm composition may have high permeability for a certain species in a certain solvent.
  • a nanofilm composition may have low permeability for certain species in a certain solvent.
  • a nanofilm composition may have high permeability for certain species and low permeability for other species in a certain solvent.
  • a nanofilm composition may have the following filtration function: MOLECULAR SOLUTE WEIGHT PASS/NO PASS Albumin 68 kDa NP Ovalbumin 44 kDa P Myoglobin 17 kDa P ⁇ 2 -Microglobulin 12 kDa P Insulin 5.2 kDa P Vitamin B 12 1350 Da P Urea, H 2 O, ions ⁇ 1000 Da P
  • a nanofilm composition may have the following filtration function: MOLECULAR SOLUTE WEIGHT PASS/NO PASS ⁇ 2 -Microglobulin 12 kDa NP Insulin 5.2 kDa NP Vitamin B 12 1350 Da NP Glucose 180 Da NP Creatinine 131 Da NP H 2 PO 4 ⁇ , HPO 4 2 ⁇ ⁇ 97 Da NP HCO 3 ⁇ 61 Da NP Urea 60 Da NP K+ 39 Da P Na+ 23 Da P
  • the nanofilm composition is impermeable to viruses and larger species.
  • the nanofilm composition is impermeable to immunoglobulin G and larger species.
  • the nanofilm composition is impermeable to albumin and larger species.
  • the nanofilm composition is impermeable to ⁇ 2 -Microglobulin and larger species.
  • the nanofilm composition is permeable only to water and smaller species.
  • the nanofilm composition has permeability for water molecules and Na + , K + , and Cs + in water.
  • the nanofilm composition has low permeability for glucose and urea.
  • the nanofilm composition has high permeability for water molecules and Cl ⁇ in water.
  • the nanofilm composition has high permeability for water molecules and K + in water, and low permeability for Na + in water. In another embodiment, the nanofilm composition has high permeability for water molecules and Na + in water, and low permeability for K + in water. In another embodiment, the nanofilm composition has low permeability for urea, creatinine, Li + , Ca 2+ , and Mg 2+ in water. In another embodiment, the nanofilm composition has high permeability for Na + , K + , hydrogen phosphate, and dihydrogen phosphate in water. In another embodiment, the nanofilm composition has high permeability for Na + , K + , and glucose in water.
  • the nanofilm composition has low permeability for myoglobin, ovalbumin, and albumin in water. In another embodiment, the nanofilm composition has high permeability for organic compounds and low permeability for water. In another embodiment, the nanofilm composition has low permeability for organic compounds and high permeability for water. In another embodiment, the nanofilm composition has low permeability for water molecules and high permeability for helium and hydrogen gases.
  • a nanofilm composition may have a molecular weight cut off.
  • the nanofilm composition has a molecular weight cut-off of about 13 kDa.
  • the nanofilm composition has a molecular weight cut-off of about 190 Da.
  • the nanofilm composition has a molecular weight cut-off of about 100 Da.
  • the nanofilm composition has a molecular weight cut-off of about 45 Da.
  • the nanofilm composition has a molecular weight cut-off of about 20 Da.
  • compositions comprising a mixture of macrocyclic modules and at least one polymeric component in organic solvent.
  • compositions comprising a thin film of a reaction product of macrocyclic modules and at least one polymeric component, wherein the composition is prepared by a process comprising contacting the macrocyclic modules and the at least one polymeric component at an air-liquid or liquid-liquid interface.
  • the polymeric component is polymerizable, further comprising polymerizing the polymeric component at the air-liquid or liquid-liquid interface.
  • a method for making a nanofilm composition comprises: (a) providing a first liquid phase comprising the macrocyclic modules; (b) providing a second liquid phase comprising the at least one polymeric component; and (c) forming a liquid-liquid interface from the first liquid phase and the second liquid phase.
  • the nanofilm compositions may be prepared by spin coating, spray coating, dip coating, grafting, casting, phase inversion, electroplating, or knife-edge coating.
  • the method comprises using the nanofilm composition to separate one or more components from a fluid. In another embodiment, the method comprises using the nanofilm composition to separate one or more components from a mixture of at least two gases.
  • FIGS. 1 (A-C) illustrates examples of ellipsometric images of a nanofilm of Hexamer 1dh and poly(maleic anhydride-alt-1-octadecene) (PMAOD).
  • FIGS. 2 (A-C) illustrates examples of ellipsometric images of a nanofilm of Hexamer 1dh and PMAOD after sonication in various solvents.
  • FIGS. 3 (A-D) illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of Hexamer 1dh and PMAOD.
  • FIGS. 4 (A-D) illustrates examples of scanning electron micrographs of a nanofilm of Hexamer 1dh and PMAOD on a polycarbonate substrate.
  • FIGS. 5 illustrates examples of scanning electron micrographs of a polycarbonate substrate.
  • FIG. 6 illustrates an example of an attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectrum of CHCl3 rinsings of a nanofilm of PMAOD.
  • FTIR-ATR Fourier transform infrared
  • FIG. 7 illustrates an example of an FTIR-ATR spectrum of Hexamer 1dh.
  • FIG. 8 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1dh and PMAOD.
  • FIG. 9 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1dh prepared on a water subphase containing diethyl malonimidate (DEM).
  • DEM diethyl malonimidate
  • FIG. 10 illustrates an example of an FTIR-ATR spectrum of CHCl3 rinsings of a nanofilm of Hexamer 1 dh and PMAOD prepared on a water subphase containing DEM.
  • FIG. 11 illustrates examples of atomic force microscopy (AFM) images of a polycarbonate substrate.
  • FIGS. 12 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMAOD on a (3-aminopropyl)triethoxysilane (APTES) modified SiO 2 substrate.
  • APTES (3-aminopropyl)triethoxysilane
  • FIG. 13 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMAOD prepared on a water subphase containing DEM deposited on a polycarbonate substrate.
  • FIG. 14 illustrates examples of surface pressure-area isotherms of a nanofilm of octadecylamine (ODA) and polymethylmethacrylate (PMMA).
  • ODA octadecylamine
  • PMMA polymethylmethacrylate
  • FIG. 15 illustrates examples of surface pressure-area isotherms of a nanofilm of ODA and PMAOD.
  • FIG. 16 illustrates examples of AFM images of a nanofilm of Hexamer 1dh and PMMA on a silicon substrate.
  • FIG. 17 illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of Hexamer 1dh and PMAOD made on a subphase containing 2 mg/ml DEM.
  • FIG. 18 illustrates examples of the surface rheometric storage and loss moduli for a nanofilm of polyglycidyl methacrylate (PGM) made on a subphase containing 1% ethylene diamine compared with a nanofilm of PGM made on a basic subphase.
  • PGM polyglycidyl methacrylate
  • FIGS. 19A and 19B show representations of examples of the structure of embodiments of a hexamer macrocyclic module.
  • FIG. 20A shows an example of the Langmuir isotherm of an embodiment of a hexamer macrocyclic module.
  • FIG. 20B shows an example of the isobaric creep of an embodiment of a hexamer macrocyclic module.
  • FIG. 21A shows an example of the Langmuir isotherm of an embodiment of a hexamer macrocyclic module.
  • FIG. 21B shows an example of the isobaric creep of an embodiment of a hexamer macrocyclic module.
  • reaction product refers to a product formed from the indicated components. Coupling may or may not occur between the components in forming a reaction product.
  • Polymeric components may or may not be polymerized in forming a reaction product.
  • a nanofilm comprising a reaction product of macrocyclic modules and a polymeric component may have coupling between the modules, and/or coupling between the modules and the polymeric component, and/or coupling between the polymeric components, or may have no coupling at all.
  • the polymeric components are polymerized. The polymeric components may be fully or partially polymerized. Alternatively, the polymeric components may not be polymerized.
  • synthon refers to a monomeric molecular unit from which a macrocyclic module may be made; a macrocyclic module is a closed ring of coupled synthons. Structures arid syntheses of synthons and macrocyclic modules are described in greater detail hereinbelow.
  • polymer and “polymeric molecule” refer to a polymer or a molecule which is predominantly a polymer, but may have some non-polymer atoms or species attached.
  • polymer includes copolymers, terpolymers, and polymers containing any number of different monomers.
  • polymeric component refers to a molecule or species which is either a polymer, or may form a polymer by polymerization.
  • a polymerizable monomer or polymerizable molecule may be a polymeric component.
  • the polymeric component may be amphiphilic.
  • polymerizable indicates a molecular species which may polymerize under the reaction conditions in which the nanofilm is prepared.
  • Non-polymerizable is used herein to indicate a molecular species which will not polymerize under the reaction conditions in which the nanofilm is prepared.
  • a species which is “non-polymerizable” under one set of reaction conditions may be “polymerizable” under another set of reaction conditions.
  • amphiphile or “amphiphilic” refer to a molecule or species which exhibits both hydrophilic and lipophilic character. In general, an amphiphile contains a lipophilic moiety and a hydrophilic moiety. The terms “lipophilic” and “hydrophobic” are interchangeable as used herein. An amphiphile may form a Langmuir film. An amphiphile may be polymerizable. Alternatively, the amphiphile may not be polymerizable.
  • Non-limiting examples of hydrophobic groups or moieties include lower alkyl groups, alkyl groups having 7, 8, 9, 10, 11, 12, or more carbon atoms, including alkyl groups with 14-30, or 30 or more carbon atoms, substituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, substituted aryl, saturated or unsaturated cyclic hydrocarbons, heteroaryl, heteroarylalkyl, heterocyclic, and corresponding substituted groups.
  • a hydrophobic group may contain some hydrophilic groups or substituents insofar as the hydrophobic character of the group is not outweighed.
  • a hydrophobic group may include substituted silicon atoms, and may include fluorine atoms.
  • the lipophilic moieties may be linear, branched, or cyclic.
  • Non-limiting examples of groups which may be coupled to a synthon or macrocyclic module as a lipophilic group include alkyls, —CH ⁇ CH—R, —C ⁇ C—R, —OC(O)—R, —C(O)O—R, —NHC(O)—R, —C(O)NH—R, and —O—R, where R is 4-18C alkyl.
  • Non-limiting examples of hydrophilic groups or moieties include hydroxyl, methoxy, phenol, carboxylic acids and salts thereof, methyl, ethyl, and vinyl esters of carboxylic acids, amides, amino, cyano, isocyano, nitrile, ammonium salts, sulfonium salts, phosphonium salts, mono- and di-alkyl substituted amino groups, polypropyleneglycols, polyethylene glycols, epoxy groups, acrylates, sulfonamides, nitro, —OP(O)(OCH 2 CH 2 N + RR′R′′)O ⁇ , guanidinium, aminate, acrylamide, pyridinium, piperidine, and combinations thereof, wherein R, R′ and R′′ are each independently selected from H or alkyl.
  • a hydrophilic group may contain some hydrophobic groups or substituents insofar as the hydrophilic character of the group is not outweighed. Further examples include poly
  • Hydrophilic moieties may also include alkyl chains having internal amino or substituted amino groups, for example, internal —NH—, —NC(O)R—, or —NC(O)CH ⁇ CH 2 — groups.
  • Hydrophilic moieties may also include polycaprolactones, polycaprolactone diols, poly(acetic acid)s, poly(vinyl acetates)s, poly(2-vinyl pyridine)s, cellulose esters, cellulose hydroxyl ethers, poly(L-lysine hydrobromide)s, poly(itaconic acid)s, poly(maleic acid)s, poly(styrenesulfonic acid)s, poly(aniline)s, or poly(vinyl phosphonic acid)s.
  • the terms “coupling” and “coupled” with respect to molecular moieties or species, polymeric components, synthons, and macrocyclic modules refers to their attachment or association with other molecular moieties or species, molecules, synthons, or macrocyclic modules.
  • the attachment or association may be specific or non-specific, reversible or non-reversible, the result of chemical reaction, or complexation.
  • the bonds formed by a coupling reaction are often covalent bonds, or polar-covalent bonds, or mixed ionic-covalent bonds, and may sometimes be Coulombic forces, ionic or electrostatic forces or interactions. In some preferred embodiments, the bonds formed by a coupling reaction are covalent.
  • the terms “R,” “R′,” “R′′”, and “R′′” in a chemical formula refer to a hydrogen or a functional group, each independently selected, unless stated otherwise.
  • the fuinctional group may be an organic group.
  • the term “functional group” includes, but is not limited to, chemical groups, organic groups, inorganic groups, organometallic groups, aryl groups, heteroaryl groups, cyclic hydrocarbon groups, amino (—NH 2 ), hydroxyl (—OH), cyano (—C ⁇ N), nitro (—NO 2 ), carboxyl (—COOH), formyl (—CHO), keto (—CH 2 C(O)CH 2 —), alkenyl (—C ⁇ C—), alkynyl, (—C ⁇ C—), and halo (F, Cl, Br and I) groups.
  • the functional group is an organic group.
  • alkyl refers to a branched or unbranched monovalent hydrocarbon radical.
  • An “n-mC” alkyl or “(nC-mC)alkyl” refers to all alkyl groups containing from n to m carbon atoms.
  • a 1-4C alkyl refers to a methyl, ethyl, propyl, or butyl group. All possible isomers of an indicated alkyl are also included.
  • propyl includes isopropyl
  • butyl includes n-butyl, isobutyl and t-butyl, and so on.
  • alkyl group with from 1-6 carbon atoms is referred to as “lower alkyl.”
  • the term alkyl includes substituted alkyls.
  • substituted alkyl refers to an alkyl group with an additional group or groups attached to any carbon of the alkyl group. Additional groups attached to a substituted alkyl may include one or more functional groups such as alkyl, lower alkyl, aryl, acyl, halogen, alkylhalo, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, mercapto, both saturated and unsaturated cyclic hydrocarbons, heterocycles, and others.
  • alkenyl refers to any structure or moiety having the unsaturation C ⁇ C.
  • alkynyl refers to any structure or moiety having the unsaturation C ⁇ C.
  • aryl refers to an aromatic group which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene, ethylene, or carbonyl, and includes polynuclear ring structures.
  • An aromatic ring or rings may include substituted or unsubstituted phenyl, naphthyl, biphenyl, diphenylmethyl, and benzophenone groups, among others.
  • aryl includes substituted aryls.
  • substituted aryl refers to an aryl group with an additional group or groups attached to any carbon of the aryl group. Additional groups may include one or more functional groups such as lower alkyl, aryl, acyl, halogen, alkylhalos, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalkyl, thioether, heterocycles, both saturated and unsaturated cyclic hydrocarbons which are fused to the aromatic ring(s), linked covalently or linked to a common group such as a methylene or ethylene group, or a carbonyl linking group such as in cyclohexyl phenyl ketone, and others.
  • functional groups such as lower alkyl, aryl, acyl, halogen, alkylhalos, hydroxy, amino, alkoxy, alkylamino, acylamino, acyloxy, aryloxy, aryloxyalky
  • heteroaryl refers to an aromatic ring(s) in which one or more carbon atoms of the aromatic ring(s) are substituted by a heteroatom such as nitrogen, oxygen, or sulfur.
  • Heteroaryl refers to structures which may include a single aromatic ring, multiple aromatic rings, or one or more aromatic rings coupled to one or more nonaromatic rings. It includes structures having multiple rings, fused or unfused, linked covalently, or linked to a common group such as a methylene or ethylene group, or linked to a carbonyl as in phenyl pyridyl ketone.
  • heteroaryl includes rings such as thiophene, pyridine, isoxazole, phthalimide, pyrazole, indole, fuiran, or benzo-fused analogues of these rings.
  • acyl refers to a carbonyl substituent, —C(O)R, where R is alkyl or substituted alkyl, aryl or substituted aryl, which may be called an alkanoyl substituent when R is alkyl.
  • amino refers to a group —NRR′, where R and R′ may independently be hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl or acyl.
  • alkoxy refers to an —OR group, where R is an alkyl, substituted lower alkyl, aryl, substituted aryl. Alkoxy groups include, for example, methoxy, ethoxy, phenoxy, substituted phenoxy, benzyloxy, phenethyloxy, t-butoxy, and others.
  • thioether refers to the general structure R—S—R′ in which R and R′ are the same or different and may be alkyl, aryl or heterocyclic groups.
  • the group —SH may also be referred to as “sulfhydryl” or “thiol” or “mercapto.”
  • saturated cyclic hydrocarbon refers to ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, and others, including substituted groups. Substituents to saturated cyclic hydrocarbons include substituting one or more carbon atoms of the ring with a heteroatom such as nitrogen, oxygen, or sulfur. Saturated cyclic hydrocarbons include bicyclic structures such as bicycloheptanes and bicyclooctanes, and multicyclic structures.
  • unsaturated cyclic hydrocarbon refers to nonaromatic cyclic groups with at least one double bond, such as cyclopentenyl, cyclohexenyl, and others, including substituted groups. Substituents to unsaturated cyclic hydrocarbons include substituting one or more carbon atoms of the ring with a heteroatom such as nitrogen, oxygen, or sulfur. Unsaturated cyclic hydrocarbons include bicyclic structures such as bicycloheptenes and bicyclooctenes, and multicyclic structures.
  • cyclic hydrocarbon includes substituted and unsubstituted, saturated and unsaturated cyclic hydrocarbons, and includes unicyclic and multicyclic structures.
  • heteroarylalkyl refers to alkyl groups in which the heteroaryl group is attached through an alkyl group.
  • heterocyclic refers to a saturated or unsaturated nonaromatic group having a single ring or multiple condensed rings comprising from 1-12 carbon atoms and from 1-4 heteroatoms selected from nitrogen, phosphorous, sulfur, or oxygen within the ring.
  • heterocycles include tetrahydrofuran, morpholine, piperidine, pyrrolidine, and others.
  • each chemical term described above expressly includes the corresponding substituted group.
  • heterocyclic includes substituted heterocyclic groups.
  • activated acid refers to a —C(O)X moiety, where X is a leaving group, in which the X group is readily displaced by a nucleophile to form a covalent bond between the —C(O)— and the nucleophile.
  • activated acids include acid chlorides, acid fluorides, p-nitrophenyl esters, pentafluorophenyl esters, and N-hydroxysuccinimide esters.
  • amino acid residue refers to the product formed when a species comprising at least one amino (—NH 2 ) and at least one carboxyl (—C(O)O—) group couples through either of its amino or carboxyl groups with an atom or functional group of a synthon. Whichever of the amino or carboxyl groups is not involved in the coupling may optionally be blocked with a removable protective group.
  • this invention relates variously to nanotechnology in the preparation of porous structures and materials having pores that are of atomic to molecular size.
  • Materials such as nanofilm compositions may be formed from macrocyclic modules. Nanofilm compositions may also be formed from macrocyclic modules in combination with one or more polymeric components. Nanofilm compositions may also be formed from a polymer and an amphiphile, wherein the amphiphile may be polymerizable or non-polymerizable. Nanofilm compositions may also be formed from polymeric components which have been coupled through linkers. In some embodiments, pores may be supplied through the structure of the nanofilm. In some embodiments, pores are supplied through the structure of the macrocyclic modules.
  • the nanofilm is prepared from coupled macrocyclic modules, which may also be coupled to one or more polymeric components.
  • the nanofilm includes amphiphilic molecules, which optionally may be coupled to any of the other components. These amphiphilic molecules may be polymerizable or non-polymerizable. It is to be understood that a “non-polymerizable” amphiphile is non-polymerizable under the reaction conditions in which the nanofilm is prepared.
  • a nanofilm may be prepared with mixtures of different modules, or with mixtures of macrocyclic modules, amphiphilic molecules, and/or polymeric components.
  • the polymeric component may be intermixed, aggregated, or phase separated from the macrocyclic modules and amphiphilic molecules, as described herein.
  • Nanofilms having one or more polymeric components made with mixtures of different modules and/or amphiphilic molecules may also have interspersed arrays of pores of various sizes.
  • These materials may have regions in which unique structures exist.
  • the unique structures may repeat at regular intervals to provide a lattice of pores having substantially uniform dimensions.
  • the unique structures may have a variety of shapes and sizes, thereby providing pores of various shapes and sizes. Because the unique structures may be formed in a monolayer of molecular thickness, the pores defined by the unique structures may include a cavity, opening, or chamber-like structure of molecular size. In general, pores of atomic to molecular size defined by those unique structures may be used for selective permeation or molecular sieving functions.
  • the nanofilm may have one or more polymeric components. These nanofilms may have regions composed primarily of one or more polymeric components. In some cases, the polymeric components act as a plasticizer. In some cases, regions composed primarily of one or more polymeric components may form a barrier to permeation by fluids, small molecules, biomolecules, solvent molecules, or ions. In other cases, the porosity of the nanofilm is controlled by the type and degree of cross-linking of the polymeric components.
  • a wide variety of structural features and properties such as amorphous, glassy, semicrystalline or crystalline structures, and elastomeric, pliable, thermoplastic, or deformation properties may be exhibited by the nanofilms.
  • the various components may be deposited on a surface to form a nanofilm.
  • Macrocyclic modules can be oriented on a surface by providing functional groups on the modules which impart amphiphilic character to the modules. For example, when the module is deposited on a hydrophilic surface, hydrophobic substituent groups or hydrophobic tails attached to the module may cause the module to reorient on the surface so that the hydrophobic substituents are oriented away from the surface, leaving a more hydrophilic facet of the module oriented toward the surface.
  • Other components may also optionally similarly be oriented on the surface by providing amphiphilic groups in the component.
  • the conformation of a molecule on a surface may depend on the loading, density, or state of the phase or layer in which the molecule resides on the surface.
  • Surfaces which may be used to orient modules or other molecules include interfaces such as gas-liquid, air-water, immiscible liquid-liquid, liquid-solid, or gas-solid interfaces.
  • the thickness of the oriented layer may, in some cases, be substantially a monomolecular layer thickness.
  • the composition of the nanofilm may be solid, gel, or liquid.
  • the modules of the nanofilm may be in an expanded state, a liquid state, or a liquid-expanded state.
  • the state of the modules of the nanofilm may be condensed, liquid-condensed, collapsed, or may be a solid phase or close-packed state.
  • the modules and/or other components of the nanofilm may interact with each other by weak forces of attraction. Alternatively, they may be coupled through, for example, covalent bonds.
  • the modules of a nanofilm prepared from surface-oriented macrocyclic modules need not be linked by any strong interaction or coupling.
  • the modules of the nanofilm may be linked through, for example, covalent bonds.
  • This invention further includes the rational design of molecules or macrocyclic modules that may be assembled as “building blocks” for further assembly into larger species.
  • Standardized molecular subunits or modules may be used from which hierarchical molecules of predicted properties can be assembled. Coupling reactions can be employed to combine or attach modules in directed syntheses.
  • modules useful as molecular building blocks are shown in Table 1.
  • Examples of macrocyclic modules MODULE STRUCTURE Hexamer 1a Hexamer 1dh Hexamer 3j- amine Hexamer 1jh-AC Hexamer 1jh- Hexamer 2j- amine/ester Hexamer 1dh- Octamer 5jh- Octamer 4jh- acryl
  • this invention relates variously to nanofilm compositions having polymeric components.
  • Polymeric components may be introduced into nanofilm compositions which contain macrocyclic modules.
  • Nanofilm compositions may also be made from polymeric components coupled by linker molecules.
  • Nanofilm compositions may also be made from polymeric components and amphiphilic molecules, wherein the amphiphilic molecules may optionally be polymerizable.
  • a polymeric component is a polymerizable species, or a polymer or macromolecule of any molecular weight which is made of monomers.
  • Polymerizable species include monomers, which are molecules that can be repeated in a polymer, and polymers, wherein the monomers or polymers have polymerizable or crosslinkable groups. Any polymeric component, polymerizable species, polymer, or monomer may also be amphiphilic.
  • Examples of polymeric components include organic polymers, thermoplastics, synthetic and natural elastomers, conducting polymers, synthetic and natural biopolymers, and inorganic polymers. Examples of polymeric components of this invention include organic polymers containing atoms selected from H, C, N, O, S. F, and Cl.
  • the polymeric component may be a homopolymer, or a mixed, block, or graft copolymer.
  • Mixed polymers, block polymers, and copolymers include macromolecules having two, three, or more different monomers.
  • the polymeric component may have any combination of the monomers or polymers which make up any of the example polymers described herein, or may be a blend of polymers. Mixtures of polymeric components may be used in variations of this invention. Examples of polymers include linear or branched, side-chain branched, or branched comb polymers.
  • a polymer may be a star or dendrimeric form, or forms including microtubules, cylinders, or nanotubes of various compositions.
  • Polymer branches may be long-chain branches or short-chain branches.
  • the polymers may be made by synthetic methods, or may be obtained from naturally-occurring sources.
  • a polymeric component may be in the form of a polymer when introduced into the mixture used to form a nanofilm.
  • a polymeric component which is already in the form of a polymer when introduced into the mixture used to form a nanofilm may have amphiphilic character.
  • a polymer having amphiphilic character may be more soluble in water than organic solvent, or vice-versa.
  • a polymeric component may be a water soluble polymer having polar groups and amphiphilic character.
  • the polymeric component may be in the form of a polymerizable molecule when introduced into the mixture used to form a nanofilm.
  • Polymerizable molecules used to prepare a nanofilm include monomers.
  • polymerizable molecules used to prepare a nanofilm may have amphiphilic character.
  • the polymeric component of a nanofilm may be formed in-situ during preparation of the nanofilm from macrocyclic modules and/or other components. In-situ formation of the polymeric component of a nanofilm may be carried out by polymerization of a monomer or polymerizable amphiphile in a multicomponent mixture.
  • Examples of a polymeric component include poly(maleic anhydrides), a copolymer of maleic anhydride, poly(ethylene-co-maleic anhydride), poly(maleic anhydride-co-alpha olefin), polyacrylates, a polymer or copolymer having acrylate side groups, a polymer or copolymer having oxacyclopropane side groups, polyethyleneimides, polyetherimides, polyethylene oxides, polypropylene oxides, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyolefins, polyethylenes, polypropylenes, ethylene-propylene copolymers, polyisoprenes, neopropenes, polyanilines, polyacetylenes, polyvinylchlorides, polyvinylidene chlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides,
  • Examples of a polymeric component also include amino-branched, amino-substituted, and amino-terminal derivatives of the preceding example polymers.
  • Other examples of a polymeric component include polynucleotides, synthetic or naturally-occurring polynucleotides, for example, poly(T) and poly(A), nucleic acids, as well as proteoglycans, glycoproteins, and glycolipids.
  • polymeric components which are polymerizable monomers include vinyl halide compounds such as vinyl chloride; vinylidene monomers such as vinylidene chloride; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and salts thereof; acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, methoxyethyl acrylate, phenyl acrylate and cyclohexyl acrylate; methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, phenyl methacrylate and cyclohexyl methacrylate; unsaturated ketones such as methyl vinyl ketone, ethyl vinyl ketone, phenyl vinyl ketone, methyl isobutenyl ketone and methyl is
  • polymeric components which are polymerizable amphiphiles include long chain alkyl derivatives of vinyl halides, vinylidene halides, unsaturated carboxylic acids and salts thereof, acrylates, methacrylates, unsaturated ketones, vinyl esters, vinyl ethers, acrylamides, acid compounds containing a vinyl group, anhydrides, styrenes, allyl alcohol or esters or ethers thereof, vinylimides, vinyl compounds, unsaturated aldehydes, and vinyl compounds.
  • polymeric components which are polymerizable amphiphiles generally include amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, and amphiphilic oxiranes.
  • polymeric components which are polymerizable amphiphiles include amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides, any of which may be coupled with linker molecules.
  • Preferred polymeric components include poly(maleic anhydride-co-alpha olefin), PMAOD, PMMA, poly(2-hydroxyethyl methacrylate) (PHEMA), PGM, polyethylene imine (PEI) and CH 2 ⁇ CHC(O)OCH 2 CH 2 OH.
  • Further preferred polymeric components which may be used in the nanofilms of the invention include those described in Tables 5-9 hereinbelow.
  • the polymeric component is poly(maleic anhydride-co-alpha olefin).
  • the polymeric component is PMAOD.
  • the polymeric component is PMMA.
  • the polymeric component is PHEMA.
  • the polymeric component is PGM.
  • the polymeric component is PEI.
  • the polymeric component is CH 2 ⁇ CHC(O)OCH 2 CH 2 OH.
  • a polymeric component may have an atom or a group of atoms which couple to other species or components of a nanofilm. Coupling of the polymeric component to other species in a nanofilm may be complete or incomplete.
  • the polymeric component may couple to macrocyclic modules or linker molecules, or to other polymeric components, or to other species such as amphiphiles or monomers. Coupling of macrocyclic modules, linker molecules, or other species may be to domains of the polymeric component, occurring at the interface or surface of the domains.
  • Amphiphilic molecules may be oriented on a surface such as an air-water interface in a Langmuir trough, and may be compressed to form a Langmuir thin film.
  • the amphiphilic molecules of the Langmuir thin film may be coupled to each other or to other components, and may form a substantially monomolecular layer thin film material.
  • Non-limiting examples of polar groups of the amphiphilic molecules include amide, amino, ester, —SH, acrylate, acrylamide, epoxy, —OH, —OCH 3 , —NH 2 , —CN, —NO 2 , —N + RR′R′′, —SO 3 ⁇ , —OPO 2 2 ⁇ , —OC(O)CH ⁇ CH 2 , —SO 2 NH 2 , —SO 2 NRR′, —OP(O)(OCH 2 CH 2 N + RR′R′′)O ⁇ , —C(O)OH, —C(O)O ⁇ , guanidinium, aminate, pyridinium, —C(O)OCH 3 , —C(O)OCH 2 CH 3 ,
  • w is 1-6, —C(O)OCH ⁇ CH 2 , —O(CH 2 ) x C(O)NH 2 , where x is 1-6, —O(CH 2 ) y C(O)NHR, where y is 1-6, and —O(CH 2 CH 2 O) z R, where z is 1-6, and hydrophilic groups.
  • the polar groups may be coupled together by coupling reactions to form a thin film material.
  • the polar groups of the amphiphilic molecules may be linked directly to each other. For example, sulfhydryl groups may be coupled to form disulfide link, or polar groups having ester and amino groups may couple to attach the amphiphilic molecules through amide linkages.
  • the coupling may attach more than two amphiphilic molecules, for example, by extended amide linkages.
  • the polar groups of the amphiphilic molecules may also be linked to each other with a linker molecule.
  • amino may be coupled by the Mannich reaction with formaldehyde.
  • a portion of the amphiphilic molecules of the nanofilm may be coupled, while the rest are not coupled.
  • the amphiphilic molecules of the nanofilm both those which are coupled and those which are not coupled, may also interact through weak non-bonding or bonding interactions such as hydrogen bonding and other interactions.
  • hydrophobic tails of the amphiphilic molecules may be any length, and are sometimes from about 1 to 28 carbon atoms.
  • hydrophobic tails of the amphiphilic molecules include the hydrophobic groups which may be attached to macrocyclic modules to impart amphiphilic character to the modules.
  • Preferred polymerizable amphiphiles include amphiphilic acrylates, amphiphilic acrylamides, amphiphilic vinyl esters, amphiphilic anilines, amphiphilic diynes, amphiphilic dienes, amphiphilic acrylic acids, amphiphilic enes, amphiphilic cinnamic acids, amphiphilic amino-esters, amphiphilic oxiranes, amphiphilic amines, amphiphilic diesters, amphiphilic diacids, amphiphilic diols, amphiphilic polyols, and amphiphilic diepoxides.
  • Preferred non-polymerizable amphiphiles include decylamine and stearic acid. It is to be understood that these are “non-polymerizable amphiphiles” when they are non-polymerizable under the conditions in which the nanofilm is prepared. These may be considered polymerizable amphiphiles when included in other nanofilms, wherein the conditions of the preparation of those nanofilms could cause the amphiphiles to be polymerized.
  • the amphiphile may be octadecylamine (ODA). In some embodiments, the amphiphile may be methylheptadecanoate (MHD). In some embodiments, the amphiphile may be N-octadecylacrylamide (ODAA). In some embodiments, the amphiphile may be decylamine. In some embodiments, the amphiphile may be stearic acid. In some embodiments, the amphiphile may be a methyl ester of stearic acid. In some embodiments, the amphiphile may be icosanol, or other long chain alkanol. Further examples of preferred amphiphiles may be found in the Examples, and in Tables 5-9.
  • Pores and barrier properties are found in the structure of the nanofilm made by coupling amphiphilic molecules.
  • the pores and barrier properties may be modified by the degree or extent of coupling or interaction of the amphiphilic molecules, and for example, by the length of the linker molecules.
  • Macrocyclic modules and/or other components oriented on a surface may be coupled to form a thin layer composition or nanofilm.
  • surface-oriented modules may be coupled in a two-dimensional array to form a substantially monomolecular layer nanofilm.
  • the two-dimensional array is generally one molecule thick throughout the thin layer composition, and may vary locally due to physical and chemical forces.
  • Coupling of modules and/or other components may be done to form a substantially two-dimensional thin film by orienting the modules and/or other components on a surface before or during the process of coupling.
  • amphiphilic components may be oriented on an interface.
  • water soluble components may be added to the subphase for the formation of a nanofilm. Components may also be mixed prior to orienting on an interface.
  • Macrocyclic modules can be prepared to possess functional groups which permit coupling of the modules.
  • the nature of the products formed by coupling modules depends, in one variation, on the relative orientations of the functional groups with respect to the module structure, and in other variations on the arrangement of complementary functional groups on different modules which can form covalent, non-covalent or other binding attachments with each other.
  • a macrocyclic module includes functional groups which couple directly to complementary functional groups of other macrocyclic modules to form linkages between macrocyclic modules.
  • the functional groups may in some cases contribute to the amphiphilic character of the module before or after coupling, and may be covalently or non-covalently attached to the modules.
  • the functional groups are covalently attached to the modules.
  • the functional groups may be attached to the modules before, during, or after orientation of the modules on the surface.
  • a macrocyclic module includes functional groups which couple to polymeric components and/or other components.
  • Macrocyclic modules may be prepared with functional groups which couple to complementary functional groups of polymeric and/or other components to form linkages. The coupling between macrocyclic modules and these other components may be direct, or may occur through linker molecules.
  • components such as polymeric components and amphiphiles may also comprise functional groups for coupling to themselves or to other components, such as coupling a polymeric component to another polymeric component, or coupling a polymeric component to an amphiphilic component.
  • the functional groups may be attached to the components before, during, or after orientation of the components on a surface or subphase. In some cases, the functional groups impart amphiphilic character to the component, either before or after coupling.
  • one or more coupling linkages may be formed between macrocyclic modules, and coupling may occur between macrocyclic modules and other components. In some variations, coupling may also occur between other components, for example, between amphiphilic groups and polymeric components.
  • the linkage formed between, e.g., macrocyclic modules or between a macrocyclic module and another component may be the product of the coupling of one functional group from each molecule. For example, a hydroxyl group of a first macrocyclic module may couple with an acid group or acid halide group of a second macrocyclic module to form an ester linkage between the two macrocyclic modules.
  • Another example is an imine linkage, —CH ⁇ N—, resulting from the reaction of an aldehyde, —CH ⁇ O, on one macrocyclic module with an amine, —NH 2 , on another macrocyclic module. Examples of linkages between macrocyclic modules or between macrocyclic modules and other components are shown in Table 2.
  • R and R′ represent hydrogen or alkyl groups
  • X is halogen or other good leaving group. It is to be understood that the functional groups included in Table 2 may also be used to link a module with another component, such as a polymeric component, and may also be used to link non-module components together, such as a polymeric component to another polymeric component, or a polymeric component to an amphiphilic component.
  • a macrocyclic module may have functional groups for coupling to other macrocyclic modules wherein the functional groups are coupled to the macrocyclic module after initial preparation of the closed ring of the module.
  • an amine linkage between the synthons of a macrocyclic module may be substituted with one of various functional groups to produce a substituted linkage. Examples of such linkages between synthons of a macrocyclic module having functional groups for coupling other macrocyclic modules are shown in Table 3. TABLE 3 Examples of macrocyclic module linkages Macrocyclic Module Linkage Reagent Substituted Linkage
  • X is halogen
  • Q represents a synthon in a macrocyclic module.
  • the substituted linkage of a macrocyclic module may couple to a substituted linkage of another module.
  • the coupling of these linkages is done by initiating 2+2 cycloaddition.
  • acrylamide linkages may couple to produce
  • the functional groups used to form linkages between macrocyclic modules and/or other components may be separated from the module or component by a spacer.
  • a spacer can be any atom or group of atoms which couples the functional group to the macrocyclic module or other component, and does not interfere with the linkage-forming reaction.
  • a spacer is part of the functional group, and becomes part of the linkage between macrocyclic modules and/or other components.
  • An example of a spacer is a polymethylene group, —(CH2)n-, where n is 1-6. The spacer may be said to extend the linkage between macrocyclic modules and/or other components.
  • spacer groups are alkylene, aryl, acyl, alkoxy, saturated or unsaturated cyclic hydrocarbon, heteroaryl, heteroarylalkyl, heterocyclic, and corresponding substituted groups.
  • Further examples of spacer groups are polymer, copolymer, or oligomer chains, for example, polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyacrylates, polyamines, polyimines, polystyrenes, poly(vinyl acetate)s, polytetrafluoroethylenes, polyisoprenes, neopropene, polycarbonate, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, polysul
  • polymer chain spacer structures include linear, branched, comb and dendrimeric polymers, random and block copolymers, homo- and heteropolymers, flexible and rigid chains.
  • the spacer may be any group which does not interfere with formation of the linkage.
  • a spacer group may be substantially longer or shorter than the functional group to which it is attached.
  • Coupling of macrocyclic modules and/or other components to each other may occur through coupling of functional groups of the macrocyclic modules and/or other components to linker molecules.
  • the functional groups involved may be, for example, those exemplified in Table 2.
  • modules may couple to at least one other module through a linker molecule.
  • a linker molecule is a discrete molecular species used to couple at least two modules.
  • Each module may have 1 to 30 or more functional groups which may couple to a linker molecule.
  • Linker molecules may have 1 to 20 or more functional groups which may couple to, for example, a module.
  • a linker molecule has at least two functional groups, each of which can couple to a module and/or other component.
  • linker molecules may include a variety of functional groups for coupling modules and/or other components. Non-limiting examples of functional groups of modules and linker molecules are illustrated in Table 4.
  • n is 1-6
  • m is 1-10
  • R is —CH 3 or —H
  • R′ is —(CH 2 ) n — or phenyl
  • R′′ is —(CH 2 )—
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • X is Br, Cl, I, or other good leaving groups which are organic groups containing atoms selected from the group of carbon, oxygen, nitrogen, halogen, silicon, phosphorous, sulfur, and hydrogen.
  • a module may have a combination of the various functional groups exemplified in Table 4.
  • linkers included in Table 4 may also be used to link a module with another component, such as a polymeric component, and may also be used to link nonmodule components together, such as a polymeric component to an amphiphilic component.
  • Preferred linkers include DEM and ethylene diamine. Further examples of suitable linkers are found in the Examples, and in Tables 5-9.
  • Methods of initiating coupling of the modules and/or components to linker molecules include chemical, thermal, photochemical, electrochemical, and irradiative methods.
  • a nanofilm comprising coupled modules and/or other components can be made by coupling together one or more members of the collection of modules and/or other components, perhaps with other bulky or flexible components, to form a thin layer nanofilm material or composition. Coupling of modules and/or other components may be complete or incomplete, providing a variety of structural variations useful as nanoflim membranes.
  • the coupling of polymeric components to macrocyclic modules to prepare a nanofilm may be done with myriad combinations of complementary functional groups.
  • macrocyclic modules which may couple to other macrocyclic modules through linker molecules may also couple to polymeric components and other components having complementary functional groups.
  • a polymeric component having amino functional groups for example, may couple to linker molecules and compete with the macrocyclic modules for coupling to other macrocyclic modules.
  • a macrocyclic module having amino functional groups may couple to poly(ethylene-co-maleic anhydride) to form a maleimide group in the polymer.
  • the various types and degrees of coupling depend on the identity of the functional groups of the polymeric components.
  • the species may copolymerize. Copolymerization may involve coupling to functional groups of macrocyclic modules.
  • the coupling of modules in a nanofilm may attach two or more components by a linkage or linkages.
  • the coupling may attach more than two modules, for example, by an array of linkages each formed between two modules.
  • Each module may form more than one linkage to another module, and each module may form several types of linkages, including those exemplified in Tables 2-4.
  • a module may have direct linkages, linkages through a linker molecule, and linkages which include spacers, in any combination.
  • a linkage may connect any portion of a module to any portion of another module.
  • An array of linkages and an array of modules may be described in terms of the theory of Bravais lattices and theories of symmetry.
  • a nanofilm may be prepared from mixtures of macrocyclic modules and other components.
  • the types of coupling between the components and the phase and domain behavior of the mixture, as described herein, may influence the composition and properties of the product nanofilm. Multicomponent mixtures of these types sometimes result in phase separated or aggregated compositions.
  • a macrocyclic module may participate in more than one type of coupling, and the product nanofilm may have a wide variety of compositions.
  • this invention relates to the introduction of polymeric components into nanofilms comprising macrocyclic modules.
  • Various types of coupling may be used to prepare a nanofilm with macrocyclic modules and polymeric components.
  • a macrocyclic module may have functional groups which couple to a linker molecule which, in turn, couples to another macrocyclic module or other species, but may not effectively couple to a polymeric component.
  • the macrocyclic module may couple much more rapidly to another macrocyclic module than to the polymeric component, and form a nanofilm in which the degree of coupling between macrocyclic modules and the polymeric component is limited.
  • a macrocyclic module having amino functional groups may couple readily with a linker molecule such as ClC(O)CH2C(O)Cl, but not as readily with some polymeric components.
  • a macrocyclic module may not have functional groups which readily couple to other components.
  • An example of this type is a macrocyclic module having imine linkages and only alkyl substituents which may not readily couple to other macrocyclic modules, polymeric components, or other species.
  • a macrocyclic module which does not readily couple to other species may form a nanofilm with polymeric components without substantial coupling between macrocyclic modules and polymeric components.
  • this invention involves the formation of a nanofilm using multicomponent mixtures of macrocyclic modules and polymeric components, wherein the macrocyclic modules may not directly couple to other macrocyclic modules or to polymeric components in forming the nanofilm, and wherein the macrocyclic modules may be coupled through linker molecules.
  • the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof.
  • macrocyclic modules having amino functional groups are mixed with polymethylmethacrylate (PMMA), which is immiscible with water.
  • PMMA polymethylmethacrylate
  • the macrocyclic modules are then coupled with linker molecules ClC(O)CH2C(O)Cl.
  • the macrocyclic modules may not couple directly to polymeric components, except at interfaces between phases. Even where the macrocyclic modules and polymeric components form a single continuous phase, the macrocyclic modules may be coupled predominantly to other macrocyclic modules. In nanofilms where macrocyclic modules and polymeric components are phase separated, surface coupling and other adhesion of various domains may occur.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic which may or may not be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof. These nanofilms may optionally include a non-polymerizable amphiphilic species.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may optionally include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
  • this invention involves formation of nanofilm using multicomponent mixtures of macrocyclic modules and polymeric components, where the macrocyclic modules may not readily couple to the polymeric components or to other macrocyclic modules.
  • Various schemes for the preparation of such nanofilms are illustrated in Table 6.
  • n is about 3 to about 1,000,000.
  • the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof. In these schemes, the macrocyclic modules may not readily couple to polymeric components or to other modules, but may undergo some degree of coupling to either the polymeric components or other modules.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic and may be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof. These nanofilms may optionally include a non-polymerizable amphiphilic species.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may further include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
  • this invention relates to the formation of nanofilms using multicomponent mixtures of macrocyclic modules and polymeric components, wherein the macrocyclic modules may directly couple to the polymeric components, or to other macrocyclic modules.
  • Table 7 Various schemes for the preparation of such nanofilms are illustrated in Table 7.
  • R is alkyl
  • n is about 3 to about 1,000,000.
  • the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof In these schemes, the macrocyclic modules may in some cases couple directly to polymeric components, and may form a single phase.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may include a polymer and/or an amphiphilic polymer, and may further include a molecule which is amphiphilic which may or may not be polymerizable, or a monomer which is polymerizable, or mixtures thereof.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilms may include a polymerizable amphiphile or a polymerizable monomer species, or mixtures thereof These nanofilms may optionally include a non-polymerizable amphiphilic species.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may also include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
  • the type of coupling in which a macrocyclic module participates to form a nanofilm may depend on the presence of other components of the nanofilm.
  • a macrocyclic module with acrylate functional groups may couple much more rapidly to itself than to a polymeric component with less reactive groups.
  • a macrocyclic module may participate in more than one type of coupling.
  • a macrocyclic module which may couple directly to another macrocyclic module may also couple through a linker molecule to another macrocyclic module. Both types of coupling may occur in the same multicomponent mixture used to prepare a nanofilm.
  • a macrocyclic module may have functional groups which couple directly to complementary functional groups of another macrocyclic module.
  • An example of this form is a macrocyclic module having acrylamide functional groups.
  • the macrocyclic module may couple much more rapidly to another macrocyclic module than to any polymeric component, and form a nanofilm in which the degree of coupling between macrocyclic modules and the polymeric component is limited.
  • the polymeric component may have complementary functional groups which effectively compete for the coupling groups of macrocyclic modules.
  • the macrocyclic module may couple as rapidly to another macrocyclic module as it does to the polymeric component, and may form a nanofilm in which the degree of coupling between the macrocyclic modules themselves is comparable to that between the macrocyclic modules and the polymeric component.
  • the degree of coupling between the macrocyclic modules and the polymeric component may exceed that between the macrocyclic modules themselves.
  • a nanofilm may be prepared by various methods where the macrocyclic modules couple directly to a polymeric component.
  • the macrocyclic modules and polymeric component may be dissolved in organic solvent and coupled together before preparation of a nanofilm. This scheme may result in a substantially single continuous phase within the nanofilm.
  • the macrocyclic modules may be coupled to the polymeric component during or after preparation of the nanofilm layer.
  • a nanofilm of this invention may be formed from macrocyclic modules having functional groups which may couple directly to complementary fuinctional groups of a polymeric component.
  • the macrocyclic modules may not readily couple to other macrocyclic modules.
  • Schemes for the preparation of such nanofilms are illustrated in Table 8. TABLE 8 Schemes to prepare nanoflim from macrocyclic modules which couple to polymeric components Reagents Scheme macrocyclic module polymer macrocyclic module amphiphilic polymer
  • the multicomponent mixture of macrocyclic modules may include a polymer, or an amphiphilic polymer, or mixtures thereof.
  • the macrocyclic modules directly couple to polymeric components, but may not readily couple to other modules.
  • a discrete product is formed from the coupling of macrocyclic modules to a polymeric component.
  • the discrete module-polymer product may be similar in molecular architecture to a side-group branched polymer, or a graft polymer.
  • the discrete product may have a predominantly single continuous phase.
  • secondary amine linkages between synthons of a macrocyclic module may couple to a carboxylic acid side group of a copolymer such as the diacid form of poly(ethylene-co-maleic anhydride).
  • macrocyclic modules couple to polymeric components, and both may be miscible in water.
  • the coupling between the macrocyclic module and the polymeric component may also be indirect, and involve a linker molecule.
  • multicomponent mixtures of macrocyclic modules used to prepare nanofilm may also include amphiphilic molecules which may have a functional group that can couple to macrocyclic modules or to polymeric components.
  • this invention relates to the introduction of polymeric components into nanofilms comprising amphiphiles.
  • Various types of coupling may be used to prepare a nanofilm comprising amphiphiles and polymeric components.
  • an amphiphile may contain a polymerizable functional group, such as an acrylate group.
  • a polymeric component of a nanofilm may be formed in-situ with the nanofilm by using a multicomponent mixture which includes a polymerizable amphiphile, and which may also optionally include a polymerizable monomer.
  • amphiphilic molecule which does not have a polymerizable functional group may be used.
  • amphiphiles may be mixed with polymer, amphiphilic polymer, polymerizable monomer, polymerization amphiphile, or mixtures thereof to form a nanofilm having polymeric components.
  • a nanofilm is prepared with polymerizable amphiphiles.
  • a polymeric component may be formed in-situ from the polymerizable amphiphiles.
  • the mixtures used to fonn such nanofilms may further include a polymer, or an amphiphilic polymer, a polymerizable monomer, an amphiphile, or mixtures thereof.
  • a nanofilm may be prepared from a polymer, an amphiphilic polymer, or a polymerizable monomer.
  • the nanofilms may optionally include an amphiphile.
  • this invention relates variously to nanofilms prepared from polymeric components.
  • the polymeric components may be directly linked to each other, or may be linked via linker molecules.
  • a LB film of PGM may be crosslinked with ethylene diamine to form a nanofllm.
  • a LB film of polyethylene imine (PEI) may be crosslinked with diethylene glycol diglycidyl ether:
  • the characteristics of a nanofilm having one or more polymeric components may be substantially different than those of nanofilm prepared from macrocyclic modules alone.
  • a nanofilm having polymeric components may be advantageously flexible and pliable compared to nanofilm prepared from modules alone, making it easier to fabricate articles such as membranes for filtration and other separation processes.
  • Various domains of a nanofilm having polymeric components may undergo plastic deformation in response to stress, while other regions may be elastomeric.
  • Nanofilms having polymeric components may be deposited on a substrate to form a continuous, substantially unbroken supported nanofilm or membrane.
  • nanofilm having one or more polymeric components may be dependent, in part, on the fraction of polymeric component relative to macrocyclic modules or other components, these properties can be varied by changing the fraction of polymeric component in the nanofilm.
  • components which are polymerizable may be used to prepare a polymeric component of a nanofilm in-situ during formation of the nanofilm.
  • In-situ formation of a nanofilm polymeric component provides an alternative scheme in which phase and domain behavior of the multicomponent mixture may be modified.
  • Schemes involving polymerizable species in a multicomponent mixture may be used to prepare, among other compositions, nanofilm having smaller domains of phase separated polymeric components as compared to nanofilm prepared with polymer or amphiphilic polymer components alone.
  • Multicomponent mixtures involving a polymerizable amphiphile may be used to prepare nanofilm with fewer openings of micrometer dimension through which transport of species can occur, as compared to nanofilm prepared with polymer or amphiphilic polymer components alone.
  • the polymeric molecules may not be coupled to other components of the nanofilm.
  • the ability of a polymeric component to make a nanofilm flexible or pliable may not require coupling to macrocyclic modules or other components.
  • the area fraction of a component of a nanofilm is the fraction of the total nanofilm area that the individual component represents.
  • the nanofilm area fraction of a component is calculated from the mole fraction (Mf) of the component in the initial mixture of components used to form the nanofilm, and the mean molecular area (MMA) of the component obtained by extrapolation of the high-surface pressure region of the pressure-area Langmuir isotherm of the pure component to zero surface pressure.
  • area fraction can be measured where all nanofilm components are immiscible in water or are amphiphilic, and all nanofilm components are found in the initial mixture of components.
  • the uncertainty in measurement of area fraction may be up to about 20%, which includes uncertainty due to extrapolation of Langmuir isotherms, and for polymeric components which are polymers in the initial mixture of components, uncertainty due to molecular weight polydispersity of the polymer.
  • the nanofilm area fraction of a component may not always be measured by the above formula.
  • the area fraction of a component which was not in the initial mixture of components used to form the nanofilm, but entered the nanofilm later would not be measured by the formula above.
  • the area fraction of a component may also not be measured by the formula above when the component does not form a stable Langmuir film for which MMA can be measured, or when a polymerizable component is used in the initial mixture which may have an MMA different from the polymer it produces.
  • a nanofilm may have any area fraction of polymeric components.
  • a nanofilm may have an area fraction of polymeric components from about 0.005 (0.5%) to about 0.98 (98%).
  • a nanofilm may have an area fraction of polymeric components from about 0.005 to about 0.7, often from about 0.005 to about 0.5, sometimes from about 0.005 to about 0.3, sometimes from about 0.005 to about 0.2, sometimes from about 0.005 to about 0.1, sometimes from about 0.005 to about 0.05, sometimes from about 0.005 to about 0.02, sometimes from about 0.50 to about 0.98.
  • a nanofilm may have an area fraction or weight percent of polymeric components sufficient to make it flexible and pliable so that it may be deposited on a substrate as a homogeneous film with little mechanical breakage, or to reduce the surface modulus of the nanofilm. Flexibility of a nanofilm having polymeric components may be demonstrated by depositing the nanofilm on various substrates to form a continuous, substantially unbroken film on the substrate, or by reducing surface modulus of the nanofilm.
  • a nanofilm may have any molar ratio of polymeric components, as measured against the other components.
  • the molar ratio of polymeric components may be, for example, about 0.005 to about 0.995, for example about 0.010 to about 0.990, for example, about 0.01 to about 0.50, for example about 0.01 to about 0.20, for example, about 0.20 to about 0.50, for example about 0.50 to about 0.99, for example, about 0.1 to about 0.9, as measured against the other components.
  • the molar ratio of polymeric component: module is about 0.1:0.9, about 0.2:0.8, about 0.5:0.5, about 0.25:0.75, or about 0.90:0.10.
  • the thickness of nanofilms described herein, whether through coupled or non coupled components, is exceptionally small, often being less than about 30 nanometers, sometimes less than about 20 nanometers, and sometimes from about 1-15 nanometers.
  • the thickness of a nanofilm depends partly on the structure and nature of the groups on the modules or other species which impart amphiphilic character to the modules, and partly on the nature of the polymeric or other components. The thickness may be dependent on temperature, and the presence of solvent on the surface or located within the nanofilm.
  • the thickness may be modified if the groups on the modules or other components which impart amphiphilic character, in particular the lipophilic moiety, to the component are removed or modified after the components have been coupled, or at other points during or after the process of preparation of a nanofilm.
  • the thickness of a nanofilm may also depend on the structure and nature of the surface attachment groups on the components.
  • the thickness of nanofilms may be less than about 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 or 5 ⁇ .
  • the nanofilm composition may include uniquely structured regions in which modules and/or other components are coupled. Coupling of modules and/or other components provides a nanofilm in which unique structures may be formed. Nanofilm structures define pores through which atoms, molecules, or particles of only up to a certain size and composition may pass.
  • One variation of a nanofilm structure includes an area of nanofilm able to face a fluid medium, either liquid or gaseous, and provide pores or openings through which atoms, ions, small molecules, biomolecules, or other species are able to pass.
  • the dimensions of the pores defined by nanofilm structures may be exemplified by quantum mechanical calculations and evaluations, and physical tests, as further described in the following Examples.
  • the dimensions of the pores defined by nanofilm structures are described by actual atomic and chemical structural features of the nanofilm.
  • the approximate diameters of pores formed in the structure of a nanofilm are from about 1-150 ⁇ , or more. In some embodiments, the dimensions of the pores are about 1-10 ⁇ , about 3-15 ⁇ , about 10-15 ⁇ , about 15-20 ⁇ , about 20-30 ⁇ , about 30-40 ⁇ , about 40-50 ⁇ , about 50-75 ⁇ , about 75-100 ⁇ , about 100-125 ⁇ , about 125-150 ⁇ , about 150-300 ⁇ , about 600-1000 ⁇ .
  • the approximate dimensions of pores formed in the structure of a nanofilm are useful to understand the porosity of the nanofilm.
  • the porosity of conventional membranes is normally quantified by empirical results such as molecular weight cut-off, which reflects complex diffusive and other transport characteristics.
  • a nanofilm structure may comprise an array of coupled modules which provides an array of pores of substantially uniform size.
  • the pores of uniform size may be defined by the individual modules themselves.
  • Each module defines a pore of a particular size, depending on the conformation and state of the module.
  • the conformation of the coupled module of the nanofilm may be different from the nascent, pure macrocyclic module in a solvent, and both may be different from the conformation of the amphiphilic module oriented on a surface before coupling.
  • a nanofilm structure including an array of coupled modules can provide a matrix or lattice of pores of substantially uniform dimension based on the structure and conformation of the coupled modules.
  • Modules of various composition and structure may be prepared which define pores of different sizes.
  • a nanofilm prepared from coupled modules may be made from any one of a variety of modules.
  • nanofilms having pores of various dimensions are provided, depending on the particular module used to prepare the nanofilm.
  • nanofilm structures define pores in the matrix of coupled modules or other components. Pores defined by nanofilm structures may have a wide range of dimensions, for example, dimensions capable of selectively blocking the passage of small molecules or large molecules.
  • nanofilm structures may be formed from the coupling of two or more modules, in which an interstitial pore is defined by the combined structure of the linked modules.
  • a nanofilm may have an extended matrix of pores of various dimensions and characteristics.
  • Interstitial pores may be, for example, less than about 5 ⁇ , less than about 10 ⁇ , about 3-15 ⁇ , about 10-15 ⁇ , about 15-20 ⁇ , about 20-30 ⁇ , about 30-40 ⁇ , about 40-50 ⁇ , about 50-75 ⁇ , about 75-100 ⁇ , about 100-125 ⁇ , about 125-150 ⁇ , about 150-300 ⁇ , about 300-600 ⁇ , about 600-1000 ⁇ .
  • the other components may act as a “filler” to limit the porosity of the nanofilm.
  • the other components will provide porosity to the nanofilm, depending on the type and extent of cross-linking between the components.
  • the coupling process may result in a nanofilm in which regions of the nanofilm are not precisely monomolecular layers.
  • Local structural features may include amphiphilic components or species, including polymeric species, which are flipped over relative to their neighbors, or turned in a different orientation, having their hydrophobic and hydrophilic facets oriented differently than neighboring species.
  • Local structural features may also include overlaying or stacking of molecules in which the nanofilm is two or more molecular layers thick, local regions in which the interlinking of the modules or other components is not complete so that some of the available coupling groups are not coupled to other species, or local regions in which there is an absence of a particular molecule or component.
  • Other local structural features may include grain boundaries and orientational faults.
  • the nanofilm has a thickness of up to 30 nanometers due to the layering of nanofilm structures.
  • the nanofilms disclosed herein may be substantially uniform with respect to the orientation of their amphiphilic components, but may in some embodiments comprise regions of local structural features as indicated hereinabove. Local structural features may comprise, for example, greater than about 30%, less than about 30%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 3%, less than about 1% of the surface area of the nanofilm.
  • the nanofilm may have domains in which a polymeric component or components are intermixed at the atomic level with macrocyclic modules or other species, and solubilized with each other.
  • the macrocyclic modules or other species may be miscible with the polymeric component.
  • the polymeric molecules, macrocyclic modules, or other components may be located in finite-sized aggregates. Above some critical concentration in a particular solvent, polymeric molecules, macrocyclic modules, or other components may collect into finite-sized aggregates. These finite-sized aggregates may persist at the air-water interface in formation of a nanofilm.
  • the structure of the aggregates may be affected by the geometry and shape of the molecules, among other factors, or the capability of the molecules to couple in particular orientations with other species.
  • the structure of the aggregates may be highly dynamic with motion and exchange of the molecules at various rates.
  • the self assembled aggregates of one species may be interspersed in a continuous phase of another species, where the other species is not aggregated.
  • Different molecules or components may form separate aggregates, or be combined in an aggregate structure. Coupling between macrocyclic modules or other components and the polymeric molecules may occur at a surface, edge, or point of the self assembled aggregates.
  • the polymeric molecules may reside in domains that are substantially polymeric, which may be interspersed with domains composed substantially of other species.
  • a polymeric component may be immiscible or phase separated from macrocyclic modules or other components. Phase separation may occur when the aggregation of polymeric molecules is not limited to a small finite size, but may continue until regions of polymeric molecules are separated from regions of other molecules.
  • the form of a polymeric component in these variations may be a solid, gel, or liquid-like polymer melt, or an amorphous composition, in the form of layers, beads, discs or mixtures thereof, and can be homogeneous or heterogeneous in structure or composition.
  • Polymeric components of such nanofilms may form hard and soft domains typical of thermoplastic elastomers, or a polymeric component may form a soft domain relative to a hard domain of macrocyclic modules.
  • a polymeric component may form regions which are amorphous, glassy, semicrystalline, or crystalline, or have subregions with those characteristics.
  • a region of a polymeric component may exhibit rubberlike elasticity or viscoelastic states.
  • Different polymeric components may form separate phases, or may be miscible with each other while remaining immiscible with macrocyclic modules or other components. Coupling between macrocyclic modules or other components and polymeric molecules may occur at or near the interface between the phases, and may contribute to adhesion of the phases.
  • a nanofilm may also be prepared with mixtures of different macrocyclic modules, or with mixtures of macrocyclic modules, polymeric components, and other species.
  • a nanofilm may have an array of coupled modules and other species in which the positional ordering of the modules and other species is random, or is non-random with regions in which one type of species is predominant.
  • the polymeric component maybe intermixed, aggregated, or phase separated from the macrocyclic modules and other species, as described above.
  • Nanofilms made from mixtures of different modules, or with mixtures of macrocyclic modules and other amphiphilic molecules may also have interspersed arrays of pores of various sizes.
  • a monolayer of oriented amphiphilic species for example amphiphilic modules, amphiphilic polymers, and/or amphiphiles, is formed on the surface of a liquid subphase.
  • the amphiphilic components may be dissolved in a solvent and deposited on an air-subphase interface in a Langmuir trough to form the monolayer.
  • movable plates or barriers are used to compress the monolayer and decrease its surface area to form a more dense monolayer. At various degrees of compression, having corresponding surface pressures, the monolayer may reach various condensed states.
  • Surfaces which may be used to orient amphiphiles include interfaces such as gas-liquid, air-water, immiscible liquid-liquid, liquid-solid, or gas-solid interfaces.
  • the thickness of the oriented layer may be substantially a monomolecular layer thickness.
  • Nanofilms may be prepared by various alternative methods.
  • linker molecules may be added to the solution containing the modules and/or other components, which is subsequently deposited on the surface of the Langmuir subphase.
  • the linker molecules may be added to the water subphase of the Langmuir trough, and subsequently transfer to the layer phase containing macrocyclic module and/or other components for coupling.
  • a water-soluble polymeric component may be added to the subphase of a Langmuir trough.
  • a polymeric component may be dissolved in water or solvent and spread on an interface.
  • One or more polymeric components may be co-spread on an interface with macrocyclic modules, and optionally with linker molecules.
  • one or more polymeric components may be co-spread on an interface with macrocyclic modules and/or linker molecules, and/or other amphiphilic molecules.
  • macrocyclic modules and/or other components may be added to the subphase of the Langmuir trough, and subsequently transfer to the interface.
  • coupling of the components of a nanofilm may be initiated by chemical, thermal, photochemical, electrochemical, and irradiative methods.
  • the type of coupling of the components of a nanofilm may depend on the type of initiation and the chemical process involved.
  • species in the mixture which are polymerizable may produce polymeric components by non-selective chain or addition polymerization.
  • the type of the coupling of macrocyclic modules to polymerizable species or polymeric components depends on the functional groups of the modules. For example, free radical polymerization of unsaturated polymeric components, amphiphiles, or monomers may couple polymeric components to benzene synthons of macrocyclic modules, or to other reactive or unsaturated sites.
  • Functional groups added to the modules or other components to impart amphiphilic character may in some embodiments be removed during or after formation of the nanofilm.
  • groups which impart amphiphilic character to a polymeric component may be removed after formation of the nanofilm.
  • groups which impart amphiphilic character to macrocyclic modules may be removed after formation of the nanofilm. The method of removal depends on the functional group.
  • the groups attached to the modules which impart amphiphilic character to the component may include functional groups which can be used to remove the groups at some point during or after the process of formation of a nanofilm. Acid or base hydrolysis may be used to remove groups attached to the component via a carboxylate or amide linkage.
  • An unsaturated group located in the functional group which imparts amphiphilic character to the module may be oxidized and cleaved by hydrolysis. Photolytic cleavage of the functional group which imparts amphiphilic character to the module may also be done. Examples of cleavable functional groups include
  • n is zero to four, which is cleavable by light activation
  • n is zero to four, and m is 7 to 27, which is cleavable by acid or base catalyzed hydrolysis.
  • Examples of functional groups added to the components to impart amphiphilic character to the modules include alkyl groups, alkoxy groups, —NHR, —OC(O)R, —C(O)OR, —NHC(O)R, —C(O)NHR, —CH ⁇ CHR, and —C ⁇ CR, where the carbon atoms of an alkyl group may be interrupted by one or more —S—, double bond, triple bond or —SiRR′— group(s), or substituted with one or more fluorine atoms, or any combination thereof, where R and R′ are independently hydrogen or alkyl.
  • the multicomponent mixtures of macrocyclic modules and/or other components may include additives, dispersants, surfactants, excipients, compatiblizers, emulsifiers, suspension agents, plasticizers, or other species which modify the properties of the components.
  • compatiblizers may be used to reduce domain sizes and form more continuous phase dispersion of the components of a nanofilm.
  • the nanofilm may be derivatized to provide biocompatability or reduce fouling of the nanofilm by attachment or adsorption of biomolecules.
  • Nanofilms may be deposited on a substrate by various methods, such as Langmuir-Schaefer, Langmuir-Blodgett, or other methods used with Langmuir systems.
  • a nanofilm is deposited on a substrate in a Langmuir tank by locating the substrate in the subphase beneath the air-water interface, and lowering the level of the subphase until the nanofilm lands gently on the substrate and is therefore deposited.
  • a description of Langmuir films and substrates is given in U.S. Pat. Nos. 6,036,778, 4,722,856, 4,554,076, and 5,102,798, and in R. A. Hendel et al., Vol. 119 , J. Am.
  • Other methods to prepare a nanofilm having polymeric components include forced removal of solvent to prepare a film, such as spin coating methods and spray coating methods, as well as coating and deposition methods including interfacial, dip coating, knife-edge coating, grafting, casting, phase inversion, or electroplating or other plating methods.
  • Nanofilms deposited on a substrate may be cured or annealed by chemical, thermal, photochemical, electrochemical, irradiative or drying methods during or after deposition on a substrate.
  • chemical methods include reactions with vapor phase reagents such as ethylenediamine or solution phase reagents.
  • a nanofilm treated by any method to attach or couple it to a substrate may be said to be cured.
  • the deposition may result in non-covalent or weak attachment of the nanofilm to the substrate through physical interactions and weak chemical forces such as van der Waals forces and weak hydrogen bonding.
  • the nanofilm may in some embodiments be bound to the substrate through ionic or covalent interaction, or other type of interaction.
  • the substrate may be any surface of any material.
  • Substrates may be porous or non-porous, and may be made from polymeric and inorganic substances.
  • porous substrates are plastics or polymers, track-etch polycarbonate, track-etch polyester, polyethersulfone, polysulfone, gels, hydrogels, cellulose acetate, polyamide, PVDF, polyethylene terephthalate or polybutylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyethylene or polypropylene, ceramics, anodic alumina, laser ablated and other porous polyimides, and UV etched polyacrylate.
  • non-porous substrates are silicon, germanium, glass, metals such as platinum, nickel, palladium, aluminum, chromium, niobium, tantalum, titanium, steel, or gold, glass, silicates, aluminosilicates, non-porous polymers, and mica.
  • substrates include diamond and indium tin oxide.
  • Preferred substrates include silicon, gold, SiO 2 , polyethersulfone, and track etch polycarbonate. In some embodiments, the substrate is SiO 2 . In other embodiments, the substrate is polycarbonate track etch membrane.
  • Substrates may have any physical shape or form including films, sheets, plates, or cylinders, and may be particles of any shape or size.
  • a nanofilm deposited on a substrate may serve as a membrane. Any number of layers of nanofilm may be deposited on the substrate to form a membrane. In some variations, nanofilm is deposited on both sides of a substrate.
  • a layer or layers of various spacing materials may be deposited or attached in between layers of a nanofilm, and a spacing layer may also be used in between the substrate and the first deposited layer of nanofilm.
  • spacing layer compositions include polymeric compositions, hydrogels (acrylates, poly vinyl alcohols, polyurethanes, silicones), thermoplastic polymers (polyolefins, polyacetals, polycarbonates, polyesters, cellulose esters), polymeric foams, thermosetting polymers, hyperbranched polymers, biodegradable polymers such as polylactides, liquid crystalline polymers, polymers made by atom transfer radical polymerization (ATRP), polymers made by ring opening metathesis polymerization (ROMP), polyisobutylenes and polyisobutylene star polymers, and amphiphilic polymers.
  • spacing layer compositions include inorganics, such as inorganic particles such as inorganic microspheres, colloidal inorganics, inorganic minerals, silica spheres or particles, silica sols or gels, clays or clay particles, and the like.
  • examples of amphiphilic molecules include amphiphiles containing polymerizable groups such as diynes, enes, or amino-esters.
  • the spacing layers may serve to modify barrier properties of the nanofilm, or may serve to modify transport, flux, or flow characteristics of the membrane or nanofilm. Spacing layers may serve to modify functional characteristics of the membrane or nanofilm, such as strength, modulus, or other properties.
  • the polymeric components of a nanofilm may provide a spacing layer between the nanofilm and a substrate.
  • a nanofilm having polymeric components may be deposited on a surface and adhere to the surface to a degree sufficient for many applications, such as filtration and membrane separations, without coupling to the surface. Nanofilm having polymeric components may be advantageously cohesive to a substrate, which may include some coupling interactions.
  • a nanofilm may be coupled to a substrate surface.
  • Surface attachment groups may be provided on a polymeric component of a nanofilm, which may be used to couple the nanofilm to the substrate. Coupling of some, but not all of the surface attachment groups may be done to attach the nanofilm to the substrate.
  • surface attachment groups may be provided on the macrocyclic modules and/or other components of a nanofilm.
  • Examples of functional groups which may be used as surface attachment groups to couple a nanofilm to a substrate include amine groups, carboxylic acid groups, carboxylic ester groups, alcohol groups, glycol groups, vinyl groups, styrene groups, epoxide groups, thiol groups, magnesium halo or Grignard groups, acrylate groups, acrylamide groups, diene groups, aldehyde groups, and mixtures thereof.
  • a substrate may have functional groups which couple to the functional groups of a nanofilm.
  • the functional groups of the substrate may be surface groups or linking groups bound to the substrate, which may be formed by reactions which bind the surface groups or linking groups to the substrate.
  • Surface groups may also be created on the substrate by a variety of treatments such as cold plasma treatment, surface etching methods, solid abrasion methods, or chemical treatments. Some methods of plasma treatment are given in Inagaki, Plasma Surface Modification and Plasma Polymerization , Technomic, Lancaster, Pa., 1996.
  • the substrate is derivatized with APTES.
  • the substrate is derivatized with methylacryloxymethyltrimethoxysilane (MAOMTMOS).
  • the substrate is derivatized with acryloxypropyltrimethoxysilane (AOPTMOS).
  • Surface attachment groups of the nanofilm and the surface may be blocked with protecting groups until needed.
  • suitable functional groups for coupling the nanofilm to the substrate and the resulting linkages may be found in Tables 2 and 4.
  • the functional groups on the nanoflim may be from any component of the nanofilm, for example, the macrocyclic modules, the polymer component, or the amphiphilic component.
  • Surface attachment groups may be connected to a nanofilm by spacer groups.
  • substrate functional groups may be connected to the substrate by spacer groups.
  • Spacer groups for surface attachment groups may be polymeric. Examples of polymeric spacers include polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, and polysulfoxides.
  • polymeric spacer structures include linear, branched, comb and dendrimeric polymers, random and block copolymers, homo- and heteropolymers, flexible and rigid chains.
  • Spacer groups for surface attachment groups may also include bifunctional linker groups or heterobifunctional linker groups used to couple biomolecules and other chemical species.
  • a photoreactive group such as a benzophenone is bound to the substrate.
  • the photoreactive group may be activated with light, for example, ultraviolet light, to provide a reactive species which couples to a nanofilm.
  • the photoreactive species may couple to any atom or group of atoms of the nanofilm.
  • modules may also be achieved through ligand-receptor mediated interactions, such as biotin-streptavidin.
  • the substrate may be coated with streptavidin, and biotin may be attached to the modules, for example, through linker groups such as PEG or alkyl groups.
  • the nanofilms described herein may be useful, for example, as membranes.
  • the membrane may be brought into contact with a fluid or solution, separating a species or component from that fluid or solution, for example, for purposes of filtration.
  • a membrane is a substance which acts as a barrier to block the passage of some species, while allowing restricted or regulated passage of other species.
  • permeants may traverse the membrane if they are smaller than a cut-off size, or have a molecular weight smaller than a so-called cut-off molecular weight.
  • the membrane may be called impermeable to species which are larger than the cut-off molecular weight.
  • the cut-off size or molecular weight is a characteristic property of the membrane.
  • Selective permeation is the ability of the membrane to cut-off, restrict, or regulate passage of some species, while allowing smaller species to pass.
  • the selective permeation of a membrane may be described functionally in terms of the largest species able to pass the membrane under given conditions.
  • the size or molecular weight of various species may also be dependent on the conditions in the fluid to be separated, which may determine the form of the species. For example, species may have a sphere of hydration or solvation in a fluid, and the size of the species in relation to membrane applications may or may not include the water of hydration or the solvent molecules.
  • a membrane is permeable to a species of a fluid if the species can traverse the membrane in the form in which it normally would be found in the fluid.
  • Permeation and permeability may be affected by interaction between the species of a fluid and the membrane itself. While various theories may describe these interactions, the empirical measurement of pass/no-pass information relating to a nanofilm, membrane, or module is a useful tool to describe permeation properties.
  • a membrane is impermeable to a species if the species cannot pass through the membrane.
  • Pores may be provided in the nanofilms described herein, for example, pores may be supplied in the structure of the nanofilm. Pores may be supplied in the structure of the macrocyclic modules. Pores may in some cases be supplied from the packing of the macrocyclic modules and the polymeric components. The type and degree of crosslinking between components may influence pore size.
  • the nanofilms described herein comprising one or more polymeric components may advantageously have reduced numbers of micrometer-sized or macroscopic openings which affect use in filtration and selective permeation.
  • the nanofilms may have molecular weight species cut offs of, for example, greater than about 15 kDa, greater than about 10 kDa, greater than about 5 kDa, greater that about 1 kDa, greater than about 800 Da, greater than about 600 Da, greater than about 400 Da, greater than about 200 Da, greater than about 100 Da, greater than about 50 Da, greater than about 20 Da, less than about 15 kDa, less than about 10 kDa, less than about 5 kDa, less that about 1 kDa, less than about 800 Da, less than about 600 Da, less than about 400 Da, less than about 200 Da, less than about 100 Da, less than about 50 Da, less than about 20 Da, about 13 kDa, about 190 Da, about 100 Da, about 45 Da, about 20 Da.
  • “High permeability” indicates a clearance of, for example, greater than about 70%, greater than about 80%, greater than about 90% of the solute.
  • “Medium permeability” indicates a clearance of, for example, less than about 50%, less than about 60%, less than about 70% of the solute.
  • “Low permeability” indicates a clearance of less than, for example, about 10%, less than about 20%, less than about 30% of the solute.
  • a membrane is impermeable to a species if it has a very low clearance (for example, less than about 5%, less than about 3%) for the species, or if it has very high rejection for the species (for example, greater than about 95%, greater than about 98%).
  • the passage or exclusion of a solute is measured by its clearance, which reflects the portion of solute that actually passes through the membrane.
  • the no pass symbol in Tables 16-17 indicates that the solute is partly excluded by the module, sometimes less than 90% rejection, often at least 90% rejection, sometimes at least 98% rejection.
  • the pass symbol indicates that the solute is partly cleared by the module, sometimes less than 90% clearance, often at least 90% clearance, sometimes at least 98% clearance.
  • Examples of processes in which nanofilms may be useful include processes involving liquid or gas as a continuous fluid phase, filtration, clarification, fractionation, pervaporation, reverse osmosis, dialysis, hemodialysis, affinity separation, oxygenation, and other processes.
  • Filtration applications may include ion separation, desalinization, gas separation, small molecule separation, separation of enantiomers, ultrafiltration, microfiltration, hyperfiltration, water purification, sewage treatment, removal of toxins, removal of biological species such as bacteria, viruses, or fungus.
  • the term “synthon” refers to a molecule used to make a macrocyclic module.
  • a synthon may be substantially one isomeric configuration, for example, a single enantiomer.
  • a synthon may be substituted with functional groups which are used to couple a synthon to another synthon or synthons, and which are part of the synthon.
  • a synthon may be substituted with an atom or group of atoms which are used to impart hydrophilic, lipophilic, or amphiphilic character to the synthon or to species made from the synthon.
  • the synthon before being substituted with functional groups or groups used to impart hydrophilic, lipophilic, or amphiphilic character may be called the core synthon.
  • the term “synthon” refers to a core synthon, and also refers to a synthon substituted with functional groups or groups used to impart hydrophilic, lipophilic, or amphiphilic character.
  • cyclic synthon refers to a synthon having one or more ring structures.
  • ring structures include aryl, heteroaryl, and cyclic hydrocarbon structures including bicyclic ring structures and multicyclic ring structures.
  • core cyclic synthons include, but are not limited to, benzene, cyclohexadiene, cyclopentadiene, naphthalene, anthracene, phenylene, phenanthracene, pyrene, triphenylene, phenanthrene, pyridine, pyrimidine, pyridazine, biphenyl, bipyridyl, cyclohexane, cyclohexene, decalin, piperidine, pyrrolidine, morpholine, piperazine, pyrazolidine, quinuclidine, tetrahydropyran, dioxane, tetrahydrothiophene, tetrahydrofuran, pyrrole, cyclopentane, cyclopentene, triptycene, adamantane, bicyclo[2.2.1]heptane, bicyclo[2.2.1]heptene, bicyclo
  • a core synthon comprises all isomers or arrangements of coupling the core synthon to other synthons.
  • the core synthon benzene includes synthons such as 1,2- and 1,3-substituted benzenes, where the linkages between synthons are formed at the 1,2- and 1,3-positions of the benzene ring, respectively.
  • the core synthon benzene includes 1,3-substituted synthons such as
  • L is a linkage between synthons and the 2,4,5,6 positions of the benzene ring may also have substituents.
  • a condensed linkage between synthons involves a direct coupling between a ring atom of one cyclic synthon to a ring atom of another cyclic synthon, for example, where synthons M—X and M—X couple to form M—M, where M is a cyclic synthon and X is halogen; as for example when M is phenyl resulting in the condensed linkage
  • a macrocyclic module is a closed ring of coupled synthons.
  • synthons may be substituted with functional groups to couple the synthons to form a macrocyclic module.
  • Synthons may also be substituted with functional groups which will remain in the structure of the macrocyclic module.
  • Functional groups which remain in the macrocyclic module may be used to couple the macrocyclic module to other macrocyclic modules or other components.
  • a macrocyclic module may contain from three to about twenty-four cyclic synthons.
  • a first cyclic synthon may be coupled to a second cyclic synthon
  • the second cyclic synthon may be coupled to a third cyclic synthon
  • the third cyclic synthon may be coupled to a fourth cyclic synthon, if four cyclic synthons are present in the macrocyclic module, the fourth to a fifth, and so on, until an nth cyclic synthon may be coupled to its predecessor, and the nth cyclic synthon may be coupled to the first cyclic synthon to form a closed ring of cyclic synthons.
  • the closed ring of the macrocyclic module may be formed with a linker molecule.
  • a macrocyclic module may be an amphiphilic macrocyclic module when hydrophilic and lipophilic functional groups exist in the structure.
  • the amphiphilic character of a macrocyclic module may arise from atoms in the synthons, in the linkages between synthons, or in functional groups coupled to the synthons or linkages.
  • one or more of the synthons of a macrocyclic module may be substituted with one or more lipophilic moieties, while one or more of the synthons may be substituted with one or more hydrophilic moieties, thereby forming an amphiphilic macrocyclic module.
  • Lipophilic and hydrophilic moieties may be coupled to the same synthon or linkage in an amphiphilic macrocyclic module.
  • Lipophilic and hydrophilic moieties may be coupled to the macrocyclic module before or after formation of the closed ring of the macrocyclic module.
  • lipophilic or hydrophilic moieties may be added to the macrocyclic module after formation of the closed ring by substitution of a synthon or linkage.
  • the amphiphilicity of a macrocyclic module may be characterized in part by its ability to form a stable Langmuir film.
  • a Langmuir film may be formed on a Langmuir trough at a particular surface pressure measured in milliNewtons per meter (mN/m) with a particular barrier speed measured in millimeters per minute (mm/min), and the isobaric creep or change in film area at constant surface pressure can be measured to characterize stability of the film.
  • mN/m milliNewtons per meter
  • mm/min millimeters per minute
  • a stable Langmuir film of macrocyclic modules on a water subphase may have an isobaric creep at 5-15 mN/m such that the majority of the film area is retained over a period of time of about one hour.
  • Examples of stable Langmuir films of macrocyclic modules on a water subphase may have isobaric creep at 5-15 mN/m such that about 70% of the film area is retained over a period of time of about 30 minutes, sometimes about 70% of the film area is retained over a period of time of about 40 minutes, sometimes about 70% of the film area is retained over a period of time of about 60 minutes, and sometimes about 70% of the film area is retained over a period of time of about 120 minutes.
  • stable Langmuir films of macrocyclic modules on a water subphase may have isobaric creep at 5-15 mN/m such that about 80% of the film area is retained over a period of time of about thirty minutes, sometimes about 85% of the film area is retained over a period of time of about thirty minutes, sometimes about 90% of the film area is retained over a period of time of about thirty minutes, sometimes about 95% of the film area is retained over a period of time of about thirty minutes, and sometimes about 98% of the film area is retained over a period of time of about thirty minutes.
  • an individual macrocyclic module may include a pore in its structure.
  • Each macrocyclic module may define a pore of a particular size, depending on the conformation and state of the module.
  • Various macrocyclic modules may be prepared which define pores of different sizes.
  • a macrocyclic module may have flexibility in its structure. Flexibility may permit a macrocyclic module to more easily form linkages with other macrocyclic modules and/or other components by coupling reactions. Flexibility of a macrocyclic module may also play a role in regulating passage of species through the pore of the macrocyclic module. For example, flexibility may affect the dimension of the pore of an individual macrocyclic module since various conformations may be available to the structure. For example, the macrocyclic module may have a certain pore dimension. in one conformation when no substituents are located at the pore, and the same macrocyclic module may have a different pore dimension in another conformnation when one or more substituents of that macrocycle are located at the pore.
  • a macrocyclic module may have a certain pore dimension in one conformation when one group of substituents are located at the pore, and have a different pore dimension in a different conformation when a different group of substituents are located at the pore.
  • the “one group” of substituents located at the pore may be three alkoxy groups arranged in one regioisomer, while the “different group” of substituents may be two alkoxy groups arranged in another regioisomer.
  • the effect of the “one group” of substituents located at the pore and the “different group” of substituents located at the pore is to provide a macrocyclic module composition which may regulate transport and filtration, in conjunction with other regulating factors.
  • the synthons may be used as a substantially pure single isomer, for example, as a pure single enantiomer.
  • one or more coupling linkages are formed between adjacent synthons.
  • the linkage formed between synthons may be the product of the coupling of one functional group on one synthon to a complementary functional group on a second synthon.
  • a hydroxyl group of a first synthon may couple with an acid group or acid halide group of a second synthon to form an ester linkage between the two synthons.
  • Another example is an imine linkage, —CH ⁇ N—, resulting from the reaction of an aldehyde, —CH ⁇ O, on one synthon with an amine, —NH 2 , on another synthon. Examples of suitable complementary functional groups and linkages between synthons are shown in Table 2, wherein “synthon” may substitute for “module”.
  • the functional groups of synthons used to form linkages between synthons or other macrocyclic modules may be separated from the synthon by a spacer.
  • a spacer can be any atom or group of atoms which couples the functional group to the synthon, and does not interfere with the linkage-formning reaction.
  • a spacer is part of the functional group, and becomes part of the linkage between synthons.
  • An example of a spacer is a methylene group, —CH 2 —.
  • the spacer may be said to extend the linkage between synthons. For example, if one methylene spacer were inserted in an imine linkage, —CH ⁇ N—, the resulting imine linkage may be —CH 2 CH ⁇ N—.
  • a linkage between synthons may also contain one or more atoms provided by an external moiety other than the two functional groups of the synthons.
  • An external moiety may be a linker molecule which may couple with the functional group of one synthon to form an intermediate which couples with a finctional group on another synthon to form a linkage between the synthons, such as, for example, to form a closed ring of synthons from a series of coupled synthons.
  • An example of a linker molecule is formaldehyde.
  • amino groups on two synthons may undergo Mannich reaction in the presence of formaldehyde as the linker molecule to produce the linkage —NHCH 2 NH—. Examples of suitable functional groups and linker molecules are shown in Table 4, wherein “synthon” may substitute for “module.”
  • a macrocyclic module may include functional groups for coupling the macrocyclic module to a solid surface, substrate, or support.
  • functional groups of macrocyclic modules which can be used to couple to a substrate or surface include amine, carboxylic acid, carboxylic ester, benzophenone and other light activated crosslinkers, alcohol, glycol, vinyl, styryl, olefin styryl, epoxide, thiol, magnesium halo or Grignard, acrylate, acrylamide, diene, aldehyde, and mixtures thereof.
  • These functional groups may be coupled to the closed ring of the macrocyclic module, and may optionally be attached by a spacer group.
  • solid surfaces include metal surfaces, ceramic surfaces, polymer surfaces, semiconductor surfaces, silicon wafer surfaces, alumina surfaces, and so on.
  • functional groups of macrocyclic modules which can be used to couple to a substrate or surface further include those described in the left hand column of Tables 2-4. Methods of initiating coupling of the modules to the substrate include chemical, thermal, photochemical, electrochemical, and irradiative methods.
  • spacer groups include polyethylene oxides, polypropylene oxides, polysaccharides, polylysines, polypeptides, poly(amino acids), polyvinylpyrrolidones, polyesters, polyvinylchlorides, polyvinylidene fluorides, polyvinylalcohols, polyurethanes, polyamides, polyimides, polysulfones, polyethersulfones, polysulfonamides, and polysulfoxides.
  • the macrocyclic module composition comprises: from three to about twenty-four cyclic synthons coupled to form a closed ring; at least two functional groups for coupling the closed ring to complementary functional groups on at least two other closed rings; wherein each functional group and each complementary functional group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
  • the composition may comprise at least two closed rings coupled through said functional groups.
  • the composition may comprise at least three closed rings coupled through said functional groups.
  • the macrocyclic module composition comprises: from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; the closed ring having a first pore dimension in a first conformation when a first group of substituents is located at the pore and a second pore dimension in a second conformation when a second group of substituents is located at the pore; wherein each substituent of each group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
  • the macrocyclic module composition comprises: (a) from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; (b) at least one functional group coupled to the closed ring at the pore and selected to transport a selected species through the pore, wherein the at least one functional group comprises a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; (c) a selected species to be transported through the pore.
  • the selected species may, in one example, be selected from the group of ovalbumin, glucose, creatinine, H 2 PO 4 ⁇ , HPO 4 ⁇ 2 , HCO 3 ⁇ , urea, Na + , Li + , and K + .
  • the cyclic synthons are each independently selected from the group consisting of benzene, cyclohexadiene, cyclohexene, cyclohexane, cyclopentadiene, cyclopentene, cyclopentane, cycloheptane, cycloheptene, cycloheptadiene, cycloheptatriene, cyclooctane, cyclooctene, cyclooctadiene, cyclooctatriene, cyclooctatetraene, naphthalene, anthracene, phenylene, phenanthracene, pyrene, triphenylene, phenanthrene, pyridine, pyrimidine, pyridazine, biphenyl, bipyridyl, decalin, piperidine, pyrrolidine, morpholine, piperazine, pyrazol
  • each coupled cyclic synthon is independently coupled to two adjacent synthons by a linkage selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC ⁇ CH—, —NHC(O)NH—, —NHC(O)O—, —NHCH 2 NH—, —NHCH 2 CH(OH)CH 2 NH—, —N ⁇ CH(CH 2 ) p CH ⁇ N—, —CH 2 CH(OH)CH 2 —, —N ⁇ CH(CH 2
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein the linkage is independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein Q is one of the synthons connected by the linkage.
  • a macrocyclic module may be a closed ring composition of the formula:
  • the closed ring comprises a total of from three to twenty-four synthons Q; J is 2-23; Q 1 are synthons each independently selected from the group consisting of (a) aryl synthons, (b) heteroaryl synthons, (c) saturated cyclic hydrocarbon synthons, (d) unsaturated cyclic hydrocarbon synthons, (e) saturated bicyclic hydrocarbon synthons, (f) unsaturated bicyclic hydrocarbon synthons, (g) saturated multicyclic hydrocarbon synthons, and (h) unsaturated multicyclic hydrocarbon synthons; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; Q 2 is a synthon independently selected from the group consisting of (a) aryl synthons,
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein the linkages L are each independently configured with respect to the Q 1 and Q 2 synthons, each L having either of its two possible configurations with respect to the synthons it couples together, the forward and reverse configurations of the linkage with respect to the immediately adjacent synthons to which it couples, for example, Q 1 a —NHC(O)—Q 1 b and Q 1 a —C(O)NH—Q 1 b , if the two configurations are isomerically different structures.
  • Synthons Q 1 when independently selected, may be any cyclic synthon as described, so that the J synthons Q 1 may be found in the closed ring in any order, for example, cyclohexyl--1,2-phenyl--piperidinyl--1,2-phenyl--1,2-phenyl--cyclohexyl, and so on, and the J linkages L may also be independently selected and configured in the closed ring.
  • the macrocyclic modules represented and encompassed by the formula include all stereoisomers of the synthons involved, so that a wide variety of stereoisomers of the macrocyclic module are included for each closed ring composition of synthons.
  • the macrocyclic module may comprise a closed ring composition of the formula:
  • J is 2-23;
  • Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,2-phenyl positions, (b) phenyl synthons coupled to linkages L at 1,3-phenyl positions, (c) aryl synthons other than phenyl synthons, (d) heteroaryl synthons other than pyridinium synthons, (e) saturated cyclic hydrocarbon synthons, (f) unsaturated cyclic hydrocarbon synthons, (g) saturated bicyclic hydrocarbon synthons, (h) unsaturated bicyclic hydrocarbon synthons, (i) saturated multicyclic hydrocarbon synthons, and (j) unsaturated multicyclic hydrocarbon synthons; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
  • the macrocyclic module may comprise a closed ring composition of the formula:
  • J is 2-23;
  • Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,2-phenyl positions, (b) phenyl synthons coupled to linkages L at 1,3-phenyl positions, and (c) cyclohexane synthons coupled to linkages L at 1,2-cyclohexyl positions; wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
  • Q 2 is a cyclohexane synthon coupled to linkages L at 1,2-cyclohexyl positions; wherein ring positions of Q 2 which are not coupled to an L are independently substituted with hydrogen or a functional group containing atoms selected from the group consisting of C, H, N
  • R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons, it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
  • the macrocyclic module comprises a closed ring composition of the formula:
  • J is 2-23;
  • Q 1 are synthons each independently selected from the group consisting of (a) phenyl synthons coupled to linkages L at 1,4-phenyl positions, (b) aryl synthons other than phenyl synthons, (c) heteroaryl synthons, (d) saturated cyclic hydrocarbon synthons, (e) unsaturated cyclic hydrocarbon synthons, (f) saturated bicyclic hydrocarbon synthons, (g) unsaturated bicyclic hydrocarbon synthons, (h) saturated multicyclic hydrocarbon synthons, and (i) unsaturated multicyclic hydrocarbon synthons; wherein at least one of Q 1 is a phenyl synthon coupled to linkages L at 1,4-phenyl positions, and wherein ring positions of each Q 1 which are not coupled to a linkage L are independently substituted with hydrogen or a functional group containing atoms selected from the group of C, H, N, O, Si, P, S, B, Al,
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures; wherein y is 1 or 2, and Q y are each independently one of the Q 1 or Q 2 synthons connected by the linkage.
  • the functional groups are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • the macrocylic module may comprise a closed ring composition of the formula:
  • J is from 1-22, and n is from 1-24;
  • X and R n are each independently selected from the group consisting of hydrogen or a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
  • Z are each independently hydrogen or a lipophilic group;
  • L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —N ⁇ CR—, —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in eitherof two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • the macrocyclic module may comprise a closed ring composition of the formula:
  • J is from 1-22, and n is from 1-48;
  • X and R n are each independently selected from the group consisting of functional groups containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups;
  • Z are each independently hydrogen or a lipophilic group;
  • L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC ⁇ CH—
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • R are each independently selected from the group consisting of hydrogen and 1-6C alkyl; X is selected from the group consisting of Cl, Br, and I; r is 1-50; and s is 1-4.
  • the macrocyclic module comprises the formula:
  • J is from 1-11, and n is from 1-12;
  • X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • R are each independently selected from thegroup consisting of hydrogen and 1-6C alkyl
  • X is selected from the group consisting of Cl, Br, and 1
  • r is 1-50
  • s is 1-4
  • Z are each independently hydrogen or a lipophilic group
  • L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—, —HC
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • the macrocyclic module has the formula:
  • J is from 1-11, and n is from 1-12;
  • X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
  • X is selected from the group consisting of Cl, Br, and I
  • r is 1-50
  • s is 1-4
  • Z are each independently hydrogen or a lipophilic group
  • L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • the macrocyclic module comprises the formula:
  • J is from 1-11, and n is from 1-12;
  • X is —NX 1 — or —CX 2 X 3 , where X 1 is selected from the group consisting of an amino acid residue, —CH 2 C(O)CH 2 CH(NH 2 )CO 2 -alkyl, and —C(O)CH ⁇ CH 2 ;
  • X 2 and X 3 are each independently selected from the group consisting of hydrogen, —OH, —NH 2 , —SH, —(CH 2 ) t OH, —(CH 2 ) t NH 2 and —(CH 2 ) t SH, wherein t is 1-4, and X 2 and X 3 are not both hydrogen;
  • R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR
  • R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
  • X is selected from the group consisting of Cl, Br, and I
  • r is 1-50
  • s is 1-4
  • Z are each independently hydrogen or a lipophilic group
  • L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH)—,
  • the macrocyclic module has the formula:
  • J is from 1-11, and n is from 1-12;
  • X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • R are each independently selected from the group consisting of hydrogen and 1-6C alkyl
  • X is selected from the group consisting of Cl, Br, and I
  • r is 1-50
  • s is 1-4
  • Z and Y are each independently hydrogen or a lipophilic group
  • L are linkages between the synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(CH(CH)
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • the macrocyclic module has the fonnula:
  • J is from 1-11, and n is from 1-12;
  • X and R n are each independently selected from the group consisting of hydrogen, an activated acid, —OH, —C(O)OH, —C(O)H, —C(O)OCH 3 , —C(O)Cl, —NRR, —NRRR + , —MgX, —Li, —OLi, —OK, —ONa, —SH, —C(O)(CH 2 ) 2 C(O)OCH 3 , —NH-alkyl-C(O)CH 2 CH(NH 2 )CO 2 -alkyl, —CH ⁇ CH 2 , —CH ⁇ CHR, —CH ⁇ CR 2 , 4-vinylaryl, —C(O)CH ⁇ CH 2 , —NHC(O)CH ⁇ CH 2 , —C(O)CH ⁇ CH(C 6 H 5 ),
  • R are each independently selected from the group consisting of hydrogen and 1-6C alkyl;
  • X is selected from the group consisting of Cl, Br, and I;
  • r is 1-50; and
  • s is 1-4;
  • Z and Y are each independently hydrogen or a lipophilic group;
  • L are linkages between synthons each independently selected from the group consisting of (a) a condensed linkage, and (b) a linkage selected from the group consisting of —NRC(O)—, —OC(O)—, —O—, —S—S—, —S—, —NR—, —(CRR′) p —, —CH 2 NH—, —C(O)S—, —C(O)O—, —C ⁇ C—, —C ⁇ C—C ⁇ C—, —CH(OH
  • p is 1-6; wherein R and R′ are each independently selected from the group of hydrogen and alkyl; wherein linkages L are each independently configured in either of two possible configurations, forward and reverse, with respect to the synthons it couples together, if the two configurations are different structures.
  • the nanofilm may be coupled to a solid support selected from the group of Wang resins, hydrogels, aluminas, metals, ceramics, polymers, silica gels, sepharose, sephadex, agarose, inorganic solids, semiconductors, and silicon wafers.
  • the nanofilm retains at least 85% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m. In other embodiments, the nanofilm retains at least 95% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m. In another embodiment, the nanofilm retains at least 98% of film area after thirty minutes on a Langmuir trough at 5-15 mN/m.
  • a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) isolating the macrocyclic module composition.
  • the method may further comprise contacting a linker molecule with the mixture in (a) or (b).
  • a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) contacting a plurality of the first cyclic synthon with the mixture from (b).
  • a method for making a macrocyclic module composition comprises: (a) providing a plurality of a first cyclic synthon; (b) contacting a plurality of a second cyclic synthon with the first cyclic synthons; (c) contacting a plurality of a third cyclic synthon with the mixture from (b).
  • the method may further comprise contacting a linker molecule with the mixture in (a) or (b) or (c).
  • the method may further comprise supporting a cyclic synthon or coupled synthons on a solid phase.
  • a method for making a macrocyclic module composition comprises: (a) contacting a plurality of cyclic synthons with a metal complex template; and (b) isolating the macrocyclic module composition.
  • a method of preparing a composition for transporting a selected species through the composition comprises: selecting a first cyclic synthon, wherein the first cyclic synthon is substituted with at least one functional group comprising a functional group containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups; selecting from two to about twenty-three additional cyclic synthons; incorporating the first cyclic synthon and the additional cyclic synthons into a macrocyclic module composition comprising: from three to about twenty-four cyclic synthons coupled to form a closed ring defining a pore; wherein the at least one functional group of the first cyclic synthonhis located at the pore of the macrocyclic module composition and is selected to transport the selected species through the pore.
  • An individual macrocyclic module may include a pore in its structure.
  • the size of the pore may determine the size of molecules or other species which can pass through the macrocyclic module.
  • the size of a pore in a macrocyclic module may depend on the structure of the synthons used to make the macrocyclic module, the linkages between synthons, the number of synthons in a module, the structure of any linker molecules used to make the macrocyclic module, and other structural features of the macrocyclic module whether inherent in the preparation of the macrocyclic module or added in later steps or modifications.
  • Stereoisomerism of macrocyclic modules may also be used to regulate the size of a pore of a macrocyclic module by variation of the stereoisomer of each synthon used to prepare the closed ring of the macrocyclic module.
  • the dimension of a pore in a macrocyclic module may be varied by changing the combination of synthons used to form the macrocyclic module, or by varying the number of synthons in the closed ring.
  • the dimension of a pore may also be varied by substituents on the synthons or linkages. The pore may therefore be made large enough or small enough to achieve an effect on transport of species through the pore.
  • Species which may be transported through the pore of a macrocyclic module include atoms, molecules, biomolecules, ions, charged particles, and photons.
  • the size of a species may not be the sole determinant of whether it will be able to pass through a pore of a macrocyclic module.
  • Groups or moieties located in or near the pore structure of a macrocyclic module may regulate or affect transport of a species through the pore by various mechanisms.
  • transport of a species through the pore may be affected by groups of the macrocyclic module which interact with the species, by ionic or other interaction, such as chelating groups, or by complexing the species.
  • a charged group such as a carboxylate anion or ammonium group may couple an oppositely-charged species and affect its transport.
  • Substituents of synthons in a macrocyclic module may affect the passage of a species through the pore of the macrocyclic module.
  • Groups of atoms which render the pore of a macrocyclic module more or less hydrophilic or lipophilic may affect transport of a species through the pore.
  • An atom or group of atoms may be located within or proximate to a pore to sterically slow or block the passage of a species through the pore.
  • hydroxyl or alkoxy groups may be coupled to a cyclic synthon and located in the pore of the structure of the macrocyclic module, or may be coupled to a linkage between synthons and located in the pore.
  • a wide range of functional groups may be used to sterically slow or block the passage of a species through the pore, including functional groups containing atoms selected from the group consisting of C, H, N, O, Si, P, S, B, Al, halogens, and metals from the alkali and alkaline earth groups.
  • Blocking and slowing passage of a species through the pore may involve reducing the dimension of the pore by steric blocking, as well as slowing the passage of species by creating a path through the pore which is not linear, and providing interaction between the functional group and the species to slow transport.
  • the stereochemical structure of the portion of the macrocyclic module which defines the pore and its interior may also affect transport.
  • Any groups or moieties which affect transport of a species through the pore of a macrocyclic module may be introduced as part of the synthons used to prepare the macrocyclic module, or may be added later by various means.
  • S7-1 could be reacted with ClC(O)(CH 2 ) 2 C(O)OCH 2 CH 3 to convert the phenol groups to succinyl ester groups.
  • molecular dynamical motion of the synthons and linkages of a partly flexible macrocyclic module may affect transport of a species through the pore of the module.
  • Transport behavior may not be described solely by the structure of the macrocyclic module itself since the presence of the species which is to be transported through the pore affects the flexibility, conformation, and dynamical motions of a macrocyclic module.
  • solvent may also affect transport of solutes through a pore.
  • Reagents were obtained from Aldrich Chemical Company and VWR Scientific Products.
  • the Langmuir trough used was a KSV minitrough (KSV Instruments, Trumbull, Conn.).
  • Interfacial rheometry was performed using a CIR-100 Interfacial Rheometer (Rheometric Scientific, Piscataway N.J.) with a KSV Langmuir two-barrier rheology microtrough having a width of 85 mm (KSV Instruments, Trumbull, Conn.). Rates of surface compression are reported as the linear rate of barrier movement.
  • Atomic force microscopy (AFM) images were obtained with a PicoSPM (Molecular Imaging, Pheonix Ariz.). Contact Mode images were typically recorded under flowing nitrogen with an Si point probe tip.
  • Imaging ellipsometry revealed an APTES coating on the substrate having a thickness of 0.94 nm.
  • the thickness of the uncured nanofilm itself was 1.1 nm.
  • a smooth, physically homogeneous, continuous and unbroken nanofilm was deposited. After heating, the thickness of the coating and cured nanofilm was 1.57 nm, illustrated on the left in FIG. 1C, while the APTES coating of the substrate, illustrated on the right in FIG. 1C, was 0.53 nm.
  • the thickness of the nanofilm itself was virtually unchanged at 1.0 nm.
  • the thickness of the nanofilm itself was virtually unchanged at 0.9 nm, 1.0 nm, and 1.0 nm, respectively.
  • ellipsometric measurements determined that the loss of nanofilm material from the substrate upon sonication was minimal.
  • a nanofilm thickness of 1.1 nm was measured by ellipsometry before curing the nanofilm, and 0.9-1.0 nm after curing.
  • a smooth, physically homogeneous, continuous and unbroken nanofilm was deposited. After sonication in CHCl 3 at room temperature a nanofilm thickness of 0.7-0.9 nm was measured by ellipsometry.
  • G′′ typically exceeds G′ in the viscous nanofilm.
  • the data in Table 10 indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of polymeric component PMAOD of about 5% into the nanofilm reduced the moduli of thle nanofilm by more than 50%.
  • the polymeric component makes the nanofilm more flexible and less brittle.
  • the data in Table 10 indicate that for a nanofilm having an area fraction of polymeric component PMAOD of about 5%, the surface loss modulus of the nanofilm at a surface pressure from 5-30 mN/m is less than about 50% of the surface loss modulus of the same nanofilm composition made without the polymeric components.
  • FIG. 3A Surface rheology of a sample of nanofilm of Hexamer 1dh and DEM having polymeric component PMAOD is shown in FIG. 3A.
  • Nanofilms used in FIG. 3A were prepared with a 2.0 mg/ml DEM subphase.
  • the dashed line curves in FIG. 3A were obtained with a subphase heated to 33° C., while the solid line curves were obtained with a subphase at room temperature 22° C.
  • the data in FIG. 3A indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of PMAOD of about 20% into the nanofilm reduced the loss modulus (G′′) of the nanofilm by about one-half at 10 mN/m surface pressure.
  • the data in FIG. 3A also indicate that the modulus of the nanofilm is generally higher for the higher subphase temperature.
  • FIGS. 3 B-D Surface rheology of a sample of nanofilm of Hexamer 1dh and DEM having polymeric component PMAOD is shown in FIGS. 3 B-D.
  • Nanofilms used in FIGS. 3 B-D were prepared with a 2.0 mg/ml DEM subphase at room temperature.
  • the data in FIGS. 3 B-D indicate that for a nanofilm of Hexamer 1dh and DEM, introducing an area fraction of polymeric component PMAOD of about 5% into the nanofilm reduced the storage and loss moduli of the nanofilm by more than one-half at 20 mN/m surface pressure or greater.
  • Hexamer 1dh, PMAOD and DEM on polycarbonate track etch membrane PCTE: A nanofilm of Hexamer 1dh, PMAOD, and DEM can be made to span the pores of a 0.01 ⁇ m PCTE. A solution of Hexamer 1dh and PMAOD having 0.1 mole fraction hexamer: 0.9 mole fraction PMAOD was spread onto a subphase of 0.5 mg/ml DEM. One layer of the resulting nanofilm was deposited by vertical dip at 2 mm/min at a surface pressure of 12 mN/m and deposition rate 1 mm/min onto a PCTE having holes of 10 nm diameter. The sample was not heated. The PCTE substrates were not plasma treated, and the attachment of the nanofilm to the PCTE was not necessarily by covalent binding, but may have been by weaker types of binding or coupling.
  • FIG. 4A shows an area in the center of the nanofilm in which no holes in the nanofilm were visible.
  • FIG. 4B shows an area far from the edge of the nanofilm in which no holes in the nanofilm were visible.
  • FIG. 4C shows an area next to that in FIG. 4D which was near the edge of the nanofilm and in which a few holes of various sizes may have been visible in the nanofilm.
  • FIG. 4D is shown an area near the edge of the nanofilm in which a few holes of various sizes may have been visible in the nanofilm.
  • the holes observed in the nanofilm in FIGS. 4 A- 4 D may have been as large as 30 nm in diameter.
  • FIG. 5A the scanning electron micrograph of a PCTE substrate having holes of 10 nm diameter
  • FIG. 5B illustrates the scanning electron micrograph of the same PCTE substrate after plasma treatment
  • FIG. 5B illustrates that the holes may be widened as compared to the PCTE substrate used in FIG. 5A.
  • the ratio of the areas of the peak appearing at 1450 cm ⁇ 1 to the peak at 1737 cm ⁇ 1 was about 3:1.
  • the ratio for the same peaks observed in FIG. 8 was less than one, and indicated ester or amide formation because of the increase in absorbance in the carbonyl region. This indicated coupling of the module via the phenol and secondary amine groups to the PMAOD polymer.
  • FIG. 10 The FTIR-ATR spectrum of CHCl 3 rinsings from a nanofilm made from Hexamer 1dh and PMAOD deposited on a SiO 2 substrate from a pH 9 DEM subphase is shown in FIG. 10.
  • the carbonyl region resembles that in FIG. 8, which would be expected as the DEM can react with the amine functionality of the hexamer to form amide cross-links.
  • ester formation is possible between PMAOD and the hexamer. This indicated coupling between the module and the polymer, and between the module and the cross-linker.
  • FIG. 11 Contact Mode AFM images of plasma treated PCTE are shown in FIG. 11. The surface of this substrate was partially smoothed using the AFM tip, as shown in the bottom panel of FIG. 11.
  • a nanofilm of 0.8:0.2 mole fraction Hexamer 1dh:PMAOD which were pre-mixed in solution was prepared, and deposited by vertical dip onto APTES coated SiO 2 substrate.
  • the nanofilm was cured at 70° C. under N 2 for 15 hours.
  • the Contact Mode AFM images of the nanofilm obtained under flowing N 2 are shown in FIG. 12 A.
  • the top panels show the images of a continuous nanofilm, while the bottom panels show the images of the same nanofilm after a piece of the nanofilm about 250 nm 2 in area was removed by scraping with the AFM tip.
  • the thickness of the film observed at the edge of the hole created by the tip was 2-3 mm.
  • a second nanofilm of the same composition was cured at 70° C.
  • FIG. 12B The Contact Mode AFM images of the second nanofilm obtained under flowing N 2 are shown in FIG. 12B.
  • the top panels show the images of a continuous nanofilm
  • the bottom panels show the images of the same nanofilm after an attempt to scrape away a piece of the nanofilm with the AFM tip.
  • the nanofilm could not be scraped away, showing that the longer-cured nanofilm was more strongly attached to the substrate by annealing.
  • FIG. 13 The Contact Mode AFM image of a nanofilm made from Hexamer 1dh and PMAOD and DEM, having 0.10 mole fraction of Hexamer 1dh:0.90 mole fraction PMAOD is shown in FIG. 13.
  • the nanofilm was deposited by vertical dip onto PCTE having a random array of holes 0.01 ⁇ m in diameter. A depression in the nanofilm made with the AFM tip is clearly visible.
  • a nanofilm was made from an amphiphile, octadecylamine (ODA), and an amphiphilic polymer, polymethylmethacrylate (PMMA) (Polysciences, Warrington Pa., MW 100,000, polydispersity 1.1), from a chloroform solution of the two components heated to 55° C. for 18 hours, then spread at the liquid-air interface of a 100 mM NaH 2 PO 4 buffer (pH 7.3) at room temperature.
  • Isotherms of this nanofilm and its components made with a 1:1 mixture of ODA:PMMA, illustrated in FIG. 14, showed that the isotherms of ODA and PMMA each retained substantially the same shape in the nanofilm.
  • the isotherms of FIG. 14 indicate that ODA and PMMA were immiscible in the nanofilm.
  • a nanofilm was made from an amphiphile, ODA, and an amphiphilic polymer, PMAOD, by spreading a 1:1 molar ratio of ODA:PMAOD in chloroform at the liquid-air interface.
  • the isotherm of this nanofilm, illustrated in FIG. 15, exhibited a different shape than either of the components alone, and a much higher mean molecular area than either of the components alone.
  • the isotherm of FIG. 15 indicates that ODA and PMAOD were miscible in the nanofilm.
  • a solution of Hexamer 1dh and PMMA was spread at the liquid-air interface over a water subphase to form a nanofilm having 0.6 area fraction Hexamer 1dh.
  • One layer of the resulting nanofilm was deposited by vertical dip at a surface pressure of 20 mN/m onto an APTES coated silicon substrate.
  • the Contact Mode AFM image of the deposited nanofilm is shown in FIG. 16 and illustrates a phase separated nanofilm composition, which confirms that the Hexamer 1dh/PMMA mixture is immiscible.
  • the height of the continuous phase was about 1 nm above the discontinuous phase.
  • a solution of Hexamer 1dh and PMAOD was spread at the liquid-air interface over a water subphase containing 2 mg/ml DEM to form a nanofilm.
  • Surface rheology of this nanofilm is shown in FIG. 17. Referring to FIG. 17, storage and loss surface moduli of the nanofilm are illustrated over time as the temperature of the subphase was raised. T bath indicates the temperature of the surrounding circulation bath, and T° C. indicates the temperature of the subphase.
  • one method to approximate pore size of a macrocyclic module is quantum mechanical (QM) and molecular mechanical (MM) computations.
  • QM quantum mechanical
  • MM molecular mechanical
  • the root mean square deviations in the pore areas were computed over dynamic runs.
  • each module was first optimized using the MM+ force field approach of Allinger (JACS, 1977, 99:8127) and Burkert, et al., (Molecular Mechanics, ACS Monograph 177, 1982). They were then re-optimized using the AM1 Hamiltonian (Dewar, et al., JACS, 1985, 107:3903; Dewar, et al., JACS, 1986, 108:8075; Stewart, J. Comp. Aided Mol. Design, 1990, 4:1). To verify the nature of the potential energy surface in the vicinity of the optimized structures, the associated Hessian matrices were computed using numerical double-differencing.
  • Macrocyclic module pore areas derived from QM and MM computations for various linkages and macrocyclic module pore size are shown in Table 12.
  • the macrocyclic modules had alternating synthons “A” and “B.”
  • Synthon “A” is a benzene synthon coupled to linkages L at 1,3-phenyl positions, and Synthon “B” is shown in the left-hand column of the table.
  • FIGS. 19A and 19B An example of the energy-minimized conformations of some hexamer macrocyclic modules having groups of substituents are shown in FIGS. 19A and 19B.
  • a Hexamer 1-h-(OH) 3 is shown having a group of —OH substituents.
  • FIG. 19B a Hexamer 1-h-(OEt) 3 is shown having a group of —OEt substituents.
  • This macrocyclic module results in a composition which may be used to regulate pores. Selection of ethoxy synthon substituents over hydroxy synthon substituents for this hexamer composition is a method which may be used for transporting selected species.
  • the pore size of macrocyclic modules was determined experimentally using a voltage-clamped bilayer procedure.
  • a quantity of a macrocyclic module was inserted into a lipid bilayer formed by phosphatidylcholine and phosphatidylethanolamine.
  • On one side of the bilayer was placed a solution containing the cationic species to be tested.
  • On the other side was a solution containing a reference cationic species known to be able to pass through the pore of the macrocyclic module.
  • Anions required for charge balance were selected which could not pass through the pores of the macrocyclic module.
  • a hexameric macrocyclic module comprised of 1R,2R-( ⁇ )-transdiaminocyclohexane and 2,6-diformal-4-(1-dodec-1-ynyl)phenol synthons, having imine groups as the linkages (the first module in Table 1) was tested for transport of various ionic species. The results are shown in Table 14. TABLE 14 Voltage-clamped bilayer test for macrocyclic module pore size Calculated Calculated van der van der Waals Waals Does ionic radius of radius of ionic species ionic species with one pass through Ionic species species ( ⁇ ) water shell ( ⁇ ) pore?
  • CH 3 NH 3 + having a radius of 2.0 ⁇ , passed through the pore while CH 3 CH 2 NH 3 + , with a radius of 2.6 ⁇ , did not.
  • the observed ability of hydrated ions to pass through the pore may be due to partial dehydration of the species to enter the pore, transport of water molecules and ions through the pore separately or with reduced interaction during transport, and recoordination of water molecules and ions after transport.
  • the details of pore structure, composition, and chemistry, the flexibility of the macrocyclic module, and other interactions may affect the transport process.
  • the filtration function of a membrane may be described in terms of its solute rejection profile.
  • the filtration function of some nanofilm membranes is exemplified in Tables 16-17.
  • TABLE 16 Example filtration function of a G-membrane MOLECULAR SOLUTE WEIGHT PASS/NO PASS Albumin 68 kDa NP Ovalbumin 44 kDa P Myoglobin 17 kDa P ⁇ 2 -Microglobulin 12 kDa P Insulin 5.2 kDa P Vitamin B 12 1350 Da P Urea, H 2 O, ions ⁇ 1000 Da P
  • the passage or exclusion of a solute is measured by its clearance, which reflects the portion of solute that actually passes through the membrane.
  • the no pass symbol in Tables 16-17 indicates that the solute is partly excluded by the nanofilm, sometimes less than 90% rejection, often at least 90% rejection, sometimes at least 98% rejection.
  • the pass symbol indicates that the solute is partly cleared by the nanofilm, sometimes less than 90% clearance, often at least 90% clearance, sometimes at least 98% clearance.
  • stereospecific or at least stereoselective coupling reactions may be employed in the preparation of the synthons of this invention.
  • the following are examples of synthetic schemes for severa classes of synthons useful in the preparation of macrocyclic modules of this invention. In general, the core synthons are illustrated, and lipophilic moieties are not shown on the structures, however, it is understood that all of the following synthetic schemes might encompass additional lipophilic or hydrophilic moieties used to prepare amphiphilic and other modified macrocyclic modules. Species are numbered in relation to the scheme in which they appear; for example, “S1-1” refers to the structure 1 in Scheme 1.
  • symmetrical diester S1-1 is used to give enantiomerically pure S1-2.
  • S1-2 is subjected to the Curtius reaction and then quenched with benzyl alcohol to give protected amino acid S1-3.
  • lodolactonization of carboxylic acid S1-4 followed by dehyrohalogenation gives unsaturated lactone S1-6.
  • Opening of the lactone ring with sodium methoxide gives alcohol S1-7, which is converted with inversion of configuration to S1-8 in a one-pot reaction involving mesylation, SN 2 displacement with azide, reduction and protection of the resulting amine with di-tert-butyl dicarbonate.
  • S1-10 Epimerization of S1-8 to the more stable diequatorial configuration followed by saponification gives carboxylic acid S1-10.
  • S1-10 is subjected to the Curtius reaction.
  • a mixed anhydride is prepared using ethyl chlorofornate followed by reaction with aqueous NaN 3 to give the acyl azide, which is thermally rearranged to the isocyanate in refluxing benzene.
  • the isocyanate is quenched with 2-trimethylsilylethanol to give differentially protected tricarbamate S1-11.
  • Reaction with trifluoroacetic acid (TFA) selectively deprotects the 1,3-diamino groups to provide the desired synthon S1-12.
  • TFA trifluoroacetic acid
  • Norbomanes bicycloheptanes
  • stereochemically controlled multifunctionalization of norbomanes can be achieved.
  • Diels-Alder cycloaddition may be used to form norbornanes incorporating various functional groups having specific, predictable stereochemistry.
  • Enantiomerically enhanced products may also be obtained through the use of appropriate reagents, thus limiting the need for chiral separations.
  • Synthons may be coupled to one another to form macrocyclic modules.
  • the coupling of synthons may be accomplished in a concerted scheme.
  • Preparation of a macrocyclic module by the concerted route may be performed using, for example, at least two types of synthons, each type having at least two functional groups for coupling to other synthons.
  • the functional groups may be selected so that a functional group of one type of synthon can couple only to a functional group of the other type of synthon.
  • a macrocyclic module may be formed having alternating synthons of different types.
  • Scheme 7 illustrates a concerted module synthesis.
  • a mixture of tetramer, hexamer, and octamer macrocyclic modules may be formed in the concerted scheme.
  • the yields of these macrocyclic modules can be varied by changing the concentration of various synthons in the reagent mixture, and among other factors, by changing the solvent, temperature, and reaction time.
  • the imine groups of S7-3 can be reduced, e.g. with sodium borohydride, to give amine linkages. If the reaction is carried out using 2,6-di(chlorocarbonyl)-4-dodec-1-ynylphenol instead of 2,6-diformyl-4-dodec-1-ynylphenol, the resulting module will contain amide linkages. Similarly, if 1,2-dihydroxycyclohexane is reacted with 2,6-di(chlorocarbonyl)-4-dodec-1-ynylphenol, the resulting module will contain ester linkages.
  • the coupling of synthons may be accomplished in a stepwise scheme.
  • a first type of synthon is substituted with one protected functional group and one unprotected functional group.
  • a second type of synthon is substituted with an unprotected functional group that will couple with the unprotected functional group on the first synthon.
  • the product of contacting the first type of synthon with the second type of synthon may be a dimer, which is made of two coupled synthons.
  • the second synthon may also be substituted with another functional group which is either protected, or which does not couple with the first synthon when the dimer is formed.
  • the dimer may be isolated and purified, or the preparation may proceed as a one-pot method.
  • the dimer may be contacted with a third synthon having two functional groups, only one of which may couple with the remaining functional group of either the first or second synthons to form a trimer, which is made of three coupled synthons.
  • Such stepwise coupling of synthons may be repeated to form macrocyclic modules of various ring sizes.
  • the n th synthon which was coupled to the product may be substituted with a second functional group which may couple with the second functional group of a previously coupled synthon that has not been coupled, which may be deprotected for that step.
  • the stepwise method may be carried out with synthons on solid phase support.
  • Scheme 8 illustrates a stepwise preparation of module SC8-1.
  • Deprotection/coupling is repeated, alternating synthons S8-3 and S8-6 until a linear construct with eight residues is obtained.
  • the remaining acid and amine protecting groups on the 8-mer are removed and the oligomer is cyclized, see e.g., Caba, J. M., et al., J. Org. Chem ., 2001, 66:7568 (PyAOP cyclization) and Tarver, J. E. et al., J. Org. Chem ., 2001, 66:7575 (active ester cyclization).
  • the R group is H or an alkyl group linked via a functional group to the benzene ring, and X is N, O, or S.
  • solid supports examples include Wang resin, hydrogels, silica gels, sepharose, sephadex, agarose, and inorganic solids. Using a solid support might simplify the procedure by obviating purification of intermediates along the way. The final cyclization may be done in a solid phase mode.
  • a “safety-catch linker” approach (Bourne, G. T., et al., J. Org. Chem ., 2001, 66:7706) may be used to obtain cyclization and resin cleavage in a single operation.
  • a concerted method involves contacting two or more different synthons and a linker molecule as shown in Scheme 9, where R may be an alkyl group or other lipophilic group.
  • a stepwise linear method involves various synthons and a soil phase support as shown in Scheme 10.
  • a stepwise convergent method involves synthon trimers and a solid phase support as shown in Scheme 11. This method can also be done without the solid phase support using trimers in solution.
  • a template method involves synthons brought together by a template as shown in Scheme 12.
  • a linker molecule method involves cyclizing synthons in solution as shown in Scheme 13.
  • S1-1 (15.0 g, 75.7 mmol) was suspended in pH 7 phosphate buffer (950 mL). Pig liver esterase (2909 units) was added, and the mixture stirred at ambient temperature for 72 h with the pH maintained at 7 by addition of 2M NaOH. The reaction mixture was washed with ethyl acetate (200 mL), acidified to pH 2 with 2M HCl, and extracted with ethyl acetate (3 ⁇ 200 mL). The extracts were combined, dried, and evaporated to afford 13.8 g (99%) of S1-2.
  • S1-11 (2.5 g, 4.9 mmol) was added to TFA (10 mL) and the solution stirred at ambient temperature for 16 h after which the solution was evaporated. The residue was dissolved in water (20 mL), basified to pH 14 with KOH and extracted with dichloromethane (3 ⁇ 50 mL). The extracts were combined, washed with water (20 mL), dried and evaporated to give 1.1 g (85%) of S1-12.
  • the mixture was stirred at room temperature and work-up initiated when the starting material S1b-1 was completely consumed (Using a solvent system of 66% EtOAc/33% Hexane and developing with phosphomolybdic acid reagent (Aldrich #31,927-9) the starting material S1b-1 has an Rf of 0.88 and the product streaks with an Rf of approx. 0.34 to 0.64.).
  • the reaction usually takes 2 days.
  • Work-Up The THF was removed by vacuum transfer until about the same volume is left as water added to the reaction, in this case 50 mL. During this the reaction solution forms a white mass that adheres to the stir bar surrounded by clear yellow solution.
  • a separatory funnel is set up including a funnel to pour in the reaction solution and an Erlenmeyer flask is placed underneath the separatory funnel. Into the Erlenmeyer flask is added some anhydrous Na 2 SO 4 .
  • This apparatus should be set up before acidification is started. (It is important to set up the separatory funnel and Erlenmeyer flask etc. before acidification of the reaction solution to enable separation of phases and extraction of the product away from the acid quickly once the solution attains a pH close to 1.
  • the stopcock is turned to release the CH 2 Cl 2 phase (bottom) into the Erlenmeyer flask and swirl the flask to allow the drying agent to absorb water in the solution.
  • 80 mL of 1N HCl was used.
  • the aqueous phase is extracted with CH 2 Cl 2 (2 ⁇ 100 mL), dried over anhydrous Na 2 SO 4 and the volatiles removed to produce 5.37 g/9.91 mmoles of a beautiful white microcrystals reflecting a 99.1% yield.
  • This product can not be purified by chromatography since that process would also hydrolyze the Boc functional group on the column.
  • S4-29 (0.220 g, 0.00050 mol) was added to a mixture of tetrahydrofuran (1.5 mL), water (0.5 mL), and methanol (0.5 mL). Potassium hydroxide (0.036 g, 0.00065 mol) was added and the solution stirred at room temperature overnight. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (10% ethyl acetate/hexanes) to give S4-30 (0.050 g, 0.00012 mol, 23% yield).
  • Mass Spec calculated for C 26 H 34 O 5 426.24; found 425.4 (M ⁇ 1) and 851.3 (2M ⁇ 1).
  • reaction S5-40 is converted to the corresponding mesylate with methanesulfonyl chloride, sodium azide added to displace the mesylate to give exo-azide, which is followed by reduction with tributyl phosphine to give the free amine, which is protected as the t-Boc derivative to give S5-41.
  • the benzyl ether protecting group is removed by catalytic hydrogenolysis of S5-41 with 10% Pd/C in methanol at room temperature for 6 hours. Filtration of the catalyst and removal of the solvent yields crude S5-42.
  • S6-50 formic acid, and a catalytic amount of p-toluenesulfonic acid is heated at 90° C. overnight. Acetic anhydride is added to the reaction mixture, and it is refluxed for an additional 6 hours. Removal of the solvents and washing with ether affords S6-51.
  • Hexamer 1jh To a 100 mL pear-shaped flask with magnetic stirbar under argon, Hexamer 1j (0.387 mmol, 0.594 g) was added and dissolved in THF:MeOH (7:3, 28:12 mL, respectively). Next, NaBH 4 (2.32 mmol, 0.088 g) was added slowly in portions at room temperature for 6.5 h. The solvent was removed by roto-evaporation, the residue dissolved in 125 mL ethyl acetate and washed 3 ⁇ 50 mL of H 2 O. The organic layer was separated, dried over Na 2 SO 4 and the solvent removed by roto-evaporation.
  • FIGS. 20A and 20B The Langmuir isotherm and isobaric creep for hexamer 1a-Me are shown in FIGS. 20A and 20B, respectively.
  • the relative stability of the Langmuir film of Hexamer 1a-Me is illustrated by the isobaric creep data shown in FIG. 20B.
  • the area of the film decreased by about 30% after about 30 min at 5 mN/m surface pressure.
  • the Langmuir isotherm and isobaric creep for Hexamer 1a-C15 are shown in FIGS. 21A and 21B, respectively.
  • the relative stability of the Langmuir film of Hexamer 1a-C15 is illustrated by the isobaric creep data shown in FIG. 21B.
  • the area of the film decreased by about 1-2% after about 30 min at 10 mN/m surface pressure, and by about 2% after about 60 min.
  • the collapse pressure was about 18 mN/m for Hexamer 1a-C15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US10/426,475 2002-09-17 2003-04-29 Nanofilm compositions with polymeric components Abandoned US20040106741A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/426,475 US20040106741A1 (en) 2002-09-17 2003-04-29 Nanofilm compositions with polymeric components
PCT/US2003/027749 WO2005018013A2 (en) 2002-09-17 2003-09-05 Nanofilm compositions with polymeric components
EP03816729A EP1573833A4 (en) 2002-09-17 2003-09-05 NANOFILM COMPOSITIONS WITH POLYMERIC COMPONENTS
AU2003304453A AU2003304453B2 (en) 2002-09-17 2003-09-05 Nanofilm compositions with polymeric components
JP2005507914A JP2006512472A (ja) 2002-09-17 2003-09-05 ポリマー成分を有するナノフィルム組成物
KR1020057004632A KR20060056266A (ko) 2002-09-17 2003-09-05 폴리머 성분을 갖는 나노필름 조성물
US11/202,322 US7595368B2 (en) 2002-09-17 2005-08-10 Nanofilm compositions with polymeric components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41158802P 2002-09-17 2002-09-17
US10/426,475 US20040106741A1 (en) 2002-09-17 2003-04-29 Nanofilm compositions with polymeric components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/202,322 Continuation US7595368B2 (en) 2002-09-17 2005-08-10 Nanofilm compositions with polymeric components

Publications (1)

Publication Number Publication Date
US20040106741A1 true US20040106741A1 (en) 2004-06-03

Family

ID=32396975

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/426,475 Abandoned US20040106741A1 (en) 2002-09-17 2003-04-29 Nanofilm compositions with polymeric components
US11/202,322 Expired - Fee Related US7595368B2 (en) 2002-09-17 2005-08-10 Nanofilm compositions with polymeric components

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/202,322 Expired - Fee Related US7595368B2 (en) 2002-09-17 2005-08-10 Nanofilm compositions with polymeric components

Country Status (6)

Country Link
US (2) US20040106741A1 (US08182695-20120522-C00240.png)
EP (1) EP1573833A4 (US08182695-20120522-C00240.png)
JP (1) JP2006512472A (US08182695-20120522-C00240.png)
KR (1) KR20060056266A (US08182695-20120522-C00240.png)
AU (1) AU2003304453B2 (US08182695-20120522-C00240.png)
WO (1) WO2005018013A2 (US08182695-20120522-C00240.png)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199688A1 (en) * 2002-02-07 2003-10-23 Josh Kriesel Macrocyclic module compositions
US20040126659A1 (en) * 2002-09-10 2004-07-01 Graetz Jason A. High-capacity nanostructured silicon and lithium alloys thereof
US20040260085A1 (en) * 2002-02-07 2004-12-23 Kriesel Joshua W. Nanofilm and membrane compositions
US20060041077A1 (en) * 2002-09-17 2006-02-23 Covalent Partners Llc Nanofilm compositions with polymeric components
US20060063854A1 (en) * 2004-06-15 2006-03-23 Xiaoming Jin Low shrinkage and low stress dental compositions
US20060128680A1 (en) * 2002-02-07 2006-06-15 Josh Kriesel Macrocyclic module compositions
US20060127929A1 (en) * 2004-09-17 2006-06-15 Massachusetts Institute Of Technology Polymers for analyte detection
US20060287459A1 (en) * 2004-06-15 2006-12-21 Xiaoming Jin Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20070117954A1 (en) * 2005-11-22 2007-05-24 Massachusetts Institute Of Technology High internal free volume compositions for low-k dielectric and other applications
WO2007102980A1 (en) * 2006-03-08 2007-09-13 3M Innovative Properties Company Polymer composites
US20080085566A1 (en) * 2006-10-05 2008-04-10 Massachusetts Institute Of Technology Emissive compositions with internal standard and related techniques
US20080290034A1 (en) * 2003-08-06 2008-11-27 Covalent Partners Llc Bridged macrocyclic module compositions
US20090247856A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090246887A1 (en) * 2005-01-07 2009-10-01 Academia Sinica Diamond Crystallites For Biotechnological Applications
US20100157286A1 (en) * 2006-08-04 2010-06-24 University Of Memphis Research Foundation Nanothin polymer films with selective pores and method of use thereof
US20100190059A1 (en) * 2004-04-22 2010-07-29 Graetz Jason A High-capacity nanostructured germanium-containing materials and lithium alloys thereof
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US20110027491A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110027497A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US8255033B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8283423B2 (en) 2006-09-29 2012-10-09 Massachusetts Institute Of Technology Polymer synthetic technique
US8367001B2 (en) 1998-05-05 2013-02-05 Massachusetts Institute Of Technology Emissive sensors and devices incorporating these sensors
US8465678B2 (en) 1998-05-05 2013-06-18 Massachusetts Institute Of Technology Emissive polymers and devices incorporating these polymers
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20130295398A1 (en) * 2010-10-14 2013-11-07 Lg Chem, Ltd. Resin blend for melting process
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US9429522B2 (en) 2006-10-27 2016-08-30 Massachusetts Institute Of Technology Sensor of species including toxins and chemical warfare agents
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10305052B2 (en) 2014-07-15 2019-05-28 Japan Science And Technology Agency Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method
CN109942731A (zh) * 2019-04-08 2019-06-28 武汉轻工大学 一种纳米金/聚甲基丙烯酸甲酯导电材料的制备方法
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
CN111712317A (zh) * 2018-05-10 2020-09-25 株式会社Lg化学 反渗透膜、其制造方法及水处理模块
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
CN113509848A (zh) * 2021-04-27 2021-10-19 北京工业大学 一种基于液-液界面制备聚醚嵌段酰胺渗透汽化复合膜的方法
CN113522037A (zh) * 2021-07-21 2021-10-22 江苏盈天化学有限公司 一种渗透汽化四氢呋喃脱水复合膜的制备方法
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829155B1 (en) 2006-11-22 2010-11-09 The University Of Memphis Research Foundation Nanothin polymer coatings containing thiol and methods of use thereof
TWI398353B (zh) * 2009-03-02 2013-06-11 Ind Tech Res Inst 奈米纖維材料與脫鹽過濾材料
US8273306B2 (en) * 2009-07-15 2012-09-25 Kimberly-Clark Worldwide, Inc. Color-changing materials and multiple component materials having a color-changing composition
EP2756167B1 (en) * 2011-09-12 2018-01-17 Saudi Arabian Oil Company Nanostructured fluid sampling device
JP6551641B2 (ja) * 2014-05-21 2019-07-31 凸版印刷株式会社 構造体および構造体の製造方法
KR102562973B1 (ko) * 2015-12-31 2023-08-02 엘지디스플레이 주식회사 표시장치
KR101808122B1 (ko) 2016-08-08 2017-12-14 휴먼켐 주식회사 안티블락킹 입자를 포함한 이형필름 제조 방법 및 그 이형필름
CN107413210B (zh) * 2017-05-17 2020-04-17 宁波聚仁塑化材料有限公司 一种多巴胺和葡萄糖改性交联聚酰亚胺纳滤膜的制备方法
CN108854265A (zh) * 2018-06-26 2018-11-23 桐乡守敬应用技术研究院有限公司 一种复合过滤材料及其制备方法
CN108721702B (zh) * 2018-06-29 2021-06-29 江西理工大学 一种镁/左旋聚乳酸复合骨支架的制备方法
CN109192922B (zh) * 2018-08-07 2021-06-29 格林美(无锡)能源材料有限公司 一种具有特殊结构的固态锂离子电池正极及其制备方法
KR102040496B1 (ko) * 2018-08-14 2019-11-05 한국화학연구원 연속상 나노다공성 구조의 광확산 필름의 제조방법, 그 광확산 필름 및 이를 포함하는 광학장치
KR102538214B1 (ko) * 2020-11-20 2023-05-31 고려대학교 산학협력단 바이러스 포집용 마스크

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847949A (en) * 1970-05-12 1974-11-12 Du Pont Macrocyclic hetero imine complexing agents
US4031111A (en) * 1973-01-08 1977-06-21 E. I. Du Pont De Nemours And Company Macrocyclic hetero imine complexing agents
US4155793A (en) * 1977-11-21 1979-05-22 General Electric Company Continuous preparation of ultrathin polymeric membrane laminates
US4379041A (en) * 1980-04-24 1983-04-05 Ceskoslovenska Akademie Ved Polymeric membrane selective to calcium (II) ions
US4438251A (en) * 1983-05-16 1984-03-20 Armstrong World Industries, Inc. Polyurethane polymers comprising macrocyclic crown ethers in the polymer backbone
US4554076A (en) * 1982-08-18 1985-11-19 Georgia Tech Research Corporation Method of modifying membrane surface with oriented monolayers of amphiphilic compounds
US4560599A (en) * 1984-02-13 1985-12-24 Marquette University Assembling multilayers of polymerizable surfactant on a surface of a solid material
US4632800A (en) * 1984-05-10 1986-12-30 Commissariat A L'energie Atomique Process for producing a thin film having at least one monomolecular layer of non-amphiphilic molecules
US4661526A (en) * 1983-02-02 1987-04-28 Memtec Limited Cross linked porous membranes
US4722856A (en) * 1986-01-02 1988-02-02 Molecular Electronics Corporation Method and apparatus for depositing monomolecular layers on a substrate
US4752342A (en) * 1983-11-05 1988-06-21 Perchem Limited Organoclay materials
US4808480A (en) * 1986-11-25 1989-02-28 Lehigh University Polymerizable heterocyclic disulfide-based compounds and membranes made therefrom
US4828917A (en) * 1987-05-08 1989-05-09 Basf Aktiengesellschaft Layer of metallomacrocyclic polymer on substrate
US4839219A (en) * 1986-05-20 1989-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thin film and device having the same
US4902424A (en) * 1986-10-20 1990-02-20 Memetc North America Corp. Ultrafiltration thin film membranes
US4910293A (en) * 1985-11-20 1990-03-20 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Langmuir-Blodgett films of polymers having pendent C10 -C30 hydrocarbon groups
US4948506A (en) * 1986-07-07 1990-08-14 Bend Research, Inc. Physicochemically functional ultrathin films by interfacial polymerization
US4997676A (en) * 1982-02-26 1991-03-05 Limitinstant Limited Immobilized inorganic diffusion barriers and the use thereof in the separation of small molecular species from a solution
US5023252A (en) * 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US5035762A (en) * 1987-07-24 1991-07-30 Basf Aktiengesellschaft Production of thin films
US5059510A (en) * 1985-02-04 1991-10-22 Hoechst Celanese Corp. Media for optical information storage comprising an organic macrocyclic chromophore substituted with a film conferring organic substituent
US5064956A (en) * 1987-06-24 1991-11-12 The Dow Chemical Company Process for preparing mono-n-alkylated polyazamacrocycles
US5069945A (en) * 1986-10-20 1991-12-03 Memtec America Corporation Ultrapous thin-film membranes
US5102798A (en) * 1988-09-08 1992-04-07 Allage Associates Surface functionalized Langmuir-Blodgett films for immobilization of active moieties
US5143784A (en) * 1990-05-10 1992-09-01 Nec Corporation Soluble calixarene derivative and films thereof
US5173365A (en) * 1985-03-25 1992-12-22 Nanofilm Corporation Ultra-thin molecular film
US5179213A (en) * 1987-09-04 1993-01-12 Brigham Young University Macrocyclic ligands bonded to an inorganic support matrix and a process for selectively and quantitatively removing and concentrating ions present at low concentrations from mixtures thereof with other ions
US5196257A (en) * 1990-08-23 1993-03-23 Commissariat A L'energie Atomique Bidimensional organic diaphragms and their preparation processes
US5204239A (en) * 1990-01-09 1993-04-20 Yeda Research And Development Co., Ltd. Biosensors including lipid bilayer doped with ion channels anchored to a recording electrode by bridging molecules
US5229465A (en) * 1990-06-30 1993-07-20 Praxair Technology, Inc. Oxygen-permeable polymeric membranes
US5231161A (en) * 1992-10-22 1993-07-27 General Electric Company Method for preparation of macrocyclic poly(alkylene dicarboxylate) oligomers from bis(hydroxyalkyl) dicarboxylates
US5237067A (en) * 1992-02-04 1993-08-17 Schumaker Robert R Optoelectronic tautomeric compositions
US5238570A (en) * 1991-10-31 1993-08-24 Bayer Aktiengesellschaft Asymmetric semipermeable membranes of aromatic polycondensates, processes for their preparation and their use
US5259957A (en) * 1989-09-29 1993-11-09 Alcan International Limited Porous membranes suitable for separation devices and other uses
US5342934A (en) * 1992-06-19 1994-08-30 The Trustees Of Columbia University In The City Of New York Enantioselective receptor for amino acid derivatives, and other compounds
US5357029A (en) * 1993-06-24 1994-10-18 General Electric Co. Macrocyclic polyimide oligomers and method for their preparation
US5362476A (en) * 1984-10-18 1994-11-08 Board Of Regents, The University Of Texas System Alkyl phosphonate polyazamacrocyclic cheates for MRI
US5364614A (en) * 1989-11-21 1994-11-15 Schering Aktiengesellschaft Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them
US5368889A (en) * 1993-04-16 1994-11-29 The Dow Chemical Company Method of making thin film composite membranes
US5368712A (en) * 1989-11-02 1994-11-29 Synporin Technologies, Inc. Biologically mimetic synthetic ion channel transducers
US5384168A (en) * 1990-04-21 1995-01-24 Hoechst Aktiengesellschaft Ferroelectric liquid-crystal display of high contrast and brightness
US5405550A (en) * 1988-06-03 1995-04-11 Josef Michl Compounds and methods based on [1.1.1]propellane
US5405552A (en) * 1992-08-11 1995-04-11 Hoechst Aktiengesellschaft Modified polysugar as the alignment layer for liquid-crystal displays
US5468851A (en) * 1991-12-12 1995-11-21 New York University Construction of geometrical objects from polynucleotides
US5489425A (en) * 1987-06-24 1996-02-06 The Dow Chemical Company Functionalized polyamine chelants
US5532129A (en) * 1991-11-07 1996-07-02 Enterprise Partners Ii, L.P. Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use
US5560151A (en) * 1995-03-06 1996-10-01 Polyceramics, Inc. Building blocks forming hexagonal and pentagonal building units for modular structures
US5561043A (en) * 1994-01-31 1996-10-01 Trustees Of Boston University Self-assembling multimeric nucleic acid constructs
US5593656A (en) * 1993-09-28 1997-01-14 Cytogen Corporation Metal-binding targeted polypeptide constructs
US5622945A (en) * 1992-08-04 1997-04-22 Board Of Regents, The University Of Texas System Rubyrin macrocycles
US5631368A (en) * 1995-03-10 1997-05-20 Nycomed Imaging As Polyazacycloalkane compounds
US5670480A (en) * 1994-01-05 1997-09-23 Arqule, Inc. Method of making polymers having specific properties
US5677399A (en) * 1996-11-07 1997-10-14 Bridgestone Corporation Synthesis of macrocyclic polymers with group IIA and IIB metal cyclic organometallic initiators
US5695887A (en) * 1996-05-09 1997-12-09 Bell Communications Research, Inc. Chelation treatment for reduced self-discharge in Li-ion batteries
US5788862A (en) * 1992-05-13 1998-08-04 Pall Corporation Filtration medium
US5798261A (en) * 1989-10-31 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
US5830539A (en) * 1995-11-17 1998-11-03 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for functionalizing and coating substrates and devices made according to the methods
US5831087A (en) * 1994-03-02 1998-11-03 Hoechst Celanese Corp. Macrocyclic imide compounds
US5876830A (en) * 1995-09-08 1999-03-02 Board Of Regents Of The University Of Colorado Method of assembly of molecular-sized nets and scaffolding
US5883246A (en) * 1996-03-07 1999-03-16 Qlt Phototherapeutics, Inc. Synthesis of polypyrrolic macrocycles from meso-substituted tripyrrane compounds
US5908692A (en) * 1997-01-23 1999-06-01 Wisconsin Alumni Research Foundation Ordered organic monolayers and methods of preparation thereof
US5912069A (en) * 1996-12-19 1999-06-15 Sigma Laboratories Of Arizona Metal nanolaminate composite
US5919370A (en) * 1995-05-24 1999-07-06 Akzo Nobel Nv Integral, multi-asymmetric, semi-permeable membrane
US5919369A (en) * 1992-02-06 1999-07-06 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5933819A (en) * 1997-05-23 1999-08-03 The Scripps Research Institute Prediction of relative binding motifs of biologically active peptides and peptide mimetics
US5936100A (en) * 1996-12-16 1999-08-10 Studiengesellschaft Kohle Mbh Synthesis of functionalized macrocycles by ring closing metathesis
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6033773A (en) * 1997-04-18 2000-03-07 The Regents Of The University Of California Polar self-assembled thin films for non-linear optical materials
US6036778A (en) * 1997-05-30 2000-03-14 Canon Kabushiki Kaisha Apparatus for producing Langmuir-Blodgett film
US6045821A (en) * 1994-10-10 2000-04-04 Nycomed Salutar, Inc. Liposomal agents
US6056903A (en) * 1999-02-08 2000-05-02 Osmonics, Inc. Preparation of polyethersulfone membranes
US6072044A (en) * 1996-04-26 2000-06-06 New York University Nanoconstructions of geometrical objects and lattices from antiparallel nucleic acid double crossover molecules
US6076318A (en) * 1995-03-06 2000-06-20 Polyceramics, Inc. Interlocking puzzle
US6107496A (en) * 1998-03-03 2000-08-22 Huels Aktiengesellschaft Process for the preparation of cyclic esters
US6121466A (en) * 1998-03-03 2000-09-19 Huels Aktiengesellschaft Process for the preparation of macrocyclic esters
US6171497B1 (en) * 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6177181B1 (en) * 1996-12-10 2001-01-23 Daicel Chemical Industries, Ltd. Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6203850B1 (en) * 1999-05-18 2001-03-20 Neomecs Incorporated Plasma-annealed porous polymers
US6210551B1 (en) * 1995-08-01 2001-04-03 Australian Membrane And Biotechnology Research Institute Composite membrane sensor
US6217873B1 (en) * 1993-05-05 2001-04-17 Gryphon Sciences Polyoxime compounds and their preparation
US20010007771A1 (en) * 1996-05-29 2001-07-12 Sean M. Sullivan Cationic polymers and lipids for the delivery of nucleic acids
US6262257B1 (en) * 1996-04-05 2001-07-17 Board Of Regents, University Of Texas System Calixpyrroles, calixpyridinopyrroles and calixpyridines
US20010008772A1 (en) * 1998-04-03 2001-07-19 Janet G. Smith Cationic lipid formulation delivering nucleic acid to peritoneal tumors
US20010009904A1 (en) * 1997-12-30 2001-07-26 Jon A. Wolff Process of delivering a polynucleotide to a cell via the vascular system
US6275866B1 (en) * 1997-03-14 2001-08-14 Mathsoft Engineering & Education, Inc. Manipulation and coupling of object oriented components
US20010020011A1 (en) * 1994-03-15 2001-09-06 Edith Mathiowitz Polymeric gene delivery system
US6294697B1 (en) * 1995-10-19 2001-09-25 The University Of Washington Discrete-length polyethylene glycols
US6309723B1 (en) * 1992-07-29 2001-10-30 Baxter International Inc. Biomaterials with hydrophilic surfaces
US6340588B1 (en) * 1995-04-25 2002-01-22 Discovery Partners International, Inc. Matrices with memories
US6380347B1 (en) * 1999-04-09 2002-04-30 Honeywell International Inc. Nanoporous polymers comprising macrocycles
US20020066047A1 (en) * 2000-11-30 2002-05-30 Olarig Sompong P. Memory controller with temperature sensors
US6524613B1 (en) * 1997-04-30 2003-02-25 Regents Of The University Of Minnesota Hepatocellular chimeraplasty
US20030199688A1 (en) * 2002-02-07 2003-10-23 Josh Kriesel Macrocyclic module compositions

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155926B1 (US08182695-20120522-C00240.png) * 1971-10-15 1973-11-30 Cetrane Laboratoire
SU1139730A1 (ru) 1983-10-12 1985-02-15 Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского 1 @ ,12 @ -Тетрасульфо-1 @ ,12 @ -тетраокси-2,3,10,11,13,14,21,22-октааза-5,8,16,19-тетраокса-1,12 ди(2,7)нафта-4,9,15,20-тетра(1,2)фена-циклодокоза-2,10,13,21-тетраен в качестве реагента дл фотометрического определени берилли
SU1139731A1 (ru) 1983-10-12 1985-02-15 Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского 1 @ ,15 @ -Тетрасульфо-1 @ ,15 @ -тетраокси-2,3,13,14,16,17,27,28-октааза-5,8,11,19,22,25-гексаокса-1,15 ди(2,7)нафта-4,12,18,26 тетра(1,2)фена-циклооктакоза-2,13,16,27-тетраен в качестве реагента дл фотометрического определени бари
SU1266849A1 (ru) 1985-01-31 1986-10-30 Ордена Ленина Институт Геохимии И Аналитической Химии Им.В.И.Вернадского Макроциклические бисазорезорцины систем ундека,-тетрадека,гептадекадиена
SU1532560A1 (ru) 1988-04-22 1989-12-30 Институт геохимии и аналитической химии им.В.И.Вернадского Способ получени симметричных макроциклических олигоэфиров
DE4035378C2 (de) 1990-11-07 2000-11-02 Oeffentliche Pruefstelle Und T Textiles Material sowie Verfahren zur Herstellung eines derartigen textilen Materials
CA2100676A1 (en) 1991-01-29 1992-07-30 Kou M. Hwang Anti-coagulant properties of macrocyclic compounds and method of treatment
DE4305970A1 (de) 1993-02-26 1994-09-01 Hoechst Ag Cyclische Strukturelemente enthaltende Silan-Koppler als Orientierungsfilme
GB9321545D0 (en) 1993-10-19 1993-12-08 Secr Defence Sensors for neutral molecules
US5614099A (en) 1994-12-22 1997-03-25 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
GB9511396D0 (en) 1995-06-06 1995-08-02 British Nuclear Fuels Plc Chemical complexes
US5852127A (en) * 1996-07-09 1998-12-22 Rensselner Polytechnic Institute Modification of porous and non-porous materials using self-assembled monolayers
DE19636337A1 (de) 1996-08-30 1998-03-05 Inst Angewandte Chemie Berlin Polyazacalix[5]arene, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19646537A1 (de) 1996-10-30 1998-05-07 Inst Angewandte Chemie Berlin Polyazacalix[6]arene, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19711078A1 (de) 1997-01-05 1998-09-24 Franz Dietrich Oeste Organische Käfigverbindungen, Verfahren zu ihrer Herstellung und Anwendung
US5919440A (en) * 1997-05-05 1999-07-06 Procter & Gamble Company Personal care compositions containing an odor masking base
NL1008789C2 (nl) 1998-04-02 1999-10-05 Stichting Tech Wetenschapp Anion-complexerende verbinding, werkwijze voor de bereiding ervan, een ionselectief membraan alsmede een sensor voorzien van een dergelijke verbinding of membraan.
US6048736A (en) 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
JP2001151904A (ja) * 1999-09-17 2001-06-05 Univ Tokyo J会合体配向分散膜及びその製造方法
EP1481268A4 (en) 2002-02-07 2005-06-29 Covalent Partners Llc NANOFILM AND MEMBRANE COMPOSITIONS
EP1480635A4 (en) 2002-02-07 2005-06-29 Covalent Partners Llc COMPOSITIONS OF MACROCYCLIC MODULES
WO2003072126A2 (de) * 2002-02-28 2003-09-04 Switch Biotech Ag Verwendung eines fibroblastenwachstumsfaktor-bindeproteins zur behandlung und diagnose von diabetischen wundheilungsstörungen
US20040106741A1 (en) 2002-09-17 2004-06-03 Kriesel Joshua W. Nanofilm compositions with polymeric components
EP1667965A2 (en) 2003-08-06 2006-06-14 Covalent Partners, LLC Bridged macrocyclic module compositions

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847949A (en) * 1970-05-12 1974-11-12 Du Pont Macrocyclic hetero imine complexing agents
US4031111A (en) * 1973-01-08 1977-06-21 E. I. Du Pont De Nemours And Company Macrocyclic hetero imine complexing agents
US4155793A (en) * 1977-11-21 1979-05-22 General Electric Company Continuous preparation of ultrathin polymeric membrane laminates
US4379041A (en) * 1980-04-24 1983-04-05 Ceskoslovenska Akademie Ved Polymeric membrane selective to calcium (II) ions
US4997676A (en) * 1982-02-26 1991-03-05 Limitinstant Limited Immobilized inorganic diffusion barriers and the use thereof in the separation of small molecular species from a solution
US4554076A (en) * 1982-08-18 1985-11-19 Georgia Tech Research Corporation Method of modifying membrane surface with oriented monolayers of amphiphilic compounds
US4661526A (en) * 1983-02-02 1987-04-28 Memtec Limited Cross linked porous membranes
US4438251A (en) * 1983-05-16 1984-03-20 Armstrong World Industries, Inc. Polyurethane polymers comprising macrocyclic crown ethers in the polymer backbone
US4752342A (en) * 1983-11-05 1988-06-21 Perchem Limited Organoclay materials
US4560599A (en) * 1984-02-13 1985-12-24 Marquette University Assembling multilayers of polymerizable surfactant on a surface of a solid material
US4632800A (en) * 1984-05-10 1986-12-30 Commissariat A L'energie Atomique Process for producing a thin film having at least one monomolecular layer of non-amphiphilic molecules
US5362476A (en) * 1984-10-18 1994-11-08 Board Of Regents, The University Of Texas System Alkyl phosphonate polyazamacrocyclic cheates for MRI
US5059510A (en) * 1985-02-04 1991-10-22 Hoechst Celanese Corp. Media for optical information storage comprising an organic macrocyclic chromophore substituted with a film conferring organic substituent
US5173365A (en) * 1985-03-25 1992-12-22 Nanofilm Corporation Ultra-thin molecular film
US4910293A (en) * 1985-11-20 1990-03-20 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Langmuir-Blodgett films of polymers having pendent C10 -C30 hydrocarbon groups
US5023252A (en) * 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US4722856A (en) * 1986-01-02 1988-02-02 Molecular Electronics Corporation Method and apparatus for depositing monomolecular layers on a substrate
US4839219A (en) * 1986-05-20 1989-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thin film and device having the same
US4948506A (en) * 1986-07-07 1990-08-14 Bend Research, Inc. Physicochemically functional ultrathin films by interfacial polymerization
US4902424A (en) * 1986-10-20 1990-02-20 Memetc North America Corp. Ultrafiltration thin film membranes
US5069945A (en) * 1986-10-20 1991-12-03 Memtec America Corporation Ultrapous thin-film membranes
US4808480A (en) * 1986-11-25 1989-02-28 Lehigh University Polymerizable heterocyclic disulfide-based compounds and membranes made therefrom
US4828917A (en) * 1987-05-08 1989-05-09 Basf Aktiengesellschaft Layer of metallomacrocyclic polymer on substrate
US5064956A (en) * 1987-06-24 1991-11-12 The Dow Chemical Company Process for preparing mono-n-alkylated polyazamacrocycles
US5489425A (en) * 1987-06-24 1996-02-06 The Dow Chemical Company Functionalized polyamine chelants
US5035762A (en) * 1987-07-24 1991-07-30 Basf Aktiengesellschaft Production of thin films
US5179213A (en) * 1987-09-04 1993-01-12 Brigham Young University Macrocyclic ligands bonded to an inorganic support matrix and a process for selectively and quantitatively removing and concentrating ions present at low concentrations from mixtures thereof with other ions
US5405550A (en) * 1988-06-03 1995-04-11 Josef Michl Compounds and methods based on [1.1.1]propellane
US5102798A (en) * 1988-09-08 1992-04-07 Allage Associates Surface functionalized Langmuir-Blodgett films for immobilization of active moieties
US5259957A (en) * 1989-09-29 1993-11-09 Alcan International Limited Porous membranes suitable for separation devices and other uses
US5798261A (en) * 1989-10-31 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
US5516890A (en) * 1989-11-02 1996-05-14 Synporin Technologies Biologically mimetic synthetic ion channel transducers and methods of making the same
US5368712A (en) * 1989-11-02 1994-11-29 Synporin Technologies, Inc. Biologically mimetic synthetic ion channel transducers
US5364614A (en) * 1989-11-21 1994-11-15 Schering Aktiengesellschaft Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them
US5204239A (en) * 1990-01-09 1993-04-20 Yeda Research And Development Co., Ltd. Biosensors including lipid bilayer doped with ion channels anchored to a recording electrode by bridging molecules
US5384168A (en) * 1990-04-21 1995-01-24 Hoechst Aktiengesellschaft Ferroelectric liquid-crystal display of high contrast and brightness
US5143784A (en) * 1990-05-10 1992-09-01 Nec Corporation Soluble calixarene derivative and films thereof
US5229465A (en) * 1990-06-30 1993-07-20 Praxair Technology, Inc. Oxygen-permeable polymeric membranes
US5196257A (en) * 1990-08-23 1993-03-23 Commissariat A L'energie Atomique Bidimensional organic diaphragms and their preparation processes
US5238570A (en) * 1991-10-31 1993-08-24 Bayer Aktiengesellschaft Asymmetric semipermeable membranes of aromatic polycondensates, processes for their preparation and their use
US5532129A (en) * 1991-11-07 1996-07-02 Enterprise Partners Ii, L.P. Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use
US5468851A (en) * 1991-12-12 1995-11-21 New York University Construction of geometrical objects from polynucleotides
US5237067A (en) * 1992-02-04 1993-08-17 Schumaker Robert R Optoelectronic tautomeric compositions
US5919369A (en) * 1992-02-06 1999-07-06 Hemocleanse, Inc. Hemofiltration and plasmafiltration devices and methods
US5788862A (en) * 1992-05-13 1998-08-04 Pall Corporation Filtration medium
US5342934A (en) * 1992-06-19 1994-08-30 The Trustees Of Columbia University In The City Of New York Enantioselective receptor for amino acid derivatives, and other compounds
US6309723B1 (en) * 1992-07-29 2001-10-30 Baxter International Inc. Biomaterials with hydrophilic surfaces
US5622945A (en) * 1992-08-04 1997-04-22 Board Of Regents, The University Of Texas System Rubyrin macrocycles
US5405552A (en) * 1992-08-11 1995-04-11 Hoechst Aktiengesellschaft Modified polysugar as the alignment layer for liquid-crystal displays
US5231161A (en) * 1992-10-22 1993-07-27 General Electric Company Method for preparation of macrocyclic poly(alkylene dicarboxylate) oligomers from bis(hydroxyalkyl) dicarboxylates
US5368889A (en) * 1993-04-16 1994-11-29 The Dow Chemical Company Method of making thin film composite membranes
US6217873B1 (en) * 1993-05-05 2001-04-17 Gryphon Sciences Polyoxime compounds and their preparation
US5357029A (en) * 1993-06-24 1994-10-18 General Electric Co. Macrocyclic polyimide oligomers and method for their preparation
US5593656A (en) * 1993-09-28 1997-01-14 Cytogen Corporation Metal-binding targeted polypeptide constructs
US5670480A (en) * 1994-01-05 1997-09-23 Arqule, Inc. Method of making polymers having specific properties
US5561043A (en) * 1994-01-31 1996-10-01 Trustees Of Boston University Self-assembling multimeric nucleic acid constructs
US5965133A (en) * 1994-01-31 1999-10-12 Trustees Of Boston University Self-assembling multimeric nucleic acid constructs
US5831087A (en) * 1994-03-02 1998-11-03 Hoechst Celanese Corp. Macrocyclic imide compounds
US20010020011A1 (en) * 1994-03-15 2001-09-06 Edith Mathiowitz Polymeric gene delivery system
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6045821A (en) * 1994-10-10 2000-04-04 Nycomed Salutar, Inc. Liposomal agents
US6076318A (en) * 1995-03-06 2000-06-20 Polyceramics, Inc. Interlocking puzzle
US5560151A (en) * 1995-03-06 1996-10-01 Polyceramics, Inc. Building blocks forming hexagonal and pentagonal building units for modular structures
US5677446A (en) * 1995-03-10 1997-10-14 Nycomed Imaging As Polyazacycloalkane compounds
US5631368A (en) * 1995-03-10 1997-05-20 Nycomed Imaging As Polyazacycloalkane compounds
US6340588B1 (en) * 1995-04-25 2002-01-22 Discovery Partners International, Inc. Matrices with memories
US5919370A (en) * 1995-05-24 1999-07-06 Akzo Nobel Nv Integral, multi-asymmetric, semi-permeable membrane
US6210551B1 (en) * 1995-08-01 2001-04-03 Australian Membrane And Biotechnology Research Institute Composite membrane sensor
US5876830A (en) * 1995-09-08 1999-03-02 Board Of Regents Of The University Of Colorado Method of assembly of molecular-sized nets and scaffolding
US6294697B1 (en) * 1995-10-19 2001-09-25 The University Of Washington Discrete-length polyethylene glycols
US5830539A (en) * 1995-11-17 1998-11-03 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for functionalizing and coating substrates and devices made according to the methods
US6171497B1 (en) * 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US5883246A (en) * 1996-03-07 1999-03-16 Qlt Phototherapeutics, Inc. Synthesis of polypyrrolic macrocycles from meso-substituted tripyrrane compounds
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6262257B1 (en) * 1996-04-05 2001-07-17 Board Of Regents, University Of Texas System Calixpyrroles, calixpyridinopyrroles and calixpyridines
US6072044A (en) * 1996-04-26 2000-06-06 New York University Nanoconstructions of geometrical objects and lattices from antiparallel nucleic acid double crossover molecules
US5695887A (en) * 1996-05-09 1997-12-09 Bell Communications Research, Inc. Chelation treatment for reduced self-discharge in Li-ion batteries
US20010007771A1 (en) * 1996-05-29 2001-07-12 Sean M. Sullivan Cationic polymers and lipids for the delivery of nucleic acids
US5677399A (en) * 1996-11-07 1997-10-14 Bridgestone Corporation Synthesis of macrocyclic polymers with group IIA and IIB metal cyclic organometallic initiators
US6177181B1 (en) * 1996-12-10 2001-01-23 Daicel Chemical Industries, Ltd. Porous films, process for producing the same, and laminate films and recording sheets made with the use of the porous films
US5936100A (en) * 1996-12-16 1999-08-10 Studiengesellschaft Kohle Mbh Synthesis of functionalized macrocycles by ring closing metathesis
US5912069A (en) * 1996-12-19 1999-06-15 Sigma Laboratories Of Arizona Metal nanolaminate composite
US5908692A (en) * 1997-01-23 1999-06-01 Wisconsin Alumni Research Foundation Ordered organic monolayers and methods of preparation thereof
US6275866B1 (en) * 1997-03-14 2001-08-14 Mathsoft Engineering & Education, Inc. Manipulation and coupling of object oriented components
US6033773A (en) * 1997-04-18 2000-03-07 The Regents Of The University Of California Polar self-assembled thin films for non-linear optical materials
US6524613B1 (en) * 1997-04-30 2003-02-25 Regents Of The University Of Minnesota Hepatocellular chimeraplasty
US5933819A (en) * 1997-05-23 1999-08-03 The Scripps Research Institute Prediction of relative binding motifs of biologically active peptides and peptide mimetics
US5933819C1 (en) * 1997-05-23 2001-11-13 Scripps Research Inst Prediction of relative binding motifs of biologically active peptides and peptide mimetics
US6036778A (en) * 1997-05-30 2000-03-14 Canon Kabushiki Kaisha Apparatus for producing Langmuir-Blodgett film
US20010009904A1 (en) * 1997-12-30 2001-07-26 Jon A. Wolff Process of delivering a polynucleotide to a cell via the vascular system
US6107496A (en) * 1998-03-03 2000-08-22 Huels Aktiengesellschaft Process for the preparation of cyclic esters
US6121466A (en) * 1998-03-03 2000-09-19 Huels Aktiengesellschaft Process for the preparation of macrocyclic esters
US20010008772A1 (en) * 1998-04-03 2001-07-19 Janet G. Smith Cationic lipid formulation delivering nucleic acid to peritoneal tumors
US6056903A (en) * 1999-02-08 2000-05-02 Osmonics, Inc. Preparation of polyethersulfone membranes
US6380347B1 (en) * 1999-04-09 2002-04-30 Honeywell International Inc. Nanoporous polymers comprising macrocycles
US6203850B1 (en) * 1999-05-18 2001-03-20 Neomecs Incorporated Plasma-annealed porous polymers
US20020066047A1 (en) * 2000-11-30 2002-05-30 Olarig Sompong P. Memory controller with temperature sensors
US20030199688A1 (en) * 2002-02-07 2003-10-23 Josh Kriesel Macrocyclic module compositions
US20040034223A1 (en) * 2002-02-07 2004-02-19 Covalent Partners, Llc. Amphiphilic molecular modules and constructs based thereon

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US7974672B2 (en) 1997-03-04 2011-07-05 Dexcom, Inc. Device and method for determining analyte levels
US7970448B2 (en) 1997-03-04 2011-06-28 Dexcom, Inc. Device and method for determining analyte levels
US7835777B2 (en) 1997-03-04 2010-11-16 Dexcom, Inc. Device and method for determining analyte levels
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US8527025B1 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US9931067B2 (en) 1997-03-04 2018-04-03 Dexcom, Inc. Device and method for determining analyte levels
US8676288B2 (en) 1997-03-04 2014-03-18 Dexcom, Inc. Device and method for determining analyte levels
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US8367001B2 (en) 1998-05-05 2013-02-05 Massachusetts Institute Of Technology Emissive sensors and devices incorporating these sensors
US8465678B2 (en) 1998-05-05 2013-06-18 Massachusetts Institute Of Technology Emissive polymers and devices incorporating these polymers
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US20090114596A1 (en) * 2002-02-07 2009-05-07 Covalent Partners Llc Nanofilm and membrane compositions
US20060128680A1 (en) * 2002-02-07 2006-06-15 Josh Kriesel Macrocyclic module compositions
US7563890B2 (en) 2002-02-07 2009-07-21 Covalent Partners, Llc Amphiphilic molecular modules and constructs based thereon
US20040260085A1 (en) * 2002-02-07 2004-12-23 Kriesel Joshua W. Nanofilm and membrane compositions
US8110679B2 (en) 2002-02-07 2012-02-07 Covalent Partners Llc Nanofilm and membrane compositions
US20060270846A1 (en) * 2002-02-07 2006-11-30 Covalent Partners, Llc Amphiphilic molecular modules and constructs based thereon
US20100152438A1 (en) * 2002-02-07 2010-06-17 Covalent Partners Llc Amphiphilic molecular modules and constructs based thereon
US20030199688A1 (en) * 2002-02-07 2003-10-23 Josh Kriesel Macrocyclic module compositions
US7767810B2 (en) 2002-02-07 2010-08-03 Covalent Partners, Llc Macrocyclic modules comprising linked cyclic synthon units for use in the formation of selectively permeable membranes
US20040126659A1 (en) * 2002-09-10 2004-07-01 Graetz Jason A. High-capacity nanostructured silicon and lithium alloys thereof
US7595368B2 (en) 2002-09-17 2009-09-29 Covalent Partners, Llc Nanofilm compositions with polymeric components
US20060041077A1 (en) * 2002-09-17 2006-02-23 Covalent Partners Llc Nanofilm compositions with polymeric components
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US10610140B2 (en) 2003-07-25 2020-04-07 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8255030B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8255032B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8255033B2 (en) 2003-07-25 2012-08-28 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9993186B2 (en) 2003-07-25 2018-06-12 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9597027B2 (en) 2003-07-25 2017-03-21 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8182695B2 (en) 2003-08-06 2012-05-22 Whiteford Jeffery A Bridged macrocyclic module compositions
US20080290034A1 (en) * 2003-08-06 2008-11-27 Covalent Partners Llc Bridged macrocyclic module compositions
US7781102B2 (en) * 2004-04-22 2010-08-24 California Institute Of Technology High-capacity nanostructured germanium-containing materials and lithium alloys thereof
US20100190059A1 (en) * 2004-04-22 2010-07-29 Graetz Jason A High-capacity nanostructured germanium-containing materials and lithium alloys thereof
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US20060063854A1 (en) * 2004-06-15 2006-03-23 Xiaoming Jin Low shrinkage and low stress dental compositions
US8129446B2 (en) 2004-06-15 2012-03-06 Dentsply International Inc. Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20110152569A1 (en) * 2004-06-15 2011-06-23 Xiaoming Jin Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20080182997A1 (en) * 2004-06-15 2008-07-31 Dentsply International Inc. Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20060287459A1 (en) * 2004-06-15 2006-12-21 Xiaoming Jin Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20080182948A1 (en) * 2004-06-15 2008-07-31 Xiaoming Jin Low shrinkage and low stress dental compositions
US8461227B2 (en) 2004-06-15 2013-06-11 Dentsply International Inc. Radical polymerizable macrocyclic resin compositions with low polymerization stress
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US8792953B2 (en) 2004-07-13 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US8617819B2 (en) 2004-09-17 2013-12-31 Massachusetts Institute Of Technology Polymers for analyte detection
US20060127929A1 (en) * 2004-09-17 2006-06-15 Massachusetts Institute Of Technology Polymers for analyte detection
US20090246887A1 (en) * 2005-01-07 2009-10-01 Academia Sinica Diamond Crystallites For Biotechnological Applications
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US7671166B2 (en) * 2005-11-22 2010-03-02 Massachusetts Institute Of Technology High internal free volume compositions for low-k dielectric and other applications
US20070117954A1 (en) * 2005-11-22 2007-05-24 Massachusetts Institute Of Technology High internal free volume compositions for low-k dielectric and other applications
US20110144238A1 (en) * 2006-03-08 2011-06-16 3M Innovative Properties Company Polymer composites
WO2007102980A1 (en) * 2006-03-08 2007-09-13 3M Innovative Properties Company Polymer composites
US20100068500A1 (en) * 2006-03-08 2010-03-18 3M Innovative Properties Company Polymer composites
US7863381B2 (en) * 2006-03-08 2011-01-04 3M Innovative Properties Company Polymer composites
CN101400726B (zh) * 2006-03-08 2013-03-13 3M创新有限公司 聚合物复合材料
US8557918B2 (en) 2006-03-08 2013-10-15 3M Innovative Properties Company Polymer composites
US20100157286A1 (en) * 2006-08-04 2010-06-24 University Of Memphis Research Foundation Nanothin polymer films with selective pores and method of use thereof
US8519015B2 (en) * 2006-08-04 2013-08-27 University Of Memphis Research Foundation Nanothin polymer films with selective pores and method of use thereof
US8283423B2 (en) 2006-09-29 2012-10-09 Massachusetts Institute Of Technology Polymer synthetic technique
US8802447B2 (en) 2006-10-05 2014-08-12 Massachusetts Institute Of Technology Emissive compositions with internal standard and related techniques
US20080085566A1 (en) * 2006-10-05 2008-04-10 Massachusetts Institute Of Technology Emissive compositions with internal standard and related techniques
US9429522B2 (en) 2006-10-27 2016-08-30 Massachusetts Institute Of Technology Sensor of species including toxins and chemical warfare agents
US10143410B2 (en) 2008-03-28 2018-12-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173606B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9572523B2 (en) 2008-03-28 2017-02-21 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11147483B2 (en) 2008-03-28 2021-10-19 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247856A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9566026B2 (en) 2008-03-28 2017-02-14 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9549699B2 (en) 2008-03-28 2017-01-24 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10028683B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028684B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US11918354B2 (en) 2008-09-19 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10561352B2 (en) 2008-09-19 2020-02-18 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20110027497A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110027491A1 (en) * 2009-07-31 2011-02-03 Nantero, Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20130295398A1 (en) * 2010-10-14 2013-11-07 Lg Chem, Ltd. Resin blend for melting process
US20130302615A1 (en) * 2010-10-14 2013-11-14 Lg Chem, Ltd. Resin blend for melting process
US10305052B2 (en) 2014-07-15 2019-05-28 Japan Science And Technology Agency Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method
CN111712317A (zh) * 2018-05-10 2020-09-25 株式会社Lg化学 反渗透膜、其制造方法及水处理模块
CN109942731A (zh) * 2019-04-08 2019-06-28 武汉轻工大学 一种纳米金/聚甲基丙烯酸甲酯导电材料的制备方法
CN113509848A (zh) * 2021-04-27 2021-10-19 北京工业大学 一种基于液-液界面制备聚醚嵌段酰胺渗透汽化复合膜的方法
CN113522037A (zh) * 2021-07-21 2021-10-22 江苏盈天化学有限公司 一种渗透汽化四氢呋喃脱水复合膜的制备方法

Also Published As

Publication number Publication date
WO2005018013A3 (en) 2005-08-18
US7595368B2 (en) 2009-09-29
WO2005018013A2 (en) 2005-02-24
EP1573833A2 (en) 2005-09-14
US20060041077A1 (en) 2006-02-23
AU2003304453A1 (en) 2005-03-07
EP1573833A4 (en) 2009-12-09
KR20060056266A (ko) 2006-05-24
AU2003304453B2 (en) 2009-02-19
JP2006512472A (ja) 2006-04-13

Similar Documents

Publication Publication Date Title
US7595368B2 (en) Nanofilm compositions with polymeric components
US8182695B2 (en) Bridged macrocyclic module compositions
US8110679B2 (en) Nanofilm and membrane compositions
JP2006512472A5 (US08182695-20120522-C00240.png)
US7563890B2 (en) Amphiphilic molecular modules and constructs based thereon
US7767810B2 (en) Macrocyclic modules comprising linked cyclic synthon units for use in the formation of selectively permeable membranes
KR100686566B1 (ko) 중합체 네트워크의 제조방법
AU2003212973B2 (en) Nanofilm and membrane compositions
JP4688418B2 (ja) ナノフィルムおよび膜組成物
WO2002051917A1 (de) Oberflachenfunktionalisiertes tragermaterial, verfahren fur seine herstellung sowie festphasensyntheseverfahren
Singh et al. An introduction to molecularly imprinted polymers
Donthongkwa SYNTHESIS AND SUPRAMOLECULAR POLYMERIZATION OF PEPTIDE NUCLEIC ACID-CONTAINING MONOMER

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVALENT PARTNERS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRIESEL, JOSHUA W.;BIVIN, DONALD B.;OLSON, DAVID J.;AND OTHERS;REEL/FRAME:014217/0569;SIGNING DATES FROM 20031107 TO 20031201

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION