US20030138417A1 - Stable liquid pharmaceutical formulation of IgG antibodies - Google Patents

Stable liquid pharmaceutical formulation of IgG antibodies Download PDF

Info

Publication number
US20030138417A1
US20030138417A1 US10/291,528 US29152802A US2003138417A1 US 20030138417 A1 US20030138417 A1 US 20030138417A1 US 29152802 A US29152802 A US 29152802A US 2003138417 A1 US2003138417 A1 US 2003138417A1
Authority
US
United States
Prior art keywords
clear
antibody
formulation
buffer
succinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/291,528
Other languages
English (en)
Inventor
Elizabet Kaisheva
Supriya Gupta
Shanti Duvur
Malathy Subramanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Biotherapeutics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23320826&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030138417(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/291,528 priority Critical patent/US20030138417A1/en
Publication of US20030138417A1 publication Critical patent/US20030138417A1/en
Assigned to PROTEIN DESIGN LABS, INC. reassignment PROTEIN DESIGN LABS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUVUR, SHANTI G., GUPTA, SUPRIYA, KAISHEVA, ELIZABET A., SUBRAMANIAN, MALATHY
Assigned to PDL BIOPHARMA, INC. reassignment PDL BIOPHARMA, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROTEIN DESIGN LABS, INC.
Assigned to FACET BIOTECH CORPORATION reassignment FACET BIOTECH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PDL BIOPHARMA, INC.
Priority to US12/954,512 priority patent/US20110070231A1/en
Assigned to ABBOTT BIOTHERAPEUTICS CORP. reassignment ABBOTT BIOTHERAPEUTICS CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FACET BIOTECH CORPORATION
Priority to US13/226,372 priority patent/US8465739B2/en
Assigned to ABBVIE BIOTHERAPEUTICS INC. reassignment ABBVIE BIOTHERAPEUTICS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT BIOTHERAPEUTICS CORP.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/249Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/246IL-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • C07K16/2854Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72 against selectins, e.g. CD62
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • the present invention relates generally to the field of pharmaceutical formulation of antibodies. Specifically, the present invention relates to a stable, liquid, high concentration antibody formulation.
  • This invention is exemplified by a stabilized liquid formulation of Daclizumab, an anti-IL2 receptor antibody; HAIL-12, a humanized anti-IL-12 monoclonal antibody; and HuEP5C7, a humanized anti-L selectin monoclonal antibody.
  • Immunoglobulins are recognized as possessing characteristics that tend to form aggregates and particulates in solution, and as such, may require filtration before use for intravenous or subcutaneous injection.
  • the formation of protein aggregates and particulates has long been a problem in the development of parenteral immunoglobulin products, especially when the immunoglobulins are formulated at high concentrations.
  • SynagisTM (MedImmune) is a humanized monoclonal IgG1 antibody produced by recombinant DNA technology, directed to an epitope in the A antigenic site of the T protein of respiratory syncytial virus (RSV).
  • SynagisTM is a composite of human (90%) and murine (10%) antibody sequences.
  • SynagisTM is supplied as a sterile lyophilized product for reconstruction with sterile water for injection. Reconstituted SynagisTM is to be administered by intramuscular injection only. Upon reconstitution, SynagisTM contains the following excipients: 47 mM histidine, 3.0 mM glycine, 5.6% mannitol, and the active ingredient, IgG1 antibody, at a concentration of 100 milligrams per vial. The reconstituted SynagisTM is to be administered within 6 hours of reconstitution.
  • WO 89/11297 discloses a lyophilized monoclonal antibody formulation comprising a lyophilized formulation of 1-25 mg/ml IgG monoclonal antibody, 2-10% maltose, and sodium acetate, phosphate, or citrate buffer having a pH between 3.0 to 6.0.
  • WO 97/45140 discloses an aqueous preparation of anti-CD4 antibody concentrated to approximately 100 mg/ml in 100 mM sodium citrate, 0.05 mM EDTA, pH 6.0.
  • the application discloses a slight rise in turbidity after concentration of the antibody, which likely reflects protein aggregation. Removing this aggregation requires addition of Polysorbate 80 and sterile filtration.
  • WO 90/11091 discloses injectable aqueous compositions comprising about 5 mg/ml of IgM, 2.5-5% (w/v) human serum albumin, in 8-20 mM phosphate buffer, 270 mM sodium chloride, pH 6.8-7.4.
  • U.S. Pat. No. 6,171,586 discloses a stable aqueous pharmaceutical formulation comprising a therapeutically effective amount of an antibody not subjected to prior lyophilization, an acetate buffer from about pH 4.8 to about 5.5, a surfactant, and a polyol, wherein the formulation lacks a tonicifying amount of sodium chloride.
  • U.S. Patent Application Publication No. US 2001/0014326A1 discloses a pre-lyophilized antibody formulation containing 25 mg/ml anti-IgE antibody, 5 mM histidine, pH 6.0, 85 mM sucrose, and 0.01% polysorbate 20.
  • U.S. Pat. No. 5,744,132 discloses a composition comprising 1-1000 ⁇ g/ml IL-12 antibody, 2% sucrose, 4.15% mannitol, 10 mM sodium succinate, and about 0.02% Tween® 20, having a pH of about 5.6.
  • U.S. Pat. No. 6,165,467 discloses a process for stabilizing a human monoclonal antibody composition produced by hybridoma cell line having accession number HB8307, which comprises dialyzing the human monoclonal antibody in a phosphate salt stabilized buffer solution having a pH from 7.2 to 7.4, said solution comprising 1-20 mg of D-mannitol per mg of said monoclonal antibody, 0.005-0.2 millimole of glycine per mg of said monoclonal antibody, and an amount of pH stabilizing phosphate salt to stabilize the pH of said solution.
  • This invention is directed to a stable liquid pharmaceutical formulation comprising a high concentration, e.g., greater than 50 mg/ml, of an antibody in 20-60 mM succinate buffer or 30-70 mM histidine buffer (pH from about pH 5.5 to about pH 6.5), a tonicity modifier, and about 0.01-0.1% polysorbate.
  • This formulation retains the physical, chemical, and biological stability of antibody and prevents the immunoglobulins intended for administration to human subjects from forming aggregates and particulates in the final product.
  • Preferred antibodies of this invention include Daclizumab, a humanized anti-1L-2 receptor monoclonal antibody; HAIL-12, a humanized anti-IL-12 monoclonal antibody; and HuEP5C7, a humanized anti-L selectin monoclonal antibody; and Flintozumab, a humanized anti-gamma interferon monoclonal antibody.
  • the liquid antibody formulation is stable at refrigerated temperature (2-8° C.) for at least 1 year and preferably 2 years. This liquid formulation is also stable at room temperature (23-27° C.) for at least six months. This liquid formulation is suitable for subcutaneous injection.
  • FIG. 1A shows the percent clips formation
  • FIG. 1B shows the percent aggregates, at various pH levels following a four-week incubation of the sample at 45° C., as assessed by SEC-HPLC.
  • FIG. 2 shows the percent of degradation obtained at various pH levels as assessed by cIEF following a four-week incubation of the sample at 45° C.
  • FIG. 3 shows the percent of iso-aspartic acid formed at various pH levels as assessed by the Promega IsoQuant kit following a four-week incubation of the sample at 45° C.
  • FIG. 4 shows the effect of different buffers over time on potency following incubation at 37° C.
  • buffer encompasses those agents which maintain the solution pH in an acceptable range and may include succinate (sodium), histidine, phosphate (sodium or potassium), Tris (tris (hydroxymethyl) aminomethane), diethanolamine, and the like.
  • the buffer of this invention has a pH in the range from about 5.5 to about 6.5; and preferably has a pH of about 6.0.
  • Examples of buffers that will control the pH in this range include succinate (such as sodium succinate), gluconate, histidine, citrate phospate and other organic acid buffers.
  • “Pharmaceutically acceptable excipients” are those inert substances that can reasonably be administered to a subject mammal and provide an effective dose of the active ingredient employed. These substances are added to a formulation to stabilize the physical, chemical and biological structure of the antibody. The term also refers to additives that may be needed to attain an isotonic formulation, suitable for the intended mode of administration.
  • pharmaceutical formulation refers to preparations which are in such form as to permit the biological activity of the active ingredients to be unequivocally effective, and which contain no additional components which are toxic to the subjects to which the formulation would be administered.
  • a “stable” formulation is one in which the protein therein essentially retains its physical stability, chemical stability, and biological activity upon storage.
  • Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10:29-90 (1993). Stability can be measured at a selected temperature for a selected time period.
  • a “stable” liquid antibody formulation is a liquid antibody formulation with no significant changes observed at a refrigerated temperature (2-8° C.) for at least 12 months, preferably 2 years, and more preferably 3 years; or at room temperature (23-27° C.) for at least 3 months, preferably 6 months, and more preferably 1 year.
  • the criteria for stability are as follows. No more than 10%, preferably 5%, of antibody monomer is degraded as measured by SEC-HPLC. The solution is colorless, or clear to slightly opalescent by visual analysis. The concentration, pH and osmolality of the formulation have no more than +/ ⁇ 10% change. Potency is within 70-130%, preferably 80-120% of the control. No more than 10%, preferably 5% of clipping (hydrolysis) is observed. No more than 10%, preferably 5% of aggregation is formed.
  • An antibody “retains its physical stability” in a pharmaceutical formulation if it shows no significant increase of aggregation, precipitation and/or denaturation upon visual examination of color and/or clarity, or as measured by UV light scattering, size exclusion chromatography (SEC-HPLC) and dynamic light scattering.
  • SEC-HPLC size exclusion chromatography
  • dynamic light scattering the protein conformation is not altered.
  • the changes of protein conformation can be evaluated by fluorescence spectroscopy, which determines the protein tertiary structure, and by FTIR spectroscopy, which determines the protein secondary structure.
  • An antibody “retains its biological activity” in a pharmaceutical formulation, if the biological activity of the antibody at a given time is within a predetermined range of the biological activity exhibited at the time the pharmaceutical formulation was prepared.
  • the biological activity of an antibody can be determined, for example, by an antigen binding ELISA assay.
  • isotonic means that the formulation of interest has essentially the same osmotic pressure as human blood. Isotonic formulations will generally have an osmotic pressure from about 270-328 mOsm. Slightly hypotonic osmotic pressure is 250-269 and slightly hypertonic osmotic pressure is 328-350 mOsm. Osmotic pressure can be measured, for example, using a vapor pressure or ice-freezing type osmometer.
  • Tonicity modifiers are those pharmaceutically acceptable inert substances that can be added to the formulation to provide an isotonity of the formulation.
  • Tonicity modifiers suitable for this invention include salts and amino acids.
  • the antibody formulation contains pharmaceutically acceptable excipients.
  • the antibody formulation is formulated such that the antibody retains its physical, chemical and biological activity.
  • the formulation is preferably stable for at least 1 year at refrigerated temperature (2-8° C.) and 6 months at room temperature (23-27° C.).
  • the analytical methods for evaluating the product stability include size exclusion chromatography (SEC-HPLC), dynamic light scattering test (DLS), differential scanning calorimetery (DSC), iso-asp quantification, potency, UV at 340 nm, and UV spectroscopy.
  • SEC J. Pharm. Scien., 83:1645-1650, (1994); Pharm. Res., 11:485 (1994); J. Pharm. Bio. Anal., 15:1928 (1997); J. Pharm. Bio. Anal., 14:1133-1140 (1986)
  • DSC Pharm. Res., 15:200 (1998); Pharm.
  • the iso-Asp content in the samples is measured using the Isoquant Isoaspartate Detection kit (Promega).
  • the kit uses the enzyme Protein Isoaspartyl Methyltransferase (PIMT) to specifically detect the presence of isoaspartic acid residues in a target protein.
  • PIMT catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to isoaspartic acid at the ⁇ -carboxyl position, generating S-adenosyl-L-homocysteine (SAH) in the process.
  • SAH S-adenosyl-L-homocysteine
  • the potency or bioactivity of an antibody can be measured by its ability to bind to its antigen.
  • the specific binding of an antibody to its antigen can be quantitated by any method known to those skilled in the art, for example, an immunoassay, such as ELISA (enzyme-linked immunosorbant assay).
  • the invention herein relates to a stable aqueous formulation comprising an antibody.
  • the antibody in the formulation is prepared using techniques available in the art for generating antibodies, exemplary methods of which are described in more detail in the following sections.
  • the antibody is directed against an antigen of interest.
  • the antigen is a biologically important polypeptide and administration of the antibody to a mammal may prevent or treat a disorder.
  • antibodies directed against nonpolypeptide antigens are also contemplated.
  • the antigen is a polypeptide, it may be a transmembrane molecule (e.g. receptor) or ligand such as a growth factor.
  • exemplary antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and
  • the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed cells, is removed, for example, by centrifugation or ultrafiltration. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
  • the antibody comprises a C H3 domain
  • the Bakerbond ABXTM resin J. T. Baker, Phillipsburg, N.J. is useful for purification.
  • Daclizumab USAN, United States Adopted Names
  • Daclizumab is currently being marketed as Zenapax® for the prevention of organ rejection after renal transplantation and is administered through the intravenous route.
  • Daclizumab is also useful for treating psoriasis, for which, the subcutaneous delivery is the preferred route of administration.
  • high concentration of antibody is preferred.
  • Daclizumab is a recombinant humanized monoclonal antibody, subclass IgG1. The molecule is composed of two identical heavy chain and two identical light chain subunits. Disulfide bridges link the four chains.
  • Daclizumab monomer is approximately 150,000 daltons in molecular weight. Daclizumab binds to the p55 subunit of the IL-2 receptor expressed on activated T cells. The antigen target is designated CD25. Daclizumab is produced from a GS-NSO cell line containing the heavy and light chain genes by fed-batch fermentation culture. Bioreactor harvests are processed to remove cells and debris and purified using a combination of ion-exchange and gel filtration chromatography and a series of ultrafiltration and filtration techniques to produce drug substance containing greater than 95% monomeric species.
  • IL-12 anti-interleukin 12
  • IL-12 is a cytokine synthesized by antigen presenting cells. It is composed of two subunits (p35 and p40), both must be present for functional activity. Functional IL-12 is also called IL-12p70.
  • This cytokine preferentially acts on T helper cell type 1 (Th1) lymphocytes and natural killer cells by increasing their proliferative rate.
  • Th1 T helper cell type 1
  • IFNg interferon gamma
  • 16G2 (Hoffman La Roche) is a murine antibody raised against IL-12p70. 16G2 has been shown to act in near stoichiometric amounts to IL-12 in a functional assay-the inhibition of proliferation of activated T cells from human peripheral blood (PBMC). This is an important characteristic because p40 dimers of IL-12 exist in serum and antibodies raised to the p40 subunit need to be used in excess amounts to neutralize the proliferative capacity of a given amount of IL-12. 16G2 was humanized at Protein Design Labs. (Fremont, Calif.) to give rise to HAIL-12 (humanized anti-IL-12, an IgG1 antibody).
  • Another preferred antibody is anti-L selectin antibody.
  • Selectins such as L, E, and P-selectin have been found to be associated with tissue damage during the course of ischemia and reperfusion. Neutrophils play an important role in this connection. It is assumed that selectin is required for the recruitment of neutrophils. L-selectin is important for the complete development of damage in skeletal muscle as well as in the lung (Seekamp, et al., Am. J. Pathol. 11:592-598 (1994). Mulligan, et al., J, Immunol. 151:832-840 (1994).
  • Flintozumab an anti-gamma interferon antibody.
  • Flintozumab is an IgG1 humanized monoclonal antibody developed by Protein Design Labs, Inc. for the treatment of immune disorders mediated by interferon-gamma (IFN-g), a proinflammatory cytokine.
  • IFN-g induces the expression of major histocompatibility complex (MHC) class I and/or class II (HLA-DR) antigens, enhances the cytolytic activity of natural killer cells, activates macrophages, and modulates the immunoglobulin isotype profile of the humoral response.
  • MHC major histocompatibility complex
  • HLA-DR class II
  • IFN-g As a lymphokine, IFN-g also enhances the development of T helper cell type 1 (Th1), while suppressing the development of T helper cell type 2 (Th2) cells. Aberrations in the Th1/Th2 ratio have been implicated in a variety of autoimmune conditions.
  • a pharmaceutical formulation comprising the antibody is prepared.
  • the formulation development approach is as follows: selecting the optimum solution pH, selecting buffer type and concentration, evaluating the effect of various excipients of the liquid stability, and optimizing the concentration of the screened excipients using an I-optimal experimental design (Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, Box, George E. P. et al., John Wiley and Sons, Inc., 1978).
  • compositions of this invention minimize the formation of antibody aggregates and particulates and insure that the antibody maintains its bioactivity over time.
  • the composition is a pharmaceutically acceptable liquid formulation containing a high concentration of an antibody in a buffer having a neutral or slightly acidic pH (pH 5.5-6.5), a surfactant, and a tonicity modifier.
  • the antibody in the composition is a high concentration of 50 mg/ml or greater, preferably 100 mg/ml or greater.
  • a preferred composition of this invention contains Daclizumab, a humanized anti-IL2 receptor antibody; HAIL12, a humanized anti-IL-12 antibody; HaEP5C7, a humanized anti-L selectin antibody; and Flintozumab, a humanized anti-gamma interferon antibody.
  • a buffer of pH 5.5-6.5 is used in the composition.
  • a buffer of pH 6.0-6.5 is preferred.
  • buffers that control the pH in this range include succinate (such as sodium succinate), gluconate, histidine, citrate, phosphate, and other organic acid buffers.
  • Succinate pKa 5.63 is a preferred buffer for subcutaneous injection.
  • Histidine PK 5.97 is less preferred because of its susceptibility to oxidization, although such oxidation can be retarded by replacing the vial headspace with N 2 or adding an antioxidant.
  • Citrate and phosphate buffers are much less preferred because it causes a painful reaction when injected subcutaneously.
  • a preferred buffer contains about 20-60 mM sodium succinate.
  • Another preferred buffer is 30-70 mM histidine buffer overlaid with N 2 .
  • a surfactant is also added to the antibody formulation.
  • exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20, 80, such as Tween® 20, Tween® 80) or poloxamers (e.g. poloxamer 188).
  • the amount of surfactant added is such that it reduces aggregation of the formulated antibody and/or minimizes the formation of particulates in the formulation and/or reduces adsorption.
  • the surfactant may be present in the formulation in an amount from about 0.005% to about 0.5%, preferably from about 0.01% to about 0.1%, more preferably from about 0.01% to about 0.05%, and most preferably from about 0.02% to about 0.04%.
  • a tonicity modifier which contributes to the isotonicity of the formulations, is added to the present composition.
  • the tonicity modifier useful for the present invention includes salts and amino acids. Salts that are pharmaceutically acceptable and suitable for this invention include sodium chloride, sodium succinate, sodium sulfate, potassuim chloride, magnesium chloride, magnesium sulfate, and calcium chloride. Preferred salts for this invention are NaCl and MgCl 2 . MgCl 2 may also improve the antibody stability by protecting the protein from deamidation. A preferred concentration of NaCl is about 75-150 mM. A preferred concentration of MgCl 2 is about 1-100 mM.
  • Amino acids that are pharmaceutically acceptable and suitable for this invention include proline, alanine, L-arginine, asparagine, L-aspartic acid, glycine, serine, lysine, and histidine.
  • a preferred amino acid for this invention is proline.
  • a preferred concentration of proline is than 200 mM.
  • EDTA which is commonly used to stabilize a protein formulation, may also be included in the formulation.
  • EDTA as a chelating agent, may inhibit the metal-catalyzed oxidation of the sulfhydryl groups, thus reducing the formation of disulfide-linked aggregates.
  • a preferred concentration of EDTA is 0.01-0.2%.
  • Exemplary liquid compositions are formulations comprising antibody at about 100 mg/ml or greater, about 20-60 mM sodium succinate (pH 6), about 0.01-0.1% polysorbate 20 or 80, and about 75-150 mM NaCl. This formulation retains the stability of biological activity of the monoclonal antibody, and prevents the immunoglobulins intended for administration to human subjects from physical, chemical and biological degradation in the final product.
  • the liquid antibody formulation of this invention is suitable for parenteral administration such as intravenous, intramuscular, intraperitoneal, or subcutaneous injection; particularly suitable for subcutaneous injection.
  • Sample formulations contained 5.0 mg/ml anti-IL2 receptor antibody (Daclizumab) in one of three buffers: 50 mM sodium acetate buffer at pH 4.0 or 5.0, 50 mM histidine at pH 5.5, 6.0, or 6.5, or 50 mM sodium phosphate buffer at pH 7.0 or 8. 5. Independent formulations were incubated at either 5° C. or 45° C. with 100 RPM shaking for 4 weeks.
  • Daclizumab anti-IL2 receptor antibody
  • the physical and chemical stability of each sample was assessed at 0 and 4 weeks by analytical methods including: pH and visual analysis, UV spectroscopy at 340 nm, size exclusion chromatography (SEC-HPLC), fluorescence spectroscopy, dynamic light scattering (DLS), differential scanning calorimetry (DSC), Promega IsoQuant Assay, capillary isoelectric focusing (cIEF), SDS-PAGE (reduced and non-reduced), and bioactivity assessments (ELISA).
  • pH and visual analysis UV spectroscopy at 340 nm
  • SEC-HPLC size exclusion chromatography
  • fluorescence spectroscopy fluorescence spectroscopy
  • DLS dynamic light scattering
  • DSC differential scanning calorimetry
  • Promega IsoQuant Assay capillary isoelectric focusing (cIEF), SDS-PAGE (reduced and non-reduced), and bioactivity assessments (ELISA).
  • FIG. 2 shows the percent of degradation obtained at various pH levels as assessed by cIEF following a four-week incubation of the sample at 45° C. Minimal degradation was obtained at a pH value of about 5.5.
  • FIG. 3 shows the percent of iso-aspartic acid formed at various pH levels as assessed by the Promega IsoQuant kit following a four-week incubation of the sample at 45° C. Iso-aspartic acid formation (deamidation) was minimized at pH values of 6 and 6.5, and increased sharply at pH 8.0.
  • FIG. 4 shows the effect of different buffers over time on potency following incubation at 37° C. Highest stability of the antibody formulation was achieved through 8 weeks with 50 mM sodium succinate buffer at pH 6.0. Formulations in histidine alone rapidly (less than 8 weeks) lost their potency as the buffer oxidized. Potency of the formulation remained greater than 80% for at least 12 weeks in either sodium succinate buffer or histidine buffer gassed with N 2 to prevent oxidation.
  • surfactants Teween 80® and Tween 20®
  • salts NaCl and MgCl 2
  • antioxidants EDTA and methionine
  • amino acids glycine, lysine, serine and proline
  • co-solvents glycerol and ethanol.
  • Various analytical techniques clarity, pH, SEC-HPLC, UV-Vis, and cIEF were used to characterize the excipient-containing formulations.
  • the Daclizumab antibody was in a 67 mM sodium phosphate formulation (without Tween® 80) at a concentration of 6.6 mg/mL. This material was concentrated to about 30 mg/mL in the Pellicon II (Millipore) unit, and subsequently, buffer exchanged into two selected buffers (50 mM sodium phosphate pH 6.5, and 50 mM sodium succinate pH 6.0) using the 50 mL amicon stir cell (Millipore). During the third and final buffer exchange step, the material was also concentrated to a final concentration of 125 mg/mL. Finally, the antibody was filtered through 0.8 ⁇ m membrane (Uniflo). The post filtration protein concentration was determined to be approximately 100 mg/mL for the phosphate buffer sample and 97 mg/mL for the succinate buffer sample.
  • the target concentration of the excipients at which they were screened is shown in Table 1.
  • the formulations were prepared by either weighing the required amount of the excipients directly into the vial (e.g. all amino acids) or by preparing concentrated stock solutions of the excipients.
  • the excipients were added to 0.5 mL of the appropriate buffer solution and the pH adjusted to the desired value with either 1N HCl or 10% NaOH. Subsequently, 0.5 mL of the concentrated antibody solution in the appropriate buffer ( ⁇ 100 mg/mL) was added to attain the target concentration of 50 mg/mL. This procedure was adopted to prevent protein degradation due to direct contact with concentrated excipients.
  • the 1 mL solution was split into two vials with 0.5 mL fill each.
  • the samples were analyzed using various analytical techniques. Solution clarity was visually examined by holding the sample vials up against a black background under fluorescent lighting. The solution was inspected for insoluble species and color changes were recorded. Size exclusion chromatography was performed using a Perkin Elmer HPLC unit with diode array detection and two Tosohaas columns connected in series. The samples were diluted approximately 5 fold with the corresponding buffer to bring the concentration to about 1 mg/mL and 100 ⁇ L of the sample was injected onto the column. The sample concentration was measured by UV spectroscopy using the Perkin Elmer Lambda Bio 40 spectrophotometer.
  • Results of SEC-HPLC are tabulated in Table 3(A-C).
  • Table 3B lists the % aggregate formation in all samples being investigated in this study. It is clear from these results that the increase in aggregate formation during the 3-week duration is minimal for all samples at 5° C. in both buffers. After 3 weeks of incubation at 45° C., samples in the phosphate buffer showed an increase in % aggregate ranging from 0.40% (EDTA) to 2.40% (glycine). In the succinate buffer, the aggregate formation was slightly lower; ranging from 0.7% (methionine) to 1.09% (glycine) after the 3 week incubation period.
  • EDTA EDTA
  • succinate buffer the aggregate formation was slightly lower; ranging from 0.7% (methionine) to 1.09% (glycine) after the 3 week incubation period.
  • One of the hypotheses that supports these results is that if aggregate formation is due to oxidation, it may be slowed down in the succinate buffer due to the metal chelating properties of the succinate buffer.
  • Table 3C lists the % clip formation in all samples being investigated in this study.
  • the % clipping ranged from ⁇ 0.2-0.4% in all samples. For all samples incubated at 5° C., the % increase in clips was insignificant over the 3-week period. At 45° C., a significant increase in the rate of clip formation was observed. For samples formulated in the phosphate buffer, the % clipping varied from 4.74 (methionine) to 1.5% (proline, glycerol and ethanol), while in the succinate buffer, the range was 1.48%(Tween-80) to 3.44 (methionine). In general, an increase in the clip formation was observed in the amino acid containing formulations. Further, the rate of clip formation appears to be higher in the phosphate buffer.
  • the stability of formulation was higher in the Na-succinate buffer at pH 6.0, compared with the Na-phosphate buffer at pH 6.5. This is primarily due to base-catalyzed hydrolysis that is accelerated at the higher pH of 6.5, causing an increase in the rate of clip formation.
  • the Na-succinate buffer at pH 6.0 is the selected buffer for all future studies.
  • Results of this study also clearly indicated that in both buffers, the amino acids (glycine, lysine, serine, proline, and methionine) did not have a stabilizing effect on the protein stability. As shown by the data on sample clarity, all amino acid containing formulations indicated the formation of insoluble aggregates at 45° C.
  • the excipient MgCl 2 was selected in this study based on the hypothesis that it might protect the protein against dimidiation. While MgCl 2 precipitated in the Na-phosphate buffer; in the Na-succinate buffer, based on the cIEF data, MgCl 2 has a stabilizing effect on the protein. Ethanol was also included as an excipient to test if it stabilized the protein against deamidation by lowering the dielectric constant of the solution. The results, however, do not support this hypothesis. Finally, Tween-80, EDTA, and NaCl, the excipients most commonly used to stabilize protein formulations, did not show any destabilizing effect on the protein in either buffer.
  • MgCl 2 in the concentration range of 0-50 mM also could have a favorable effect.
  • the results also indicate that the excipient concentrations for the most stable formulation are: 150 mM NaCl, 0.05% Tween 80, 0.03-0.04% EDTA and 60-70 mM MgCl 2 , however, these conditions are not practical because they do not provide isotonic conditions.
  • Formulation 1 100 mg/ml Daclizumab antibody, 30 mM sodium succinate (pH 6.0) 100 mM NaC 1 and 0.03% Tween ⁇ 80.
  • Formulation 2 same as Formulation 1, plus 0.05% EDTA.
  • Formulation 3 100 mg/ml Daclizumab antibody, 50 mM histidine (pH 6.0), 115 mM NaCl, 0.03% Tween®-80, purged with nitrogen.
  • Formulation 4 same as Formulation 3, plus 0.05% EDTA.
  • a liquid antibody formulation of 100 mg/ml Daclizumab in 30 mM sodium succinate, pH 6, 100 mM NaCl, and 0.03% Tween® 80 was incubated at 5° C. (2-8° C.) and tested for stability at different time points. The stability results indicate that the formulation is stable for at least 18 months at refrigerated temperature (Table 8). TABLE 8 Stability Results of Daclizumab at 5° C. Time (Month) % Monomer % Aggregate 0 99.0 N/A 3 99.1 0.2% 6 99.1 0.2% 9 98.8 0.2% 12 98.9 0.2% 18 98.6 0.2%
  • HuEP5C7 (anti-L selectin antibody, 50 and 100 mg/mL) was formulated in 50 mM histidine buffer, 125 mM sodium chloride, 0.01% Tween 80, pH 6.0.
  • the on-going stability testing indicates that the formulation is stable for three months at 25° C. and 45° C. and for at least 9 months at 5° C.
  • the results of the 9-month stability testing at 5° C. is shown in Table 12.
  • the results of the 3-month accelerated stability testing is shown in Table 13. TABLE 12 Stability Results of HuEP5C7 at 5° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
US10/291,528 2001-11-08 2002-11-08 Stable liquid pharmaceutical formulation of IgG antibodies Abandoned US20030138417A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/291,528 US20030138417A1 (en) 2001-11-08 2002-11-08 Stable liquid pharmaceutical formulation of IgG antibodies
US12/954,512 US20110070231A1 (en) 2001-11-08 2010-11-24 Stable liquid pharmaceutical formulation of igg antibodies
US13/226,372 US8465739B2 (en) 2001-11-08 2011-09-06 Stable aqueous pharmaceutical formulations of daclizumab antibodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33750901P 2001-11-08 2001-11-08
US10/291,528 US20030138417A1 (en) 2001-11-08 2002-11-08 Stable liquid pharmaceutical formulation of IgG antibodies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/954,512 Continuation US20110070231A1 (en) 2001-11-08 2010-11-24 Stable liquid pharmaceutical formulation of igg antibodies

Publications (1)

Publication Number Publication Date
US20030138417A1 true US20030138417A1 (en) 2003-07-24

Family

ID=23320826

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/291,528 Abandoned US20030138417A1 (en) 2001-11-08 2002-11-08 Stable liquid pharmaceutical formulation of IgG antibodies
US12/954,512 Abandoned US20110070231A1 (en) 2001-11-08 2010-11-24 Stable liquid pharmaceutical formulation of igg antibodies
US13/226,372 Expired - Fee Related US8465739B2 (en) 2001-11-08 2011-09-06 Stable aqueous pharmaceutical formulations of daclizumab antibodies

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/954,512 Abandoned US20110070231A1 (en) 2001-11-08 2010-11-24 Stable liquid pharmaceutical formulation of igg antibodies
US13/226,372 Expired - Fee Related US8465739B2 (en) 2001-11-08 2011-09-06 Stable aqueous pharmaceutical formulations of daclizumab antibodies

Country Status (16)

Country Link
US (3) US20030138417A1 (enrdf_load_stackoverflow)
EP (1) EP1441589B1 (enrdf_load_stackoverflow)
JP (2) JP5290489B2 (enrdf_load_stackoverflow)
KR (1) KR100913714B1 (enrdf_load_stackoverflow)
CN (1) CN1292655C (enrdf_load_stackoverflow)
AT (1) ATE556591T1 (enrdf_load_stackoverflow)
AU (1) AU2002363339B2 (enrdf_load_stackoverflow)
CA (1) CA2466034C (enrdf_load_stackoverflow)
CY (1) CY2016044I1 (enrdf_load_stackoverflow)
DK (1) DK1441589T3 (enrdf_load_stackoverflow)
ES (1) ES2392073T3 (enrdf_load_stackoverflow)
IL (2) IL161677A0 (enrdf_load_stackoverflow)
LU (1) LU93314I2 (enrdf_load_stackoverflow)
NZ (1) NZ532896A (enrdf_load_stackoverflow)
PT (1) PT1441589E (enrdf_load_stackoverflow)
WO (1) WO2003039485A2 (enrdf_load_stackoverflow)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236196A1 (en) * 2002-06-20 2003-12-25 Amgen Inc. Compositions of pegylated soluble tumor necrosis factor receptors and methods of preparing
US20040166111A1 (en) * 2002-10-24 2004-08-26 Zehra Kaymakcalan Low dose methods for treating disorders in which TNFalpha activity is detrimental
US20040191243A1 (en) * 2002-12-13 2004-09-30 Bei Chen System and method for stabilizing antibodies with histidine
US20040197324A1 (en) * 2003-04-04 2004-10-07 Genentech, Inc. High concentration antibody and protein formulations
US20040208869A1 (en) * 2003-01-30 2004-10-21 Medimmune, Inc. Uses of anti-integrin alphanubeta3 antibody formulations
US20050158303A1 (en) * 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
US20050175603A1 (en) * 2000-10-12 2005-08-11 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US20050232917A1 (en) * 2004-01-09 2005-10-20 Nicholas Pullen Antibodies to MAdCAM
US20060008415A1 (en) * 2004-06-25 2006-01-12 Protein Design Labs, Inc. Stable liquid and lyophilized formulation of proteins
US20060153846A1 (en) * 2002-08-16 2006-07-13 Hans-Juergen Krause Formulation of human antibodies for treating tnf-alpha associated disorders
US20060159653A1 (en) * 2003-02-28 2006-07-20 Chugai Seiyaku Kabushiki Kaisha Stabilized preparation containing protein
US20060182740A1 (en) * 2002-06-21 2006-08-17 Biogen Idec, Inc. Buffered formulations for concentrating antibodies and methods of use thereof
JP2006249085A (ja) * 2005-03-08 2006-09-21 Pharmacia & Upjohn Co Llc プラットホーム抗体組成物
US20060269543A1 (en) * 2005-05-19 2006-11-30 Amgen Inc. Compositions and methods for increasing the stability of antibodies
WO2006138181A2 (en) 2005-06-14 2006-12-28 Amgen Inc. Self-buffering protein formulations
US20070065437A1 (en) * 2005-09-12 2007-03-22 Greg Elson Anti-CD3 antibody formulations
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
WO2007089445A2 (en) 2006-01-27 2007-08-09 Amgen Inc. Ang2 and vegf inhibitor combinations
US20070249529A1 (en) * 2003-11-28 2007-10-25 Robert Hofmeister Compositions Comprising Polypeptides
US20080112953A1 (en) * 2006-10-06 2008-05-15 Amgen Inc. Stable formulations
US20080124326A1 (en) * 2006-10-20 2008-05-29 Amgen Inc. Stable polypeptide formulations
US20080213282A1 (en) * 2006-12-21 2008-09-04 Jaby Jacob Formulations
US20080267976A1 (en) * 2005-10-06 2008-10-30 Gregory Alan Lazar Optimized Anti-Cd30 Antibodies
US20090053238A1 (en) * 2003-01-30 2009-02-26 Medimmune, Inc. Stabilized High Concentration Anti-Integrin alphavbeta3 Antibody Formulations
US20090169544A1 (en) * 2007-12-28 2009-07-02 Biolnvent International Ab Formulation
US20100074903A1 (en) * 2008-09-19 2010-03-25 Ulla Grauschopf Novel antibody formulation
US20100172862A1 (en) * 2008-11-28 2010-07-08 Abbott Laboratories Stable antibody compositions and methods of stabilizing same
US20100239567A1 (en) * 2009-03-06 2010-09-23 Genentech, Inc. Antibody Formulation
US20100278822A1 (en) * 2009-05-04 2010-11-04 Abbott Biotechnology, Ltd. Stable high protein concentration formulations of human anti-tnf-alpha-antibodies
US20100285011A1 (en) * 2007-12-27 2010-11-11 Chugai Seiyaku Kabushiki Kaish High concentration antibody-containing liquid formulation
EP2173163A4 (en) * 2007-07-06 2010-12-08 Glaxosmithkline Llc ANTIBODY FORMULATIONS
WO2011026117A1 (en) 2009-08-31 2011-03-03 Facet Biotech Corporation Use of an immunoregulatory nk cell population for monitoring the efficacy of anti-il-2r antibodies in multiple sclerosis patients
US20110059079A1 (en) * 2009-09-04 2011-03-10 Xoma Technology Ltd. Antibody Coformulations
WO2011053777A1 (en) 2009-10-30 2011-05-05 Abbott Biotherapeutics Corp. Use of immunoregulatory nk cell populations for predicting the efficacy of anti-il-2r antibodies in multiple sclerosis patients
WO2011028961A3 (en) * 2009-09-04 2011-06-23 Xoma Technology Ltd. Anti-botulism antibody coformulations
US20110236398A1 (en) * 2008-12-10 2011-09-29 Joachim Momm Antibody Formulation
WO2011008770A3 (en) * 2009-07-14 2011-12-15 Biogen Idec Ma Inc. Methods for inhibiting yellow color and peroxide formation in a composition
US20120018338A1 (en) * 2009-03-30 2012-01-26 Hoffman-La Roche Inc. Method for avoiding glass fogging
WO2011089062A3 (en) * 2010-01-19 2012-03-15 F. Hoffmann-La Roche Ag Pharmaceutical formulation for proteins
US20120201812A1 (en) * 2009-09-03 2012-08-09 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US20130216525A1 (en) * 2010-03-01 2013-08-22 Cytodyn, Inc. Concentrated protein formulations and uses thereof
US8613919B1 (en) 2012-08-31 2013-12-24 Bayer Healthcare, Llc High concentration antibody and protein formulations
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
AU2012200203B2 (en) * 2005-03-08 2014-07-03 Pfizer Products Inc. Anti-CTLA-4 Antibody Compositions
US8821865B2 (en) 2010-11-11 2014-09-02 Abbvie Biotechnology Ltd. High concentration anti-TNFα antibody liquid formulations
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
US20150182626A1 (en) * 2012-09-07 2015-07-02 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US9265834B2 (en) 2009-03-05 2016-02-23 Ablynx N.V. Stable formulations of polypeptides and uses thereof
AU2014240252B2 (en) * 2005-03-08 2016-10-06 Pfizer Products Inc Anti-CTLA-4 Antibody Compositions
US9566311B2 (en) 2010-09-30 2017-02-14 Ferring B.V. Pharmaceutical composition
US9592297B2 (en) 2012-08-31 2017-03-14 Bayer Healthcare Llc Antibody and protein formulations
US9605051B2 (en) 2014-06-20 2017-03-28 Reform Biologics, Llc Viscosity-reducing excipient compounds for protein formulations
US20170252436A1 (en) * 2014-05-07 2017-09-07 Takeda Gmbh Liquid formulation comprising gm-csf neutralizing compound
US9855331B2 (en) 2010-09-17 2018-01-02 Baxalta Incorporated Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral pH
US20180134772A1 (en) * 2015-06-17 2018-05-17 Eli Lilly And Company Anti-CGRP Antibody Formulation
US10005830B2 (en) 2009-03-05 2018-06-26 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
WO2018154320A1 (en) * 2017-02-24 2018-08-30 Arecor Limited Stabilized antibody solutions
USRE47150E1 (en) 2010-03-01 2018-12-04 Bayer Healthcare Llc Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
WO2019050780A1 (en) 2017-09-05 2019-03-14 Merck Sharp & Dohme Corp. COMPOUNDS FOR REDUCING THE VISCOSITY OF BIOLOGICAL FORMULATIONS
US10307483B2 (en) 2016-10-21 2019-06-04 Amgen Inc. Pharmaceutical formulations and methods of making the same
US10478498B2 (en) 2014-06-20 2019-11-19 Reform Biologics, Llc Excipient compounds for biopolymer formulations
US10689451B2 (en) 2012-06-12 2020-06-23 Novartis Ag Anti-BAFFR antibody therapeutic formulations
US10745475B2 (en) 2013-08-30 2020-08-18 Takeda Gmbh Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US11046785B2 (en) 2014-03-27 2021-06-29 Takeda Pharmaceutical Company Limited Compositions and methods for treatment of diabetic macular edema
US11066458B2 (en) 2006-06-16 2021-07-20 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
US11071782B2 (en) 2016-04-20 2021-07-27 Coherus Biosciences, Inc. Method of filling a container with no headspace
US11084884B2 (en) 2014-01-21 2021-08-10 Takeda Pharmaceutical Company Limited Plasma kallikrein binding proteins and uses thereof in treating hereditary angioedema
US20210253692A1 (en) * 2018-07-03 2021-08-19 Galapagos Nv High Concentration Liquid Antibody Formulations
US11103552B2 (en) 2018-05-10 2021-08-31 Regeneron Pharmaceuticals, Inc. High concentration VEGF receptor fusion protein containing formulations
US20210299255A1 (en) * 2018-07-20 2021-09-30 Momenta Pharmaceuticals, Inc. Compositions of fcrn antibodies and methods of use thereof
US11142571B2 (en) 2014-11-07 2021-10-12 Sesen Bio, Inc. IL-6 antibodies
US11229702B1 (en) 2015-10-28 2022-01-25 Coherus Biosciences, Inc. High concentration formulations of adalimumab
US11253572B2 (en) 2011-01-13 2022-02-22 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11286307B2 (en) 2015-12-11 2022-03-29 Takeda Pharmaceutical Company Limited Plasma kallikrein inhibitors and uses thereof for treating hereditary angioedema attack
US11299553B2 (en) 2013-03-15 2022-04-12 Takeda Pharmaceutical Company Limited Anti-plasma kallikrein antibodies
US11357857B2 (en) 2014-06-20 2022-06-14 Comera Life Sciences, Inc. Excipient compounds for protein processing
US11401346B2 (en) 2011-01-06 2022-08-02 Takeda Pharmaceutical Company Limited Nucleic acids encoding plasma kallikrein binding proteins
US20220241414A1 (en) * 2016-02-23 2022-08-04 Sesen Bio, Inc. Il-6 antagonist formulations and uses thereof
US11433134B2 (en) * 2007-11-15 2022-09-06 Amgen Inc. Aqueous formulation of erythropoiesis stimulating protein stabilised by antioxidants for parenteral administration
US11505620B2 (en) 2010-01-06 2022-11-22 Takeda Pharmaceutical Company Limited Methods of detecting plasma kallikrein
US11519020B2 (en) 2018-05-25 2022-12-06 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US11534403B2 (en) 2017-03-06 2022-12-27 Arecor Limited Liquid pharmaceutical composition
US11534402B2 (en) 2017-03-06 2022-12-27 Arecor Limited Liquid pharmaceutical composition
US11608357B2 (en) 2018-08-28 2023-03-21 Arecor Limited Stabilized antibody protein solutions
US11633476B2 (en) 2017-05-02 2023-04-25 Merck Sharp & Dohme Llc Stable formulations of programmed death receptor 1 (PD-1) antibodies and methods of use thereof
EP3996740A4 (en) * 2019-07-12 2023-07-05 Contrafect Corporation THERAPEUTIC PROTEIN FORMULATIONS INCLUDING ANTIBODIES AND THEIR USES
EP4209499A1 (en) 2015-08-13 2023-07-12 Amgen Inc. Charged depth filtration of antigen-binding proteins
US11769597B2 (en) 2015-12-03 2023-09-26 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US11802156B2 (en) 2017-07-14 2023-10-31 Pfizer Inc. Antibodies to MAdCAM
US11806398B2 (en) 2005-03-25 2023-11-07 Regeneron Pharmaceuticals, Inc. Citrate buffered VEGF antagonist formulations
US11845798B2 (en) 2017-05-02 2023-12-19 Merck Sharp & Dohme Llc Formulations of anti-LAG3 antibodies and co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies
US12122850B2 (en) 2022-03-14 2024-10-22 LamKap Bio gamma AG Bispecific GPC3xCD28 and GPC3xCD3 antibodies and their combination for targeted killing of GPC3 positive malignant cells
US12247071B2 (en) 2016-12-21 2025-03-11 Amgen Inc. Anti-TNF alpha antibody formulations
US12280093B2 (en) 2017-11-30 2025-04-22 Regenron Pharmaceuticals, Inc. Use of a VEGF receptor-based fusion protein antagonist to treat nonproliferative diabetic retinopathy
US12319735B2 (en) 2018-11-07 2025-06-03 Merck Sharp & Dohme Llc Co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050367A1 (en) 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US6761888B1 (en) 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
US7588766B1 (en) 2000-05-26 2009-09-15 Elan Pharma International Limited Treatment of amyloidogenic disease
US7790856B2 (en) 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
TWI255272B (en) 2000-12-06 2006-05-21 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
ES2392073T3 (es) * 2001-11-08 2012-12-04 Abbott Biotherapeutics Corp. Formulación farmacéutica líquida estable de anticuerpos IGG
MY139983A (en) 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
TWI374893B (en) 2003-05-30 2012-10-21 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
US20050136055A1 (en) * 2003-12-22 2005-06-23 Pfizer Inc CD40 antibody formulation and methods
US20060051347A1 (en) 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
WO2006066089A1 (en) 2004-12-15 2006-06-22 Neuralab Limited Humanized amyloid beta antibodies for use in improving cognition
WO2006066049A2 (en) 2004-12-15 2006-06-22 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
GT200600031A (es) 2005-01-28 2006-08-29 Formulacion anticuerpo anti a beta
CN101111264A (zh) * 2005-01-28 2008-01-23 惠氏公司 稳定化的液体多肽制剂
CA2613512A1 (en) * 2005-06-23 2007-01-04 Medimmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
AU2006275475A1 (en) * 2005-07-29 2007-02-08 Amgen Inc. Formulations that inhibit protein aggregation
CA2615122A1 (en) 2005-08-03 2007-02-15 Immunogen, Inc. Immunoconjugate formulations
KR101105871B1 (ko) * 2005-09-27 2012-01-16 주식회사 엘지생명과학 인 난포자극호르몬의 안정한 용액 제형
BRPI0620316A2 (pt) * 2005-12-21 2011-11-08 Wyeth Corp formulações de proteìnas com viscosidades reduzida e seus usos
JP5155883B2 (ja) 2006-01-25 2013-03-06 ターロ ファーマシューティカルズ ノース アメリカ インコーポレイテッド 抗ヒスタミン組成物及びその使用
SG10201406358SA (en) 2006-04-05 2014-12-30 Abbvie Biotechnology Ltd Antibody purification
ES2397383T3 (es) 2006-04-13 2013-03-06 Chugai Seiyaku Kabushiki Kaisha Gen transportador de taurina
US8784810B2 (en) 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
MX2008013508A (es) 2006-04-21 2008-10-31 Novartis Ag Composiciones farmaceuticas de anticuerpos antagonistas anti-cd40.
AU2016204760A1 (en) * 2006-04-26 2016-07-28 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
TW200806315A (en) * 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2014268186C1 (en) * 2006-04-26 2017-12-07 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2012200284B2 (en) * 2006-10-06 2014-03-06 Amgen Inc. Stable Antibody Formulations
JP5635260B2 (ja) 2007-03-15 2014-12-03 中外製薬株式会社 ポリペプチドの製造方法
US8003097B2 (en) 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
PT2182983E (pt) 2007-07-27 2014-09-01 Janssen Alzheimer Immunotherap Tratamento de doenças amiloidogénicas com anticorpos anti-abeta humanizados
DK2186905T3 (en) 2007-08-07 2016-09-19 Chugai Pharmaceutical Co Ltd Method of Preparation of Heterogeneous Protein
HUE029635T2 (en) 2007-09-26 2017-03-28 Chugai Pharmaceutical Co Ltd A method for modifying an isoelectric point of an antibody by amino acid substitution in CDR
KR101922788B1 (ko) 2007-09-26 2018-11-27 추가이 세이야쿠 가부시키가이샤 항체 정상영역 개변체
PE20140132A1 (es) 2007-09-26 2014-02-14 Chugai Pharmaceutical Co Ltd Anticuerpo anti-receptor de il-6
RU2486245C2 (ru) 2007-10-15 2013-06-27 Чугаи Сейяку Кабусики Кайся Способ получения клетки, способной продуцировать гетеропротеины с высоким выходом
JO3076B1 (ar) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap نظم العلاج المناعي المعتمد على حالة apoe
CA2703493C (en) 2007-10-24 2016-11-08 Chugai Seiyaku Kabushiki Kaisha A cell for use in production of heteroproteins and production method using the same
EP2328607A1 (en) 2008-07-16 2011-06-08 Arecor Limited Stable formulation of a therapeutic protein
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
JP5715050B2 (ja) 2009-04-22 2015-05-07 中外製薬株式会社 異種タンパク質を高生産する細胞の作製方法
CA2726232A1 (en) * 2009-07-16 2010-08-12 Arecor Limited Stable formulation of a therapeutic protein
EP2519262A2 (en) * 2009-12-29 2012-11-07 F. Hoffmann-La Roche AG Antibody formulation
AR080428A1 (es) * 2010-01-20 2012-04-11 Chugai Pharmaceutical Co Ltd Formulaciones liquidas estabilizadas contentivas de anticuerpos
MX2012013664A (es) 2010-06-04 2013-01-24 Wyeth Llc Formulaciones de vacuna.
FR2961107B1 (fr) * 2010-06-15 2012-07-27 Lab Francais Du Fractionnement Composition d'immunoglobulines humaines stabilisee
RS55161B1 (sr) 2010-11-04 2017-01-31 Boehringer Ingelheim Int Anti-il-23 antitela
EP2471554A1 (en) * 2010-12-28 2012-07-04 Hexal AG Pharmaceutical formulation comprising a biopharmaceutical drug
TR201810703T4 (tr) 2011-03-25 2018-08-27 Hoffmann La Roche Yeni protein saflaştırma yöntemleri.
UY34105A (es) * 2011-06-03 2012-07-31 Lg Life Sciences Ltd Formulación líquida estable de etanercept
BR112013030472A2 (pt) 2011-06-30 2019-09-24 Genentech Inc formulação farmacêutica, artigo de fabricação e método
PH12014500904B1 (en) 2011-10-25 2019-01-18 Prothena Biosciences Ltd Antibody formulations and methods
US10160808B2 (en) * 2012-02-16 2018-12-25 Santarus, Inc. Anti-VLA1 (CD49A) antibody pharmaceutical compositions
EP2844284A1 (en) 2012-05-03 2015-03-11 Boehringer Ingelheim International GmbH Anti-il-23p19 antibodies
SG10201709555SA (en) * 2012-05-18 2017-12-28 Genentech Inc High-concentration monoclonal antibody formulations
BR112015000229A2 (pt) * 2012-07-09 2017-06-27 Coherus Biosciences Inc formulações aquosas estáveis de etanercept
FR2994390B1 (fr) 2012-08-10 2014-08-15 Adocia Procede d'abaissement de la viscosite de solutions de proteines a concentration elevee
EP2727602A1 (en) 2012-10-31 2014-05-07 Takeda GmbH Method for preparation of a high concentration liquid formulation of an antibody
UA117466C2 (uk) * 2012-12-13 2018-08-10 Мерк Шарп Енд Доме Корп. СТАБІЛЬНИЙ СКЛАД У ВИГЛЯДІ РОЗЧИНУ АНТИТІЛА ДО IL-23p19
CA2902289A1 (en) * 2013-03-15 2014-09-18 Glaxosmithkline Intellectual Property (No.2) Limited Low concentration antibody formulations
JP2016514690A (ja) 2013-03-15 2016-05-23 アッヴィ バイオテクノロジー リミテッド 抗cd25抗体およびそれらの使用
AU2014233478A1 (en) 2013-03-15 2015-09-24 Abbvie Biotechnology Ltd. Anti-CD25 antibodies and their uses
CN103217525B (zh) * 2013-03-21 2015-04-29 上海执诚生物科技股份有限公司 一种含有提高胱抑素c胶乳包被抗体的稳定性的组合物、稳定剂及其制备方法和用途
KR20140119396A (ko) 2013-03-29 2014-10-10 삼성전자주식회사 단백질 약물의 액상 제형
MX377841B (es) 2013-11-21 2025-03-11 Genmab As Formulación liofilizada de conjugado de anticuerpo-fármaco.
TWI694836B (zh) * 2014-05-16 2020-06-01 英商葛蘭素史克智慧財產管理有限公司 抗體調配物
US10588980B2 (en) 2014-06-23 2020-03-17 Novartis Ag Fatty acids and their use in conjugation to biomolecules
US20170204149A1 (en) 2014-06-23 2017-07-20 Novartis Ag Hsa-gdf-15 fusion polypeptide and use thereof
CN106573955B (zh) 2014-06-23 2021-02-26 诺华股份有限公司 位点特异性蛋白质修饰
US10507241B2 (en) 2014-07-24 2019-12-17 Boehringer Ingelheim International Gmbh Biomarkers useful in the treatment of IL-23A related diseases
MY192824A (en) 2014-09-03 2022-09-12 Boehringer Ingelheim Int Compound targeting il-23a and tnf-alpha and uses thereof
TW201625672A (zh) 2014-10-24 2016-07-16 默沙東藥廠 升糖素及glp-1受體之共促效劑
AR103173A1 (es) 2014-12-22 2017-04-19 Novarits Ag Productos farmacéuticos y composiciones líquidas estables de anticuerpos il-17
JP2018507187A (ja) 2015-01-23 2018-03-15 ノバルティス アーゲー 改善された半減期を有する合成アペリン脂肪酸コンジュゲート
US11091543B2 (en) 2015-05-07 2021-08-17 Swedish Orphan Biovitrum Ag Methods, compositions and dosing regimens for treating or preventing interferon-gamma related indications
KR20180004254A (ko) 2015-05-07 2018-01-10 노비뮨 에스 에이 높은 수준의 cxcl9 및 다른 바이오마커를 갖는 환자에서의 질병의 진단 및 치료를 위한 방법 및 조성물
WO2017096262A1 (en) 2015-12-04 2017-06-08 Jomoco, Corp. Compositions and methods to mitigate or prevent an immune response to an immunogenic therapeutic molecule in non-human primates
CN108367053A (zh) 2015-12-22 2018-08-03 诺华股份有限公司 使用生长分化因子15(gdf-15)治疗或改善代谢性疾病的方法
KR20180101479A (ko) 2016-01-13 2018-09-12 젠맵 에이/에스 항체 및 그의 약물 접합체를 위한 제제
WO2018027195A1 (en) * 2016-08-05 2018-02-08 Abbvie Biotherapeutics Inc. Compositions containing reduced amounts of daclizumab acidic isoforms and methods for preparing the same
EP3533441A4 (en) 2016-10-28 2019-12-04 Celltrion Inc. STABLE PHARMACEUTICAL FORMULATION
WO2018156367A1 (en) * 2017-02-24 2018-08-30 Kindred Biosciences, Inc. Anti-il31 antibodies for veterinary use
WO2018156180A1 (en) 2017-02-24 2018-08-30 Kindred Biosciences, Inc. Anti-il31 antibodies for veterinary use
TW202228779A (zh) 2017-03-01 2022-08-01 英商梅迪繆思有限公司 抗rsv單株抗體配製物
KR102692727B1 (ko) * 2017-03-31 2024-08-08 메이지 세이카 파루마 가부시키가이샤 수성 제제 및 주사기 내 수성 제제, 및 항체 단백질 탈응집제 및 항체 단백질 탈응집 방법
AU2018255955A1 (en) * 2017-04-18 2019-12-05 Dr. Reddy's Laboratories Limited Stable liquid pharmaceutical composition
CA3062487A1 (en) * 2017-05-16 2018-11-22 Jiangsu Hengrui Medicine Co., Ltd. Pd-l1 antibody pharmaceutical composition and use thereof
GB201708655D0 (en) 2017-05-31 2017-07-12 Ucb Biopharma Sprl Cell culture methods
WO2019055902A1 (en) * 2017-09-18 2019-03-21 Amgen Inc. FUSION PROTEIN FORMULATIONS VEGFR-FC
CA3086649A1 (en) 2017-12-22 2019-06-27 Novartis Ag Methods of treating metabolic disorders with fgf21 variants
TWI841554B (zh) 2018-03-21 2024-05-11 丹麥商珍美寶股份有限公司 以鉑為主之劑與抗組織因子抗體-藥物共軛物的組合治療癌症之方法
BR112020022642A2 (pt) 2018-05-07 2021-02-17 Genmab A/S método para tratar câncer em um indivíduo, e, estojo
EP3887393A1 (en) 2018-11-26 2021-10-06 Novartis AG Lpl-gpihbp1 fusion polypeptides
AU2019388808A1 (en) * 2018-11-29 2021-06-17 Harbour Biomed Therapeutics Limited Anti-PD-L1 antibody preparation
US20220098252A1 (en) 2019-01-25 2022-03-31 Ospedale San Raffaele S.R.L. Inhibitor of dux4 and uses thereof
US20210070852A1 (en) * 2019-09-09 2021-03-11 Boehringer Ingelheim International Gmbh Anti-IL-23p19 Antibody Formulations
GB201913697D0 (en) 2019-09-23 2019-11-06 King S College London DAP10/DAP12 fusion polypeptides
AU2021207632A1 (en) * 2020-01-13 2022-07-07 Aptevo Research And Development Llc Methods and compositions for preventing adsorption of therapeutic proteins to drug delivery system components
GB202003277D0 (en) 2020-03-06 2020-04-22 King S College London Therapeutic agents
JP2023525898A (ja) * 2020-05-19 2023-06-19 エフ. ホフマン-ラ ロシュ アーゲー 非経口タンパク質溶液における可視粒子の形成を防止するためのキレート剤の使用
GB202007655D0 (en) 2020-05-22 2020-07-08 King S College London Chimeric nkg2d protein
DK4171622T3 (da) 2021-03-23 2024-08-05 King S College London Sammensætninger omfattende nkg2d- cxcr2- og dap10/dap12- fusionspolypeptider og fremgangsmdåer til anvendelse deraf
GB202214120D0 (en) 2022-09-27 2022-11-09 King S College London Compositions comprising NKG2D, CXCR2, and DAP10/DAP12 fusion polypeptides and methods of use thereof
EP4389762A1 (en) 2022-12-23 2024-06-26 Ospedale San Raffaele S.r.l. Inhibitors of dux4 activity and their use in therapy.
WO2025140467A1 (zh) * 2023-12-29 2025-07-03 上海复宏汉霖生物技术股份有限公司 稳定的高浓度抗pd-1抗体药物制剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091178A (en) * 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US5744132A (en) * 1995-02-06 1998-04-28 Genetics Institute, Inc. Formulations for IL-12
US6165467A (en) * 1991-07-20 2000-12-26 Yoshihide Hagiwara Stabilized human monoclonal antibody preparation
US6171586B1 (en) * 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US20010014326A1 (en) * 1995-07-27 2001-08-16 Genentech, Inc. Protein formulation
US6914128B1 (en) * 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68908175T2 (de) 1988-05-27 1994-03-03 Centocor Inc Gefriergetrocknete formulierung für antikörperprodukte.
AU4803890A (en) * 1988-12-15 1990-07-10 Invitron Corporation Use of basic amino acids to solubilize immunoglobulins
WO1990011091A1 (en) 1989-03-27 1990-10-04 Centocor, Inc. FORMULATIONS FOR STABILIZING OF IgM ANTIBODIES
IL122910A (en) * 1995-07-27 2002-05-23 Genentech Inc Stable isotonic protein formulation that has undergone lyophilization
GB9610992D0 (en) * 1996-05-24 1996-07-31 Glaxo Group Ltd Concentrated antibody preparation
EP0852951A1 (de) * 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stabile lyophilisierte pharmazeutische Zubereitungen von mono- oder polyklonalen Antikörpern
CA2292730C (en) * 1997-06-13 2008-09-16 Genentech, Inc. Stabilized antibody formulation
SI2168984T1 (sl) 1999-03-25 2012-12-31 Abbott Gmbh & Co. Kg Človeška protitelesa za vezavo IL-12 in postopki izdelave
CA2423227C (en) * 2000-10-12 2011-11-29 Genentech, Inc. Reduced-viscosity concentrated protein formulations
GB0113179D0 (en) * 2001-05-31 2001-07-25 Novartis Ag Organic compounds
ES2392073T3 (es) * 2001-11-08 2012-12-04 Abbott Biotherapeutics Corp. Formulación farmacéutica líquida estable de anticuerpos IGG

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091178A (en) * 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US6165467A (en) * 1991-07-20 2000-12-26 Yoshihide Hagiwara Stabilized human monoclonal antibody preparation
US5744132A (en) * 1995-02-06 1998-04-28 Genetics Institute, Inc. Formulations for IL-12
US6267958B1 (en) * 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US20010014326A1 (en) * 1995-07-27 2001-08-16 Genentech, Inc. Protein formulation
US6171586B1 (en) * 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US6914128B1 (en) * 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing

Cited By (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166293B2 (en) 2000-10-12 2019-01-01 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US8142776B2 (en) 2000-10-12 2012-03-27 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US20050175603A1 (en) * 2000-10-12 2005-08-11 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US7666413B2 (en) 2000-10-12 2010-02-23 Genetech, Inc. Method of reducing viscosity of high concentration protein formulations
US20070116700A1 (en) * 2000-10-12 2007-05-24 Genentech, Inc. Reduced-Viscosity Concentrated Protein Formulations
US20150190512A1 (en) * 2001-03-19 2015-07-09 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US9340612B2 (en) * 2001-03-19 2016-05-17 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US20030236196A1 (en) * 2002-06-20 2003-12-25 Amgen Inc. Compositions of pegylated soluble tumor necrosis factor receptors and methods of preparing
US20100197751A1 (en) * 2002-06-20 2010-08-05 Amgen Inc. Compositions of pegylated soluble tumor necrosis factor receptors and methods of preparing
US7700722B2 (en) 2002-06-20 2010-04-20 Amgen Inc. Compositions of pegylated soluble tumor necrosis factor receptors and methods of preparing
US20060182740A1 (en) * 2002-06-21 2006-08-17 Biogen Idec, Inc. Buffered formulations for concentrating antibodies and methods of use thereof
US8940305B2 (en) 2002-08-16 2015-01-27 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US8916157B2 (en) 2002-08-16 2014-12-23 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US8216583B2 (en) 2002-08-16 2012-07-10 Abbott Biotechnology, Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US9950066B2 (en) 2002-08-16 2018-04-24 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9750808B2 (en) 2002-08-16 2017-09-05 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-alpha associated disorders
US9738714B2 (en) 2002-08-16 2017-08-22 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US8795670B2 (en) 2002-08-16 2014-08-05 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-alpha associated disorders
US9732152B2 (en) 2002-08-16 2017-08-15 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US8802102B2 (en) 2002-08-16 2014-08-12 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US8802101B2 (en) 2002-08-16 2014-08-12 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US8802100B2 (en) 2002-08-16 2014-08-12 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-alpha associated disorders
US8911741B2 (en) 2002-08-16 2014-12-16 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-alpha associated disorders
US8916158B2 (en) 2002-08-16 2014-12-23 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US8932591B2 (en) 2002-08-16 2015-01-13 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US9114166B2 (en) 2002-08-16 2015-08-25 Abbvie Biotechnology Ltd. Formulation of human antibodies for treating TNF-α associated disorders
US20060153846A1 (en) * 2002-08-16 2006-07-13 Hans-Juergen Krause Formulation of human antibodies for treating tnf-alpha associated disorders
US9220781B2 (en) 2002-08-16 2015-12-29 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9327032B2 (en) 2002-08-16 2016-05-03 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9272041B2 (en) 2002-08-16 2016-03-01 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9272042B2 (en) 2002-08-16 2016-03-01 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9302011B2 (en) 2002-08-16 2016-04-05 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-α associated disorders
US9295725B2 (en) 2002-08-16 2016-03-29 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US9289497B2 (en) 2002-08-16 2016-03-22 Abbvie Biotechnology Ltd Formulation of human antibodies for treating TNF-alpha associated disorders
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US20070166309A1 (en) * 2002-09-27 2007-07-19 Xencor, Inc. Optimized anti-cd30 antibodies
US20040166111A1 (en) * 2002-10-24 2004-08-26 Zehra Kaymakcalan Low dose methods for treating disorders in which TNFalpha activity is detrimental
US8846046B2 (en) 2002-10-24 2014-09-30 Abbvie Biotechnology Ltd. Low dose methods for treating disorders in which TNFα activity is detrimental
US20040191243A1 (en) * 2002-12-13 2004-09-30 Bei Chen System and method for stabilizing antibodies with histidine
US20040208869A1 (en) * 2003-01-30 2004-10-21 Medimmune, Inc. Uses of anti-integrin alphanubeta3 antibody formulations
US20090053238A1 (en) * 2003-01-30 2009-02-26 Medimmune, Inc. Stabilized High Concentration Anti-Integrin alphavbeta3 Antibody Formulations
US20060159653A1 (en) * 2003-02-28 2006-07-20 Chugai Seiyaku Kabushiki Kaisha Stabilized preparation containing protein
US8765124B2 (en) * 2003-02-28 2014-07-01 Chugai Seiyaku Kabushiki Kaisha Stabilized preparation containing protein
US20070086995A1 (en) * 2003-04-04 2007-04-19 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
US20050158303A1 (en) * 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
US8961964B2 (en) 2003-04-04 2015-02-24 Genentech, Inc. High concentration antibody and protein formulations
US20070053900A1 (en) * 2003-04-04 2007-03-08 Genentech, Inc. High concentration antibody and protein formulations
US20040197324A1 (en) * 2003-04-04 2004-10-07 Genentech, Inc. High concentration antibody and protein formulations
US10034940B2 (en) 2003-04-04 2018-07-31 Genentech, Inc. High concentration antibody and protein formulations
US20090280129A1 (en) * 2003-04-04 2009-11-12 Genentech, Inc. High concentration antibody and protein formulations
US10000574B2 (en) * 2003-11-28 2018-06-19 Amgen Research (Munich) Gmbh Compositions comprising polypeptides
US20070249529A1 (en) * 2003-11-28 2007-10-25 Robert Hofmeister Compositions Comprising Polypeptides
US7932372B2 (en) 2004-01-09 2011-04-26 Amgen Fremont Inc. Antibodies to MAdCAM
USRE45847E1 (en) 2004-01-09 2016-01-19 Pfizer Inc. Antibodies to MAdCAM
US10259872B2 (en) 2004-01-09 2019-04-16 Pfizer, Inc. Antibodies to MAdCAM
US20050232917A1 (en) * 2004-01-09 2005-10-20 Nicholas Pullen Antibodies to MAdCAM
US20070166308A1 (en) * 2004-01-09 2007-07-19 Nicholas Pullen Antibodies to MAdCAM
US20080124339A1 (en) * 2004-01-09 2008-05-29 Nicholas Pullen Antibodies to MAdCAM
US9328169B2 (en) 2004-01-09 2016-05-03 Pfizer Inc. Human antibodies that bind human MAdCAM
US20060008415A1 (en) * 2004-06-25 2006-01-12 Protein Design Labs, Inc. Stable liquid and lyophilized formulation of proteins
WO2006004736A3 (en) * 2004-06-25 2007-06-14 Pdl Biopharma Inc Stable liquid and lyophilized formulation of proteins
EP2620450A3 (en) * 2005-03-08 2014-01-08 Pfizer Products Inc. Anti-CTLA-4 antibody compositions
EP2311491A1 (en) * 2005-03-08 2011-04-20 Pharmacia & Upjohn Company LLC Composition comprising an antibody against macrophage colony-stimulating factor (M-CSF) and a chelating agent
JP2006249085A (ja) * 2005-03-08 2006-09-21 Pharmacia & Upjohn Co Llc プラットホーム抗体組成物
KR100989280B1 (ko) * 2005-03-08 2010-10-20 파마시아 앤드 업존 캄파니 엘엘씨 항-ctla-4 항체 조성물
AU2006220829B2 (en) * 2005-03-08 2011-10-13 Pfizer Products Inc. Anti-CTLA-4 antibody compositions
WO2006096488A3 (en) * 2005-03-08 2006-11-30 Pharmacia & Upjohn Co Llc Composition comprising human igg2 antibody and chelating agent
KR100996801B1 (ko) * 2005-03-08 2010-11-25 파마시아 앤드 업존 캄파니 엘엘씨 항-MAdCAM 항체 조성물
US20090238820A1 (en) * 2005-03-08 2009-09-24 Allan Corey M ANTI-MAdCAM ANTIBODY COMPOSITIONS
WO2006096461A3 (en) * 2005-03-08 2006-12-21 Pharmacia & Upjohn Co Llc Composition comprising an antibody against macrophage colony-stimulating factor (m-csf) and a chelating agent
US20090110681A1 (en) * 2005-03-08 2009-04-30 Pfizer, Inc. Anti-M-CSF Antibody Compositions
US20090130119A1 (en) * 2005-03-08 2009-05-21 Justin Abate Anti-ctla-4 antibody compositions
WO2006096490A3 (en) * 2005-03-08 2006-12-28 Pharmacia & Upjohn Co Llc ANTI-MAdCAM ANTIBODY COMPOSITIONS
AU2012200203B2 (en) * 2005-03-08 2014-07-03 Pfizer Products Inc. Anti-CTLA-4 Antibody Compositions
US20110027262A1 (en) * 2005-03-08 2011-02-03 Pharmacia & Upjohn Company Llc Platform antibody compositions
WO2006096491A3 (en) * 2005-03-08 2007-03-29 Pharmacia & Upjohn Co Llc Anti-ctla-4 antibody compositions
US9487581B2 (en) 2005-03-08 2016-11-08 Pfizer Inc. Anti-CTLA-4 antibody compositions
AU2014240252B2 (en) * 2005-03-08 2016-10-06 Pfizer Products Inc Anti-CTLA-4 Antibody Compositions
US20080248047A1 (en) * 2005-03-08 2008-10-09 Tapan Das Platform Antibody Compositions
US11806398B2 (en) 2005-03-25 2023-11-07 Regeneron Pharmaceuticals, Inc. Citrate buffered VEGF antagonist formulations
US20060269543A1 (en) * 2005-05-19 2006-11-30 Amgen Inc. Compositions and methods for increasing the stability of antibodies
US8858935B2 (en) 2005-05-19 2014-10-14 Amgen Inc. Compositions and methods for increasing the stability of antibodies
US11607451B2 (en) 2005-06-14 2023-03-21 Amgen Inc. Self-buffering antibody formulations
WO2006138181A2 (en) 2005-06-14 2006-12-28 Amgen Inc. Self-buffering protein formulations
EP3351269A1 (en) 2005-06-14 2018-07-25 Amgen Inc. Self-buffering protein formulations
EP3673919A1 (en) 2005-06-14 2020-07-01 Amgen Inc. Self-buffering protein formulations
US20070065437A1 (en) * 2005-09-12 2007-03-22 Greg Elson Anti-CD3 antibody formulations
US20080267976A1 (en) * 2005-10-06 2008-10-30 Gregory Alan Lazar Optimized Anti-Cd30 Antibodies
US7973136B2 (en) 2005-10-06 2011-07-05 Xencor, Inc. Optimized anti-CD30 antibodies
US9574006B2 (en) 2005-10-06 2017-02-21 Xencor, Inc. Optimized anti-CD30 antibodies
WO2007089445A2 (en) 2006-01-27 2007-08-09 Amgen Inc. Ang2 and vegf inhibitor combinations
US12331099B2 (en) 2006-06-16 2025-06-17 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
US11066458B2 (en) 2006-06-16 2021-07-20 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
US11732024B2 (en) 2006-06-16 2023-08-22 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
US11084865B2 (en) 2006-06-16 2021-08-10 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
US20080112953A1 (en) * 2006-10-06 2008-05-15 Amgen Inc. Stable formulations
US7705132B2 (en) 2006-10-20 2010-04-27 Amgen Inc. Stable polypeptide formulations
US20100158908A1 (en) * 2006-10-20 2010-06-24 Amgen Inc. Stable Polypeptide Formulations
US20080124326A1 (en) * 2006-10-20 2008-05-29 Amgen Inc. Stable polypeptide formulations
US8241632B2 (en) 2006-10-20 2012-08-14 Amgen Inc. Stable polypeptide formulations
US20080213282A1 (en) * 2006-12-21 2008-09-04 Jaby Jacob Formulations
EP2173163A4 (en) * 2007-07-06 2010-12-08 Glaxosmithkline Llc ANTIBODY FORMULATIONS
US11433134B2 (en) * 2007-11-15 2022-09-06 Amgen Inc. Aqueous formulation of erythropoiesis stimulating protein stabilised by antioxidants for parenteral administration
US9085619B2 (en) 2007-11-30 2015-07-21 Abbvie Biotechnology Ltd. Anti-TNF antibody formulations
US11191834B2 (en) 2007-11-30 2021-12-07 Abbvie Biotechnology Ltd Protein formulations and methods of making same
US11167030B2 (en) 2007-11-30 2021-11-09 Abbvie Biotechnology Ltd Protein formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
US11584798B2 (en) 2007-12-27 2023-02-21 Hoffmann-La Roche Inc. High concentration antibody-containing liquid formulation
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11359026B2 (en) 2007-12-27 2022-06-14 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11767363B2 (en) 2007-12-27 2023-09-26 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US20100285011A1 (en) * 2007-12-27 2010-11-11 Chugai Seiyaku Kabushiki Kaish High concentration antibody-containing liquid formulation
US20090169544A1 (en) * 2007-12-28 2009-07-02 Biolnvent International Ab Formulation
US20110014203A1 (en) * 2007-12-28 2011-01-20 Fredrik Nilsson Formulation
WO2010031720A3 (en) * 2008-09-19 2010-09-23 F. Hoffmann-La Roche Ag Novel antibody formulation
WO2010031720A2 (en) 2008-09-19 2010-03-25 F. Hoffmann-La Roche Ag Novel antibody formulation
US20100074903A1 (en) * 2008-09-19 2010-03-25 Ulla Grauschopf Novel antibody formulation
US20140093512A1 (en) * 2008-09-19 2014-04-03 Hoffmann-La Roche Inc. Pharmaceutical formulation comprising an antibody against p-selectin and a sugar selected from sucrose and trehalose
US20100172862A1 (en) * 2008-11-28 2010-07-08 Abbott Laboratories Stable antibody compositions and methods of stabilizing same
US20110236398A1 (en) * 2008-12-10 2011-09-29 Joachim Momm Antibody Formulation
US8623367B2 (en) 2008-12-10 2014-01-07 Novartis Ag Antibody formulation
US9265834B2 (en) 2009-03-05 2016-02-23 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US10919954B2 (en) 2009-03-05 2021-02-16 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
US10005830B2 (en) 2009-03-05 2018-06-26 Ablynx N.V. Antigen binding dimer-complexes, methods of making/avoiding and uses thereof
US20100239567A1 (en) * 2009-03-06 2010-09-23 Genentech, Inc. Antibody Formulation
US8318161B2 (en) 2009-03-06 2012-11-27 Genentech, Inc. Anti-oxidized LDL antibody formulation
US20120018338A1 (en) * 2009-03-30 2012-01-26 Hoffman-La Roche Inc. Method for avoiding glass fogging
US20100278822A1 (en) * 2009-05-04 2010-11-04 Abbott Biotechnology, Ltd. Stable high protein concentration formulations of human anti-tnf-alpha-antibodies
WO2011008770A3 (en) * 2009-07-14 2011-12-15 Biogen Idec Ma Inc. Methods for inhibiting yellow color and peroxide formation in a composition
WO2011026117A1 (en) 2009-08-31 2011-03-03 Facet Biotech Corporation Use of an immunoregulatory nk cell population for monitoring the efficacy of anti-il-2r antibodies in multiple sclerosis patients
US9884117B2 (en) * 2009-09-03 2018-02-06 Ablynx N.V. Stable formulations of polypeptides and uses thereof
US20120201812A1 (en) * 2009-09-03 2012-08-09 Ablynx N.V. Stable formulations of polypeptides and uses thereof
WO2011028961A3 (en) * 2009-09-04 2011-06-23 Xoma Technology Ltd. Anti-botulism antibody coformulations
US8821879B2 (en) 2009-09-04 2014-09-02 Xoma Technology Ltd. Anti-botulism antibody coformulations
US20110059079A1 (en) * 2009-09-04 2011-03-10 Xoma Technology Ltd. Antibody Coformulations
WO2011053777A1 (en) 2009-10-30 2011-05-05 Abbott Biotherapeutics Corp. Use of immunoregulatory nk cell populations for predicting the efficacy of anti-il-2r antibodies in multiple sclerosis patients
US11505620B2 (en) 2010-01-06 2022-11-22 Takeda Pharmaceutical Company Limited Methods of detecting plasma kallikrein
WO2011089062A3 (en) * 2010-01-19 2012-03-15 F. Hoffmann-La Roche Ag Pharmaceutical formulation for proteins
US20130216525A1 (en) * 2010-03-01 2013-08-22 Cytodyn, Inc. Concentrated protein formulations and uses thereof
US9956165B2 (en) * 2010-03-01 2018-05-01 Cytodyn Inc. Concentrated protein formulations and uses thereof
US11571383B2 (en) 2010-03-01 2023-02-07 Cytodyn Inc. Concentrated protein formulations and uses thereof
USRE47150E1 (en) 2010-03-01 2018-12-04 Bayer Healthcare Llc Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
US9855331B2 (en) 2010-09-17 2018-01-02 Baxalta Incorporated Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral pH
US20180250401A1 (en) * 2010-09-17 2018-09-06 Baxalta Incorporated Stabilization of immunoglobulins through aqueous formulation with histidine at weak acidic to neutral ph
TWI621625B (zh) * 2010-09-17 2018-04-21 巴克斯歐塔公司 在弱酸性至中性ph中經由具有組胺酸的水性調配物穩定免疫球蛋白
US9566311B2 (en) 2010-09-30 2017-02-14 Ferring B.V. Pharmaceutical composition
US8821865B2 (en) 2010-11-11 2014-09-02 Abbvie Biotechnology Ltd. High concentration anti-TNFα antibody liquid formulations
US11401346B2 (en) 2011-01-06 2022-08-02 Takeda Pharmaceutical Company Limited Nucleic acids encoding plasma kallikrein binding proteins
US11975045B2 (en) 2011-01-13 2024-05-07 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11707506B2 (en) 2011-01-13 2023-07-25 Regeneren Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11253572B2 (en) 2011-01-13 2022-02-22 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US12268730B2 (en) 2011-01-13 2025-04-08 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11986511B2 (en) 2011-01-13 2024-05-21 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11559564B2 (en) 2011-01-13 2023-01-24 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US11730794B2 (en) 2011-01-13 2023-08-22 Regeneron Pharmaceuticals, Inc. Use of a VEGF antagonist to treat angiogenic eye disorders
US10689451B2 (en) 2012-06-12 2020-06-23 Novartis Ag Anti-BAFFR antibody therapeutic formulations
US8613919B1 (en) 2012-08-31 2013-12-24 Bayer Healthcare, Llc High concentration antibody and protein formulations
US9849181B2 (en) 2012-08-31 2017-12-26 Bayer Healthcare Llc High concentration antibody and protein formulations
US9592297B2 (en) 2012-08-31 2017-03-14 Bayer Healthcare Llc Antibody and protein formulations
US9707293B2 (en) 2012-09-07 2017-07-18 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10799585B2 (en) 2012-09-07 2020-10-13 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10195275B2 (en) 2012-09-07 2019-02-05 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10207000B2 (en) 2012-09-07 2019-02-19 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9757454B2 (en) 2012-09-07 2017-09-12 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10159732B2 (en) 2012-09-07 2018-12-25 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10286072B2 (en) 2012-09-07 2019-05-14 Coherus Biosciences, Inc. Methods of manufacturing stable aqueous formulations of adalimumab
US10286071B2 (en) 2012-09-07 2019-05-14 Coherus Biosciences, Inc. Syringe containing stable aqueous formulations of adalimumab
US20150182626A1 (en) * 2012-09-07 2015-07-02 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US20150190513A1 (en) * 2012-09-07 2015-07-09 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US9731009B2 (en) 2012-09-07 2017-08-15 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10155039B2 (en) 2012-09-07 2018-12-18 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10688183B2 (en) 2012-09-07 2020-06-23 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9770507B2 (en) 2012-09-07 2017-09-26 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10716852B2 (en) 2012-09-07 2020-07-21 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10716854B2 (en) 2012-09-07 2020-07-21 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10716853B2 (en) 2012-09-07 2020-07-21 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10722579B2 (en) 2012-09-07 2020-07-28 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9731008B2 (en) 2012-09-07 2017-08-15 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10772960B2 (en) 2012-09-07 2020-09-15 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10772959B2 (en) 2012-09-07 2020-09-15 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10780163B2 (en) 2012-09-07 2020-09-22 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10786566B2 (en) 2012-09-07 2020-09-29 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9737600B2 (en) 2012-09-07 2017-08-22 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US10159733B2 (en) 2012-09-07 2018-12-25 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US20150191538A1 (en) * 2012-09-07 2015-07-09 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US9724415B2 (en) 2012-09-07 2017-08-08 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9861695B2 (en) 2012-09-07 2018-01-09 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9340611B2 (en) * 2012-09-07 2016-05-17 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9808525B2 (en) 2012-09-07 2017-11-07 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9782479B2 (en) * 2012-09-07 2017-10-10 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9346880B2 (en) * 2012-09-07 2016-05-24 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9724414B2 (en) 2012-09-07 2017-08-08 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US20160256547A1 (en) * 2012-09-07 2016-09-08 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US20160256545A1 (en) * 2012-09-07 2016-09-08 Coherus Biosciences, Inc. Stable Aqueous Formulations of Adalimumab
US9789185B2 (en) * 2012-09-07 2017-10-17 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9682145B2 (en) * 2012-09-07 2017-06-20 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US9782480B2 (en) 2012-09-07 2017-10-10 Coherus Biosciences, Inc. Stable aqueous formulations of adalimumab
US11299553B2 (en) 2013-03-15 2022-04-12 Takeda Pharmaceutical Company Limited Anti-plasma kallikrein antibodies
US12110343B2 (en) 2013-03-15 2024-10-08 Takeda Pharmaceutical Company Limited Anti-plasma kallikrein antibodies
US11795216B2 (en) 2013-08-30 2023-10-24 Takeda Pharmaceutical Company Limited Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US10745475B2 (en) 2013-08-30 2020-08-18 Takeda Gmbh Antibodies neutralizing GM-CSF for use in the treatment of rheumatoid arthritis or as analgesics
US11084884B2 (en) 2014-01-21 2021-08-10 Takeda Pharmaceutical Company Limited Plasma kallikrein binding proteins and uses thereof in treating hereditary angioedema
US12384854B2 (en) 2014-01-21 2025-08-12 Takeda Pharmaceutical Company Limited Plasma kallikrein binding proteins and uses thereof in treating hereditary angioedema
US11046785B2 (en) 2014-03-27 2021-06-29 Takeda Pharmaceutical Company Limited Compositions and methods for treatment of diabetic macular edema
US12084515B2 (en) 2014-03-27 2024-09-10 Takeda Pharmaceutical Company Limited Compositions and methods for treatment of diabetic macular edema
AU2015257798C1 (en) * 2014-05-07 2020-10-22 Takeda Pharmaceutical Company Limited Liquid formulation comprising GM-CSF neutralizing compound
AU2015257798B2 (en) * 2014-05-07 2020-04-23 Takeda Pharmaceutical Company Limited Liquid formulation comprising GM-CSF neutralizing compound
US11173208B2 (en) * 2014-05-07 2021-11-16 Takeda Gmbh Liquid formulation comprising GM-CSF neutralizing compound
US20170252436A1 (en) * 2014-05-07 2017-09-07 Takeda Gmbh Liquid formulation comprising gm-csf neutralizing compound
US11660343B2 (en) 2014-06-20 2023-05-30 Comera Life Sciences, Inc. Viscosity-reducing excipient compounds for protein formulations
US11672865B2 (en) 2014-06-20 2023-06-13 Comera Life Sciences, Inc. Viscosity-reducing excipient compounds for protein formulations
US10478498B2 (en) 2014-06-20 2019-11-19 Reform Biologics, Llc Excipient compounds for biopolymer formulations
US9605051B2 (en) 2014-06-20 2017-03-28 Reform Biologics, Llc Viscosity-reducing excipient compounds for protein formulations
US11357857B2 (en) 2014-06-20 2022-06-14 Comera Life Sciences, Inc. Excipient compounds for protein processing
US11696951B2 (en) 2014-06-20 2023-07-11 Comera Life Sciences, Inc. Viscosity-reducing compounds for protein formulations
US11806399B2 (en) 2014-06-20 2023-11-07 Comera Life Sciences, Inc. Excipient compounds for biopolymer formulations
US11142571B2 (en) 2014-11-07 2021-10-12 Sesen Bio, Inc. IL-6 antibodies
US20220112277A1 (en) * 2015-06-17 2022-04-14 Eli Lilly And Company Anti-CGRP Antibody Formulation
US11498959B2 (en) 2015-06-17 2022-11-15 Eli Lilly And Company Anti-CGRP antibody formulation
US20230159628A1 (en) * 2015-06-17 2023-05-25 Eli Lilly And Company Anti-CGRP Antibody Formulation
EP4470557A3 (en) * 2015-06-17 2025-02-26 Eli Lilly and Company Anti-cgrp antibody formulation
EP3310809B1 (en) * 2015-06-17 2024-10-16 Eli Lilly and Company Anti-cgrp antibody formulation
US20180134772A1 (en) * 2015-06-17 2018-05-17 Eli Lilly And Company Anti-CGRP Antibody Formulation
EP4209499A1 (en) 2015-08-13 2023-07-12 Amgen Inc. Charged depth filtration of antigen-binding proteins
EP4470648A2 (en) 2015-08-13 2024-12-04 Amgen Inc. Charged depth filtration of antigen-binding proteins
US11229702B1 (en) 2015-10-28 2022-01-25 Coherus Biosciences, Inc. High concentration formulations of adalimumab
US11769597B2 (en) 2015-12-03 2023-09-26 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US11286307B2 (en) 2015-12-11 2022-03-29 Takeda Pharmaceutical Company Limited Plasma kallikrein inhibitors and uses thereof for treating hereditary angioedema attack
US12048746B2 (en) * 2016-02-23 2024-07-30 Hoffmann-La Roche Inc. IL-6 antagonist formulations and uses thereof
US20220241414A1 (en) * 2016-02-23 2022-08-04 Sesen Bio, Inc. Il-6 antagonist formulations and uses thereof
US11576971B2 (en) 2016-04-20 2023-02-14 Coherus Biosciences, Inc. Method of filling a container with no headspace
US11071782B2 (en) 2016-04-20 2021-07-27 Coherus Biosciences, Inc. Method of filling a container with no headspace
US10307483B2 (en) 2016-10-21 2019-06-04 Amgen Inc. Pharmaceutical formulations and methods of making the same
US11491223B2 (en) 2016-10-21 2022-11-08 Amgen Inc. Pharmaceutical formulations and methods of making the same
US12214013B2 (en) 2016-10-21 2025-02-04 Amgen Inc. Methods of treatment of arthritis and/or psoriasis with pharmaceutical formulations of etanercept
US12247071B2 (en) 2016-12-21 2025-03-11 Amgen Inc. Anti-TNF alpha antibody formulations
WO2018154320A1 (en) * 2017-02-24 2018-08-30 Arecor Limited Stabilized antibody solutions
US11534402B2 (en) 2017-03-06 2022-12-27 Arecor Limited Liquid pharmaceutical composition
US11534403B2 (en) 2017-03-06 2022-12-27 Arecor Limited Liquid pharmaceutical composition
US11845798B2 (en) 2017-05-02 2023-12-19 Merck Sharp & Dohme Llc Formulations of anti-LAG3 antibodies and co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies
US11633476B2 (en) 2017-05-02 2023-04-25 Merck Sharp & Dohme Llc Stable formulations of programmed death receptor 1 (PD-1) antibodies and methods of use thereof
US11802156B2 (en) 2017-07-14 2023-10-31 Pfizer Inc. Antibodies to MAdCAM
WO2019050780A1 (en) 2017-09-05 2019-03-14 Merck Sharp & Dohme Corp. COMPOUNDS FOR REDUCING THE VISCOSITY OF BIOLOGICAL FORMULATIONS
US12280093B2 (en) 2017-11-30 2025-04-22 Regenron Pharmaceuticals, Inc. Use of a VEGF receptor-based fusion protein antagonist to treat nonproliferative diabetic retinopathy
US12168036B2 (en) 2018-05-10 2024-12-17 Regeneron Pharmaceuticals, Inc. Methods for treating angiogenic eye disorders with high doses of VEGF receptor fusion proteins
US11103552B2 (en) 2018-05-10 2021-08-31 Regeneron Pharmaceuticals, Inc. High concentration VEGF receptor fusion protein containing formulations
US12116622B2 (en) 2018-05-25 2024-10-15 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US11519020B2 (en) 2018-05-25 2022-12-06 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
US20210253692A1 (en) * 2018-07-03 2021-08-19 Galapagos Nv High Concentration Liquid Antibody Formulations
US20210299255A1 (en) * 2018-07-20 2021-09-30 Momenta Pharmaceuticals, Inc. Compositions of fcrn antibodies and methods of use thereof
US11608357B2 (en) 2018-08-28 2023-03-21 Arecor Limited Stabilized antibody protein solutions
US12319735B2 (en) 2018-11-07 2025-06-03 Merck Sharp & Dohme Llc Co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies
EP3996740A4 (en) * 2019-07-12 2023-07-05 Contrafect Corporation THERAPEUTIC PROTEIN FORMULATIONS INCLUDING ANTIBODIES AND THEIR USES
US12122850B2 (en) 2022-03-14 2024-10-22 LamKap Bio gamma AG Bispecific GPC3xCD28 and GPC3xCD3 antibodies and their combination for targeted killing of GPC3 positive malignant cells

Also Published As

Publication number Publication date
WO2003039485A3 (en) 2004-02-12
US20110318343A1 (en) 2011-12-29
PT1441589E (pt) 2012-08-13
IL161677A (en) 2010-06-16
IL161677A0 (en) 2004-09-27
JP5290489B2 (ja) 2013-09-18
EP1441589A4 (en) 2007-07-04
ES2392073T3 (es) 2012-12-04
NZ532896A (en) 2007-08-31
AU2002363339B2 (en) 2008-02-07
CA2466034A1 (en) 2003-05-15
CN1612689A (zh) 2005-05-04
LU93314I2 (enrdf_load_stackoverflow) 2019-11-20
JP2011068675A (ja) 2011-04-07
US8465739B2 (en) 2013-06-18
EP1441589B1 (en) 2012-05-09
WO2003039485A2 (en) 2003-05-15
KR20050044365A (ko) 2005-05-12
US20110070231A1 (en) 2011-03-24
HK1074750A1 (en) 2005-11-25
CA2466034C (en) 2012-12-18
ATE556591T1 (de) 2012-05-15
JP2005508981A (ja) 2005-04-07
CY2016044I2 (el) 2017-07-12
CY2016044I1 (el) 2017-07-12
CN1292655C (zh) 2007-01-03
KR100913714B1 (ko) 2009-08-24
DK1441589T3 (da) 2012-08-06
EP1441589A2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US8465739B2 (en) Stable aqueous pharmaceutical formulations of daclizumab antibodies
AU2002363339A1 (en) Stable liquid pharmaceutical formulation of IGG antibodies
US8298530B2 (en) Stable lyophilized pharmaceutical formulation of IgG antibodies
AU2003211991B2 (en) Antibody-containing solution formulations
RU2701181C2 (ru) Жидкая композиция, содержащая антитело высокой концентрации
WO2004039337A2 (en) Stable liquid pharmaceutical formulation of antibodies that are prone to isomerization
US20060182740A1 (en) Buffered formulations for concentrating antibodies and methods of use thereof
KR20100016001A (ko) 항체 제제
AU2021205538A1 (en) Programmed cell death receptor 1 antibody formulation and use thereof
US20040009168A1 (en) Multidose antibody formulation
MXPA04007562A (es) Preparacion liofilizada que comprende inmunocitocinas.
RU2745814C1 (ru) Водная фармацевтическая композиция левилимаба и ее применение
HK1074750B (en) Stable liquid pharmaceutical formulation of igg antibodies
WO2025038671A2 (en) Acidic buffered intravenous solution stabilizers for use in methods of treatment
HK40018285A (en) A programmed death receptor-1 antibody formulation and use thereof
CA2751188A1 (en) Reduced-viscosity concentrated protein formulations
HK1069547A (en) Antibody-containing solution pharmaceuticals

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROTEIN DESIGN LABS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAISHEVA, ELIZABET A.;GUPTA, SUPRIYA;DUVUR, SHANTI G.;AND OTHERS;REEL/FRAME:017427/0209

Effective date: 20021106

AS Assignment

Owner name: PDL BIOPHARMA, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PROTEIN DESIGN LABS, INC.;REEL/FRAME:017439/0502

Effective date: 20060109

AS Assignment

Owner name: FACET BIOTECH CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PDL BIOPHARMA, INC.;REEL/FRAME:022537/0360

Effective date: 20090309

Owner name: FACET BIOTECH CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PDL BIOPHARMA, INC.;REEL/FRAME:022537/0360

Effective date: 20090309

AS Assignment

Owner name: ABBOTT BIOTHERAPEUTICS CORP., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:FACET BIOTECH CORPORATION;REEL/FRAME:025445/0807

Effective date: 20100908

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: ABBVIE BIOTHERAPEUTICS INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT BIOTHERAPEUTICS CORP.;REEL/FRAME:046373/0957

Effective date: 20121128