US20030062813A1 - Energy-free refrigeration door and method for making the same - Google Patents

Energy-free refrigeration door and method for making the same Download PDF

Info

Publication number
US20030062813A1
US20030062813A1 US09/909,262 US90926201A US2003062813A1 US 20030062813 A1 US20030062813 A1 US 20030062813A1 US 90926201 A US90926201 A US 90926201A US 2003062813 A1 US2003062813 A1 US 2003062813A1
Authority
US
United States
Prior art keywords
sheet
glass
substantially equal
door
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/909,262
Other languages
English (en)
Inventor
Christopher Cording
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Flat Glass North America Inc
Original Assignee
AGC Flat Glass North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25426915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030062813(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AGC Flat Glass North America Inc filed Critical AGC Flat Glass North America Inc
Priority to US09/909,262 priority Critical patent/US20030062813A1/en
Assigned to AFG INDUSTRIES, INC. reassignment AFG INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CORDING, CHRISTOPHER R.
Priority to EP02756503A priority patent/EP1421321B1/en
Priority to PT02756503T priority patent/PT1421321E/pt
Priority to JP2003514179A priority patent/JP2004538434A/ja
Priority to AU2002322509A priority patent/AU2002322509A1/en
Priority to DE60234841T priority patent/DE60234841D1/de
Priority to ES02756503T priority patent/ES2338998T3/es
Priority to MXPA04000576A priority patent/MXPA04000576A/es
Priority to CA002454180A priority patent/CA2454180A1/en
Priority to CN02818471.8A priority patent/CN1556680B/zh
Priority to AT02756503T priority patent/ATE453092T1/de
Priority to PCT/US2002/022653 priority patent/WO2003008877A2/en
Priority to US10/400,067 priority patent/US20030197449A1/en
Publication of US20030062813A1 publication Critical patent/US20030062813A1/en
Priority to US10/777,210 priority patent/US7891153B2/en
Priority to JP2008068136A priority patent/JP2008180502A/ja
Priority to JP2010087710A priority patent/JP2010164302A/ja
Priority to US12/975,821 priority patent/US20110089802A1/en
Priority to JP2012279529A priority patent/JP2013064599A/ja
Priority to JP2014155961A priority patent/JP2014211302A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0404Cases or cabinets of the closed type
    • A47F3/0426Details
    • A47F3/0434Glass or transparent panels
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light

Definitions

  • the present invention relates, generally, to refrigeration doors and, in particular, to an energy-free refrigeration door providing condensation control, thermal insulation, and a desired amount of visible transmittance. More particularly, the refrigeration door of the present invention achieves these desired characteristics through the application of a low-emissivity coating, without electrically heating the door.
  • the term “refrigeration door” is meant to refer to a door used for freezers, refrigerators and similar units and cabinets.
  • the term “energy-free” (as in energy-free refrigeration door) means that electricity is not applied to the glass to heat the glass.
  • Refrigeration doors for commercial freezers, refrigerators and the like are typically constructed of glass to allow the customer to view the products placed therein for sale without opening the door.
  • condensation forms on the glass sometimes referred to as “fogging”
  • the customer is not able to see through the door to identify the products inside, which is undesirable from the standpoint of the customer and the store owner or retailer as well.
  • Moisture condenses on the outside of the glass refrigeration door because the surface temperature of the outside of the glass is reduced below the ambient temperature in the store by the colder refrigerated interior of the freezer or refrigerator. When the temperature of the surface of the glass drops below the dew point of the air in the store, moisture condenses on the surface of the glass.
  • the innermost sheet of glass, which forms the inside of the door is also momentarily exposed to the ambient air of the store and condensation may form on the inside of the door as well. The condensation on the inside of the glass door also occurs because the temperature of the inside of the glass door is below the dew point of the ambient store air to which it is exposed.
  • a typical refrigeration door is comprised of an insulating glass unit (IGU) housed in a door frame.
  • the IGU in a refrigeration door is, typically, comprised of two or three sheets of glass sealed at their peripheral edges by a sealant assembly, generally referred to as an edge seal.
  • a sealant assembly generally referred to as an edge seal.
  • two insulating chambers are formed between the three sheets of glass.
  • a single insulating chamber is formed.
  • IGUs for refrigerators are constructed of two sheets of glass, while IGUs for freezers employ three sheets of glass.
  • the chambers are often filled with an inert gas such as argon, krypton, or other suitable gas to improve the thermal performance of the IGU.
  • an unexposed surface of one or two of the sheets of glass is coated with a conductive material.
  • the conductive coating is connected to a power supply by two bus bars or other electrical connectors mounted on opposite edges of the glass. As current passes through the coating, the coating heats, thereby heating the glass sheet to provide a condensation-free surface.
  • the coating on the IGU of a refrigeration door is normally applied to the unexposed surface of the outermost glass sheet. However, because condensation sometimes forms on the inside of the inner sheet of glass, the unexposed surface of the innermost sheet of glass may also be coated for heating to prevent condensation.
  • these electrically heated glass doors present a safety hazard to customers and a potential risk of liability and exposure to retailers and refrigeration system manufacturers.
  • the voltage applied to the glass door coating is typically 115 volts AC.
  • the shopping carts used by customers in stores are heavy and metal. If the shopping cart strikes and breaks the glass door, electricity may be conducted through the cart to the customer, which could cause serious injury or even death.
  • U.S. Pat. No. 5,852,284 and U.S. Pat. No. 6,148,563 disclose applying a voltage to a glass coated with a conductive coating (which may be a low emissivity coating) to control the formation of condensation on the outer surface of the glass door.
  • the conductive coating such as a low emissivity coating, provides a resistance to the electricity, which produces heat, while also providing desirable thermal characteristics.
  • the refrigeration doors disclosed in these patents suffer from the previously described drawbacks and problems associated with all electrically heated refrigeration doors.
  • low emissivity coatings have been employed as another means for reducing condensation on refrigeration doors.
  • a low E coating is a microscopically thin, virtually invisible metal or metallic oxide layer(s) deposited on a glass surface to reduce the emissivity by suppressing radiative heat-flow through the glass.
  • Emissivity is the ratio of radiation emitted by a black body or a surface and the theoretical radiation predicted by Planck's law.
  • emissivity is used to refer to emissivity values measured in the infrared range by American Society for Testing and Materials (ASTM) standards. Emissivity is measured using radiometric measurements and reported as hemispherical emissivity and normal emissivity. The emissivity indicates the percentage of long infrared wavelength radiation emitted by the coating. A lower emissivity indicates that less heat will be transmitted through the glass. Consequently, the emissivity of a sheet of glass or of an IGU impacts the insulating value of the glass or IGU as well as the heat conductivity (the “U value”) of the glass or IGU. The U value of a sheet of glass or of an IGU is the inverse of its R value.
  • the emissivity of the IGU which is the combined emissivity of the sheets of the glass that form the IGU, may be approximated by multiplying the emissivity of all the sheets of glass together. For example, in a two-sheet IGU with each sheet of glass having an emissivity of 0.5, the total emissivity would be 0.5 multiplied by 0.5 or 0.25.
  • the primary objective of the present invention is to overcome the deficiencies of the prior art described above by providing an energy-free refrigeration door with condensation control, thermal insulation, and a desired amount of visible transmittance.
  • Another key objective of the present invention is to provide a refrigeration door that does not employ electrical energy in order to reduce condensation on the glass.
  • Another key objective of the present invention is to provide a refrigeration door that controls condensation and that does not transfer significant heat to the interior of the freezer or refrigerator, thereby further burdening the cooling system and increasing energy costs.
  • Still another objective of the present invention is to provide a refrigeration door with condensation control that is easier and more economical to manufacture, operate, and maintain than the prior art refrigeration doors and systems.
  • Yet another objective of the present invention is to provide a refrigeration door with condensation control that is easier to design, operate, and maintain.
  • Another objective of the present invention is to provide a method for making a refrigeration door with condensation control that does not use electricity to heat the glass to control the condensation.
  • Yet another objective of the present invention is to provide a refrigeration door with an emissivity of less than 0.04.
  • Still another objective of the present invention is to provide a refrigeration door with an emissivity of approximately 0.0025.
  • Yet another objective of the present invention is to provide a refrigeration door with a U value of less than 0.2 BTU/hr-sq ft-F.
  • Still another objective of the present invention is to provide a refrigeration door with a U value of approximately 0.16 BTU/hr-sq ft-F.
  • the present invention achieves these objectives and others by providing an energy-free refrigeration door, and method for making the same, comprising a door frame housing an insulating glass unit comprising inner, middle and outer sheets of glass.
  • a first sealant assembly disposed around the periphery of the inner and middle sheets of glass forms a first chamber between the inner and middle sheets of glass.
  • a second sealant assembly disposed around the periphery of the middle and outer sheets of glass forms a second chamber between the middle and outer sheets of glass.
  • a gas, such as krypton, air, or argon is held in the first and second chambers.
  • the outer sheet of glass and inner sheet of glass each have an unexposed surface that faces the middle sheet of glass.
  • a low emissivity coating is disposed on the unexposed surfaces of the inner and outer sheets of glass so that the glass door as a whole has a U value that prevents formation of condensation on the outer surface of the outer sheet of the glass door, without the application of electricity to heat the door, while also providing the desired evaporation rate of condensation from the inner side of the inner sheet of the glass door.
  • FIG. 1 depicts a refrigeration system employing the present invention.
  • FIG. 2. depicts a refrigeration door according to the present invention.
  • FIG. 3 is an illustration of a partial cross-sectional view of a refrigeration door according to the present invention.
  • FIG. 4 is an illustration of a partial cross-sectional view of a refrigeration door according to the present invention.
  • the optimal U value of the glass door will be driven by numerous factors including the difference between the outside and inside temperatures, the glass thickness, the spacing, the gas(es) used in the chamber(s) of the IGU, the number of sheets, the spacer material, the ambient humidity, the absorption coefficient of the coating in the far infrared spectrum, as well as the desirable time for evaporation of the condensation.
  • the costs associated with the selected components i.e., the gas, the sealant assembly, the glass, etc.
  • the energy costs, and other factors are also design considerations.
  • the preferred embodiment described below provides a U value of 0.16 BTU/hr-sq ft F that prevents condensation on the outside of the door, while permitting enough heat to penetrate through the door from the ambient external environment to allow condensation on the inside of the door to evaporate in a reasonable amount of time.
  • Some refrigeration system manufacturers require that the condensation evaporate within a few minutes and others require evaporation within one minute.
  • the time required for the condensation to evaporate will vary according to the amount of time the door is open, the humidity in the store, the refrigeration system compartment temperature, the refrigeration system contents, the heat transferred through the door (which is dependent on the U value), and other factors.
  • a refrigeration system 5 includes a plurality of transparent refrigeration doors 10 with each having a handle 11 .
  • each refrigeration door 10 includes an IGU 50 mounted in a frame 55 .
  • the interior of the refrigeration system includes a plurality of shelves 6 for holding merchandise to be seen through the door.
  • the refrigeration door 10 of the present embodiment is mounted to the opening of the refrigeration system with a hinge, which allows the door to open outwards.
  • the refrigeration door 10 includes an IGU 50 housed in a frame 55 .
  • the IGU 50 is comprised of an outer sheet of glass 60 , a middle sheet of glass 65 , and an inner sheet of glass 70 .
  • the IGU 50 is housed in frame 55 and also includes a first sealant assembly 90 that extends around the periphery of the inner surface 62 of the outer sheet 60 and the outer surface of the middle sheet 65 of glass to define a substantially hermetically sealed insulated outer chamber 92 .
  • a second sealant assembly 95 extends around the periphery of the outer surface 72 of the inner sheet 70 and inner surface of the middle sheet 65 of glass to define a substantially hermetically sealed insulated inner chamber 94 .
  • the outer surface 61 of the outer sheet of glass 60 is positioned adjacent the external ambient environment 7 .
  • the outer surface 61 of the outer sheet 60 is exposed to the environment in which the refrigerator or freezer resides.
  • the inner surface 62 of the outer sheet 60 forms part of, and is exposed to, the outer chamber 92 .
  • the outer sheet 60 is one eighth of an inch thick, tempered, and the inner surface 62 of the outer sheet 60 is coated with a low emissivity coating 63 .
  • the low E coating is a sputter-coated low E coating that includes an ultra-hard titania as the base layer to ensure a high level of thermal performance and a high visible transmittance. This particular sputter coated glass can be tempered after the coating and offers high visible light transmission without high levels of color tinting.
  • the outer surface 61 of outer sheet 60 is not coated.
  • the outer sheet 60 may, for example, be a sheet of Comfort Ti-PS glass, one eighth of an inch thick, manufactured by AFG Industries, Inc. of Kingsport, Tennessee, which has a low E coating providing an emissivity of 0.05.
  • the Comfort Ti-PS is cut to the appropriate size, tempered, and edged before being integrated into the IGU 50 .
  • the middle sheet of glass 65 is positioned between the outer 60 and inner 70 sheets of glass and forms part of the outer chamber 92 and the inner chamber 94 .
  • the middle sheet 65 is spaced one half inch from the outer sheet 60 and inner sheet 70 and is a one eighth of an inch thick, uncoated, sheet of tempered glass.
  • the inner sheet of glass 70 is positioned adjacent the interior of the freezer or refrigerating compartment 9 , with its inner surface 71 exposed to the interior of the compartment 9 .
  • the outer surface 72 of the inner sheet 70 forms part of, and is exposed to, the inner chamber 94 .
  • the outer surface 72 of the inner sheet 70 of glass is also coated with a low emissivity coating 73 .
  • the coating 73 on the outer surface 72 of the inner sheet 70 is the same as that described above with respect to the coating 63 of the inner surface 62 of the outer sheet 60 .
  • the inner surface 71 of inner sheet 70 is not coated.
  • the inner sheet 70 may also, for example, be a sheet of Comfort Ti-PS, one eighth of an inch thick, manufactured by AFG Industries, Inc., which has the described characteristics and coating.
  • the chambers 92 and 94 are both filled with air.
  • each chamber may be filled with a different gas and the chambers could be filled with krypton, argon, or other suitable gas.
  • the sheets 60 , 65 are held apart by a first sealant assembly 90 which extends around the periphery of the sheets 60 , 65 maintaining the glass sheets in parallel, spaced-apart relationship creating chamber 92 between the sheets 60 , 65 , while also sealing the chamber 92 from the external environment.
  • the sheets 65 , 70 are held apart by a second sealant assembly 95 which extends around the periphery of the sheets 65 , 70 maintaining the glass sheets in parallel, spaced-apart relationship creating chamber 94 between the sheets 65 , 70 , while also sealing the chamber 94 from the external environment.
  • the sealant assemblies 90 , 95 maintain a one half inch space between the outer sheet 60 and middle sheet 65 and inner sheet 70 and middle sheet 65 , respectively.
  • the sealant assemblies 90 , 95 of the present embodiment are preferably, warm edge seals. “Warm edge” is used to describe an insulating glass sealing assembly that reduces heat loss better than conventional aluminum spacers and sealant combinations.
  • Each of the sealant assemblies 90 , 95 of this embodiment includes its own spacer and desiccant, which replaces the need for a separate sealant, metallic spacer, and desiccant, and has a heat transfer rate of 0.84 Btu/hr-ft-F (sometimes referred to as a K value).
  • the sealant assemblies 90 , 95 in this embodiment are a composite extrusion containing a combination of polyisobutylene sealant, hot melt butyl sealant, desiccant matrix, rubber shim and a vapor barrier. Suitable sealant assemblies of this type are manufactured and sold by TruSeal Technologies of Beachwood, Ohio, under the name “Comfort Seal.”
  • IGU 50 is shown.
  • IGU 50 is comprised of glass sheets 60 , 65 , and 70 integrated by sealant assemblies 90 and 95 .
  • IGU 50 is installed in frame 55 in any suitable manner well-known to those skilled in the art.
  • the frame 55 is made from extruded plastic or other suitable well-known frame materials, such as extruded aluminum, fiber glass or other material. If, in an alternative embodiment the frame 55 is formed of aluminum or other material, the door may require heating along its edges to ensure condensation control around the edges of the door.
  • a refrigeration system 5 is shown.
  • the door frame 55 is coupled to the refrigeration compartment 8 in any suitable fashion as is well known in the art, such as a single door long hinge, multiple hinges, or in a slot for sliding the door open and closed.
  • the frame may include a door handle 11 or other suitable actuating means as is appropriate for the application.
  • the refrigeration system 5 of which the door 10 forms a part, may be any system used for cooling a compartment, such as that disclosed in U.S. Pat. No. 6,148,563, which is hereby incorporated herein by reference.
  • the above preferred embodiment provides a refrigeration door with a U value of 0.16 BTU/hr-sq ft-F (and emissivity of 0.0025), which has been found to be suitable for freezer door applications requiring the performance standards identified above with respect to the United States industry.
  • a U value of 0.16 BTU/hr-sq ft-F permits the refrigeration door to easily meet the required performance standards, while also allowing enough heat to penetrate through the door from the external ambient environment to evaporate condensation formed on the inside of the door in a reasonable time period.
  • the preferred embodiment provides a visible light transmittance of sixty-six percent (66%).
  • Comfort Ti-PS glass other low E coated glass may be used, such as, for example, Comfort Ti-R, Comfort Ti-AC, Comfort Ti-RTC, and Comfort Ti-ACTC, all of which are available from AFG Industries, Inc., which like Comfort Ti-PS, are titania/silver based low E coated glass manufactured by AFG Industries, Inc.
  • Comfort E2 Another suitable type of glass is Comfort E2, which is coated with a pyrolytic process and is a fluorine doped tin oxide low E coated glass, one eighth of an inch thick, and which is manufactured by AFG Industries, Inc.
  • Comfort E2 is suitable for some of the less stringent performance standards because of its higher emissivity.
  • the U value of the refrigeration door 10 is determined by a number of design factors including the number of sheets of glass, the thickness of the sheets, the emissivity of the IGU, the spacing between the sheets, and the gas in the chamber(s).
  • the U value of 0.16 BTU/hr-sq ft-F is accomplished using air as the gas being held in the chambers, glass thicknesses of one eighth of an inch on all sheets, one half inch spacing, and an IGU emissivity of 0.0025.
  • each of these factors can be varied resulting in numerous permutations of values that could be combined to provide the same U value.
  • other applications may require a smaller or larger U value depending on the environment, costs constraints, and other requirements or considerations.
  • Ti-PS refers to the low E coating of AFG Industries' Comfort Ti-PS glass
  • CE2 refers to the low E coating of AFG Industries' Comfort E2 glass, both described above.
  • U values in the tables are calculated as “center of the glass” values, because the computer simulation does not have the capability to consider the sealant assembly. Consequently, there are no sealant assembly data or design criteria listed in the tables.
  • the IGU 50 includes an outer sheet 60 and inner sheet 70 of glass, the frame 55 , and a sealant assembly 90 .
  • both the outer sheet 60 and inner sheet 70 are one eighth of an inch thick and include the same low E coating as described in the first embodiment, which is titania based silver low E coating.
  • both the outer sheet 60 and inner sheet 70 may, for example, be a sheet of Comfort Ti-PS glass, one eighth of an inch thick, manufactured by AFG Industries, Inc.
  • the coated sides of the sheets 60 and 70 are on the unexposed surfaces of the sheets, sides 62 and 72 , respectively, which form part of the chamber 92 .
  • the same sealant assembly 90 described above (the Comfort Seal) may be used and acts to provide a spacing of one half inch between the outer 60 and inner 70 sheets of glass.
  • Table 2 below includes design parameters and the corresponding calculated U values for a number of two pane IGUs. In addition to the design parameters listed in the table below, all of the two pane calculations were computed with each pane being one eighth of an inch thick, and a total of two sides of the two panes being low E coated. Tempering of the glass does not significantly effect the calculated performance values.
  • any suitable type of coating processes may be employed including pyrolytic (e.g., as in the Comfort E2), which is often referred to as chemical vapor deposition (CVD), spray, and sputter coating (e.g., as in the Comfort Ti-PS).
  • CVD chemical vapor deposition
  • sputter coating e.g., as in the Comfort Ti-PS
  • these processes may be applied using well-known off-line or on-line manufacturing methods as is suitable and appropriate for the quantity and type of production and process.
  • any suitable low E coating may be employed including silver based, titania based, or fluorine doped tin oxide coating.
  • the embodiments described above include low E coatings on the unexposed surfaces of two sheets of glass
  • other embodiments of the present invention might include a low E coating applied to only one sheet of glass on either side, or on both sides.
  • the middle sheet of glass may include a low E coating on either side (or both sides) instead of, or in addition to, coatings on the inner sheet 70 and outer sheet 60 of glass.
  • the inner sheet of glass 70 does not have a low E coating on either side of the sheet of glass 70 .
  • the low E coating is present on only one sheet, or on both sides of both sheets.
  • the number of sheets that have the low E coating and the side (or sides) that have the coating is a design choice.
  • the total emissivity of the IGU, which along with other factors determines the U factor of the door, is more important with respect to the thermal performance than which side or sides of which sheet(s) are coated.
  • a high performance gas such as krypton
  • using a high performance gas may enable an IGU with an emissivity of slightly more than 0.04 to provide the necessary condensation control in some circumstances.
  • sealant assemblies may be employed including for example, an all-foam, non-metal assembly such as the Super Spacer, manufactured by EdgeTech, Inc, which has a heat transfer rate of approximately 1.51 Btu/hr-ft-F.
  • an all-foam, non-metal assembly such as the Super Spacer, manufactured by EdgeTech, Inc, which has a heat transfer rate of approximately 1.51 Btu/hr-ft-F.
  • Another suitable sealant assembly is the ThermoPlastic Spacersystem (TPS) manufactured by Lenhardt Maschinenbau GmbH, which has a heat transfer rate of approximately 1.73 Btu/hr-ft-F.
  • TPS ThermoPlastic Spacersystem
  • the spacing in the above disclosed embodiments is one half inch. However, while the preferred spacing ranges between five sixteenths of an inch to one half inch, other embodiments of the invention may use spacings up to three quarters of an inch. In addition, while the above disclosed embodiments employ glass one eighth of an inch thick that is tempered (except for the middle sheet), other embodiments may use untempered glass or thicknesses that are greater than, or less than, one eighth of an inch.
  • the design parameters of an embodiment of the present invention will be determined, in part, by the application or intended use of the embodiment. More specifically, the exterior ambient temperature, interior temperature, and exterior ambient humidity (and associated dew point) are important factors in determining the necessary U value for the design, which in turn, determines the design parameters (type of glass, emissivity, number of sheets, gas, etc.).
  • the left five columns of Table 3 below provide a list of calculated U values for various applications of the intended use and includes the exterior temperature, interior temperature, exterior humidity, and calculated dew point for each U value.
  • the right three columns of Table 3 provide an embodiment of the invention that will provide the necessary U value.
  • TABLE 3 Calculated U Values for Various Environmental Parameters IGU Design Variables Dewpoint Maximum for Satisfying Identified Exterior Interior U Value (Outside Relative U Value Temp Temp Btu/ Glass T) Humidity Glass Spacing Gas In Deg F. Deg F. hr-sq ft-F Deg F.
  • the design parameters of Table 3 identify the type of glass (which is one eighth of an inch thick), the spacing between sheets, and the gas in the chambers.
  • all of the IGUs of the Table 3 include a third, non-coated sheet of glass that is one eighth of an inch thick, and that is disposed between the two sheets of glass identified in the table.
  • CE1 in the Table 3 refers to Comfort El, which has an emissivity of 0.35 and is sold by AFG Industries, Inc.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Refrigerator Housings (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezers Or Refrigerated Showcases (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Surface Treatment Of Glass (AREA)
US09/909,262 2001-07-19 2001-07-19 Energy-free refrigeration door and method for making the same Abandoned US20030062813A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US09/909,262 US20030062813A1 (en) 2001-07-19 2001-07-19 Energy-free refrigeration door and method for making the same
PCT/US2002/022653 WO2003008877A2 (en) 2001-07-19 2002-07-17 Energy-free refrigeration door and method for making the same
PT02756503T PT1421321E (pt) 2001-07-19 2002-07-17 Porta de refrigeração não electrificada e procedimento para o respectivo fabrico
CN02818471.8A CN1556680B (zh) 2001-07-19 2002-07-17 无能耗冷藏门及其制造方法
AT02756503T ATE453092T1 (de) 2001-07-19 2002-07-17 Energiefreie kühlvorrichtungstür und herstellungsverfahren dafür
JP2003514179A JP2004538434A (ja) 2001-07-19 2002-07-17 エネルギの不要な冷蔵ドアおよびそれを製造するための方法
AU2002322509A AU2002322509A1 (en) 2001-07-19 2002-07-17 Energy-free refrigeration door and method for making the same
DE60234841T DE60234841D1 (de) 2001-07-19 2002-07-17 Energiefreie kühlvorrichtungstür und herstellungsverfahren dafür
ES02756503T ES2338998T3 (es) 2001-07-19 2002-07-17 Puerta de refrigerador que no requiere energia y metodo para la fabricacion del mismo.
MXPA04000576A MXPA04000576A (es) 2001-07-19 2002-07-17 Puerta para refrigeracion libre de energia y metodo para hacer la misma.
CA002454180A CA2454180A1 (en) 2001-07-19 2002-07-17 Energy-free refrigeration door and method for making the same
EP02756503A EP1421321B1 (en) 2001-07-19 2002-07-17 Energy-free refrigeration door and method for making the same
US10/400,067 US20030197449A1 (en) 2001-07-19 2003-03-27 Energy-free refrigeration door and method for making the same
US10/777,210 US7891153B2 (en) 2001-07-19 2004-02-13 Energy-free refrigeration door and method for making the same
JP2008068136A JP2008180502A (ja) 2001-07-19 2008-03-17 エネルギの不要な冷蔵ドアおよびそれを製造するための方法
JP2010087710A JP2010164302A (ja) 2001-07-19 2010-04-06 エネルギの不要な冷蔵ドアおよびそれを製造するための方法
US12/975,821 US20110089802A1 (en) 2001-07-19 2010-12-22 Energy-free refrigeration door and method for making the same
JP2012279529A JP2013064599A (ja) 2001-07-19 2012-12-21 エネルギの不要な冷蔵ドアおよびそれを製造するための方法
JP2014155961A JP2014211302A (ja) 2001-07-19 2014-07-31 エネルギの不要な冷蔵ドアおよびそれを製造するための方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/909,262 US20030062813A1 (en) 2001-07-19 2001-07-19 Energy-free refrigeration door and method for making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/400,067 Continuation US20030197449A1 (en) 2001-07-19 2003-03-27 Energy-free refrigeration door and method for making the same

Publications (1)

Publication Number Publication Date
US20030062813A1 true US20030062813A1 (en) 2003-04-03

Family

ID=25426915

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/909,262 Abandoned US20030062813A1 (en) 2001-07-19 2001-07-19 Energy-free refrigeration door and method for making the same
US10/400,067 Abandoned US20030197449A1 (en) 2001-07-19 2003-03-27 Energy-free refrigeration door and method for making the same
US10/777,210 Expired - Fee Related US7891153B2 (en) 2001-07-19 2004-02-13 Energy-free refrigeration door and method for making the same
US12/975,821 Abandoned US20110089802A1 (en) 2001-07-19 2010-12-22 Energy-free refrigeration door and method for making the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/400,067 Abandoned US20030197449A1 (en) 2001-07-19 2003-03-27 Energy-free refrigeration door and method for making the same
US10/777,210 Expired - Fee Related US7891153B2 (en) 2001-07-19 2004-02-13 Energy-free refrigeration door and method for making the same
US12/975,821 Abandoned US20110089802A1 (en) 2001-07-19 2010-12-22 Energy-free refrigeration door and method for making the same

Country Status (12)

Country Link
US (4) US20030062813A1 (zh)
EP (1) EP1421321B1 (zh)
JP (5) JP2004538434A (zh)
CN (1) CN1556680B (zh)
AT (1) ATE453092T1 (zh)
AU (1) AU2002322509A1 (zh)
CA (1) CA2454180A1 (zh)
DE (1) DE60234841D1 (zh)
ES (1) ES2338998T3 (zh)
MX (1) MXPA04000576A (zh)
PT (1) PT1421321E (zh)
WO (1) WO2003008877A2 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060005484A1 (en) * 1999-05-25 2006-01-12 Luc-Michel Riblier Refrigerated display case having a transparent insulating glazing unit
EP1629749A1 (en) * 2004-08-31 2006-03-01 Hussmann Corporation Multi-pane glass assembly for a refrigerated display case
US20060103269A1 (en) * 2004-07-23 2006-05-18 Anthony, Inc. Soft-coated glass pane refrigerator door construction and method of making same
US20060265979A1 (en) * 2004-09-20 2006-11-30 Afg Industries, Inc. Anti-fog refrigeration door and method of making the same
US20100043293A1 (en) * 2008-08-20 2010-02-25 Anthony, Inc. Refrigerator door construction including a laminated package
USD612517S1 (en) 2008-08-20 2010-03-23 Anthony, Inc. Door
US20120090246A1 (en) * 2010-10-15 2012-04-19 Guardian Industries Corp. Refrigerator/freezer door, and/or method of making the same
US20160045038A1 (en) * 2014-07-22 2016-02-18 Richard Chubb Door for e Freezer Cabinet
US10417943B2 (en) 2011-10-13 2019-09-17 Manufacturing Resources International, Inc. Transparent liquid crystal display on display case
US10555406B2 (en) 2014-10-09 2020-02-04 Manufacturing Resources International, Inc. System and method for decreasing energy usage of a transparent display case
US10595648B2 (en) 2014-10-15 2020-03-24 Manufacturing Resources International, Inc. System and method for preventing damage to products
US10679243B2 (en) 2014-06-16 2020-06-09 Manufacturing Resources International, Inc. System and method for tracking and analyzing consumption
US10705288B2 (en) 2014-06-16 2020-07-07 Manufacturing Resources International, Inc. Thermal management system for a transparent electronic display located in an access panel of a display case
US11474393B2 (en) 2014-10-08 2022-10-18 Manufacturing Resources International, Inc. Lighting assembly for electronic display and graphic
US11854440B2 (en) 2016-07-08 2023-12-26 Manufacturing Resources International, Inc. Mirror having an integrated electronic display
US11864669B2 (en) 2020-11-25 2024-01-09 Hussmann Corporation Merchandiser including track door system

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794225B3 (fr) * 1999-05-25 2001-06-15 Saint Gobain Vitrage Porte d'enceinte refrigeree comportant un vitrage sous vide
DE202004019865U1 (de) * 2004-11-29 2006-04-06 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät
WO2006118567A1 (en) * 2005-04-28 2006-11-09 Carrier Corporation Frameless door suspension
CN101300394A (zh) * 2005-09-20 2008-11-05 北美Agc平板玻璃公司 防雾制冷门及其制造方法
WO2007106091A1 (en) * 2006-03-16 2007-09-20 Carrier Corporation Glass door for refrigerated merchandiser
ITPN20060059A1 (it) * 2006-08-04 2008-02-05 Electrolux Professional Spa Forno di cottura con porta anti-condensa
US20080190941A1 (en) * 2007-01-19 2008-08-14 Metro Industries Inc. Food Service Cabinet With Nanomaterial Coating
CA2695773A1 (en) * 2007-08-24 2009-03-05 Weather Shield Mfg., Inc. Windows, doors and glazing assemblies therefor
JP5310019B2 (ja) * 2008-05-28 2013-10-09 セントラル硝子株式会社 複層ガラス
EP2318206B1 (fr) 2008-07-24 2017-01-04 AGC Glass Europe Vitrage isolant multiple
JP5424059B2 (ja) * 2009-09-15 2014-02-26 旭硝子株式会社 複層ガラス構造体及び保冷ショーケース
US9289079B2 (en) * 2009-11-05 2016-03-22 Hussmann Corporation Door for a refrigerated merchandiser
US8524337B2 (en) 2010-02-26 2013-09-03 Guardian Industries Corp. Heat treated coated article having glass substrate(s) and indium-tin-oxide (ITO) inclusive coating
US8304045B2 (en) 2010-02-26 2012-11-06 Guardian Industries Corp. Articles including anticondensation coatings and/or methods of making the same
IT1404030B1 (it) * 2010-07-15 2013-11-08 Mondial Group Srl Porta isolante a vetro perfezionata, in particolare per apparecchi refrigeranti.
JP5488837B2 (ja) * 2011-03-04 2014-05-14 旭硝子株式会社 複層ガラス構造体及び保冷ショーケース用ドア並びに複層ガラス構造体の不活性ガス濃度測定方法
FR2978525B1 (fr) 2011-07-29 2018-05-18 Saint-Gobain Glass France Vitrage multiple lumineux de meuble
CN102411809A (zh) * 2011-08-28 2012-04-11 陈太明 新型节能自动售货机
US8695362B2 (en) 2012-01-19 2014-04-15 Hussmann Corporation Refrigerated merchandiser with door having boundary layer
NL1039440C2 (nl) * 2012-03-06 2013-09-09 Polyplastic Groep B V Koelinrichting en toegangsdeur.
US8869493B2 (en) * 2012-03-14 2014-10-28 Thermoseal Industries, L.L.C. Door for a refrigerated cabinet
US9332862B2 (en) * 2012-11-30 2016-05-10 Guardian Industries Corp. Refrigerator door/window
US20140265758A1 (en) * 2013-03-13 2014-09-18 Hussmann Corporation Three side silver frit on heated glass
EP2988630A1 (en) * 2013-04-26 2016-03-02 Doors, Covers & More B.V. Double-walled acrylic door for refrigerated cabinets.
BR112015031084B1 (pt) * 2013-06-14 2022-01-04 Agc Glass Europe Elemento envidraçado, utilização de um elemento envidraçado e móvel de câmara refrigerada
CN104089452B (zh) * 2013-09-17 2017-01-18 广东富信科技股份有限公司 半导体制冷柜
US9498072B2 (en) 2014-02-11 2016-11-22 Anthony, Inc. Display case door assembly with tempered glass vacuum panel
US10165870B2 (en) 2014-02-11 2019-01-01 Anthony, Inc. Display case door assembly with vacuum panel
PL3113653T3 (pl) * 2014-03-07 2021-10-25 Agc Glass Europe Izolujący element oszklony
AU2015277337B2 (en) * 2014-06-16 2018-05-31 Manufacturing Resources International, Inc. Transparent LCD assembly with display case
JP2016056064A (ja) * 2014-09-10 2016-04-21 旭硝子株式会社 多層ガラス
US9955803B2 (en) 2014-12-15 2018-05-01 Hussmann Corporation Door for a refrigerated merchandiser
JP6505254B2 (ja) 2015-04-22 2019-04-24 サン−ゴバン グラス フランスSaint−Gobain Glass France 三層複層ガラスを製造する方法および装置
KR102525551B1 (ko) 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
KR102447245B1 (ko) 2015-08-03 2022-09-27 엘지전자 주식회사 진공단열체 및 냉장고
KR102498210B1 (ko) 2015-08-03 2023-02-09 엘지전자 주식회사 진공단열체 및 냉장고
EP3332193B1 (en) 2015-08-03 2021-11-17 LG Electronics Inc. Vacuum adiabatic body
KR102529853B1 (ko) 2015-08-03 2023-05-08 엘지전자 주식회사 진공단열체, 진공단열체의 제조방법, 다공성물질패키지, 및 냉장고
KR102529852B1 (ko) 2015-08-03 2023-05-08 엘지전자 주식회사 진공단열체 및 냉장고
KR102442973B1 (ko) 2015-08-03 2022-09-14 엘지전자 주식회사 진공단열체 및 냉장고
KR102466469B1 (ko) 2015-08-03 2022-11-11 엘지전자 주식회사 진공단열체 및 냉장고
KR102502160B1 (ko) 2015-08-03 2023-02-21 엘지전자 주식회사 진공단열체 및 냉장고
KR20170016188A (ko) 2015-08-03 2017-02-13 엘지전자 주식회사 진공단열체 및 냉장고
KR102525550B1 (ko) 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
KR102456642B1 (ko) 2015-08-03 2022-10-19 엘지전자 주식회사 진공단열체 및 냉장고
KR102466470B1 (ko) 2015-08-04 2022-11-11 엘지전자 주식회사 진공단열체 및 냉장고
MX2018010530A (es) * 2016-03-02 2019-06-12 Anthony Inc Ensamblaje de puerta de vitrina con panel de vacio de vidrio templado.
DE202016103026U1 (de) 2016-06-07 2016-07-22 Boje Martens Beleuchtete Glasscheibe
DE102016110505A1 (de) 2016-06-07 2017-12-07 Boje Martens Beleuchtete Glasscheibe und Verfahren zu deren Herstellung
CN106158050A (zh) * 2016-06-29 2016-11-23 中国科学院国家天文台 一种用于近太阳观测设备的热防护结构
CN106679302A (zh) * 2017-02-22 2017-05-17 合肥舒实工贸有限公司 一种冰箱门体
CN107217958A (zh) * 2017-05-23 2017-09-29 句容耀皮节能玻璃科技发展有限公司 一种双层中空节能玻璃
US10575660B2 (en) * 2017-08-29 2020-03-03 Anthony, Inc. Glass assembly with clear edging
CN108049762A (zh) * 2017-12-15 2018-05-18 常熟市利尔建材有限公司 一种具有加热性能的玻璃门
JP7122550B2 (ja) * 2018-02-09 2022-08-22 パナソニックIpマネジメント株式会社 ショーケース
CN111219937A (zh) * 2018-11-26 2020-06-02 青岛海尔特种电冰柜有限公司 玻璃门体除露方法和装置
EP3735866B1 (en) * 2019-05-06 2021-06-30 Schott Ag Swing door system and a freezer device
US11116333B2 (en) 2019-05-07 2021-09-14 Carrier Corporation Refrigerated display cabinet including microchannel heat exchangers
US11559147B2 (en) 2019-05-07 2023-01-24 Carrier Corporation Refrigerated display cabinet utilizing a radial cross flow fan
CN111236802A (zh) * 2020-01-13 2020-06-05 刘红亮 一种厨房用自动换热清理窗
US20230184481A1 (en) 2021-12-09 2023-06-15 Anthony, Inc. Electronic display mounting in display case door
CN113959019A (zh) * 2021-12-12 2022-01-21 云南师范大学 一种基于树脂干燥剂电渗再生的除湿空调系统
US11994335B2 (en) 2021-12-29 2024-05-28 True Manufacturing Co., Inc. Self-contained reach-in refrigerator

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992171A (en) 1975-11-10 1976-11-16 Amana Refrigeration, Inc. Refrigerator freezer forced air system
US4035608A (en) 1975-11-17 1977-07-12 Anthony's Manufacturing Company, Inc. Multi-pane window structure
US4024494A (en) 1976-06-17 1977-05-17 Quesnel F Joseph Refrigerator door lock with alarm
US4053972A (en) 1976-08-04 1977-10-18 Hobart Corporation Method of constructing insulated door
US4081934A (en) * 1976-09-03 1978-04-04 Ppg Industries, Inc. Seasonably adjustable window
CA1139346A (en) * 1980-03-14 1983-01-11 Cardinal Insulated Glass Co. Condensation-free freezer door assembly
AU6603881A (en) * 1980-03-25 1981-10-01 Ardco Inc. Infrared reflective window
US4382177A (en) * 1980-09-15 1983-05-03 Heaney James J Substantially transparent insulating anti-condensation structure
JPS5976981U (ja) * 1982-11-15 1984-05-24 株式会社東芝 冷蔵庫の断熱扉
US4656781A (en) 1985-02-22 1987-04-14 Ardco, Inc. Sliding door assembly
CN1011521B (zh) * 1985-09-23 1991-02-06 三电有限公司 用于温控环境中的多层窗玻璃结构
JPS6317377A (ja) * 1986-07-10 1988-01-25 三洋電機株式会社 透視構造体
CA1285177C (en) 1986-09-22 1991-06-25 Michael Glover Multiple pane sealed glazing unit
US4859532A (en) 1986-11-27 1989-08-22 Asahi Glass Company Ltd. Transparent laminated product
DE3700076A1 (de) 1987-01-02 1988-07-14 Flachglas Ag Mehrscheibenisolierglas fuer kuehlraeume oder dergleichen
US4857361A (en) * 1988-04-18 1989-08-15 Ppg Industries, Inc. Haze-free infrared-reflecting coated glass
US5329736A (en) * 1989-06-30 1994-07-19 Termofrost Ab Door construction for vertical refrigerator and freezer spaces
IT1238452B (it) 1990-02-01 1993-08-18 Eurodomestici Ind Riunite Frigorifero, congelatore o similare con contenitore amovibile in cui e' realizzato il vuoto a chiusura ed apertura automatica
DE4010081A1 (de) 1990-03-29 1991-10-02 Hugo Selnar Fenster, tuer o. dgl. fuer gebaeude mit einer verglasung
US5113628A (en) * 1990-09-20 1992-05-19 Anthony's Manufacturing Company, Inc. Railless refrigerator display door
US5209034A (en) * 1990-12-18 1993-05-11 Tremco, Inc. Prevention of fogging and discoloration of multi-pane windows
US5117587A (en) 1991-05-02 1992-06-02 Rjf International Corporation Sealing structure
JP2645926B2 (ja) * 1991-07-25 1997-08-25 三洋電機株式会社 電気加熱扉
US6094306A (en) 1993-04-13 2000-07-25 Anvik Corporation Energy efficient window
US6164739A (en) * 1993-10-18 2000-12-26 The Dow Chemical Company Multilayer protective film
GB2286008A (en) * 1994-01-26 1995-08-02 Pilkington Glass Ltd Argon filled double glazing unit with low emissivity coatings
US5732517A (en) 1996-02-23 1998-03-31 Milikovsky; Roman Window structure
US5806256A (en) 1996-03-26 1998-09-15 Byrne; John F. Modular glazing system
US5806272A (en) 1996-05-31 1998-09-15 Lafond; Luc Foam core spacer assembly
US5784896A (en) 1996-10-18 1998-07-28 White Consolidated Industries, Inc. Freezer or refrigerator construction suitable for food service use
US5852284A (en) * 1997-01-07 1998-12-22 Libbey-Owens-Ford Co. Insulating glass with capacitively coupled heating system
US6144017A (en) * 1997-03-19 2000-11-07 Libbey-Owens-Ford Co. Condensation control system for heated insulating glass units
CA2234281C (fr) 1997-04-11 2006-10-17 Jean-Michel Florentin Paroi ou porte d'enceinte climatique
US5778689A (en) * 1997-05-19 1998-07-14 Beatenbough; Bryan System for maintaining refrigeration doors free of frost and condensation
JPH11130475A (ja) * 1997-10-22 1999-05-18 Central Glass Co Ltd 複層ガラスおよびその製造方法
GB9724077D0 (en) 1997-11-15 1998-01-14 Dow Corning Sa Insulating glass units
USD430174S (en) 1998-02-27 2000-08-29 Multibras S/A Electrodomesticos End assembly for doors of refrigerators, refrigerator freezers and freezers
US6318027B1 (en) * 1998-03-03 2001-11-20 New Anthony, Inc. Display case door
JP3548434B2 (ja) * 1998-09-14 2004-07-28 日本板硝子株式会社 ガラスパネル
JP2000111230A (ja) 1998-10-02 2000-04-18 Toshiba Corp 冷凍冷蔵庫
FR2784985B1 (fr) 1998-10-22 2001-09-21 Saint Gobain Vitrage Substrat transparent muni d'un empilement de couches minces
CN2364413Y (zh) * 1999-01-07 2000-02-16 海尔集团公司 冷冻柜防露透明门
US6148563A (en) * 1999-03-25 2000-11-21 Hussmann Corporation Reach-in door for refrigerated merchandiser
JP4430194B2 (ja) 1999-05-31 2010-03-10 日本板硝子株式会社 透明積層体およびこれを用いたガラス物品
US6401428B1 (en) 1999-10-07 2002-06-11 Bowmead Holding Inc. Fenestration sealed frame, insulating glazing panels
JP2001186967A (ja) 1999-12-28 2001-07-10 Nippon Sheet Glass Co Ltd 冷凍・冷蔵庫用ガラスと該ガラスを使用したガラス物品
JP3073130U (ja) * 2000-04-06 2000-11-14 サンエス化学工業株式会社 複層ガラス
US6367223B1 (en) * 2000-06-09 2002-04-09 Anthony, Inc. Display case frame

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976916B2 (en) 1999-05-25 2011-07-12 Saint-Gobain Vitrage Refrigerated display case having a transparent insulating glazing unit
US20060005484A1 (en) * 1999-05-25 2006-01-12 Luc-Michel Riblier Refrigerated display case having a transparent insulating glazing unit
US20060103269A1 (en) * 2004-07-23 2006-05-18 Anthony, Inc. Soft-coated glass pane refrigerator door construction and method of making same
EP1629749A1 (en) * 2004-08-31 2006-03-01 Hussmann Corporation Multi-pane glass assembly for a refrigerated display case
US7856770B2 (en) 2004-08-31 2010-12-28 Hussmann Corporation Multi-pane glass assembly for a refrigerated display case
US20060265979A1 (en) * 2004-09-20 2006-11-30 Afg Industries, Inc. Anti-fog refrigeration door and method of making the same
US8613179B2 (en) 2004-09-20 2013-12-24 Agc Flat Glass North America, Inc. Anti-fog refrigeration door and method of making the same
US7891154B2 (en) 2004-09-20 2011-02-22 Agc Flat Glass North America, Inc. Anti-fog refrigeration door and method of making the same
US20110165399A1 (en) * 2004-09-20 2011-07-07 Agc Flat Glass North America, Inc. Anti-fog refrigeration door and method of making the same
US7870704B2 (en) 2005-05-26 2011-01-18 Saint-Gobain Glass France Insulating glazing unit for an opening leaf of a refrigerated enclosure
US8613161B2 (en) 2008-08-20 2013-12-24 Anthony, Inc. Refrigerator door construction including a laminated package
USD612517S1 (en) 2008-08-20 2010-03-23 Anthony, Inc. Door
US20100043293A1 (en) * 2008-08-20 2010-02-25 Anthony, Inc. Refrigerator door construction including a laminated package
US20120090246A1 (en) * 2010-10-15 2012-04-19 Guardian Industries Corp. Refrigerator/freezer door, and/or method of making the same
US10417943B2 (en) 2011-10-13 2019-09-17 Manufacturing Resources International, Inc. Transparent liquid crystal display on display case
US10679243B2 (en) 2014-06-16 2020-06-09 Manufacturing Resources International, Inc. System and method for tracking and analyzing consumption
US10705288B2 (en) 2014-06-16 2020-07-07 Manufacturing Resources International, Inc. Thermal management system for a transparent electronic display located in an access panel of a display case
US20160045038A1 (en) * 2014-07-22 2016-02-18 Richard Chubb Door for e Freezer Cabinet
US9526353B2 (en) * 2014-07-22 2016-12-27 Richard Chubb Door for a freezer cabinet
US11474393B2 (en) 2014-10-08 2022-10-18 Manufacturing Resources International, Inc. Lighting assembly for electronic display and graphic
US10555406B2 (en) 2014-10-09 2020-02-04 Manufacturing Resources International, Inc. System and method for decreasing energy usage of a transparent display case
US10595648B2 (en) 2014-10-15 2020-03-24 Manufacturing Resources International, Inc. System and method for preventing damage to products
US11854440B2 (en) 2016-07-08 2023-12-26 Manufacturing Resources International, Inc. Mirror having an integrated electronic display
US11864669B2 (en) 2020-11-25 2024-01-09 Hussmann Corporation Merchandiser including track door system

Also Published As

Publication number Publication date
US20110089802A1 (en) 2011-04-21
WO2003008877A2 (en) 2003-01-30
ATE453092T1 (de) 2010-01-15
MXPA04000576A (es) 2005-02-17
CN1556680A (zh) 2004-12-22
JP2013064599A (ja) 2013-04-11
EP1421321B1 (en) 2009-12-23
AU2002322509A1 (en) 2003-03-03
JP2008180502A (ja) 2008-08-07
EP1421321A4 (en) 2006-09-13
CN1556680B (zh) 2013-01-02
JP2004538434A (ja) 2004-12-24
US20040222724A1 (en) 2004-11-11
JP2014211302A (ja) 2014-11-13
US20030197449A1 (en) 2003-10-23
CA2454180A1 (en) 2003-01-30
PT1421321E (pt) 2010-03-29
JP2010164302A (ja) 2010-07-29
US7891153B2 (en) 2011-02-22
WO2003008877A3 (en) 2003-08-21
EP1421321A2 (en) 2004-05-26
ES2338998T3 (es) 2010-05-14
DE60234841D1 (de) 2010-02-04

Similar Documents

Publication Publication Date Title
US7891153B2 (en) Energy-free refrigeration door and method for making the same
EP1809523B1 (en) Anti-fog refrigeration door and method of making the same
RU2407964C2 (ru) Антизапотевающая дверца холодильной установки и способ ее изготовления
CA2454180C (en) Energy-free refrigeration door and method for making the same
US20210222481A1 (en) Krypton gas filled cooler door
WO2007035801A2 (en) Anti-fog refrigeration door and method of making the same
AU2012201733B2 (en) Anti-fog refrigeration door and method of making the same
CN102226071A (zh) 防雾制冷门及其制造方法
MX2008003945A (en) Anti-fog refrigeration door and method of making the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AFG INDUSTRIES, INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORDING, CHRISTOPHER R.;REEL/FRAME:012016/0006

Effective date: 20010719

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION