US20020189729A1 - Copper, copper alloy, and manufacturing method therefor - Google Patents
Copper, copper alloy, and manufacturing method therefor Download PDFInfo
- Publication number
- US20020189729A1 US20020189729A1 US10/105,454 US10545402A US2002189729A1 US 20020189729 A1 US20020189729 A1 US 20020189729A1 US 10545402 A US10545402 A US 10545402A US 2002189729 A1 US2002189729 A1 US 2002189729A1
- Authority
- US
- United States
- Prior art keywords
- copper
- alloy
- copper alloy
- rolling
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 43
- 239000010949 copper Substances 0.000 title claims abstract description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000005097 cold rolling Methods 0.000 claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 238000005096 rolling process Methods 0.000 claims abstract description 23
- 230000009467 reduction Effects 0.000 claims abstract description 17
- 238000009864 tensile test Methods 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 31
- 239000000956 alloy Substances 0.000 claims description 31
- 238000000137 annealing Methods 0.000 claims description 23
- 238000001953 recrystallisation Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 claims description 9
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 claims description 9
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 claims description 9
- 238000005452 bending Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005272 metallurgy Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910019580 Cr Zr Inorganic materials 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910005487 Ni2Si Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/005—Copper or its alloys
Definitions
- the present invention relates to copper and to copper alloys having fine crystal grains, and relates to a manufacturing method therefor, and more particularly, the resent invention relates to a technology for enhancing the characteristics in bending or other working when used for electronic devices such as terminals, connectors, and lead frames for semiconductor integrated circuits.
- the inventors have accumulated extensive research to solve these problems, and they have discovered that fine crystal grains at a level not known thus far can be obtained by controlling the conditions of the rolling process instead of the conditions of the annealing. That is, in the structure of a material cold rolled with an ordinary cold rolling reduction, when recrystallized by subsequent annealing, the decrease in dislocation density occurs discontinuously when the recrystallized grain boundaries pass a cell, and large crystal grains of uneven size are produced intermittently. This is called static recrystallization.
- the present invention is made on the basis of these findings, and provides copper and copper alloy comprising: a structure having fine crystal grains with grain size of 1 ⁇ m or less composed of crystal grain boundaries mainly formed of curved portions after a final cold rolling, the structure obtained by dynamic continuous recrystallization caused by the final cold rolling, and an elongation of 2% or more in a tensile test.
- the present invention also provides a manufacturing method for copper and copper alloy, the method comprising: a final cold rolling with a reduction (true stress) ⁇ , wherein ⁇ is expressed in the following formula and satisfying ⁇ 3, thereby obtaining a structure having fine crystal grains with grain size of 1 ⁇ m or less after the final cold rolling, and
- T 0 plate thickness before rolling
- T 1 plate thickness after rolling.
- a high ductility is essential.
- a fracture elongation in a tensile test is required to be 2% or more at a gauge length of 50 mm.
- the grain size after final cold rolling must be 1 ⁇ m or less.
- the grain size and elongation after final cold rolling vary depending on the cold rolling reduction.
- the cold rolling reduction (true stress) ⁇ by final cold rolling process until reaching the product plate thickness is expressed in the formula below.
- T 0 plate thickness before rolling
- T 1 plate thickness after rolling.
- the value of ⁇ when the value of ⁇ is small, a rolled structure remains, and clear fine crystal grains are not obtained, or if they are obtained, the grain size is large, and the grain boundary sliding does not take place, and favorable ductility is not obtained.
- the value of ⁇ should be 3 or more in order to obtain a fine grain size of 1 ⁇ m or less.
- the structure of a material cold rolled by a conventional ordinary cold rolling reduction sometimes had a cell structure due to mutual entangling of dislocations introduced in the crystal grains. In this case, however, since the misorientation among neighboring cells is small, that is, 15° or less, properties as crystal grain boundary are not realized. Accordingly, as shown in FIG. 1, when recrystallized by annealing after cold rolling, as mentioned above, static crystallization takes place, that is, large crystal grains of uneven size are formed intermittently.
- the crystal grain boundary is largely different from the case of the static recrystallization, and there is no linearity in the grain boundary, and it is a feature that a crystal grain boundary mainly composed of curved portions is formed.
- This dynamic continuous recrystallization is mostly formed in cold rolling. It is also known that a clearer high angle grain boundary is grown by annealing at intentional low temperatures and bringing it into an ordinary recovery regime. In this case, it is found that the ductility is further enhanced as described below.
- cold rolling may be performed by plural rolling machines by exchanging rolling machines depending on the range of plate thickness, or pickling or polishing may be performed in order to control the surface properties.
- the ductility is enhanced, and a further preferable bending properties are obtained.
- annealing conditions it is necessary to set adequate annealing conditions to such an extent that the product value will not be lost due to extreme decline of strength.
- the annealing condition differs with the alloy system, but by selecting an appropriate annealing condition in a temperature range of 80 to 500° C. and in a range of 5 to 60 minutes, an elongation of 6% or more may be easily obtained, and it is applicable to a severe bend forming.
- Preferred examples of copper alloy of the invention include Cu—Ni—Si alloys having precipitates of intermetallic compounds of Ni and Si such as Ni 2 Si, and the copper alloys comprise Ni: 1.0 to 4.8 mass %, Si: 0.2 to 1.4 mass %, and the balance of Cu.
- the invention also includes Cu—Cr—Zr alloys having precipitates of pure Cr grains and intermetallic compounds of Cu and Zr, and the copper alloys comprise Cr: 0.02 to 0.4 mass %, Zr: 0.1 to 0.25 mass %, and balance of Cu.
- These copper alloy may be added with subsidiary components such as one or more of Sn, Fe, Ti, P, Mn, Zn, In, Mg and Ag in a total amount of 0.005 to 2 mass %.
- copper alloys having second phase particles such as other kinds of precipitates and dispersed particles may be used.
- FIG. 1 is a schematic diagram for explaining the recrystallization process.
- FIG. 2 is a transmission electron microscope photograph showing a structure of an alloy in an example of the invention.
- FIG. 3 is a transmission electron microscope photograph showing a structure of an alloy in a comparative example of the invention.
- the aging temperature was adjusted so that the product strength would be highest in each alloy composition, or in the case of recrystallization, the temperature condition was adjusted so that the grain size would be 5 to 15 ⁇ m.
- the final cold rolling plates of 0.15 mm in thickness were manufactured and obtained as experiment samples for evaluation. The final cold rolling conditions are also shown in Tables 1 to 3.
- Test pieces were sampled from the obtained plates, and the materials were tested to evaluate “grain size”, “strength”, “elongation”, “bending”, and “electrical conductivity”.
- the “grain size” the bright fields were observed by a transmission electron microscope, and it was determined by the cut-off method of JIS H 0501 on the obtained photograph.
- “strength” and “elongation” using No. 5 specimens conforming to the tensile test specified in JIS Z 2241, the tensile strength and rupture elongation were measured.
- “bending” by bend forming using a W-bend testing machine, the bent part was observed by an optical microscope at a magnification of 50 times, and presence or absence of cracking was observed. The mark “o” indicates that cracking is absent, and the mark “x” indicates that cracking is present.
- the “electrical conductivity” was determined by measuring the electrical conductivity according to a four-point method.
- FIG. 2 is a transmission electron microscope photograph of sample No. 12 of the invention, in which the mean grain size of the formed continuous recrystallization is 1 ⁇ m or less, and its crystal grain boundary is mainly composed of curved portions and is round.
- a transmission electron microscope photograph of comparative example No. 6 is shown in FIG. 3, in which the grain size is nearly linear.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/134,043 US20080277032A1 (en) | 2001-03-27 | 2008-06-05 | Copper, copper alloy, and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-91179 | 2001-03-27 | ||
JP2001091179 | 2001-03-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/134,043 Continuation US20080277032A1 (en) | 2001-03-27 | 2008-06-05 | Copper, copper alloy, and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020189729A1 true US20020189729A1 (en) | 2002-12-19 |
Family
ID=18945850
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/105,454 Abandoned US20020189729A1 (en) | 2001-03-27 | 2002-03-26 | Copper, copper alloy, and manufacturing method therefor |
US12/134,043 Abandoned US20080277032A1 (en) | 2001-03-27 | 2008-06-05 | Copper, copper alloy, and manufacturing method therefor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/134,043 Abandoned US20080277032A1 (en) | 2001-03-27 | 2008-06-05 | Copper, copper alloy, and manufacturing method therefor |
Country Status (5)
Country | Link |
---|---|
US (2) | US20020189729A1 (ko) |
EP (1) | EP1245690B1 (ko) |
KR (1) | KR100513943B1 (ko) |
CN (1) | CN1223690C (ko) |
DE (1) | DE60215240T2 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100587091C (zh) * | 2008-09-12 | 2010-02-03 | 邢台鑫晖铜业特种线材有限公司 | 接触线用Cu-Cr-Zr合金制备工艺 |
CN104087768A (zh) * | 2014-06-25 | 2014-10-08 | 盐城市鑫洋电热材料有限公司 | 一种改善镍铬铁电热合金性能的方法 |
CN105291891A (zh) * | 2015-11-25 | 2016-02-03 | 北京力鑫科技有限公司 | 一种强化型吊弦的制作方法及电气化铁路接触网 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4087307B2 (ja) * | 2003-07-09 | 2008-05-21 | 日鉱金属株式会社 | 延性に優れた高力高導電性銅合金 |
JP4809602B2 (ja) * | 2004-05-27 | 2011-11-09 | 古河電気工業株式会社 | 銅合金 |
JP5306591B2 (ja) * | 2005-12-07 | 2013-10-02 | 古河電気工業株式会社 | 配線用電線導体、配線用電線、及びそれらの製造方法 |
JP5355865B2 (ja) | 2006-06-01 | 2013-11-27 | 古河電気工業株式会社 | 銅合金線材の製造方法および銅合金線材 |
US8876990B2 (en) * | 2009-08-20 | 2014-11-04 | Massachusetts Institute Of Technology | Thermo-mechanical process to enhance the quality of grain boundary networks |
JP6617313B2 (ja) * | 2017-08-03 | 2019-12-11 | Jx金属株式会社 | フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器 |
CN109338314A (zh) * | 2018-12-04 | 2019-02-15 | 有研亿金新材料有限公司 | 一种超细晶铜锰合金靶材的加工方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6251199B1 (en) * | 1999-05-04 | 2001-06-26 | Olin Corporation | Copper alloy having improved resistance to cracking due to localized stress |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08960B2 (ja) * | 1989-03-15 | 1996-01-10 | 日本碍子株式会社 | ベリリウム銅合金の熱間成形方法及び熱間成形製品 |
JPH09256084A (ja) * | 1996-03-19 | 1997-09-30 | Hitachi Cable Ltd | 耐屈曲性銅合金線 |
JP3510469B2 (ja) * | 1998-01-30 | 2004-03-29 | 古河電気工業株式会社 | 導電性ばね用銅合金及びその製造方法 |
JP2000038628A (ja) * | 1998-07-22 | 2000-02-08 | Furukawa Electric Co Ltd:The | 半導体リードフレーム用銅合金 |
JP3856582B2 (ja) * | 1998-11-17 | 2006-12-13 | 日鉱金属株式会社 | フレキシブルプリント回路基板用圧延銅箔およびその製造方法 |
JP2000256766A (ja) * | 1999-03-05 | 2000-09-19 | Sanyo Special Steel Co Ltd | CuNiFe合金の熱間加工方法 |
JP4345075B2 (ja) * | 1999-03-26 | 2009-10-14 | Dowaホールディングス株式会社 | ワイアーボンディング性およびダイボンディング性に優れた銅及び銅基合金とその製造方法 |
-
2002
- 2002-03-25 KR KR10-2002-0016015A patent/KR100513943B1/ko not_active IP Right Cessation
- 2002-03-26 US US10/105,454 patent/US20020189729A1/en not_active Abandoned
- 2002-03-26 DE DE60215240T patent/DE60215240T2/de not_active Expired - Lifetime
- 2002-03-26 EP EP02006886A patent/EP1245690B1/en not_active Expired - Lifetime
- 2002-03-27 CN CNB021192707A patent/CN1223690C/zh not_active Expired - Fee Related
-
2008
- 2008-06-05 US US12/134,043 patent/US20080277032A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6251199B1 (en) * | 1999-05-04 | 2001-06-26 | Olin Corporation | Copper alloy having improved resistance to cracking due to localized stress |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100587091C (zh) * | 2008-09-12 | 2010-02-03 | 邢台鑫晖铜业特种线材有限公司 | 接触线用Cu-Cr-Zr合金制备工艺 |
CN104087768A (zh) * | 2014-06-25 | 2014-10-08 | 盐城市鑫洋电热材料有限公司 | 一种改善镍铬铁电热合金性能的方法 |
CN105291891A (zh) * | 2015-11-25 | 2016-02-03 | 北京力鑫科技有限公司 | 一种强化型吊弦的制作方法及电气化铁路接触网 |
Also Published As
Publication number | Publication date |
---|---|
CN1386873A (zh) | 2002-12-25 |
KR20020076139A (ko) | 2002-10-09 |
DE60215240T2 (de) | 2007-05-03 |
US20080277032A1 (en) | 2008-11-13 |
KR100513943B1 (ko) | 2005-09-09 |
EP1245690B1 (en) | 2006-10-11 |
DE60215240D1 (de) | 2006-11-23 |
EP1245690A1 (en) | 2002-10-02 |
CN1223690C (zh) | 2005-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080277032A1 (en) | Copper, copper alloy, and manufacturing method therefor | |
JP5312920B2 (ja) | 電子材料用銅合金板又は条 | |
JP4255330B2 (ja) | 疲労特性に優れたCu−Ni−Si系合金部材 | |
KR101331339B1 (ko) | 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법 | |
KR100515804B1 (ko) | 고강도 티탄 구리 합금 및 그 제조법 및 그것을 사용한단자ㆍ커넥터 | |
JP4494258B2 (ja) | 銅合金およびその製造方法 | |
KR101114116B1 (ko) | 전기전자기기용 동합금 재료 및 전기전자부품 | |
KR102005332B1 (ko) | 굽힘가공성이 우수한 Cu-Co-Si-Fe-P계 구리 합금 및 그 제조 방법 | |
KR101917416B1 (ko) | 전자 재료용 Cu-Co-Si 계 합금 | |
KR20130109209A (ko) | 전자 재료용 Cu-Si-Co 계 구리 합금 및 그 제조 방법 | |
JP3408021B2 (ja) | 電子電気部品用銅合金およびその製造方法 | |
JP3717321B2 (ja) | 半導体リードフレーム用銅合金 | |
KR20160003555A (ko) | 구리합금재, 구리합금재의 제조방법, 리드프레임 및 커넥터 | |
JP4225733B2 (ja) | 端子、コネクター、リードフレーム用素材板 | |
KR102421870B1 (ko) | 강도, 전기전도도 및 굽힘가공성이 우수한 구리-니켈-실리콘-망간-주석계 동합금재 및 그의 제조 방법 | |
KR101875806B1 (ko) | 자동차 및 전자부품용 구리-티타늄계 동합금재의 제조 방법 및 이로부터 제조된 동합금재 | |
JP2002194461A (ja) | リードフレーム用銅合金及びその製造方法 | |
JP6246454B2 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JPH10287939A (ja) | 打抜加工性に優れた電気電子機器用銅合金 | |
JP4175920B2 (ja) | 高力銅合金 | |
JPH10265873A (ja) | 電気電子部品用銅合金及びその製造方法 | |
JP3941308B2 (ja) | 熱間加工性に優れた銅合金 | |
JP7311651B1 (ja) | 電子材料用銅合金及び電子部品 | |
JP2016211078A (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP4679040B2 (ja) | 電子材料用銅合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON MINING & METALS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOMIOKA, YASUO;MIYAKE, JUNJI;REEL/FRAME:012738/0932 Effective date: 20020225 |
|
AS | Assignment |
Owner name: NIKKO METAL MANUFACTURING CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIPPON MINING & METALS CO., LTD.;REEL/FRAME:014636/0211 Effective date: 20040427 |
|
AS | Assignment |
Owner name: NIPPON MINING & METALS CO., LTD., JAPAN Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:NIKKO METAL MANUFACTURING CO., LTD.;REEL/FRAME:017710/0231 Effective date: 20060403 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |