US20020103213A1 - Novel compounds - Google Patents

Novel compounds Download PDF

Info

Publication number
US20020103213A1
US20020103213A1 US09/782,930 US78293001A US2002103213A1 US 20020103213 A1 US20020103213 A1 US 20020103213A1 US 78293001 A US78293001 A US 78293001A US 2002103213 A1 US2002103213 A1 US 2002103213A1
Authority
US
United States
Prior art keywords
alkyl
ethyl
thio
fluorobenzyl
diethylamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/782,930
Other languages
English (en)
Inventor
Deirdre Mary Hickey
Robert Ife
Colin Leach
Ivan Pinto
Stephen Smith
Steven Stanway
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0003636A external-priority patent/GB0003636D0/en
Priority claimed from GB0101437A external-priority patent/GB0101437D0/en
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Assigned to SMITHKLINE BEECHAM P.L.C. reassignment SMITHKLINE BEECHAM P.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IFE, ROBERT JOHN, HICKEY, DEIDRE MARY BERNADETTE, LEACH, COLIN ANDREW, PINTO, IVAN LEO, SMITH, STEPHEN ALLAN, STANWAY, STEVEN JAMES
Publication of US20020103213A1 publication Critical patent/US20020103213A1/en
Priority to US10/357,238 priority Critical patent/US6649619B1/en
Priority to US10/694,561 priority patent/US7153861B2/en
Priority to US11/561,035 priority patent/US7470694B2/en
Priority to US11/561,926 priority patent/US7638520B2/en
Priority to US12/349,086 priority patent/US7652019B2/en
Priority to US12/372,837 priority patent/US20090170877A1/en
Priority to US12/707,838 priority patent/US20100144765A1/en
Priority to US13/309,941 priority patent/US8871775B2/en
Priority to US14/522,870 priority patent/US9266841B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/56One oxygen atom and one sulfur atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to certain novel pyrimidinone compounds, processes for their preparation, intermediates useful in their preparation, pharmaceutical compositions containing them and their use in therapy, in particular in the treatment of atherosclerosis.
  • WO 95/00649 (Smith Kline Beecham plc) describe the phospholipase A2 enzyme Lipoprotein Associated Phospholipase A 2 (Lp-PLA 2 ), the sequence, isolation and purification thereof, isolated nucleic acids encoding the enzyme, and recombinant host cells transformed with DNA encoding the enzyme. Suggested therapeutic uses for inhibitors of the enzyme included atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, reperfusion injury and acute and chronic inflammation.
  • Lp-PLA 2 is responsible for the conversion of phosphatidylcholine to lysophosphatidylcholine, during the conversion of low density lipoprotein (LDL) to its oxidised form.
  • the enzyme is known to hydrolyse the sn-2 ester of the oxidised phosphatidylcholine to give lysophosphatidylcholine and an oxidatively modified fatty acid.
  • Both products of Lp-PLA 2 action are biologically active with lysophosphatidylcholine, a component of oxidised LDL, known to be a potent chemoattractant for circulating monocytes.
  • lysophosphatidylcholine is thought play a significant role in atherosclerosis by being responsible for the accumulation of cells loaded with cholesterol ester in the arteries. Inhibition of the Lp-PLA 2 enzyme would therefore be expected to stop the build up of these macrophage enriched lesions (by inhibition of the formation of lysophosphatidylcholine and oxidised free fatty acids) and so be useful in the treatment of atherosclerosis.
  • Lp-PLA 2 The increased lysophosphatidylcholine content of oxidatively modified LDL is also thought to be responsible for the endothelial dysfunction observed in patients with atherosclerosis. Inhibitors of Lp-PLA 2 could therefore prove beneficial in the treatment of this phenomenon. An Lp-PLA 2 inhibitor could also find utility in other disease states that exhibit endothelial dysfunction including diabetes, hypertension, angina pectoris and after ischaemia and reperfusion.
  • Lp-PLA 2 inhibitors may also have a general application in any disorder that involves activated monocytes, macrophages or lymphocytes, as all of these cell types express Lp-PLA 2 .
  • disorders include psoriasis.
  • Lp-PLA 2 inhibitors may also have a general application in any disorder that involves lipid oxidation in conjunction with Lp-PLA 2 activity to produce the two injurious products, lysophosphatidylcholine and oxidatively modified fatty acids.
  • Such conditions include the aforementioned conditions atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, reperfusion injury and acute and chronic inflammation.
  • Patent applications WO 96/12963, WO 96/13484, WO96/19451, WO 97/02242, WO97/217675, WO97/217676, WO 96/41098, and WO97/41099 disclose inter alia various series of 4-thionyl/sulfinyl/sulfonyl azetidinone compounds which are inhibitors of the enzyme Lp-PLA 2 . These are irreversible, acylating inhibitors (Tew et al, Biochemistry, 37, 10087, 1998).
  • WO 99/24420 discloses a class of pyrimidone compounds.
  • International patent applications WO 00/10980, WO 00/66566, WO 00/66567 and WO 00/68208 disclose other classes of pyrimidone compounds.
  • R a is hydrogen, halogen, C (1-3) alkyl, C (1-3) alkoxy, hydroxyC (1-3) alkyl, C (1-3) alkylthio, C (1-3) alkylsulphinyl, aminoC (1-3) alkyl, mono- or di-C (1-3) alkylaminoC (1-3) alkyl, C (1-3) alkylcarbonylaminoC (1-3) alkyl, C (1-3) alkoxyC (1-3) alkylcarbonylaminoC (1-3) alkyl, C (1-3) alkylsulphonylaminoC (1-3) alkyl, C (1-3) alkylcarboxy, or C (1-3) alkylcarboxyC (1-3) alkyl;
  • R b is hydrogen, halogen, C (1-3) alkyl, or hydroxyC (1-3) alkyl, with the proviso that R a and R b are not simultaneously each hydrogen; or
  • R a and R b together are (CH 2 ) n where n is 3 or 4, to form, with the pyrimidine ring carbon atoms to which they are attached a fused 5-or 6-membered carbocyclic ring; or
  • R c is hydrogen or C (1-3) alkyl
  • R 2 is an aryl or heteroaryl group, optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C (1-18) alkyl (preferably C (1-6) alkyl), C (1-18) alkoxy (preferably C (1-6) alkoxy), C (1-18) alkylthio (preferably C (1-6) alkylthio), arylC (1-18) alkoxy (preferably arylC (1-6) alkoxy), hydroxy, halogen, CN, COR 6 , carboxy, COOR 6 , NR 6 COR 7 , CONR 8 R 9 , SO 2 NR 8 R 9 , NR 6 SO 2 R 7 , NR 8 R 9 , mono to perfluoro-C (1-4) alkyl, mono to perfluoro-C (1-4) alkoxyaryl, and arylC (1-4) alkyl;
  • R 3 is hydrogen, C (1-6) alkyl which may be unsubstituted or substituted by 1, 2 or 3 substituents selected from hydroxy, halogen, OR 6 , COR 6 , carboxy, COOR 6 , CONR 8 R 9 , NR 8 R 9 , NR 8 COR 9 , mono- or di-(hydroxyC (1-6) alkyl)amino and N-hydroxyC (1-6) alkyl-N-C (1-6) alkylamino, for instance, 1-piperidinoethyl; or
  • R 3 is Het-C (0-4) alkyl in which Het is a 5- to 7-membered heterocyclyl ring comprising N and optionally O or S, bonded through a carbon ring atom and in which N may be substituted by COR 6 , COOR 6 , CONR 8 R 9 , or C (1-6) alkyl optionally substituted by 1, 2 or 3 substituents selected from hydroxy, halogen, OR 6 , COR 6 , carboxy, COOR 6 , CONR 8 R 9 or NR 8 R 9 , for instance, piperidin-4-yl, pyrrolidin-3-yl;
  • R 4 is an aryl or a heteroaryl ring optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C (1-18) alkyl (preferably C (1-6) alkyl), C (1-18) alkoxy (preferably C (1-6) alkoxy), C (1-18) alkylthio (preferably C (1-6) alkylthio), arylC (1-18) alkoxy (preferably arylC (1-6) alkoxy), hydroxy, halogen, CN, COR 6 , carboxy, COOR 6 , NR 6 COR 7 , CONR 8 R 9 , SO 2 NR 8 R 9 , NR 6 SO 2 R 7 , NR 8 R 9 , mono to perfluoro-C (1-4) alkyl and mono to perfluoro-C (1-4) alkoxy;
  • R 5 is an aryl or heteroaryl ring which is further optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C (1-18) alkyl (preferably C (1-6) alkyl), C (1-18) alkoxy (preferably C (1-6) alkoxy), C (1-18) alkylthio (preferably C (1-6) alkylthio), arylC (1-18) alkoxy (preferably arylC (1-6) alkoxy), hydroxy, halogen, CN, COR 6 , carboxy, COOR 6 , CONR 8 R 9 , NR 6 COR 7 , SO 2 NR 8 R 9 , NR 6 SO 2 R 7 , NR 8 R 9 , mono to perfluoro-C (1-4) alkyl and mono to perfluoro-C (1-4) alkoxy;
  • R 6 and R 7 are independently hydrogen or C (1-20) alkyl, for instance C (1-4) alkyl (e.g. methyl or ethyl);
  • R 8 and R 9 which may be the same or different is each selected from hydrogen, C (1-12) alkyl (preferably C (1-6) alkyl); or
  • R 8 and R 9 together with the nitrogen to which they are attached form a 5- to 7 membered ring optionally containing one or more further heteroatoms selected from oxygen, nitrogen and sulphur, and optionally substituted by one or two substituents selected from hydroxy, oxo, C (1-4) alkyl, C (1-4) alkylCO, aryl, e.g. phenyl, or aralkyl, e.g benzyl, for instance morpholine or piperazine; or
  • R 8 and R 9 which may be the same or different is each selected from CH 2 R 10 , CHR 11 CO 2 H or a salt thereof in which:
  • R 10 is COOH or a salt thereof, COOR 12 , CONR 6 R 7 , CN, CH 2 OH or CH 2 OR 6 ;
  • R 11 is an amino acid side chain such as CH 2 OH from serine
  • R 12 is C (1-4) alkyl or a pharmaceutically acceptable in vivo hydrolysable ester group
  • n is an integer from 1 to 4, preferably 1 or 3, more preferably 1;
  • X is O or S
  • Y is (CH 2 ) p (O) q in which p is 1, 2 or 3 and q is 0 or p is 2 or 3 and q is 1;
  • Z is O or a bond.
  • R a include chloro, bromo, methyl, ethyl, n-propyl, methoxy, hydroxymethyl, hydroxyethyl, methylthio, methylsulphinyl, aminoethyl, dimethylaminomethyl, acetylaminoethyl, 2-(methoxyacetamido)ethyl, mesylaminoethyl, ethylcarboxy, methanesulfonamidoethyl, (methoxyacetamido)ethyl and iso-propylcarboxymethyl.
  • R b include hydrogen, and methyl.
  • R a and R b together with the pyrimidine ring carbon atoms to which they are attached forming a fused benzo or heteroaryl ring ring include benzo (to give a quinazolinyl ring), pyrido and thieno, respectively.
  • R a is methyl or ethyl and R b is hydrogen or methyl, or R a and R b together with the pyrimidine ring carbon atoms to which they are attached form a fused 5-or 6-membered carbocyclic ring. More preferably, R a and R b together with the pyrimidine ring carbon atoms to which they are attached form a fused 5-membered carbocyclic ring.
  • R c include hydrogen and methyl.
  • R c is hydrogen.
  • X is S.
  • Y is CH 2 .
  • Z is a direct bond
  • R 2 when an aryl group include phenyl and naphthyl.
  • Representative examples of R 2 when a heteroaryl group include pyridyl, pyrimidinyl, pyrazolyl, furanyl, thienyl, thiazolyl, quinolyl, benzothiazolyl, pyridazolyl and pyrazinyl.
  • R 2 is an aryl group, optionally substituted by 1, 2, 3 or 4 substituents which may be the same or different selected from C (1-6) alkyl, C (1-6) alkoxy, C (1-6) alkylthio, hydroxy, halogen, CN, mono to perfluoro-C (1-4) alkyl, mono to perfluoro-C (1-4) alkoxyaryl, and arylC (1-4) alkyl. More preferably, R 2 is phenyl optionally substituted by halogen, preferably from 1 to three fluorine atoms, most preferably 4-fluoro.
  • R 2 CH 2 X is 4-fluorobenzylthio.
  • R 3 include hydrogen, methyl, 2-(ethylamino)ethyl, 2-(diethylamino)ethyl, 2-(ethylamino)-2-methylpropyl, 2-(t-butylamino)ethyl, 1-piperidinoethyl, 1-ethyl-piperidin-4-yl.
  • R 3 is C (1-3) alkyl substituted by a substituent selected from NR 8 R 9 ; or R 3 is Het-C (0-2) alkyl in which Het is a 5- to 7-membered heterocyclyl ring comprising N and in which N may be substituted by C (1-6) alkyl. More preferably, R 3 is 2-(diethylamino)ethyl.
  • R 4 include phenyl, pyridine and pyrimidine.
  • R 4 is phenyl.
  • R 5 include phenyl or thienyl, optionally substituted by halogen or trifluoromethyl, preferably at the 4-position.
  • R 5 is phenyl substituted by trifluoromethyl, preferably at the 4-position.
  • R 4 and R 5 together form a 4-(phenyl)phenyl, 2-(phenyl)pyrimidinyl or a 2-(phenyl)pyridinyl substituent in which the remote phenyl ring may be optionally substituted by halogen or trifluoromethyl, preferably at the 4-position. More preferably, R 4 and R 5 together form a 4-(4-trifluoromethylphenyl)phenyl moiety.
  • R a , R b , R c , n, R 2 , R 3 , R 4 , R 5 , and X are as hereinbefore defined;
  • R a , R b , R 2 , R 3 , R 4 , R 5 , and X are as hereinbefore defined, in particular:
  • R a and R b together with the pyrimidine ring carbon atoms to which they are attached form a fused 5-membered carbocyclic ring;
  • R 2 CH 2 X is 4-fluorobenzylthio
  • R 3 is C (1-3) alkyl substituted by NR 8 R 9 ; or
  • R 3 is Het-C (0-2) alkyl in which Het is a 5- to 7- membered heterocyclyl ring containing N and in which N may be substituted by C (1-6) alkyl.;
  • R 4 and R 5 form a 4-(4-trifluoromethylphenyl)phenyl moiety
  • R 8 and R 9 which may be the same or different is each selected from hydrogen, or C (1-6) alkyl).
  • X is S.
  • compositions for R 12 include those which break down readily in the human body to leave the parent acid or its salt.
  • Pharmaceutically acceptable in vivo hydrolysable ester groups are well known in the art and examples of such for use in R 12 are described in WO 00/68208 (SmithKline Beecham).
  • R c is C (1-3) alkyl
  • the carbon to which it is attached will be a chiral centre so that diastereoisomers may be formed. In the absence of further chiral centres, these will be enantiomers.
  • the present invention covers all such diastereosiomers and enantiomers, including mixtures thereof.
  • compounds of the present invention may include a basic function such as an amino group as a substituent.
  • Such basic functions may be used to form acid addition salts, in particular pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts include those described by Berge, Bighley, and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19. Such salts may be formed from inorganic and organic acids.
  • Representative examples thereof include maleic, fumaric, benzoic, ascorbic, pamoic, succinic, bismethylenesalicylic, methanesulfonic, ethanedisulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic, taurocholic, benzenesulfonic, p-toluenesulfonic, hydrochloric, hydrobromic, sulfuric, cyclohexylsulfamic, phosphoric and nitric acids.
  • compounds of the present invention may include a carboxy group as a substituent.
  • Such carboxy groups may be used to form salts, in particular pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts include those described by Berge, Bighley, and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19.
  • Preferred salts include alkali metal salts such as the sodium and potassium salts.
  • alkyl and similar terms such as “alkoxy” includes all straight chain and branched isomers. Representative examples thereof include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, t-butyl, n-pentyl and n-hexyl.
  • aryl refers to, unless otherwise defined, a mono- or bicyclic aromatic ring system containing up to 10 carbon atoms in the ring system, for instance phenyl or naphthyl.
  • heteroaryl refers to a mono- or bicyclic heteroaromatic ring system comprising up to four, preferably 1 or 2, heteroatoms each selected from oxygen, nitrogen and sulphur. Each ring may have from 4 to 7, preferably 5 or 6, ring atoms.
  • a bicyclic heteroaromatic ring system may include a carbocyclic ring.
  • halogen and “halo” include fluorine, chlorine, bromine and iodine and fluoro, chloro, bromo and iodo, respectively.
  • Preferred compounds of formula (I) include:
  • the compounds of the present invention are intended for use in pharmaceutical compositions, it will be understood that they are each provided in substantially pure form, for example at least 50% pure, more suitably at least 75% pure and preferably at least 95% pure (% are on a wt/wt basis). Impure preparations of the compounds of formula (I) may be used for preparing the more pure forms used in the pharmaceutical compositions.
  • the purity of intermediate compounds of the present invention is less critical, it will be readily understood that the substantially pure form is preferred as for the compounds of formula (I).
  • the compounds of the present invention are obtained in crystalline form.
  • solvent of crystallisation may be present in the crystalline product.
  • This invention includes within its scope such solvates.
  • some of the compounds of this invention may be crystallised or re-crystallised from solvents containing water. In such cases water of hydration may be formed.
  • This invention includes within its scope stoichiometric hydrates as well as compounds containing variable amounts of water that may be produced by processes such as lyophilisation.
  • different crystallisation conditions may lead to the formation of different polymorphic forms of crystalline products.
  • This invention includes within its scope all polymorphic forms of the compounds of formula (I).
  • Compounds of the present invention are inhibitors of the enzyme lipoprotein associated phospholipase A 2 (Lp-PLA 2 ) and as such are expected to be of use in therapy, in particular in the primary and secondary prevention of acute coronary events, for instance those caused by atherosclerosis, including peripheral vascular atherosclerosis and cerebrovascular atherosclerosis.
  • the present invention provides a compound of formula (I) for use in therapy.
  • the compounds of formula (I) are inhibitors of lysophosphatidylcholine production by Lp-PLA 2 and may therefore also have a general application in any disorder that involves endothelial dysfunction, for example atherosclerosis, diabetes, hypertension, angina pectoris and reperfusion.
  • compounds of formula (I) may have a general application in any disorder that involves lipid oxidation in conjunction with enzyme activity, for example, in addition to conditions such as atherosclerosis and diabetes, other conditions such as ischaemia, rheumatoid arthritis, stroke, inflammatory conditions of the brain such as Alzheimer's Disease, myocardial infarction, reperfusion injury, sepsis, and acute and chronic inflammation.
  • Further applications include any disorder that involves activated monocytes, macrophages or lymphocytes, as all of these cell types express Lp-PLA 2 .
  • disorders include psoriasis.
  • the present invention provides for a method of treating a disease state associated with activity of the enzyme Lp-PLA 2 which method involves treating a patient in need thereof with a therapeutically effective amount of an inhibitor of the enzyme.
  • the disease state may be associated with the increased involvement of monocytes, macrophages or lymphocytes; with the formation of lysophosphatidylcholine and oxidised free fatty acids; with lipid oxidation in conjunction with Lp-PLA 2 activity; or with endothelial dysfunction.
  • Compounds of the present invention may also be of use in treating the above mentioned disease states in combination with an anti-hyperlipidaemic, anti-atherosclerotic, anti-diabetic, anti-anginal, anti-inflammatory, or anti-hypertension agent or an agent for lowering Lp(a).
  • examples of the above include cholesterol synthesis inhibitors such as statins, anti-oxidants such as probucol, insulin sensitisers, calcium channel antagonists, and anti-inflammatory drugs such as NSAIDs.
  • agents for lowering Lp(a) include the aminophosphonates described in WO 97/02037, WO 98/28310, WO 98/28311 and WO 98/28312 (Symphar SA and SmithKline Beecham).
  • statins are a well known class of cholesterol lowering agents (HMG-CoA reductase inhibitors) and include atorvastatin, simvarstatin, pravastatin, cerivastatin, fluvastatin, lovastatin and ZD 4522 (also referred to as S-4522, Astra Zeneca).
  • the two agents may be administered at substantially the same time or at different times, according to the discretion of the physician.
  • a substantial minority (approx 30%) of patients with elevated levels of cholesterol are found to not respond to treatment with a statin.
  • a compound of the present invention is administered to a patient who has failed to respond to treatment with a statin.
  • a further preferred combination therapy will be the use of a compound of the present invention and an anti-diabetic agent or an insulin sensitiser, as coronary heart disease is a major cause of death for diabetics.
  • preferred compounds for use with a compound of the present invention include the PPARgamma activators, for instance GI262570 (Glaxo Wellcome) and the glitazone class of compounds such as rosiglitazone (Avandia, SmithKline Beecham), troglitazone and pioglitazone.
  • Preferred indications include primary and secondary prevention of acute coronary events, for instance those caused by atherosclerosis, including peripheral vascular atherosclerosis and cerebrovascular atherosclerosis; adjunctive therapy in prevention of restenosis, and delaying the progression of diabetic/hypertensive renal insufficiency.
  • the compounds of the present invention are usually administered in a standard pharmaceutical composition.
  • the present invention therefore provides, in a further aspect, a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier.
  • Suitable pharmaceutical compositions include those which are adapted for oral or parenteral administration or as a suppository.
  • Compounds of formula (I) which are active when given orally can be formulated as liquids, for example syrups, suspensions or emulsions, tablets, capsules and lozenges.
  • a liquid formulation will generally consist of a suspension or solution of the compound or pharmaceutically acceptable salt in a suitable liquid carrier(s) for example, ethanol, glycerine, non-aqueous solvent, for example polyethylene glycol, oils, or water with a suspending agent, preservative, flavouring or colouring agent.
  • a composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations.
  • a composition in the form of a capsule can be prepared using routine encapsulation procedures.
  • pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatin capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatin capsule.
  • Typical parenteral compositions consist of a solution or suspension of the compound of formula (I) in a sterile aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil.
  • a sterile aqueous carrier or parenterally acceptable oil for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil.
  • the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration.
  • a typical suppository formulation comprises a compound of formula (I) which is active when administered in this way, with a binding and/or lubricating agent such as polymeric glycols, gelatins or cocoa butter or other low melting vegetable or synthetic waxes or fats.
  • the composition is in unit dose form such as a tablet or capsule.
  • Each dosage unit for oral administration contains preferably from 1 to 500 mg (and for parenteral administration contains preferably from 0.1 to 25 mg) of a compound of the formula (I).
  • the daily dosage regimen for an adult patient may be, for example, an oral dose of between 1 mg and 1000 mg, preferably between 1 mg and 500 mg, or an intravenous, subcutaneous, or intra-muscular dose of between 0.1 mg and 100 mg, preferably between 0.1 mg and 25 mg, of the compound of the formula (I), the compound being administered 1 to 4 times per day.
  • the compounds will be administered for a period of continuous therapy, for example for a week or more.
  • a compound of formula (I) may be prepared by reacting a compound of formula (II):
  • R c , R 3 , R 4 , R 5 , Y and Z are as hereinbefore defined; under amide forming conditions.
  • Amide forming conditions are well known in the art, see for instance Comprehensive Organic Synthesis 6, 382-399, and include reacting the acid compound of formula (II) and the amine compound of formula (III) in an inert solvent such as dichloromethane, at ambient temperature, in the presence of a coupling agent.
  • Preferred coupling agents include those developed for use in peptide chemistry, such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (“EDC”), preferably in the presence of an additive such as 1-hydroxybenzotriazole, or O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (“HATU”), preferably in the presence of di-isopropylethylamine.
  • EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • HATU O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
  • n, R 3 , R 4 , R 5 , R c , Y and Z are as hereinbefore defined, and L 1 is a leaving group such as halogen, for instance bromo iodo, or triflate;
  • a base such as a secondary or tertiary amine, for instance di-isopropyl-ethylamine, in an inert solvent such as dichloromethane; or
  • n, R a , R b , R c , R 3 , R 4 , R 5 , Y and Z are as hereinbefore defined, and L 2 is a leaving group such as halogen or alkylthio, for instance methylthio,
  • an initially prepared compound of formula (I) may be converted to another compound of formula (I), by functional group modification, using methods well known to those skilled in the art, for example converting a compound of formula (I) in which R a is aminoalkyl to a compound of formula (I) in which R a is alkylcarbonylaminoalkyl, by reaction
  • L 3 is a C (1-6) alkyl group, for instance methyl
  • R 15 is a C (1-6) alkyl group, for instance ethyl or t-butyl and L 1 , L 2 , R a , R b , R c , R 2 , R 3 , R 4 , R 5 , n, X, Y and Z are as hereinbefore defined.
  • step (a) Amide forming conditions for step (a) are well known in the art.
  • the acid of formula (II) is reacted with the amine of formula (III) in an inert solvent, such as dichloromethane, at ambient temperature and in the presence of a coupling agent such as O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate and di-isopropylethylamine or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in the presence of 1-hydroxybenzotriazole.
  • a coupling agent such as O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate and di-isopropylethylamine or 1-(3-dimethylaminopropyl)-3-eth
  • Alkylation conditions for step (b) include reaction in the presence of a base such as a secondary or tertiary amine, for instance di-isopropylethylamine, in an inert solvent such as
  • Conditions for step (c) include hydrolysis, for instance using aqueous sodium hydroxide in a solvent such as dioxan or, when R 15 is t-butyl, dealkylation with an acid such as trifluoroacetic acid in a solvent such as dichloromethane.
  • Conditions for step (d) include under thioether forming conditions.
  • the reaction is carried out in the presence of a base such as sodium ethoxide or potassium carbonate, preferably in a solvent such as ethanol, dimethyl formamide or acetone, or a secondary or tertiary amine base such as di-isopropylethylamine, in solvent such as dichloromethane.
  • a base such as sodium ethoxide or potassium carbonate
  • solvent such as ethanol, dimethyl formamide or acetone
  • a secondary or tertiary amine base such as di-isopropylethylamine
  • step (e) a compound of formula (XVII) is reacted with thiourea, in the presence of sodium ethoxide (preferably generated in situ from sodium and ethanol).
  • step (f) a compound of formula (XVIII) is reacted with ethyl formate in the presence of a base such as sodium hydride or potassium iso-propoxide.
  • a base such as sodium hydride or potassium iso-propoxide.
  • step (g) a compound of formula (IV) is reacted with a compound of formula (V) in the presence of a base such as a secondary or tertiary amine, for instance di-isopropylethylamine, in an inert solvent such as dichloromethane
  • step (h) a compound of formula (XIII) is reacted with a compound of formula (XIV) in a solvent such as dimethylformamide to form an intermediate thiourea, which is then treated with a base such as sodium methoxide.
  • step (i) a compound of formula (XVI) is reacted with a metal thiocyanate, for example potassium thiocyanate, in a solvent such as acetonitrile.
  • a metal thiocyanate for example potassium thiocyanate
  • step (j) a compound of formula (XVII) is reacted with a methylating agent such as dimethyl sulphate in the presence of a base such as potassium carbonate, followed by hydrolysis of the intermediate ester in conventional manner e.g. by basic hydrolysis using sodium hydroxide to give the corresponding carboxylic acid which may then be converted into the acyl chloride, for instance by treatment with oxalyl chloride.
  • a methylating agent such as dimethyl sulphate
  • a base such as potassium carbonate
  • step (k) a catalyst such as 4-dimethylaminopyridine, and in a solvent such as pyridine are used.
  • step (l) a compound of formula (XIII) is reacted with a compound of formula (XV) in a solvent such as dimethylformamide to form an intermediate thiourea, which is then treated with a base such as sodium methoxide.
  • step (m) a compound of formula (XX) is converted to a compound of formula (XIX), in which R a is halogen, by treatment with N-halosuccinimide, for example N-chlorosuccinimide or N-bromosuccinimide, in a solvent such as carbon tetrachloride.
  • N-halosuccinimide for example N-chlorosuccinimide or N-bromosuccinimide
  • B24 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthioysethoxycarbonyl- pyrimidin-4-one B45 Int.
  • B38 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5- isopropoxycarbonylmethylpyrimidin-4-one B46 Int.
  • B37 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5-hydroxymethyl- pyrimidin-4-one B47 Int.
  • B25 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5-(2-hydroxyethyl)- pyrimidin-4-one B48 Int.
  • B26 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5,6-dimethyl- pyrimidin-4-one B49 Int.
  • B27 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5,6-trimethylene- pyrimidin-4-one B50 Int.
  • B28 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5,6-tetramethylene- pyrimidin-4-one B51 Int.
  • B29 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5-methoxy- pyrimidin-4-one
  • B30 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5-ethoxypyrimidin- 4-one
  • B31 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-5-methylthio- pyrimidin-4-one B154 Int.
  • B133 1-(tert-Butoxycarbonylmethyl)-2-(2,3-difluorobenzylthio)-5,6- tetramethylenepyrimidin-4-one B155 Int.
  • B134 1-(tert-Butoxycarbonylmethyl)-2-(3,4-difluorobenzylthio)-5,6- tetramethylenepyrimidin-4-one B156 Int.
  • B135 1-(tert-Butoxycarbonylmethyl)-2-(2,3,4-trifluorobenzylthio)-5,6- tetramethylenepyrimidin-4-one B157 Int.
  • B136 1-(tert-Butoxycarbonylmethyl)-2-(2-fluorobenzylthio)-5,6-tetramethylene- pyrimidin-4-one
  • B158 Int. B132 1-(tert-Butoxycarbonylmethyl)-2-(4-fluorobenzylthio)-4-oxo-4 H- thieno[3,2-d]pyrimidin-1-one
  • B45 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- isopropoxycarbonylmethylpyrimidin-4-one B66 Int.
  • B46 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- hydroxymethylpyrimidin-4-one B67 Int.
  • B47 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5-(2- hydroxyethyl)pyrimidin-4-one
  • B68 Int.
  • B48 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5,6- dimethylpyrimidin-4-one B69 Int.
  • B49 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5,6- trimethylenepyrimidin-4-one B70 Int.
  • B50 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5,6- tetramethylenepyrimidin-4-one B71 Int.
  • B56 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- chloropyrimidin-4-one B72 Int.
  • B57 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- bromopyrimidin-4-one B73 Int.
  • B51 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- methoxypyrimidin-4-one B74 Int.
  • B52 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- ethoxypyrimidin-4-one B75 Int.
  • B53 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- methylthiopyrimidin-4-one B76 Int.
  • B58 1-(Carboxymethyl)-2-(4-fluorobenzylthio)-5- methylsulfinylpyrimidin-4-one B177 Int.
  • B154 1-(Carboxymethyl)-2-(2,3-difluorobenzylthio)- 5,6-trimethylenepyrimidin-4-one B178 Int.
  • B155 1-(Carboxymethyl)-2-(3,4-difluorobenzylthio)- 5,6-trimethylenepyrimidin-4-one B179 Int.
  • B156 1-(Carboxymethyl)-2-(2,3,4-trifluorobenzylthio)- 5,6-trimethylenepyrimidin-4-one B180 Int.
  • B157 1-(Carboxymethyl)-2-(2-fluorobenzylthio)-5,6- trimethylenepyrimidin-4-one B181 Int.
  • Example 39 A mixture of Example 39 (1.88 g, 1 equiv), methanesulfonic anhydride (0.713 g, 1.2 equiv), triethylamine (0.665 ml) and dichloromethane (20 ml) was stirred at 0° C. for 4 h. The solution was washed with water, dried and evaporated to a pale foam (2.4 g). This was dissolved in dimethylformamide (20 ml), sodium azide (0.266 g, 1.2 equiv) was added, and the mixture was stirred under argon at room temperature overnight. The solvent was evaporated, the residue was partitioned between water and dichloromethane, and the organic layer was dried and evaporated.
  • the organic phase was separated and extracted with saturated ammonium chloride:water mixture (1:1, 1 liter), extracts were pH 6.
  • the organic phase was separated and extracted with water (1 liter) containing acetic acid (10 ml), extract pH 5.
  • the dichloromethane layer was separated and extracted with saturated sodium carbonate solution:water:saturated brine mixture (1:3:0.2, 1 liter), pH 10.5, then with saturated brine:water mixture (1:1, 1 liter).
  • the brown solution was dried over anhydrous sodium sulfate in the presence of decolourising charcoal (35 g), filtered and the solvent removed in vacuo to give a dark brown foam.
  • Example 3(a) The free base from Example 3(a) (3.00 g, 0.0045 mol) was suspended with stirring in isopropanol (30 ml) and warmed to 45° C. to give a clear solution. The solution was then cooled to ambient temperature and conc. hydrochloric acid (0.40 ml, 0.045 mol) was added. The resultant slurry was then stirred at ambient temperature for 35 minutes, before being cooled to 0° C. for 35 minutes. The slurry was then filtered and washed with isopropanol (10 ml), followed by heptane (30 ml), before being dried under vacuum to give the title compound as a white solid (3.00 g, 95%).
  • Example 6 A solution of Example 6 (0.173 g, 1 equiv), acetic anhydride (0.033 ml, 1.1 equiv) and diisopropylamine (0.066 ml, 1.2 equiv) in dichloromethane (10 ml) was stirred at room temperature overnight. The solution was washed with aq. ammonium chloride and aq. sodium bicarbonate, then the organic layer was dried and evaporated. The residue was triturated with ether to obtain the title compound as a white solid (0.156 g).
  • Methanesulfonic anhydride (0.134 g, 1.2 equiv) was added to a solution of Example 37 (0.40 g, 1 equiv) and triethylamine (0.124 ml, 1.4 equiv) in dichloromethane (5 ml) at 0° C., then stirred at this temperature for 4 hours. The mixture was washed with water, dried and evaporated to yield the mesylate as a pale yellow solid. This was dissolved in a 2M solution of dimethylamine in THF (10 ml) and stirred at room temperature for 16 hours.
  • Example 2 The following Examples were made by the method of Example 1 except that in a few cases EDC (2 equiv) and hydroxybenzotriazole (1 equiv) were used in place of HATU and diisopropylamine, in an essentially similar procedure. Where indicated, the salts were subsequently prepared by the methods of Examples 1 or 6 as appropriate: Ex. No. Precursors Structure Name 20 Int. A3 Int. B60 1-(N-(2-Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-methyl- pyrimidin-4-one hydrochloride 21 Int.
  • A26 Int. B60 1-(N-methyl-N-(2-(4-trifluoromethyl- phenyl)pyrid-5-ylmethyl)aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-methyl- pyrimidin-4-one bitartrate 22 Int. A30 Int. B60 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)-amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- methylpyrimidin-4-one bitartrate 23 Int. A31 Int.
  • B60 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonyl-methyl)-2-(4-fluoro- benzyl)thio-5-methylpyrimidin-4-one bitartrate 24 Int. A32 Int. B60 1-(N2-(2-(Diethylamino)ethyl)-N-(2-(4- chlorophenyl)pyrimid-5-yl-methyl)- aminocarbonyl-methyl)-2-(4- fluorobenzyl)thio-5-methylpyrimidin-4- one bitartrate 25 Int. A33 Int.
  • B60 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrimid-5-yl- methyl)aminocarbonyl-methyl)-2-(4- fluorobenzyl)thio-5-methylpyrimidin-4- one bitartrate 26 Int. A35 Int. B60 ( ⁇ )-1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- (4-chlorophenyl)phenyl)ethyl)-amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- methylpyrimidin-4-one bitartrate 27 Int. A34 Int.
  • B60 1-(N-(2-(1-piperidino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)-amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- methylpyrimidin-4-one bitartrate 28 Int. A25 Int. B62 1-(N-methyl-N-(4-(4-trifluoromethyl- phenyl)benzyl)-aminocarbonyl-methyl)-2- (4-fluorobenzyl)thio-5-ethylpyrimidin-4- one 29 Int. A3 Int.
  • B62 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-ethyl- pyrimidin-4-one bitartrate 30 Int. A26 Int. B62 1-(N-methyl-N-(2-(4-trifluoromethyl- phenyl)pyrid-5-yl-methyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-ethyl- pyrimidin-4-one 31 Int. A32 Int.
  • B62 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- chlorophenyl)pyrimid-5-yl-methyl)-amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- ethylpyrimidin-4-one bitartrate 32 Int. A33 Int. B62 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrimid-5-yl- methyl)aminocarbonylmethyl)-2-(4- fluorobenzyl)thio-5-ethylpyrimidin-4-one bitartrate 33 Int. A3 Int.
  • B63 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5- propylpyrimidin-4-one bitartrate 34 Int. A30 Int. B63 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)-amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- propylpyrimidin-4-one bitartrate 35 Int. A30 Int.
  • B64 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)- aminocarbonyl-methyl)-2-(4- fluorobenzyl)thio-5- ethoxycarbonylpyrimidin-4-one bitartrate 36 Int. A30 Int. B65 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- isopropoxycarbonylmethylpyrimidin-4-one bitartrate 37 Int. A3 Int.
  • B66 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-hydroxy- methylpyrimidin-4-one bitartrate 38 Int. A30 Int. B66 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)-amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- hydroxymethylpyrimidin-4-one bitartrate 39 Int. A2 Int.
  • B67 1-(N-methyl-N-(4-(4-chlorophenyl)- benzyl)-aminocarbonyl-methyl)-2-(4- fluorobenzyl)thio-5-(2-hydroxyethyl)- pyrimidin-4-one bitartrate 40 Int. A3 Int. B67 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-(2- hydroxyethyl)pyrimidin-4-one bitartrate 41 Int. A31 Int.
  • A30 Int. B68 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio- 5,6-dimethylpyrimidin-4-one bitartrate 44 Int.
  • A3 Int. B69 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5,6- trimethylenepyrimidin-4-one bitartrate 45 Int.
  • B70 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5,6- tetramethylenepyrimidin-4-one bitartrate 46 Int. A30 Int. B70 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-tetramethylenepyrimidin-4-one bitartrate 47 Int. A31 Int.
  • B70 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonylmethyl)-2-(4-fluorobenzyl)- thio-5,6-tetramethylenepyrimidin-4-one bitartrate 49 Int. A30 Int. B71 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- chloropyrimidin-4-one bitartrate 50 Int. A3 Int.
  • B71 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-chloro- pyrimidin-4-one bitartrate 51 Int. A31 Int. B71 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonyl-methyl)-2-(4-fluoro- benzyl)thio-5-chloropyrimidin-4-one bitartrate 52 Int. A30 Int.
  • B72 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonyl-methyl)-2-(4-fluorobenzyl)thio-5- bromopyrimidin-4-one bitartrate 53 Int. A3 Int. B72 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- chlorophenyl)benzyl)-aminocarbonyl- methyl)-2-(4-fluorobenzyl)thio-5-bromo- pyrimidin-4-one bitartrate 54 Int. A30 Int.
  • B73 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- methoxypyrimidin-4-one bitartrate 55 Int. A31 Int. B73 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-ylmethyl)- aminocarbonylmethyl)-2-(4-fluorobenzyl)- thio-5-methoxypyrimidin-4-one bitartrate 56 Int. A30 Int.
  • B74 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- ethylpyrimidin-4-one bitartrate 57 Int. A31 Int. B74 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonylmethyl)-2-(4-fluorobenzyl)- thio-5-ethoxypyrimidin-4-one bitartrate 58 Int. A31 Int.
  • B75 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonylmethyl)-2-(4-fluoro- benzyl)thio-5-methylthiopyrimidin-4-one bitartrate 59 Int. A30 Int. B75 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- methylthiopyrimidin-4-one bitartrate 60 Int. A30 Int.
  • B76 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio-5- methylsulfinylpyrimidin-4-one bitartrate 61 Int. A31 Int. B76 1-(N-(2-(Diethylamino)ethyl)-N-(2-(4- trifluoromethylphenyl)pyrid-5-yl-methyl)- aminocarbonylmethyl)-2-(4-fluorobenzyl)- thio-5-methylsulfinylpyrimidin-4-one bitartrate 62 Int.
  • A30 Int. B177 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(2,3-difluorobenzyl)- thio-5,6-trimethylenepyrimidin-4-one bitartrate 63 Int. A30 Int.
  • B178 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(3,4-difluorobenzyl)- thio-5,6-trimethylenepyrimidin-4-one bitartrate 64 Int. A30 Int. B179 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(2,3,4-trifluorobenzyl)- thio-5,6-trimethylenepyrimidin-4-one bitartrate 65 Int. A30 Int.
  • B180 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(2-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 66 Int. A25 Int.
  • B69 1-(N-methyl-N-(4-(4-trifluoromethyl- phenyl)benzyl)-aminocarbonylmethyl)-2- (4-fluorobenzyl)thio-5,6-trimethylene- pyrimidin-4-one 67 Int. A34 Int.
  • B69 1-(N-(2-(1-piperidino)ethyl)-N-(4-(4- trifluoromethylphenyl)benzyl)-amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 68 Int. A36 Int. B69 1-(N-(2-(Diethylamino)ethyl)-N-(3-(4- trifluoromethylphenyl)benzyl)- aminocarbonylmethyl)-2-(4- fluorobenzyl)thio-5,6-trimethylene- pyrimidin-4-one 69 Int. A37 Int.
  • B69 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethylphenoxy)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 70 Int.
  • A39 Int. B69 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethyl-biphenyl-4-yl)propyl)- aminocarbonylmethyl)-2-(4-fluoro- benzyl)thio-5,6-trimethylenepyrimidin-4- one 71 Int. A39 Int.
  • B62 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethyl-biphenyl-4-yl)propyl)- aminocarbonyl-methyl)-2-(4-fluoro- benzyl)thio-5-ethylpyrimidin-4-one 72 Int. A140 Int. B62 1-(N-(2-(Diethylamino)ethyl)-N-(4-(4- trifluoromethyl-biphenyl-4-yloxy)ethyl)- aminocarbonyl-methyl)-2-(4-fluoro- benzyl)thio-5-ethylpyrimidin-4-one 73 Int.
  • A18 Int. B69 1-(N-(1-Ethyl-piperidin-4-yl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 74 Int. A141 Int. B69 1-(N-(2-Ethylamino-2-methylpropyl)-N-(4- (4-trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 75 Int. A142 Int.
  • B69 1-(N-(1-Methylpiperidin-4-yl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 80 Int. A61 Int. B69 1-(N-(1-Isopropylpiperidin-4-yl)-N-(4-(4- trifluoromethylphenyl)benzyl)amino- carbonylmethyl)-2-(4-fluorobenzyl)thio- 5,6-trimethylenepyrimidin-4-one bitartrate 81 Int. A62 Int.
  • Enzyme activity was determined by measuring the rate of turnover of the artificial substrate (A) at 37° C. in 50 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid) buffer containing 150 mM NaCl, pH 7.4.
  • HEPES N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid
  • Recombinant Lp-PLA 2 was purified to homogeneity from baculovirus infected Sf9 cells, using a zinc chelating column, blue sepharose affinity chromatography and an anion exchange column. Following purification and ultrafiltration, the enzyme was stored at 6 mg/ml at 4° C. Assay plates of compound or vehicle plus buffer were set up using automated robotics to a volume of 170 ⁇ l. The reaction was initiated by the addition of 20 ⁇ l of 10 ⁇ substrate (A) to give a final substrate concentration of 20 ⁇ M and 10 ⁇ l of diluted enzyme to a final 0.2 nM Lp-PLA 2 . The reaction was followed at 405 nm and 37° C. for 20 minutes using a plate reader with automatic mixing. The rate of reaction was measured as the rate of change of absorbance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US09/782,930 2000-02-16 2001-02-14 Novel compounds Abandoned US20020103213A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/357,238 US6649619B1 (en) 2000-02-16 2003-02-03 Compounds
US10/694,561 US7153861B2 (en) 2000-02-16 2003-10-27 5,6 -Trimethylenepyrimidin-4-one compounds
US11/561,035 US7470694B2 (en) 2000-02-16 2006-11-17 5,6-trimethylenepyrimidin-4-one compounds
US11/561,926 US7638520B2 (en) 2000-02-16 2006-11-21 Pyrimidine compounds
US12/349,086 US7652019B2 (en) 2000-02-16 2009-01-06 5,6-trimethylenepyrimidin-4-one compounds
US12/372,837 US20090170877A1 (en) 2000-02-16 2009-02-18 5,6-Trimethylenepyrimidin-4-one compounds
US12/707,838 US20100144765A1 (en) 2000-02-16 2010-02-18 5,6-trimethylenepyrimidin-4-one compounds
US13/309,941 US8871775B2 (en) 2000-02-16 2011-12-02 Compounds
US14/522,870 US9266841B2 (en) 2000-02-16 2014-10-24 Compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0003636.8 2000-02-16
GB0003636A GB0003636D0 (en) 2000-02-16 2000-02-16 Novel compounds
GB0101437.2 2001-01-19
GB0101437A GB0101437D0 (en) 2001-01-19 2001-01-19 Novel Compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/357,238 Continuation US6649619B1 (en) 2000-02-16 2003-02-03 Compounds

Publications (1)

Publication Number Publication Date
US20020103213A1 true US20020103213A1 (en) 2002-08-01

Family

ID=26243663

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/782,930 Abandoned US20020103213A1 (en) 2000-02-16 2001-02-14 Novel compounds
US10/357,238 Expired - Lifetime US6649619B1 (en) 2000-02-16 2003-02-03 Compounds
US10/694,561 Expired - Fee Related US7153861B2 (en) 2000-02-16 2003-10-27 5,6 -Trimethylenepyrimidin-4-one compounds
US11/561,035 Expired - Fee Related US7470694B2 (en) 2000-02-16 2006-11-17 5,6-trimethylenepyrimidin-4-one compounds
US11/561,926 Expired - Fee Related US7638520B2 (en) 2000-02-16 2006-11-21 Pyrimidine compounds
US12/349,086 Expired - Fee Related US7652019B2 (en) 2000-02-16 2009-01-06 5,6-trimethylenepyrimidin-4-one compounds
US12/372,837 Abandoned US20090170877A1 (en) 2000-02-16 2009-02-18 5,6-Trimethylenepyrimidin-4-one compounds
US12/707,838 Abandoned US20100144765A1 (en) 2000-02-16 2010-02-18 5,6-trimethylenepyrimidin-4-one compounds
US13/309,941 Expired - Fee Related US8871775B2 (en) 2000-02-16 2011-12-02 Compounds
US14/522,870 Expired - Fee Related US9266841B2 (en) 2000-02-16 2014-10-24 Compounds

Family Applications After (9)

Application Number Title Priority Date Filing Date
US10/357,238 Expired - Lifetime US6649619B1 (en) 2000-02-16 2003-02-03 Compounds
US10/694,561 Expired - Fee Related US7153861B2 (en) 2000-02-16 2003-10-27 5,6 -Trimethylenepyrimidin-4-one compounds
US11/561,035 Expired - Fee Related US7470694B2 (en) 2000-02-16 2006-11-17 5,6-trimethylenepyrimidin-4-one compounds
US11/561,926 Expired - Fee Related US7638520B2 (en) 2000-02-16 2006-11-21 Pyrimidine compounds
US12/349,086 Expired - Fee Related US7652019B2 (en) 2000-02-16 2009-01-06 5,6-trimethylenepyrimidin-4-one compounds
US12/372,837 Abandoned US20090170877A1 (en) 2000-02-16 2009-02-18 5,6-Trimethylenepyrimidin-4-one compounds
US12/707,838 Abandoned US20100144765A1 (en) 2000-02-16 2010-02-18 5,6-trimethylenepyrimidin-4-one compounds
US13/309,941 Expired - Fee Related US8871775B2 (en) 2000-02-16 2011-12-02 Compounds
US14/522,870 Expired - Fee Related US9266841B2 (en) 2000-02-16 2014-10-24 Compounds

Country Status (32)

Country Link
US (10) US20020103213A1 (sl)
EP (2) EP1686119B1 (sl)
JP (1) JP4095804B2 (sl)
KR (1) KR100781425B1 (sl)
CN (1) CN1179952C (sl)
AR (1) AR030190A1 (sl)
AT (2) ATE333446T1 (sl)
AU (2) AU2001235466B2 (sl)
BG (1) BG66014B1 (sl)
BR (1) BRPI0108396B1 (sl)
CA (1) CA2400554C (sl)
CO (1) CO5271661A1 (sl)
CY (2) CY1105649T1 (sl)
CZ (1) CZ304450B6 (sl)
DE (2) DE60121550T2 (sl)
DK (2) DK1686119T3 (sl)
ES (2) ES2267714T3 (sl)
GC (1) GC0000221A (sl)
HK (1) HK1053466A1 (sl)
HU (1) HU229479B1 (sl)
IL (2) IL151236A (sl)
MX (1) MXPA02008062A (sl)
MY (1) MY135732A (sl)
NO (1) NO324691B1 (sl)
NZ (1) NZ520752A (sl)
PL (1) PL209824B1 (sl)
PT (2) PT1263740E (sl)
SI (2) SI1686119T1 (sl)
SK (1) SK287296B6 (sl)
TW (1) TW550259B (sl)
UA (1) UA73762C2 (sl)
WO (1) WO2001060805A1 (sl)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043335A1 (en) * 2001-11-10 2005-02-24 Elliott Richard Leonard Heterocyclic derivatives of glycinamide and their medical use
US20050096359A1 (en) * 2001-12-28 2005-05-05 Nobuo Cho Biaryl compound and use thereof
US20050256106A1 (en) * 2000-10-20 2005-11-17 Biovitrum Ab, A Stockholm, Sweden Corporation Novel compounds, their use and preparation
US20060287346A1 (en) * 2003-09-02 2006-12-21 Van Schie Dirk M J Pharmaceutical formulation comprising a pyrimidine-a-one derivative coated with an enteric polymer
US20080090853A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US20080090852A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US20080090851A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US9708272B2 (en) 2014-08-29 2017-07-18 Tes Pharma S.R.L. Inhibitors of α-amino-β-carboxymuconic acid semialdehyde decarboxylase

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE333446T1 (de) * 2000-02-16 2006-08-15 Smithkline Beecham Plc Pyrimidin-4-onderivat als ldl-pla2 inhibitor
GB0024807D0 (en) 2000-10-10 2000-11-22 Smithkline Beecham Plc Novel compounds
GB0119795D0 (en) * 2001-08-14 2001-10-03 Smithkline Beecham Plc Novel process
GB0119793D0 (en) * 2001-08-14 2001-10-03 Smithkline Beecham Plc Novel compounds
GB0127139D0 (en) * 2001-11-10 2002-01-02 Smithkline Beecham Novel compounds
GB0127143D0 (en) * 2001-11-10 2002-01-02 Smithkline Beecham Novel compounds
GB0127140D0 (en) * 2001-11-10 2002-01-02 Smithkline Beecham Novel compounds
US6939863B2 (en) 2002-01-04 2005-09-06 Wei-Jan Chen Prevention of atherosclerosis and restenosis
GB0208280D0 (en) * 2002-04-10 2002-05-22 Glaxo Group Ltd Novel compounds
GB0208279D0 (en) * 2002-04-10 2002-05-22 Glaxo Group Ltd Novel compounds
US20050227974A9 (en) * 2002-08-01 2005-10-13 Euro-Celtique S.A. Aminoalkyl-substituted aryl compounds and their use as sodium channel blockers
JP4366122B2 (ja) * 2003-06-24 2009-11-18 日立オムロンターミナルソリューションズ株式会社 紙葉類搬送装置
NZ546444A (en) 2003-11-05 2009-09-25 Hoffmann La Roche Phenyl derivatives as PPAR agonists
US20150017671A1 (en) 2004-04-16 2015-01-15 Yaping Shou Methods for detecting lp-pla2 activity and inhibition of lp-pla2 activity
JP4812751B2 (ja) 2004-04-16 2011-11-09 グラクソ グループ リミテッド Lp−PLA2活性およびLp−PLA2活性阻害を検出する方法
CA2563607C (en) 2004-05-08 2014-04-08 Neurogen Corporation 4,5-disubstituted-2-aryl pyrimidines
DE102004061005A1 (de) * 2004-12-18 2006-06-22 Bayer Healthcare Ag 3-Cycloalkyl-1,2,4-triazin-5(2H)-one
EA018101B1 (ru) * 2007-05-11 2013-05-30 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания Способы лечения кожных язв
US8962633B2 (en) 2007-05-11 2015-02-24 Thomas Jefferson University Methods of treatment and prevention of metabolic bone diseases and disorders
KR101690390B1 (ko) 2007-05-11 2016-12-27 토마스 제퍼슨 유니버시티 신경변성 질환 및 장애의 치료 및 예방 방법
US8637524B2 (en) 2009-07-28 2014-01-28 Auspex Pharmaceuticals, Inc Pyrimidinone inhibitors of lipoprotein-associated phospholipase A2
TW201209043A (en) * 2010-05-17 2012-03-01 Glaxo Group Ltd Novel processes
AU2011268127B2 (en) 2010-06-18 2016-01-14 Whitehead Institute For Biomedical Research PLA2G16 as a target for antiviral compounds
AU2011340690C1 (en) 2010-12-06 2016-03-10 Glaxo Group Limited Pyrimidinone compounds for use in the treatment of diseases or conditions mediated by Lp - PLA2
JP2013544854A (ja) * 2010-12-06 2013-12-19 グラクソ グループ リミテッド 化合物
CN104478812A (zh) * 2010-12-06 2015-04-01 葛兰素集团有限公司 用于治疗由Lp-PLA2介导的疾病或病症的嘧啶酮化合物
EP2651403B1 (en) 2010-12-17 2020-12-02 Glaxo Group Limited Use of lp-pla2 inhibitors in the treatment and prevention of eye diseases
CN102643269B (zh) * 2011-02-21 2014-07-23 天津药物研究院 一类含吡唑结构的磷脂酶a2抑制剂及用途
WO2012122707A1 (zh) * 2011-03-16 2012-09-20 中国科学院上海药物研究所 季铵盐类化合物、其制备方法、药物组合物及用途
WO2012129792A1 (zh) * 2011-03-30 2012-10-04 中国科学院上海药物研究所 嘧啶酮类化合物、其制备方法及药物组合物和用途
US20140171431A1 (en) * 2011-06-27 2014-06-19 Jianhua Shen Azole heterocyclic compound, preparation method, pharmaceutical composition and use
WO2013014185A1 (en) 2011-07-27 2013-01-31 Glaxo Group Limited Bicyclic pyrimidone compounds
CN103827116B (zh) * 2011-07-27 2016-08-31 葛兰素集团有限公司 用作LP-PLA2抑制剂的2,3-二氢咪唑并[1,2-c]嘧啶-5(1H)-酮化合物
US8975400B2 (en) 2011-07-27 2015-03-10 Glaxo Group Limited 2,3-dihydroimidazo[1, 2-c] pyrimidin-5(1 H)-one compounds use as LP-PLA2 inhibitors
EP2948452B1 (en) 2013-01-25 2017-08-09 GlaxoSmithKline Intellectual Property Development Limited 2,3-dihydroimidazol[1,2-c]pyrimidin-5(1h)-one based lipoprotein-associated phospholipase a2 (lp-pla2) inhibitors
KR20150108896A (ko) 2013-01-25 2015-09-30 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 Lp-pla2의 억제제로서의 비시클릭 피리미돈 화합물
CN105008365B (zh) 2013-01-25 2017-03-15 葛兰素史密斯克莱知识产权发展有限公司 化合物
US20140283157A1 (en) 2013-03-15 2014-09-18 Diadexus, Inc. Lipoprotein-associated phospholipase a2 antibody compositions and methods of use
WO2015087239A1 (en) 2013-12-11 2015-06-18 Ranbaxy Laboratories Limited Processes for the preparation of darapladib and its intermediates
WO2015092687A2 (en) 2013-12-17 2015-06-25 Ranbaxy Laboratories Limited Process for the purification of darapladib
WO2015114479A1 (en) 2014-01-28 2015-08-06 Ranbaxy Laboratories Limited Crystalline forms of darapladib oxalate, adipate, succinate, phosphate, sulphate, fumaratetartrate, nitrate and borate
WO2016012916A1 (en) 2014-07-22 2016-01-28 Glaxosmithkline Intellectual Property Development Limited 1,2,3,5-tetrahydroimidazo[1,2-c]pyrimidine derivatives useful in the treatment of diseases and disorders mediated by lp-pla2
WO2016012917A1 (en) 2014-07-22 2016-01-28 Glaxosmithkline Intellectual Property Development Limited 1,2,3,5-tetrahydroimidazo[1,2-c]pyrimidine derivatives useful in the treatment of diseases and disorders mediated by lp-pla2
CN105777653A (zh) 2014-12-26 2016-07-20 中国科学院上海药物研究所 用作Lp-PLA2抑制剂的嘧啶酮类化合物及其药物组合物
CN104840963B (zh) * 2015-05-26 2018-02-16 河北东康生物科技有限公司 含脂蛋白相关性磷脂酶a2抑制剂的药物组合物及应用
CN107709314A (zh) * 2015-06-11 2018-02-16 巴斯利尔药物国际股份公司 外排泵抑制剂及其治疗性用途
EP3390400B1 (en) 2015-12-16 2021-01-20 Bristol-Myers Squibb Company Heteroarylhydroxypyrimidinones as agonists of the apj receptor
US10878307B2 (en) * 2016-12-23 2020-12-29 Microsoft Technology Licensing, Llc EQ-digital conversation assistant
ES2907130T3 (es) * 2017-09-26 2022-04-22 Inst Nat Sante Rech Med Darapladib radiomarcado, análogos del mismo y su uso como compuestos para la obtención de imágenes
CN110746445B (zh) * 2019-10-16 2021-03-16 深圳海关食品检验检疫技术中心 一种头孢哌酮氘代内标物的制备方法
WO2021089032A1 (zh) 2019-11-09 2021-05-14 上海赛默罗生物科技有限公司 三环二氢咪唑并嘧啶酮衍生物、其制备方法、药物组合物和用途
CN115304620A (zh) 2021-05-07 2022-11-08 上海赛默罗生物科技有限公司 嘧啶酮衍生物、其制备方法、药物组合物和用途
EP4257133A1 (en) 2022-04-05 2023-10-11 Institut Pasteur Oxo-azaheterocyclic derivatives for use in the treatment of malaria

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974663A1 (en) 1993-06-25 2000-01-26 Smithkline Beecham Plc Lipoprotein associated phospholipase A2, inhibitors thereof and use of same in diagnosis and therapy
DK0673426T3 (da) * 1993-10-06 2001-08-27 Icos Corp Blodpladeaktiveringsfaktor-acetylhydrolase
GB9421816D0 (en) 1994-10-29 1994-12-14 Smithkline Beecham Plc Novel compounds
DZ1958A1 (fr) 1994-12-22 2002-02-17 Smithkline Beecham Plc Composés inhibiteurs de l'enzyme l-lpa compositionpharmaceutiques les composant et procédés pour leur préparation.
CH690264A5 (fr) 1995-06-30 2000-06-30 Symphar Sa Dérivés aminophosphonates substitués, leur procédé de préparation et leur utilisation pour la préparation de compositions pharmaceutiques.
CZ422197A3 (cs) 1995-07-01 1998-06-17 Smithkline Beecham Plc Azetidinonové deriváty, způsob jejich přípravy, meziprodukty tohoto postupu, farmaceutický prostředek obsahující tyto sloučeniny a použití těchto sloučenin jako léčiv
CA2233300A1 (en) 1995-09-29 1997-04-10 Christopher Donald Southan A paf-acetylhydrolase and use in therapy
EP0865429A1 (en) 1995-12-08 1998-09-23 Smithkline Beecham Plc Azetidinone compounds for the treatment of atherosclerosis
WO1997021675A1 (en) 1995-12-08 1997-06-19 Smithkline Beecham Plc Monocyclic beta-lactame derivatives for treatment of atherosclerosis
PL329530A1 (en) 1996-04-26 1999-03-29 Smithkline Beecham Plc Derivatives of azetidinone for use in treatment of arterial atheromatosis
GB9608649D0 (en) 1996-04-26 1996-07-03 Smithkline Beecham Plc Novel compounds
GB9626616D0 (en) 1996-12-20 1997-02-05 Symphar Sa Novel compounds
GB9626615D0 (en) 1996-12-20 1997-02-05 Symphar Sa Novel compounds
GB9626536D0 (en) 1996-12-20 1997-02-05 Symphar Sa Novel compounds
US6417192B1 (en) * 1997-11-06 2002-07-09 Smithkline Beecham P.L.C. Pyrimidinone compounds and pharmaceutical compositions containing them
US6559155B1 (en) 1998-08-21 2003-05-06 Smithkline Beecham P.L.C. Pyrimidinone derivatives for the treatment of atherosclerosis
GB9910079D0 (en) 1999-05-01 1999-06-30 Smithkline Beecham Plc Novel compounds
US6953803B1 (en) * 1999-05-01 2005-10-11 Smithkline Beecham P.L.C. Pyrimidine compounds
GB9910378D0 (en) 1999-05-05 1999-06-30 Smithkline Beecham Plc Novel compounds
ATE333446T1 (de) * 2000-02-16 2006-08-15 Smithkline Beecham Plc Pyrimidin-4-onderivat als ldl-pla2 inhibitor
GB0024808D0 (en) * 2000-10-10 2000-11-22 Smithkline Beecham Plc Novel compounds
GB0024807D0 (en) * 2000-10-10 2000-11-22 Smithkline Beecham Plc Novel compounds

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256106A1 (en) * 2000-10-20 2005-11-17 Biovitrum Ab, A Stockholm, Sweden Corporation Novel compounds, their use and preparation
US20050043335A1 (en) * 2001-11-10 2005-02-24 Elliott Richard Leonard Heterocyclic derivatives of glycinamide and their medical use
US20050096359A1 (en) * 2001-12-28 2005-05-05 Nobuo Cho Biaryl compound and use thereof
US7507753B2 (en) 2001-12-28 2009-03-24 Takeda Chemical Industries Ltd. Biaryl compound and use thereof
US20060287346A1 (en) * 2003-09-02 2006-12-21 Van Schie Dirk M J Pharmaceutical formulation comprising a pyrimidine-a-one derivative coated with an enteric polymer
US8772303B2 (en) 2003-09-02 2014-07-08 Glaxo Group Limited Pharmaceutical formulation
US20080090853A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US20080090852A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US20080090851A1 (en) * 2006-10-13 2008-04-17 Colin Andrew Leach Bicyclic Heteroaromatic Compounds
US7705005B2 (en) 2006-10-13 2010-04-27 Glaxo Group Limited Bicyclic heteroaromatic compounds
US9708272B2 (en) 2014-08-29 2017-07-18 Tes Pharma S.R.L. Inhibitors of α-amino-β-carboxymuconic acid semialdehyde decarboxylase
US10513499B2 (en) 2014-08-29 2019-12-24 Tes Pharma S.R.L. Inhibitors of alpha-amino-beta-carboxymuconic acid semialdehyde decarboxylase

Also Published As

Publication number Publication date
SK11772002A3 (sk) 2003-02-04
SI1263740T1 (sl) 2006-12-31
DK1686119T3 (da) 2009-11-09
ES2330552T3 (es) 2009-12-11
US6649619B1 (en) 2003-11-18
ATE437862T1 (de) 2009-08-15
CA2400554A1 (en) 2001-08-23
US9266841B2 (en) 2016-02-23
HK1053466A1 (en) 2003-10-24
US8871775B2 (en) 2014-10-28
CY1109484T1 (el) 2014-08-13
GC0000221A (en) 2006-03-29
AU2001235466B2 (en) 2004-04-22
AU3546601A (en) 2001-08-27
NO324691B1 (no) 2007-12-03
US20120172378A1 (en) 2012-07-05
US20100144765A1 (en) 2010-06-10
CZ20022768A3 (cs) 2003-05-14
JP4095804B2 (ja) 2008-06-04
BRPI0108396B1 (pt) 2015-05-19
AR030190A1 (es) 2003-08-13
US20070155762A1 (en) 2007-07-05
EP1263740B1 (en) 2006-07-19
KR20030011772A (ko) 2003-02-11
DE60121550T2 (de) 2007-06-21
MXPA02008062A (es) 2002-11-29
EP1686119B1 (en) 2009-07-29
DE60139429D1 (de) 2009-09-10
HUP0204410A3 (en) 2003-07-28
SK287296B6 (sk) 2010-06-07
NZ520752A (en) 2004-03-26
ATE333446T1 (de) 2006-08-15
CZ304450B6 (cs) 2014-05-14
US7638520B2 (en) 2009-12-29
BG107034A (bg) 2003-04-30
CN1179952C (zh) 2004-12-15
PT1263740E (pt) 2006-11-30
EP1686119A1 (en) 2006-08-02
CN1418199A (zh) 2003-05-14
IL181957A0 (en) 2009-02-11
SI1686119T1 (sl) 2009-12-31
WO2001060805A1 (en) 2001-08-23
CA2400554C (en) 2009-04-07
TW550259B (en) 2003-09-01
BR0108396A (pt) 2003-03-11
EP1263740A1 (en) 2002-12-11
HU229479B1 (en) 2014-01-28
MY135732A (en) 2008-06-30
US7470694B2 (en) 2008-12-30
PT1686119E (pt) 2009-10-06
JP2003523335A (ja) 2003-08-05
IL151236A (en) 2009-02-11
US20090118313A1 (en) 2009-05-07
BG66014B1 (bg) 2010-10-29
HUP0204410A2 (en) 2003-05-28
PL209824B1 (pl) 2011-10-31
CO5271661A1 (es) 2003-04-30
DE60121550D1 (de) 2006-08-31
PL357382A1 (en) 2004-07-26
US20090170877A1 (en) 2009-07-02
KR100781425B1 (ko) 2007-12-03
ES2267714T3 (es) 2007-03-16
NO20023828L (no) 2002-09-30
US7153861B2 (en) 2006-12-26
US20150045375A1 (en) 2015-02-12
US7652019B2 (en) 2010-01-26
US20070123549A1 (en) 2007-05-31
UA73762C2 (uk) 2005-09-15
DK1263740T3 (da) 2006-11-13
NO20023828D0 (no) 2002-08-13
CY1105649T1 (el) 2010-12-22
US20040097525A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US6649619B1 (en) Compounds
US7462620B2 (en) Pyrimidinone derivatives and their use in the treatment of atherosclerosis
AU2001235466A1 (en) Pyrimidine-4-one derivatives as LDL-PLA2 inhibitors
EP1175408A1 (en) Pyrimidinone compounds
RU2235722C2 (ru) 1-(диэтиламино)этил)-(4-трифторметилфенил)-бензил)аминокарбони лметил)-2-(4-фторбензил)тио-5,6-триметиленпиримидин-4-она или его фармацевтически приемлемая соль, способ получения и фармацевтическая композиция

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITHKLINE BEECHAM P.L.C., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HICKEY, DEIDRE MARY BERNADETTE;IFE, ROBERT JOHN;LEACH, COLIN ANDREW;AND OTHERS;REEL/FRAME:012088/0732;SIGNING DATES FROM 20010725 TO 20010727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE