US20020061936A1 - Foamed isocyanate-based polymer having improved hardness properties and process for production thereof - Google Patents

Foamed isocyanate-based polymer having improved hardness properties and process for production thereof Download PDF

Info

Publication number
US20020061936A1
US20020061936A1 US09/917,235 US91723501A US2002061936A1 US 20020061936 A1 US20020061936 A1 US 20020061936A1 US 91723501 A US91723501 A US 91723501A US 2002061936 A1 US2002061936 A1 US 2002061936A1
Authority
US
United States
Prior art keywords
process defined
active hydrogen
isocyanate
macromolecule
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/917,235
Other languages
English (en)
Inventor
Jeffrey Van Heumen
Paul Farkas
Romeo Stanciu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proprietect LP
Original Assignee
Woodbridge Foam Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woodbridge Foam Corp filed Critical Woodbridge Foam Corp
Priority to US09/917,235 priority Critical patent/US20020061936A1/en
Assigned to WOODBRIDGE FOAM CORPORATION reassignment WOODBRIDGE FOAM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARKAS, PAUL V., STANCIU, ROMEO, VAN HEUMEN, JEFFREY D.
Publication of US20020061936A1 publication Critical patent/US20020061936A1/en
Priority to US12/164,615 priority patent/US7939574B2/en
Assigned to PROPRIETECT L.P. reassignment PROPRIETECT L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOODBRIDGE FOAM CORPORATION
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4283Hydroxycarboxylic acid or ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a foamed isocyanate-based polymer having improved hardness properties.
  • the present invention relates to a process for the production of such a foamed isocyanate-based polymer.
  • the present invention relates to a method for improving the hardness characteristics of an isocyanate-based foam.
  • the present invention relates to a dispersion of a dendritic macromolecule and an active hydrogen-containing compound useful in the production of foamed isocyanate-based polymer.
  • Isocyanate-based polymers are known in the art. Generally, those of skill in the art understand isocyanate-based polymers to be polyurethanes, polyureas, polyisocyanurates and mixtures thereof.
  • One of the conventional ways to produce a polyurethane foam is known as the “one-shot” technique.
  • the isocyanate, a suitable polyol, a catalyst, water (which acts as a reactive “blowing” agent and can optionally be supplemented with one or more physical blowing agents) and other additives are mixed together at once using, for example, impingement mixing (e.g., high pressure).
  • impingement mixing e.g., high pressure
  • the polyol would be replaced with a suitable polyamine.
  • a polyisocyanurate may result from cyclotrimerization of the isocyanate component.
  • Urethane modified polyureas or polyisocyanurates are known in the art. In either scenario, the reactants would be intimately mixed very quickly using a suitable mixing technique.
  • prepolymer Another technique for producing foamed isocyanate-based polymers is known as the “prepolymer” technique.
  • a prepolymer is produced by reacting polyol and isocyanate (in the case of a polyurethane) in an inert atmosphere to form a liquid polymer terminated with reactive groups (e.g., isocyanate moieties and active hydrogen moieties).
  • the prepolymer is thoroughly mixed with a lower molecular weight polyol (in the case of producing a polyurethane) or a polyamine (in the case of producing a modified polyurea) in the presence of a curing agent and other additives, as needed.
  • filler materials have been introduced into foamed polymers by loading the filler material into one or both of the liquid isocyanate and the liquid active hydrogen-containing compound (i.e., the polyol in the case of polyurethane, the polyamine in the case of polyurea, etc.).
  • the filler material serves the purpose of conferring so-called loaded building properties to the resulting foam product.
  • filler materials used in the reaction mixture can vary, to a certain extent, depending on the desired physical properties of the foamed polymer product, and limitations imposed by mixing techniques, the stability of the system and equipment imposed limitations (e.g., due to the particle size of the filler material being incompatible with narrow passages, orifices and the like of the equipment).
  • graft copolymer polyols are polyols, preferably polyether polyols, which contain other organic polymers. It is known that such graft copolymer polyols are useful to confer hardness (i.e., load building) to the resultant polyurethane foam compared to the use of polyols which have not been modified by incorporating the organic polymers.
  • graft copolymer polyols there are two main categories which may be discussed: (i) chain-growth copolymer polyols, and (ii) step-growth copolymer polyols.
  • Chain-growth copolymer polyols generally are prepared by free radical polymerization of monomers in a polyol carrier to produce a free radical polymer dispersed in the polyol carrier.
  • the free radical polymer can be based on acrylonitrile or styrene-acrylonitrile (SAN).
  • the solids content of the polyol is typically up to about 60%, usually in the range of from about 15% to about 40%, by weight of the total weight of the composition (i.e., free radical polymer and polyol carrier).
  • these chain-growth copolymer polyols have a viscosity in the range of from about 2,000 to about 8,000 centipoise. When producing such chain-growth copolymer polyols, it is known to induce grafting of the polyol chains to the free-radical polymer.
  • Step-growth copolymer polyols generally are characterized as follows: (i) PHD (Polyharnstoff Disperion) polyols, (ii) PIPA (Poly Isocyanate Poly Addition) polyols, and (iii) epoxy dispersion polyols.
  • PHD polyols are dispersions of polyurea particles in conventional polyols and generally are formed by the reaction of a diamine (e.g., hydrazine) with a diisocyanate (e.g., toluene diisocyanate) in the presence of a polyether polyol.
  • the solids content of the PHD polyols is typically up to about 50%, usually in the range of from about 15% to about 40%, by weight of the total weight of the composition (i.e., polyurea particles and polyol carrier).
  • PHD polyols have a viscosity in the range of from about 2,000 to about 6,000 centipoise.
  • PIPA polyols are similar to PHD polyols but contain polyurethane particles instead of polyurea particles.
  • the polyurethane particles in PIPA polyols are formed in situ by reaction of an isocyanate and alkanolamine (e.g., triethanolamine).
  • the solids content of the PIPA polyols is typically up to about 80%, usually in the range of from about 15% to about 70%, by weight of the total weight of the composition (i.e., polyurethane particles and polyol carrier).
  • PIPA polyols have a viscosity in the range of from about 4,000 to about 50,000 centipoise. See, for example, U.S. Pat. Nos. 4,374,209 and 5,292,778.
  • Epoxy dispersion polyols are based on dispersions of cured epoxy resins in conventional based polyols. The epoxy particles are purportedly high modulus solids with improved hydrogen bonding characteristics.
  • the present invention provides a foamed isocyanate-based polymer derived from a reaction mixture comprising an isocyanate, an active hydrogen-containing compound, a dendritic macromolecule and a blowing agent; wherein at least a 15% by weight of the dendritic macromolecule may be mixed with a polyether polyol having an OH number less than about 40 mg KOH/g to form a stable liquid at 23° C.
  • the present invention provides a foamed isocyanate-based polymer derived from an isocyanate and an active hydrogen-containing compound, the polymer having a cellular matrix comprising a plurality of interconnected struts, the active hydrogen-containing compound conferring to the cellular matrix a load efficiency of at least about 15 Newtons (preferably from about 15 to about 50 Newtons, more preferably from about 20 to about 45 Newtons, most preferably from about 25 to about 35 Newtons).
  • the present invention provides a foamed isocyanate-based polymer having a cellular matrix comprising a plurality of interconnected struts, the cellular matrix: (i) having a load efficiency of at least about 15 Newtons, and (ii) being substantially free of particulate material.
  • the present invention provides a process for producing a foamed isocyanate-based polymer comprising the steps of:
  • the dendritic macromolecule may be mixed with a polyether polyol having an OH number less than about 40 mg KOH/g to form a stable liquid at 23° C.
  • the present invention provides a foamed isocyanate-based polymer derived from a reaction mixture comprising an isocyanate, an active hydrogen-containing compound, a dendritic macromolecule and a blowing agent; the foamed isocyanate-based polymer having an Indentation Force Deflection loss when measured pursuant to ASTM D3574 which is less than that of a reference foam produced by substituting a copolymer polyol for the dendritic macromolecule in the reaction mixture, the foamed isocyanate-based polymer and the reference foam having substantially the same density and Indentation Force Deflection when measured pursuant to ASTM D3574 (50 in 2 indentor; 15′′ ⁇ 15′′ ⁇ 4′′ sample size; 25° C., 50% relative humidity.
  • the present invention provides a foamed isocyanate-based polymer derived from a reaction mixture comprising an isocyanate, an active hydrogen-containing compound, a dendritic macromolecule and a blowing agent; the foamed isocyanate-based polymer having thickness loss when measured pursuant to ASTM D3574 which is less than that of a reference foam produced by substituting a copolymer polyol for the dendritic macromolecule in the reaction mixture, the foamed isocyanate-based polymer and the reference foam having substantially the same density and Indentation Force Deflection when measured pursuant to ASTM D3574.
  • isocyanate-based polymer is intended to mean, inter alia, polyurethane, polyurea and polyisocyanurate.
  • dendritic polymer and “dendritic macromolecule” are used interchangeably throughout this specification. These materials are generally known in the art. See, for example, any one of:
  • the present inventors have surprisingly and unexpectedly discovered that a sub-group of dendritic macromolecules is particularly advantageous to confer load building properties in an isocyanate-based foam. Indeed, as will be developed in the Examples hereinbelow, its possible to utilize the sub-group of dendritic macromolecules to partially or fully displace copolymer polyols conventionally used to confer load building characteristics to isocyanate-based polymer foams.
  • the sub-group of dendritic macromolecules is described in detail in copending U.S. patent application Ser. No. 60/221,512, filed on Jul. 28, 2000 in the name of Pettersson et al. and the contents of which are hereby incorporated by reference.
  • Preferred aspects of the present invention relate to the ability to mix at least about 15% by weight of the dendritic macromolecule with a polyether polyol having an OH number less than about 40 mg KOH/g to form a stable liquid at 23° C.
  • stable liquid when used in connection with this solubility parameter of the dendritic macromolecule, is intended to mean that the liquid formed upon mixing the dendritic macromolecule and the polyol has a substantial constant light transmittance (transparent at one extreme and opaque at the other extreme) for at least 2 hours, preferably at least 30 days, more preferably a number of months, after production of the mixture.
  • the stable liquid will be in the form a clear, homogeneous liquid (e.g., a solution) which will remain as such over time.
  • the stable liquid will be in the form an emulsion of (at least a portion of) the dendritic macromolecule in the polyol which will remain as such over time - i.e., the dendritic macromolecule will not settle out over time.
  • the present invention is related to foamed isocyanate-based polymer and to a process for production thereof.
  • the isocyanate-based polymer is selected from the group comprising polyurethane, polyurea, polyisocyanurate, urea-modified polyurethane, urethane-modified polyurea, urethane-modified polyisocyanurate and urea-modified polyisocyanurate.
  • the term “modified”, when used in conjunction with a polyurethane, polyurea or polyisocyanurate means that up to 50% of the polymer backbone forming linkages have been substituted.
  • the present foamed isocyanate-based polymer is produced from a reaction mixture which comprises an isocyanate and an active hydrogen-containing compound.
  • the isocyanate suitable for use in the reaction mixture is not particularly restricted and the choice thereof is within the purview of a person skilled in the art.
  • the isocyanate compound suitable for use may be represented by the general formula:
  • i is an integer of two or more and Q is an organic radical having the valence of i.
  • Q may be a substituted or unsubstituted hydrocarbon group (e.g., an alkylene or arylene group).
  • Q may be represented by the general formula:
  • Q 1 is an alkylene or arylene group and Z is chosen from the group comprising —O—, —O—Q 1 —, —CO—, —S—, —S—Q 1 —S— and —SO 2 —.
  • isocyanate compounds which fall within the scope of this definition include hexamethylene diisocyanate, 1 ,8-diisocyanato-p-methane, xylyl diisocyanate, (OCNCH 2 CH 2 CH 2 CH 2 O) 2 , 1-methyl-2,4-diisocyanatocyclohexane, phenylene diisocyanates, tolylene diisocyanates, chlorophenylene diisocyanates, diphenyhnethane-4,4′-diisocyanate, naphthalene-1,5-diisocyanate, triphenylmethane-4,4′,4′′-triisocyanate and isopropylbenzene-alpha-4-diisocyanate.
  • Q may also represent a polyurethane radical having a valence of i.
  • Q(NCO) i is a compound which is commonly referred to in the art as a prepolymer.
  • a prepolymer may be prepared by reacting a stoichiometric excess of an isocyanate compound (as defined hereinabove) with an active hydrogen-containing compound (as defined hereinafter), preferably the polyhydroxyl-containing materials or polyols described below.
  • the polyisocyanate may be, for example, used in proportions of from about 30 percent to about 200 percent stoichiometric excess with respect to the proportion of hydroxyl in the polyol. Since the process of the present invention may relate to the production of polyurea foams, it will be appreciated that in this embodiment, the prepolymer could be used to prepare a polyurethane modified polyurea.
  • the isocyanate compound suitable for use in the process of the present invention may be selected from dimers and trimers of isocyanates and diisocyanates, and from polymeric diisocyanates having the general formula:
  • i is an integer having a value of 1 or more and L is a monofunctional or polyfunctional atom or radical.
  • isocyanate compounds which fall with the scope of this definition include ethylphosphonic diisocyanate, phenylphosphonic diisocyanate, compounds which contain a ⁇ Si—NCO group, isocyanate compounds derived from sulphonamides (QSO 2 NCO), cyanic acid and thiocyanic acid.
  • Non-limiting examples of suitable isocyanates include: 1,6-hexamethylene diisocyanate, 1,4-butylene diisocyanate, furfurylidene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenylpropane diisocyanate, 4,4′-diphenyl-3,3′-dimethyl methane diisocyanate, 1,5-naphthalene diisocyanate, 1-methyl-2,4-diisocyanate-5-chlorobenzene, 2,4-diisocyanato-s-triazine, 1-methyl-2,4-diisocyanato cyclohexane, p-phenylene diisocyanate, m-phenylene diisocyanate, 1,
  • a more preferred isocyanate is selected from the group comprising 2,4-toluene diisocyanate, 2,6-toluene diisocyanate and mixtures thereof, for example, a mixture comprising from about 75 to about 85 percent by weight 2,4-toluene diisocyanate and from about 15 to about 25 percent by weight 2,6-toluene diisocyanate.
  • Another more preferred isocyanate is selected from the group comprising 2,4′-diphenylmethane diisocyanate, 4,4′-diphenyhnethane diisocyanate and mixtures thereof.
  • the most preferred isocyanate is a mixture comprising from about 15 to about 25 percent by weight 2,4′-diphenylmethane diisocyanate and from about 75 to about 85 percent by weight 4,4′-diphenylmethane diisocyanate.
  • the active hydrogen-containing compound is typically a polyol.
  • the choice of polyol is not particularly restricted and is within the purview of a person skilled in the art.
  • the polyol may be a hydroxyl-terminated backbone of a member selected from the group comprising polyether, polyester, polycarbonate, polydiene and polycaprolactone.
  • the polyol is selected from the group comprising hydroxyl-terminated polyhydrocarbons, hydroxyl-terminated polyformals, fatty acid triglycerides, hydroxyl-terminated polyesters, hydroxymethyl-terminated polyesters, hydroxymethyl-terminated perfluoromethylenes, polyalkyleneether glycols, polyalkylenearyleneether glycols and polyalkyleneether triols. More preferred polyols are selected from the group comprising adipic acid-ethylene glycol polyester, poly(butylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene—see, for example, British patent number 1,482,213, for a discussion of suitable polyols.
  • such a polyether polyol has a molecular weight in the range of from about 200 to about 10,000, more preferably from about 2,000 to about 7,000, most preferably from about 2,000 to about 6,000.
  • the active hydrogen-containing compound comprises compounds wherein hydrogen is bonded to nitrogen.
  • such compounds are selected from the group comprising polyamines, polyamides, polyimines and polyolamines, more preferably polyamines.
  • Non-limiting examples of such compounds include primary and secondary amine terminated polyethers.
  • polyethers Preferably such polyethers have a molecular weight of greater than about 230 and a functionality of from 2 to 6.
  • Such amine terminated polyethers are typically made from an appropriate initiator to which a lower alkylene oxide is added with the resulting hydroxyl terminated polyol being subsequently aminated.
  • alkylene oxides may be present either as random mixtures or as blocks of one or the other polyether.
  • the hydroxyl groups of the polyol be essentially all secondary hydroxyl groups.
  • the amination step replaces the majority but not all of the hydroxyl groups of the polyol.
  • the reaction mixture used to produce the present foamed isocyanate-based polymer typically will further comprise a blowing agent.
  • a blowing agent As is known in the art water can be used as an indirect or reactive blowing agent in the production of foamed isocyanate-based polymers. Specifically, water reacts with the isocyanate forming carbon dioxide which acts as the effective blowing agent in the final foamed polymer product. Alternatively, the carbon dioxide may be produced by other means such as unstable compounds which yield carbon dioxide (e.g., carbamates and the like).
  • direct organic blowing agents may be used in conjunction with water although the use of such blowing agents is generally being curtailed for environmental considerations.
  • the preferred blowing agent for use in the production of the present foamed isocyanate-based polymer comprises water.
  • the amount of water used as an indirect blowing agent in the preparation of a foamed isocyanate-based polymer is conventionally in the range of from about 0.5 to as high as about 40 or more parts by weight, preferably from about 1.0 to about 10 parts by weight, based on 100 parts by weight of the total active hydrogen-containing compound content in the reaction mixture.
  • the amount of water used in the production of a foamed isocyanate-based polymer typically is limited by the fixed properties expected in the foamed polymer and by the tolerance of the expanding foam towards self structure formation.
  • the reaction mixture used to produce the present foamed isocyanate-based polymer typically will further comprise a catalyst.
  • the catalyst used in the reaction mixture is a compound capable of catalyzing the polymerization reaction.
  • Such catalysts are known, and the choice and concentration thereof in the reaction mixture is within the purview of a person skilled in the art. See, for example, U.S. Pat. Nos. 4,296,213 and 4,518,778 for a discussion of suitable catalyst compounds.
  • suitable catalysts include tertiary amines and/or organometallic compounds.
  • a Lewis acid must be used as the catalyst, either alone or in conjunction with other catalysts. Of course it will be understood by those skilled in the art that a combination of two or more catalysts may be suitably used.
  • a dendritic macromolecule is incorporated in the present foamed isocyanate-based polymer.
  • the dendritic macromolecule has the following characteristics:
  • (iii) at least about 15%, more preferably from about 15% to about 50%, even more preferably from about 15% to about 40%, even more preferably from about 15% to about 30%, by weight of the dendritic macromolecule may be mixed with a polyether polyol having an OH number less than about 40, more preferably from about 25 to about 35, mg KOH/g to form a stable liquid at 23° C.
  • additives in the polyurethane foam art can be incorporated in the reaction mixture created during the present process.
  • additives include: surfactants (e.g., organo-silicone compounds available under the tradename L-540 Union Carbide), cell openers (e.g., silicone oils), extenders (e.g., halogenated paraffins commercially available as Cereclor S45), cross-linkers (e.g., low molecular weight reactive hydrogen-containing compositions), pigments/dyes, flame retardants (e.g., halogenated organo-phosphoric acid compounds), inhibitors (e.g., weak acids), nucleating agents (e.g., diazo compounds), anti-oxidants, and plasticizers/stabilizers (e.g., sulphonated aromatic compounds).
  • surfactants e.g., organo-silicone compounds available under the tradename L-540 Union Carbide
  • cell openers e.g., silicone oils
  • extenders e.g., halogen
  • the following Examples illustrate the use of the dendritic polymer in a typical isocyanate-based high resilience (HR) based foam.
  • the isocyanate-based foam was prepared by the pre-blending of all resin ingredients including polyols, copolymer polyols, catalysts, water, and surfactants as well as the dendritic macromolecule of interest. The isocyanate was excluded from this mixture.
  • the resin blend and isocyanate were then mixed at an isocyanate index of 100 using a conventional two-stream mixing technique and dispensed into a preheated mold (65° C.) having the dimensions 38.1 cm ⁇ 38.1 cm ⁇ 10.16 cm. The mold was then closed and the reaction allowed to proceed until the total volume of the mold was filled. After approximately 6 minutes, the isocyanate-based foam was removed and, after proper conditioning, the properties of interest were measured. This methodology will be referred to in the following Examples as the General Procedure.
  • E837 base polyol, commercially available from Lyondell;
  • E850 a 43% solids content copolymer(SAN)polyol, commercially available from Lyondell;
  • HBP a dendritic macromolecule produced in Example A hereinbelow and discussed in more detail in copending U.S. patent application Ser. No. 60/221,512, filed on Jul. 28, 2000 in the name of Pettersson et al.;
  • DEAO LF diethanolamine
  • cross-linking agent commercially available from Air Products
  • Glycerin a cross-linking agent, commercially available from Van Waters & Rogers;
  • Dabco 33LV a gelation catalyst, commercially available from Air Products
  • Niax A-1 a blowing catalyst, commercially available from Witco;
  • DC 5169 a surfactant, commercially available from Air Products
  • Y-10184 a surfactant, commercially available from Witco.
  • the obtained dendritic polymer had the following characteristics: Final acid value: 8.9 mg KOH/g Final hydroxyl value: 489 mg KOH/g Peak molecular weight: 3490 g/mole Mw (SEC): 3520 g/mole Mn (SEC): 2316 g/mole PDI (Mw/Mn): 1.52 Average hydroxyl functionality: 30.4 OH-groups/molecule
  • reaction was allowed to continue for a further 1.5 hours at 170° C., after which the reaction temperature was increased to 180° C.
  • the reaction mixture was kept at this temperature for a further 2.5 hours until an acid value of 5.7 mg KOH/g was obtained. Full vacuum was then applied to the reactor to remove all xylene from the final product.
  • the obtained derivatized dendritic polymer had the following characteristics: Final acid value: 6.2 mg KOH/g Final hydroxyl value: 293 mg KOH/g Peak molecular weight: 4351 g/mole Mw (SEC): 4347 g/mole Mn (SEC): 1880 g/mole PDI (Mw/Mn): 2.31 Average hydroxyl functionality: 22.7 OH-groups/molecule
  • isocyanate-based foams based on the formulations shown in Table 1 were produced using the General Procedure referred to above.
  • isocyanate-based foams were prepared having a copolymer polyol concentration of 7% (Examples 1 and 3) and 11% (Examples 2 and 4) by weight of resin and having a % H 2 O concentration of 3.80% which results in an approximate foam core density of 31 kg/m 3 .
  • the dendritic macromolecule concentration was increased from 2% by weight of resin (Examples 1 and 2) to 5% by weight of resin (Examples 3 and 4).
  • a “load efficiency”, having units of Newtons/weight % dendritic macromolecule in the resin blend, for each foam may be reported and represents the ability of the dendritic macromolecule to generate firmness in the isocyanate-based foam matrix.
  • the term “load efficiency” is defined as the number of Newtons of foam hardness increase per weight % of the dendritic macromolecule added to a base or control resin blend (i.e., typically comprising all ingredients in the foamable composition except the iscocyanate).
  • the term “load efficiency”, as used throughout this specification, is intended to have the meaning set out in this paragraph.
  • the load efficiency of the dendritic macromolecule was determined to be 23.78 Newtons/weight % dendritic macromolecule in the resin blend while for Examples 2 and 4, the load efficiency was determined to be 33.42 Newtons/weight % dendritic macromolecule in the resin blend.
  • isocyanate-based foams were prepared having copolymer polyol concentrations as those used in Examples 1-4 with a % H 2 O concentration of 3.2% which results in an approximate core foam density of 36kg/m 3 .
  • the dendritic macromolecule concentration was increased from 2% to 5% by weight of resin.
  • isocyanate based foams were prepared in the absence of any copolymer polyol.
  • the isocyanate-based foams were formulated with a % H 2 O concentration of 3.8% resulting in an approximate foam core density of 31 kg/m 3 .
  • the level of the dendritic macromolecule was varied from 6.68% to 13.35% by weight in the resin.
  • isocyanate based foams were prepared in the absence of any copolymer polyol.
  • the isocyanate-based foams were formulated with a %H 2 O concentration of 3.2% resulting in an approximate foam core density of 36 kg/m 3 .
  • the level of the dendritic macromolecule was varied from 6.72% to 13.43% by weight in the resin.
  • isocyanate based foams were prepared in the absence of any dendritic macromolecule and used only copolymer polyol as the method by which foam hardness is increased.
  • Examples 15 and 16 are provided for comparative purposes only and are outside the scope of the present invention.
  • the isocyanate-based foams were formulated with a %H 2 O concentration of 3.8% resulting in an approximate foam core density of 31 kg/m 3 .
  • the level of the copolymer polyol was varied from 26% to 8% by weight in the resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Tires In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
US09/917,235 2000-07-28 2001-07-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof Abandoned US20020061936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/917,235 US20020061936A1 (en) 2000-07-28 2001-07-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
US12/164,615 US7939574B2 (en) 2000-07-28 2008-06-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22151100P 2000-07-28 2000-07-28
US09/917,235 US20020061936A1 (en) 2000-07-28 2001-07-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/164,615 Continuation US7939574B2 (en) 2000-07-28 2008-06-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof

Publications (1)

Publication Number Publication Date
US20020061936A1 true US20020061936A1 (en) 2002-05-23

Family

ID=22828126

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/917,235 Abandoned US20020061936A1 (en) 2000-07-28 2001-07-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
US12/164,615 Expired - Fee Related US7939574B2 (en) 2000-07-28 2008-06-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/164,615 Expired - Fee Related US7939574B2 (en) 2000-07-28 2008-06-30 Foamed isocyanate-based polymer having improved hardness properties and process for production thereof

Country Status (13)

Country Link
US (2) US20020061936A1 (cs)
EP (1) EP1248809B1 (cs)
JP (1) JP2004505140A (cs)
AT (1) ATE460445T1 (cs)
AU (1) AU777710B2 (cs)
BR (1) BR0107276B1 (cs)
CA (1) CA2394563C (cs)
CZ (1) CZ20021811A3 (cs)
DE (1) DE60141502D1 (cs)
MX (1) MXPA02012835A (cs)
NO (1) NO20022418D0 (cs)
PL (1) PL356275A1 (cs)
WO (1) WO2002010247A1 (cs)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070620A1 (en) * 2003-09-30 2005-03-31 Ron Herrington Flexible polyurethane foams prepared using modified vegetable oil-based polyols
US20060041157A1 (en) * 2004-06-25 2006-02-23 Petrovic Zoran S Modified vegetable oil-based polyols
WO2006128872A1 (de) * 2005-06-03 2006-12-07 Basf Aktiengesellschaft Poröse polyisocyanat-polyadditionsprodukte
US20070066697A1 (en) * 2005-08-31 2007-03-22 Gilder Stephen D Strut-reinforced polyurethane foam
US20070078193A1 (en) * 2005-08-31 2007-04-05 Gilder Stephen D Strut-reinforced, reduced VOC polyurethane foam
US20070249484A1 (en) * 2004-07-21 2007-10-25 Johannes Benkhoff Process for the Photoactivation and use of a Catalyst by an Inverted Two-Stage Procedure
WO2008071622A1 (de) * 2006-12-11 2008-06-19 Basf Se Hochelastische polyurethanweichschaumstoffe
US20090287007A1 (en) * 2008-05-13 2009-11-19 Cargill, Incorporated Partially-hydrogenated, fully-epoxidized vegetable oil derivative
US7691914B2 (en) 2005-04-25 2010-04-06 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
US20100174006A1 (en) * 2005-09-20 2010-07-08 Sleep Innovations, Inc. Strut-Reinforced, Reduced VOC Polyurethane Foam
US20110275732A1 (en) * 2009-01-12 2011-11-10 Basf Se Highly elastic flexible polyurethane foams

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523962C2 (sv) * 2002-01-25 2004-06-08 Perstorp Specialty Chem Ab Polyuretanskumskomposition innefattande kedjeförlängd dendritisk polyeter
WO2003064491A1 (en) * 2002-01-28 2003-08-07 Woodbridge Foam Corporation Foam isocyanate-based polymer having improved toughness and process for production thereof
AU2003281481B2 (en) * 2002-07-23 2009-02-26 Polynovo Biomaterials Pty Limited Biodegradable polyurethane/urea compositions
AU2002950340A0 (en) 2002-07-23 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Biodegradable polyurethane/urea compositions
CN1942497B (zh) 2004-03-03 2012-02-01 宝利诺沃生物材料有限公司 用于二阶段或多阶段固化的生物相容性聚合物组合物
US7190633B2 (en) * 2004-08-24 2007-03-13 Bbn Technologies Corp. Self-calibrating shooter estimation
EP1659140A1 (de) * 2004-11-18 2006-05-24 HILTI Aktiengesellschaft Verwendung von hoch-verzweigten Polyolen für die Herstellung von Polyurethanschäumen und sie enthaltende Zweikomponenten-Schaumsysteme
JP4884726B2 (ja) * 2005-08-30 2012-02-29 東洋ゴム工業株式会社 積層研磨パッドの製造方法
JP5351516B2 (ja) 2005-09-20 2013-11-27 ポリィノボ バイオマテリアルズ ピーティワイ リミテッド 鎖延長剤
US8445581B2 (en) 2006-08-02 2013-05-21 Polynovo Biomaterials Pty Limited Biocompatible polymer compositions
CN101511536A (zh) * 2006-09-08 2009-08-19 东洋橡胶工业株式会社 抛光垫的制造方法
SG177963A1 (en) 2007-01-15 2012-02-28 Toyo Tire & Rubber Co Polishing pad and method for producing the same
JP5600062B2 (ja) 2007-10-03 2014-10-01 ポリィノボ バイオマテリアルズ ピーティワイ リミテッド 高弾性率ポリウレタン及びポリウレタン/尿素組成物
JP4593643B2 (ja) * 2008-03-12 2010-12-08 東洋ゴム工業株式会社 研磨パッド
ES2524258T3 (es) * 2008-03-14 2014-12-04 Basf Se Elastómeros de poliuretano de celda gruesa
JP5170421B2 (ja) * 2008-06-27 2013-03-27 三菱瓦斯化学株式会社 水発泡硬質ポリウレタンフォームの製造方法
WO2011057018A1 (en) 2009-11-04 2011-05-12 Stepan Company Method of improving mechanical strength of flexible polyurethane foams made from bio-based polyols, the polyol compositions utilized therein and the foams produced thereby
US20110257284A1 (en) * 2010-04-15 2011-10-20 Basf Se Process for producing flame-retardant pu foams
MX2019000084A (es) * 2016-06-29 2019-06-17 Proprietect Lp Polímero espumado a base de isocianato.
CN106632980B (zh) * 2016-12-30 2019-08-16 山东一诺威聚氨酯股份有限公司 一种稳定ndi预聚体及其制备方法和应用
CN110527479B (zh) * 2019-08-19 2021-05-18 济南大学 一种超支化型热塑性聚氨酯胶黏剂及其在消防水带中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418301A (en) * 1992-02-26 1995-05-23 Perstorp Ab Dendritic macromolecule and process for preparation thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558120A (en) * 1983-01-07 1985-12-10 The Dow Chemical Company Dense star polymer
SE503342C2 (sv) * 1994-10-24 1996-05-28 Perstorp Ab Hyperförgrenad makromolekyl av polyestertyp samt förfarande för dess framställning
SE503622C2 (sv) 1994-12-21 1996-07-22 Perstorp Ab Ett härdplastmaterial tillverkat av en härdplastkomposition innefattande en kedjeterminerad dendritisk eller hyperförgrenad makromolexyl av polyestertyp
SE504879C2 (sv) 1996-06-24 1997-05-20 Perstorp Ab Kylsystemsarbetsfluid innehållande som smörjmedel en hyperförgrenad makromolekyl av polyestertyp
US6114458A (en) * 1998-09-23 2000-09-05 International Business Machines Corporation Highly branched radial block copolymers
SE514207C2 (sv) 1999-03-23 2001-01-22 Perstorp Ab Hyperförgrenad dendritisk polyeter och förfarande för framställning därav
DE19924802B4 (de) * 1999-05-29 2008-02-28 Basf Ag Verfahren zur Herstellung von schalldämpfenden und energieabsorbierenden Polyurethanschäumen
WO2002010189A2 (en) * 2000-07-28 2002-02-07 Perstorp Ab Dendritic macromolecule with improved polyether polyol solubility and process for production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418301A (en) * 1992-02-26 1995-05-23 Perstorp Ab Dendritic macromolecule and process for preparation thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293808B2 (en) 2003-09-30 2012-10-23 Cargill, Incorporated Flexible polyurethane foams prepared using modified vegetable oil-based polyols
US20050070620A1 (en) * 2003-09-30 2005-03-31 Ron Herrington Flexible polyurethane foams prepared using modified vegetable oil-based polyols
US7786239B2 (en) 2004-06-25 2010-08-31 Pittsburg State University Modified vegetable oil-based polyols
US20060041157A1 (en) * 2004-06-25 2006-02-23 Petrovic Zoran S Modified vegetable oil-based polyols
US8153746B2 (en) 2004-06-25 2012-04-10 Cargill, Incorporated Modified vegetable oil-based polyols
US20070249484A1 (en) * 2004-07-21 2007-10-25 Johannes Benkhoff Process for the Photoactivation and use of a Catalyst by an Inverted Two-Stage Procedure
US7691914B2 (en) 2005-04-25 2010-04-06 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
US20100184878A1 (en) * 2005-04-25 2010-07-22 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
WO2006128872A1 (de) * 2005-06-03 2006-12-07 Basf Aktiengesellschaft Poröse polyisocyanat-polyadditionsprodukte
US20080188577A1 (en) * 2005-06-03 2008-08-07 Basf Aktiengeseelschaft Porous Polyisocyanate Polyaddition Products
US8067480B2 (en) * 2005-06-03 2011-11-29 Basf Se Porous polyisocyanate polyaddition products
CN101184788B (zh) * 2005-06-03 2010-11-10 巴斯福股份公司 多孔聚异氰酸酯加聚产物
US20070078193A1 (en) * 2005-08-31 2007-04-05 Gilder Stephen D Strut-reinforced, reduced VOC polyurethane foam
US20070066697A1 (en) * 2005-08-31 2007-03-22 Gilder Stephen D Strut-reinforced polyurethane foam
US20100174006A1 (en) * 2005-09-20 2010-07-08 Sleep Innovations, Inc. Strut-Reinforced, Reduced VOC Polyurethane Foam
WO2008071622A1 (de) * 2006-12-11 2008-06-19 Basf Se Hochelastische polyurethanweichschaumstoffe
US20090287007A1 (en) * 2008-05-13 2009-11-19 Cargill, Incorporated Partially-hydrogenated, fully-epoxidized vegetable oil derivative
US20110275732A1 (en) * 2009-01-12 2011-11-10 Basf Se Highly elastic flexible polyurethane foams
CN102341420A (zh) * 2009-01-12 2012-02-01 巴斯夫欧洲公司 高弹性柔性聚氨酯泡沫体

Also Published As

Publication number Publication date
WO2002010247A1 (en) 2002-02-07
CA2394563C (en) 2010-01-26
CA2394563A1 (en) 2002-02-07
JP2004505140A (ja) 2004-02-19
NO20022418D0 (no) 2002-05-22
AU7622601A (en) 2002-02-13
EP1248809A1 (en) 2002-10-16
US7939574B2 (en) 2011-05-10
DE60141502D1 (de) 2010-04-22
MXPA02012835A (es) 2003-05-21
AU777710B2 (en) 2004-10-28
PL356275A1 (en) 2004-06-28
US20080269369A1 (en) 2008-10-30
BR0107276B1 (pt) 2010-11-16
CZ20021811A3 (cs) 2003-03-12
ATE460445T1 (de) 2010-03-15
BR0107276A (pt) 2002-08-27
EP1248809B1 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
CA2394563C (en) Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
AU755101B2 (en) Process for preparing a flexible polyurethane foam
KR100245236B1 (ko) 폴리우레탄 발포체
CA1294722C (en) Reduced reactivity polyols as foam controllers in producing polyurethane foams
US8802746B2 (en) Isocyanate-based foam having improved anti-yellowing properties and process for production thereof
KR20010005629A (ko) 연질 폴리우레탄 발포체의 제조 방법
KR100255721B1 (ko) 발포 성능을 개선시키기 위한 폴리우레탄 촉매 조성물
RU2357976C2 (ru) Способ получения полиола полиизоцианатного полиприсоединения
JP2004526021A (ja) 軟質ポリウレタンフォームの製造方法
US8124663B2 (en) Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
US20030236316A1 (en) Foamed isocyanate-based polymer having improved toughness and process for production thereof
US20030236315A1 (en) Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
JP2019519657A (ja) 発泡イソシアネート系ポリマー
KR0149027B1 (ko) 이소시아네이트 반응성 조성물
WO2008106769A1 (en) Foamed isocyanate-based polymer
CN109963900B (zh) 可燃性降低的柔性聚氨酯泡沫
RU2386644C2 (ru) Способ получения пипп-полиола
US4927864A (en) Use of a polyamine as cell opener in polyurethane foam
WO2004020496A1 (en) Polyol combination
AU704287B2 (en) A flexible polyurethane foam

Legal Events

Date Code Title Description
AS Assignment

Owner name: WOODBRIDGE FOAM CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN HEUMEN, JEFFREY D.;FARKAS, PAUL V.;STANCIU, ROMEO;REEL/FRAME:012362/0260

Effective date: 20011112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PROPRIETECT L.P., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WOODBRIDGE FOAM CORPORATION;REEL/FRAME:022746/0204

Effective date: 20070301