US20010014741A1 - Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof - Google Patents

Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof Download PDF

Info

Publication number
US20010014741A1
US20010014741A1 US09/803,390 US80339001A US2001014741A1 US 20010014741 A1 US20010014741 A1 US 20010014741A1 US 80339001 A US80339001 A US 80339001A US 2001014741 A1 US2001014741 A1 US 2001014741A1
Authority
US
United States
Prior art keywords
hydroxydiphenylmethyl
piperidinyl
hydroxybutyl
water
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/803,390
Other languages
English (en)
Inventor
Daniel Henton
Frederick McCarty
Susan Tripp
Jill DeWitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26937420&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010014741(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/803,390 priority Critical patent/US20010014741A1/en
Publication of US20010014741A1 publication Critical patent/US20010014741A1/en
Priority to US10/214,262 priority patent/US20030045721A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/20Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
    • C07D211/22Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms

Definitions

  • the present invention is related to novel processes for preparing anhydrous and hydrated forms of piperidine derivatives, polymorphs and pseudomorphs thereof which are useful as antihistamines, antiallergic agents and bronchodilators [U.S. Pat. No. 4,254,129, Mar. 3, 1981, U.S. Pat. No. 4,254,130, Mar. 3, 1981 and U.S. Pat. No. 4,285,958, Apr. 25, 1981].
  • the present invention provides a process for preparing anhydrous, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formulas
  • R 1 represents hydrogen or hydroxy
  • R 2 represents hydrogen
  • n is an integer of from 1 to 5;
  • R 3 is —CH 2 OH, —COOH or —COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
  • each of A is hydrogen or hydroxy
  • the present invention also provides a process for preparing anhydrous, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula
  • R 1 represents hydrogen or hydroxy
  • R 2 represents hydrogen
  • R 1 and R 2 taken together form a second bond between the carbon atoms bearing R 1 and R 2 ;
  • n is an integer of from 1 to 5;
  • R 3 is —CH 2 OH, —COOH or —COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
  • each of A is hydrogen or hydroxy
  • the present invention provides a process for preparing the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula
  • R 1 represents hydrogen or hydroxy
  • R 2 represents hydrogen
  • R 1 and R 2 taken together form a second bond between the carbon atoms bearing R 1 and R 2 ;
  • n is an integer of from 1 to 5;
  • R 3 is —CH 2 OH, —COOH or —COOalkyl wherein the alkyl moiety has from 1 to 6 carbon atoms and is straight or branched;
  • each of A is hydrogen or hydroxy
  • the present invention provides processes for preparing polymorphs of anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride designated herein as Form I and Form III and processes for preparing psuedomorphs of hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride designated herein as Form II and Form IV.
  • the Form I polymorph may be identified by the following characteristics: a visual melting point (capillary tube) in the range of about 196-201° C.; a melt endotherm with extrapolated onset in the range of about 195-199° C. as determined by differential scanning calorimetry; and an X-ray powder diffraction pattern essentially as shown in Table 1 wherein the XRPD patterns were measured using a powder diffractometer equipped with a Co X-ray tube source. The sample was illuminated with Co K ⁇ l radiation and XRPD data were collected from 5 to 55° 2 ⁇ . (intensities may vary radically due to preferred orientation). TABLE 1 D-Space, Angstroms Intensity, I/I O , % 11.8 30 7.3 30 6.3 65 5.9 35 5.0 45 4.8 100 4.4 45 3.9 60 3.8 75 3.7 30
  • the Form III polymorph may be identified by the following characteristics: a visual melting point (capillary tube) in the range of about 166-171° C.; a broad endotherm below about 90° C., a melt endotherm with an extrapolated onset of about 166° C. as determined by differential scanning calorimetry; and an X-ray powder diffraction pattern essentially as shown in Table 2 wherein the XRPD patterns were measured using a powder diffractometer equipped with a Co X-ray tube source. The sample was illuminated with Co K ⁇ l radiation and XRPD data were collected from 5 to 55° 2 ⁇ . (intensities may vary radically due to preferred orientation). TABLE 2 D-Space, Angstroms Intensity, I/I O , % 9.0 95 4.9 100 4.8 35 4.6 25 4.5 25 3.7 25
  • the Form II pseudomorph may be identified by the following characteristics: a visual melting point (capillary tube) in the range of about 100-105° C.; a large broad endotherm below about 100° C. and a small endothermic peak (about 2 joules/gram) with extrapolated onsets in the range of about 124-126° C. as determined by differential scanning calorimetry; and an X-ray powder diffraction pattern essentially as shown in Table 3 wherein the XRPD patterns were measured using a powder diffractometer equipped with a Co X-ray tube source. The sample was illuminated with Co K ⁇ l radiation and XRPD data were collected from 5 to 55° 2 ⁇ . (intensities may vary radically due to preferred orientation). TABLE 3 D-Space, Angstroms Intensity, I/I O , % 7.8 45 6.4 44 5.2 85 4.9 60 4.7 80 4.4 55 4.2 50 4.1 60 3.7 75 3.6 60 3.5 50
  • the Form IV pseudomorph may be identified by the following characteristics: a visual melting point (capillary tube) in the range of about 113-118° C.; two broad overlapping endotherms below about 100° C. and an additional endotherm with an extrapolated onset at approximately 146° C. as determined by differential scanning calorimetry and an X-ray powder diffraction pattern essentially as shown in Table 4 wherein the XRPD patterns were measured using a powder diffractometer equipped with a Co X-ray tube source. The sample was illuminated with Co K ⁇ l radiation and XRPD data were collected from 5 to 55° 2 ⁇ . (intensities may vary radically due to preferred orientation). TABLE 4 D-Space, Angstroms Intensity, I/I O , % 10.4 60 7.0 45 6.4 50 5.3 100 5.2 55 4.3 75 4.1 50 4.0 45 3.8 60 3.5 55
  • Pharmaceutically acceptable acid addition salts of the compounds of formula (I) and (II), both anhydrous and hydrated, are those of any suitable inorganic or organic acid.
  • suitable inorganic acids are, for example, hydrochloric, hydrobromic, sulfuric, and phosphoric acids.
  • Suitable organic acids include carboxylic acids, such as, acetic, propionic, glycolic, lactic, pyruvic, malonic, succinic, fumaric, malic, tartaric, citric, cyclamic, ascorbic, maleic, hydroxymaleic, and dihydroxymaleic, benzoic, phenylacetic, 4-aminobenzoic, 4-hydroxybenzoic, anthranilic, cinnamic, salicylic, 4-aminosalicylic, 2-phenoxybenzoic, 2-acetoxybenzoic, and mandelic acid, sulfonic acids, such as, methanesulfonic, ethanesulfonic and ⁇ -hydroxyethanesulfonic acid.
  • carboxylic acids such as, acetic, propionic, glycolic, lactic, pyruvic, malonic, succinic, fumaric, malic, tartaric, citric, cyclamic, ascorbic, maleic, hydroxymaleic, and dihydroxy
  • hydrate refers to a combination of water with a compound of formula (I) or (II) wherein the water retains its molecular state as water and is either absorbed, adsorbed or contained within a crystal lattice of the substrate molecule of formula (I) or (II).
  • the term “adsorped” refers to the physical state wherein the water molecule in the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) is distributed over the surface of the solid hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II).
  • the term “absorbed” refers to the physical state wherein the water molecule in the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) is distributed throughout the body of the solid hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II).
  • Hydrated, pharmaceutically acceptable acid addition salts of the compounds of formula (I) and (II) are those hydrates ranging from essentially 0.10 to 5 molecules of water per molecule of substrate salt of formula (I) or (II).
  • azeotropic mixture refers to a liquid mixture of two or more substances which behaves like a single substance in that the vapor produced by partial evaporation of liquid has the same composition as the liquid.
  • the constant boiling mixture exhibits either a maximum or minimum boiling point as compared with that of other mixtures of the same substance.
  • azeotropic distillation refers to a type of distillation in which a substance is added to the mixture to be separated in order to form an azeotropic mixture with one or more of the constituents of the original mixture.
  • the azeotrope or azeotropes thus formed will have boiling points different from the boiling points of the original mixture.
  • azeotropic distillation also refers to co-distillation.
  • water-minimizing recrystallization refers to a recrystallization wherein the ratio of anhydrous solvent to substrate hydrate is such that the percentage of water present is minimized, thereby inducing precipitation of the anhydrous form of the substrate.
  • aqueous recrystallization refers to those processes wherein either 1) a solid material is dissolved in a volume of water or a water/organic solvent mixture sufficient to cause dissolution and the solid material recovered by evaporation of the solvent; 2) a solid material is treated with a minimal amount of water or a water/organic solvent mixture which is not sufficient to cause dissolution, heated to obtain dissolution and cooled to induce crystallization or 3) a solid material is dissolved in a volume of water or a water/organic solvent mixture sufficient to cause dissolution and then the solvent is partially evaporated to form a saturated solution which induces crystallization.
  • crystal digestion refers to that process wherein a solid material is treated with a minimal amount of water or water/organic solvent mixture which is not sufficient to cause dissolution and either heating or stirring at ambient temperature until the desired transformation has taken place.
  • antisolvent refers to a poor solvent for the substance in question which when added to a solution of the substance, causes the substance to precipitate.
  • suitable temperature refers to that temperature which is sufficient to cause dissolution and to permit the precipitation of the desired substance either upon addition of an antisolvent or upon removal of the co-solvent by azeotropic distillation.
  • the anhydrous, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) may be prepared from the corresponding hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) by subjecting the corresponding hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) to an azeotropic distillation.
  • the appropriate hydrated, pharmaceutically acceptable acid addition salt of piperidine derivatives of the formula (I) and (II) is first dissolved in a volume of a suitable solvent or solvent mixture which is sufficient to cause dissolution.
  • suitable solvent or solvent mixture examples include water, C 1 -C 5 alkanols such as methanol, ethanol and the like; ketone solvents such as acetone, methyl ethyl ketone and the like; aliphatic ester solvents such as ethyl acetate, methyl acetate, methyl formate, ethyl formate, isopropyl acetate and the like and aqueous mixtures of these solvents, such as acetone/water, methyl ethyl ketone/water, water/acetone and water/acetone/ethyl acetate.
  • Suitable anhydrous antisolvents for use in the azeotropic distillation are, for example, ketone solvents such as acetone, methyl ethyl ketone and the like; aliphatic ester solvents such as ethyl acetate, methyl acetate, methyl formate, ethyl formate, isopropyl acetate and the like; C 5 -C 8 aliphatic solvents such as pentane, hexane and the like; aliphatic nitrites, such as acetonitrile and mixtures of these solvents such as acetone/ethyl acetate and the like.
  • the azeotropic mixture of water and solvent is removed by distillation until the temperature changes, indicating that the azeotropic mixture is completely removed.
  • the reaction mixture is cooled and the corresponding anhydrous, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) is recovered from the reaction zone by, for example filtration.
  • anhydrous, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) may be prepared from the corresponding hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) by subjecting the corresponding hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) to a water-minimizing recrystallization.
  • the appropriate hydrated, pharmaceutically acceptable acid addition salt of piperidine derivatives of the formula (I) and (II) is dissolved in a volume of a suitable anhydrous solvent or solvent mixture which is sufficient to cause dissolution and heated to reflux.
  • solvents examples include water, C 1 -C 5 alkanols such as methanol, ethanol and the like; ketone solvents such as acetone, methyl ethyl ketone and the like; aliphatic ester solvents such as ethyl acetate, methyl acetate, methyl formate, ethyl formate, isopropyl acetate and the like and aqueous mixtures of these solvents, such as acetone/water, methyl ethyl ketone/water, water/acetone and water/acetone/ethyl acetate.
  • Suitable anhydrous antisolvents are, for example, ketone solvents such as acetone, methyl ethyl ketone and the like;
  • aliphatic ester solvents such as ethyl acetate, methyl acetate, methyl formate, ethyl formate, isopropyl acetate and the like; mixtures of ketone solvents and aliphatic ester solvents such as acetone/ethyl acetate and the like;
  • C 5 -C 8 aliphatic solvents such as pentane, hexane and the like; aliphatic nitriles, such as acetonitrile and mixtures of these solvents such as acetone/ethyl acetate and the like as well as mixtures of water and ketone solvents such as acetone/water and the like; and mixtures of water, ketone solvents and aliphatic ester solvents such as acetone/water/ethyl acetate.
  • the reaction mixture is cooled and the corresponding anhydrous, pharmaceutically acceptable acid addItion salt of piperidine derivatives of the formula (I) and (II) is recovered from the reaction zone by, for example filtration.
  • anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form III), by subjecting the anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form III) to a crystal digestion as described above.
  • anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form II), by subjecting the hydrated 4-[4-[4(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form II) to water-minimizing recrystallization as described above.
  • anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form II), by subjecting the hydrated 4-[4-[4(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form II) to water-minimizing recrystallization as described above or by subjecting the hydrated 4-[4-[4-[4-(Hydroxydiphenylmethyl)-1piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (For
  • anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form IV), by subjecting the hydrated 4-[4-[4(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form IV) to water-minimizing recrystallization or to an azeotropic distillation as described above.
  • the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) may be prepared from the corresponding compound of the formula (II) wherein R 3 is —COOalkyl by subjecting the corresponding compound of the formula (II) wherein R 3 is —COOalkyl to a reduction using an appropriate reducing agent, such as sodium borohyride, potassium borohydride, sodium cyanoborohydride, or tetramethylammonium borohydride in a suitable solvent, such as, methanol, ethanol, isopropyl alcohol or n-butanol, aqeuous mixtures thereof or basic solutions thereof, at temperatures ranging from about 0° C.
  • an appropriate reducing agent such as sodium borohyride, potassium borohydride, sodium cyanoborohydride, or tetramethylammonium borohydride in a suitable solvent, such as, methanol, ethanol, isopropyl alcohol or n-butanol,
  • reaction time varies from about 1 ⁇ 2 hour to 8 hours.
  • an suitable acid such as hydrochloric acid
  • the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) are recovered from the reaction zone by crystallization and filtration.
  • the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II) may be prepared from the corresponding anhydrous, pharmaceutically acceptable acid addition salts of the formula (I) and (II) by subjecting the corresponding anhydrous, pharmaceutically acceptable acid addition salts of formula (I) and (II) to an aqueous recrystallization.
  • the appropriate anhydrous, pharmaceutically acceptable acid addition salt of piperidine derivatives of the formula (I) and (II) is treated with a minimal volume of water or suitable water/organic solvent mixture which is insufficient to cause dissolution and heated to reflux.
  • the reaction mixture is cooled and the corresponding hydrated, pharmaceutically acceptable acid addition salt of piperidine derivatives of the formula (I) and (II) is recovered from the reaction zone by, for example filtration.
  • the appropriate anhydrous, pharmaceutically acceptable acid addition salt of piperidine derivatives of the formula (I) and (II) is treated with a volume of water or a suitable water/organic solvent mixture which is sufficient to cause dissolution and the water or water/organic solvent is partially or completely evaporated to a volume which induces crystallization of the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) and (II).
  • Suitable solvents for use in the above recrystallization are water, acetone/water, ethanol/water, methyl ethyl ketone/aqueous methanol, methyl ethyl ketone/water and the like.
  • Ethyl Ester/Ketone to Form II Hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form IV) may be prepared from ethyl 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-oxobutyl]- ⁇ , ⁇ -dimethylbenzeneacetate, hydrochloride or free base as described above for the general preparation of the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) from the corresponding compound of the formula (II) wherein R 3 is —COOalkyl, but rapdily adding water over a period of time ranging from 1 minute to 45 minutes at a temperature range of about ⁇ 20° C.
  • Hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from ethyl 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-oxobutyl]- ⁇ , ⁇ -dimethylbenzeneacetate, hydrochloride or free base as described above for the general preparation of the hydrated, pharmaceutically acceptable acid addition salts of piperidine derivatives of the formula (I) from the corresponding compound of the formula (II) wherein R 3 is —COOalkyl, but slowly adding water over a period of time ranging from about 30 minutes to 24 hours and at a temperature range of about 0° C.
  • Hydrated 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride may be prepared from anhydrous 4-[4-[4-(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form I) by subjecting hydrated 4-[4-[4(Hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride (Form II) to an aqueous recrystallization as defined above.
  • g refers to grams; “mol” refers to mole; “mmol” refers to millimoles; “mL” refers to milliliters; “bp” refers to boiling point; “mp” refers to melting point; “° C.” refers to degrees Celsius; “mm Hg” refers to millimeters of mercury; “uL” refers to microliters; “Ugg” refers to micrograms; and “ ⁇ M” refers to micromolar.
  • the samples were loaded into a quartz (zero scatter) sample holder for the XRPD pattern measurement.
  • the XRPD patterns were measured using a powder diffractometer equipped with a Co X-ray tube source, primary beam monochromator, and position sensitive detector (PSD). The incident beam was collimated using a 10 divergence slit. The active area on the PSD subtended approximately 5° 2 ⁇ .
  • the source was operated at 35 kV and 30 mA and the sample was illuminated with Co K ⁇ l radiation.
  • XRPD data were collected from 5 to 55° 2 ⁇ at a rate of 0.25° 2 ⁇ /minute and a step width of 0.02° 2 ⁇ .
  • the XRPD patterns were measured without the addition of an internal calibrant.
  • Peak positions and intensities for the most prominent features were measured using a double-derivative peak picking method. X-ray peaks with I/I o greater than 20% were reported. The cutoff was chosen arbitrarily. The intensities are rounded to the nearest 5%. Certain peaks appear sensitive to preferred orientation that is caused by changes in crystallite morphology. This results in large changes in the I/Io value.
  • XRPD Table 5 reflux. Reflux for 10 minutes, then slowly add additional ethyl acetate (23 mL over 10 minutes) and reflux for an additional 15 minutes. Add additional ethyl acetate (60 mL over 5-10 minutes) and continue refluxing for 15 minutes. Cool to approximately 8° C. in an ice bath, filter the solid and wash with ethyl acetate (85 mL). Vacuum dry at 55° C. for 1.5 hours to give the title compound (18.16 g, 95%).
  • polymorphic and pseudomorphic 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compounds of this invention are useful as antihistamines, antiallergy agents and bronchodilators and may be administered alone or with suitable pharmaceutical carriers, and can be in solid or liquid form such as, tablets, capsules, powders, solutions, suspensions or emulsions.
  • polymorphic and pseudomorphic 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compounds of this invention can be administered orally, parenterally, for example, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation or by application to mucous membranes, such as, that of the nose, throat and bronchial tubes, for example, in an aerosol spray containing small particles of a compound of this invention in a spray or dry powder form.
  • the quantity of polymorphic or pseudomorphic 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound administered will vary depending on the patient and the mode of administration and can be any effective amount.
  • the quantity of polymorphic or pseudomorphic 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound administered may vary over a wide range to provide in a unit dosage an effective amount of from about 0.01 to 20 mg/kg of body weight of the patient per day to achieve the desired effect.
  • the desired antihistamine, antiallergy and bronchodilator effects can be obtained by consumption of a unit dosage form such as a tablet containing 1 to 500 mg of a polymorphic or pseudomorphic 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound of this invention taken 1 to 4 times daily.
  • a unit dosage form such as a tablet containing 1 to 500 mg of a polymorphic or pseudomorphic 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound of this invention taken 1 to 4 times daily.
  • the solid unit dosage forms can be of the conventional type.
  • the solid form can be a capsule which can be the ordinary gelatin type containing a polymorphic or pseudomorphic 4-[4-[4-(hydroxydiphenylmethyl)-1piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound of this invention and a carrier, for example, lubricants and inert fillers such as lactose, sucrose or cornstarch.
  • polymorphic or pseudomorphic 4-[4-[4(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compound is tableted with conventional tablet bases such as lactose, sucrose or cornstarch or gelatin, disintegrating agents such as cornstarch, potato starch or alginic acid, and a lubricant such as stearic acid or magnesium stearate.
  • the polymorphic or pseudomorphic 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]- ⁇ , ⁇ -dimethylbenzeneacetic acid hydrochloride compounds of this invention may also be administered in injectable dosages by solution or suspension of the compounds in a physiologically acceptable diluent with a pharmaceutical carrier which can be a sterile liquid such as water and oils, with or without the addition of a surfactant and other pharmaceutically acceptable adjuvants.
  • oils there can be mentioned those of petroleum, animal, vegatable or synthetic origin, for example, peanut oil, soybean oil or mineral oil.
  • water, saline, aqueous dextrose and related sugar solutions and glycols such as propylene glycol or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions.
  • the compounds of this invention in solution or suspension may be packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants such as, propane, butane or isobutane with the usual adjuvants as may be administered in a non-pressurized form such as in a nebulizer or atomizer.
  • suitable propellants for example, hydrocarbon propellants such as, propane, butane or isobutane with the usual adjuvants as may be administered in a non-pressurized form such as in a nebulizer or atomizer.
  • patient as used herein is taken to mean warm blooded animals, birds, mammals, for example, humans, cats, dogs, horses, sheep, bovine cows, pigs, lambs, rats, mice and guinea pigs.
US09/803,390 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof Abandoned US20010014741A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/803,390 US20010014741A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/214,262 US20030045721A1 (en) 1994-05-18 2002-08-07 Process for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US24573194A 1994-05-18 1994-05-18
US41716195A 1995-04-11 1995-04-11
US44246095A 1995-05-16 1995-05-16
US81808797A 1997-03-14 1997-03-14
US21316298A 1998-12-17 1998-12-17
US09/803,390 US20010014741A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21316298A Continuation 1994-05-18 1998-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/214,262 Continuation US20030045721A1 (en) 1994-05-18 2002-08-07 Process for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Publications (1)

Publication Number Publication Date
US20010014741A1 true US20010014741A1 (en) 2001-08-16

Family

ID=26937420

Family Applications (12)

Application Number Title Priority Date Filing Date
US09/803,389 Abandoned US20010012896A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US09/803,476 Abandoned US20010025106A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US09/803,390 Abandoned US20010014741A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/128,926 Abandoned US20020193600A1 (en) 1994-05-18 2002-04-24 Process for preparing anyhdrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/160,883 Expired - Fee Related US7135571B2 (en) 1994-05-18 2002-06-03 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/162,011 Expired - Fee Related US7138524B2 (en) 1994-05-18 2002-06-03 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/214,262 Abandoned US20030045721A1 (en) 1994-05-18 2002-08-07 Process for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/386,812 Abandoned US20040014976A1 (en) 1994-05-18 2003-03-10 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US11/534,828 Expired - Fee Related US7666881B2 (en) 1994-05-18 2006-09-25 Methods of treating allergic reactions using hydrated forms of antihistaminic piperidine derivatives
US11/534,839 Expired - Fee Related US7662835B2 (en) 1994-05-18 2006-09-25 Methods of treating allergic reactions using an anhydrous form of antihistaminic piperidine derivatives
US11/978,669 Abandoned US20080167469A1 (en) 1994-05-18 2007-10-30 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US11/978,670 Abandoned US20080167471A1 (en) 1994-05-18 2007-10-30 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/803,389 Abandoned US20010012896A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US09/803,476 Abandoned US20010025106A1 (en) 1994-05-18 2001-03-09 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Family Applications After (9)

Application Number Title Priority Date Filing Date
US10/128,926 Abandoned US20020193600A1 (en) 1994-05-18 2002-04-24 Process for preparing anyhdrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/160,883 Expired - Fee Related US7135571B2 (en) 1994-05-18 2002-06-03 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/162,011 Expired - Fee Related US7138524B2 (en) 1994-05-18 2002-06-03 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/214,262 Abandoned US20030045721A1 (en) 1994-05-18 2002-08-07 Process for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US10/386,812 Abandoned US20040014976A1 (en) 1994-05-18 2003-03-10 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US11/534,828 Expired - Fee Related US7666881B2 (en) 1994-05-18 2006-09-25 Methods of treating allergic reactions using hydrated forms of antihistaminic piperidine derivatives
US11/534,839 Expired - Fee Related US7662835B2 (en) 1994-05-18 2006-09-25 Methods of treating allergic reactions using an anhydrous form of antihistaminic piperidine derivatives
US11/978,669 Abandoned US20080167469A1 (en) 1994-05-18 2007-10-30 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
US11/978,670 Abandoned US20080167471A1 (en) 1994-05-18 2007-10-30 Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof

Country Status (18)

Country Link
US (12) US20010012896A1 (zh)
EP (3) EP2354125A1 (zh)
JP (7) JPH10500134A (zh)
CN (3) CN1148849A (zh)
AT (1) ATE220667T1 (zh)
AU (1) AU693892B2 (zh)
CA (3) CA2189007C (zh)
DE (1) DE69527429T2 (zh)
DK (1) DK0766668T3 (zh)
ES (1) ES2176329T3 (zh)
FI (1) FI964565A0 (zh)
HK (2) HK1098467A1 (zh)
HU (1) HU227676B1 (zh)
IL (3) IL113747A (zh)
MX (1) MX9605613A (zh)
NO (1) NO315319B1 (zh)
PT (1) PT766668E (zh)
WO (1) WO1995031437A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044038A1 (en) * 2002-06-10 2004-03-04 Barnaba Krochmal Polymorphic form XVI of fexofenadine hydrochloride
US20040058955A1 (en) * 2001-04-09 2004-03-25 Ben-Zon Dolitzky Polymorphs of fexofenadine hydrochloride
US20040167168A1 (en) * 2001-04-09 2004-08-26 Ben-Zion Dolitzky Polymorphs of fexofenadine hydrochloride
US20050256163A1 (en) * 2004-04-26 2005-11-17 Ilan Kor Crystalline forms of fexofenadine hydrochloride and processes for their preparation
US20090012301A1 (en) * 2004-09-28 2009-01-08 Teva Pharmaceuticals Usa, Inc. Fexofenadine crystal form and processes for its preparation thereof

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9400555D0 (en) * 1994-01-13 1994-03-09 Short Brothers Plc Boundery layer control in aerodynamic low drag structures
CN1148849A (zh) 1994-05-18 1997-04-30 赫彻斯特马里恩鲁斯公司 抗组胺哌啶衍生物,其多晶形物和假同晶物的无水和水合物形式的制备方法
EP0812195B1 (en) * 1995-02-28 2002-10-30 Aventis Pharmaceuticals Inc. Pharmaceutical composition for piperidinoalkanol compounds
KR100514264B1 (ko) * 1997-08-26 2005-09-15 아벤티스 파마슈티칼스 인크. 피페리디노알칸올-충혈완화제 조합용 제약 조성물
IN191492B (zh) * 1999-05-25 2003-12-06 Ranbaxy Lab Ltd
US6613906B1 (en) * 2000-06-06 2003-09-02 Geneva Pharmaceuticals, Inc. Crystal modification
CH695216A5 (de) 2001-02-23 2006-01-31 Cilag Ag Verfahren zur Herstellung eines nicht hydratisierten Salzes eines Piperidinderivats und eine so erhältliche neue kristalline Form eines solchen Salzes.
US7700779B2 (en) * 2001-06-18 2010-04-20 Dr. Reddy's Laboratories Limited Crystalline forms of fexofenadine and its hydrochloride
EP2261209A1 (en) * 2001-06-18 2010-12-15 Dr. Reddy's Laboratories Ltd. Novel crystalline forms of 4-[4-[4- hydroxydiphenylmethyl)-1-piperidinyl]-1-hydroxybutyl]-alpha, alpha-dimethylbenene acetic acid and its hydrochloride
ES2301662T3 (es) * 2001-07-31 2008-07-01 Texcontor Etablissement Polimorfo de clorhidrato de fexofenadina.
US20030158227A1 (en) * 2001-11-08 2003-08-21 Barnaba Krochmal Polymorphs of fexofenadine base
JP3910907B2 (ja) * 2002-10-29 2007-04-25 新光電気工業株式会社 キャパシタ素子及びこの製造方法、半導体装置用基板、並びに半導体装置
US20050054616A1 (en) 2003-07-03 2005-03-10 Judith Aronhime Zoledronic acid crystal forms, zoledronate sodium salt crystal forms, amorphous zoledronate sodium salt, and processes for their preparation
GB0319935D0 (en) 2003-08-26 2003-09-24 Cipla Ltd Polymorphs
ITMI20041143A1 (it) 2004-06-08 2004-09-08 Dipharma Spa Polimorfi di fexofenadina e procedimento per la loro preparazione
EP1616861A3 (en) * 2004-06-15 2006-02-08 Dipharma S.p.A. A process for the preparation of keto compounds
ITMI20041568A1 (it) * 2004-07-30 2004-10-30 Dipharma Spa "polimorfi di fexofenadina base"
DOP2006000274A (es) * 2005-12-14 2007-10-15 Sanofi Aventis Us Llc Formulación de suspensión de fexofenadina
JP2009543780A (ja) * 2006-07-11 2009-12-10 ミューチュアル ファーマシューティカル カンパニー,インク. 制御放出製剤およびキット
US20090076080A1 (en) * 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched fexofenadine
US20090306135A1 (en) 2008-03-24 2009-12-10 Mukesh Kumar Sharma Stable amorphous fexofenadine hydrochloride
WO2010083360A2 (en) * 2009-01-16 2010-07-22 Mutual Pharmaceutical Company, Inc. Controlled-release formulations
KR20120115492A (ko) 2009-11-06 2012-10-18 바스프 에스이 4―히드록시 벤조산 및 선택된 살충제의 결정질 복합체
IT1400965B1 (it) 2010-06-15 2013-07-05 Dipharma Francis Srl Polimorfi di fexofenadina
ES2403130B1 (es) 2010-06-15 2014-09-29 Chemelectiva S.R.L. Forma polimórfica de clorhidrato de fexofenadina, compuestos intermedios y procedimiento para su preparación
US9420872B2 (en) * 2010-08-23 2016-08-23 Jason Bird Apparatus and system for holding game-calling devices
JP2012087100A (ja) * 2010-10-21 2012-05-10 Sumitomo Chemical Co Ltd 形態iのフェキソフェナジン一塩酸塩の製造方法
CN104072402B (zh) * 2014-07-16 2016-08-17 昆山龙灯瑞迪制药有限公司 一种新结晶形式的盐酸非索非那定化合物及其制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US631375A (en) * 1899-04-12 1899-08-22 Ephraim Musselman Face-protector.
US3448152A (en) * 1966-11-03 1969-06-03 Jefferson Chem Co Inc Amine recovery
US3878217A (en) * 1972-01-28 1975-04-15 Richardson Merrell Inc Alpha-aryl-4-substituted piperidinoalkanol derivatives
BE794598A (fr) 1972-01-28 1973-05-16 Richardson Merrell Inc Nouveaux derives olefiniques de piperidines substituees en 4 et leur procede de preparation
US3965257A (en) 1972-01-28 1976-06-22 Richardson-Merrell Inc. Compositions and methods for the treatment of the symptoms of histamine induced allergic reactions
US4285958A (en) * 1979-04-10 1981-08-25 Richardson-Merrell Inc. 1-Piperidine-alkylene ketones, pharmaceutical compositions thereof and method of use thereof
US4254129A (en) * 1979-04-10 1981-03-03 Richardson-Merrell Inc. Piperidine derivatives
US4254130A (en) * 1979-04-10 1981-03-03 Richardson-Merrell Inc. Piperidine derivatives
US4285957A (en) * 1979-04-10 1981-08-25 Richardson-Merrell Inc. 1-Piperidine-alkanol derivatives, pharmaceutical compositions thereof, and method of use thereof
IL63968A (en) 1980-10-01 1985-10-31 Glaxo Group Ltd Form 2 ranitidine hydrochloride,its preparation and pharmaceutical compositions containing it
US4742175A (en) 1986-05-07 1988-05-03 Merrell Dow Pharmaceuticals Inc. Preparation of polymorphically pure terfenadine
JPH02213431A (ja) * 1989-02-13 1990-08-24 Kobe Steel Ltd SiCウィスカ強化Al合金複合材料
DE4034218A1 (de) 1990-10-27 1992-04-30 Merck Patent Gmbh Verfahren zur herstellung von carebastin
TW198008B (zh) 1991-04-08 1993-01-11 Green Cross Corp
US5631375A (en) * 1992-04-10 1997-05-20 Merrell Pharmaceuticals, Inc. Process for piperidine derivatives
AU671822B2 (en) 1992-04-10 1996-09-12 Aventisub Ii Inc. 4-diphenylmethyl piperidine derivatives and process for their preparation
WO1993023047A1 (en) 1992-05-11 1993-11-25 Merrell Dow Pharmaceuticals Inc. Use of terfenadine derivatives as antihistaminics in a hepatically impaired patient
ATE322899T1 (de) 1992-08-03 2006-04-15 Sepracor Inc Terfenadin-carboxylat und die behandlung von allergischen erkrankungen
US5315016A (en) 1992-10-13 1994-05-24 Nycomed Dak A/S Process for preparing pure podophyllotoxin
DE69433346T2 (de) 1993-06-24 2004-09-09 Albany Molecular Research, Inc. Herstellung von Verbindungen, die in der Produktion von Piperidin-Derivaten nützlich sind
CA2181089C (en) 1993-06-24 2000-05-23 Thomas E. D'ambra Piperidine derivatives and process for their production
AU699559B2 (en) 1993-06-25 1998-12-10 Aventisub Ii Inc. Novel intermediates for the preparation of antihistaminic piperidine derivatives
US6147216A (en) 1993-06-25 2000-11-14 Merrell Pharmaceuticals Inc. Intermediates useful for the preparation of antihistaminic piperidine derivatives
CN1148849A (zh) * 1994-05-18 1997-04-30 赫彻斯特马里恩鲁斯公司 抗组胺哌啶衍生物,其多晶形物和假同晶物的无水和水合物形式的制备方法
US5576610A (en) 1994-07-05 1996-11-19 Motorola, Inc. Method and apparatus for determining battery characteristics
EP0812195B1 (en) * 1995-02-28 2002-10-30 Aventis Pharmaceuticals Inc. Pharmaceutical composition for piperidinoalkanol compounds
IL134772A (en) 1995-02-28 2002-02-10 Aventis Pharma Inc Pharmaceutical compositions of piperidinoalkanol compounds in solid unit dosage form
US5574045A (en) * 1995-06-06 1996-11-12 Hoechst Marion Roussel, Inc. Oral pharmaceutical composition of piperidinoalkanol compounds in solution form
KR100514264B1 (ko) 1997-08-26 2005-09-15 아벤티스 파마슈티칼스 인크. 피페리디노알칸올-충혈완화제 조합용 제약 조성물
US6214427B1 (en) * 1998-08-28 2001-04-10 General Electric Company Method of making an electronic device having a single crystal substrate formed by solid state crystal conversion
US6613906B1 (en) * 2000-06-06 2003-09-02 Geneva Pharmaceuticals, Inc. Crystal modification
US20020177680A1 (en) * 2000-08-23 2002-11-28 Hubbell Jeffrey A. Novel polymer compounds
US6475942B1 (en) * 2000-09-05 2002-11-05 General Electric Company Conversion of polycrystalline alumina to single crystal sapphire using molybdenum doping
PL366576A1 (en) * 2001-04-09 2005-02-07 Teva Pharmaceutical Industries Ltd. Polymorphs of fexofenadine hydrochloride
US7700779B2 (en) * 2001-06-18 2010-04-20 Dr. Reddy's Laboratories Limited Crystalline forms of fexofenadine and its hydrochloride
US20090211514A1 (en) * 2008-02-26 2009-08-27 Lehigh University Single crystal conversion process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040058955A1 (en) * 2001-04-09 2004-03-25 Ben-Zon Dolitzky Polymorphs of fexofenadine hydrochloride
US20040167168A1 (en) * 2001-04-09 2004-08-26 Ben-Zion Dolitzky Polymorphs of fexofenadine hydrochloride
US20040044038A1 (en) * 2002-06-10 2004-03-04 Barnaba Krochmal Polymorphic form XVI of fexofenadine hydrochloride
US20060217557A1 (en) * 2002-06-10 2006-09-28 Barnaba Krochmal Polymorphic form XVI of fexofenadine hydrochloride
US20090054486A1 (en) * 2002-06-10 2009-02-26 Teva Pharmaceuticals Usa, Inc. Polymorphic form xvi of fexofenadine hydrochloride
US7671071B2 (en) 2002-06-10 2010-03-02 Teva Pharmaceutical Industries Ltd. Polymorphic Form XVI of fexofenadine hydrochloride
US20050256163A1 (en) * 2004-04-26 2005-11-17 Ilan Kor Crystalline forms of fexofenadine hydrochloride and processes for their preparation
US20090082398A1 (en) * 2004-04-26 2009-03-26 Teva Pharmaceutical Industries Ltd. Crystalline forms of fexofenadine hydrochloride and processes for their preparation
US20090012301A1 (en) * 2004-09-28 2009-01-08 Teva Pharmaceuticals Usa, Inc. Fexofenadine crystal form and processes for its preparation thereof

Also Published As

Publication number Publication date
CN1148849A (zh) 1997-04-30
FI964565A (fi) 1996-11-14
JP2002255936A (ja) 2002-09-11
CA2449419A1 (en) 1995-11-23
CA2189007A1 (en) 1995-11-23
IL113747A0 (en) 1995-08-31
JP4503909B2 (ja) 2010-07-14
HUT76134A (en) 1997-06-30
CA2585705A1 (en) 1995-11-23
CN1907967B (zh) 2012-07-04
US7135571B2 (en) 2006-11-14
JP2002316978A (ja) 2002-10-31
CA2449419C (en) 2011-09-06
ES2176329T3 (es) 2002-12-01
CN1907967A (zh) 2007-02-07
JP2010120969A (ja) 2010-06-03
US20080167471A1 (en) 2008-07-10
NO964859D0 (no) 1996-11-15
EP0766668A1 (en) 1997-04-09
AU2426595A (en) 1995-12-05
CN1623985A (zh) 2005-06-08
MX9605613A (es) 1998-05-31
US20030045721A1 (en) 2003-03-06
EP2354125A1 (en) 2011-08-10
JP2002308849A (ja) 2002-10-23
FI964565A0 (fi) 1996-11-14
JP4503908B2 (ja) 2010-07-14
US20010012896A1 (en) 2001-08-09
US20080167469A1 (en) 2008-07-10
US20020193603A1 (en) 2002-12-19
US7662835B2 (en) 2010-02-16
DK0766668T3 (da) 2002-10-28
ATE220667T1 (de) 2002-08-15
EP0766668B1 (en) 2002-07-17
IL113747A (en) 2001-05-20
US7666881B2 (en) 2010-02-23
HK1137742A1 (en) 2010-08-06
PT766668E (pt) 2002-11-29
WO1995031437A1 (en) 1995-11-23
DE69527429D1 (de) 2002-08-22
EP1178041A1 (en) 2002-02-06
NO315319B1 (no) 2003-08-18
NO964859L (no) 1996-11-15
DE69527429T2 (de) 2003-03-20
HU227676B1 (en) 2011-11-28
US20010025106A1 (en) 2001-09-27
CA2585705C (en) 2012-04-17
US20040014976A1 (en) 2004-01-22
IL134917A0 (en) 2001-05-20
IL134917A (en) 2001-07-24
US20020193600A1 (en) 2002-12-19
US20070021461A1 (en) 2007-01-25
HK1098467A1 (en) 2007-07-20
CA2189007C (en) 2004-03-02
US20020193601A1 (en) 2002-12-19
JP2002255935A (ja) 2002-09-11
US20070021462A1 (en) 2007-01-25
JP2002308850A (ja) 2002-10-23
JP4503907B2 (ja) 2010-07-14
HU9603167D0 (en) 1997-01-28
AU693892B2 (en) 1998-07-09
US7138524B2 (en) 2006-11-21
JPH10500134A (ja) 1998-01-06

Similar Documents

Publication Publication Date Title
US7666881B2 (en) Methods of treating allergic reactions using hydrated forms of antihistaminic piperidine derivatives
US20010022973A1 (en) Pharmaceutical composition for piperidinoalkanol compounds
JP2005015486A (ja) 塩酸ドネペジルの多形結晶およびその製造法
US20070129401A1 (en) Processes for preparing anhydrous and hydrate forms of antihistaminic piperidine derivatives, polymorphs and pseudomorphs thereof
EP1265893A1 (en) Hydrochloride salts of 5-[4-[2-(n-methyl-n-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione
NZ285229A (en) 4-(biphenylmethyl)piperdine derivatives in anhydrous and hydrated forms, their preparation and medicaments thereof
WO2003050111A1 (en) Toluenesulfonate salts of a thiazolidinedione derivative
CN101337922A (zh) 抗组胺哌啶衍生物,其多晶形物和假同晶物的无水和水合物形式的制备方法

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION