US20010014718A1 - Resin compositions and use of the same - Google Patents

Resin compositions and use of the same Download PDF

Info

Publication number
US20010014718A1
US20010014718A1 US08/836,351 US83635197A US2001014718A1 US 20010014718 A1 US20010014718 A1 US 20010014718A1 US 83635197 A US83635197 A US 83635197A US 2001014718 A1 US2001014718 A1 US 2001014718A1
Authority
US
United States
Prior art keywords
ethylene
olefin
copolymer
carbon atoms
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US08/836,351
Other languages
English (en)
Inventor
Mamoru Kagami
Yasuo Tanaka
Masahiro Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Assigned to MITSUI PETROCHEMICAL INDUSTRIES, LTD. reassignment MITSUI PETROCHEMICAL INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAGAMI, MAMORU, SUGI, MASAHIRO, TANAKA, YASUO
Assigned to MITSUI CHEMICALS, INC. reassignment MITSUI CHEMICALS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MITSUI PETROCHEMICAL INDUSTRIES, LTD.
Publication of US20010014718A1 publication Critical patent/US20010014718A1/en
Priority to US10/133,445 priority Critical patent/US6713562B2/en
Priority to US10/765,903 priority patent/US6936660B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a polyethylene resin composition excellent in moldability and capable of providing moldings having excellent pliability.
  • the present invention relates to a soft resin composition containing a polyethylene resin, which is capable of providing moldings excellent, particularly, in pliability and heat resistance and has an excellent moldability.
  • the present invention also relates to an ethylene/ ⁇ -olefin copolymer composition suitable for use mainly in packaging films. More particularly, the present invention relates to an ethylene/ ⁇ -olefin copolymer composition which is, as compared with the conventional ethylene copolymer compositions, excellent in film-moldability and capable of high-speed molding, and also capable of providing a film excellent in machanical strength properties, low temperature heat-sealing properties and heat-sealing stability, and further in slip characteristics and anti-blocking properties thereby being excellent in suitability for high-speed filling upon packaging by automaticcally filling, and to a film from the same.
  • Polyethylene resins include various kinds of resins, such as high-pressure low-density polyethylene resins, high-density polyethylene resins and linear low-density polyethylene resins including ethylene/ ⁇ -olefin copolymers.
  • the low-density polyethylene resins are excellent in the balance between pliability and heat resistance and, therefore, are widely used for gaskets of injection molding machines, and for various packing, tube and sheet materials.
  • the conventional low-density polyethylene resins are excellent in heat resistance but do not have sufficient pliability. Therefore, improvement in the properties has been desired.
  • the high-pressure low-density polyethylene resins for example, the high-pressure low-density polyethylene resins, the high-density polyethylene resins and the linear low-density polyethylene resins including ethylene/ ⁇ -olefin copolymers have been molded into films and widely used in various fields, such as in packaging of products from the past.
  • the films of the linear low-density polyethylene resins including ethylene/ ⁇ -olefin copolymers are used for sealants of various packaging materials, because the linear low-density polyethylene resins as film materials can be made at low energy consumption (i.e., small production cost) of production, as compared with the conventional high-pressure low-density polyethylenes, and are excellent in heat-sealability through contaminants, hot tack and mechanical properties, such as tear strength and impact strength.
  • the film made singly from the linear low-density ethylene/ ⁇ -olefin copolymer does not always sufficiently satisfy the required handling characteristics and suitability for high-speed filling.
  • the linear low-density ethylene/ ⁇ -olefin copolymer is low in melt tension for its molecular weight, as compared with the high-pressure polyethylene. Therefore, it has a drawback in that, when they are molded into films at high speed in inflation molding, rocking or breakage of bubbles is liable to occur.
  • the linear low-density ethylene/ ⁇ -olefin copolymer has a further drawback in that, since the number of branchings in its molecular chain is small, the flowability thereof in high-shear region becomes worse.
  • compositions or films have been proposed.
  • a composition made by blending a low-crystalline ethylene copolymer having a density of not more than 0.905 g/cm 3 with the ethylene/ ⁇ -olefin copolymer Japanese Patent L-O-P No. 34145/1982
  • a composition made by blending an ethylene/vinyl acetate copolymer with the ethylene/ ⁇ -olefin copolymer Japanese Patent L-O-P No. 109543/1984.
  • films of these compositions could not solve the above problems and, therefore, there is room for improvement in melt tension, flowability in high shearing region, low temperature heat-sealing properties, mechanical properties including tear strength, transparency, and antiblocking properties.
  • An object of the invention is to provide a resin composition excellent in moldability and capable of providing moldings having excellent pliability.
  • Another object of the invention is to provide particularly a soft resin composition containing a polyethylene resin, which is capable of providing moldings excellent in pliability and heat resistance and has an excellent moldability.
  • Still another object of the present invention is to provide an ethylene/ ⁇ -olefin copolymer resin composition and a film therefrom, which composition is excellent in heat stability and stability for high-speed molding, and can provide films excellent in low temperature heat-sealing properties and sealing stability, and, further, in slip characteristics and anti-blocking properties thereby being excellent in handling properties and suitability for high-speed filling upon packaging by automatically filling.
  • a long-chain branched ethylene/ ⁇ -olefin random copolymer (B) comprising ethylene and an ⁇ -olefin having 3 to 20 carbon atoms at an amount of 0.5 to 5000 parts by weight (that is, the composition contains 2 to 20000 parts by weight of the polyethylene resin (A) based on 100 parts by weight of the copolymer (B)),
  • polyethylene resin (A) has:
  • melt flow rate (ASTM D 1238, 190° C., a load of 2.16kg) of 0.01 to 150 g/10 min and;
  • (P E ) and (P O ) are respectively a molar fraction of the units derived from ethylene and a molar fraction of the units derived from the ⁇ -olefin in the copolymer rubber (B), and (POE) is a proportion of the number of the ethylene/ ⁇ -olefin sequences to the number of all the dyad sequences.
  • (P E ) and (P O ) are respectively a molar fraction of the units derived from ethylene and a molar fraction of the units derived from the ⁇ -olefin in the copolymer rubber (B), and (P OE ) is a proportion of the number of the ethylene/ ⁇ -olefin sequences to the number of all the dyad sequences.
  • the soft resin composition of the present invention is a composition comprising:
  • polyethylene resin (A-X) has:
  • melt flow rate (ASTM D 1238, 190° C., a load of 2.16 kg) of 3 to 150 g/10 min;
  • the ethylene/ ⁇ -olefin copolymer resin composition of the present invention is a composition comprising:
  • a long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) in an amount of 5 to 67 parts by weight that is, the composition contains 60 to 95 parts by weight of the polyethylene resin (A- ⁇ ) and the remainings of the copolymer (B- ⁇ ), based on 100 parts by weight of the total amount of the polyethylene resin (A- ⁇ ) and the copolymer (B- ⁇ ),
  • polyethylene resin (A- ⁇ ) is a linear ethylene/ ⁇ -olefin copolymer (A-0) comprising ethylene and ⁇ -olefin having 4 to 20 carbon atoms and has:
  • melt flow rate (b) a melt flow rate (MFR) of 0.01 to 20 g/10 min
  • melt flow rate (b) a melt flow rate (MFR) of 0.01 to 20 g/10 min;
  • Each of the ethylene/ ⁇ -olefin random copolymers used in the above compositions is preferably an ethylene/ ⁇ -olefin random copolymer prepared by randomly copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms in the presence of a metallocene catalyst comprising a metallocene compound represented by the following formula (I):
  • M is a transition metal atom of Group IVB of the periodic table
  • R 1 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 2 , R 4 , R 5 and R 6 may be identical with or different from each other and are each hydrogen, a halogen atom or a hydrocarbon group of 1 to 6 carbon atoms,
  • R 3 is an aryl group of 6 to 16 carbon atoms which may be substituted with a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms or an organic silyl group,
  • X 1 and X 2 are each independently hydrogen, a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms, a halogenated hydrocarbon group of 1 to 20 carbon atoms, an oxygen-containing group or a sulfur-containing group, and
  • Y is a divalent hydrocarbon group of 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group of 1 to 20 -carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, —O—, —CO—, —S—, —SO—, —SO 2 —, —NR 7 —, —P(R 7 )—, —P(O) (R 7 )—, —BR 7 — or —AlR 7 — (in the formulae, the R 7 is hydrogen or a halogen atom, or a hydrocarbon group of 1 to 20 carbon atoms or a halogenated hydrocarbon group of 1 to 20 carbon atoms)
  • the film (ethylene/ ⁇ -olefin copolymer resin film) of the invention is preferably made from the above resin composition (ethylene/ ⁇ -olefin copolymer composition).
  • the film is preferably produced by inflation molding.
  • the soft resin composition is mainly described at first and, next, the ethylene/ ⁇ -olefin copolymer resin composition is described.
  • the polyethylene resin (A) used in the invention may be a homopolymer of ethylene or a random copolymer of ethylene and ⁇ -olefin, preferably of ethylene and ⁇ -olefin having 4 to 20 carbon atoms. Further, the polyethylene resin (A) may be linear or branched.
  • Examples of the ⁇ -olefin having 4-20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-do
  • the polyethylene resin (A) used in the invention has MFR (melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg) of 0.01 to 150 g/min.
  • MFR melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg
  • MFR melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg
  • MFR melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg
  • MFR melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg
  • MFR melt flow rate: ASTM D 1238, 190° C., a load of 2.16 kg
  • the resultant resin composition is excellent in melt-flowability, namely excellent in moldability, and capable of providing moldings having an improved balance between pliability and heat resistance.
  • the polyethylene resin (A) desirably has a density of not more than 0.970 g/cm 3 , preferably 0.901 to 0.970 g/cm 3 , especially 0.901 to 0.930 g/cm 3 .
  • the polyethylene resin (A) having such density gives the soft resin composition excellent in moldability and having an improved balance between pliability and heat resistance.
  • the ethylene/ ⁇ -olefin random copolymer (B) described below is contained at an amount of 0.5 to 5000 parts by weight based on 100 parts by weight of the polyethylene resin (A).
  • the resin composition described above is excellent in moldability and capable of providing moldings having excellent pliability.
  • the (soft) resin composition contains the ethylene/ ⁇ -olefin random copolymer (B) in an amount of 67 to 2000 parts by weight, more preferably 83 to 1000 parts by weight, especially 100 to 500 parts by weight, based on 100 parts by weight of the polyethylene resin (A)
  • moldings having an excellent balance between pliability and heat resistance can be provided and the soft resin compositions excellent in moldability can be obtained.
  • the polyethylene resin (A) is desirably contained in an amount of 2 to 200 parts by weight, preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, especially 20 to 100 parts by weight, based on 100 parts by weight of the ethylene/ ⁇ -olefin random copolymer (B).
  • the polyethylene resins (A) as described above can be obtained by a conventional process.
  • the ethylene/ ⁇ -olefin copolymer as described above can be obtained by, for example, copolymerizing ethylene and ⁇ -olefin having 4 to 20 carbon atoms in the presence of a transition metal catalyst.
  • the density of the linear ethylene/ ⁇ -olefin copolymer can be controlled with the kind and copolymerized amount of the ⁇ -olefin used, and the melt flow rate can be controlled with the kind and amount of a chain transfer agent.
  • the catalysts and the polymerization process for producing the polymers are not particularly limited.
  • the catalysts employable are Ziegler-Natta catalyst, Phillips catalyst, a metallocene catalyst and so on.
  • Ziegler-Natta catalyst includes a compound of a transition metal of Group IV of the periodic table, such as Ti-type and Zr-type, and an olefin polymerization catalyst comprising a compound of a transition metal of Group V of the periodic table (V-type) and an organoaluminum compound.
  • the polymerization process employable are a slurry polymerization, gas phase polymerization, solution polymerization and so on.
  • the ethylene/ ⁇ -olefin random copolymer (B) used in the invention is a long-chain branched ethylene/ ⁇ -olefin random copolymer of ethylene and ⁇ -olefin having 3 to 20 carbon atoms.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-
  • the ethylene/ ⁇ -olefin random copolymer (B) has a density of not more than 0.900 g/cm 3 , preferably not more than 0.895 g/cm 3 , more preferably not more than 0.890 g/cm 3 .
  • the ethylene/ ⁇ -olefin random copolymer (B) has an intrinsic viscosity ( ⁇ ), as measured in decalin at 135° C., of 0.3 to 3.0 dl/g, preferably 0.5 to 2.0 dl/g.
  • the ethylene/ ⁇ -olefin random copolymer (B) having the intrinsic viscosity in the above range has excellent blending properties with the polyethylene resin (A).
  • use of the ethylene/ ⁇ -olefin random copolymer (B) having an intrinsic viscosity within the above range provides the soft resin composition containing polyethylene resin, which has high flowability and excellent moldability.
  • the ethylene/ ⁇ -olefin random copolymer (B) has a glass transition temperature (Tg), as measured by DSC (differential scanning calorimeter), of not more than ⁇ 50° C.
  • the ethylene/ ⁇ -olefin random copolymer (B) has a crystallinity, as measured by X-ray diffractometry, of less than 40%, preferably not more than 30%.
  • Use of the ethylene/ ⁇ -olefin random copolymer (B) having a crystallinity of less than 40% provides the soft resin composition containing polyethylene resin which is excellent in pliability.
  • the ethylene/ ⁇ -olefin random copolymer (B) desirably has a molecular weight distribution (Mw/Mn), as measured by GPC, of not more than 3.0 and a parameter (B value), as determined by the 13 C-NMR spectrum, which indicates a randomness in sequences of polymerized comonomers, of 1.0-1.4.
  • This B value of the ethylene/ ⁇ -olefin random copolymer (B) is an index of distribution of constituent units derived from each comonomer in a chain made by copolymerization, and it can be determined based on the following equation.
  • (P E ) and (P O ) are respectively a molar fraction of the units derived from ethylene and a molar fraction of the units derived from the ⁇ -olefin in the ethylene/ ⁇ -olefin random copolymer rubber, and
  • (P OE ) is a proportion of the number of the ⁇ -olefin/ethylene sequences to the number of all the dyad sequences in the copolymer rubber (B).
  • Measuring temperature 120° C.
  • P E , P O and P OE values are obtained from the 13 C-NMR spectrum thus measured in accordance with the proposals of G. J. Ray (Macromolecules, 10,773 (1977)), J. C. Randall (Macromolecules, 15,353 (1982)) and K. Kimura (Polymer, 25,441 (1984)).
  • the B value obtained from the above equation becomes 2 when both monomers are mutually distributed in the ethylene/ ⁇ -olefin copolymer resin.
  • the B value becomes 0 when the polymer is a perfect block copolymer in which both monomers are completely separated.
  • the ethylene/ ⁇ -olefin random copolymer (B) has a g ⁇ * value of 0.2 to 0.95, preferably 0.4 to 0.9, more preferably 0.5 to 0.85.
  • the g ⁇ * value is defined by the following equation.
  • ( ⁇ ) is an intrinsic viscosity measured in the property (c)
  • ( ⁇ ) blank is an intrinsic viscosity of a linear ethylene/propylene copolymer which has the same weight-average molecular weight (measured by a light scattering method) as the ethylene/ ⁇ -olefin random copolymer and has an ethylene content of 70% by mol.
  • the long-chain branched ethylene/ ⁇ -olefin random copolymer (B) having the above-described properties can be obtained by randomly copolymerizing ethylene and ⁇ -olefin having 3 to 20 carbon atoms in the presence of a metallocene catalyst containing a specific metallocene compound.
  • the metallocene catalyst used in the process is not particularly limited so long as it contains a metallocene compound (A).
  • the metallocene catalyst may comprises a metallocene compound (A) in addition to an organoaluminum-oxy compound (B) and/or a compound reacting with the metallocene compound (A) to form an ion pair (C) (sometimes simply referred to “compound (C)” hereinafter).
  • the metallocene catalyst may be comprises an organoaluminum compound (D) in addition to the metallocene compound (A), and the organoaluminum-oxy compound (B) and/or the compound (C).
  • the metallocene compound [A] employable for preparing the long-chain branched ethylene/ ⁇ -olefin random copolymer (B) that is used in the invention is, for example, a compound represented by the following formula [I].
  • M is a transition metal atom of Group IVB of the periodic table, specifically titanium, zirconium or hafnium, particularly preferably zirconium.
  • R 1 is a hydrocarbon group of 1 to 6 carbon atoms, and examples thereof include alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl and cyclohexyl; and alkenyl groups, such as vinyl and propenyl.
  • alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl and cyclohexyl
  • alkenyl groups such as vinyl and propenyl.
  • alkyl groups whose carbon bonded to the indenyl group is primary carbon. More preferable are alkyl groups of 1 to 4 carbon atoms, and particularly preferred are methyl and ethyl.
  • R 2 , R 4 , R 5 and R 6 may be the same as or different from each other, and are each hydrogen, a halogen atom or the same hydrocarbon group of 1 to 6 carbon atoms as described for R 1 .
  • the halogen atom is fluorine, chlorine, bromine or iodine.
  • R 3 is an aryl group of 6 to 16 carbon atoms. This aryl group may be substituted with a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms or an organosilyl group.
  • aryl groups include phenyl, ⁇ -naphthyl, ⁇ -naphthyl, anthracenyl, phenanthryl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl and biphenylyl.
  • phenyl, naphthyl, anthracenyl and phenanthryl are preferable.
  • hydrocarbon groups of 1 to 20 carbon atoms serving as substituents of the aryl groups include:
  • alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl and adamantyl;
  • alkenyl groups such as vinyl, propenyl and cyclohexenyl
  • arylalkyl groups such as benzyl, phenylethyl and phenylpropyl
  • aryls groups such as the above-exemplified aryl groups, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, methylnaphthyl and benzylphenyl.
  • organosilyl groups include trimethylsilyl, triethylsilyl and triphenylsilyl.
  • X 1 and X 2 are each hydrogen, a halogen atom, a hydrocarbon group of 1 to 20 carbon atoms which may be substituted with halogen, an oxygen-containing group or a sulfur-containing group.
  • halogen atoms and the hydrocarbon groups are the same as those mentioned above.
  • oxygen-containing groups examples include hydroxyl group; alkoxy groups, such as methoxy, ethoxy, propoxy and butoxy; aryloxy groups, such as phenoxy, methylphenoxy, dimethylphenoxy and naphthoxy; and arylalkoxy groups, such as phenylmethoxy and phenylethoxy.
  • sulfur-containing groups include substituents wherein oxygen is replaced with sulfur in the above-exemplified oxygen-containing groups; sulfonato groups, such as methylsulfonato, trifluoromethanesulfonato, phenylsulfonato, benzylsulfonato, p-toluenesulfonato, trimethylbenzenesulfonato, triisobutylbenzenesulfonato, p-chlorobenzenesulfonato and pentafluorobenzenesulfonato; and sulfinato groups, such as methylsulfinato, phenylsulfinato, benzylsulfinato, p-toluenesulfinato, trimethylbenzenesulfinato and pentafluorobenzenesulfinato.
  • sulfonato groups
  • X 1 and X 2 are each preferably a halogen atom or a hydrocarbon group of 1 to 20 carbon atoms.
  • Y is a divalent hydrocarbon group of 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group of 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalanet tin-containing group, —O—, —CO—, —S—, —SO—, —SO 2 —, —NR 7 —, —P(R 7 )—, —P(O)(R 7 )—, —BR 7 — or —AlR 7 — (The R 7 is hydrogen or a halogen atom, or a hydrocarbon group of 1 to 20 carbon atoms or a halogenated hydrocarbon group of 1 to 20 carbon atoms).
  • Examples of the divalent hydrocarbon groups of 1 to 20 carbon atoms include alkylene groups, such as methylene, dimethylmethylene, 1,2-ethylene, dimethyl-1,2-ethylene, 1,3-trimethylene, 1,4-tetramethylene, 1,2-cyclohexylene and 1,4-cyclohexylene;
  • arylalkylene groups such as diphenylmethylene and diphenyl-1,2-ethylene.
  • divalent halogenated hydrocarbon groups include those wherein the above-exemplified divalent hydrocarbon groups of 1 to 20 carbon atoms are halogenated, such as chloromethylene.
  • Examples of the divalent silicon-containing groups include alkylsilylene, alkylarylsilylene and arylsilylene groups, such as methylsilylene, dimethylsilylene, diethylsilylene, di(n-propyl)silylene, di(i-propyl)silylene, di(cyclohexyl)silylene, methylphenylsilylene, diphenylsilylene, di(p-tolyl)silylene and di(p-chlorophenyl)silylene; and alkyldisilyl, alkylaryldisilyl and aryldisilyl groups, such as tetramethyl-1,2-disilyl and tetraphenyl-1,2-disilyl.
  • divalent germanium-containing groups include those wherein silicon is replaced with germanium in the above-exemplified divalent silicon-containing groups.
  • R 7 is the same halogen atom, hydrocarbon group of 1 to 20 carbon atoms or halogenated hydrocarbon group of 1 to 20 carbon atoms as described above.
  • Y is preferably a divalent silicon-containing group or a divalent germanium-containing group, more preferably a divalent silicon-containing group, particularly preferably an alkylsilylene group, an alkylarylsilylene group or an arylsilylene group.
  • a racemic modification of the metallocene compound is generally used as the catalyst component, but R type or S type is also employable.
  • metallocene compounds mentioned above can be used in combination of two or more kinds.
  • the metallocene compounds can be prepared in accordance with “Journal of Organometallic Chem.”, 288 (1985), pp. 63 to 67 and European Patent Application No. 0,320,762.
  • M is a metal of Group IV of the periodic table or a metal of lanthanide series
  • L a is a derivative of delocalization -K bond group and gives restraint geometrical shape to the metal M active site
  • Xs are each independently hydrogen or a halogen atom, or a hydrocarbon group containing 20 or less carbon atoms, silicon or germanium atom, a silyl group or a germyl group.
  • M is titanium, zirconium or hafnium, and X is the same as described above.
  • Cp is ⁇ -bonded to M and is a substituted cyclopentadienyl group having a substituent Z or its derivative.
  • Z is oxygen, sulfur, boron or an element of Group IVA of the periodic table.
  • Y is a ligand containing nitrogen, phosphorus, oxygen or sulfur. Z and Y may together form a condensed ring.
  • the metallocene compounds represented by the formula [II] can be used in combination of two or more kinds.
  • titanium compounds are listed above as examples of the metallocene compounds, but compounds wherein titanium is replaced with zirconium or hafnium in the above-exemplified titanium compounds are also employable.
  • the metallocene compound represented by the formula [I] is preferably used in the preparation of the long-chained branched ethylene/ ⁇ -olefin random copolymer.
  • the organoaluminum oxy-compound [B] used in the invention may be aluminoxane conventionally known or a benzene-insoluble organoaluminum oxy-compound exemplified in Japanese Patent Laid-Open Publication No. 78687/1990.
  • the conventionally known aluminoxane can be prepared by, for example, the following procedures.
  • An organoaluminum compound such as trialkylaluminum is added to a hydrocarbon medium suspension of compounds containing adsorbed water or salts containing water of crystallization, e.g., magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate or cerous chloride hydrate, so as to allow the organoaluminum compound to react with the compound or the salt, followed by recovering aluminoxane as its hydrocarbon solution.
  • a hydrocarbon medium suspension of compounds containing adsorbed water or salts containing water of crystallization e.g., magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate or cerous chloride hydrate
  • organotin oxide such as dimethyltin oxide or dibutyltin oxide is allowed to react with an organoaluminum compound such as trialkylaluminum in a medium such as decane, benzene or toluene.
  • the aluminooxane may contain a small amount of an organometallic component. Further, it is possible that the solvent or the unreacted organoaluminum compound is distilled off from the recovered solution of aluminoxane and that the remainder is redissolved in a solvent.
  • organoaluminum compounds used for preparing the aluminoxane include:
  • trialkylaluminums such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-sec-butylaluminum, tri-tert-butylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum and tridecylaluminum;
  • tricycloalkylaluminums such as tricyclohexylaluminum and tricyclooctylaluminum
  • dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, diethylaluminum bromide and diisobutylaluminum chloride;
  • dialkylaluminum hydrides such as diethylaluminum hydride and diisobutylaluminum hydride
  • dialkylaluminum alkoxides such as dimethylaluminum methoxide and diethylaluminum ethoxide
  • dialkylaluminum aryloxides such as diethylaluminum phenoxide.
  • trialkylaluminums and tricycloalkylaluminums are particularly preferable.
  • organoaluminum compound used for preparing the aluminoxane is isoprenylaluminum represented by the formula:
  • organoaluminum compounds mentioned above can be used in combination of two or more kinds.
  • solvents used for preparing the aluminoxane include:
  • aromatic hydrocarbons such as benzene, toluene, xylene, cumene and cymene;
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane and octadecane;
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclooctane and methylcyclopentane;
  • ethers such as ethyl ether and tetrahydrofuran.
  • aromatic hydrocarbons particularly preferable are aromatic hydrocarbons.
  • the compound which reacts with the metallocene compound [A] to form an ion pair [C] includes Lewis acid, ionic compounds, borane compounds and carborane compounds described in National Publications of international Patent No. 501950/1989 and No. 502036/1989, Japanese Patent Laid-Open Publication No. 179005/1991, No. 179006/1991, No. 207703/1991 and No. 207704/1991, and U.S. Pat. No. 5,321,106.
  • the Lewis acid includes Mg-containing Lewis acid, Al-containing Lewis acid and B-containing Lewis acid. Of these, B-containing Lewis acid is preferred.
  • the Lewis acid which contains a boron atom is, for example, a compound represented by the following formula:
  • R 1 , R 2 and R 3 are each independently a phenyl group which may have a substituent such as fluorine, methyl or trifluoromethyl, or a fluorine atom.
  • Examples of the compounds represented by the above formula include trifluoroboron, triphenylboron, tris(4-fluorophenyl)boron, tris(3,5-difluorophenyl)boron, tris(4-fluoromethylphenyl)boron, tris(pentafluorophenyl)boron, tris(p-tolyl)boron, tris(o-tolyl)boron and tris(3,5-dimethylphenyl)boron. Of these, particularly preferred is tris(pentafluorophenyl)boron.
  • the ionic compound employable in the invention is a salt comprising a cationic compound and an anionic compound.
  • the anion reacts with the metallocene compound [A] to render the compound [A] cationic, thereby, to form an ion pair, so that the anion stabilizes the transition metal cation seed.
  • examples of such anions include organoboron compound anion, organoarsenic compound anion and organoaluminum compound anion.
  • Preferable are anions which are relatively bulky and stabilize the transition metal cation seed.
  • Examples of the cations include metallic cation, organometallic cation, carbonium cation, tripium cation, oxonium cation, sulfonium cation, phosphonium cation and ammonium cation.
  • triphenylcarbenium cation More specifically, there can be mentioned triphenylcarbenium cation, tributylammonium cation, N,N-dimethylammonium cation, ferrocenium cation, etc.
  • ionic compounds containing an organoboron compound anion are preferred, and examples thereof include:
  • trialkyl-substituted ammonium salts such as triethylammoniumtetra(phenyl)boron, tripropylammoniumtetra(phenyl)boron, tri(n-butyl)ammoniumtetra(phenyl)boron, trimethylammoniumtetra(p-tolyl)boron, trimethylammoniumtetra(o-tolyl)boron, tributylammoniumtetra(pentafluorophenyl)boron, tripropylammoniumtetra(o,p-dimethylphenyl)boron, tributylammoniumtetra(m,m-dimethylphenyl)boron, tributylammoniumtetra(p-trifluoromethylphenyl)boron, tri(n-butyl)ammoniumtetra(o-tolyl)boron and tri(n-butyl)ammoniumte
  • N,N,-dialkylanilinium salts such as N,N-dimethylaniliniumtetra(phenyl)boron, N,N-diethylaniliniumtetra(phenyl)boron and N,N-2,4,6-pentamethylaniliniumtetra(phenyl)boron;
  • dialkylammonium salts such as di(n-propyl)ammoniumtetra(pentafluorophenyl)boron and dicyclohexylammoniumtetra(phenyl)boron;
  • triarylphosphonium salts such as triphenylphosphoniumtetra(phenyl)boron, tri(methylphenyl)phosphoniumtetra(phenyl)boron and tri(dimethylphenyl)phosphoniumtetra(phenyl)boron.
  • triphenylcarbeniumtetrakis (pentafluorophenyl) borate, N,N-dimethylaniliniumtetrakis (pentafluorophenyl)borate and ferroceniumtetra (pentafluorophenyl) borate are also employable in the invention.
  • the following ionic compounds containing a boron atom are also employable.
  • the counter ion is tri(n-butyl)ammonium, but the counter ion is in no way limited thereto.
  • salts of anion for example, bis[tri (n-butyl) ammonium]nonaborate, bis[tri (n-butyl) ammonium]decaborate, bis[tri(n-butyl) ammonium] undecaborate, bis [tri (n-butyl) ammonium]dodecaborate, bis[tri (n-butyl) ammonium]deahlorodecaborate, bis [tri(n-butyl) ammoniuml]dodecachlorododecaborate, tri (n-butyl) ammonium-1-carbadecabboate, tri(n-butyl)ammonium-1-carbaundecaborate, tri (n-butyl)ammonium-1-carbadodecaborate, tri(n-butyl)ammonium-1-trimethylsilyl-1-carbadecaborate and tri(n-butyl)ammoniumbromo-1-
  • borane compounds and carborane compounds are also employable. These compounds are used as the Lewis acid or the ionic compounds.
  • borane compounds, carborane complex compounds and salts of carborane anions include decaborane(14), 7,8-dicarbaundecaborane(13), 2,7-dicarbaundecaborane(13), undecahydride-7,8-dimethyl-7,8-dicarbaundecaborane, dodecahydride-11-methyl-2,7-dicarbaundecaborane, tri (n-butyl)ammonium-6-carbadecaborate(14), tri(n-butyl)ammonium-6-carbadecaborate(12), tri(n-butyl)ammonium-7-carbaundecaborate(13), tri(n-butyl)ammonium-7,8-dicarbaundecaborate(12), tri(n-butyl)ammonium-2,9-dicarbaundecaborate(12), tri(n-butyl)ammoniumdodecahydride-8-methyl-7,9-dicarbaundecaborate(12),
  • Examples of carborane compounds and salts of carboranes include 4-carbanonaborane(14), 1,3-dicarbanonaborane(13), 6,9-dicarbadecaborane(14), dodecahydride-1-phenyl-1,3-dicarbanonaborane, dodecahydride-1-methyl-1,3-dicarbanonaborane and undecahydride-1,3-dimethyl-1,3-dicarbanonaborane.
  • the following compounds are also employable.
  • the counter ion is tri(n-butyl)ammonium, but the counter ion is in no way limited thereto.
  • salts of metallic carboranes and metallic borane anions for example, tri(n-butyl)ammoniumbis(nonahydride-1,3-dicarbanonaborate)cobaltate(III), tri(n-butyl)ammoniumbis(undecahydride-7,8-dicarbaundecaborate)ferrate(III), tri(n-butyl)ammoniumbis(undecahydride-7,8-dicarbaundecaborate)cobaltate(III), tri(n-butyl)ammoniumbis(undecahydride-7,8-dicarbaundecaborate)nickelate(III), tri(n-butyl)ammoniumbis(undecahydride-7,8-dicarbaundecaborate)cuprate(III), tri(n-butyl)ammoniumbis(undecahydride-7,8-dicarbaundecaborate)aurate(III), tri(n-butyl)ammoniumbis(n-butyl)ammoniumbis(
  • organoaluminum compound [D] used in the invention can be represented by, for example, the following general formula (a):
  • R 5 is a hydrocarbon group of 1 to 12 carbon atoms
  • X is a halogen or hydrogen atom
  • n is 1 to 3.
  • R 5 is a hydrocarbon group of 1 to 12 carbon atoms, e.g., an alkyl group, a cycloalkyl group or an aryl group.
  • examples of such groups include methyl, ethyl, n-propyl, isopropyl, isobutyl, pentyl, hexyl, octyl, cyclopentyl, cyclohexyl, phenyl and tolyl.
  • organoaluminum compounds examples include:
  • trialkylaluminums such as trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, trioctylaluminum and tri-2-ethylhexylaluminum;
  • alkenylaluminums such as isoprenylaluminum
  • dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, diisopropylaluminum chloride, diisobutylaluminum chloride and dimethylaluminum bromide;
  • alkylaluminum sesquihalides such as methylaluminum sesquichloride, ethylaluminum sesquichloride, isopropylaluminum sesquichloride, butylaluminum sesquichloride and ethylaluminum sesquibromide;
  • alkylaluminum dihalides such as methylaluminum dichloride, ethylaluminum dichloride, isopropylaluminum dichloride and ethylaluminum dibromide;
  • alkylaluminum hydrides such as diethylaluminum hydride and diisobutylaluminum hydride.
  • organoaluminum compound [D] is a compound represented by the following formula (b):
  • R 5 is the same as R 5 in the formula (a);
  • Y is —OR 6 group, —OSiR 7 3 group, —OAlR 8 2 group, —NR 9 2 group, —SiR 10 3 group or —N(R 11 )AlR 12 2 group;
  • n is 1 to 2;
  • R 6 , R 7 , R 8 and R 12 are each methyl, ethyl, isopropyl, isobutyl, cyclohexyl, phenyl or the like;
  • R 9 is hydrogen atom, methyl, ethyl, isopropyl, phenyl, trimethylsilyl or the like; and
  • R 10 and R 11 are each methyl, ethyl or the like.
  • organoaluminum compounds examples include:
  • organoaluminum compounds of the formulae R 5 3 Al, R 5 n Al(OR 6 ) 3-n and R 5 n Al(OAlR 8 2 ) 3-n are particularly preferred are compounds of said formulae wherein R 5 is an isoalkyl group and n is 2.
  • the organoaluminum compounds mentioned above can be used in combination of two or more kinds.
  • the specific metallocene catalyst employable in the invention contains the metallocene compound [A], and the catalyst can be formed from, for example, the metallocene compound [A] and the organoaluminum oxy-compound [B] as mentioned above.
  • the metallocene catalyst may be formed from the metallocene compound [A] and the compound [C], or it may be formed from the metallocene compound [A], the organoaluminum oxy-compound [B] and the compound [C]. In these embodiments, it is particularly preferable to further use the organoaluminum compound [D] in combination.
  • the metallocene compound [A] is used in an amount of usually about 0.00005 to 0.1 mmol, preferably about 0.0001 to 0.05 mmol, in terms of the transition metal atom, based on 1 liter of the polymerization volume.
  • the organoaluminum oxy-compound [B] is used in such an amount that the amount of the aluminum atom becomes usually about 1 to 10,000 mol, preferably 10 to 5,000 mol, per 1 mol of the transition metal atom.
  • the compound which reacts with the metallocene compound [A] to form an ion pair [C] is used in such an amount that the amount of the boron atom becomes usually about 0.5 to 20 mol, preferably 1 to 10 mol, based on 1 mol of the transition metal atom.
  • the organoaluminum compound [D] is used optionally in an amount of usually about 0 to 1,000 mol, preferably about 0 to 500 mol, based on 1 mol of the aluminum atom in the organoaluminum oxy-compound [B] or the boron atom in the compound [C] which forms an ion pair.
  • the metallocene compound [A], the organoaluminum oxy-compound [B] and the compound which forms an ion pair [C], and optionally, the organoaluminum compound [D], all of which constitute the metallocene catalyst may be separately fed to the polymerization reactor, or a preliminarily prepared metallocene catalyst containing the metallocene compound [A] may be added to the polymerization reaction system.
  • hydrocarbon solvents which are inert to the catalyst components can be employed.
  • Examples of the inert hydrocarbon solvents include aliphatic hydrocarbons, such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosine; alicyclic hydrocarbons, such as cyclopentane, cyclohexane and methylcyclopentane; aromatic hydrocarbons, such as benzene, toluene and xylene; and halogenated hydrocarbons, such as ethylene chloride, chlorobenzene and dichloromethane. These hydrocarbon solvents can be used singly or in combination.
  • aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosine
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • the metallocene compound [A], the organoaluminum oxy-compound [B], the compound.[C] and the organoaluminum compound [D] can be contacted with each other at a temperature of usually ⁇ 100 to 200° C., preferably ⁇ 70 to 100° C.
  • copolymerization of ethylene and the ⁇ -olefin of 3 to 20 carbon atoms can be carried out under the conditions of a temperature of usually 40 to 200° C., preferably 50 to 150° C., particularly preferably 60 to 120° C., and a pressure of atmospheric pressure to 100 kg/cm 2 , preferably atmospheric pressure to 50 kg/cm 2 1 particularly preferably atmospheric pressure to 30 kg/cm 2
  • This polymerization reaction can be conducted by various polymerization processes, but it is preferably conducted by a solution polymerization process. In the solution polymerization process, the aforesaid hydrocarbon solvents are employable as the polymerization solvents.
  • the copolymerization can be carried out by any of batchwise, semi-continuous and continuous processes, it is preferably carried out continuously.
  • the polymerization can be carried out in two or more stages under different reaction conditions.
  • the long-chain branched ethylene/ ⁇ -olefin random copolymer used in the invention are obtained by the processes mentioned above, and the molecular weight of the copolymer can be modified by varying the polymerization conditions such as polymerization temperature or controlling the amount of hydrogen (molecular weight modifier).
  • additives such as antioxidant, UV-light absorber, light resisting agent, phosphite heat stabilizer, peroxide decomposer, basic co-stabilizer, nucleating agent, plasticizer, lubricant, antistatic agent, flame retardant, pigment, dye and filler can be optionally added as far as it is not prejudicial to the object of the invention.
  • Examples of the filler include carbon black, asbestos, talc, silica and silica-alumina.
  • the other polymer may be blended as far as it is not prejudicial to the object of the invention.
  • Examples of the other polymer include EPT, polypropylene, various engineering plastics (polyamide, polyester and etc.).
  • the (soft) resin composition according to the present invention can be prepared by melt-kneading the ethylene/ ⁇ -olefin random copolymer (B), the polyethylene resin (A), and optionally blended additives as described below by the various conventional method.
  • the (soft) resin composition of the present invention can be prepared by simultaneously or successively introducing each of the components (polyethylene resin (A), ethylene/ ⁇ -olefin copolymer resin (B) and optionally added additives) into Henschel mixer, a twin-cylinder mixer, a tumbling mixer, a ribbon blender or the like to mix them and then melt-kneading the resultant mixture by a kneading machine such as a single-screw extruder, a multi-screw extruder, a kneader and Banbury mixer.
  • a kneading machine such as a single-screw extruder, a multi-screw extruder, a kneader and Banbury mixer.
  • additives such as antioxidant can be optionally added in an optional stage of the preparation process.
  • the (soft) resin composition of the invention thus prepared can be molded into moldings having various shapes by the conventional various melt molding method including injection molding, extrusion molding and compression molding.
  • the (soft) resin composition can be prepared by a process comprising dissolving the polyethylene resin (A), the long-chain branched ethylene/ ⁇ -olefin random copolymer (B) and optional additives as described above in a suitable solvent (e.g., hydrocarbon solvents such as hexane, heptane, decane, cyclohexane, benzene, toluene and xylene) and then removing the solvent.
  • a suitable solvent e.g., hydrocarbon solvents such as hexane, heptane, decane, cyclohexane, benzene, toluene and xylene
  • the (soft) resin composition can be prepared by dissolving the polyethylene resin (A), the long-chain branched ethylene/ ⁇ -olefin random copolymer (B) and optional additives as described above in suitable solvents, respectively, to prepare solutions separately followed by mixing the solutions, and removing the solvents.
  • the ethylene/ ⁇ -olefin copolymer resin composition according to the present invention comprises a linear ethylene/ ⁇ -olefin copolymer (A-0) out of the polyethylene resin (A) and a long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ).
  • compositions of each components, physical properties, preparation processes of the polyethylene resin (A- ⁇ ) and the ethylene/ ⁇ -olefin random copolymer resin (B- ⁇ ) suitably used for the ethylene/ ⁇ -olefin copolymer resin composition are described.
  • These properties of the polyethylene resin (A- ⁇ ) and the copolymer resin (B- ⁇ ) are the same as those of the polyolefin resin (A) and the ethylene/ ⁇ -olefin random copolymer resin (B), respectively, except for those described below, otherwise specifically mentioned.
  • the linear ethylene/ ⁇ -olefin copolymer resin (A-O) used in the invention comprises ethylene and an ⁇ -olefin of 4 to 20 carbon atoms, as described above.
  • the linear ethylene/ ⁇ -olefin copolymer (A-0) has a density of 0.901 to 0.940 g/cm 3 , preferably 0.905 to 0.930 g/cm 3 , more preferably 0.905 to 0.925 g/cm 3 .
  • the linear ethylene/ ⁇ -olefin copolymer having a density of less than 0.901 g/cm 3 is not suitable because, in case of using it, a film made from the resultant composition has low rigidity and is likely to cause blocking, and, further, heat seal strength thereof is apt to decrease, though having excellent in impact resistance and low temperature heat-sealing properties.
  • linear ethylene/ ⁇ -olefin copolymer having a density of more than 0.940 g/cm 3 is not suitable because, in case of using it, impact strength and low temperature heat-sealing properties of the resultant film are apt to be decreased.
  • the linear ethylene/ ⁇ -olefin copolymer (A-0) has a melt flow rate (MFR, ASTM D 1238, 190° C., a load of 2.16 kg) of 0.01 to 20 g/10 min, preferably 0.05 to 10 g/10 min, more preferably 0.1 to 7 g/10 min.
  • MFR melt flow rate
  • the linear ethylene/ ⁇ -olefin copolymer having a melt flow rate of less than 0.01 g/10 min is not suitable because, in case of using it, the resultant composition requires too high processing torque to process it by an ordinary process.
  • the linear ethylene/ ⁇ -olefin copolymer having a density of more than 20 g/10 min is not suitable because, in case of using it, the stability of the bubble become worse so that inflation molding thereof can not be performed.
  • the liner ethylene/ ⁇ -olefin copolymer (A-0) having the above properties can be prepared by the process as described above, which comprises copolymerizing ethylene and ⁇ -olefin having 4 to 20 carbon atoms in the presence of a transition metal catalyst.
  • the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) used in the invention comprises ethylene and an ⁇ -olefin of 3 to 20 carbon atoms, as described above.
  • the ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) has a density of 0.860 to 0.900 g/cm 3 , preferably 0.865 to 0.900 g/cm 3 more preferably 0.870 to 0.895 g/cm 3 .
  • a film made from the resultant composition is likely to have poor low temperature heat-sealing properties and tear strength thereof is apt to decrease.
  • the resultant composition is difficult to handle as the pellets thereof and the film made from the composition is apt to get worse in anti-blocking and slipping properties.
  • the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) has a melt flow rate (MFR, ASTM D 1238, 190° C., a load of 2.16 kg) of 0.01 to 20 g/10 min, preferably 0.1 to 10 g/10 min, more preferably 0.5 to 5 g/10 min.
  • the ethylene/ ⁇ -olefin random copolymer has characteristics such that the molecular weight distribution and composition distribution thereof are narrow and the melt tension thereof is high since it has a long chain branching.
  • the ethylene/ ⁇ -olefin copolymer resin composition of the invention contains 60 to 95% by weight, preferably 60 to 90% by weight of the polyethylene (A-0) and 5 to 40% by weight, preferably 10 to 40% by weight of the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ), based on 100% by weight of the total amount of the liner ethylene/ ⁇ -olefin copolymer (A-0) and the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ).
  • the ethylene/ ⁇ -olefin copolymer resin composition contains the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) of 5 to 67 parts by weight, preferably 11 to 67 parts by weight, based on 100 parts by weight of the polyethylene resin (A-0) of the polyethylene resin (A).
  • the ethylene/ ⁇ -olefin copolymer resin composition having such formulation as described above is especially suitable for using as films, excellent in heat stability and suitability in high-speed molding, and can provide films excellent in mechanical strength properties, low temperature heat-sealing properties and sealing stability, and further slip characteristics and anti-blocking properties thereby being excellent in handling properties and suitability for high-speed filling upon packaging by automatic filling machines.
  • various additives such as weathering stabilizer may be optionally blended as far as it is not prejudicial to the object of the invention.
  • the ethylene/ ⁇ -olefin copolymer resin composition of the invention can be prepared by the conventional method as described above.
  • the film according to the present invention is formed from the ethylene/ ⁇ -olefin copolymer resin composition of the invention.
  • the film of the invention has a thickness of 10 to 200 ⁇ m.
  • the film of the invention can be obtained by molding the ethylene/ ⁇ -olefin copolymer resin composition of the invention by the conventional process such as air-cooled inflation molding, two-level air-cooled inflation molding, high-speed inflation molding, T-die film formation or water-cooled inflation molding.
  • the film made by the above-described method has an excellent balance between transparency and rigidity, keeping heat-sealing properties, hot tack and heat resistance which the conventional LLDPEs also have. Further, since the long-chain branched ethylene/ ⁇ -olefin random copolymer (B- ⁇ ) constituting the above composition has particularly low composition distribution, the surface of the film is not sticky.
  • the resin composition of the present invention is excellent in moldability and capable of providing moldings having excellent pliability.
  • the soft resin composition of the present invention is excellent in melt flow characteristics, namely excellent in moldability, and is capable of providing moldings excellent in balance between pliability and heat resistance.
  • the ethylene/ ⁇ -olefin copolymer resin composition of the invention is excellent in heat stability and suitability for high-speed molding, and can provide the films excellent in mechanical strength properties, low temperature heat-sealing properties and sealing stability, and further in slip characteristics and anti-blocking properties, thereby being excellent in handling porperties and suitability for high-speed filling upon packaging by automatic filling machiens.
  • the film of the present invention comprises the above ethylene/ ⁇ -olefin copolymer resin composition to be mechanical strength properties, low temperature heat-sealing properties and sealing stability, and further in slip characteristics and anti-blocking properties thereby being excellent in handling properties and suitability for high-speed filing upon packaging by automatic filling machines.
  • the films of the invention can be suitably used for standard sacks, heavy duty sacks, wrapping films, raw-film for lamination, sugar sacks, oil bags, water bags, various packaging film such as packaging films for foods, infusion bags and agricultural materials.
  • the films of the invention can be used for multi-layered films by laminating with a base material of nylon, polyester or the like. Of these, the film of the invention is particularly suitable for the wrapping films.
  • the ethylene/ ⁇ -olefin copolymer resin composition of the invention is also employable for blow-molded infusion bags and bottles, extrusion molded tubes, pipes and pull-off caps, injection molded articles such as daily necessaries, fibers and big size moldings made by rotomolding.
  • the copolymer thus obtained had a 1-octene content (measuring methol: infrared absorption spectra) of 16% by mol, a density of 0.871 g/cm 3 , an MFR (ASTM D 1238, 190° C., a load of 2.16 Kg) of 3.5 g/10 min, an intrinsic viscosity ( ⁇ ), as measured in decalin at 135° C., of 1.3 dl/g, a glass transition temperature (Tg) of ⁇ 64° C., a crystallinity, as measured by X-ray diffractometry, of 5%, a molecular weight distribution (Mw/Mn), as measured by GPC, of 2.2, a B value of 1.00, a g ⁇ * value of 0.88 and a melt tension, as measured by the following method, of 1.5 g.
  • Mold temperature 200° C.
  • Cooling temperature 20° C.
  • Cylinder temperature 180° C.
  • Mold temperature 30° C.
  • the MFR was measured in accordance with ASTM D 1238 (temperature of 190° C., a load of 2.16 Kg)
  • a specimen (12.7 mm ⁇ 6.3 mm ⁇ 120 mm) injection molded under the above condition was fixed on a cantilever (the length between spans is 100 mm), then placed in a temperature controlled bath at 70° C. for 1.5 hours, thereafter a point sag of the specimen by gravity was measured.
  • a long-chain branched ethylene/1-butene random copolymer was obtained in the same manner as in Example 1 except that 1-butene was used in place of 1-octene.
  • the copolymer thus obtained had a 1-butene content of 17% by mol, an MFR of 3.6 g/10 min, a density of 0.870 g/cm 3 , an intrinsic viscosity (i), as measured in decalin at 135° C., of 1.3 dl/g, a glass transition temperature (Tg) of ⁇ 64° C., a crystallinity, as measured by X-ray diffractometry, of 5%, a molecular weight distribution (Mw/Mn), as measured by GPC, of 2.1, a B value of 1.00, a g ⁇ * value of 0.85 and a melt tension of 1.5 g.
  • a soft resin composition containing a polyethylene resin were prepared in the same manner as in Example 1.
  • the MFR, the surface hardness, the torsional rigidity and the heat sag were measured.
  • a catalyst solution was prepared in the same manner as in Example 1 except that bis(1,3-dimethylcyclopentadienyl)zirconium dichloride was used in place of rac-dimethylsilylene-bis ⁇ 1-(2-methyl-4-phenylindenyl) ⁇ zirconium dichloride.
  • the copolymer thus obtained had a 1-octene content of 14% by mol, an MFR of 3.6 g/10 min, a density of 0.872 g/cm 3 , an intrinsic viscosity (1), as measured in decalin at 135° c., of 1.5 dl/g, a glass transition temperature (Tg) of ⁇ 62° C., a crystallinity, as measured by X-ray diffractometry, of 6%, a molecular weight distribution (Mw/Mn), as measured by GPC, of 2.4, a B value of 1.03, a g ⁇ * value of 1.00 and a melt tension of 0.6 g.
  • a soft resin composition containing a polyethylene resin were prepared in the same manner as in Example 1.
  • the MFR, the surface hardness, the torsional rigidity and the heat sag were measured.
  • a catalyst solution was prepared in the same manner as in Example 1 except that bis(1,3-dimethylcyclopentadienyl)zirconium dichloride was used in place of rac-dimethylsilylene-bis ⁇ 1-(2-methyl-4-phenylindenyl) ⁇ zirconium dichloride.
  • a linear ethylene/1-butene random copolymer was obtained in the same manner as in Example 1 except that 1-butene was used in place of 1-octene.
  • the copolymer thus obtained had a 1-butene content of 15% by mol, an MFR of 3.3 g/10 min, a density of 0.871 g/cm 3 , an intrinsic viscosity (X), as measured in decalin at 135 Oc, of 1.6 dl/g, a glass transition temperature (Tg) of ⁇ 62° C., a crystallinity, as measured by X-ray diffractometry, of 5%, a molecular weight distribution (Mw/Mn), as measured by GPC, of 2.3, a B value of 1.02, a g ⁇ * value of 1.00 and a melt tension of 0.5 g.
  • a soft resin composition containing a polyethylene resin were prepared in the same manner as in Example 1.
  • the MFR, the surface hardness, the torsional rigidity and the heat sag were measured.
  • the film impact strength was measured by means of a pendulum impact tester manufactured by Toyo Seiki Seisakusho K.K.
  • a bubble stability at molding an inflation film was evaluated by the following three ranks, the evaluated rank was applied to the evaluation of the composition.
  • excellent in the bubble stability
  • good in the bubble stability
  • low in the bubble stability, but film formation is possible.
  • the flow index (FI) is defined as a shear rate given when the shear stress at 190° C. is reached to 2.4 ⁇ 10 6 dyne/cm 2 .
  • the flow index (FI) of a resin can be determined in the following manner. The resin is extruded from a capillary with varying a shear rate to measure a shear stress, and the shear rate which corresponds to the shear stress of the above-mentioned value 2.4 ⁇ 10 6 dyne/cm 2 gives the flow index (FI).
  • MT melt tension
  • the density was measured in accordance with D method of JIS K 7112 under the condition of the temperature of 23 ⁇ 0.1° C.
  • the catalyst solution prepared as described above was continuously introduced at the rate of 0.02 mmol/hour in terms of zirconium atom along with 10 mmol/hour of tri-isobutyl aluminum.
  • the thus obtained ethylene/1-octene random copolymer (B-1) had 1-octene content of 8 mol %, a density of 0.890 g/cm 3 , MFR of 0.6 g/10 min, an intrinsic viscosity (1) measured in decalin at 135° C. of 2.0 dl/g, glass transition temperature (Tg) of -55° C., crystallinity measured by X-ray diffractometry of 25%, molecular weight distribution (Mw/Mn) measured by GPC of 2.3, B value of 1.0, g ⁇ * value of 0.87, melt tension (MT) of 6.7 g, flow index (FI) of 180 sec ⁇ 1 .
  • Ethylene/ ⁇ -olefin random copolymers (B-2) to (B-6) were prepared in the same manner as in Reference Example 1 except that the polymerization conditions were varied.
  • the ethylene/4-methyl-1-pentene copolymer composition was subjected to air cooling inflation molding using a 20 mm ⁇ single screw extruder on the following conditions to obtain a film having a thickness of 70 ⁇ m.
  • Air ring single slit air ring
  • Air flow rate 90 l/min
  • Molding temperature 200° C.
  • Pellets of ethylene/1-butene copolymer composition were obtained in the same manner as in Example 3 except that the ethylene/4-methyl-1-pentene copolymer (A-1) was replaced by the ethylene/1-butene copolymer (A-2) having a density of 0.922 g/cm 3 and MFR of 1.0 g/10 min, and the ethylene/1-octene random copolymer (B-1) was not used. Then, a film was molded from the ethylene/1-butene copolymer composition in the same manner as in Example 3.
  • Pellets of ethylene/1-octene copolymer composition were obtained in the same manner as in Example 3 except that the ethylene/4-methyl-1-pentene copolymer (A-1) was replaced by the ethylene/1-octene copolymer (A-3) having a density of 0.922 g/cm 3 and MFR of 2.4 g/10 min, and the ethylene/1-octene random copolymer (B-1) was not used. Then, a film was molded from the ethylene/1-octene copolymer composition in the same manner as in Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US08/836,351 1995-09-11 1996-09-10 Resin compositions and use of the same Abandoned US20010014718A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/133,445 US6713562B2 (en) 1995-09-11 2002-04-29 Resin compositions and use of the same
US10/765,903 US6936660B2 (en) 1995-09-11 2004-01-29 Resin compositions and use of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7/233117 1995-09-11
JP23311795 1995-09-11
JP23677095 1995-09-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002575 A-371-Of-International WO1997010295A1 (fr) 1995-09-11 1996-09-10 Compositions de resines et leurs utilisations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/133,445 Continuation US6713562B2 (en) 1995-09-11 2002-04-29 Resin compositions and use of the same

Publications (1)

Publication Number Publication Date
US20010014718A1 true US20010014718A1 (en) 2001-08-16

Family

ID=26530855

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/836,351 Abandoned US20010014718A1 (en) 1995-09-11 1996-09-10 Resin compositions and use of the same
US10/133,445 Expired - Lifetime US6713562B2 (en) 1995-09-11 2002-04-29 Resin compositions and use of the same
US10/765,903 Expired - Fee Related US6936660B2 (en) 1995-09-11 2004-01-29 Resin compositions and use of the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/133,445 Expired - Lifetime US6713562B2 (en) 1995-09-11 2002-04-29 Resin compositions and use of the same
US10/765,903 Expired - Fee Related US6936660B2 (en) 1995-09-11 2004-01-29 Resin compositions and use of the same

Country Status (9)

Country Link
US (3) US20010014718A1 (de)
EP (2) EP0791626B1 (de)
JP (1) JP3341241B2 (de)
KR (1) KR100455230B1 (de)
CN (3) CN1122075C (de)
CA (1) CA2204989A1 (de)
DE (2) DE69637990D1 (de)
TW (2) TWI241320B (de)
WO (1) WO1997010295A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032601A1 (en) * 2003-09-19 2007-02-08 Mitsui Chemicals, Inc. Resin compostion and stretched film obtained by using the same
US7405009B2 (en) 2003-01-24 2008-07-29 H.B. Fuller Licensing & Financing, Inc. Moisture vapor permeable film including ethylene copolymer and articles including the same
US20140194277A1 (en) * 2011-03-30 2014-07-10 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US9349895B2 (en) 2010-11-02 2016-05-24 Mitsui Chemicals, Inc. Encapsulating material for solar cell and solar cell module

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791626B1 (de) * 1995-09-11 2004-06-09 Mitsui Chemicals, Inc. Harzzusammensetzung und deren verwendung
US6660809B1 (en) * 1997-02-07 2003-12-09 Exxonmobil Chemical Patents Inc. Propylene polymers incorporating polyethylene macromers
EP0958309B2 (de) 1997-02-07 2013-10-09 ExxonMobil Chemical Patents Inc. Herstellung von vinyl enthaltenden polymeren
TW505678B (en) * 1997-04-30 2002-10-11 Mitsui Chemicals Inc Sealant resin composition for use in retort film and sealant film
ATE282656T1 (de) * 1999-09-07 2004-12-15 Du Pont Heisssiegelbare polyolefine und daraus hergestellte artikel
KR100848587B1 (ko) * 2000-05-16 2008-07-28 미쓰이 가가쿠 가부시키가이샤 에틸렌계 공중합체, 에틸렌계 공중합체 조성물 및프로필렌계 공중합체 조성물
CN1326892C (zh) * 2000-05-16 2007-07-18 三井化学株式会社 乙烯基共聚物、以及含有该共聚物的乙烯/α-烯烃共聚物组合物和丙烯基共聚物组合物
JP2002212349A (ja) 2001-01-17 2002-07-31 Mitsui Chemicals Inc 射出成形用軟質樹脂組成物およびその用途
TWI297344B (en) 2001-01-17 2008-06-01 Mitsui Chemicals Inc Soft resin composition for injection molding and uses thereof
CA2411183C (en) * 2002-11-05 2011-06-14 Nova Chemicals Corporation Heterogeneous/homogeneous copolymer
CN100457794C (zh) 2003-03-28 2009-02-04 三井化学株式会社 丙烯共聚物,聚丙烯组合物及其用途,过渡金属化合物和烯烃聚合催化剂
US20110064339A1 (en) * 2003-04-25 2011-03-17 Louis Chertkow Pharmacy Bag
KR20060130546A (ko) * 2003-09-12 2006-12-19 가부시키가이샤 가네카 폴리프로필렌계 수지 조성물, 그것으로 이루어진 발포성형체 및 그 제조 방법
KR20050106536A (ko) * 2004-05-04 2005-11-10 바프렉스 주식회사 진공 포장용 다층 필름 제조 방법 및 이 방법에 의해제조된 진공 포장용 다층 필름
JP4856853B2 (ja) * 2004-05-21 2012-01-18 出光ユニテック株式会社 チャックテープ及びチャックテープ付き包装袋
GB0423555D0 (en) * 2004-10-22 2004-11-24 Borealis Tech Oy Process
US9102820B2 (en) * 2007-04-03 2015-08-11 Sumitomo Chemical Company, Limited Polypropylene resin composition and molded article comprising the same
JP5226973B2 (ja) * 2007-06-15 2013-07-03 三井化学株式会社 エチレン系共重合体、該共重合体を含む組成物ならびにその用途
US9783664B1 (en) * 2016-06-01 2017-10-10 Nova Chemicals (International) S.A. Hinged component comprising polyethylene composition
US20230101204A1 (en) 2020-01-30 2023-03-30 Mitsui Chemicals, Inc. Polyamide composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066651B2 (ja) * 1985-04-19 1994-01-26 三井石油化学工業株式会社 エチレン・α−オレフイン共重合体組成物
US5847053A (en) * 1991-10-15 1998-12-08 The Dow Chemical Company Ethylene polymer film made from ethylene polymer blends
JP3243748B2 (ja) * 1992-05-29 2002-01-07 出光興産株式会社 エチレン・α−オレフィン共重合体組成物
EP0575123B2 (de) * 1992-06-17 2008-02-13 Mitsui Chemicals, Inc. Ethylencopolymerzusammensetzung
JPH06136195A (ja) * 1992-09-08 1994-05-17 Mitsui Petrochem Ind Ltd エチレン系共重合体組成物
CA2103401C (en) * 1992-11-19 2002-12-17 Mamoru Takahashi Ethylene copolymer composition
JPH083384A (ja) * 1994-06-24 1996-01-09 Sumitomo Chem Co Ltd 食品包装フィルム用樹脂組成物及び食品包装フィルム
US5773106A (en) * 1994-10-21 1998-06-30 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
US5770318A (en) * 1995-01-13 1998-06-23 Norton Performance Plastics Corporation Thermoplastic seal and wrapping film
AR001956A1 (es) * 1995-05-18 1997-12-10 Dow Chemical Co Método para desenrollar peliculas autoadherentes yun dispositivo para desenrollar dichas peliculas
KR0158491B1 (ko) * 1995-06-16 1998-12-15 김광호 프로그램 카운터 데이타를 이용한 오동작 방지회로
EP0791626B1 (de) * 1995-09-11 2004-06-09 Mitsui Chemicals, Inc. Harzzusammensetzung und deren verwendung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405009B2 (en) 2003-01-24 2008-07-29 H.B. Fuller Licensing & Financing, Inc. Moisture vapor permeable film including ethylene copolymer and articles including the same
US20070032601A1 (en) * 2003-09-19 2007-02-08 Mitsui Chemicals, Inc. Resin compostion and stretched film obtained by using the same
US7722961B2 (en) * 2003-09-19 2010-05-25 Prime Polymer Co., Ltd. Resin composition and stretched film obtained by using the same
US9349895B2 (en) 2010-11-02 2016-05-24 Mitsui Chemicals, Inc. Encapsulating material for solar cell and solar cell module
US20140194277A1 (en) * 2011-03-30 2014-07-10 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US9309340B2 (en) * 2011-03-30 2016-04-12 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US9975972B2 (en) 2011-03-30 2018-05-22 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US10633471B2 (en) 2011-03-30 2020-04-28 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
US11643485B2 (en) 2011-03-30 2023-05-09 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst

Also Published As

Publication number Publication date
TW494124B (en) 2002-07-11
DE69632678T2 (de) 2005-06-09
CN1258561C (zh) 2006-06-07
US6936660B2 (en) 2005-08-30
KR100455230B1 (ko) 2005-04-06
CN1258562C (zh) 2006-06-07
DE69637990D1 (de) 2009-09-17
CA2204989A1 (en) 1997-03-20
CN1165529A (zh) 1997-11-19
JP3341241B2 (ja) 2002-11-05
CN1122075C (zh) 2003-09-24
US20040186237A1 (en) 2004-09-23
KR970707226A (ko) 1997-12-01
CN1491979A (zh) 2004-04-28
EP1408078B1 (de) 2009-08-05
DE69632678D1 (de) 2004-07-15
WO1997010295A1 (fr) 1997-03-20
EP0791626A4 (de) 1998-11-25
EP1408078A1 (de) 2004-04-14
US6713562B2 (en) 2004-03-30
US20030022999A1 (en) 2003-01-30
CN1491980A (zh) 2004-04-28
TWI241320B (en) 2005-10-11
EP0791626A1 (de) 1997-08-27
EP0791626B1 (de) 2004-06-09

Similar Documents

Publication Publication Date Title
US6713562B2 (en) Resin compositions and use of the same
US6414088B1 (en) Resin compositions and use of the same
CA2618949C (en) Olefin thermoplastic elastomer compositions
EP0783022B2 (de) Ethylen-copolymer-zusammensetzung
US8022143B2 (en) Closures for bottles
US6613845B1 (en) Propylene/ethylene-α-olefin block copolymer and process for producing the same
CA2222076C (en) Polypropylene resin compositions
US6075091A (en) Composition of polyamide and acid or anhydride-grafted ethylene/C6-C20 α-olefin copolymer
JP4954422B2 (ja) エチレン系共重合体、および該共重合体を含むエチレン・α−オレフィン共重合体組成物、プロピレン系重合体組成物
US6403719B1 (en) Flexible resin composition and uses thereof
US5986008A (en) Propylene polymer composition and thermoformed object
JP3945543B2 (ja) オレフィン系熱可塑性エラストマー組成物
JP2003268044A (ja) ポリプロピレン樹脂組成物および延伸ブロー容器
JP3871275B2 (ja) 樹脂組成物およびその用途
JP3491855B2 (ja) 結晶性ポリオレフィン樹脂組成物
JP2604945B2 (ja) エチレンとα−オレフインとの共重合体のインフレーシヨンフイルム

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUI PETROCHEMICAL INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAGAMI, MAMORU;TANAKA, YASUO;SUGI, MASAHIRO;REEL/FRAME:008525/0818

Effective date: 19960926

AS Assignment

Owner name: MITSUI CHEMICALS, INC., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:MITSUI PETROCHEMICAL INDUSTRIES, LTD.;REEL/FRAME:009570/0124

Effective date: 19971001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION