US1989100A - Process for improving artificial fibrous material - Google Patents

Process for improving artificial fibrous material Download PDF

Info

Publication number
US1989100A
US1989100A US367154A US36715429A US1989100A US 1989100 A US1989100 A US 1989100A US 367154 A US367154 A US 367154A US 36715429 A US36715429 A US 36715429A US 1989100 A US1989100 A US 1989100A
Authority
US
United States
Prior art keywords
solution
silk
strength
artificial
lustre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US367154A
Other languages
English (en)
Inventor
Lilienfeld Leon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US1989100A publication Critical patent/US1989100A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/56Sulfates or thiosulfates other than of elements of Groups 3 or 13 of the Periodic Table

Definitions

  • This invention is based on my discovery that artificial fibrous materials, for example, artificial silk, are in many respects improved in respect of their properties',-by treating them with one s or more substances having a basic reaction,- at a .high or moderately raised temperature.
  • the most important basic substances for the purpose of this invention are solutions of caustic alkalies or'of alkali metal sulphides.
  • the material acquires a soft, full, elastic feel approaching, and in some cases, equalling that of natural silk;
  • the invention has appreciable advantages in its application to the treatment of staple fibre and artificial wool; also these advantages reside essentially in an improvement in the feel of the material, in an increase in the elasticity and in a diminution in the tendency of the material to acquire permanent creases.
  • My inves igations have, in fact, shown that the process of the invention is well suited for modifyingartificial silk so that it closely resembles natural silk in many of its properties.
  • the invention consists in a treatment' of arti-v ficial fibrous material (including pureand mixed' fibres and fabrics, as hereinafter explained) with a solution of a basic. substance, particularly a solution of a caustic alkali or of an alkali sulphide, at a high temperature, for example at 50-l20 C. or higher, or at a moderately raised temperature, for example at -50 C.
  • the invention may be applied to viscose silk of any kind including the particular type of viscose silk (hereinafter referred to as Lilienfeld silk) made by spinning viscose in a bath containing a strong mineral acid, particularly strong sulphuric acid (as described for example in U. 8. Patents Nos. 1,683,199 and 1,683,200). It may alsobe applied to cuprammonium and silk, to nitro-silk (the above mentioned silks being composed essentially of cellulose or cellulose hydrate and are hereinafter included in the terms artificial fibrous material of regenerated cellulose and regenerated cellulose artificial silk, for
  • caustic alkali such as a solution containing more than about per cent. of caustic alkali, calculated as NaOH
  • an alkali metal sulphide such as a solution containing from 84 to -100 per cent. of sodium sulphide, calculated as the crystalline material, NazS-9H20
  • the invention is applicable not only to arti- I consisting wholly. of artificial fibres, and tomixed threads and fabrics, that is to say, to
  • artificial fibrous material as used in this specification and claims is intended to include artificial fibres (prepared from viscose, cuprammonium cellulose solution, nitrocellulose solution, cellulose acetate solution).
  • the fibres maybe artificial silk, artificial cotton, artificial wool, artificial hair or artificial straw, these being in the form of spun material (threads. yarns in skeins or cope, or in the form of warm. twisted yarn or the like or in the form of fabrics) consisting of, or containing such spun materials. It includes ordinary viscose silk as well as "Lilienfeld silk.
  • solutions of caustic alkalles and of alkali metal sulphides have been found especially advantageous; in the case of alkali metal sulphides, however, the concentration of the solution should not be less than 15 per cent., the sulphide being calculated as crystalline sodium sulphide.
  • Solutions of other basic substances may be used, such as I quaternary ammonium bases, organic bases (for example, guanidine) in whose aqueous solutions there may be presumed to be present a hydroxide which is strongly electrolytically dissociated or sulphonium hydroxides, such as trimethylsulphonium hydroxide.
  • the basic substance may be used in conjunction with a salt having a neutral or alkaline reaction (such as sodium chloride, sodium sulphate, sodium silicate, sodium aluminate, sodiacetate), or with a monohydric or polyhydric alcohol, such as ethyl alcohol or glycerin, a suitable quantity of the salt or alcohol being incorporated inthe solution of the basic substance.
  • a salt having a neutral or alkaline reaction such as sodium chloride, sodium sulphate, sodium silicate, sodium aluminate, sodiacetate
  • a monohydric or polyhydric alcohol such as ethyl alcohol or glycerin
  • the invention may be applied to finished artificial fibrous material initially, in the dry state, or in the wet or moist state; it may also be applied to artificial fibrous material which is not completely finished, for example, before or after the washing operation which succeeds the spinning of the fibre.
  • the treatment is applied without subjecting the material to tension, or whilst subjecting it only to moderate tension.
  • Tables I and Ii illustrate how the invention may be carried out, and show the results obtained by treating artificial fibrous materials in accordance with the invention and, for comparison, the results obtained by a treatment conducted at ordinary temperature but under otherwise identical conditions;
  • Table II case in a sulphuric acid bath of 55 36, according In the following table, the treatment was as indicated at the head of Table I, but the parent material was a number of samples or Lilienieldas silk, that is voscose silk made by spinning visto the process set forth in my U. S. Patents 1,683,199 and 1,683,200, above mentioned. For a further comparison are added the physical constants of the untreated material.
  • caustic alkali solution of any strength from 3 per cent. (calculated as NaOH) up to solutionssaturated at the temperature 'desired for the treatment, and alkali metal sulphide solutions of any strength from 15 per cent. (calculated as crystalline sodiinn sulphide, NazS- 9H2O) up to solutions saturated at the temperature desired for the treatment. And temperatures of from 25 to 160 C. may be employed-'- A solution of caustic soda of 8 per cent. strength 1 at room temperature completely destroys the lustre of ordinary viscose silk and of Lilienfeldsilk, and causes the silk to swell or dissolve to such an extent that the fibres are caused to adhere to each other.
  • a solution of caustic soda of 10 per cent. strength at ordinary room temperature destroys the lustre of ordinary viscose silk and of Lilien' field-silk, and causes an extraordinary decrease in the strength of both kinds of silk in thewet and dry state, so that the increase inextensibility-also produced is without value.
  • the same solution applied at 100 0. causes no appreciable diminution in the lustre of either kind of silk, decreases only inappreciably the strengthsin the wet and dry state, and causes a considerable increase in the extensibility and elasticity.
  • a solution of caustic soda of 12 per cent. strength, at ordinary room temperature destroys the lustre of both kinds of silk and causes a great reduction in the strength in wet and dry state, and moreover, greatly diminishes the elasticity of or- .dinary viscose silk; all these disadvantages outweigh the value of the increased extensibility produced by the treatment.
  • the same solution applied at 100 C. does not reduce the lustre of either kind of silk, reduces only slightly the and in the elasticity; the increase in extensibilitysimultaneously produced is therefore of no value.
  • the same solution is applied at 100 0.
  • a solution of caustic soda of 18 per cent strength at 15 C. reduces considerably the lustre and the strength in the wet and dry state of ordinary vlscose silk, and has no appreciable effect on its elasticity; the increase in extensibility is, therefore, of noimportance.
  • the same solution is applied at 100 C. the lustre is preserved, the strength in wet. and dry state is slightly diminished, the extensibility is increased considerably and the elasticity very considerably.
  • a solution of caustic soda of 20 per cent. strength used at ordinary room temperature reduces the lustre of ordinary viscose silk and slightly reduces that of Lilienfeld-silk; in the case of ordinary viscose silk the strength in the wet and dry state is considerably decreased, and in the case of Lilienfeld-silk is decreased. but less considerably; the'extensibility of both kinds of silk is improved, but their elasticity is very considerably diminished.
  • the same solution is applied at 100 C. the lustre of both silks is unaffected, the decrease in their strengths in wet and dry state is very slight and the extensibility and elasticity increase, the latterby about 100 per cent. in the case of viscose silk.
  • a solution of caustic soda of 5'per cent. strength at 15 0. causes a strong diminution in the lustre and renders the material stiff and coarse to the feel. If the same solution is used at 100 0., the lustre is preserved and the material acquires a completely sillqr character, and a soft feel.
  • a caustic soda solution of '7 per cent. strength at 15 C. diminishes the lustre and makes the feel of the material very still.
  • the same solution employed at 25 0., does not affect the lustre and imparts to the fabric a soft feel.
  • Solutions of sodium sulphide of 58, 84 and per cent. strength (calculated as crystalline NazS) s at 100-150 C. also confer upon fabrics of artificial silk a lustre which approaches or is even equal, t'o that of natural silk, and a very soft feel.
  • the treatment described in the foregoing examples may be applied to artificial fibrous material whilst this is subjected to tension, but the effects of the treatment, whilst they are still appreciable are less pronounced than when no tension is applied.
  • temperatures given therein for the caustic soda solutions or sodium sulphide solutions there may be used other temperatures, for example, any temperatures between 25 and 100 C.
  • a solution of another basic substance for example, a solution-of guanidine of 20-50 per cent. strength, the temperature of'the treatment being, for ex ample, 25-100 0.
  • a solution of caustic soda there may be used a solution of another causticalkali, suchas a caustic potash solution of equivalent strength
  • a solution of sodium sulphide a solution of another alkali metal sulphide may be used, such as potassium sulphide.
  • a strong solution of trimethyl-sulphonium hydroxide of tetramethyl-ammonium hydroxide or the like.
  • the artificial fibrous material may be introduced into cold or warm' or boiling water after being removed from the hot alkali solution (see, for instance, Examples 21, 22, 2'! and 28) and then washed, if required after being treated with an acid, and finally dried.
  • a process for treating artificial fibrous material of regenerated cellulose which comprises, acting on said material with a solution selected from the herein described group consisting of .1,ea9,1oo
  • a process for treating artificial fibrous material which comprises acting on said material with a solution of an alkali sulphide containing not less than 50 per cent. alkali sulphide (calculated as crystalline sodium sulphide) at a temperature of not less than 50 C.
  • an alkaline solution selected from the herein described group consisting of caustic alkali solution of at least 5% concentration, calculated as NaOH, and alkali metal sulphide solution of at least 15% concentration, calculated as Na2S-9H2O, which solution has a temperature not less than 50 C.
  • a process of improving cellulose acetate threads which comprises subjecting said threads tothe action of a treating solution selected from the group consisting of (a) caustic alkali solution of not substantially below 30% strength, calculated as NaOH, and (b) alkali metal sulphide solution of about 84 to 100%, calculated as NazS9I-I2O; such treatment being effected at a temperature not substantially below 50 C., and thereafter washing and drying the said threads.
  • a treating solution selected from the group consisting of (a) caustic alkali solution of not substantially below 30% strength, calculated as NaOH, and (b) alkali metal sulphide solution of about 84 to 100%, calculated as NazS9I-I2O; such treatment being effected at a temperature not substantially below 50 C., and thereafter washing and drying the said threads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
US367154A 1928-06-16 1929-05-29 Process for improving artificial fibrous material Expired - Lifetime US1989100A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT320062X 1928-06-16

Publications (1)

Publication Number Publication Date
US1989100A true US1989100A (en) 1935-01-29

Family

ID=3671542

Family Applications (3)

Application Number Title Priority Date Filing Date
US367154A Expired - Lifetime US1989100A (en) 1928-06-16 1929-05-29 Process for improving artificial fibrous material
US367152A Expired - Lifetime US1922308A (en) 1928-06-16 1929-05-29 Process for improving vegetable textile materials
US367150A Expired - Lifetime US1989101A (en) 1928-06-16 1929-05-29 Process for improving artificial fibers or fabrics

Family Applications After (2)

Application Number Title Priority Date Filing Date
US367152A Expired - Lifetime US1922308A (en) 1928-06-16 1929-05-29 Process for improving vegetable textile materials
US367150A Expired - Lifetime US1989101A (en) 1928-06-16 1929-05-29 Process for improving artificial fibers or fabrics

Country Status (5)

Country Link
US (3) US1989100A (enrdf_load_stackoverflow)
BE (3) BE361564A (enrdf_load_stackoverflow)
DE (2) DE701449C (enrdf_load_stackoverflow)
FR (6) FR676764A (enrdf_load_stackoverflow)
NL (3) NL29923C (enrdf_load_stackoverflow)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2497519A (en) * 1946-12-04 1950-02-14 Alrose Chemical Company Art of stabilizing rayon type fabric
US2506045A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2512951A (en) * 1947-06-16 1950-06-27 Dixie Mercerizing Company Mercerization
US2516083A (en) * 1944-12-27 1950-07-18 Heberlein Patent Corp Transparentizing regenerated cellulose silk
US2541457A (en) * 1947-05-23 1951-02-13 Alrose Chemical Company Cellulosic textile shrinkage control and crease resistance with inhibited tenderizing action
US3531343A (en) * 1967-05-23 1970-09-29 Debron Carpets Ltd Manufacture of pile fabrics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124860A (en) * 1964-03-17 Textile process and product
DE753609C (de) * 1941-09-25 1954-08-23 Goldberger Sam Verfahren zum Appretieren von Cellulosetextilgut mit Cellulosehydrat

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2506045A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2506041A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2506044A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2506040A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2506043A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2506042A (en) * 1943-04-22 1950-05-02 Cilander Ag Process for obtaining transparent effects on regenerated cellulose fibers
US2516083A (en) * 1944-12-27 1950-07-18 Heberlein Patent Corp Transparentizing regenerated cellulose silk
US2497519A (en) * 1946-12-04 1950-02-14 Alrose Chemical Company Art of stabilizing rayon type fabric
US2541457A (en) * 1947-05-23 1951-02-13 Alrose Chemical Company Cellulosic textile shrinkage control and crease resistance with inhibited tenderizing action
US2512951A (en) * 1947-06-16 1950-06-27 Dixie Mercerizing Company Mercerization
US3531343A (en) * 1967-05-23 1970-09-29 Debron Carpets Ltd Manufacture of pile fabrics

Also Published As

Publication number Publication date
BE361531A (enrdf_load_stackoverflow)
DE547204C (de) 1932-03-30
NL29923C (enrdf_load_stackoverflow)
US1922308A (en) 1933-08-15
US1989101A (en) 1935-01-29
NL31170C (enrdf_load_stackoverflow)
FR676766A (fr) 1930-02-27
FR679149A (fr) 1930-04-09
BE361564A (enrdf_load_stackoverflow)
FR676783A (fr) 1930-02-27
FR676782A (fr) 1930-02-27
DE701449C (de) 1941-01-16
BE361532A (enrdf_load_stackoverflow)
FR676764A (fr) 1930-02-27
NL28485C (enrdf_load_stackoverflow)
FR676781A (fr) 1930-02-27

Similar Documents

Publication Publication Date Title
US1989099A (en) Process of improving artificial threads
JP3479078B2 (ja) 繊維の処理
US1989100A (en) Process for improving artificial fibrous material
US1829906A (en) Treatment of fibrous material
US1998577A (en) Novel artificial silk effects and process of producing same
JP3527251B2 (ja) 溶剤紡糸セルロース繊維布帛の処理方法
KR20050106402A (ko) 염색 및 정련된 라이오셀 직물의 제조방법
US2002106A (en) Process for treating vegetable fibers
US3124860A (en) Textile process and product
US2001621A (en) Treatment of artificial fibrous material
GB323731A (en) Process for improving artificial fibrous material
US3297399A (en) Process of mercerizing a cellulosic material while simultaneously depositing silica thereon
US2702228A (en) Method of modifying cellulose fibers with alkali solutions of copper or nickel biuret
JP3533279B2 (ja) ストレッチ織物の加工方法
JP3593539B2 (ja) セルロース繊維品の処理方法
JP2780747B2 (ja) 木綿繊維含有繊維製品及びその製造方法
JP3724600B2 (ja) 木綿繊維含有繊維製品
JPS6147871A (ja) セルロ−ズ系繊維の擬麻加工方法
JPH10259568A (ja) 改質アセテート繊維織編物及びその製造方法
JPH01104872A (ja) 防縮性絹織物の製造法
US2111486A (en) Process of treating cotton fabric and the product thereof
CN116590923A (zh) 一种抗原纤化纤维素纤维的制备方法
US3457024A (en) Process for treating cellulosic textile material for improving simultaneously its crease recovery and its abrasion and tear resistance properties
WO1998010133A1 (en) Lyocell fibre treatment
WO1980000463A1 (en) Fibrous products and their manufacture