US11927386B2 - Vacuum adiabatic body and refrigerator - Google Patents
Vacuum adiabatic body and refrigerator Download PDFInfo
- Publication number
- US11927386B2 US11927386B2 US17/155,430 US202117155430A US11927386B2 US 11927386 B2 US11927386 B2 US 11927386B2 US 202117155430 A US202117155430 A US 202117155430A US 11927386 B2 US11927386 B2 US 11927386B2
- Authority
- US
- United States
- Prior art keywords
- vacuum
- plate
- space
- adiabatic body
- vacuum adiabatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005452 bending Methods 0.000 claims abstract description 77
- 238000012546 transfer Methods 0.000 claims description 72
- 230000005855 radiation Effects 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 32
- 239000007787 solid Substances 0.000 claims description 5
- 239000011295 pitch Substances 0.000 description 23
- 230000003247 decreasing effect Effects 0.000 description 20
- 239000011148 porous material Substances 0.000 description 20
- 238000007789 sealing Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 239000003507 refrigerant Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005187 foaming Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 230000000994 depressogenic effect Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 235000019592 roughness Nutrition 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
- F25D23/063—Walls defining a cabinet formed by an assembly of panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/663—Elements for spacing panes
- E06B3/66304—Discrete spacing elements, e.g. for evacuated glazing units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/02—Doors; Covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
- F25D23/064—Walls defining a cabinet formed by moulding, e.g. moulding in situ
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/08—Parts formed wholly or mainly of plastics materials
- F25D23/082—Strips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/02—Doors; Covers
- F25D23/028—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2500/00—Problems to be solved
- F25D2500/02—Geometry problems
Definitions
- the present disclosure relates to a vacuum adiabatic body and a refrigerator.
- a vacuum adiabatic body is a product for suppressing heat transfer by vacuumizing the interior of a body thereof.
- the vacuum adiabatic body can reduce heat transfer by convection and conduction, and hence is applied to heating apparatuses and refrigerating apparatuses.
- a foam urethane adiabatic wall having a thickness of about 30 cm or more is generally provided.
- the internal volume of the refrigerator is therefore reduced.
- Reference Document 1 Korean Patent No. 10-0343719 (Reference Document 1) of the present applicant has been disclosed.
- Reference Document 1 there is disclosed a method in which a vacuum adiabatic panel is prepared and then built in walls of a refrigerator, and the exterior of the vacuum adiabatic panel is finished with a separate molding such as Styrofoam (polystyrene). According to the method, additional foaming is not required, and the adiabatic performance of the refrigerator is improved. However, manufacturing cost is increased, and a manufacturing method is complicated.
- Embodiments provide a vacuum adiabatic body and a refrigerator, which can obtain a sufficient adiabatic effect in a vacuum state and be applied commercially. Embodiments also provide a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body, and a refrigerator.
- a vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a
- a vacuum adiabatic body in another embodiment, includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a
- a refrigerator in still another embodiment, includes: a main body provided with an internal space in which storage goods are stored; and a door provided to open/close the main body from an external space, wherein, in order to supply a refrigerant into the main body, the refrigerator includes: a compressor for compressing the refrigerant; a condenser for condensing the compressed refrigerant; an expander for expanding the condensed refrigerant; and an evaporator for evaporating the expanded refrigerant to take heat, wherein at least one of the main body and the door includes a vacuum adiabatic body, wherein the vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for the internal space; a second plate member defining at least one portion of a wall for the external space; a sealing part sealing the first plate member and the second plate member to provide a vacuum space part that has a temperature between a temperature of the internal space and a temperature of the external space and is in a vacuum state;
- a vacuum adiabatic body having a vacuum adiabatic effect and a refrigerator including the same it is possible to design a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body.
- FIG. 1 is a perspective view of a refrigerator according to an embodiment.
- FIG. 2 is a view schematically showing a vacuum adiabatic body used in a main body and a door of the refrigerator.
- FIG. 3 is a view showing various embodiments of an internal configuration of a vacuum space part.
- FIG. 4 is a view showing various embodiments of conductive resistance sheets and peripheral parts thereof.
- FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
- FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when a supporting unit is used.
- FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities.
- FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment.
- FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure.
- FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
- FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of a plate member.
- FIG. 12 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
- FIG. 13 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body.
- vacuum pressure means a certain pressure state lower than atmospheric pressure.
- the expression that a vacuum degree of A is higher than that of B means that a vacuum pressure of A is lower than that of B.
- FIG. 1 is a perspective view of a refrigerator according to an embodiment.
- FIG. 2 is a view schematically showing a vacuum adiabatic body used in the main body and the door of the refrigerator.
- a main body-side vacuum adiabatic body is illustrated in a state in which top and side walls are removed
- a door-side vacuum adiabatic body is illustrated in a state in which a portion of a front wall is removed.
- sections of portions at conductive resistance sheets are provided are schematically illustrated for convenience of understanding.
- the refrigerator 1 includes a main body 2 provided with a cavity 9 capable of storing storage goods and a door 3 provided to open/close the main body 2 .
- the door 3 may be rotatably or movably disposed to open/close the cavity 9 .
- the cavity 9 may provide at least one of a refrigerating chamber and a freezing chamber.
- Parts constituting a freezing cycle in which cold air is supplied into the cavity 9 may be included.
- the parts include a compressor 4 for compressing a refrigerant, a condenser 5 for condensing the compressed refrigerant, an expander 6 for expanding the condensed refrigerant, and an evaporator 7 for evaporating the expanded refrigerant to take heat.
- a fan may be installed at a position adjacent to the evaporator 7 , and a fluid blown from the fan may pass through the evaporator 7 and then be blown into the cavity 9 .
- a freezing load is controlled by adjusting the blowing amount and blowing direction by the fan, adjusting the amount of a circulated refrigerant, or adjusting the compression rate of the compressor, so that it is possible to control a refrigerating space or a freezing space.
- the vacuum adiabatic body includes a first plate member (or first plate) 10 for providing a wall of a low-temperature space, a second plate member (or second plate) 20 for providing a wall of a high-temperature space, and a vacuum space part (or vacuum space) 50 defined as a gap part between the first and second plate members 10 and 20 . Also, the vacuum adiabatic body includes the conductive resistance sheets 60 and 62 for preventing heat conduction between the first and second plate members 10 and 20 .
- a sealing part (or seal) 61 for sealing the first and second plate members 10 and 20 is provided such that the vacuum space part 50 is in a sealing state.
- the first plate member 10 may be referred to as an inner case
- the second plate member 20 may be referred to as an outer case.
- a machine chamber 8 in which parts providing a freezing cycle are accommodated is placed at a lower rear side of the main body-side vacuum adiabatic body, and an exhaust port 40 for forming a vacuum state by exhausting air in the vacuum space part 50 is provided at any one side of the vacuum adiabatic body.
- a pipeline 64 passing through the vacuum space part 50 may be further installed so as to install a defrosting water line and electric lines.
- the first plate member 10 may define at least one portion of a wall for a first space provided thereto.
- the second plate member 20 may define at least one portion of a wall for a second space provided thereto.
- the first space and the second space may be defined as spaces having different temperatures.
- the wall for each space may serve as not only a wall directly contacting the space but also a wall not contacting the space.
- the vacuum adiabatic body of the embodiment may also be applied to a product further having a separate wall contacting each space.
- Factors of heat transfer which cause loss of the adiabatic effect of the vacuum adiabatic body, are heat conduction between the first and second plate members 10 and 20 , heat radiation between the first and second plate members 10 and 20 , and gas conduction of the vacuum space part 50 .
- a heat resistance unit provided to reduce adiabatic loss related to the factors of the heat transfer will be provided.
- the vacuum adiabatic body and the refrigerator of the embodiment do not exclude that another adiabatic means is further provided to at least one side of the vacuum adiabatic body. Therefore, an adiabatic means using foaming or the like may be further provided to another side of the vacuum adiabatic body.
- FIG. 3 is a view showing various embodiments of an internal configuration of the vacuum space part.
- the vacuum space part 50 is provided in a third space having a different pressure from the first and second spaces, preferably, a vacuum state, thereby reducing adiabatic loss.
- the third space may be provided at a temperature between the temperature of the first space and the temperature of the second space. Since the third space is provided as a space in the vacuum state, the first and second plate members 10 and 20 receive a force contracting in a direction in which they approach each other due to a force corresponding to a pressure difference between the first and second spaces. Therefore, the vacuum space part 50 may be deformed in a direction in which it is reduced. In this case, adiabatic loss may be caused due to an increase in amount of heat radiation, caused by the contraction of the vacuum space part 50 , and an increase in amount of heat conduction, caused by contact between the plate members 10 and 20 .
- a supporting unit (or support) 30 may be provided to reduce the deformation of the vacuum space part 50 .
- the supporting unit 30 includes bars 31 .
- the bars 31 may extend in a direction substantially vertical to the first and second plate members 10 and 20 so as to support a distance between the first and second plate members 10 and 20 .
- a support plate 35 may be additionally provided to at least one end of the bar 31 .
- the support plate 35 connects at least two bars 31 to each other, and may extend in a direction horizontal to the first and second plate members 10 and 20 .
- the support plate 35 may be provided in a plate shape, or may be provided in a lattice shape such that its area contacting the first or second plate member 10 or 20 is decreased, thereby reducing heat transfer.
- the bars 31 and the support plate 35 are fixed to each other at at least one portion, to be inserted together between the first and second plate members 10 and 20 .
- the support plate 35 contacts at least one of the first and second plate members 10 and 20 , thereby preventing deformation of the first and second plate members 10 and 20 .
- a material of the supporting unit 30 may include a resin selected from the group consisting of PC, glass fiber PC, low outgassing PC, PPS, and LCP so as to obtain high compressive strength, low outgassing and water absorptance, low thermal conductivity, high compressive strength at high temperature, and excellent machinability.
- the first and second plate members 10 and 20 may be made of a stainless material capable of preventing corrosion and providing a sufficient strength.
- the stainless material has a relatively high emissivity of 0.16, and hence a large amount of radiation heat may be transferred.
- the supporting unit 30 made of the resin has a lower emissivity than the plate members, and is not entirely provided to inner surfaces of the first and second plate members 10 and 20 .
- the supporting unit 30 does not have great influence on radiation heat. Therefore, the radiation resistance sheet 32 may be provided in a plate shape over a majority of the area of the vacuum space part 50 so as to concentrate on reduction of radiation heat transferred between the first and second plate members 10 and 20 .
- a product having a low emissivity may be preferably used as the material of the radiation resistance sheet 32 .
- an aluminum foil having an emissivity of 0.02 may be used as the radiation resistance sheet 32 . Since the transfer of radiation heat cannot be sufficiently blocked using one radiation resistance sheet, at least two radiation resistance sheets 32 may be provided at a certain distance so as not to contact each other. In addition, at least one radiation resistance sheet may be provided in a state in which it contacts the inner surface of the first or second plate member 10 or 20 .
- the distance between the plate members is maintained by the supporting unit 30 , and a porous material 33 may be filled in the vacuum space part 50 .
- the porous material 33 may have a higher emissivity than the stainless material of the first and second plate members 10 and 20 .
- the porous material 33 since the porous material 33 is filled in the vacuum space part 50 , the porous material 33 has a high efficiency for resisting the radiation heat transfer.
- the vacuum adiabatic body can be manufactured without using the radiation resistance sheet 32 .
- the supporting unit 30 maintaining the vacuum space part 50 is not provided.
- the porous material 33 is provided in a state in which it is surrounded by a film 34 .
- the porous material 33 may be provided in a state in which it is compressed so as to maintain the gap of the vacuum space part 50 .
- the film 34 is made of, for example, a PE material, and may be provided in a state in which holes are formed therein.
- the vacuum adiabatic body can be manufactured without using the supporting unit 30 .
- the porous material 33 can serve together as the radiation resistance sheet 32 and the supporting unit 30 .
- FIG. 4 is a view showing various embodiments of the conductive resistance sheets and peripheral parts thereof. Structures of the conductive resistance sheets are briefly illustrated in FIG. 2 , but will be understood in detail with reference to FIG. 4 .
- a conductive resistance sheet proposed in FIG. 4 a may be preferably applied to the main body-side vacuum adiabatic body.
- the first and second plate members 10 and 20 are to be sealed so as to vacuumize the interior of the vacuum adiabatic body.
- a conductive resistance sheet 60 is provided to prevent heat conduction between two different kinds of plate members.
- the conductive resistance sheet 60 may be provided with sealing parts 61 at which both ends of the conductive resistance sheet 60 are sealed to define at least one portion of the wall for the third space and maintain the vacuum state.
- the conductive resistance sheet 60 may be provided as a thin foil in units of micrometers so as to reduce the amount of heat conducted along the wall for the third space.
- the sealing parts 61 may be provided as welding parts. That is, the conductive resistance sheet 60 and the plate members 10 and 20 may be fused to each other.
- the conductive resistance sheet 60 and the plate members 10 and 20 may be made of the same material, and a stainless material may be used as the material.
- the sealing parts 61 are not limited to the welding parts, and may be provided through a process such as cocking.
- the conductive resistance sheet 60 may be provided in a curved shape. Thus, a heat conduction distance of the conductive resistance sheet 60 is provided longer than the linear distance of each plate member, so that the amount of heat conduction can be further reduced.
- a change in temperature occurs along the conductive resistance sheet 60 . Therefore, in order to block heat transfer to the exterior of the conductive resistance sheet 60 , a shielding part (or shield) 62 may be provided at the exterior of the conductive resistance sheet 60 such that an adiabatic action occurs.
- the second plate member 20 has a high temperature and the first plate member 10 has a low temperature.
- heat conduction from high temperature to low temperature occurs in the conductive resistance sheet 60 , and hence the temperature of the conductive resistance sheet 60 is suddenly changed. Therefore, when the conductive resistance sheet 60 is opened to the exterior thereof, heat transfer through the opened place may seriously occur.
- the shielding part 62 is provided at the exterior of the conductive resistance sheet 60 .
- the conductive resistance sheet 60 when the conductive resistance sheet 60 is exposed to any one of the low-temperature space and the high-temperature space, the conductive resistance sheet 60 does not serve as a conductive resistor as well as the exposed portion thereof, which is not preferable.
- the shielding part 62 may be provided as a porous material contacting an outer surface of the conductive resistance sheet 60 .
- the shielding part 62 may be provided as an adiabatic structure, e.g., a separate gasket, which is placed at the exterior of the conductive resistance sheet 60 .
- the shielding part 62 may be provided as a portion of the vacuum adiabatic body, which is provided at a position facing a corresponding conductive resistance sheet 60 when the main body-side vacuum adiabatic body is closed with respect to the door-side vacuum adiabatic body.
- the shielding part 62 may be preferably provided as a porous material or a separate adiabatic structure.
- a conductive resistance sheet proposed in FIG. 4 b may be preferably applied to the door-side vacuum adiabatic body.
- FIG. 4 b portions different from those of FIG. 4 a are described in detail, and the same description is applied to portions identical to those of FIG. 4 a .
- a side frame 70 is further provided at an outside of the conductive resistance sheet 60 .
- a part for sealing between the door and the main body, an exhaust port necessary for an exhaust process, a getter port for vacuum maintenance, and the like may be placed on the side frame 70 . This is because the mounting of parts is convenient in the main body-side vacuum adiabatic body, but the mounting positions of parts are limited in the door-side vacuum adiabatic body.
- the conductive resistance sheet 60 In the door-side vacuum adiabatic body, it is difficult to place the conductive resistance sheet 60 at a front end portion of the vacuum space part, i.e., a corner side portion of the vacuum space part. This is because, unlike the main body, a corner edge portion of the door is exposed to the exterior. More specifically, if the conductive resistance sheet 60 is placed at the front end portion of the vacuum space part, the corner edge portion of the door is exposed to the exterior, and hence there is a disadvantage in that a separate adiabatic part should be configured so as to heat-insulate the conductive resistance sheet 60 .
- a conductive resistance sheet proposed in FIG. 4 c may be preferably installed in the pipeline passing through the vacuum space part.
- FIG. 4 c portions different from those of FIGS. 4 a and 4 b are described in detail, and the same description is applied to portions identical to those of FIGS. 4 a and 4 b .
- a conductive resistance sheet having the same shape as that of FIG. 4 a preferably, a wrinkled conductive resistance sheet 63 may be provided at a peripheral portion of the pipeline 64 . Accordingly, a heat transfer path can be lengthened, and deformation caused by a pressure difference can be prevented.
- a separate shielding part may be provided to improve the adiabatic performance of the conductive resistance sheet.
- Heat passing through the vacuum adiabatic body may be divided into surface conduction heat ⁇ circle around ( 1 ) ⁇ conducted along a surface of the vacuum adiabatic body, more specifically, the conductive resistance sheet 60 , supporter conduction heat ⁇ circle around ( 2 ) ⁇ conducted along the supporting unit 30 provided inside the vacuum adiabatic body, gas conduction heat (or convection) ⁇ circle around ( 3 ) ⁇ conducted through an internal gas in the vacuum space part, and radiation transfer heat ⁇ circle around ( 4 ) ⁇ transferred through the vacuum space part.
- the transfer heat may be changed depending on various design dimensions.
- the supporting unit may be changed such that the first and second plate members 10 and 20 can endure a vacuum pressure without being deformed, the vacuum pressure may be changed, the distance between the plate members may be changed, and the length of the conductive resistance sheet may be changed.
- the transfer heat may be changed depending on a difference in temperature between the spaces (the first and second spaces) respectively provided by the plate members.
- a preferred configuration of the vacuum adiabatic body has been found by considering that its total heat transfer amount is smaller than that of a typical adiabatic structure formed by foaming polyurethane.
- an effective heat transfer coefficient may be proposed as 19.6 mW/mK.
- a heat transfer amount by the gas conduction heat ⁇ circle around ( 3 ) ⁇ can become smallest.
- the heat transfer amount by the gas conduction heat ⁇ circle around ( 3 ) ⁇ may be controlled to be equal to or smaller than 4% of the total heat transfer amount.
- a heat transfer amount by solid conduction heat defined as a sum of the surface conduction heat ⁇ circle around ( 1 ) ⁇ and the supporter conduction heat ⁇ circle around ( 2 ) ⁇ is largest.
- the heat transfer amount by the solid conduction heat may reach 75% of the total heat transfer amount.
- a heat transfer amount by the radiation transfer heat ⁇ circle around ( 4 ) ⁇ is smaller than the heat transfer amount by the solid conduction heat but larger than the heat transfer amount of the gas conduction heat ⁇ circle around ( 3 ) ⁇ .
- the heat transfer amount by the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may occupy about 20% of the total heat transfer amount.
- effective heat transfer coefficients (eK: effective K) (W/mK) of the surface conduction heat ⁇ circle around ( 1 ) ⁇ , the supporter conduction heat ⁇ circle around ( 2 ) ⁇ , the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may have an order of Math FIG. 1.
- the effective heat transfer coefficient (eK) is a value that can be measured using a shape and temperature differences of a target product.
- the effective heat transfer coefficient (eK) is a value that can be obtained by measuring a total heat transfer amount and a temperature of at least one portion at which heat is transferred. For example, a calorific value (W) is measured using a heating source that can be quantitatively measured in the refrigerator, a temperature distribution (K) of the door is measured using heats respectively transferred through a main body and an edge of the door of the refrigerator, and a path through which heat is transferred is calculated as a conversion value (m), thereby evaluating an effective heat transfer coefficient.
- Q denotes a calorific value (W) and may be obtained using a calorific value of a heater.
- A denotes a sectional area (m 2 ) of the vacuum adiabatic body, L denotes a thickness (m) of the vacuum adiabatic body, and ⁇ T denotes a temperature difference.
- a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the conductive resistance sheet 60 or 63 , a sectional area (A) of the conductive resistance sheet, a length (L) of the conductive resistance sheet, and a thermal conductivity (k) of the conductive resistance sheet (the thermal conductivity of the conductive resistance sheet is a material property of a material and can be obtained in advance).
- a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the supporting unit 30 , a sectional area (A) of the supporting unit, a length (L) of the supporting unit, and a thermal conductivity (k) of the supporting unit.
- the thermal conductivity of the supporting unit is a material property of a material and can be obtained in advance.
- the sum of the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may be obtained by subtracting the surface conduction heat and the supporter conduction heat from the heat transfer amount of the entire vacuum adiabatic body.
- a ratio of the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may be obtained by evaluating radiation transfer heat when no gas conduction heat exists by remarkably lowering a vacuum degree of the vacuum space part 50 .
- porous material conduction heat ⁇ circle around ( 5 ) ⁇ may be a sum of the supporter conduction heat ⁇ circle around ( 2 ) ⁇ and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ ,
- the porous material conduction heat ⁇ circle around ( 5 ) ⁇ may be changed depending on various variables including a kind, an amount, and the like of the porous material.
- a temperature difference ⁇ T 1 between a geometric center formed by adjacent bars 31 and a point at which each of the bars 31 is located may be preferably provided to be less than 0.5° C.
- a temperature difference ⁇ T 2 between the geometric center formed by the adjacent bars 31 and an edge portion of the vacuum adiabatic body may be preferably provided to be less than 0.5° C.
- a temperature difference between an average temperature of the second plate and a temperature at a point at which a heat transfer path passing through the conductive resistance sheet 60 or 63 meets the second plate may be largest.
- the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes lowest.
- the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes highest.
- a temperature variation of the conductive resistance sheet may be controlled to be larger than that of the plate member.
- the plate members 10 and 20 and the side frame 70 may be preferably made of a material having a sufficient strength with which they are not damaged by even vacuum pressure.
- the radiation resistance sheet 32 may be preferably made of a material that has a low emissivity and can be easily subjected to thin film processing. Also, the radiation resistance sheet 32 is to ensure a strength high enough not to be deformed by an external impact.
- the supporting unit 30 is provided with a strength high enough to support the force by the vacuum pressure and endure an external impact, and is to have machinability.
- the conductive resistance sheet 60 may be preferably made of a material that has a thin plate shape and can endure the vacuum pressure.
- the plate member, the side frame, and the conductive resistance sheet may be made of stainless materials having the same strength.
- the radiation resistance sheet may be made of aluminum having a weaker strength that the stainless materials.
- the supporting unit may be made of resin having a weaker strength than the aluminum.
- the stiffness (N/m) is a property that would not be easily deformed. Although the same material is used, its stiffness may be changed depending on its shape.
- the conductive resistance sheets 60 or 63 may be made of a material having a predetermined strength, but the stiffness of the material is preferably low so as to increase heat resistance and minimize radiation heat as the conductive resistance sheet is uniformly spread without any roughness when the vacuum pressure is applied.
- the radiation resistance sheet 32 requires a stiffness of a certain level so as not to contact another part due to deformation. Particularly, an edge portion of the radiation resistance sheet may generate conduction heat due to drooping caused by the self-load of the radiation resistance sheet. Therefore, a stiffness of a certain level is required.
- the supporting unit 30 requires a stiffness high enough to endure a compressive stress from the plate member and an external impact.
- the plate member and the side frame may preferably have the highest stiffness so as to prevent deformation caused by the vacuum pressure.
- the supporting unit, particularly, the bar may preferably have the second highest stiffness.
- the radiation resistance sheet may preferably have a stiffness that is lower than that of the supporting unit but higher than that of the conductive resistance sheet.
- the conductive resistance sheet may be preferably made of a material that is easily deformed by the vacuum pressure and has the lowest stiffness. Even when the porous material 33 is filled in the vacuum space part 50 , the conductive resistance sheet may preferably have the lowest stiffness, and the plate member and the side frame may preferably have the highest stiffness.
- a vacuum pressure preferably determined depending on an internal state of the vacuum adiabatic body will be described.
- a vacuum pressure is to be maintained inside the vacuum adiabatic body so as to reduce heat transfer.
- the vacuum pressure is preferably maintained as low as possible so as to reduce the heat transfer.
- the vacuum space part 50 may resist the heat transfer by applying only the supporting unit 30 .
- the porous material 33 may be filled together with the supporting unit in the vacuum space part 50 to resist the heat transfer.
- the vacuum space part may resist the heat transfer not by applying the supporting unit but by applying the porous material 33 .
- FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
- a heat load in the case of only the main body (Graph 1 ) or in the case where the main body and the door are joined together (Graph 2 ) is decreased as compared with that in the case of the typical product formed by foaming polyurethane, thereby improving the adiabatic performance.
- the degree of improvement of the adiabatic performance is gradually lowered.
- the gas conductivity (Graph 3 ) is decreased.
- FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when the supporting unit is used.
- a gas in the vacuum space part 50 is exhausted by a vacuum pump while evaporating a latent gas remaining in the parts of the vacuum space part 50 through baking.
- the vacuum pressure reaches a certain level or more, there exists a point at which the level of the vacuum pressure is not increased any more ( ⁇ t 1 ).
- the getter is activated by disconnecting the vacuum space part 50 from the vacuum pump and applying heat to the vacuum space part 50 ( ⁇ t 2 ). If the getter is activated, the pressure in the vacuum space part 50 is decreased for a certain period of time, but then normalized to maintain a vacuum pressure of a certain level.
- the vacuum pressure that maintains the certain level after the activation of the getter is approximately 1.8 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 6) Torr.
- a point at which the vacuum pressure is not substantially decreased any more even though the gas is exhausted by operating the vacuum pump is set to the lowest limit of the vacuum pressure used in the vacuum adiabatic body, thereby setting the minimum internal pressure of the vacuum space part 50 to 1.8 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 6) Torr.
- FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities.
- gas conductivities with respect to vacuum pressures depending on sizes of a gap in the vacuum space part 50 are represented as graphs of effective heat transfer coefficients (eK).
- Effective heat transfer coefficients (eK) were measured when the gap in the vacuum space part 50 has three sizes of 2.76 mm, 6.5 mm, and 12.5 mm.
- the gap in the vacuum space part 50 is defined as follows. When the radiation resistance sheet 32 exists inside vacuum space part 50 , the gap is a distance between the radiation resistance sheet 32 and the plate member adjacent thereto. When the radiation resistance sheet 32 does not exist inside vacuum space part 50 , the gap is a distance between the first and second plate members.
- the vacuum pressure is 2.65 ⁇ 10 ⁇ circle around ( ) ⁇ ( ⁇ 1) Torr even when the size of the gap is 2.76 mm.
- the point at which reduction in adiabatic effect caused by gas conduction heat is saturated even though the vacuum pressure is decreased is a point at which the vacuum pressure is approximately 4.5 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) Torr.
- the vacuum pressure of 4.5 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) Torr can be defined as the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated. Also, when the effective heat transfer coefficient is 0.1 W/mK, the vacuum pressure is 1.2 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 2) Torr.
- the size of the gap ranges from a few micrometers to a few hundredths of micrometers.
- the amount of radiation heat transfer is small due to the porous material even when the vacuum pressure is relatively high, i.e., when the vacuum degree is low. Therefore, an appropriate vacuum pump is used to adjust the vacuum pressure.
- the vacuum pressure appropriate to the corresponding vacuum pump is approximately 2.0 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 4) Torr.
- the vacuum pressure at the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated is approximately 4.7 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 2) Torr.
- the pressure where the reduction in adiabatic effect caused by gas conduction heat reaches the typical effective heat transfer coefficient of 0.0196 W/mK is 730 Torr.
- FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment.
- FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure.
- FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
- the vacuum adiabatic body 100 includes a first plate member 10 , a second plate member 20 , and a supporting unit 30 .
- the supporting unit 30 is interposed between the first plate member 10 and the second plate member 20 .
- FIG. 9 is a sectional view taken along line I-I′ of FIG. 8
- FIG. 9 is a view showing a state in which the vacuum adiabatic body is deformed by internal vacuum pressure.
- the supporting unit 30 includes a plurality of bars, and the bars may be disposed perpendicular to the first and second plate members 10 and 20 . Accordingly, the bars function to maintain a distance between the first and second plate members 10 and 20 .
- the plurality of bars may be disposed to be spaced apart from each other.
- adjacent four bars are disposed to constitute a square unit grid.
- pitches between the plurality of bars may be formed different from each other.
- the number of bars constituting one unit grid may be changed.
- the unit grid is surrounded by the first and second plate members 10 and 20 at both ends thereof, and outer surfaces of the first and second plate members 10 and 20 surrounding the unit grid may be defined as unit grid areas. That is, the unit grid areas refer to surfaces of the plate members 10 and 20 , which are exposed to the exterior.
- the unit grid area refers to one square area O formed by dotted lines on the surface of the first plate member 10 .
- spots S at which the plurality of bars are disposed in the unit grid areas is indicated as spots at which dotted lines intersect each other on the surface of the first plate 10 .
- the plurality of bars support the first and second plate members 10 and 20 under the spots S at which the plurality of bars are disposed.
- areas except the plurality of bars are disposed in the unit grid areas O are spaces between the first and second plate members 10 .
- a bending part depressed toward a vacuum space part 50 may be formed at each of the surfaces of the first and second plate members 10 and 20 .
- the bending part may be formed in a shape in which it is depressed toward the vacuum space part 50 as it is more distant from each of the spots S at which the plurality of bars are disposed. That is, the bending part has the center spot of the unit grid area O as a lowest point, and has each of the spots S at which the plurality of bars are disposed as a highest point.
- the vacuum adiabatic body is to be designed by considering thicknesses of the plate members 10 and 20 and pitches between the plurality of bars.
- An angle made by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points that are the spots S at which the plurality of bars are disposed is defined as a bending angle ⁇ of the bending part formed in the unit grid area O.
- a surface bending angle ⁇ of each of the plate members 10 and 20 is increased, it is highly likely that the user will recognize bending with the naked eye.
- the surface bending angle ⁇ is determined by a ratio of a surface roughness of each of the plate members 10 and 20 and a pitch P between the plurality of bars.
- the bending angle ⁇ is defined as a slope of the straight line connecting the highest point and the lowest point to each other, and is mathematically defined.
- a distance in the horizontal direction between the highest point and the lowest point of the unit grid area O is equal to that from the vertex of the unit grid area O to the center of the unit grid area O. Since the pitch between the plurality of bars is P, the length of one side of the square becomes P.
- the distance in the horizontal direction between the highest point and the lowest point of the unit grid area O becomes P/ ⁇ 2.
- a distance in the vertical direction between the highest point and the lowest point on the surface of each of the plate members 10 and 20 is defined as a bending amount ⁇ .
- a tangent of the straight line connecting the highest point and the lowest point to each other corresponds to a ratio of the bending amount ⁇ with respect to the distance from the vertex of the unit grid area O to the center of the unit grid area O. Since the bending angle ⁇ is very small, the tangent of the straight line may be approximated as the bending angle ⁇ . Therefore, the bending angle ⁇ is represented by a formula as follows.
- a method for decreasing the pitch P between the plurality of bars and a method for increasing the thickness of each of the first and second plate members 10 and 20 are used to reduce surface bending of each of the first and second plate members 10 and 20 . It is most ideal that the surface bending angle ⁇ of each of the plate members 10 and 20 becomes 0. However, this may excessively increase the weight of the vacuum adiabatic body 100 and manufacturing costs. Meanwhile, there exists a section in which the user does not recognize surface bending even when the surface bending angle ⁇ is not 0 but has a value in a predetermined range.
- FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of the plate member.
- the term ‘intermittent recognition’ refers to a case where only a minority of users can recognize bending of the surface. Therefore, a designer is to determine whether a vacuum adiabatic body is designed as a bending recognition impossible area or an intermittent bending recognition area.
- the vacuum adiabatic body 100 is designed, the surface bending angle of each of the plate members 10 and 20 is formed as small as possible, and simultaneously, the following items are to be considered.
- each of the plate members 10 and 20 is formed as thin as possible, which is efficient in terms of weight and material cost.
- the material of the plurality of bars is used as little as possible, which is efficient in terms of material cost, vacuum maintenance time of the vacuum space part, and heat conduction.
- the diameter of each of the plurality of bars is formed to be 1 mm or more, which is effective in terms of strength against deformation and productivity.
- a separate panel may be mounted on the outer surface of the second plate member 20 exposed to the exterior of the refrigerator. Accordingly, it is possible to preventing bending of the second plate member 20 from being exposed to the exterior.
- FIG. 12 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
- L 1 is a boundary line of a bending recognition impossible area
- L 2 is a boundary line of an intermittent bending recognition area.
- an upper side of L 1 corresponds to the bending recognition impossible area
- an upper side of L 2 between L 1 and L 2 corresponds to the intermittent bending recognition area.
- the horizontal axis P of the graph represents pitches between the plurality of bars
- the vertical axis T represents thicknesses of each of the plate members 10 and 20 .
- the bending angle of the surface bending part of each of the plate members 10 and 20 is equal to or smaller than 1.0*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad has been described as the intermittent bending recognition area.
- the bending angle of the surface bending part of each of the plate members 10 and 20 is preferably designed to be equal to or smaller than 0.75*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad by considering errors in design and manufacturing.
- FIG. 13 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body.
- L 1 is the same as L 1 of FIG. 12 . Therefore, its detailed description will be omitted.
- limiting conditions for a pitch P between the plurality of bars and a thickness T of each of the plate members 10 and 20 may be set so as to perform a design for satisfying the bending angle of the surface of each of the plate members 10 and 20 and satisfying the weight and thermal conductivity of the vacuum adiabatic body.
- Curve C 1 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars such that the heat conductivity of the vacuum adiabatic body satisfies 0.002 W/mK. Curve C 1 is approximately vertically disposed.
- the pitch P between the plurality of bars is to be decreased.
- P>C 1 is satisfied so as to satisfy an adiabatic performance condition by decreasing the thermal conductivity.
- Curve C 1 is formed in a shape in which its lower end portion is slightly biased to the left side. This is because, when the thickness of each of the plate members 10 and 20 is thinner than a predetermined value, the thermal conductivity is constantly maintained even when the pitch P is small.
- Curve C 2 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars, which allow the vacuum adiabatic body to have a constant weight. Curve C 2 is almost horizontally disposed.
- the thickness T of each of the plate members 10 and 20 is to be increased.
- T ⁇ C 2 is satisfied so as to satisfy a weight condition of the vacuum adiabatic body.
- Curve C 2 forms a right upward curve. This is because the weight of the entire vacuum adiabatic body is decreased by decreasing the number of bars as the pitch P is increased, and the thickness T of each of the plate members 10 and 20 is increased as the weight of the entire vacuum adiabatic body is decreased.
- the thickness T of each of the plate members 10 and 20 and the pitch P between the plurality of bars are to be designed to satisfy three inequalities of T>0.033 ⁇ P+0.067, T ⁇ C 1 , and P>C 2 .
- the thickness T of each of the plate members 10 and 20 is preferably designed to be equal to or greater than 0.84 mm and equal to or smaller than 0.92 mm, and the pitch P between the plurality of bars is preferably designed to be equal to or greater than 23 mm and equal to or smaller than 25 mm.
- the thickness T of each of the plate members 10 and 20 is designed to be 0.9 mm, and the pitch P between the plurality of bars is designed to be 23 mm.
- the bending angle is 0.385*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad, and the weight and thermal conductivity of the vacuum adiabatic body maintain the existing levels.
- the vacuum adiabatic body proposed in the present disclosure may be preferably applied to refrigerators.
- the application of the vacuum adiabatic body is not limited to the refrigerators, and may be applied in various apparatuses such as cryogenic refrigerating apparatuses, heating apparatuses, and ventilation apparatuses.
- the vacuum adiabatic body can be industrially applied to various adiabatic apparatuses.
- the adiabatic effect can be enhanced, so that it is possible to improve energy use efficiency and to increase the effective volume of an apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Refrigerator Housings (AREA)
- Thermal Insulation (AREA)
Abstract
Description
eKsolidconductionheat>eKradiationtransferheat>eKgasconductionheat [Math Figure 1]
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/155,430 US11927386B2 (en) | 2015-08-03 | 2021-01-22 | Vacuum adiabatic body and refrigerator |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150109627A KR102498210B1 (en) | 2015-08-03 | 2015-08-03 | Vacuum adiabatic body and refrigerator |
KR10-2015-0109627 | 2015-08-03 | ||
PCT/KR2016/008505 WO2017023089A1 (en) | 2015-08-03 | 2016-08-02 | Vacuum adiabatic body and refrigerator |
US201815749154A | 2018-01-31 | 2018-01-31 | |
US17/155,430 US11927386B2 (en) | 2015-08-03 | 2021-01-22 | Vacuum adiabatic body and refrigerator |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/008505 Continuation WO2017023089A1 (en) | 2015-08-03 | 2016-08-02 | Vacuum adiabatic body and refrigerator |
US15/749,154 Continuation US10928119B2 (en) | 2015-08-03 | 2016-08-02 | Vacuum adiabatic body and refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210140705A1 US20210140705A1 (en) | 2021-05-13 |
US11927386B2 true US11927386B2 (en) | 2024-03-12 |
Family
ID=57943468
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,154 Active 2037-08-19 US10928119B2 (en) | 2015-08-03 | 2016-08-02 | Vacuum adiabatic body and refrigerator |
US17/155,430 Active US11927386B2 (en) | 2015-08-03 | 2021-01-22 | Vacuum adiabatic body and refrigerator |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,154 Active 2037-08-19 US10928119B2 (en) | 2015-08-03 | 2016-08-02 | Vacuum adiabatic body and refrigerator |
Country Status (5)
Country | Link |
---|---|
US (2) | US10928119B2 (en) |
EP (1) | EP3332191B1 (en) |
KR (2) | KR102498210B1 (en) |
CN (5) | CN111238143B (en) |
WO (1) | WO2017023089A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102459784B1 (en) | 2017-08-01 | 2022-10-28 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR102427466B1 (en) | 2017-08-01 | 2022-08-01 | 엘지전자 주식회사 | Vehicle, refrigerater for vehicle, and controlling method for refrigerator for vehicle |
KR102529116B1 (en) | 2017-08-01 | 2023-05-08 | 엘지전자 주식회사 | Vacuum adiabatic body, fabrication method for the vacuum adibatic body, and refrigerating or warming apparatus insulated by the vacuum adiabatic body |
KR102449175B1 (en) | 2017-08-01 | 2022-09-29 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR102449177B1 (en) | 2017-08-01 | 2022-09-29 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR102459786B1 (en) | 2017-08-16 | 2022-10-28 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR102609014B1 (en) | 2018-06-27 | 2023-12-04 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR20200072257A (en) * | 2018-12-12 | 2020-06-22 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
CN113074509B (en) * | 2020-01-06 | 2024-07-12 | 青岛海尔电冰箱有限公司 | Vacuum heat insulator and refrigerator |
KR20220059365A (en) * | 2020-11-02 | 2022-05-10 | 엘지전자 주식회사 | Vacuum adiabatic body |
Citations (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1413169A (en) | 1919-07-25 | 1922-04-18 | Charles B Lawton | Insulating construction |
US1588707A (en) | 1924-07-23 | 1926-06-15 | Csiga Alexander | Vacuum ice chest |
US1845353A (en) | 1928-12-14 | 1932-02-16 | Virgil K Snell | Heat-insulating construction |
US2000882A (en) | 1928-09-07 | 1935-05-07 | Stator Refrigeration Inc | Insulating housing |
US2708774A (en) | 1949-11-29 | 1955-05-24 | Rca Corp | Multiple glazed unit |
US2715976A (en) | 1952-04-28 | 1955-08-23 | Motor Products Corp | Breaker strip assembly |
US2729863A (en) | 1952-12-11 | 1956-01-10 | Gen Electric | Insulated cabinet |
US2768046A (en) | 1952-07-09 | 1956-10-23 | Gen Electric | Insulating structures |
DE956899C (en) | 1952-10-28 | 1957-01-24 | Gen Electric | Heat isolator |
US2786241A (en) | 1954-06-02 | 1957-03-26 | Whirlpool Seeger Corp | Refrigerator door and gasket seal |
GB890372A (en) | 1959-01-27 | 1962-02-28 | Union Carbide Corp | Vacuum panel insulation |
US3091946A (en) | 1958-03-27 | 1963-06-04 | Gen Motors Corp | Cabinet and process for making same |
US3161265A (en) | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3289423A (en) | 1965-11-30 | 1966-12-06 | Union Carbide Corp | Load support means for thermally insulated containers |
US3370740A (en) | 1965-07-28 | 1968-02-27 | James H. Anderson | Vacuum jacketed joint construction |
US4056211A (en) | 1976-08-30 | 1977-11-01 | Rockwell International Corporation | Support and retention liner gasket |
DE2802910A1 (en) | 1977-02-03 | 1978-08-10 | Alain Balleyguier | COMPOSED THERMALLY INSULATING MATERIAL AND THEIR APPLICATION FOR THE PRODUCTION OF A GAS CONTAINER |
DE2939878A1 (en) | 1979-10-02 | 1981-04-16 | Friedrich 5600 Wuppertal Hensberg | Thermal insulation wall panels - has vacuum sections with insulated supports and radiation shields |
DE3121351A1 (en) | 1981-05-29 | 1982-12-16 | Genbee Osaka Kawaguchi | Spacer for a vacuum insulating device |
EP0071090A1 (en) | 1981-07-16 | 1983-02-09 | INDESIT INDUSTRIA ELETTRODOMESTICI ITALIANA S.p.A. | Thermal insulating system for refrigerating apparatus and relative realization process |
US4646934A (en) | 1986-01-21 | 1987-03-03 | Mcallister Ian R | Vacuum insulated shipping container and method |
US4822117A (en) | 1987-06-12 | 1989-04-18 | General Electric Company | Refrigerator case/liner interface and related components for automated assembly |
US4959111A (en) | 1986-08-19 | 1990-09-25 | Whirlpool Corporation | Heavy gas-filled multilayer insulation panels and method of manufacture thereof |
US5011729A (en) | 1989-11-15 | 1991-04-30 | Mcallister Ian R | Vacuum insulated panels with concave surfaces on the surface layers |
US5018328A (en) | 1989-12-18 | 1991-05-28 | Whirlpool Corporation | Multi-compartment vacuum insulation panels |
US5033803A (en) | 1988-07-12 | 1991-07-23 | Sanden Corporation | Display case |
DE9204365U1 (en) | 1992-03-31 | 1992-07-02 | Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen | Wall element and/or door with low thermal transmittance |
JPH04341694A (en) | 1991-05-20 | 1992-11-27 | Kubota Corp | Structure of vacuum heat insulation box body |
JPH0510494A (en) | 1991-07-03 | 1993-01-19 | Kubota Corp | End portion structure of vacuum insulation box |
US5185981A (en) | 1989-11-20 | 1993-02-16 | Perfil En Frio, S.A. | Abutment of insulating panels |
US5200015A (en) | 1990-05-18 | 1993-04-06 | Messerschmitt-Bolkow-Blohm Gmbh | Joining process for vacuum heat insulating elements |
WO1993025843A1 (en) | 1992-06-08 | 1993-12-23 | Saes Getters S.P.A. | Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device |
US5361598A (en) | 1992-09-10 | 1994-11-08 | Electrolux Research & Innovation Aktiebolag | Refrigerator or freezer walls |
EP0658716A1 (en) | 1993-12-16 | 1995-06-21 | AEG Hausgeräte GmbH | Element for thermal insulation |
EP0658733A1 (en) | 1993-12-16 | 1995-06-21 | AEG Hausgeräte GmbH | Wall element |
JPH07234067A (en) | 1994-02-21 | 1995-09-05 | Hitachi Ltd | Vacuum thermal insulation door for refrigerator and the like |
US5512345A (en) | 1994-03-28 | 1996-04-30 | Kabushiki Kaisha Toshiba | Vacuum insulator casing and method of making vacuum insulator panel |
US5532034A (en) | 1994-12-06 | 1996-07-02 | Whirlpool Corporation | Getter system for vacuum insulation panel |
JPH09145241A (en) | 1995-11-20 | 1997-06-06 | Mitsubishi Chem Corp | Vacuum heat-insulating material |
US5694789A (en) | 1996-01-16 | 1997-12-09 | Lg Electronics Inc. | Cam operated door seal for refrigerator |
US5795639A (en) | 1995-03-16 | 1998-08-18 | Owens Fiberglas Technology, Inc. | Vacuum insulation panel having blended wool filler and method for manufacturing |
CN1191959A (en) | 1997-02-27 | 1998-09-02 | 三菱电机株式会社 | Vacuum heat-insulating panel and method for producing the same, and refrigerator using the same |
NL1005962C1 (en) | 1997-05-02 | 1998-11-03 | Rudolf Wolfgang Van Der Pol | Vacuum insulation panel |
US5843353A (en) | 1995-04-13 | 1998-12-01 | Imperial Chemical Industries Plc | Non-planar evacuated insulation panels and a method for making same |
EP0892120A2 (en) | 1997-06-25 | 1999-01-20 | UVT GmbH | Vacuum insulation panel |
DE19745825A1 (en) | 1997-10-16 | 1999-04-22 | Bosch Siemens Hausgeraete | Thermally insulated cavity-walled case for e.g. Refrigerator |
DE19803908A1 (en) | 1998-02-02 | 1999-08-05 | Thyssen Vakuum Isolationstechn | Evacuated thermal insulation panel with thermally insulated edges |
JPH11211334A (en) | 1998-01-30 | 1999-08-06 | Hoshizaki Electric Co Ltd | Refrigerated display case |
US5947479A (en) | 1995-03-31 | 1999-09-07 | John Crane Inc. | Mechanical seal with flexible metal diaphragm |
DE29912917U1 (en) | 1999-07-23 | 1999-11-18 | BSH Bosch und Siemens Hausgeräte GmbH, 81669 München | Insulating wall |
JPH11335114A (en) | 1998-05-22 | 1999-12-07 | Kawasaki Steel Corp | Furnace body of heating furnace for purifying silicon |
US6001890A (en) | 1997-05-01 | 1999-12-14 | Imperial Chemical Industries Plc | Open celled cellular polyurethane products |
US6029846A (en) | 1997-10-16 | 2000-02-29 | Bsh Bosch Und Siemens Hausgeraete Gmbh | Thermally insulated housing |
DE19907182A1 (en) | 1999-02-19 | 2000-08-24 | Bsh Bosch Siemens Hausgeraete | Heat-insulating wall, like refrigerator door, refrigerator housing or similar has supported in front of membrane cover, protection profile fixed on inner and/or outer cladding, overlapping this as far as possible. |
US6109712A (en) | 1998-07-16 | 2000-08-29 | Maytag Corporation | Integrated vacuum panel insulation for thermal cabinet structures |
US6168040B1 (en) | 1998-09-05 | 2001-01-02 | Isovac Gmbh | Double-wall insulated container |
US6192703B1 (en) | 1996-06-12 | 2001-02-27 | Vacupanel, Inc. | Insulating vacuum panel, method for manufacturing the insulated vacuum panel and insulated containers employing such panel |
CN1286386A (en) | 1999-08-27 | 2001-03-07 | Lg电子株式会社 | Refrigerator sealing gasket connecting structure |
US6244458B1 (en) | 1998-07-09 | 2001-06-12 | Thermo Solutions, Inc. | Thermally insulated container |
KR20010073363A (en) | 2000-01-14 | 2001-08-01 | 구자홍 | Refrigerator door equipped with vacuum insulating material panel |
US6338536B1 (en) | 1999-08-17 | 2002-01-15 | Kabushiki Kaisha Toshiba | Door opening device for food storage apparatus such as refrigerator |
JP2002243091A (en) | 2001-02-20 | 2002-08-28 | Isuzu Motors Ltd | Vacuum heat insulating material and heat insulating panel |
US20020170265A1 (en) | 2001-05-18 | 2002-11-21 | Jamco Corporation | Vacuum heat-insulating block |
JP2003106760A (en) | 2001-09-27 | 2003-04-09 | Mitsubishi Corp | Highly heat insulating composite panel and structure using the same |
US20030080126A1 (en) | 2001-05-22 | 2003-05-01 | Integrated Biosystems, Inc. | Systems and methods for freezing, storing and thawing biopharmaceutical material |
US20030115838A1 (en) | 2001-12-21 | 2003-06-26 | Cabot Corporation | Method of preparing aerogel-containing insulation article |
JP2003269688A (en) | 2002-03-15 | 2003-09-25 | Zojirushi Corp | Evacuated heat insulating panel |
US20030207075A1 (en) | 2002-05-06 | 2003-11-06 | Alcatel | Rigid multilayer material for thermal insulation |
JP2004044980A (en) | 2002-07-15 | 2004-02-12 | Toshiba Corp | Refrigerator door |
US20040051427A1 (en) | 2001-03-07 | 2004-03-18 | Paolo Cittadini | Improved sealing assembly for refrigerator cabinets and the like with a profile made of plastic material |
US20040091688A1 (en) | 2002-11-11 | 2004-05-13 | Morio Gaku | Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board |
JP2004196411A (en) | 2002-12-20 | 2004-07-15 | Mitsubishi Chem Mkv Co | Cold insulation container |
EP1477752A2 (en) | 2003-05-14 | 2004-11-17 | Chart Inc. | Improved cryogenic freezer |
EP1484563A1 (en) | 2002-03-13 | 2004-12-08 | Matsushita Refrigeration Company | Refrigerator |
CN1576678A (en) | 2003-07-04 | 2005-02-09 | 松下电器产业株式会社 | Vacuum heat insulating material and machine using the same vacuum heat insulation material |
CN2700790Y (en) | 2003-09-24 | 2005-05-18 | 青岛亨达实业有限公司 | Glass door body of ice chest |
KR20050065088A (en) | 2003-12-24 | 2005-06-29 | 엘지전자 주식회사 | Adiabatic structure in refrigerator cabinet and a manufacturing method thereof |
JP2005214372A (en) | 2004-02-02 | 2005-08-11 | Sangaku Renkei Kiko Kyushu:Kk | Sealed heat insulation structure and inter-heat insulation wall surface reinforcement method |
US20050175809A1 (en) | 2002-05-31 | 2005-08-11 | Matsushita Refrigeration Co. | Vacuum thermal insulating material, process for producing the same and refrigerator including the same |
CN1666071A (en) | 2002-07-01 | 2005-09-07 | 惠而浦有限公司 | A vaccuum insulated refrigerator cabinet and method for assessing thermal conductivity thereof |
CN2748848Y (en) | 2004-09-02 | 2005-12-28 | 孟范中 | Vacuum heat insulation refrigerator |
WO2006003199A1 (en) | 2004-07-05 | 2006-01-12 | Luca Gandini | A highly thermo and acoustic insulating vacuum panel |
CN1731053A (en) | 2004-08-06 | 2006-02-08 | 三菱电机株式会社 | Method for manufacturing refrigerator and refrigerator door |
CN1820173A (en) | 2003-06-02 | 2006-08-16 | Bsh博世和西门子家用器具有限公司 | Door comprising insulating glazing and refrigerating appliance fitted therewith |
CN1896657A (en) | 2005-07-15 | 2007-01-17 | 乐金电子(天津)电器有限公司 | Door of refrigerator |
KR20070052156A (en) | 2005-11-16 | 2007-05-21 | 엘지전자 주식회사 | Vacuum isolation panel and isolation structure applying same |
US20070152551A1 (en) | 2006-01-03 | 2007-07-05 | Lg Electronics Inc. | Fixing structure of insulation panel of prefabricated refrigerator and prefabricated refrigerator having the same |
JP2007218509A (en) | 2006-02-17 | 2007-08-30 | Mitsubishi Electric Corp | Refrigerator-freezer |
US20070204648A1 (en) | 2006-03-03 | 2007-09-06 | Smale Jeffrey J | Step-down top hinge for refrigerator door with external dispenser |
CN101072968A (en) | 2004-12-07 | 2007-11-14 | 松下电器产业株式会社 | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
JP2008045580A (en) | 2006-08-11 | 2008-02-28 | Hitachi Appliances Inc | Vacuum heat insulating panel and equipment equipped therewith |
CN101171472A (en) | 2005-05-10 | 2008-04-30 | Bsh博世和西门子家用器具有限公司 | Refrigerator and method for the operation thereof |
US20080110128A1 (en) | 1997-10-16 | 2008-05-15 | BSH Bosch und Siemens Hausgeräte GmbH | Heat-insulated wall |
GB2446053A (en) | 2007-01-26 | 2008-07-30 | Michael John Rickards | A braced sound barrier vacuum panel |
JP2008249003A (en) | 2007-03-30 | 2008-10-16 | Hitachi Appliances Inc | Vacuum insulation panel and appliance provided with it |
CN101349493A (en) | 2007-07-19 | 2009-01-21 | 日立空调·家用电器株式会社 | Refrigerator |
CN201191121Y (en) | 2007-12-29 | 2009-02-04 | 孟范中 | Evacuated insulation box for ice locker |
US20090031659A1 (en) | 2005-01-24 | 2009-02-05 | Rami Abraham Kalfon | Evacuated Thermal Insulation Panel |
JP2009078261A (en) | 2007-09-05 | 2009-04-16 | Panasonic Corp | Gas adsorbing device |
US20090113899A1 (en) | 2007-11-02 | 2009-05-07 | John Dain | Systems and Methods for Ultra Low Temperature Storage |
KR20090111632A (en) | 2008-04-22 | 2009-10-27 | 김현우 | Ultraviolet sterilizing apparatus for mattress |
JP2010008011A (en) | 2008-06-30 | 2010-01-14 | Panasonic Corp | Vacuum heat insulating box |
CN201428906Y (en) | 2009-07-09 | 2010-03-24 | 丁琪 | Vacuum double-layer glass with support |
US20100104923A1 (en) | 2007-12-28 | 2010-04-29 | Shinsuke Takeguchi | Fuel cell separator and fuel cell comprising the same |
US20100178439A1 (en) | 2009-01-15 | 2010-07-15 | Eversealed Windows, Inc. | Flexible edge seal for vacuum insulating glazing units |
KR20100097410A (en) | 2009-02-26 | 2010-09-03 | 한국과학기술원 | Vacuum insulator |
KR20100099629A (en) | 2009-03-03 | 2010-09-13 | 한국과학기술원 | Vacuum insulator and filling material for vacuum insulator |
KR20100119937A (en) | 2009-05-04 | 2010-11-12 | 한국과학기술원 | Vacuum insulator and envelope for vacuum insulator |
KR20100136614A (en) | 2009-06-19 | 2010-12-29 | (주)엘지하우시스 | Vacuum insulation panel |
KR20110015325A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel |
KR20110015322A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel |
KR20110015327A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Core for a vacuum insulation panel and vacuum insulation pannel using the same |
CN201764779U (en) | 2010-09-02 | 2011-03-16 | 许春钢 | Filling material for refrigerating device heat insulation |
US20110089802A1 (en) | 2001-07-19 | 2011-04-21 | Agc Flat Glass North America, Inc. | Energy-free refrigeration door and method for making the same |
CN201811526U (en) | 2009-10-09 | 2011-04-27 | 株式会社东芝 | Refrigerator |
CN102032736A (en) | 2009-09-28 | 2011-04-27 | 日立空调·家用电器株式会社 | Refrigerator |
EP2333179A1 (en) | 2009-11-27 | 2011-06-15 | Iso-Pan International GmbH | Vacuum insulation panel |
CN102099646A (en) | 2008-07-17 | 2011-06-15 | 松下电器产业株式会社 | Heat insulator, heat-insulating box object, heat-insulating door, and refrigerator |
US20110146333A1 (en) | 2009-12-22 | 2011-06-23 | Lg Electronics Inc. | Refrigerator |
CN102116402A (en) | 2011-01-04 | 2011-07-06 | 合肥美的荣事达电冰箱有限公司 | Vacuum thermal insulation component and manufacturing method thereof, as well as refrigeration device |
KR20110100440A (en) | 2010-03-04 | 2011-09-14 | (주)엘지하우시스 | Groove type vacuum heat insulation material |
DE102011050473A1 (en) | 2010-05-18 | 2011-11-24 | Viktor Schatz | Discontinuous radiation suppression unit for suppressing heat transfer in e.g. manufacturing evacuated rimless composite system utilized in e.g. roof wall, has support elements arranged in spacer arrangement |
CN102261470A (en) | 2010-05-28 | 2011-11-30 | 博西华家用电器有限公司 | Sealing system and household appliance with sealing system |
US20110296797A1 (en) | 2010-06-02 | 2011-12-08 | Stark David H | Two-piece hermetic seal bellows for single-side placement on an insulating glass unit or highly insulating vacuum glass unit |
EP2447639A2 (en) | 2010-10-28 | 2012-05-02 | LG Electronics Inc. | Refrigerator comprising vacuum space |
US20120103006A1 (en) | 2010-10-28 | 2012-05-03 | Lg Electronics Inc. | Refrigertor comprising vacuum space |
JP2012087993A (en) | 2010-10-20 | 2012-05-10 | Toshiba Corp | Insulating cabinet |
CN102455104A (en) | 2010-10-28 | 2012-05-16 | Lg电子株式会社 | Refrigerator with vacuum space |
US20120125039A1 (en) | 2009-08-07 | 2012-05-24 | Minkyu Hwang | Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member |
WO2012084874A1 (en) | 2010-12-22 | 2012-06-28 | Marguerite Georges | High-performance thin thermal-insulation device |
DE102011014302A1 (en) | 2011-03-17 | 2012-09-20 | Liebherr-Hausgeräte Ochsenhausen GmbH | Door element for refrigerator and/or freezer, has foam filled in interstice between vacuum insulation element and outer door panel |
CN102735013A (en) | 2011-03-31 | 2012-10-17 | 日立空调·家用电器株式会社 | Refrigerator |
US20120269996A1 (en) | 2009-12-18 | 2012-10-25 | Jaeger Steffen | Heat insulating glazing element and methods for its manufacture |
CN102818421A (en) | 2011-06-09 | 2012-12-12 | 株式会社东芝 | Heat insulation tank |
CN102840729A (en) | 2011-06-21 | 2012-12-26 | 三星电子株式会社 | Refrigerator and method for manufacturing refrigerator door |
KR20120139648A (en) | 2012-12-13 | 2012-12-27 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
WO2012176880A1 (en) | 2011-06-24 | 2012-12-27 | 株式会社松田技術研究所 | Vacuum insulated panel |
US20130008309A1 (en) | 2010-03-26 | 2013-01-10 | Panasonic Corporation | Gas-adsorption device structure and method for using same |
DE102011079209A1 (en) | 2011-07-14 | 2013-01-17 | BSH Bosch und Siemens Hausgeräte GmbH | Vacuum insulation element |
US20130026900A1 (en) | 2010-01-04 | 2013-01-31 | Lg Electronics Inc. | Refrigerator including multiple storage compartments |
CN102927740A (en) | 2011-08-12 | 2013-02-13 | 三星电子株式会社 | Refrigerator |
US8383225B2 (en) | 2008-03-26 | 2013-02-26 | Thomas Rotter | Vacuum-insulation element |
CN103062981A (en) | 2011-10-21 | 2013-04-24 | 三星电子株式会社 | Refrigerator and method for manufacturing door of refrigerator |
US20130105496A1 (en) | 2011-11-02 | 2013-05-02 | Lg Electronics Inc. | Refrigerator |
US20130105494A1 (en) | 2011-11-02 | 2013-05-02 | Lg Electronics Inc. | Refrigerator |
CN103090615A (en) | 2011-11-02 | 2013-05-08 | Lg电子株式会社 | Refrigerator |
KR20130048528A (en) | 2011-11-02 | 2013-05-10 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
KR20130054213A (en) | 2011-11-16 | 2013-05-24 | (주)엘지하우시스 | Vacuum glass panel with pillar having getter function and method of manufacturing the same |
CN103154648A (en) | 2010-07-12 | 2013-06-12 | Bsh博世和西门子家用电器有限公司 | Housing component for a refrigeration unit |
JP2013119966A (en) | 2011-12-06 | 2013-06-17 | Toshiba Corp | Heat insulation box |
RU129188U1 (en) | 2012-12-19 | 2013-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) | THERMAL INSULATION PRODUCT |
CN103189696A (en) | 2010-10-11 | 2013-07-03 | Lg电子株式会社 | Vacuum insulation glass panel and refrigerator having the same |
DE102012100490A1 (en) | 2012-01-23 | 2013-07-25 | Götz von Waldeyer-Hartz | Thermal wall for refrigerated vehicles and large size freezer cabinets, has coating layer with filler material and spacers made of polyurethane foam, and are arranged on folds to lock covering layers parallel to vacuum insulation layer core |
CN103228851A (en) | 2010-09-10 | 2013-07-31 | Bsh博世和西门子家用电器有限公司 | Vacuum body for a refrigeration device |
CN203095854U (en) | 2013-01-25 | 2013-07-31 | 李梦琪 | Insulating colored crystal glass and freezer |
US20130195544A1 (en) | 2009-11-20 | 2013-08-01 | Philip Sanders | Insulated panel and method of assembly |
US20130255304A1 (en) | 2012-04-02 | 2013-10-03 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US20130257257A1 (en) | 2012-04-02 | 2013-10-03 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
CN103370587A (en) | 2011-08-31 | 2013-10-23 | 松下电器产业株式会社 | Refrigerator and vacuum insulation material for same |
CN103363764A (en) | 2012-03-26 | 2013-10-23 | 三菱电机株式会社 | Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box |
US20130293080A1 (en) | 2012-05-02 | 2013-11-07 | Samsung Electronics Co., Ltd. | Refrigerator and method of manufacturing door thereof |
CN103542660A (en) | 2012-07-12 | 2014-01-29 | 三星电子株式会社 | Refrigerator and manufacturing method thereof |
CN103575038A (en) | 2012-08-02 | 2014-02-12 | 开利公司 | Frame and refrigerating device |
JP2014037931A (en) | 2012-08-20 | 2014-02-27 | Toshiba Corp | Refrigerator |
WO2014049969A1 (en) | 2012-09-25 | 2014-04-03 | 株式会社 東芝 | Refrigerator |
US20140103791A1 (en) | 2012-10-12 | 2014-04-17 | Dongbu Daewoo Electronics Corporation | Refrigerator for preventing dewing on door gasket |
US20140132142A1 (en) | 2012-11-09 | 2014-05-15 | Samsung Electronics Co., Ltd. | Refrigerator and method of manufacturing inner door thereof |
DE102012223539A1 (en) | 2012-12-18 | 2014-06-18 | BSH Bosch und Siemens Hausgeräte GmbH | Door for a household refrigerating appliance with a vacuum insulation element with molded bowls and household refrigerating appliance |
CN103968196A (en) | 2013-02-06 | 2014-08-06 | 三星电子株式会社 | Vacuum insulation material, insulation case unit, and refrigerator |
EP2789951A1 (en) | 2011-12-06 | 2014-10-15 | Kabushiki Kaisha Toshiba, Inc. | Insulated cabinet |
US20140315011A1 (en) | 2011-11-24 | 2014-10-23 | Lg Hausys, Ltd. | Vacuum insulation material for blocking radiant heat |
WO2014175639A1 (en) | 2013-04-26 | 2014-10-30 | Lg Electronics Inc. | Refrigerator |
KR20140129552A (en) | 2013-04-30 | 2014-11-07 | 한국과학기술원 | Edge-sealing method and vacuum exhauster of vacuum insulation glass for sustainable use |
US8881398B2 (en) | 2011-05-26 | 2014-11-11 | General Electric Company | Method and apparatus for insulating a refrigeration appliance |
EP2806239A2 (en) | 2013-05-22 | 2014-11-26 | LG Electronics, Inc. | Refrigerator and method of manufacturing the same |
CN104204646A (en) | 2012-03-23 | 2014-12-10 | 松下电器产业株式会社 | Vacuum insulation material and insulated housing using same |
CN104254749A (en) | 2012-03-21 | 2014-12-31 | 株式会社东芝 | Refrigerator |
EP2824405A2 (en) | 2013-07-11 | 2015-01-14 | Seven-Air Gebr. Meyer AG | High power thermo panel |
US20150030800A1 (en) | 2013-07-26 | 2015-01-29 | Samsung Electronics Co., Ltd. | Vacuum heat insulating material and refrigerator including the same |
CN104344653A (en) | 2013-09-27 | 2015-02-11 | 海尔集团公司 | Refrigerator |
US20150068401A1 (en) | 2012-03-21 | 2015-03-12 | Panasonic Corporation | Gas adsorbing device and hollow body housing the same |
KR101506413B1 (en) | 2010-12-27 | 2015-03-26 | 아사히 가세이 케미칼즈 가부시키가이샤 | Heat insulation material and production method for same |
CN104567215A (en) | 2013-10-22 | 2015-04-29 | 株式会社东芝 | Refrigerator door and refrigerator |
CN104729201A (en) | 2013-12-19 | 2015-06-24 | 日立空调·家用电器株式会社 | Refrigerator |
CN104746690A (en) | 2013-12-25 | 2015-07-01 | 戴长虹 | Double-vacuum-layer metal vacuum composite plate with edge sealed by seal strip and manufacturing method thereof |
US20150192356A1 (en) | 2014-01-07 | 2015-07-09 | Samsung Electronics Co., | Refrigerator |
US9182158B2 (en) | 2013-03-15 | 2015-11-10 | Whirlpool Corporation | Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure |
EP2952839A1 (en) | 2014-06-03 | 2015-12-09 | BSH Hausgeräte GmbH | Door for a household appliance and household appliance |
US20160109172A1 (en) | 2014-10-16 | 2016-04-21 | Samsung Electronics Co., Ltd. | Refrigerator |
US9328951B2 (en) | 2013-04-01 | 2016-05-03 | Lg Electronics Inc. | Refrigerator |
CN105546923A (en) | 2010-05-28 | 2016-05-04 | 株式会社东芝 | Thermal-insulating box body for food storage warehouse |
US9441779B1 (en) | 2015-07-01 | 2016-09-13 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US9463918B2 (en) | 2014-02-20 | 2016-10-11 | Aarne H. Reid | Vacuum insulated articles and methods of making same |
US20160356542A1 (en) | 2015-06-05 | 2016-12-08 | Lg Electronics Inc. | Refrigerator hinge and manufacturing method thereof |
WO2016208193A1 (en) | 2015-06-24 | 2016-12-29 | パナソニックIpマネジメント株式会社 | Gas-adsorbing device and evacuated insulating material using same |
WO2017023095A1 (en) | 2015-08-03 | 2017-02-09 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9791204B2 (en) | 2014-07-06 | 2017-10-17 | Lg Electronics Inc. | Refrigerator door and manufacturing method of the same |
WO2017192121A1 (en) | 2016-05-03 | 2017-11-09 | Whirlpool Corporation | Hinge support assembly for a vacuum insulated appliance cabinet |
US20170325634A1 (en) | 2014-12-19 | 2017-11-16 | Dow Global Technologies Llc | Vacuum vessels |
WO2018044274A1 (en) | 2016-08-30 | 2018-03-08 | Whirlpool Corporation | Hermetically sealed overmolded plastic thermal bridge breaker with liner and wrapper for a vacuum insulated structure |
US9945600B2 (en) | 2015-06-04 | 2018-04-17 | Lg Electronics Inc. | Refrigerator |
CN108354755A (en) | 2018-03-22 | 2018-08-03 | 周少华 | A kind of examination couch of the Neurology inspection with automatic disinfecting function |
US20180266620A1 (en) | 2015-12-09 | 2018-09-20 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
US20180299060A1 (en) | 2015-10-19 | 2018-10-18 | Samsung Electromics Co., Ltd. | Refrigerator and manufacturing method therefor |
US20180313492A1 (en) | 2016-03-02 | 2018-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
-
2015
- 2015-08-03 KR KR1020150109627A patent/KR102498210B1/en active IP Right Grant
-
2016
- 2016-08-02 EP EP16833325.0A patent/EP3332191B1/en active Active
- 2016-08-02 WO PCT/KR2016/008505 patent/WO2017023089A1/en active Application Filing
- 2016-08-02 CN CN202010159016.2A patent/CN111238143B/en active Active
- 2016-08-02 US US15/749,154 patent/US10928119B2/en active Active
- 2016-08-02 CN CN201680045908.1A patent/CN107923700B/en active Active
- 2016-08-02 CN CN202010159021.3A patent/CN111238145B/en active Active
- 2016-08-02 CN CN202010159442.6A patent/CN111238146B/en active Active
- 2016-08-02 CN CN202010159018.1A patent/CN111238144B/en active Active
-
2021
- 2021-01-22 US US17/155,430 patent/US11927386B2/en active Active
-
2023
- 2023-02-06 KR KR1020230015566A patent/KR102665225B1/en active IP Right Grant
Patent Citations (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1413169A (en) | 1919-07-25 | 1922-04-18 | Charles B Lawton | Insulating construction |
US1588707A (en) | 1924-07-23 | 1926-06-15 | Csiga Alexander | Vacuum ice chest |
US2000882A (en) | 1928-09-07 | 1935-05-07 | Stator Refrigeration Inc | Insulating housing |
US1845353A (en) | 1928-12-14 | 1932-02-16 | Virgil K Snell | Heat-insulating construction |
US2708774A (en) | 1949-11-29 | 1955-05-24 | Rca Corp | Multiple glazed unit |
US2715976A (en) | 1952-04-28 | 1955-08-23 | Motor Products Corp | Breaker strip assembly |
US2768046A (en) | 1952-07-09 | 1956-10-23 | Gen Electric | Insulating structures |
DE956899C (en) | 1952-10-28 | 1957-01-24 | Gen Electric | Heat isolator |
US2729863A (en) | 1952-12-11 | 1956-01-10 | Gen Electric | Insulated cabinet |
US2786241A (en) | 1954-06-02 | 1957-03-26 | Whirlpool Seeger Corp | Refrigerator door and gasket seal |
US3091946A (en) | 1958-03-27 | 1963-06-04 | Gen Motors Corp | Cabinet and process for making same |
GB890372A (en) | 1959-01-27 | 1962-02-28 | Union Carbide Corp | Vacuum panel insulation |
US3161265A (en) | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3370740A (en) | 1965-07-28 | 1968-02-27 | James H. Anderson | Vacuum jacketed joint construction |
US3289423A (en) | 1965-11-30 | 1966-12-06 | Union Carbide Corp | Load support means for thermally insulated containers |
US4056211A (en) | 1976-08-30 | 1977-11-01 | Rockwell International Corporation | Support and retention liner gasket |
DE2802910A1 (en) | 1977-02-03 | 1978-08-10 | Alain Balleyguier | COMPOSED THERMALLY INSULATING MATERIAL AND THEIR APPLICATION FOR THE PRODUCTION OF A GAS CONTAINER |
DE2939878A1 (en) | 1979-10-02 | 1981-04-16 | Friedrich 5600 Wuppertal Hensberg | Thermal insulation wall panels - has vacuum sections with insulated supports and radiation shields |
DE3121351A1 (en) | 1981-05-29 | 1982-12-16 | Genbee Osaka Kawaguchi | Spacer for a vacuum insulating device |
EP0071090A1 (en) | 1981-07-16 | 1983-02-09 | INDESIT INDUSTRIA ELETTRODOMESTICI ITALIANA S.p.A. | Thermal insulating system for refrigerating apparatus and relative realization process |
US4646934A (en) | 1986-01-21 | 1987-03-03 | Mcallister Ian R | Vacuum insulated shipping container and method |
US4959111A (en) | 1986-08-19 | 1990-09-25 | Whirlpool Corporation | Heavy gas-filled multilayer insulation panels and method of manufacture thereof |
US4822117A (en) | 1987-06-12 | 1989-04-18 | General Electric Company | Refrigerator case/liner interface and related components for automated assembly |
US5033803A (en) | 1988-07-12 | 1991-07-23 | Sanden Corporation | Display case |
US5011729A (en) | 1989-11-15 | 1991-04-30 | Mcallister Ian R | Vacuum insulated panels with concave surfaces on the surface layers |
US5185981A (en) | 1989-11-20 | 1993-02-16 | Perfil En Frio, S.A. | Abutment of insulating panels |
US5018328A (en) | 1989-12-18 | 1991-05-28 | Whirlpool Corporation | Multi-compartment vacuum insulation panels |
US5200015A (en) | 1990-05-18 | 1993-04-06 | Messerschmitt-Bolkow-Blohm Gmbh | Joining process for vacuum heat insulating elements |
JPH04341694A (en) | 1991-05-20 | 1992-11-27 | Kubota Corp | Structure of vacuum heat insulation box body |
JPH0510494A (en) | 1991-07-03 | 1993-01-19 | Kubota Corp | End portion structure of vacuum insulation box |
DE9204365U1 (en) | 1992-03-31 | 1992-07-02 | Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen | Wall element and/or door with low thermal transmittance |
WO1993025843A1 (en) | 1992-06-08 | 1993-12-23 | Saes Getters S.P.A. | Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device |
US5361598A (en) | 1992-09-10 | 1994-11-08 | Electrolux Research & Innovation Aktiebolag | Refrigerator or freezer walls |
US5361598B1 (en) | 1992-09-10 | 1999-02-09 | Electrolux Res & Innovation | Refrigerator or freezer walls |
EP0658733A1 (en) | 1993-12-16 | 1995-06-21 | AEG Hausgeräte GmbH | Wall element |
EP0658716A1 (en) | 1993-12-16 | 1995-06-21 | AEG Hausgeräte GmbH | Element for thermal insulation |
JPH07234067A (en) | 1994-02-21 | 1995-09-05 | Hitachi Ltd | Vacuum thermal insulation door for refrigerator and the like |
US5512345A (en) | 1994-03-28 | 1996-04-30 | Kabushiki Kaisha Toshiba | Vacuum insulator casing and method of making vacuum insulator panel |
CN1132346A (en) | 1994-03-28 | 1996-10-02 | 株式会社东芝 | Method for mfg. of heat insulation frame and vacuum heat insulating board |
US5532034A (en) | 1994-12-06 | 1996-07-02 | Whirlpool Corporation | Getter system for vacuum insulation panel |
US5795639A (en) | 1995-03-16 | 1998-08-18 | Owens Fiberglas Technology, Inc. | Vacuum insulation panel having blended wool filler and method for manufacturing |
US5947479A (en) | 1995-03-31 | 1999-09-07 | John Crane Inc. | Mechanical seal with flexible metal diaphragm |
US5843353A (en) | 1995-04-13 | 1998-12-01 | Imperial Chemical Industries Plc | Non-planar evacuated insulation panels and a method for making same |
JPH09145241A (en) | 1995-11-20 | 1997-06-06 | Mitsubishi Chem Corp | Vacuum heat-insulating material |
US5694789A (en) | 1996-01-16 | 1997-12-09 | Lg Electronics Inc. | Cam operated door seal for refrigerator |
US6192703B1 (en) | 1996-06-12 | 2001-02-27 | Vacupanel, Inc. | Insulating vacuum panel, method for manufacturing the insulated vacuum panel and insulated containers employing such panel |
CN1191959A (en) | 1997-02-27 | 1998-09-02 | 三菱电机株式会社 | Vacuum heat-insulating panel and method for producing the same, and refrigerator using the same |
US6001890A (en) | 1997-05-01 | 1999-12-14 | Imperial Chemical Industries Plc | Open celled cellular polyurethane products |
NL1005962C1 (en) | 1997-05-02 | 1998-11-03 | Rudolf Wolfgang Van Der Pol | Vacuum insulation panel |
EP0892120A2 (en) | 1997-06-25 | 1999-01-20 | UVT GmbH | Vacuum insulation panel |
US20080110128A1 (en) | 1997-10-16 | 2008-05-15 | BSH Bosch und Siemens Hausgeräte GmbH | Heat-insulated wall |
DE19745825A1 (en) | 1997-10-16 | 1999-04-22 | Bosch Siemens Hausgeraete | Thermally insulated cavity-walled case for e.g. Refrigerator |
CN1276052A (en) | 1997-10-16 | 2000-12-06 | Bsh博施及西门子家用器具有限公司 | Heat-insulating housing |
US6038830A (en) | 1997-10-16 | 2000-03-21 | Bsh Bosch Und Siemens Hausgeraete Gmbh | Heat insulated wall |
US6029846A (en) | 1997-10-16 | 2000-02-29 | Bsh Bosch Und Siemens Hausgeraete Gmbh | Thermally insulated housing |
JPH11211334A (en) | 1998-01-30 | 1999-08-06 | Hoshizaki Electric Co Ltd | Refrigerated display case |
DE19803908A1 (en) | 1998-02-02 | 1999-08-05 | Thyssen Vakuum Isolationstechn | Evacuated thermal insulation panel with thermally insulated edges |
JPH11335114A (en) | 1998-05-22 | 1999-12-07 | Kawasaki Steel Corp | Furnace body of heating furnace for purifying silicon |
US6244458B1 (en) | 1998-07-09 | 2001-06-12 | Thermo Solutions, Inc. | Thermally insulated container |
US6109712A (en) | 1998-07-16 | 2000-08-29 | Maytag Corporation | Integrated vacuum panel insulation for thermal cabinet structures |
US6168040B1 (en) | 1998-09-05 | 2001-01-02 | Isovac Gmbh | Double-wall insulated container |
DE19907182A1 (en) | 1999-02-19 | 2000-08-24 | Bsh Bosch Siemens Hausgeraete | Heat-insulating wall, like refrigerator door, refrigerator housing or similar has supported in front of membrane cover, protection profile fixed on inner and/or outer cladding, overlapping this as far as possible. |
US6485122B2 (en) | 1999-02-19 | 2002-11-26 | BSH Bosch Siemens Hausgeräte GmbH | Heat-insulating wall |
US20020041134A1 (en) | 1999-02-19 | 2002-04-11 | Ulrich Wolf | Heat-insulating wall |
DE29912917U1 (en) | 1999-07-23 | 1999-11-18 | BSH Bosch und Siemens Hausgeräte GmbH, 81669 München | Insulating wall |
US20020100250A1 (en) | 1999-07-23 | 2002-08-01 | Jurgen Hirath | Heat-insulating walling |
US6338536B1 (en) | 1999-08-17 | 2002-01-15 | Kabushiki Kaisha Toshiba | Door opening device for food storage apparatus such as refrigerator |
KR100411841B1 (en) | 1999-08-17 | 2003-12-24 | 가부시끼가이샤 도시바 | Door opening apparatus of a refrigerator |
CN1515857A (en) | 1999-08-17 | 2004-07-28 | 东芝株式会社 | Door-opening device for storeroom |
CN1286386A (en) | 1999-08-27 | 2001-03-07 | Lg电子株式会社 | Refrigerator sealing gasket connecting structure |
KR100343719B1 (en) | 2000-01-14 | 2002-07-20 | 엘지전자주식회사 | Refrigerator door equipped with vacuum insulating material panel |
KR20010073363A (en) | 2000-01-14 | 2001-08-01 | 구자홍 | Refrigerator door equipped with vacuum insulating material panel |
JP2002243091A (en) | 2001-02-20 | 2002-08-28 | Isuzu Motors Ltd | Vacuum heat insulating material and heat insulating panel |
US20040051427A1 (en) | 2001-03-07 | 2004-03-18 | Paolo Cittadini | Improved sealing assembly for refrigerator cabinets and the like with a profile made of plastic material |
US20020170265A1 (en) | 2001-05-18 | 2002-11-21 | Jamco Corporation | Vacuum heat-insulating block |
US20030080126A1 (en) | 2001-05-22 | 2003-05-01 | Integrated Biosystems, Inc. | Systems and methods for freezing, storing and thawing biopharmaceutical material |
US20110089802A1 (en) | 2001-07-19 | 2011-04-21 | Agc Flat Glass North America, Inc. | Energy-free refrigeration door and method for making the same |
JP2003106760A (en) | 2001-09-27 | 2003-04-09 | Mitsubishi Corp | Highly heat insulating composite panel and structure using the same |
US20030115838A1 (en) | 2001-12-21 | 2003-06-26 | Cabot Corporation | Method of preparing aerogel-containing insulation article |
EP1614954A1 (en) | 2001-12-21 | 2006-01-11 | Cabot Corporation | Aerogel-containing insulation article |
US20050235682A1 (en) | 2002-03-13 | 2005-10-27 | Chie Hirai | Refrigerator |
EP1484563A1 (en) | 2002-03-13 | 2004-12-08 | Matsushita Refrigeration Company | Refrigerator |
JP2003269688A (en) | 2002-03-15 | 2003-09-25 | Zojirushi Corp | Evacuated heat insulating panel |
US20030207075A1 (en) | 2002-05-06 | 2003-11-06 | Alcatel | Rigid multilayer material for thermal insulation |
US20050175809A1 (en) | 2002-05-31 | 2005-08-11 | Matsushita Refrigeration Co. | Vacuum thermal insulating material, process for producing the same and refrigerator including the same |
CN1666071A (en) | 2002-07-01 | 2005-09-07 | 惠而浦有限公司 | A vaccuum insulated refrigerator cabinet and method for assessing thermal conductivity thereof |
JP2004044980A (en) | 2002-07-15 | 2004-02-12 | Toshiba Corp | Refrigerator door |
US20040091688A1 (en) | 2002-11-11 | 2004-05-13 | Morio Gaku | Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board |
JP2004196411A (en) | 2002-12-20 | 2004-07-15 | Mitsubishi Chem Mkv Co | Cold insulation container |
EP1477752A2 (en) | 2003-05-14 | 2004-11-17 | Chart Inc. | Improved cryogenic freezer |
US20040226956A1 (en) | 2003-05-14 | 2004-11-18 | Jeff Brooks | Cryogenic freezer |
CN1820173A (en) | 2003-06-02 | 2006-08-16 | Bsh博世和西门子家用器具有限公司 | Door comprising insulating glazing and refrigerating appliance fitted therewith |
CN1576678A (en) | 2003-07-04 | 2005-02-09 | 松下电器产业株式会社 | Vacuum heat insulating material and machine using the same vacuum heat insulation material |
CN2700790Y (en) | 2003-09-24 | 2005-05-18 | 青岛亨达实业有限公司 | Glass door body of ice chest |
KR20050065088A (en) | 2003-12-24 | 2005-06-29 | 엘지전자 주식회사 | Adiabatic structure in refrigerator cabinet and a manufacturing method thereof |
JP2005214372A (en) | 2004-02-02 | 2005-08-11 | Sangaku Renkei Kiko Kyushu:Kk | Sealed heat insulation structure and inter-heat insulation wall surface reinforcement method |
WO2006003199A1 (en) | 2004-07-05 | 2006-01-12 | Luca Gandini | A highly thermo and acoustic insulating vacuum panel |
US20070243358A1 (en) | 2004-07-05 | 2007-10-18 | Luca Gandini | Highly Thermo and Acoustic Insulating Vacuum Panel |
CN1731053A (en) | 2004-08-06 | 2006-02-08 | 三菱电机株式会社 | Method for manufacturing refrigerator and refrigerator door |
CN2748848Y (en) | 2004-09-02 | 2005-12-28 | 孟范中 | Vacuum heat insulation refrigerator |
CN101072968A (en) | 2004-12-07 | 2007-11-14 | 松下电器产业株式会社 | Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material |
US20090031659A1 (en) | 2005-01-24 | 2009-02-05 | Rami Abraham Kalfon | Evacuated Thermal Insulation Panel |
CN101171472A (en) | 2005-05-10 | 2008-04-30 | Bsh博世和西门子家用器具有限公司 | Refrigerator and method for the operation thereof |
CN1896657A (en) | 2005-07-15 | 2007-01-17 | 乐金电子(天津)电器有限公司 | Door of refrigerator |
KR20070052156A (en) | 2005-11-16 | 2007-05-21 | 엘지전자 주식회사 | Vacuum isolation panel and isolation structure applying same |
US20070152551A1 (en) | 2006-01-03 | 2007-07-05 | Lg Electronics Inc. | Fixing structure of insulation panel of prefabricated refrigerator and prefabricated refrigerator having the same |
JP2007218509A (en) | 2006-02-17 | 2007-08-30 | Mitsubishi Electric Corp | Refrigerator-freezer |
US20070204648A1 (en) | 2006-03-03 | 2007-09-06 | Smale Jeffrey J | Step-down top hinge for refrigerator door with external dispenser |
JP2008045580A (en) | 2006-08-11 | 2008-02-28 | Hitachi Appliances Inc | Vacuum heat insulating panel and equipment equipped therewith |
GB2446053A (en) | 2007-01-26 | 2008-07-30 | Michael John Rickards | A braced sound barrier vacuum panel |
US20080289898A1 (en) | 2007-01-26 | 2008-11-27 | Michael John Rickards | Braced sound barrier vacuum panel |
JP2008249003A (en) | 2007-03-30 | 2008-10-16 | Hitachi Appliances Inc | Vacuum insulation panel and appliance provided with it |
CN101349493A (en) | 2007-07-19 | 2009-01-21 | 日立空调·家用电器株式会社 | Refrigerator |
JP2009078261A (en) | 2007-09-05 | 2009-04-16 | Panasonic Corp | Gas adsorbing device |
US20090113899A1 (en) | 2007-11-02 | 2009-05-07 | John Dain | Systems and Methods for Ultra Low Temperature Storage |
US20100104923A1 (en) | 2007-12-28 | 2010-04-29 | Shinsuke Takeguchi | Fuel cell separator and fuel cell comprising the same |
CN201191121Y (en) | 2007-12-29 | 2009-02-04 | 孟范中 | Evacuated insulation box for ice locker |
US8383225B2 (en) | 2008-03-26 | 2013-02-26 | Thomas Rotter | Vacuum-insulation element |
KR20090111632A (en) | 2008-04-22 | 2009-10-27 | 김현우 | Ultraviolet sterilizing apparatus for mattress |
JP2010008011A (en) | 2008-06-30 | 2010-01-14 | Panasonic Corp | Vacuum heat insulating box |
CN102099646A (en) | 2008-07-17 | 2011-06-15 | 松下电器产业株式会社 | Heat insulator, heat-insulating box object, heat-insulating door, and refrigerator |
US20100178439A1 (en) | 2009-01-15 | 2010-07-15 | Eversealed Windows, Inc. | Flexible edge seal for vacuum insulating glazing units |
KR20100097410A (en) | 2009-02-26 | 2010-09-03 | 한국과학기술원 | Vacuum insulator |
KR20100099629A (en) | 2009-03-03 | 2010-09-13 | 한국과학기술원 | Vacuum insulator and filling material for vacuum insulator |
KR101041086B1 (en) | 2009-03-03 | 2011-06-14 | 한국과학기술원 | Vacuum insulator |
KR20100119937A (en) | 2009-05-04 | 2010-11-12 | 한국과학기술원 | Vacuum insulator and envelope for vacuum insulator |
KR20100136614A (en) | 2009-06-19 | 2010-12-29 | (주)엘지하우시스 | Vacuum insulation panel |
CN201428906Y (en) | 2009-07-09 | 2010-03-24 | 丁琪 | Vacuum double-layer glass with support |
KR20110015327A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Core for a vacuum insulation panel and vacuum insulation pannel using the same |
US20120118002A1 (en) | 2009-08-07 | 2012-05-17 | Lg Electronics Inc. | Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member |
US20120125039A1 (en) | 2009-08-07 | 2012-05-24 | Minkyu Hwang | Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member |
KR20110015325A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel |
KR20110015322A (en) | 2009-08-07 | 2011-02-15 | 엘지전자 주식회사 | Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel |
US20120128920A1 (en) | 2009-08-07 | 2012-05-24 | Ilseob Yoon | Core of vacuum insulation member and vacuum insulation member using the same |
CN102032736A (en) | 2009-09-28 | 2011-04-27 | 日立空调·家用电器株式会社 | Refrigerator |
CN201811526U (en) | 2009-10-09 | 2011-04-27 | 株式会社东芝 | Refrigerator |
US8943770B2 (en) | 2009-11-20 | 2015-02-03 | Electrolux Home Products Pty Limited | Insulated panel and method of assembly |
US20130195544A1 (en) | 2009-11-20 | 2013-08-01 | Philip Sanders | Insulated panel and method of assembly |
EP2333179A1 (en) | 2009-11-27 | 2011-06-15 | Iso-Pan International GmbH | Vacuum insulation panel |
US20120269996A1 (en) | 2009-12-18 | 2012-10-25 | Jaeger Steffen | Heat insulating glazing element and methods for its manufacture |
US20110146333A1 (en) | 2009-12-22 | 2011-06-23 | Lg Electronics Inc. | Refrigerator |
US20130026900A1 (en) | 2010-01-04 | 2013-01-31 | Lg Electronics Inc. | Refrigerator including multiple storage compartments |
US20120231204A1 (en) | 2010-03-04 | 2012-09-13 | Lg Hausys, Ltd. | Grooved type vacuum thermal insulation material and a production method for the same |
KR20110100440A (en) | 2010-03-04 | 2011-09-14 | (주)엘지하우시스 | Groove type vacuum heat insulation material |
US20130008309A1 (en) | 2010-03-26 | 2013-01-10 | Panasonic Corporation | Gas-adsorption device structure and method for using same |
DE102011050473A1 (en) | 2010-05-18 | 2011-11-24 | Viktor Schatz | Discontinuous radiation suppression unit for suppressing heat transfer in e.g. manufacturing evacuated rimless composite system utilized in e.g. roof wall, has support elements arranged in spacer arrangement |
CN102261470A (en) | 2010-05-28 | 2011-11-30 | 博西华家用电器有限公司 | Sealing system and household appliance with sealing system |
CN105546923A (en) | 2010-05-28 | 2016-05-04 | 株式会社东芝 | Thermal-insulating box body for food storage warehouse |
US20110296797A1 (en) | 2010-06-02 | 2011-12-08 | Stark David H | Two-piece hermetic seal bellows for single-side placement on an insulating glass unit or highly insulating vacuum glass unit |
CN103154648A (en) | 2010-07-12 | 2013-06-12 | Bsh博世和西门子家用电器有限公司 | Housing component for a refrigeration unit |
CN201764779U (en) | 2010-09-02 | 2011-03-16 | 许春钢 | Filling material for refrigerating device heat insulation |
CN103228851A (en) | 2010-09-10 | 2013-07-31 | Bsh博世和西门子家用电器有限公司 | Vacuum body for a refrigeration device |
CN103189696A (en) | 2010-10-11 | 2013-07-03 | Lg电子株式会社 | Vacuum insulation glass panel and refrigerator having the same |
JP2012087993A (en) | 2010-10-20 | 2012-05-10 | Toshiba Corp | Insulating cabinet |
EP2447639A2 (en) | 2010-10-28 | 2012-05-02 | LG Electronics Inc. | Refrigerator comprising vacuum space |
KR101227516B1 (en) | 2010-10-28 | 2013-01-31 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
US20120103006A1 (en) | 2010-10-28 | 2012-05-03 | Lg Electronics Inc. | Refrigertor comprising vacuum space |
US20120104923A1 (en) | 2010-10-28 | 2012-05-03 | Lg Electronics Inc. | Refrigerator comprising vacuum space |
CN104634047A (en) | 2010-10-28 | 2015-05-20 | Lg电子株式会社 | Refrigerator |
US8857931B2 (en) | 2010-10-28 | 2014-10-14 | Lg Electronics Inc. | Refrigerator with vacuum space |
CN104482707A (en) | 2010-10-28 | 2015-04-01 | Lg电子株式会社 | Refrigerator |
KR20120044558A (en) | 2010-10-28 | 2012-05-08 | 엘지전자 주식회사 | A refrigerator comprising a vaccum space |
CN102455104A (en) | 2010-10-28 | 2012-05-16 | Lg电子株式会社 | Refrigerator with vacuum space |
CN102455103A (en) | 2010-10-28 | 2012-05-16 | Lg电子株式会社 | Refrigerator comprising vacuum space |
CN104457117A (en) | 2010-10-28 | 2015-03-25 | Lg电子株式会社 | Refrigerator |
CN102455105A (en) | 2010-10-28 | 2012-05-16 | Lg电子株式会社 | Refrigerator comprising vacuum space |
WO2012084874A1 (en) | 2010-12-22 | 2012-06-28 | Marguerite Georges | High-performance thin thermal-insulation device |
KR101506413B1 (en) | 2010-12-27 | 2015-03-26 | 아사히 가세이 케미칼즈 가부시키가이샤 | Heat insulation material and production method for same |
CN102116402A (en) | 2011-01-04 | 2011-07-06 | 合肥美的荣事达电冰箱有限公司 | Vacuum thermal insulation component and manufacturing method thereof, as well as refrigeration device |
DE102011014302A1 (en) | 2011-03-17 | 2012-09-20 | Liebherr-Hausgeräte Ochsenhausen GmbH | Door element for refrigerator and/or freezer, has foam filled in interstice between vacuum insulation element and outer door panel |
CN102735013A (en) | 2011-03-31 | 2012-10-17 | 日立空调·家用电器株式会社 | Refrigerator |
US8881398B2 (en) | 2011-05-26 | 2014-11-11 | General Electric Company | Method and apparatus for insulating a refrigeration appliance |
JP2012255607A (en) | 2011-06-09 | 2012-12-27 | Toshiba Corp | Heat insulation box |
CN102818421A (en) | 2011-06-09 | 2012-12-12 | 株式会社东芝 | Heat insulation tank |
US20120326587A1 (en) | 2011-06-21 | 2012-12-27 | Samsung Electronics Co., Ltd | Refrigerator |
CN102840729A (en) | 2011-06-21 | 2012-12-26 | 三星电子株式会社 | Refrigerator and method for manufacturing refrigerator door |
WO2012176880A1 (en) | 2011-06-24 | 2012-12-27 | 株式会社松田技術研究所 | Vacuum insulated panel |
WO2013007568A2 (en) | 2011-07-14 | 2013-01-17 | BSH Bosch und Siemens Hausgeräte GmbH | Vacuum insulation element |
DE102011079209A1 (en) | 2011-07-14 | 2013-01-17 | BSH Bosch und Siemens Hausgeräte GmbH | Vacuum insulation element |
CN103649658A (en) | 2011-07-14 | 2014-03-19 | Bsh博世和西门子家用电器有限公司 | Vacuum insulation element |
CN102927740A (en) | 2011-08-12 | 2013-02-13 | 三星电子株式会社 | Refrigerator |
CN103370587A (en) | 2011-08-31 | 2013-10-23 | 松下电器产业株式会社 | Refrigerator and vacuum insulation material for same |
US20130099650A1 (en) | 2011-10-21 | 2013-04-25 | Samsung Electronics Co., Ltd. | Refrigerator and door for the same |
CN103062981A (en) | 2011-10-21 | 2013-04-24 | 三星电子株式会社 | Refrigerator and method for manufacturing door of refrigerator |
KR20130048528A (en) | 2011-11-02 | 2013-05-10 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
CN103090616A (en) | 2011-11-02 | 2013-05-08 | Lg电子株式会社 | Refrigerator |
US20130105494A1 (en) | 2011-11-02 | 2013-05-02 | Lg Electronics Inc. | Refrigerator |
KR20130048530A (en) | 2011-11-02 | 2013-05-10 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
US20130105496A1 (en) | 2011-11-02 | 2013-05-02 | Lg Electronics Inc. | Refrigerator |
CN103090615A (en) | 2011-11-02 | 2013-05-08 | Lg电子株式会社 | Refrigerator |
US10082328B2 (en) | 2011-11-02 | 2018-09-25 | Lg Electronics Inc. | Refrigerator |
KR20130054213A (en) | 2011-11-16 | 2013-05-24 | (주)엘지하우시스 | Vacuum glass panel with pillar having getter function and method of manufacturing the same |
US20140272208A1 (en) | 2011-11-16 | 2014-09-18 | Lg Hausys, Ltd. | Vacuum glass panel having getter filler and method of manufacturing same |
US20140315011A1 (en) | 2011-11-24 | 2014-10-23 | Lg Hausys, Ltd. | Vacuum insulation material for blocking radiant heat |
EP2789951A1 (en) | 2011-12-06 | 2014-10-15 | Kabushiki Kaisha Toshiba, Inc. | Insulated cabinet |
JP2013119966A (en) | 2011-12-06 | 2013-06-17 | Toshiba Corp | Heat insulation box |
DE102012100490A1 (en) | 2012-01-23 | 2013-07-25 | Götz von Waldeyer-Hartz | Thermal wall for refrigerated vehicles and large size freezer cabinets, has coating layer with filler material and spacers made of polyurethane foam, and are arranged on folds to lock covering layers parallel to vacuum insulation layer core |
EP2829827A1 (en) | 2012-03-21 | 2015-01-28 | Kabushiki Kaisha Toshiba | Refrigerator |
US20150068401A1 (en) | 2012-03-21 | 2015-03-12 | Panasonic Corporation | Gas adsorbing device and hollow body housing the same |
CN104254749A (en) | 2012-03-21 | 2014-12-31 | 株式会社东芝 | Refrigerator |
CN104204646A (en) | 2012-03-23 | 2014-12-10 | 松下电器产业株式会社 | Vacuum insulation material and insulated housing using same |
CN103363764A (en) | 2012-03-26 | 2013-10-23 | 三菱电机株式会社 | Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box |
US8944541B2 (en) | 2012-04-02 | 2015-02-03 | Whirlpool Corporation | Vacuum panel cabinet structure for a refrigerator |
US20130257257A1 (en) | 2012-04-02 | 2013-10-03 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US20130255304A1 (en) | 2012-04-02 | 2013-10-03 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US20130293080A1 (en) | 2012-05-02 | 2013-11-07 | Samsung Electronics Co., Ltd. | Refrigerator and method of manufacturing door thereof |
CN103542660A (en) | 2012-07-12 | 2014-01-29 | 三星电子株式会社 | Refrigerator and manufacturing method thereof |
CN103575038A (en) | 2012-08-02 | 2014-02-12 | 开利公司 | Frame and refrigerating device |
JP2014037931A (en) | 2012-08-20 | 2014-02-27 | Toshiba Corp | Refrigerator |
WO2014049969A1 (en) | 2012-09-25 | 2014-04-03 | 株式会社 東芝 | Refrigerator |
US20140103791A1 (en) | 2012-10-12 | 2014-04-17 | Dongbu Daewoo Electronics Corporation | Refrigerator for preventing dewing on door gasket |
US20140132142A1 (en) | 2012-11-09 | 2014-05-15 | Samsung Electronics Co., Ltd. | Refrigerator and method of manufacturing inner door thereof |
KR20120139648A (en) | 2012-12-13 | 2012-12-27 | 엘지전자 주식회사 | A refrigerator comprising a vacuum space |
EP2936013A1 (en) | 2012-12-18 | 2015-10-28 | BSH Hausgeräte GmbH | Door for a household refrigeration appliance comprising a vacuum insulating element with casted shells and household refrigeration appliance |
DE102012223539A1 (en) | 2012-12-18 | 2014-06-18 | BSH Bosch und Siemens Hausgeräte GmbH | Door for a household refrigerating appliance with a vacuum insulation element with molded bowls and household refrigerating appliance |
RU129188U1 (en) | 2012-12-19 | 2013-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) | THERMAL INSULATION PRODUCT |
CN203095854U (en) | 2013-01-25 | 2013-07-31 | 李梦琪 | Insulating colored crystal glass and freezer |
CN103968196A (en) | 2013-02-06 | 2014-08-06 | 三星电子株式会社 | Vacuum insulation material, insulation case unit, and refrigerator |
US20140216100A1 (en) | 2013-02-06 | 2014-08-07 | Samsung Electronics Co., Ltd. | Vacuum insulation material, insulation case unit, and refrigerator |
US9182158B2 (en) | 2013-03-15 | 2015-11-10 | Whirlpool Corporation | Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure |
US9328951B2 (en) | 2013-04-01 | 2016-05-03 | Lg Electronics Inc. | Refrigerator |
WO2014175639A1 (en) | 2013-04-26 | 2014-10-30 | Lg Electronics Inc. | Refrigerator |
KR20140129552A (en) | 2013-04-30 | 2014-11-07 | 한국과학기술원 | Edge-sealing method and vacuum exhauster of vacuum insulation glass for sustainable use |
EP2806239A2 (en) | 2013-05-22 | 2014-11-26 | LG Electronics, Inc. | Refrigerator and method of manufacturing the same |
US20140346942A1 (en) | 2013-05-22 | 2014-11-27 | Lg Electronics Inc. | Refrigerator and method of manufacturing the same |
CN104180595A (en) | 2013-05-22 | 2014-12-03 | Lg电子株式会社 | refrigerator and method of manufacturing the same |
EP2824405A2 (en) | 2013-07-11 | 2015-01-14 | Seven-Air Gebr. Meyer AG | High power thermo panel |
US20150030800A1 (en) | 2013-07-26 | 2015-01-29 | Samsung Electronics Co., Ltd. | Vacuum heat insulating material and refrigerator including the same |
KR20150012712A (en) | 2013-07-26 | 2015-02-04 | 삼성전자주식회사 | Vacuum heat insulating material and refrigerator including the same |
CN104344653A (en) | 2013-09-27 | 2015-02-11 | 海尔集团公司 | Refrigerator |
CN104567215A (en) | 2013-10-22 | 2015-04-29 | 株式会社东芝 | Refrigerator door and refrigerator |
CN104729201A (en) | 2013-12-19 | 2015-06-24 | 日立空调·家用电器株式会社 | Refrigerator |
CN104746690A (en) | 2013-12-25 | 2015-07-01 | 戴长虹 | Double-vacuum-layer metal vacuum composite plate with edge sealed by seal strip and manufacturing method thereof |
US20150192356A1 (en) | 2014-01-07 | 2015-07-09 | Samsung Electronics Co., | Refrigerator |
US9463918B2 (en) | 2014-02-20 | 2016-10-11 | Aarne H. Reid | Vacuum insulated articles and methods of making same |
EP2952839A1 (en) | 2014-06-03 | 2015-12-09 | BSH Hausgeräte GmbH | Door for a household appliance and household appliance |
US9791204B2 (en) | 2014-07-06 | 2017-10-17 | Lg Electronics Inc. | Refrigerator door and manufacturing method of the same |
US20160109172A1 (en) | 2014-10-16 | 2016-04-21 | Samsung Electronics Co., Ltd. | Refrigerator |
US20170325634A1 (en) | 2014-12-19 | 2017-11-16 | Dow Global Technologies Llc | Vacuum vessels |
US9945600B2 (en) | 2015-06-04 | 2018-04-17 | Lg Electronics Inc. | Refrigerator |
US20160356542A1 (en) | 2015-06-05 | 2016-12-08 | Lg Electronics Inc. | Refrigerator hinge and manufacturing method thereof |
WO2016208193A1 (en) | 2015-06-24 | 2016-12-29 | パナソニックIpマネジメント株式会社 | Gas-adsorbing device and evacuated insulating material using same |
US9441779B1 (en) | 2015-07-01 | 2016-09-13 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
WO2017023095A1 (en) | 2015-08-03 | 2017-02-09 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US20180299060A1 (en) | 2015-10-19 | 2018-10-18 | Samsung Electromics Co., Ltd. | Refrigerator and manufacturing method therefor |
US20180266620A1 (en) | 2015-12-09 | 2018-09-20 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US20180313492A1 (en) | 2016-03-02 | 2018-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
WO2017192121A1 (en) | 2016-05-03 | 2017-11-09 | Whirlpool Corporation | Hinge support assembly for a vacuum insulated appliance cabinet |
US20190101320A1 (en) | 2016-05-03 | 2019-04-04 | Whirlpool Corporation | Hinge support assembly for a vacuum insulated appliance cabinet |
WO2018044274A1 (en) | 2016-08-30 | 2018-03-08 | Whirlpool Corporation | Hermetically sealed overmolded plastic thermal bridge breaker with liner and wrapper for a vacuum insulated structure |
US20190128593A1 (en) | 2016-08-30 | 2019-05-02 | Whirlpool Corporation | Hermetically sealed overmolded plastic thermal bridge breaker with refrigerator cabinet liner and wrapper for vacuum insulation |
CN108354755A (en) | 2018-03-22 | 2018-08-03 | 周少华 | A kind of examination couch of the Neurology inspection with automatic disinfecting function |
Non-Patent Citations (133)
Title |
---|
Chinese Notice of Allowance dated Jun. 1, 2022 issued in CN Application No. 202110032072.4. |
Chinese Office Action (with English translation) dated Aug. 13, 2019 issued in CN Application No. 201680045950.3. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045869.5. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045899.6. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045908.1. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045935.9. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680046042.6. |
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680046048.3. |
Chinese Office Action (with English translation) dated Jul. 15, 2019 issued in CN Application No. 201680045949.0. |
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680045897.7. |
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680045898.1. |
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680046047.9. |
Chinese Office Action and Search Report dated Jul. 20, 2021 issued in Application 20101067100.X. |
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248772.2. |
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248789.8. |
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248791.5. |
Chinese Office Action dated Apr. 8, 2021 issued in CN Application No. 202010248891.8. |
Chinese Office Action dated Aug. 2, 2021 issued in CN Application No. 202010972409.5. |
Chinese Office Action dated Aug. 3, 2021 issued in CN Application No. 202010972419.9. |
Chinese Office Action dated Aug. 30, 2023 issued in Application No. 202110718284.8. |
Chinese Office Action dated Aug. 4, 2021 issued in CN Application No. 202010972442.8. |
Chinese Office Action dated Dec. 3, 2021 issued in CN Application No. 202110032077.7. |
Chinese Office Action dated Feb. 15, 2022 issued in CN Application No. 202010671000.X. |
Chinese Office Action dated Feb. 18, 2022 issued in CN Application No. 202010975466.9. |
Chinese Office Action dated Jun. 2, 2021 issued in CN Application No. 202010634146.7. |
Chinese Office Action dated Jun. 23, 2021 issued in CN Application No. 202010669915.7. |
Chinese Office Action dated Jun. 24, 2021 issued in CN Application No. 202010669926.5. |
Chinese Office Action dated May 18, 2022 issued in CN Application No. 202110718315.X. |
Chinese Office Action issued in Application No. 202010634146.7 dated Jun. 2, 2021. |
European Office Action dated Jan. 11, 2021 issued in Application No. 16833313.6. |
European Office Action dated Nov. 21, 2022 issued in EP Application No. 20168389.3. |
European Search Report dated Apr. 3, 2019 issued in EP Application No. 16833325.0. |
European Search Report dated Dec. 21, 2018 issued in EP Application No. 16833330.0. |
European Search Report dated Feb. 13, 2019 issued in EP Application No. 16833309.4. |
European Search Report dated Feb. 13, 2019 issued in EP Application No. 16833311.0. |
European Search Report dated Feb. 20, 2019 issued in EP Application No. 16833313.6. |
European Search Report dated Feb. 22, 2019 issued in EP Application No. 16833312.8. |
European Search Report dated Feb. 26, 2019 issued in EP Application No. 16833324.3. |
European Search Report dated Feb. 26, 2019 issued in EP Application No. 16833336.7. |
European Search Report dated Feb. 8, 2022 issued in EP Application No. 21203498.7. |
European Search Report dated Mar. 1, 2019 issued in EP Application No. 16833323.5. |
European Search Report dated Mar. 1, 2019 issued in EP Application No. 16833338.3. |
European Search Report dated Mar. 13, 2019 issued in EP Application No. 16833331.8. |
European Search Report dated Mar. 15, 2019 issued in EP Application No. 16833326.8. |
European Search Report dated Nov. 3, 2022 issued in EP Application No. 22151005.0. |
European Search Report dated Oct. 11, 2021 issued in EP Application No. 21185349.4. |
European Search Report dated Oct. 11, 2021 issued in EP Application No. 21185362.7. |
Extended European Search Report dated Jul. 10, 2020 issued in Application 20168389.3. |
International Search Report and Written Opinion dated Dec. 23, 2016 issued in Application No. PCT/KR2016/008512. |
International Search Report and Written Opinion dated Dec. 23, 2016 issued in Application No. PCT/KR2016/008514. |
International Search Report and Written Opinion dated Dec. 7, 2016 issued in Application No. PCT/KR2016/008516. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008466. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008468. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008469. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008470. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008501. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008502. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008505. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008519. |
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008523. |
International Search Report and Written Opinion dated Oct. 12, 2016 issued in Application No. PCT/KR2016/008465. |
International Search Report and Written Opinion dated Oct. 12, 2016 issued in Application No. PCT/KR2016/008507. |
Korean Notice of Allowance dated Jun. 1, 2022 issued in KR Application No. 10-2021-0085731. |
Korean Notice of Allowance dated Nov. 2, 2022 issued in KR Application No. 10-2015-0109720. |
Korean Office Action dated Aug. 1, 2021 issued in KR Application No. 10-2021-0085731. |
Korean Office Action dated Aug. 8, 2022 issued in KR Application No. 10-2015-0109622. |
Korean Office Action dated Jul. 31, 2023 issued in Application 10-2023-0020717. |
Korean Office Action dated Jun. 5, 2020 issued in Application 10-2017-0093784. |
Korean Office Action dated Nov. 1, 2023 issued in Application 10-2023-0015566. |
Korean Office Action dated Nov. 13, 2023 issued in Application No. 10-2023-0014241. |
Machine translation of EP 2 952 839. |
Russian Office Action dated Sep. 25, 2018 issued in RU Application No. 2018107646. |
U.S. Appl. No. 15/749,132, filed Jan. 31, 2018. |
U.S. Appl. No. 15/749,156, filed Jan. 31, 2018. |
U.S. Appl. No. 16/710,720, filed Dec. 11, 2019. |
U.S. Appl. No. 16/929,523, filed Jul. 15, 2020. |
U.S. Appl. No. 16/942,213, filed Jul. 29, 2020. |
U.S. Appl. No. 16/942,262, filed Jul. 29, 2020. |
U.S. Appl. No. 16/953,846, filed Nov. 20, 2020. |
U.S. Appl. No. 17/021,582, filed Sep. 15, 2020. |
U.S. Appl. No. 17/030,806, filed Sep. 24, 2020. |
U.S. Appl. No. 17/072,231, filed Oct. 16, 2020. |
U.S. Appl. No. 17/114,950, filed Dec. 8, 2020. |
U.S. Appl. No. 17/134,911, filed Dec. 28, 2020. |
U.S. Appl. No. 17/155,430, filed Jan. 22, 2021. |
U.S. Appl. No. 17/170,005, filed Feb. 8, 2021. |
U.S. Appl. No. 17/411,659, filed Aug. 25, 2021. |
U.S. Appl. No. 17/582,596, filed Jan. 24, 2022. |
U.S. Appl. No. 17/749,679, filed May 20, 2022. |
U.S. Appl. No. 17/939,507, filed Sep. 7, 2022. |
U.S. Appl. No. 17/980,088, filed Nov. 3, 2022. |
U.S. Appl. No. 18/091,040, filed Dec. 29, 2022. |
U.S. Appl. No. 18/091,203, filed Dec. 29, 2022. |
U.S. Appl. No. 18/095,658, filed Jan. 11, 2023. |
U.S. Appl. No. 18/095,658, filed May 20, 2022. |
U.S. Notice of Allowance dated Mar. 23, 2023 issued in U.S. Appl. No. 16/953,846. |
U.S. Office Action dated Apr. 27, 2023 issued in U.S. Appl. No. 17/072,231. |
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,136. |
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,139. |
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,142. |
U.S. Office Action dated Mar. 20, 2023 issued in co-pending related U.S. Appl. No. 17/030,806. |
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,143. |
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,147. |
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,162. |
U.S. Office Action dated Oct. 4, 2019 issued in related U.S. Appl. No. 15/749,140. |
U.S. Office Action dated Sep. 1, 2020 issued in U.S. Appl. No. 15/749,156. |
U.S. Office Action issued in Application No. 15/749,132 dated Mar. 30, 2021. |
U.S. Office Action issued in U.S. Appl. No. 15/749,156 dated Jun. 28, 2021. |
United States Notice of Allowance dated Apr. 15, 2020 issued in U.S. Appl. No. 15/749,140. |
United States Notice of Allowance dated Aug. 10, 2020 issued in U.S. Appl. No. 15/749,154. |
United States Notice of Allowance dated Oct. 21, 2020 issued in U.S. Appl. No. 15/749,154. |
United States Office Action dated Apr. 15, 2020 issued in U.S. Appl. No. 15/749,136. |
United States Office Action dated Dec. 10, 2019 issued in U.S. Appl. No. 15/749,132. |
United States Office Action dated Dec. 22, 2022 issued in co-pending related U.S. Appl. No. 16/953,846. |
United States Office Action dated Feb. 18, 2020 issued in U.S. Appl. No. 15/749,146. |
United States Office Action dated Jan. 18, 2023 issued in co-pending related U.S. Appl. No. 16/942,213. |
United States Office Action dated Jul. 13, 2022 issued in co-pending related U.S. Appl. No. 17/134,911. |
United States Office Action dated Jul. 26, 2022 issued in co-pending related U.S. Appl. No. 17/030,806. |
United States Office Action dated Jul. 7, 2022 issued in co-pending related U.S. Appl. No. 16/710,720. |
United States Office Action dated Jun. 10, 2022 issued in co-pending related U.S. Appl. No. 16/942,213. |
United States Office Action dated Jun. 28, 2021 issued in co-pending related U.S. Appl. No. 15/749,156. |
United States Office Action dated Mar. 2, 2022 issued in co-pending related U.S. Appl. No. 17/170,005. |
United States Office Action dated Mar. 20, 2020 issued in U.S. Appl. No. 15/749,162. |
United States Office Action dated Mar. 24, 2020 issued in U.S. Appl. No. 15/749,154. |
United States Office Action dated Mar. 25, 2020 issued in U.S. Appl. No. 15/749,156. |
United States Office Action dated Mar. 27, 2020 issued in U.S. Appl. No. 15/749,149. |
United States Office Action dated Mar. 31, 2022 issued in co-pending related U.S. Appl. No. 16/929,523. |
United States Office Action dated Nov. 25, 2022 issued in co-pending related U.S. Appl. No. 17/411,659. |
United States Office Action dated Oct. 19, 2021 issued in co-pending related U.S. Appl. No. 17/021,582. |
United States Office Action dated Oct. 26, 2021 issued in co-pending related U.S. Appl. No. 16/942,213. |
United States Office Action dated Oct. 5, 2021 issued in co-pending related U.S. Appl. No. 16/942,262. |
United States Office Action dated Oct. 6, 2022 issued in co-pending related U.S. Appl. No. 17/072,231. |
United States Office Action dated Sep. 20, 2019 issued in U.S. Appl. No. 15/749,149. |
Also Published As
Publication number | Publication date |
---|---|
US20210140705A1 (en) | 2021-05-13 |
CN111238146A (en) | 2020-06-05 |
CN111238145B (en) | 2022-05-13 |
CN111238143A (en) | 2020-06-05 |
CN111238144A (en) | 2020-06-05 |
KR102665225B1 (en) | 2024-05-13 |
CN107923700A (en) | 2018-04-17 |
US20180224196A1 (en) | 2018-08-09 |
EP3332191A4 (en) | 2019-05-01 |
EP3332191B1 (en) | 2023-10-04 |
CN107923700B (en) | 2020-04-03 |
CN111238146B (en) | 2022-05-10 |
KR20230022927A (en) | 2023-02-16 |
KR20170016191A (en) | 2017-02-13 |
CN111238143B (en) | 2022-06-28 |
CN111238144B (en) | 2022-05-13 |
US10928119B2 (en) | 2021-02-23 |
KR102498210B1 (en) | 2023-02-09 |
WO2017023089A1 (en) | 2017-02-09 |
CN111238145A (en) | 2020-06-05 |
EP3332191A1 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230392854A1 (en) | Vacuum adiabatic body and refrigerator | |
US11927386B2 (en) | Vacuum adiabatic body and refrigerator | |
US11573048B2 (en) | Vacuum adiabatic body and refrigerator | |
US11585591B2 (en) | Vacuum adiabatic body and refrigerator | |
US20240263869A1 (en) | Vacuum adiabatic body and refrigerator | |
US11920723B2 (en) | Vacuum adiabatic body and refrigerator | |
US20220163163A1 (en) | Vacuum adiabatic body and refrigerator | |
US11365931B2 (en) | Vacuum adiabatic body and refrigerator | |
EP3913308A1 (en) | Vacuum adiabatic body and refrigerator | |
US20230168025A1 (en) | Vacuum adiabatic body and refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |