US11927386B2 - Vacuum adiabatic body and refrigerator - Google Patents

Vacuum adiabatic body and refrigerator Download PDF

Info

Publication number
US11927386B2
US11927386B2 US17/155,430 US202117155430A US11927386B2 US 11927386 B2 US11927386 B2 US 11927386B2 US 202117155430 A US202117155430 A US 202117155430A US 11927386 B2 US11927386 B2 US 11927386B2
Authority
US
United States
Prior art keywords
vacuum
plate
space
adiabatic body
vacuum adiabatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/155,430
Other versions
US20210140705A1 (en
Inventor
Wonyeong Jung
Deokhyun Youn
Sora Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to US17/155,430 priority Critical patent/US11927386B2/en
Publication of US20210140705A1 publication Critical patent/US20210140705A1/en
Application granted granted Critical
Publication of US11927386B2 publication Critical patent/US11927386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/064Walls defining a cabinet formed by moulding, e.g. moulding in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • F25D23/082Strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present disclosure relates to a vacuum adiabatic body and a refrigerator.
  • a vacuum adiabatic body is a product for suppressing heat transfer by vacuumizing the interior of a body thereof.
  • the vacuum adiabatic body can reduce heat transfer by convection and conduction, and hence is applied to heating apparatuses and refrigerating apparatuses.
  • a foam urethane adiabatic wall having a thickness of about 30 cm or more is generally provided.
  • the internal volume of the refrigerator is therefore reduced.
  • Reference Document 1 Korean Patent No. 10-0343719 (Reference Document 1) of the present applicant has been disclosed.
  • Reference Document 1 there is disclosed a method in which a vacuum adiabatic panel is prepared and then built in walls of a refrigerator, and the exterior of the vacuum adiabatic panel is finished with a separate molding such as Styrofoam (polystyrene). According to the method, additional foaming is not required, and the adiabatic performance of the refrigerator is improved. However, manufacturing cost is increased, and a manufacturing method is complicated.
  • Embodiments provide a vacuum adiabatic body and a refrigerator, which can obtain a sufficient adiabatic effect in a vacuum state and be applied commercially. Embodiments also provide a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body, and a refrigerator.
  • a vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a
  • a vacuum adiabatic body in another embodiment, includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a
  • a refrigerator in still another embodiment, includes: a main body provided with an internal space in which storage goods are stored; and a door provided to open/close the main body from an external space, wherein, in order to supply a refrigerant into the main body, the refrigerator includes: a compressor for compressing the refrigerant; a condenser for condensing the compressed refrigerant; an expander for expanding the condensed refrigerant; and an evaporator for evaporating the expanded refrigerant to take heat, wherein at least one of the main body and the door includes a vacuum adiabatic body, wherein the vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for the internal space; a second plate member defining at least one portion of a wall for the external space; a sealing part sealing the first plate member and the second plate member to provide a vacuum space part that has a temperature between a temperature of the internal space and a temperature of the external space and is in a vacuum state;
  • a vacuum adiabatic body having a vacuum adiabatic effect and a refrigerator including the same it is possible to design a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body.
  • FIG. 1 is a perspective view of a refrigerator according to an embodiment.
  • FIG. 2 is a view schematically showing a vacuum adiabatic body used in a main body and a door of the refrigerator.
  • FIG. 3 is a view showing various embodiments of an internal configuration of a vacuum space part.
  • FIG. 4 is a view showing various embodiments of conductive resistance sheets and peripheral parts thereof.
  • FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
  • FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when a supporting unit is used.
  • FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities.
  • FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment.
  • FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure.
  • FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
  • FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of a plate member.
  • FIG. 12 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
  • FIG. 13 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body.
  • vacuum pressure means a certain pressure state lower than atmospheric pressure.
  • the expression that a vacuum degree of A is higher than that of B means that a vacuum pressure of A is lower than that of B.
  • FIG. 1 is a perspective view of a refrigerator according to an embodiment.
  • FIG. 2 is a view schematically showing a vacuum adiabatic body used in the main body and the door of the refrigerator.
  • a main body-side vacuum adiabatic body is illustrated in a state in which top and side walls are removed
  • a door-side vacuum adiabatic body is illustrated in a state in which a portion of a front wall is removed.
  • sections of portions at conductive resistance sheets are provided are schematically illustrated for convenience of understanding.
  • the refrigerator 1 includes a main body 2 provided with a cavity 9 capable of storing storage goods and a door 3 provided to open/close the main body 2 .
  • the door 3 may be rotatably or movably disposed to open/close the cavity 9 .
  • the cavity 9 may provide at least one of a refrigerating chamber and a freezing chamber.
  • Parts constituting a freezing cycle in which cold air is supplied into the cavity 9 may be included.
  • the parts include a compressor 4 for compressing a refrigerant, a condenser 5 for condensing the compressed refrigerant, an expander 6 for expanding the condensed refrigerant, and an evaporator 7 for evaporating the expanded refrigerant to take heat.
  • a fan may be installed at a position adjacent to the evaporator 7 , and a fluid blown from the fan may pass through the evaporator 7 and then be blown into the cavity 9 .
  • a freezing load is controlled by adjusting the blowing amount and blowing direction by the fan, adjusting the amount of a circulated refrigerant, or adjusting the compression rate of the compressor, so that it is possible to control a refrigerating space or a freezing space.
  • the vacuum adiabatic body includes a first plate member (or first plate) 10 for providing a wall of a low-temperature space, a second plate member (or second plate) 20 for providing a wall of a high-temperature space, and a vacuum space part (or vacuum space) 50 defined as a gap part between the first and second plate members 10 and 20 . Also, the vacuum adiabatic body includes the conductive resistance sheets 60 and 62 for preventing heat conduction between the first and second plate members 10 and 20 .
  • a sealing part (or seal) 61 for sealing the first and second plate members 10 and 20 is provided such that the vacuum space part 50 is in a sealing state.
  • the first plate member 10 may be referred to as an inner case
  • the second plate member 20 may be referred to as an outer case.
  • a machine chamber 8 in which parts providing a freezing cycle are accommodated is placed at a lower rear side of the main body-side vacuum adiabatic body, and an exhaust port 40 for forming a vacuum state by exhausting air in the vacuum space part 50 is provided at any one side of the vacuum adiabatic body.
  • a pipeline 64 passing through the vacuum space part 50 may be further installed so as to install a defrosting water line and electric lines.
  • the first plate member 10 may define at least one portion of a wall for a first space provided thereto.
  • the second plate member 20 may define at least one portion of a wall for a second space provided thereto.
  • the first space and the second space may be defined as spaces having different temperatures.
  • the wall for each space may serve as not only a wall directly contacting the space but also a wall not contacting the space.
  • the vacuum adiabatic body of the embodiment may also be applied to a product further having a separate wall contacting each space.
  • Factors of heat transfer which cause loss of the adiabatic effect of the vacuum adiabatic body, are heat conduction between the first and second plate members 10 and 20 , heat radiation between the first and second plate members 10 and 20 , and gas conduction of the vacuum space part 50 .
  • a heat resistance unit provided to reduce adiabatic loss related to the factors of the heat transfer will be provided.
  • the vacuum adiabatic body and the refrigerator of the embodiment do not exclude that another adiabatic means is further provided to at least one side of the vacuum adiabatic body. Therefore, an adiabatic means using foaming or the like may be further provided to another side of the vacuum adiabatic body.
  • FIG. 3 is a view showing various embodiments of an internal configuration of the vacuum space part.
  • the vacuum space part 50 is provided in a third space having a different pressure from the first and second spaces, preferably, a vacuum state, thereby reducing adiabatic loss.
  • the third space may be provided at a temperature between the temperature of the first space and the temperature of the second space. Since the third space is provided as a space in the vacuum state, the first and second plate members 10 and 20 receive a force contracting in a direction in which they approach each other due to a force corresponding to a pressure difference between the first and second spaces. Therefore, the vacuum space part 50 may be deformed in a direction in which it is reduced. In this case, adiabatic loss may be caused due to an increase in amount of heat radiation, caused by the contraction of the vacuum space part 50 , and an increase in amount of heat conduction, caused by contact between the plate members 10 and 20 .
  • a supporting unit (or support) 30 may be provided to reduce the deformation of the vacuum space part 50 .
  • the supporting unit 30 includes bars 31 .
  • the bars 31 may extend in a direction substantially vertical to the first and second plate members 10 and 20 so as to support a distance between the first and second plate members 10 and 20 .
  • a support plate 35 may be additionally provided to at least one end of the bar 31 .
  • the support plate 35 connects at least two bars 31 to each other, and may extend in a direction horizontal to the first and second plate members 10 and 20 .
  • the support plate 35 may be provided in a plate shape, or may be provided in a lattice shape such that its area contacting the first or second plate member 10 or 20 is decreased, thereby reducing heat transfer.
  • the bars 31 and the support plate 35 are fixed to each other at at least one portion, to be inserted together between the first and second plate members 10 and 20 .
  • the support plate 35 contacts at least one of the first and second plate members 10 and 20 , thereby preventing deformation of the first and second plate members 10 and 20 .
  • a material of the supporting unit 30 may include a resin selected from the group consisting of PC, glass fiber PC, low outgassing PC, PPS, and LCP so as to obtain high compressive strength, low outgassing and water absorptance, low thermal conductivity, high compressive strength at high temperature, and excellent machinability.
  • the first and second plate members 10 and 20 may be made of a stainless material capable of preventing corrosion and providing a sufficient strength.
  • the stainless material has a relatively high emissivity of 0.16, and hence a large amount of radiation heat may be transferred.
  • the supporting unit 30 made of the resin has a lower emissivity than the plate members, and is not entirely provided to inner surfaces of the first and second plate members 10 and 20 .
  • the supporting unit 30 does not have great influence on radiation heat. Therefore, the radiation resistance sheet 32 may be provided in a plate shape over a majority of the area of the vacuum space part 50 so as to concentrate on reduction of radiation heat transferred between the first and second plate members 10 and 20 .
  • a product having a low emissivity may be preferably used as the material of the radiation resistance sheet 32 .
  • an aluminum foil having an emissivity of 0.02 may be used as the radiation resistance sheet 32 . Since the transfer of radiation heat cannot be sufficiently blocked using one radiation resistance sheet, at least two radiation resistance sheets 32 may be provided at a certain distance so as not to contact each other. In addition, at least one radiation resistance sheet may be provided in a state in which it contacts the inner surface of the first or second plate member 10 or 20 .
  • the distance between the plate members is maintained by the supporting unit 30 , and a porous material 33 may be filled in the vacuum space part 50 .
  • the porous material 33 may have a higher emissivity than the stainless material of the first and second plate members 10 and 20 .
  • the porous material 33 since the porous material 33 is filled in the vacuum space part 50 , the porous material 33 has a high efficiency for resisting the radiation heat transfer.
  • the vacuum adiabatic body can be manufactured without using the radiation resistance sheet 32 .
  • the supporting unit 30 maintaining the vacuum space part 50 is not provided.
  • the porous material 33 is provided in a state in which it is surrounded by a film 34 .
  • the porous material 33 may be provided in a state in which it is compressed so as to maintain the gap of the vacuum space part 50 .
  • the film 34 is made of, for example, a PE material, and may be provided in a state in which holes are formed therein.
  • the vacuum adiabatic body can be manufactured without using the supporting unit 30 .
  • the porous material 33 can serve together as the radiation resistance sheet 32 and the supporting unit 30 .
  • FIG. 4 is a view showing various embodiments of the conductive resistance sheets and peripheral parts thereof. Structures of the conductive resistance sheets are briefly illustrated in FIG. 2 , but will be understood in detail with reference to FIG. 4 .
  • a conductive resistance sheet proposed in FIG. 4 a may be preferably applied to the main body-side vacuum adiabatic body.
  • the first and second plate members 10 and 20 are to be sealed so as to vacuumize the interior of the vacuum adiabatic body.
  • a conductive resistance sheet 60 is provided to prevent heat conduction between two different kinds of plate members.
  • the conductive resistance sheet 60 may be provided with sealing parts 61 at which both ends of the conductive resistance sheet 60 are sealed to define at least one portion of the wall for the third space and maintain the vacuum state.
  • the conductive resistance sheet 60 may be provided as a thin foil in units of micrometers so as to reduce the amount of heat conducted along the wall for the third space.
  • the sealing parts 61 may be provided as welding parts. That is, the conductive resistance sheet 60 and the plate members 10 and 20 may be fused to each other.
  • the conductive resistance sheet 60 and the plate members 10 and 20 may be made of the same material, and a stainless material may be used as the material.
  • the sealing parts 61 are not limited to the welding parts, and may be provided through a process such as cocking.
  • the conductive resistance sheet 60 may be provided in a curved shape. Thus, a heat conduction distance of the conductive resistance sheet 60 is provided longer than the linear distance of each plate member, so that the amount of heat conduction can be further reduced.
  • a change in temperature occurs along the conductive resistance sheet 60 . Therefore, in order to block heat transfer to the exterior of the conductive resistance sheet 60 , a shielding part (or shield) 62 may be provided at the exterior of the conductive resistance sheet 60 such that an adiabatic action occurs.
  • the second plate member 20 has a high temperature and the first plate member 10 has a low temperature.
  • heat conduction from high temperature to low temperature occurs in the conductive resistance sheet 60 , and hence the temperature of the conductive resistance sheet 60 is suddenly changed. Therefore, when the conductive resistance sheet 60 is opened to the exterior thereof, heat transfer through the opened place may seriously occur.
  • the shielding part 62 is provided at the exterior of the conductive resistance sheet 60 .
  • the conductive resistance sheet 60 when the conductive resistance sheet 60 is exposed to any one of the low-temperature space and the high-temperature space, the conductive resistance sheet 60 does not serve as a conductive resistor as well as the exposed portion thereof, which is not preferable.
  • the shielding part 62 may be provided as a porous material contacting an outer surface of the conductive resistance sheet 60 .
  • the shielding part 62 may be provided as an adiabatic structure, e.g., a separate gasket, which is placed at the exterior of the conductive resistance sheet 60 .
  • the shielding part 62 may be provided as a portion of the vacuum adiabatic body, which is provided at a position facing a corresponding conductive resistance sheet 60 when the main body-side vacuum adiabatic body is closed with respect to the door-side vacuum adiabatic body.
  • the shielding part 62 may be preferably provided as a porous material or a separate adiabatic structure.
  • a conductive resistance sheet proposed in FIG. 4 b may be preferably applied to the door-side vacuum adiabatic body.
  • FIG. 4 b portions different from those of FIG. 4 a are described in detail, and the same description is applied to portions identical to those of FIG. 4 a .
  • a side frame 70 is further provided at an outside of the conductive resistance sheet 60 .
  • a part for sealing between the door and the main body, an exhaust port necessary for an exhaust process, a getter port for vacuum maintenance, and the like may be placed on the side frame 70 . This is because the mounting of parts is convenient in the main body-side vacuum adiabatic body, but the mounting positions of parts are limited in the door-side vacuum adiabatic body.
  • the conductive resistance sheet 60 In the door-side vacuum adiabatic body, it is difficult to place the conductive resistance sheet 60 at a front end portion of the vacuum space part, i.e., a corner side portion of the vacuum space part. This is because, unlike the main body, a corner edge portion of the door is exposed to the exterior. More specifically, if the conductive resistance sheet 60 is placed at the front end portion of the vacuum space part, the corner edge portion of the door is exposed to the exterior, and hence there is a disadvantage in that a separate adiabatic part should be configured so as to heat-insulate the conductive resistance sheet 60 .
  • a conductive resistance sheet proposed in FIG. 4 c may be preferably installed in the pipeline passing through the vacuum space part.
  • FIG. 4 c portions different from those of FIGS. 4 a and 4 b are described in detail, and the same description is applied to portions identical to those of FIGS. 4 a and 4 b .
  • a conductive resistance sheet having the same shape as that of FIG. 4 a preferably, a wrinkled conductive resistance sheet 63 may be provided at a peripheral portion of the pipeline 64 . Accordingly, a heat transfer path can be lengthened, and deformation caused by a pressure difference can be prevented.
  • a separate shielding part may be provided to improve the adiabatic performance of the conductive resistance sheet.
  • Heat passing through the vacuum adiabatic body may be divided into surface conduction heat ⁇ circle around ( 1 ) ⁇ conducted along a surface of the vacuum adiabatic body, more specifically, the conductive resistance sheet 60 , supporter conduction heat ⁇ circle around ( 2 ) ⁇ conducted along the supporting unit 30 provided inside the vacuum adiabatic body, gas conduction heat (or convection) ⁇ circle around ( 3 ) ⁇ conducted through an internal gas in the vacuum space part, and radiation transfer heat ⁇ circle around ( 4 ) ⁇ transferred through the vacuum space part.
  • the transfer heat may be changed depending on various design dimensions.
  • the supporting unit may be changed such that the first and second plate members 10 and 20 can endure a vacuum pressure without being deformed, the vacuum pressure may be changed, the distance between the plate members may be changed, and the length of the conductive resistance sheet may be changed.
  • the transfer heat may be changed depending on a difference in temperature between the spaces (the first and second spaces) respectively provided by the plate members.
  • a preferred configuration of the vacuum adiabatic body has been found by considering that its total heat transfer amount is smaller than that of a typical adiabatic structure formed by foaming polyurethane.
  • an effective heat transfer coefficient may be proposed as 19.6 mW/mK.
  • a heat transfer amount by the gas conduction heat ⁇ circle around ( 3 ) ⁇ can become smallest.
  • the heat transfer amount by the gas conduction heat ⁇ circle around ( 3 ) ⁇ may be controlled to be equal to or smaller than 4% of the total heat transfer amount.
  • a heat transfer amount by solid conduction heat defined as a sum of the surface conduction heat ⁇ circle around ( 1 ) ⁇ and the supporter conduction heat ⁇ circle around ( 2 ) ⁇ is largest.
  • the heat transfer amount by the solid conduction heat may reach 75% of the total heat transfer amount.
  • a heat transfer amount by the radiation transfer heat ⁇ circle around ( 4 ) ⁇ is smaller than the heat transfer amount by the solid conduction heat but larger than the heat transfer amount of the gas conduction heat ⁇ circle around ( 3 ) ⁇ .
  • the heat transfer amount by the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may occupy about 20% of the total heat transfer amount.
  • effective heat transfer coefficients (eK: effective K) (W/mK) of the surface conduction heat ⁇ circle around ( 1 ) ⁇ , the supporter conduction heat ⁇ circle around ( 2 ) ⁇ , the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may have an order of Math FIG. 1.
  • the effective heat transfer coefficient (eK) is a value that can be measured using a shape and temperature differences of a target product.
  • the effective heat transfer coefficient (eK) is a value that can be obtained by measuring a total heat transfer amount and a temperature of at least one portion at which heat is transferred. For example, a calorific value (W) is measured using a heating source that can be quantitatively measured in the refrigerator, a temperature distribution (K) of the door is measured using heats respectively transferred through a main body and an edge of the door of the refrigerator, and a path through which heat is transferred is calculated as a conversion value (m), thereby evaluating an effective heat transfer coefficient.
  • Q denotes a calorific value (W) and may be obtained using a calorific value of a heater.
  • A denotes a sectional area (m 2 ) of the vacuum adiabatic body, L denotes a thickness (m) of the vacuum adiabatic body, and ⁇ T denotes a temperature difference.
  • a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the conductive resistance sheet 60 or 63 , a sectional area (A) of the conductive resistance sheet, a length (L) of the conductive resistance sheet, and a thermal conductivity (k) of the conductive resistance sheet (the thermal conductivity of the conductive resistance sheet is a material property of a material and can be obtained in advance).
  • a conductive calorific value may be obtained through a temperature difference ( ⁇ T) between an entrance and an exit of the supporting unit 30 , a sectional area (A) of the supporting unit, a length (L) of the supporting unit, and a thermal conductivity (k) of the supporting unit.
  • the thermal conductivity of the supporting unit is a material property of a material and can be obtained in advance.
  • the sum of the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may be obtained by subtracting the surface conduction heat and the supporter conduction heat from the heat transfer amount of the entire vacuum adiabatic body.
  • a ratio of the gas conduction heat ⁇ circle around ( 3 ) ⁇ , and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ may be obtained by evaluating radiation transfer heat when no gas conduction heat exists by remarkably lowering a vacuum degree of the vacuum space part 50 .
  • porous material conduction heat ⁇ circle around ( 5 ) ⁇ may be a sum of the supporter conduction heat ⁇ circle around ( 2 ) ⁇ and the radiation transfer heat ⁇ circle around ( 4 ) ⁇ ,
  • the porous material conduction heat ⁇ circle around ( 5 ) ⁇ may be changed depending on various variables including a kind, an amount, and the like of the porous material.
  • a temperature difference ⁇ T 1 between a geometric center formed by adjacent bars 31 and a point at which each of the bars 31 is located may be preferably provided to be less than 0.5° C.
  • a temperature difference ⁇ T 2 between the geometric center formed by the adjacent bars 31 and an edge portion of the vacuum adiabatic body may be preferably provided to be less than 0.5° C.
  • a temperature difference between an average temperature of the second plate and a temperature at a point at which a heat transfer path passing through the conductive resistance sheet 60 or 63 meets the second plate may be largest.
  • the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes lowest.
  • the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes highest.
  • a temperature variation of the conductive resistance sheet may be controlled to be larger than that of the plate member.
  • the plate members 10 and 20 and the side frame 70 may be preferably made of a material having a sufficient strength with which they are not damaged by even vacuum pressure.
  • the radiation resistance sheet 32 may be preferably made of a material that has a low emissivity and can be easily subjected to thin film processing. Also, the radiation resistance sheet 32 is to ensure a strength high enough not to be deformed by an external impact.
  • the supporting unit 30 is provided with a strength high enough to support the force by the vacuum pressure and endure an external impact, and is to have machinability.
  • the conductive resistance sheet 60 may be preferably made of a material that has a thin plate shape and can endure the vacuum pressure.
  • the plate member, the side frame, and the conductive resistance sheet may be made of stainless materials having the same strength.
  • the radiation resistance sheet may be made of aluminum having a weaker strength that the stainless materials.
  • the supporting unit may be made of resin having a weaker strength than the aluminum.
  • the stiffness (N/m) is a property that would not be easily deformed. Although the same material is used, its stiffness may be changed depending on its shape.
  • the conductive resistance sheets 60 or 63 may be made of a material having a predetermined strength, but the stiffness of the material is preferably low so as to increase heat resistance and minimize radiation heat as the conductive resistance sheet is uniformly spread without any roughness when the vacuum pressure is applied.
  • the radiation resistance sheet 32 requires a stiffness of a certain level so as not to contact another part due to deformation. Particularly, an edge portion of the radiation resistance sheet may generate conduction heat due to drooping caused by the self-load of the radiation resistance sheet. Therefore, a stiffness of a certain level is required.
  • the supporting unit 30 requires a stiffness high enough to endure a compressive stress from the plate member and an external impact.
  • the plate member and the side frame may preferably have the highest stiffness so as to prevent deformation caused by the vacuum pressure.
  • the supporting unit, particularly, the bar may preferably have the second highest stiffness.
  • the radiation resistance sheet may preferably have a stiffness that is lower than that of the supporting unit but higher than that of the conductive resistance sheet.
  • the conductive resistance sheet may be preferably made of a material that is easily deformed by the vacuum pressure and has the lowest stiffness. Even when the porous material 33 is filled in the vacuum space part 50 , the conductive resistance sheet may preferably have the lowest stiffness, and the plate member and the side frame may preferably have the highest stiffness.
  • a vacuum pressure preferably determined depending on an internal state of the vacuum adiabatic body will be described.
  • a vacuum pressure is to be maintained inside the vacuum adiabatic body so as to reduce heat transfer.
  • the vacuum pressure is preferably maintained as low as possible so as to reduce the heat transfer.
  • the vacuum space part 50 may resist the heat transfer by applying only the supporting unit 30 .
  • the porous material 33 may be filled together with the supporting unit in the vacuum space part 50 to resist the heat transfer.
  • the vacuum space part may resist the heat transfer not by applying the supporting unit but by applying the porous material 33 .
  • FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
  • a heat load in the case of only the main body (Graph 1 ) or in the case where the main body and the door are joined together (Graph 2 ) is decreased as compared with that in the case of the typical product formed by foaming polyurethane, thereby improving the adiabatic performance.
  • the degree of improvement of the adiabatic performance is gradually lowered.
  • the gas conductivity (Graph 3 ) is decreased.
  • FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when the supporting unit is used.
  • a gas in the vacuum space part 50 is exhausted by a vacuum pump while evaporating a latent gas remaining in the parts of the vacuum space part 50 through baking.
  • the vacuum pressure reaches a certain level or more, there exists a point at which the level of the vacuum pressure is not increased any more ( ⁇ t 1 ).
  • the getter is activated by disconnecting the vacuum space part 50 from the vacuum pump and applying heat to the vacuum space part 50 ( ⁇ t 2 ). If the getter is activated, the pressure in the vacuum space part 50 is decreased for a certain period of time, but then normalized to maintain a vacuum pressure of a certain level.
  • the vacuum pressure that maintains the certain level after the activation of the getter is approximately 1.8 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 6) Torr.
  • a point at which the vacuum pressure is not substantially decreased any more even though the gas is exhausted by operating the vacuum pump is set to the lowest limit of the vacuum pressure used in the vacuum adiabatic body, thereby setting the minimum internal pressure of the vacuum space part 50 to 1.8 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 6) Torr.
  • FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities.
  • gas conductivities with respect to vacuum pressures depending on sizes of a gap in the vacuum space part 50 are represented as graphs of effective heat transfer coefficients (eK).
  • Effective heat transfer coefficients (eK) were measured when the gap in the vacuum space part 50 has three sizes of 2.76 mm, 6.5 mm, and 12.5 mm.
  • the gap in the vacuum space part 50 is defined as follows. When the radiation resistance sheet 32 exists inside vacuum space part 50 , the gap is a distance between the radiation resistance sheet 32 and the plate member adjacent thereto. When the radiation resistance sheet 32 does not exist inside vacuum space part 50 , the gap is a distance between the first and second plate members.
  • the vacuum pressure is 2.65 ⁇ 10 ⁇ circle around ( ) ⁇ ( ⁇ 1) Torr even when the size of the gap is 2.76 mm.
  • the point at which reduction in adiabatic effect caused by gas conduction heat is saturated even though the vacuum pressure is decreased is a point at which the vacuum pressure is approximately 4.5 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) Torr.
  • the vacuum pressure of 4.5 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) Torr can be defined as the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated. Also, when the effective heat transfer coefficient is 0.1 W/mK, the vacuum pressure is 1.2 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 2) Torr.
  • the size of the gap ranges from a few micrometers to a few hundredths of micrometers.
  • the amount of radiation heat transfer is small due to the porous material even when the vacuum pressure is relatively high, i.e., when the vacuum degree is low. Therefore, an appropriate vacuum pump is used to adjust the vacuum pressure.
  • the vacuum pressure appropriate to the corresponding vacuum pump is approximately 2.0 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 4) Torr.
  • the vacuum pressure at the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated is approximately 4.7 ⁇ 10 ⁇ circumflex over ( ) ⁇ ( ⁇ 2) Torr.
  • the pressure where the reduction in adiabatic effect caused by gas conduction heat reaches the typical effective heat transfer coefficient of 0.0196 W/mK is 730 Torr.
  • FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment.
  • FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure.
  • FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
  • the vacuum adiabatic body 100 includes a first plate member 10 , a second plate member 20 , and a supporting unit 30 .
  • the supporting unit 30 is interposed between the first plate member 10 and the second plate member 20 .
  • FIG. 9 is a sectional view taken along line I-I′ of FIG. 8
  • FIG. 9 is a view showing a state in which the vacuum adiabatic body is deformed by internal vacuum pressure.
  • the supporting unit 30 includes a plurality of bars, and the bars may be disposed perpendicular to the first and second plate members 10 and 20 . Accordingly, the bars function to maintain a distance between the first and second plate members 10 and 20 .
  • the plurality of bars may be disposed to be spaced apart from each other.
  • adjacent four bars are disposed to constitute a square unit grid.
  • pitches between the plurality of bars may be formed different from each other.
  • the number of bars constituting one unit grid may be changed.
  • the unit grid is surrounded by the first and second plate members 10 and 20 at both ends thereof, and outer surfaces of the first and second plate members 10 and 20 surrounding the unit grid may be defined as unit grid areas. That is, the unit grid areas refer to surfaces of the plate members 10 and 20 , which are exposed to the exterior.
  • the unit grid area refers to one square area O formed by dotted lines on the surface of the first plate member 10 .
  • spots S at which the plurality of bars are disposed in the unit grid areas is indicated as spots at which dotted lines intersect each other on the surface of the first plate 10 .
  • the plurality of bars support the first and second plate members 10 and 20 under the spots S at which the plurality of bars are disposed.
  • areas except the plurality of bars are disposed in the unit grid areas O are spaces between the first and second plate members 10 .
  • a bending part depressed toward a vacuum space part 50 may be formed at each of the surfaces of the first and second plate members 10 and 20 .
  • the bending part may be formed in a shape in which it is depressed toward the vacuum space part 50 as it is more distant from each of the spots S at which the plurality of bars are disposed. That is, the bending part has the center spot of the unit grid area O as a lowest point, and has each of the spots S at which the plurality of bars are disposed as a highest point.
  • the vacuum adiabatic body is to be designed by considering thicknesses of the plate members 10 and 20 and pitches between the plurality of bars.
  • An angle made by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points that are the spots S at which the plurality of bars are disposed is defined as a bending angle ⁇ of the bending part formed in the unit grid area O.
  • a surface bending angle ⁇ of each of the plate members 10 and 20 is increased, it is highly likely that the user will recognize bending with the naked eye.
  • the surface bending angle ⁇ is determined by a ratio of a surface roughness of each of the plate members 10 and 20 and a pitch P between the plurality of bars.
  • the bending angle ⁇ is defined as a slope of the straight line connecting the highest point and the lowest point to each other, and is mathematically defined.
  • a distance in the horizontal direction between the highest point and the lowest point of the unit grid area O is equal to that from the vertex of the unit grid area O to the center of the unit grid area O. Since the pitch between the plurality of bars is P, the length of one side of the square becomes P.
  • the distance in the horizontal direction between the highest point and the lowest point of the unit grid area O becomes P/ ⁇ 2.
  • a distance in the vertical direction between the highest point and the lowest point on the surface of each of the plate members 10 and 20 is defined as a bending amount ⁇ .
  • a tangent of the straight line connecting the highest point and the lowest point to each other corresponds to a ratio of the bending amount ⁇ with respect to the distance from the vertex of the unit grid area O to the center of the unit grid area O. Since the bending angle ⁇ is very small, the tangent of the straight line may be approximated as the bending angle ⁇ . Therefore, the bending angle ⁇ is represented by a formula as follows.
  • a method for decreasing the pitch P between the plurality of bars and a method for increasing the thickness of each of the first and second plate members 10 and 20 are used to reduce surface bending of each of the first and second plate members 10 and 20 . It is most ideal that the surface bending angle ⁇ of each of the plate members 10 and 20 becomes 0. However, this may excessively increase the weight of the vacuum adiabatic body 100 and manufacturing costs. Meanwhile, there exists a section in which the user does not recognize surface bending even when the surface bending angle ⁇ is not 0 but has a value in a predetermined range.
  • FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of the plate member.
  • the term ‘intermittent recognition’ refers to a case where only a minority of users can recognize bending of the surface. Therefore, a designer is to determine whether a vacuum adiabatic body is designed as a bending recognition impossible area or an intermittent bending recognition area.
  • the vacuum adiabatic body 100 is designed, the surface bending angle of each of the plate members 10 and 20 is formed as small as possible, and simultaneously, the following items are to be considered.
  • each of the plate members 10 and 20 is formed as thin as possible, which is efficient in terms of weight and material cost.
  • the material of the plurality of bars is used as little as possible, which is efficient in terms of material cost, vacuum maintenance time of the vacuum space part, and heat conduction.
  • the diameter of each of the plurality of bars is formed to be 1 mm or more, which is effective in terms of strength against deformation and productivity.
  • a separate panel may be mounted on the outer surface of the second plate member 20 exposed to the exterior of the refrigerator. Accordingly, it is possible to preventing bending of the second plate member 20 from being exposed to the exterior.
  • FIG. 12 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
  • L 1 is a boundary line of a bending recognition impossible area
  • L 2 is a boundary line of an intermittent bending recognition area.
  • an upper side of L 1 corresponds to the bending recognition impossible area
  • an upper side of L 2 between L 1 and L 2 corresponds to the intermittent bending recognition area.
  • the horizontal axis P of the graph represents pitches between the plurality of bars
  • the vertical axis T represents thicknesses of each of the plate members 10 and 20 .
  • the bending angle of the surface bending part of each of the plate members 10 and 20 is equal to or smaller than 1.0*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad has been described as the intermittent bending recognition area.
  • the bending angle of the surface bending part of each of the plate members 10 and 20 is preferably designed to be equal to or smaller than 0.75*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad by considering errors in design and manufacturing.
  • FIG. 13 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body.
  • L 1 is the same as L 1 of FIG. 12 . Therefore, its detailed description will be omitted.
  • limiting conditions for a pitch P between the plurality of bars and a thickness T of each of the plate members 10 and 20 may be set so as to perform a design for satisfying the bending angle of the surface of each of the plate members 10 and 20 and satisfying the weight and thermal conductivity of the vacuum adiabatic body.
  • Curve C 1 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars such that the heat conductivity of the vacuum adiabatic body satisfies 0.002 W/mK. Curve C 1 is approximately vertically disposed.
  • the pitch P between the plurality of bars is to be decreased.
  • P>C 1 is satisfied so as to satisfy an adiabatic performance condition by decreasing the thermal conductivity.
  • Curve C 1 is formed in a shape in which its lower end portion is slightly biased to the left side. This is because, when the thickness of each of the plate members 10 and 20 is thinner than a predetermined value, the thermal conductivity is constantly maintained even when the pitch P is small.
  • Curve C 2 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars, which allow the vacuum adiabatic body to have a constant weight. Curve C 2 is almost horizontally disposed.
  • the thickness T of each of the plate members 10 and 20 is to be increased.
  • T ⁇ C 2 is satisfied so as to satisfy a weight condition of the vacuum adiabatic body.
  • Curve C 2 forms a right upward curve. This is because the weight of the entire vacuum adiabatic body is decreased by decreasing the number of bars as the pitch P is increased, and the thickness T of each of the plate members 10 and 20 is increased as the weight of the entire vacuum adiabatic body is decreased.
  • the thickness T of each of the plate members 10 and 20 and the pitch P between the plurality of bars are to be designed to satisfy three inequalities of T>0.033 ⁇ P+0.067, T ⁇ C 1 , and P>C 2 .
  • the thickness T of each of the plate members 10 and 20 is preferably designed to be equal to or greater than 0.84 mm and equal to or smaller than 0.92 mm, and the pitch P between the plurality of bars is preferably designed to be equal to or greater than 23 mm and equal to or smaller than 25 mm.
  • the thickness T of each of the plate members 10 and 20 is designed to be 0.9 mm, and the pitch P between the plurality of bars is designed to be 23 mm.
  • the bending angle is 0.385*10 ⁇ circumflex over ( ) ⁇ ( ⁇ 3) rad, and the weight and thermal conductivity of the vacuum adiabatic body maintain the existing levels.
  • the vacuum adiabatic body proposed in the present disclosure may be preferably applied to refrigerators.
  • the application of the vacuum adiabatic body is not limited to the refrigerators, and may be applied in various apparatuses such as cryogenic refrigerating apparatuses, heating apparatuses, and ventilation apparatuses.
  • the vacuum adiabatic body can be industrially applied to various adiabatic apparatuses.
  • the adiabatic effect can be enhanced, so that it is possible to improve energy use efficiency and to increase the effective volume of an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Abstract

A vacuum adiabatic body includes a first plate, a second plate, a seal to create a vacuum between the first and second plates, and a support to maintain a distance between the first and second plates. At least one of the first or second plates may have a predetermined thickness. The support includes a plurality of bars or posts interposed between the first and second plates and arranged in a grid having a predetermined pitch. A bending angle may be formed between points corresponding to where the plurality of bars are provided and points corresponding to positions that are furthest away from the bars.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a Continuation of U.S. application Ser. No. 15/749,154, filed on Jan. 31, 2018, which is a U.S. National Stage Application under 35 U.S.C. § 371 of PCT Application No. PCT/KR2016/008505, filed Aug. 2, 2016, which claims priority to Korean Patent Application No. 10-2015-0109627, filed Aug. 3, 2015, whose entire disclosures are hereby incorporated by reference.
U.S. application Ser. No. 15/749,132; Ser. No. 15/749,139; Ser. No. 15/749,136; Ser. No. 15/749,143; Ser. No. 15/749,146; Ser. No. 15/749,156; Ser. No. 15/749,162; Ser. No. 15/749,140; Ser. No. 15/749,142; Ser. No. 15/749,147; Ser. No. 15/749,149; Ser. No. 15/749,179; Ser. No. 15/749,154; Ser. No. 15/749,161, all filed on Jan. 31, 2018, are related and are hereby incorporated by reference in their entirety. Further, one of ordinary skill in the art will recognize that features disclosed in these above-noted applications may be combined in any combination with features disclosed herein.
TECHNICAL FIELD
The present disclosure relates to a vacuum adiabatic body and a refrigerator.
BACKGROUND ART
A vacuum adiabatic body is a product for suppressing heat transfer by vacuumizing the interior of a body thereof. The vacuum adiabatic body can reduce heat transfer by convection and conduction, and hence is applied to heating apparatuses and refrigerating apparatuses. In a typical adiabatic method applied to a refrigerator, although it is differently applied in refrigeration and freezing, a foam urethane adiabatic wall having a thickness of about 30 cm or more is generally provided. However, the internal volume of the refrigerator is therefore reduced. In order to increase the internal volume of a refrigerator, there is an attempt to apply a vacuum adiabatic body to the refrigerator.
First, Korean Patent No. 10-0343719 (Reference Document 1) of the present applicant has been disclosed. According to Reference Document 1, there is disclosed a method in which a vacuum adiabatic panel is prepared and then built in walls of a refrigerator, and the exterior of the vacuum adiabatic panel is finished with a separate molding such as Styrofoam (polystyrene). According to the method, additional foaming is not required, and the adiabatic performance of the refrigerator is improved. However, manufacturing cost is increased, and a manufacturing method is complicated.
As another example, a technique of providing walls using a vacuum adiabatic material and additionally providing adiabatic walls using a foam filling material has been disclosed in Korean Patent Publication No. 10-2015-0012712 (Reference Document 2). According to Reference Document 2, manufacturing cost is increased, and a manufacturing method is complicated.
As another example, there is an attempt to manufacture all walls of a refrigerator using a vacuum adiabatic body that is a single product. For example, a technique of providing an adiabatic structure of a refrigerator to be in a vacuum state has been disclosed in U.S. Patent Laid-Open Publication No. US 2004/0226956 (Reference Document 3).
However, it is difficult to obtain an adiabatic effect of a practical level by providing the walls of the refrigerator to be in a sufficient vacuum state. Specifically, it is difficult to prevent heat transfer at a contact portion between external and internal cases having different temperatures. Further, it is difficult to maintain a stable vacuum state. Furthermore, it is difficult to prevent deformation of the cases due to a sound pressure in the vacuum state. Due to these problems, the technique of Reference Document 3 is limited to cryogenic refrigerating apparatuses, and is not applied to refrigerating apparatuses used in general households.
DISCLOSURE Technical Problem
Embodiments provide a vacuum adiabatic body and a refrigerator, which can obtain a sufficient adiabatic effect in a vacuum state and be applied commercially. Embodiments also provide a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body, and a refrigerator.
Technical Solution
In one embodiment, a vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a bending part that has spots at which the plurality of bars are disposed as highest points and has a spot depressed into the third space at a central portion of the unit grid area as a lowest point is formed in the unit grid area, an angle formed by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points in the unit grid area is defined as a bending angle of the bending part, and a plurality of bending parts are formed by the respective unit grid on the surface of each of the first and second plate members, and a bending angle of at least one of the plurality of bending parts is equal to or greater than 0.25*10{circumflex over ( )}(−3) rad and equal to or smaller than 1.0*10{circumflex over ( )}(−3) rad.
In another embodiment, a vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for a first space; a second plate member defining at least one portion of a wall for a second space having a different temperature from the first space; a sealing part sealing the first plate member and the second plate member to provide a third space that has a temperature between the temperature of the first space and the temperature of the second space and is in a vacuum state; a supporting unit maintaining the third space; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the third space is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a bending part that has spots at which the plurality of bars are disposed as highest points and has a spot depressed into the third space at a central portion of the unit grid area as a lowest point is formed in the unit grid area, an angle formed by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points in the unit grid area is defined as a bending angle of the bending part, and a plurality of bending parts are formed by the respective unit grids on the surface of each of the first and second plate members.
In still another embodiment, a refrigerator includes: a main body provided with an internal space in which storage goods are stored; and a door provided to open/close the main body from an external space, wherein, in order to supply a refrigerant into the main body, the refrigerator includes: a compressor for compressing the refrigerant; a condenser for condensing the compressed refrigerant; an expander for expanding the condensed refrigerant; and an evaporator for evaporating the expanded refrigerant to take heat, wherein at least one of the main body and the door includes a vacuum adiabatic body, wherein the vacuum adiabatic body includes: a first plate member defining at least one portion of a wall for the internal space; a second plate member defining at least one portion of a wall for the external space; a sealing part sealing the first plate member and the second plate member to provide a vacuum space part that has a temperature between a temperature of the internal space and a temperature of the external space and is in a vacuum state; a supporting unit maintaining the vacuum space part; a heat resistance unit for decreasing a heat transfer amount between the first plate member and the second plate member; and an exhaust port through which a gas in the vacuum space part is exhausted, wherein the supporting unit includes a plurality of bars interposed between the first and second plate members, the plurality of bars being disposed in a grid shape to have a predetermined pitch, a plurality of adjacent bars among the plurality of bars constitute a unit grid, and a surface of each of the first and second plate members, which surrounds the unit grid, is defined as a unit grid area, a bending part that has spots at which the plurality of bars are disposed as highest points and has a spot depressed into the vacuum space part at a central portion of the unit grid area as a lowest point is formed in the unit grid area, an angle formed by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points in the unit grid area is defined as a bending angle of the bending part, and a plurality of bending parts are formed by the respective unit grids on the surface of each of the first and second plate members.
Advantageous Effects
According to the present disclosure, it is possible to provide a vacuum adiabatic body having a vacuum adiabatic effect and a refrigerator including the same. Also, it is possible to design a vacuum adiabatic body which enables a user not to recognize surface bending of a plate member, formed by a vacuum pressure inside the vacuum adiabatic body.
DESCRIPTION OF DRAWINGS
FIG. 1 is a perspective view of a refrigerator according to an embodiment.
FIG. 2 is a view schematically showing a vacuum adiabatic body used in a main body and a door of the refrigerator.
FIG. 3 is a view showing various embodiments of an internal configuration of a vacuum space part.
FIG. 4 is a view showing various embodiments of conductive resistance sheets and peripheral parts thereof.
FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation.
FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when a supporting unit is used.
FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities.
FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment.
FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure.
FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of a plate member.
FIG. 12 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
FIG. 13 is a graph showing conditions for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body.
MODE FOR INVENTION
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the disclosure may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the disclosure. To avoid detail not necessary to enable those skilled in the art to practice the disclosure, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense.
In the following description, the term ‘vacuum pressure’ means a certain pressure state lower than atmospheric pressure. In addition, the expression that a vacuum degree of A is higher than that of B means that a vacuum pressure of A is lower than that of B.
FIG. 1 is a perspective view of a refrigerator according to an embodiment. FIG. 2 is a view schematically showing a vacuum adiabatic body used in the main body and the door of the refrigerator. In FIG. 2 , a main body-side vacuum adiabatic body is illustrated in a state in which top and side walls are removed, and a door-side vacuum adiabatic body is illustrated in a state in which a portion of a front wall is removed. In addition, sections of portions at conductive resistance sheets are provided are schematically illustrated for convenience of understanding.
Referring to FIGS. 1 and 2 , the refrigerator 1 includes a main body 2 provided with a cavity 9 capable of storing storage goods and a door 3 provided to open/close the main body 2. The door 3 may be rotatably or movably disposed to open/close the cavity 9. The cavity 9 may provide at least one of a refrigerating chamber and a freezing chamber.
Parts constituting a freezing cycle in which cold air is supplied into the cavity 9 may be included. Specifically, the parts include a compressor 4 for compressing a refrigerant, a condenser 5 for condensing the compressed refrigerant, an expander 6 for expanding the condensed refrigerant, and an evaporator 7 for evaporating the expanded refrigerant to take heat. As a typical structure, a fan may be installed at a position adjacent to the evaporator 7, and a fluid blown from the fan may pass through the evaporator 7 and then be blown into the cavity 9. A freezing load is controlled by adjusting the blowing amount and blowing direction by the fan, adjusting the amount of a circulated refrigerant, or adjusting the compression rate of the compressor, so that it is possible to control a refrigerating space or a freezing space.
The vacuum adiabatic body includes a first plate member (or first plate) 10 for providing a wall of a low-temperature space, a second plate member (or second plate) 20 for providing a wall of a high-temperature space, and a vacuum space part (or vacuum space) 50 defined as a gap part between the first and second plate members 10 and 20. Also, the vacuum adiabatic body includes the conductive resistance sheets 60 and 62 for preventing heat conduction between the first and second plate members 10 and 20.
A sealing part (or seal) 61 for sealing the first and second plate members 10 and 20 is provided such that the vacuum space part 50 is in a sealing state. When the vacuum adiabatic body is applied to a refrigerating or heating cabinet, the first plate member 10 may be referred to as an inner case, and the second plate member 20 may be referred to as an outer case. A machine chamber 8 in which parts providing a freezing cycle are accommodated is placed at a lower rear side of the main body-side vacuum adiabatic body, and an exhaust port 40 for forming a vacuum state by exhausting air in the vacuum space part 50 is provided at any one side of the vacuum adiabatic body. In addition, a pipeline 64 passing through the vacuum space part 50 may be further installed so as to install a defrosting water line and electric lines.
The first plate member 10 may define at least one portion of a wall for a first space provided thereto. The second plate member 20 may define at least one portion of a wall for a second space provided thereto. The first space and the second space may be defined as spaces having different temperatures. Here, the wall for each space may serve as not only a wall directly contacting the space but also a wall not contacting the space. For example, the vacuum adiabatic body of the embodiment may also be applied to a product further having a separate wall contacting each space.
Factors of heat transfer, which cause loss of the adiabatic effect of the vacuum adiabatic body, are heat conduction between the first and second plate members 10 and 20, heat radiation between the first and second plate members 10 and 20, and gas conduction of the vacuum space part 50.
Hereinafter, a heat resistance unit provided to reduce adiabatic loss related to the factors of the heat transfer will be provided. Meanwhile, the vacuum adiabatic body and the refrigerator of the embodiment do not exclude that another adiabatic means is further provided to at least one side of the vacuum adiabatic body. Therefore, an adiabatic means using foaming or the like may be further provided to another side of the vacuum adiabatic body.
FIG. 3 is a view showing various embodiments of an internal configuration of the vacuum space part. First, referring to FIG. 3 a , the vacuum space part 50 is provided in a third space having a different pressure from the first and second spaces, preferably, a vacuum state, thereby reducing adiabatic loss. The third space may be provided at a temperature between the temperature of the first space and the temperature of the second space. Since the third space is provided as a space in the vacuum state, the first and second plate members 10 and 20 receive a force contracting in a direction in which they approach each other due to a force corresponding to a pressure difference between the first and second spaces. Therefore, the vacuum space part 50 may be deformed in a direction in which it is reduced. In this case, adiabatic loss may be caused due to an increase in amount of heat radiation, caused by the contraction of the vacuum space part 50, and an increase in amount of heat conduction, caused by contact between the plate members 10 and 20.
A supporting unit (or support) 30 may be provided to reduce the deformation of the vacuum space part 50. The supporting unit 30 includes bars 31. The bars 31 may extend in a direction substantially vertical to the first and second plate members 10 and 20 so as to support a distance between the first and second plate members 10 and 20. A support plate 35 may be additionally provided to at least one end of the bar 31. The support plate 35 connects at least two bars 31 to each other, and may extend in a direction horizontal to the first and second plate members 10 and 20.
The support plate 35 may be provided in a plate shape, or may be provided in a lattice shape such that its area contacting the first or second plate member 10 or 20 is decreased, thereby reducing heat transfer. The bars 31 and the support plate 35 are fixed to each other at at least one portion, to be inserted together between the first and second plate members 10 and 20. The support plate 35 contacts at least one of the first and second plate members 10 and 20, thereby preventing deformation of the first and second plate members 10 and 20.
In addition, based on the extending direction of the bars 31, a total sectional area of the support plate 35 is provided to be greater than that of the bars 31, so that heat transferred through the bars 31 can be diffused through the support plate 35. A material of the supporting unit 30 may include a resin selected from the group consisting of PC, glass fiber PC, low outgassing PC, PPS, and LCP so as to obtain high compressive strength, low outgassing and water absorptance, low thermal conductivity, high compressive strength at high temperature, and excellent machinability.
A radiation resistance sheet 32 for reducing heat radiation between the first and second plate members 10 and 20 through the vacuum space part 50 will be described. The first and second plate members 10 and 20 may be made of a stainless material capable of preventing corrosion and providing a sufficient strength. The stainless material has a relatively high emissivity of 0.16, and hence a large amount of radiation heat may be transferred.
In addition, the supporting unit 30 made of the resin has a lower emissivity than the plate members, and is not entirely provided to inner surfaces of the first and second plate members 10 and 20. Hence, the supporting unit 30 does not have great influence on radiation heat. Therefore, the radiation resistance sheet 32 may be provided in a plate shape over a majority of the area of the vacuum space part 50 so as to concentrate on reduction of radiation heat transferred between the first and second plate members 10 and 20.
A product having a low emissivity may be preferably used as the material of the radiation resistance sheet 32. In an embodiment, an aluminum foil having an emissivity of 0.02 may be used as the radiation resistance sheet 32. Since the transfer of radiation heat cannot be sufficiently blocked using one radiation resistance sheet, at least two radiation resistance sheets 32 may be provided at a certain distance so as not to contact each other. In addition, at least one radiation resistance sheet may be provided in a state in which it contacts the inner surface of the first or second plate member 10 or 20.
Referring to FIG. 3 b , the distance between the plate members is maintained by the supporting unit 30, and a porous material 33 may be filled in the vacuum space part 50. The porous material 33 may have a higher emissivity than the stainless material of the first and second plate members 10 and 20. However, since the porous material 33 is filled in the vacuum space part 50, the porous material 33 has a high efficiency for resisting the radiation heat transfer. In this embodiment, the vacuum adiabatic body can be manufactured without using the radiation resistance sheet 32.
Referring to FIG. 3 c , the supporting unit 30 maintaining the vacuum space part 50 is not provided. Instead of the supporting unit 30, the porous material 33 is provided in a state in which it is surrounded by a film 34. In this case, the porous material 33 may be provided in a state in which it is compressed so as to maintain the gap of the vacuum space part 50. The film 34 is made of, for example, a PE material, and may be provided in a state in which holes are formed therein.
In this embodiment, the vacuum adiabatic body can be manufactured without using the supporting unit 30. In other words, the porous material 33 can serve together as the radiation resistance sheet 32 and the supporting unit 30.
FIG. 4 is a view showing various embodiments of the conductive resistance sheets and peripheral parts thereof. Structures of the conductive resistance sheets are briefly illustrated in FIG. 2 , but will be understood in detail with reference to FIG. 4 .
First, a conductive resistance sheet proposed in FIG. 4 a may be preferably applied to the main body-side vacuum adiabatic body. Specifically, the first and second plate members 10 and 20 are to be sealed so as to vacuumize the interior of the vacuum adiabatic body. In this case, since the two plate members have different temperatures from each other, heat transfer may occur between the two plate members. A conductive resistance sheet 60 is provided to prevent heat conduction between two different kinds of plate members.
The conductive resistance sheet 60 may be provided with sealing parts 61 at which both ends of the conductive resistance sheet 60 are sealed to define at least one portion of the wall for the third space and maintain the vacuum state. The conductive resistance sheet 60 may be provided as a thin foil in units of micrometers so as to reduce the amount of heat conducted along the wall for the third space. The sealing parts 61 may be provided as welding parts. That is, the conductive resistance sheet 60 and the plate members 10 and 20 may be fused to each other.
In order to cause a fusing action between the conductive resistance sheet 60 and the plate members 10 and 20, the conductive resistance sheet 60 and the plate members 10 and 20 may be made of the same material, and a stainless material may be used as the material. The sealing parts 61 are not limited to the welding parts, and may be provided through a process such as cocking. The conductive resistance sheet 60 may be provided in a curved shape. Thus, a heat conduction distance of the conductive resistance sheet 60 is provided longer than the linear distance of each plate member, so that the amount of heat conduction can be further reduced.
A change in temperature occurs along the conductive resistance sheet 60. Therefore, in order to block heat transfer to the exterior of the conductive resistance sheet 60, a shielding part (or shield) 62 may be provided at the exterior of the conductive resistance sheet 60 such that an adiabatic action occurs. In other words, in the refrigerator, the second plate member 20 has a high temperature and the first plate member 10 has a low temperature. In addition, heat conduction from high temperature to low temperature occurs in the conductive resistance sheet 60, and hence the temperature of the conductive resistance sheet 60 is suddenly changed. Therefore, when the conductive resistance sheet 60 is opened to the exterior thereof, heat transfer through the opened place may seriously occur.
In order to reduce heat loss, the shielding part 62 is provided at the exterior of the conductive resistance sheet 60. For example, when the conductive resistance sheet 60 is exposed to any one of the low-temperature space and the high-temperature space, the conductive resistance sheet 60 does not serve as a conductive resistor as well as the exposed portion thereof, which is not preferable.
The shielding part 62 may be provided as a porous material contacting an outer surface of the conductive resistance sheet 60. The shielding part 62 may be provided as an adiabatic structure, e.g., a separate gasket, which is placed at the exterior of the conductive resistance sheet 60. The shielding part 62 may be provided as a portion of the vacuum adiabatic body, which is provided at a position facing a corresponding conductive resistance sheet 60 when the main body-side vacuum adiabatic body is closed with respect to the door-side vacuum adiabatic body. In order to reduce heat loss even when the main body and the door are opened, the shielding part 62 may be preferably provided as a porous material or a separate adiabatic structure.
A conductive resistance sheet proposed in FIG. 4 b may be preferably applied to the door-side vacuum adiabatic body. In FIG. 4 b , portions different from those of FIG. 4 a are described in detail, and the same description is applied to portions identical to those of FIG. 4 a . A side frame 70 is further provided at an outside of the conductive resistance sheet 60. A part for sealing between the door and the main body, an exhaust port necessary for an exhaust process, a getter port for vacuum maintenance, and the like may be placed on the side frame 70. This is because the mounting of parts is convenient in the main body-side vacuum adiabatic body, but the mounting positions of parts are limited in the door-side vacuum adiabatic body.
In the door-side vacuum adiabatic body, it is difficult to place the conductive resistance sheet 60 at a front end portion of the vacuum space part, i.e., a corner side portion of the vacuum space part. This is because, unlike the main body, a corner edge portion of the door is exposed to the exterior. More specifically, if the conductive resistance sheet 60 is placed at the front end portion of the vacuum space part, the corner edge portion of the door is exposed to the exterior, and hence there is a disadvantage in that a separate adiabatic part should be configured so as to heat-insulate the conductive resistance sheet 60.
A conductive resistance sheet proposed in FIG. 4 c may be preferably installed in the pipeline passing through the vacuum space part. In FIG. 4 c , portions different from those of FIGS. 4 a and 4 b are described in detail, and the same description is applied to portions identical to those of FIGS. 4 a and 4 b . A conductive resistance sheet having the same shape as that of FIG. 4 a , preferably, a wrinkled conductive resistance sheet 63 may be provided at a peripheral portion of the pipeline 64. Accordingly, a heat transfer path can be lengthened, and deformation caused by a pressure difference can be prevented. In addition, a separate shielding part may be provided to improve the adiabatic performance of the conductive resistance sheet.
A heat transfer path between the first and second plate members 10 and 20 will be described with reference back to FIG. 4 a . Heat passing through the vacuum adiabatic body may be divided into surface conduction heat {circle around (1)} conducted along a surface of the vacuum adiabatic body, more specifically, the conductive resistance sheet 60, supporter conduction heat {circle around (2)} conducted along the supporting unit 30 provided inside the vacuum adiabatic body, gas conduction heat (or convection) {circle around (3)} conducted through an internal gas in the vacuum space part, and radiation transfer heat {circle around (4)} transferred through the vacuum space part.
The transfer heat may be changed depending on various design dimensions. For example, the supporting unit may be changed such that the first and second plate members 10 and 20 can endure a vacuum pressure without being deformed, the vacuum pressure may be changed, the distance between the plate members may be changed, and the length of the conductive resistance sheet may be changed. The transfer heat may be changed depending on a difference in temperature between the spaces (the first and second spaces) respectively provided by the plate members. In the embodiment, a preferred configuration of the vacuum adiabatic body has been found by considering that its total heat transfer amount is smaller than that of a typical adiabatic structure formed by foaming polyurethane. In a typical refrigerator including the adiabatic structure formed by foaming the polyurethane, an effective heat transfer coefficient may be proposed as 19.6 mW/mK.
By performing a relative analysis on heat transfer amounts of the vacuum adiabatic body of the embodiment, a heat transfer amount by the gas conduction heat {circle around (3)} can become smallest. For example, the heat transfer amount by the gas conduction heat {circle around (3)} may be controlled to be equal to or smaller than 4% of the total heat transfer amount. A heat transfer amount by solid conduction heat defined as a sum of the surface conduction heat {circle around (1)} and the supporter conduction heat {circle around (2)} is largest. For example, the heat transfer amount by the solid conduction heat may reach 75% of the total heat transfer amount. A heat transfer amount by the radiation transfer heat {circle around (4)} is smaller than the heat transfer amount by the solid conduction heat but larger than the heat transfer amount of the gas conduction heat {circle around (3)}. For example, the heat transfer amount by the radiation transfer heat {circle around (4)} may occupy about 20% of the total heat transfer amount.
According to such a heat transfer distribution, effective heat transfer coefficients (eK: effective K) (W/mK) of the surface conduction heat {circle around (1)}, the supporter conduction heat {circle around (2)}, the gas conduction heat {circle around (3)}, and the radiation transfer heat {circle around (4)} may have an order of Math FIG. 1.
eKsolidconductionheat>eKradiationtransferheat>eKgasconductionheat  [Math Figure 1]
Here, the effective heat transfer coefficient (eK) is a value that can be measured using a shape and temperature differences of a target product. The effective heat transfer coefficient (eK) is a value that can be obtained by measuring a total heat transfer amount and a temperature of at least one portion at which heat is transferred. For example, a calorific value (W) is measured using a heating source that can be quantitatively measured in the refrigerator, a temperature distribution (K) of the door is measured using heats respectively transferred through a main body and an edge of the door of the refrigerator, and a path through which heat is transferred is calculated as a conversion value (m), thereby evaluating an effective heat transfer coefficient.
The effective heat transfer coefficient (eK) of the entire vacuum adiabatic body is a value given by k=QL/AΔT. Here, Q denotes a calorific value (W) and may be obtained using a calorific value of a heater. A denotes a sectional area (m2) of the vacuum adiabatic body, L denotes a thickness (m) of the vacuum adiabatic body, and ΔT denotes a temperature difference.
For the surface conduction heat, a conductive calorific value may be obtained through a temperature difference (ΔT) between an entrance and an exit of the conductive resistance sheet 60 or 63, a sectional area (A) of the conductive resistance sheet, a length (L) of the conductive resistance sheet, and a thermal conductivity (k) of the conductive resistance sheet (the thermal conductivity of the conductive resistance sheet is a material property of a material and can be obtained in advance). For the supporter conduction heat, a conductive calorific value may be obtained through a temperature difference (ΔT) between an entrance and an exit of the supporting unit 30, a sectional area (A) of the supporting unit, a length (L) of the supporting unit, and a thermal conductivity (k) of the supporting unit.
Here, the thermal conductivity of the supporting unit is a material property of a material and can be obtained in advance. The sum of the gas conduction heat {circle around (3)}, and the radiation transfer heat {circle around (4)} may be obtained by subtracting the surface conduction heat and the supporter conduction heat from the heat transfer amount of the entire vacuum adiabatic body. A ratio of the gas conduction heat {circle around (3)}, and the radiation transfer heat {circle around (4)} may be obtained by evaluating radiation transfer heat when no gas conduction heat exists by remarkably lowering a vacuum degree of the vacuum space part 50.
When a porous material is provided inside the vacuum space part 50, porous material conduction heat {circle around (5)} may be a sum of the supporter conduction heat {circle around (2)} and the radiation transfer heat {circle around (4)}, The porous material conduction heat {circle around (5)} may be changed depending on various variables including a kind, an amount, and the like of the porous material.
According to an embodiment, a temperature difference ΔT1 between a geometric center formed by adjacent bars 31 and a point at which each of the bars 31 is located may be preferably provided to be less than 0.5° C. Also, a temperature difference ΔT2 between the geometric center formed by the adjacent bars 31 and an edge portion of the vacuum adiabatic body may be preferably provided to be less than 0.5° C. In the second plate member 20, a temperature difference between an average temperature of the second plate and a temperature at a point at which a heat transfer path passing through the conductive resistance sheet 60 or 63 meets the second plate may be largest.
For example, when the second space is a region hotter than the first space, the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes lowest. Similarly, when the second space is a region colder than the first space, the temperature at the point at which the heat transfer path passing through the conductive resistance sheet meets the second plate member becomes highest.
This means that the amount of heat transferred through other points except the surface conduction heat passing through the conductive resistance sheet should be controlled, and the entire heat transfer amount satisfying the vacuum adiabatic body can be achieved only when the surface conduction heat occupies the largest heat transfer amount. To this end, a temperature variation of the conductive resistance sheet may be controlled to be larger than that of the plate member.
Physical characteristics of the parts constituting the vacuum adiabatic body will be described. In the vacuum adiabatic body, a force by vacuum pressure is applied to all of the parts. Therefore, a material having a strength (N/m2) of a certain level may be preferably used.
Under such circumferences, the plate members 10 and 20 and the side frame 70 may be preferably made of a material having a sufficient strength with which they are not damaged by even vacuum pressure. For example, when the number of bars 31 is decreased so as to limit the support conduction heat, deformation of the plate member occurs due to the vacuum pressure, which may be a bad influence on the external appearance of refrigerator. The radiation resistance sheet 32 may be preferably made of a material that has a low emissivity and can be easily subjected to thin film processing. Also, the radiation resistance sheet 32 is to ensure a strength high enough not to be deformed by an external impact. The supporting unit 30 is provided with a strength high enough to support the force by the vacuum pressure and endure an external impact, and is to have machinability. The conductive resistance sheet 60 may be preferably made of a material that has a thin plate shape and can endure the vacuum pressure.
In an embodiment, the plate member, the side frame, and the conductive resistance sheet may be made of stainless materials having the same strength. The radiation resistance sheet may be made of aluminum having a weaker strength that the stainless materials. The supporting unit may be made of resin having a weaker strength than the aluminum.
Unlike the strength from the point of view of materials, analysis from the point of view of stiffness is required. The stiffness (N/m) is a property that would not be easily deformed. Although the same material is used, its stiffness may be changed depending on its shape. The conductive resistance sheets 60 or 63 may be made of a material having a predetermined strength, but the stiffness of the material is preferably low so as to increase heat resistance and minimize radiation heat as the conductive resistance sheet is uniformly spread without any roughness when the vacuum pressure is applied. The radiation resistance sheet 32 requires a stiffness of a certain level so as not to contact another part due to deformation. Particularly, an edge portion of the radiation resistance sheet may generate conduction heat due to drooping caused by the self-load of the radiation resistance sheet. Therefore, a stiffness of a certain level is required. The supporting unit 30 requires a stiffness high enough to endure a compressive stress from the plate member and an external impact.
In an embodiment, the plate member and the side frame may preferably have the highest stiffness so as to prevent deformation caused by the vacuum pressure. The supporting unit, particularly, the bar may preferably have the second highest stiffness. The radiation resistance sheet may preferably have a stiffness that is lower than that of the supporting unit but higher than that of the conductive resistance sheet.
The conductive resistance sheet may be preferably made of a material that is easily deformed by the vacuum pressure and has the lowest stiffness. Even when the porous material 33 is filled in the vacuum space part 50, the conductive resistance sheet may preferably have the lowest stiffness, and the plate member and the side frame may preferably have the highest stiffness.
Hereinafter, a vacuum pressure preferably determined depending on an internal state of the vacuum adiabatic body will be described. As already described above, a vacuum pressure is to be maintained inside the vacuum adiabatic body so as to reduce heat transfer. At this time, it will be easily expected that the vacuum pressure is preferably maintained as low as possible so as to reduce the heat transfer.
The vacuum space part 50 may resist the heat transfer by applying only the supporting unit 30. Alternatively, the porous material 33 may be filled together with the supporting unit in the vacuum space part 50 to resist the heat transfer. Alternatively, the vacuum space part may resist the heat transfer not by applying the supporting unit but by applying the porous material 33.
The case where only the supporting unit is applied will be described. FIG. 5 illustrates graphs showing changes in adiabatic performance and changes in gas conductivity with respect to vacuum pressures by applying a simulation. Referring to FIG. 5 , it can be seen that, as the vacuum pressure is decreased, i.e., as the vacuum degree is increased, a heat load in the case of only the main body (Graph 1) or in the case where the main body and the door are joined together (Graph 2) is decreased as compared with that in the case of the typical product formed by foaming polyurethane, thereby improving the adiabatic performance. However, it can be seen that the degree of improvement of the adiabatic performance is gradually lowered. Also, it can be seen that, as the vacuum pressure is decreased, the gas conductivity (Graph 3) is decreased.
However, it can be seen that, although the vacuum pressure is decreased, the ratio at which the adiabatic performance and the gas conductivity are improved is gradually lowered. Therefore, it is preferable that the vacuum pressure is decreased as low as possible. However, it takes long time to obtain excessive vacuum pressure, and much cost is consumed due to excessive use of a getter. In the embodiment, an optimal vacuum pressure is proposed from the above-described point of view.
FIG. 6 illustrates graphs obtained by observing, over time and pressure, a process of exhausting the interior of the vacuum adiabatic body when the supporting unit is used. Referring to FIG. 6 , in order to create the vacuum space part 50 to be in the vacuum state, a gas in the vacuum space part 50 is exhausted by a vacuum pump while evaporating a latent gas remaining in the parts of the vacuum space part 50 through baking. However, if the vacuum pressure reaches a certain level or more, there exists a point at which the level of the vacuum pressure is not increased any more (Δt1).
After that, the getter is activated by disconnecting the vacuum space part 50 from the vacuum pump and applying heat to the vacuum space part 50 (Δt2). If the getter is activated, the pressure in the vacuum space part 50 is decreased for a certain period of time, but then normalized to maintain a vacuum pressure of a certain level. The vacuum pressure that maintains the certain level after the activation of the getter is approximately 1.8×10{circumflex over ( )}(−6) Torr. In the embodiment, a point at which the vacuum pressure is not substantially decreased any more even though the gas is exhausted by operating the vacuum pump is set to the lowest limit of the vacuum pressure used in the vacuum adiabatic body, thereby setting the minimum internal pressure of the vacuum space part 50 to 1.8×10{circumflex over ( )}(−6) Torr.
FIG. 7 illustrates graphs obtained by comparing vacuum pressures and gas conductivities. Referring to FIG. 7 , gas conductivities with respect to vacuum pressures depending on sizes of a gap in the vacuum space part 50 are represented as graphs of effective heat transfer coefficients (eK). Effective heat transfer coefficients (eK) were measured when the gap in the vacuum space part 50 has three sizes of 2.76 mm, 6.5 mm, and 12.5 mm.
The gap in the vacuum space part 50 is defined as follows. When the radiation resistance sheet 32 exists inside vacuum space part 50, the gap is a distance between the radiation resistance sheet 32 and the plate member adjacent thereto. When the radiation resistance sheet 32 does not exist inside vacuum space part 50, the gap is a distance between the first and second plate members.
It can be seen that, since the size of the gap is small at a point corresponding to a typical effective heat transfer coefficient of 0.0196 W/mK, which is provided to an adiabatic material formed by foaming polyurethane, the vacuum pressure is 2.65×10{circle around ( )}(−1) Torr even when the size of the gap is 2.76 mm. Meanwhile, it can be seen that the point at which reduction in adiabatic effect caused by gas conduction heat is saturated even though the vacuum pressure is decreased is a point at which the vacuum pressure is approximately 4.5×10{circumflex over ( )}(−3) Torr. The vacuum pressure of 4.5×10{circumflex over ( )}(−3) Torr can be defined as the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated. Also, when the effective heat transfer coefficient is 0.1 W/mK, the vacuum pressure is 1.2×10{circumflex over ( )}(−2) Torr.
When the vacuum space part 50 is not provided with the supporting unit but provided with the porous material, the size of the gap ranges from a few micrometers to a few hundredths of micrometers. In this case, the amount of radiation heat transfer is small due to the porous material even when the vacuum pressure is relatively high, i.e., when the vacuum degree is low. Therefore, an appropriate vacuum pump is used to adjust the vacuum pressure. The vacuum pressure appropriate to the corresponding vacuum pump is approximately 2.0×10{circumflex over ( )}(−4) Torr.
Also, the vacuum pressure at the point at which the reduction in adiabatic effect caused by gas conduction heat is saturated is approximately 4.7×10{circumflex over ( )}(−2) Torr. Also, the pressure where the reduction in adiabatic effect caused by gas conduction heat reaches the typical effective heat transfer coefficient of 0.0196 W/mK is 730 Torr. When the supporting unit and the porous material are provided together in the vacuum space part, a vacuum pressure may be created and used, which is middle between the vacuum pressure when only the supporting unit is used and the vacuum pressure when only the porous material is used.
FIG. 8 is a view showing a vacuum adiabatic body according to an embodiment. FIG. 9 is a view showing a state in which the vacuum adiabatic body of FIG. 8 is deformed by vacuum pressure. FIG. 10 is a graph showing surface roughnesses of the vacuum adiabatic body of FIG. 9 .
Referring to FIGS. 8 to 10 , the vacuum adiabatic body 100 according to the embodiment includes a first plate member 10, a second plate member 20, and a supporting unit 30. The supporting unit 30 is interposed between the first plate member 10 and the second plate member 20.
(a) of FIG. 9 is a sectional view taken along line I-I′ of FIG. 8 , and (b) of FIG. 9 is a view showing a state in which the vacuum adiabatic body is deformed by internal vacuum pressure. The supporting unit 30 includes a plurality of bars, and the bars may be disposed perpendicular to the first and second plate members 10 and 20. Accordingly, the bars function to maintain a distance between the first and second plate members 10 and 20.
The plurality of bars may be disposed to be spaced apart from each other. In FIG. 8 , adjacent four bars are disposed to constitute a square unit grid. However, the present disclosure is not limited to such a configuration, and pitches between the plurality of bars may be formed different from each other. The number of bars constituting one unit grid may be changed.
The unit grid is surrounded by the first and second plate members 10 and 20 at both ends thereof, and outer surfaces of the first and second plate members 10 and 20 surrounding the unit grid may be defined as unit grid areas. That is, the unit grid areas refer to surfaces of the plate members 10 and 20, which are exposed to the exterior.
In FIG. 8 , the unit grid area refers to one square area O formed by dotted lines on the surface of the first plate member 10. As shown in FIG. 8 , spots S at which the plurality of bars are disposed in the unit grid areas is indicated as spots at which dotted lines intersect each other on the surface of the first plate 10.
The plurality of bars support the first and second plate members 10 and 20 under the spots S at which the plurality of bars are disposed. In addition, areas except the plurality of bars are disposed in the unit grid areas O are spaces between the first and second plate members 10.
Since vacuum pressure is formed inside the vacuum adiabatic body 100, a bending part depressed toward a vacuum space part 50 may be formed at each of the surfaces of the first and second plate members 10 and 20. The bending part may be formed in a shape in which it is depressed toward the vacuum space part 50 as it is more distant from each of the spots S at which the plurality of bars are disposed. That is, the bending part has the center spot of the unit grid area O as a lowest point, and has each of the spots S at which the plurality of bars are disposed as a highest point.
If a user recognizes the bending, the user may determine the bending as a product defect. Therefore, the vacuum adiabatic body is to be designed by considering thicknesses of the plate members 10 and 20 and pitches between the plurality of bars.
An angle made by a straight line connecting the highest point and the lowest point to each other with respect to a plane formed by the highest points that are the spots S at which the plurality of bars are disposed is defined as a bending angle θ of the bending part formed in the unit grid area O. As a surface bending angle θ of each of the plate members 10 and 20 is increased, it is highly likely that the user will recognize bending with the naked eye. Here, the surface bending angle θ is determined by a ratio of a surface roughness of each of the plate members 10 and 20 and a pitch P between the plurality of bars.
Hereinafter, the bending angle θ is defined as a slope of the straight line connecting the highest point and the lowest point to each other, and is mathematically defined. A distance in the horizontal direction between the highest point and the lowest point of the unit grid area O is equal to that from the vertex of the unit grid area O to the center of the unit grid area O. Since the pitch between the plurality of bars is P, the length of one side of the square becomes P.
Therefore, the distance in the horizontal direction between the highest point and the lowest point of the unit grid area O becomes P/√2. In addition, a distance in the vertical direction between the highest point and the lowest point on the surface of each of the plate members 10 and 20 is defined as a bending amount δ.
A tangent of the straight line connecting the highest point and the lowest point to each other corresponds to a ratio of the bending amount δ with respect to the distance from the vertex of the unit grid area O to the center of the unit grid area O. Since the bending angle θ is very small, the tangent of the straight line may be approximated as the bending angle θ. Therefore, the bending angle θ is represented by a formula as follows.
θ = 2 δ P [ Math Figure 2 ]
Meanwhile, a method for decreasing the pitch P between the plurality of bars and a method for increasing the thickness of each of the first and second plate members 10 and 20 are used to reduce surface bending of each of the first and second plate members 10 and 20. It is most ideal that the surface bending angle θ of each of the plate members 10 and 20 becomes 0. However, this may excessively increase the weight of the vacuum adiabatic body 100 and manufacturing costs. Meanwhile, there exists a section in which the user does not recognize surface bending even when the surface bending angle θ is not 0 but has a value in a predetermined range.
Hereinafter, a range in which the user does not recognize the surface bending of the plate members 10 and 20 will be described. FIG. 11 is a graph showing recognizable areas with respect to sizes of surface bending angles of the plate member.
Referring to FIG. 11 , when the surface bending angle of each of the plate members 10 and 20 is equal to or smaller than 0.5*10{circumflex over ( )}(−3) rad, the user does not recognize bending of the surface. Also, when the surface bending angle of each of the plate members 10 and 20 is equal to or greater than 0.5*10{circumflex over ( )}(−3) rad and equal to or smaller than 1.0*10{circumflex over ( )}(−3) rad, the user intermittently recognizes bending of the surface. Also, when the surface bending angle of each of the plate members 10 and 20 is equal to or greater than 1.0*10{circumflex over ( )}(−3) rad, the user can recognize bending of the surface.
The term ‘intermittent recognition’ refers to a case where only a minority of users can recognize bending of the surface. Therefore, a designer is to determine whether a vacuum adiabatic body is designed as a bending recognition impossible area or an intermittent bending recognition area. When the vacuum adiabatic body 100 is designed, the surface bending angle of each of the plate members 10 and 20 is formed as small as possible, and simultaneously, the following items are to be considered.
First, the thickness of each of the plate members 10 and 20 is formed as thin as possible, which is efficient in terms of weight and material cost. The material of the plurality of bars is used as little as possible, which is efficient in terms of material cost, vacuum maintenance time of the vacuum space part, and heat conduction. In addition, the diameter of each of the plurality of bars is formed to be 1 mm or more, which is effective in terms of strength against deformation and productivity.
However, when the vacuum adiabatic body 100 is used as an adiabatic material constituting the refrigerator, a separate panel may be mounted on the outer surface of the second plate member 20 exposed to the exterior of the refrigerator. Accordingly, it is possible to preventing bending of the second plate member 20 from being exposed to the exterior.
Hereinafter, a condition for designing a range of pitch P between the plurality of bars and a range of thicknesses of each of the plate members 10 and 20, which allow the user not to recognize surface bending and satisfy a weight condition, will be described. FIG. 12 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, where the plate member has a predetermined range of bending angles.
Referring to FIG. 12 , in the graph, L1 is a boundary line of a bending recognition impossible area, and L2 is a boundary line of an intermittent bending recognition area. Specifically, an upper side of L1 corresponds to the bending recognition impossible area, and an upper side of L2 between L1 and L2 corresponds to the intermittent bending recognition area.
The horizontal axis P of the graph represents pitches between the plurality of bars, and the vertical axis T represents thicknesses of each of the plate members 10 and 20. L1 has a formula of T=0.033×P+0.067. If T and P are designed so as to satisfy T>0.033×P+0.067, the bending angle of the surface bending part of each of the plate members 10 and 20 is designed to be equal to or smaller than 0.5*10{circumflex over ( )}(−3) rad. In this case, the user does not recognize surface bending of each of the plate members 10 and 20.
L2 has a formula of T=0.033×P. If T and P are designed so as to satisfy T>0.033×P, the bending angle of the surface bending part of each of the plate members 10 and 20 is designed to be equal to or smaller than 0.75*10{circumflex over ( )}(−3) rad. In this case, the user can intermittently recognize surface bending of each of the plate members 10 and 20.
In FIG. 11 , the case where the bending angle of the surface bending part of each of the plate members 10 and 20 is equal to or smaller than 1.0*10{circumflex over ( )}(−3) rad has been described as the intermittent bending recognition area. However, the bending angle of the surface bending part of each of the plate members 10 and 20 is preferably designed to be equal to or smaller than 0.75*10{circumflex over ( )}(−3) rad by considering errors in design and manufacturing.
FIG. 13 is a graph showing a condition for thicknesses of the plate member and pitches between the plurality of bars, which satisfy the bending angle of the plate member and the weight and adiabatic performance of the vacuum adiabatic body. Referring to FIG. 13 , L1 is the same as L1 of FIG. 12 . Therefore, its detailed description will be omitted. In the graph, limiting conditions for a pitch P between the plurality of bars and a thickness T of each of the plate members 10 and 20 may be set so as to perform a design for satisfying the bending angle of the surface of each of the plate members 10 and 20 and satisfying the weight and thermal conductivity of the vacuum adiabatic body.
Curve C1 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars such that the heat conductivity of the vacuum adiabatic body satisfies 0.002 W/mK. Curve C1 is approximately vertically disposed.
In order to decrease the surface bending angle of each of the plate members 10 and 20, the pitch P between the plurality of bars is to be decreased. However, it is preferably designed that P>C1 is satisfied so as to satisfy an adiabatic performance condition by decreasing the thermal conductivity.
Meanwhile, Curve C1 is formed in a shape in which its lower end portion is slightly biased to the left side. This is because, when the thickness of each of the plate members 10 and 20 is thinner than a predetermined value, the thermal conductivity is constantly maintained even when the pitch P is small.
Curve C2 represents thicknesses T of each of the plate members 10 and 20 and pitches P between the plurality of bars, which allow the vacuum adiabatic body to have a constant weight. Curve C2 is almost horizontally disposed.
In order to decrease the surface bending angle of each of the plate members 10 and 20, the thickness T of each of the plate members 10 and 20 is to be increased. However, it is preferably designed that T<C2 is satisfied so as to satisfy a weight condition of the vacuum adiabatic body.
Meanwhile, Curve C2 forms a right upward curve. This is because the weight of the entire vacuum adiabatic body is decreased by decreasing the number of bars as the pitch P is increased, and the thickness T of each of the plate members 10 and 20 is increased as the weight of the entire vacuum adiabatic body is decreased.
Therefore, the thickness T of each of the plate members 10 and 20 and the pitch P between the plurality of bars are to be designed to satisfy three inequalities of T>0.033×P+0.067, T<C1, and P>C2. This means an area forming an inverted triangle in the graph.
Consequentially, the thickness T of each of the plate members 10 and 20 is preferably designed to be equal to or greater than 0.84 mm and equal to or smaller than 0.92 mm, and the pitch P between the plurality of bars is preferably designed to be equal to or greater than 23 mm and equal to or smaller than 25 mm. Particularly, it is ideal that the thickness T of each of the plate members 10 and 20 is designed to be 0.9 mm, and the pitch P between the plurality of bars is designed to be 23 mm. In this case, the bending angle is 0.385*10{circumflex over ( )}(−3) rad, and the weight and thermal conductivity of the vacuum adiabatic body maintain the existing levels.
The vacuum adiabatic body proposed in the present disclosure may be preferably applied to refrigerators. However, the application of the vacuum adiabatic body is not limited to the refrigerators, and may be applied in various apparatuses such as cryogenic refrigerating apparatuses, heating apparatuses, and ventilation apparatuses.
According to the present disclosure, the vacuum adiabatic body can be industrially applied to various adiabatic apparatuses. The adiabatic effect can be enhanced, so that it is possible to improve energy use efficiency and to increase the effective volume of an apparatus.

Claims (20)

What is claimed is:
1. A vacuum adiabatic body comprising:
a first plate having a predetermined thickness;
a second plate having the predetermined thickness; and
a seal that seals a space between the first plate and the second plate to form a vacuum state;
a plurality of posts extending between the first plate and the second plate, the plurality of posts being arranged in a grid having a predetermined pitch, wherein:
a distance between the first and second plates is greatest at a position corresponding to a position of one of the plurality of posts, and the distance between the first and second plates is smallest at a position that is furthest away from any one of the plurality of posts, and
when the predetermined thickness is T and the predetermined pitch is P, an inequality of T>0.033×P+0.067 is satisfied.
2. The vacuum adiabatic body according to claim 1, wherein, when the predetermined thickness is T, and the predetermined pitch is P, an inequality of T>0.032 ×P is satisfied.
3. The vacuum adiabatic body according to claim 1, wherein a vacuum degree of the space is equal to or greater than 1.8×10−6 Torr and equal to or smaller than 2.65×10−1 Torr.
4. The vacuum adiabatic body according to claim 3 wherein the vacuum degree of the space is equal to or greater than 4.5×10{circumflex over ( )}−3 Torr and equal to or smaller than 1.2×10{circumflex over ( )}−2 Torr.
5. The vacuum adiabatic body according to claim 3, wherein the vacuum degree of the space is equal to or greater than 2.0×10{circumflex over ( )}−4 Torr and equal to or smaller than 4 7×10−2 Torr.
6. The vacuum adiabatic body according to claim 1, wherein there is a predetermined proportion between the predetermined thickness and the predetermined pitch.
7. The vacuum adiabatic body according to claim 1, wherein the plurality of posts are part of a support, and the support is configured such that a solid conduction heat transfer between the first and second plates is greater than a radiation heat transfer between the first and second plates, and a gas conduction heat transfer between the first and second plates is less than the radiation heat transfer.
8. The vacuum adiabatic body according to claim 1, wherein:
the first plate is configured to be exposed to a first space having a first temperature, the first space being an external space and the first temperature being an ambient temperature of the external space;
the second plate is configured to be exposed to a second space, the second space being configured to be cooled to a second temperature lower than the first temperature; and
the space between the first and second plates is configured to have a third temperature when:
the first plate is exposed to the first space,
the second plate is exposed to the second space and the second space is cooled to the second temperature, and
the space between the first and second plates is sealed by the seal.
9. The vacuum adiabatic body according to claim 1, wherein a diameter of the post is equal to or greater than 1 mm.
10. A refrigerator including the vacuum adiabatic body of claim 8, wherein the second plate forms at least a portion of a wall defining an inside of the refrigerator such that the second space is the inside of the refrigerator, and the second temperature is a temperature configured to preserve food.
11. A vacuum adiabatic body, comprising:
a first plate having a first thickness;
a second plate having the first thickness;
a seal that seals a space between the first plate and the second plate to form a vacuum state; and
a support having a plurality of posts extending between the first and second plates and arranged in a grid having a predetermined pitch, wherein:
a distance between the first and second plates is greatest at a position corresponding to a position of one of the plurality of posts, and the distance between the first and second plates is smallest at a position that is furthest away from any one of the plurality of posts,
the support is configured such that a solid conduction heat transfer between the first and second plates is greater than a radiation heat transfer between the first and second plates, and a gas conduction heat transfer between the first and second plates is less than the radiation heat transfer, and
the predetermined pitch has a value greater than a value required for a heat conductivity of the space to be 0.002 W/mK regardless of a value of the first thickness to vary.
12. The vacuum adiabatic body according to claim 11, wherein a vacuum degree of the space is equal to or greater than 1.8×10−6 Torr and equal to or smaller than 2 65×10−1 Torr.
13. The vacuum adiabatic body according to claim 11, wherein:
the predetermined pitch has a value greater than a value required for a weight of the vacuum adiabatic body to be 6.4 kg regardless of a value of the first thickness to vary.
14. The vacuum adiabatic body of claim 11, wherein
the predetermined pitch is greater than or equal to 23 millimeters (mm) and less than or equal to 25 millimeters (mm).
15. The vacuum adiabatic body according to claim 11, wherein:
the first thickness of the first plate is a predetermined thickness T; and
when the predetermined pitch is P and the predetermined thickness is T, an inequality of T>0.033×P+0.067 is satisfied.
16. The vacuum adiabatic body according to claim 11, wherein:
the second plate is configured to be exposed to an external space having an ambient temperature;
the second plate has a first area corresponding to the grid of the posts; and
a geometric center of the first area has a first temperature, which is configured to be a lowest temperature of the second plate.
17. The vacuum adiabatic body according to claim 16, wherein a temperature difference between the first temperature and a temperature at a position of the second plate corresponding to a location of one of the plurality of posts is configured to be less than 0.5° C.
18. The vacuum adiabatic body according to claim 11, wherein the support is made of a material which has a lower emissivity than that of the first and second plates.
19. The vacuum adiabatic body according to claim 11, wherein the stiffness of the first and the second plates is bigger than the support.
20. A vacuum adiabatic body comprising:
a first plate;
a second plate;
a seal that seals a space between the first plate and the second plate to form a vacuum state; and
a plurality of posts extending between the first and second plates and arranged in a grid, wherein:
a distance between the first and second plates is greatest at a first position corresponding to a position of one of the plurality of posts, and the distance between the first and second plates is smallest at a second position that is furthest away from any one of the plurality of posts, and
a bending angle is equal to or greater than 0.25×10−3 radians (rad) and less than or equal to 1.0×10−3 rad, the bending angle being defined between:
a straight line connecting the first and second positions, and
a plane formed by a plurality of first positions.
US17/155,430 2015-08-03 2021-01-22 Vacuum adiabatic body and refrigerator Active US11927386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/155,430 US11927386B2 (en) 2015-08-03 2021-01-22 Vacuum adiabatic body and refrigerator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020150109627A KR102498210B1 (en) 2015-08-03 2015-08-03 Vacuum adiabatic body and refrigerator
KR10-2015-0109627 2015-08-03
PCT/KR2016/008505 WO2017023089A1 (en) 2015-08-03 2016-08-02 Vacuum adiabatic body and refrigerator
US201815749154A 2018-01-31 2018-01-31
US17/155,430 US11927386B2 (en) 2015-08-03 2021-01-22 Vacuum adiabatic body and refrigerator

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/008505 Continuation WO2017023089A1 (en) 2015-08-03 2016-08-02 Vacuum adiabatic body and refrigerator
US15/749,154 Continuation US10928119B2 (en) 2015-08-03 2016-08-02 Vacuum adiabatic body and refrigerator

Publications (2)

Publication Number Publication Date
US20210140705A1 US20210140705A1 (en) 2021-05-13
US11927386B2 true US11927386B2 (en) 2024-03-12

Family

ID=57943468

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/749,154 Active 2037-08-19 US10928119B2 (en) 2015-08-03 2016-08-02 Vacuum adiabatic body and refrigerator
US17/155,430 Active US11927386B2 (en) 2015-08-03 2021-01-22 Vacuum adiabatic body and refrigerator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/749,154 Active 2037-08-19 US10928119B2 (en) 2015-08-03 2016-08-02 Vacuum adiabatic body and refrigerator

Country Status (5)

Country Link
US (2) US10928119B2 (en)
EP (1) EP3332191B1 (en)
KR (2) KR102498210B1 (en)
CN (5) CN111238143B (en)
WO (1) WO2017023089A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459784B1 (en) 2017-08-01 2022-10-28 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102427466B1 (en) 2017-08-01 2022-08-01 엘지전자 주식회사 Vehicle, refrigerater for vehicle, and controlling method for refrigerator for vehicle
KR102529116B1 (en) 2017-08-01 2023-05-08 엘지전자 주식회사 Vacuum adiabatic body, fabrication method for the vacuum adibatic body, and refrigerating or warming apparatus insulated by the vacuum adiabatic body
KR102449175B1 (en) 2017-08-01 2022-09-29 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102449177B1 (en) 2017-08-01 2022-09-29 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102459786B1 (en) 2017-08-16 2022-10-28 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102609014B1 (en) 2018-06-27 2023-12-04 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR20200072257A (en) * 2018-12-12 2020-06-22 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
CN113074509B (en) * 2020-01-06 2024-07-12 青岛海尔电冰箱有限公司 Vacuum heat insulator and refrigerator
KR20220059365A (en) * 2020-11-02 2022-05-10 엘지전자 주식회사 Vacuum adiabatic body

Citations (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413169A (en) 1919-07-25 1922-04-18 Charles B Lawton Insulating construction
US1588707A (en) 1924-07-23 1926-06-15 Csiga Alexander Vacuum ice chest
US1845353A (en) 1928-12-14 1932-02-16 Virgil K Snell Heat-insulating construction
US2000882A (en) 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US2708774A (en) 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2715976A (en) 1952-04-28 1955-08-23 Motor Products Corp Breaker strip assembly
US2729863A (en) 1952-12-11 1956-01-10 Gen Electric Insulated cabinet
US2768046A (en) 1952-07-09 1956-10-23 Gen Electric Insulating structures
DE956899C (en) 1952-10-28 1957-01-24 Gen Electric Heat isolator
US2786241A (en) 1954-06-02 1957-03-26 Whirlpool Seeger Corp Refrigerator door and gasket seal
GB890372A (en) 1959-01-27 1962-02-28 Union Carbide Corp Vacuum panel insulation
US3091946A (en) 1958-03-27 1963-06-04 Gen Motors Corp Cabinet and process for making same
US3161265A (en) 1959-01-27 1964-12-15 Union Carbide Corp Vacuum panel insulation
US3289423A (en) 1965-11-30 1966-12-06 Union Carbide Corp Load support means for thermally insulated containers
US3370740A (en) 1965-07-28 1968-02-27 James H. Anderson Vacuum jacketed joint construction
US4056211A (en) 1976-08-30 1977-11-01 Rockwell International Corporation Support and retention liner gasket
DE2802910A1 (en) 1977-02-03 1978-08-10 Alain Balleyguier COMPOSED THERMALLY INSULATING MATERIAL AND THEIR APPLICATION FOR THE PRODUCTION OF A GAS CONTAINER
DE2939878A1 (en) 1979-10-02 1981-04-16 Friedrich 5600 Wuppertal Hensberg Thermal insulation wall panels - has vacuum sections with insulated supports and radiation shields
DE3121351A1 (en) 1981-05-29 1982-12-16 Genbee Osaka Kawaguchi Spacer for a vacuum insulating device
EP0071090A1 (en) 1981-07-16 1983-02-09 INDESIT INDUSTRIA ELETTRODOMESTICI ITALIANA S.p.A. Thermal insulating system for refrigerating apparatus and relative realization process
US4646934A (en) 1986-01-21 1987-03-03 Mcallister Ian R Vacuum insulated shipping container and method
US4822117A (en) 1987-06-12 1989-04-18 General Electric Company Refrigerator case/liner interface and related components for automated assembly
US4959111A (en) 1986-08-19 1990-09-25 Whirlpool Corporation Heavy gas-filled multilayer insulation panels and method of manufacture thereof
US5011729A (en) 1989-11-15 1991-04-30 Mcallister Ian R Vacuum insulated panels with concave surfaces on the surface layers
US5018328A (en) 1989-12-18 1991-05-28 Whirlpool Corporation Multi-compartment vacuum insulation panels
US5033803A (en) 1988-07-12 1991-07-23 Sanden Corporation Display case
DE9204365U1 (en) 1992-03-31 1992-07-02 Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen Wall element and/or door with low thermal transmittance
JPH04341694A (en) 1991-05-20 1992-11-27 Kubota Corp Structure of vacuum heat insulation box body
JPH0510494A (en) 1991-07-03 1993-01-19 Kubota Corp End portion structure of vacuum insulation box
US5185981A (en) 1989-11-20 1993-02-16 Perfil En Frio, S.A. Abutment of insulating panels
US5200015A (en) 1990-05-18 1993-04-06 Messerschmitt-Bolkow-Blohm Gmbh Joining process for vacuum heat insulating elements
WO1993025843A1 (en) 1992-06-08 1993-12-23 Saes Getters S.P.A. Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device
US5361598A (en) 1992-09-10 1994-11-08 Electrolux Research & Innovation Aktiebolag Refrigerator or freezer walls
EP0658716A1 (en) 1993-12-16 1995-06-21 AEG Hausgeräte GmbH Element for thermal insulation
EP0658733A1 (en) 1993-12-16 1995-06-21 AEG Hausgeräte GmbH Wall element
JPH07234067A (en) 1994-02-21 1995-09-05 Hitachi Ltd Vacuum thermal insulation door for refrigerator and the like
US5512345A (en) 1994-03-28 1996-04-30 Kabushiki Kaisha Toshiba Vacuum insulator casing and method of making vacuum insulator panel
US5532034A (en) 1994-12-06 1996-07-02 Whirlpool Corporation Getter system for vacuum insulation panel
JPH09145241A (en) 1995-11-20 1997-06-06 Mitsubishi Chem Corp Vacuum heat-insulating material
US5694789A (en) 1996-01-16 1997-12-09 Lg Electronics Inc. Cam operated door seal for refrigerator
US5795639A (en) 1995-03-16 1998-08-18 Owens Fiberglas Technology, Inc. Vacuum insulation panel having blended wool filler and method for manufacturing
CN1191959A (en) 1997-02-27 1998-09-02 三菱电机株式会社 Vacuum heat-insulating panel and method for producing the same, and refrigerator using the same
NL1005962C1 (en) 1997-05-02 1998-11-03 Rudolf Wolfgang Van Der Pol Vacuum insulation panel
US5843353A (en) 1995-04-13 1998-12-01 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
EP0892120A2 (en) 1997-06-25 1999-01-20 UVT GmbH Vacuum insulation panel
DE19745825A1 (en) 1997-10-16 1999-04-22 Bosch Siemens Hausgeraete Thermally insulated cavity-walled case for e.g. Refrigerator
DE19803908A1 (en) 1998-02-02 1999-08-05 Thyssen Vakuum Isolationstechn Evacuated thermal insulation panel with thermally insulated edges
JPH11211334A (en) 1998-01-30 1999-08-06 Hoshizaki Electric Co Ltd Refrigerated display case
US5947479A (en) 1995-03-31 1999-09-07 John Crane Inc. Mechanical seal with flexible metal diaphragm
DE29912917U1 (en) 1999-07-23 1999-11-18 BSH Bosch und Siemens Hausgeräte GmbH, 81669 München Insulating wall
JPH11335114A (en) 1998-05-22 1999-12-07 Kawasaki Steel Corp Furnace body of heating furnace for purifying silicon
US6001890A (en) 1997-05-01 1999-12-14 Imperial Chemical Industries Plc Open celled cellular polyurethane products
US6029846A (en) 1997-10-16 2000-02-29 Bsh Bosch Und Siemens Hausgeraete Gmbh Thermally insulated housing
DE19907182A1 (en) 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Heat-insulating wall, like refrigerator door, refrigerator housing or similar has supported in front of membrane cover, protection profile fixed on inner and/or outer cladding, overlapping this as far as possible.
US6109712A (en) 1998-07-16 2000-08-29 Maytag Corporation Integrated vacuum panel insulation for thermal cabinet structures
US6168040B1 (en) 1998-09-05 2001-01-02 Isovac Gmbh Double-wall insulated container
US6192703B1 (en) 1996-06-12 2001-02-27 Vacupanel, Inc. Insulating vacuum panel, method for manufacturing the insulated vacuum panel and insulated containers employing such panel
CN1286386A (en) 1999-08-27 2001-03-07 Lg电子株式会社 Refrigerator sealing gasket connecting structure
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
KR20010073363A (en) 2000-01-14 2001-08-01 구자홍 Refrigerator door equipped with vacuum insulating material panel
US6338536B1 (en) 1999-08-17 2002-01-15 Kabushiki Kaisha Toshiba Door opening device for food storage apparatus such as refrigerator
JP2002243091A (en) 2001-02-20 2002-08-28 Isuzu Motors Ltd Vacuum heat insulating material and heat insulating panel
US20020170265A1 (en) 2001-05-18 2002-11-21 Jamco Corporation Vacuum heat-insulating block
JP2003106760A (en) 2001-09-27 2003-04-09 Mitsubishi Corp Highly heat insulating composite panel and structure using the same
US20030080126A1 (en) 2001-05-22 2003-05-01 Integrated Biosystems, Inc. Systems and methods for freezing, storing and thawing biopharmaceutical material
US20030115838A1 (en) 2001-12-21 2003-06-26 Cabot Corporation Method of preparing aerogel-containing insulation article
JP2003269688A (en) 2002-03-15 2003-09-25 Zojirushi Corp Evacuated heat insulating panel
US20030207075A1 (en) 2002-05-06 2003-11-06 Alcatel Rigid multilayer material for thermal insulation
JP2004044980A (en) 2002-07-15 2004-02-12 Toshiba Corp Refrigerator door
US20040051427A1 (en) 2001-03-07 2004-03-18 Paolo Cittadini Improved sealing assembly for refrigerator cabinets and the like with a profile made of plastic material
US20040091688A1 (en) 2002-11-11 2004-05-13 Morio Gaku Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board
JP2004196411A (en) 2002-12-20 2004-07-15 Mitsubishi Chem Mkv Co Cold insulation container
EP1477752A2 (en) 2003-05-14 2004-11-17 Chart Inc. Improved cryogenic freezer
EP1484563A1 (en) 2002-03-13 2004-12-08 Matsushita Refrigeration Company Refrigerator
CN1576678A (en) 2003-07-04 2005-02-09 松下电器产业株式会社 Vacuum heat insulating material and machine using the same vacuum heat insulation material
CN2700790Y (en) 2003-09-24 2005-05-18 青岛亨达实业有限公司 Glass door body of ice chest
KR20050065088A (en) 2003-12-24 2005-06-29 엘지전자 주식회사 Adiabatic structure in refrigerator cabinet and a manufacturing method thereof
JP2005214372A (en) 2004-02-02 2005-08-11 Sangaku Renkei Kiko Kyushu:Kk Sealed heat insulation structure and inter-heat insulation wall surface reinforcement method
US20050175809A1 (en) 2002-05-31 2005-08-11 Matsushita Refrigeration Co. Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN1666071A (en) 2002-07-01 2005-09-07 惠而浦有限公司 A vaccuum insulated refrigerator cabinet and method for assessing thermal conductivity thereof
CN2748848Y (en) 2004-09-02 2005-12-28 孟范中 Vacuum heat insulation refrigerator
WO2006003199A1 (en) 2004-07-05 2006-01-12 Luca Gandini A highly thermo and acoustic insulating vacuum panel
CN1731053A (en) 2004-08-06 2006-02-08 三菱电机株式会社 Method for manufacturing refrigerator and refrigerator door
CN1820173A (en) 2003-06-02 2006-08-16 Bsh博世和西门子家用器具有限公司 Door comprising insulating glazing and refrigerating appliance fitted therewith
CN1896657A (en) 2005-07-15 2007-01-17 乐金电子(天津)电器有限公司 Door of refrigerator
KR20070052156A (en) 2005-11-16 2007-05-21 엘지전자 주식회사 Vacuum isolation panel and isolation structure applying same
US20070152551A1 (en) 2006-01-03 2007-07-05 Lg Electronics Inc. Fixing structure of insulation panel of prefabricated refrigerator and prefabricated refrigerator having the same
JP2007218509A (en) 2006-02-17 2007-08-30 Mitsubishi Electric Corp Refrigerator-freezer
US20070204648A1 (en) 2006-03-03 2007-09-06 Smale Jeffrey J Step-down top hinge for refrigerator door with external dispenser
CN101072968A (en) 2004-12-07 2007-11-14 松下电器产业株式会社 Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
JP2008045580A (en) 2006-08-11 2008-02-28 Hitachi Appliances Inc Vacuum heat insulating panel and equipment equipped therewith
CN101171472A (en) 2005-05-10 2008-04-30 Bsh博世和西门子家用器具有限公司 Refrigerator and method for the operation thereof
US20080110128A1 (en) 1997-10-16 2008-05-15 BSH Bosch und Siemens Hausgeräte GmbH Heat-insulated wall
GB2446053A (en) 2007-01-26 2008-07-30 Michael John Rickards A braced sound barrier vacuum panel
JP2008249003A (en) 2007-03-30 2008-10-16 Hitachi Appliances Inc Vacuum insulation panel and appliance provided with it
CN101349493A (en) 2007-07-19 2009-01-21 日立空调·家用电器株式会社 Refrigerator
CN201191121Y (en) 2007-12-29 2009-02-04 孟范中 Evacuated insulation box for ice locker
US20090031659A1 (en) 2005-01-24 2009-02-05 Rami Abraham Kalfon Evacuated Thermal Insulation Panel
JP2009078261A (en) 2007-09-05 2009-04-16 Panasonic Corp Gas adsorbing device
US20090113899A1 (en) 2007-11-02 2009-05-07 John Dain Systems and Methods for Ultra Low Temperature Storage
KR20090111632A (en) 2008-04-22 2009-10-27 김현우 Ultraviolet sterilizing apparatus for mattress
JP2010008011A (en) 2008-06-30 2010-01-14 Panasonic Corp Vacuum heat insulating box
CN201428906Y (en) 2009-07-09 2010-03-24 丁琪 Vacuum double-layer glass with support
US20100104923A1 (en) 2007-12-28 2010-04-29 Shinsuke Takeguchi Fuel cell separator and fuel cell comprising the same
US20100178439A1 (en) 2009-01-15 2010-07-15 Eversealed Windows, Inc. Flexible edge seal for vacuum insulating glazing units
KR20100097410A (en) 2009-02-26 2010-09-03 한국과학기술원 Vacuum insulator
KR20100099629A (en) 2009-03-03 2010-09-13 한국과학기술원 Vacuum insulator and filling material for vacuum insulator
KR20100119937A (en) 2009-05-04 2010-11-12 한국과학기술원 Vacuum insulator and envelope for vacuum insulator
KR20100136614A (en) 2009-06-19 2010-12-29 (주)엘지하우시스 Vacuum insulation panel
KR20110015325A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR20110015322A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR20110015327A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Core for a vacuum insulation panel and vacuum insulation pannel using the same
CN201764779U (en) 2010-09-02 2011-03-16 许春钢 Filling material for refrigerating device heat insulation
US20110089802A1 (en) 2001-07-19 2011-04-21 Agc Flat Glass North America, Inc. Energy-free refrigeration door and method for making the same
CN201811526U (en) 2009-10-09 2011-04-27 株式会社东芝 Refrigerator
CN102032736A (en) 2009-09-28 2011-04-27 日立空调·家用电器株式会社 Refrigerator
EP2333179A1 (en) 2009-11-27 2011-06-15 Iso-Pan International GmbH Vacuum insulation panel
CN102099646A (en) 2008-07-17 2011-06-15 松下电器产业株式会社 Heat insulator, heat-insulating box object, heat-insulating door, and refrigerator
US20110146333A1 (en) 2009-12-22 2011-06-23 Lg Electronics Inc. Refrigerator
CN102116402A (en) 2011-01-04 2011-07-06 合肥美的荣事达电冰箱有限公司 Vacuum thermal insulation component and manufacturing method thereof, as well as refrigeration device
KR20110100440A (en) 2010-03-04 2011-09-14 (주)엘지하우시스 Groove type vacuum heat insulation material
DE102011050473A1 (en) 2010-05-18 2011-11-24 Viktor Schatz Discontinuous radiation suppression unit for suppressing heat transfer in e.g. manufacturing evacuated rimless composite system utilized in e.g. roof wall, has support elements arranged in spacer arrangement
CN102261470A (en) 2010-05-28 2011-11-30 博西华家用电器有限公司 Sealing system and household appliance with sealing system
US20110296797A1 (en) 2010-06-02 2011-12-08 Stark David H Two-piece hermetic seal bellows for single-side placement on an insulating glass unit or highly insulating vacuum glass unit
EP2447639A2 (en) 2010-10-28 2012-05-02 LG Electronics Inc. Refrigerator comprising vacuum space
US20120103006A1 (en) 2010-10-28 2012-05-03 Lg Electronics Inc. Refrigertor comprising vacuum space
JP2012087993A (en) 2010-10-20 2012-05-10 Toshiba Corp Insulating cabinet
CN102455104A (en) 2010-10-28 2012-05-16 Lg电子株式会社 Refrigerator with vacuum space
US20120125039A1 (en) 2009-08-07 2012-05-24 Minkyu Hwang Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2012084874A1 (en) 2010-12-22 2012-06-28 Marguerite Georges High-performance thin thermal-insulation device
DE102011014302A1 (en) 2011-03-17 2012-09-20 Liebherr-Hausgeräte Ochsenhausen GmbH Door element for refrigerator and/or freezer, has foam filled in interstice between vacuum insulation element and outer door panel
CN102735013A (en) 2011-03-31 2012-10-17 日立空调·家用电器株式会社 Refrigerator
US20120269996A1 (en) 2009-12-18 2012-10-25 Jaeger Steffen Heat insulating glazing element and methods for its manufacture
CN102818421A (en) 2011-06-09 2012-12-12 株式会社东芝 Heat insulation tank
CN102840729A (en) 2011-06-21 2012-12-26 三星电子株式会社 Refrigerator and method for manufacturing refrigerator door
KR20120139648A (en) 2012-12-13 2012-12-27 엘지전자 주식회사 A refrigerator comprising a vacuum space
WO2012176880A1 (en) 2011-06-24 2012-12-27 株式会社松田技術研究所 Vacuum insulated panel
US20130008309A1 (en) 2010-03-26 2013-01-10 Panasonic Corporation Gas-adsorption device structure and method for using same
DE102011079209A1 (en) 2011-07-14 2013-01-17 BSH Bosch und Siemens Hausgeräte GmbH Vacuum insulation element
US20130026900A1 (en) 2010-01-04 2013-01-31 Lg Electronics Inc. Refrigerator including multiple storage compartments
CN102927740A (en) 2011-08-12 2013-02-13 三星电子株式会社 Refrigerator
US8383225B2 (en) 2008-03-26 2013-02-26 Thomas Rotter Vacuum-insulation element
CN103062981A (en) 2011-10-21 2013-04-24 三星电子株式会社 Refrigerator and method for manufacturing door of refrigerator
US20130105496A1 (en) 2011-11-02 2013-05-02 Lg Electronics Inc. Refrigerator
US20130105494A1 (en) 2011-11-02 2013-05-02 Lg Electronics Inc. Refrigerator
CN103090615A (en) 2011-11-02 2013-05-08 Lg电子株式会社 Refrigerator
KR20130048528A (en) 2011-11-02 2013-05-10 엘지전자 주식회사 A refrigerator comprising a vacuum space
KR20130054213A (en) 2011-11-16 2013-05-24 (주)엘지하우시스 Vacuum glass panel with pillar having getter function and method of manufacturing the same
CN103154648A (en) 2010-07-12 2013-06-12 Bsh博世和西门子家用电器有限公司 Housing component for a refrigeration unit
JP2013119966A (en) 2011-12-06 2013-06-17 Toshiba Corp Heat insulation box
RU129188U1 (en) 2012-12-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) THERMAL INSULATION PRODUCT
CN103189696A (en) 2010-10-11 2013-07-03 Lg电子株式会社 Vacuum insulation glass panel and refrigerator having the same
DE102012100490A1 (en) 2012-01-23 2013-07-25 Götz von Waldeyer-Hartz Thermal wall for refrigerated vehicles and large size freezer cabinets, has coating layer with filler material and spacers made of polyurethane foam, and are arranged on folds to lock covering layers parallel to vacuum insulation layer core
CN103228851A (en) 2010-09-10 2013-07-31 Bsh博世和西门子家用电器有限公司 Vacuum body for a refrigeration device
CN203095854U (en) 2013-01-25 2013-07-31 李梦琪 Insulating colored crystal glass and freezer
US20130195544A1 (en) 2009-11-20 2013-08-01 Philip Sanders Insulated panel and method of assembly
US20130255304A1 (en) 2012-04-02 2013-10-03 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US20130257257A1 (en) 2012-04-02 2013-10-03 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
CN103370587A (en) 2011-08-31 2013-10-23 松下电器产业株式会社 Refrigerator and vacuum insulation material for same
CN103363764A (en) 2012-03-26 2013-10-23 三菱电机株式会社 Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box
US20130293080A1 (en) 2012-05-02 2013-11-07 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing door thereof
CN103542660A (en) 2012-07-12 2014-01-29 三星电子株式会社 Refrigerator and manufacturing method thereof
CN103575038A (en) 2012-08-02 2014-02-12 开利公司 Frame and refrigerating device
JP2014037931A (en) 2012-08-20 2014-02-27 Toshiba Corp Refrigerator
WO2014049969A1 (en) 2012-09-25 2014-04-03 株式会社 東芝 Refrigerator
US20140103791A1 (en) 2012-10-12 2014-04-17 Dongbu Daewoo Electronics Corporation Refrigerator for preventing dewing on door gasket
US20140132142A1 (en) 2012-11-09 2014-05-15 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing inner door thereof
DE102012223539A1 (en) 2012-12-18 2014-06-18 BSH Bosch und Siemens Hausgeräte GmbH Door for a household refrigerating appliance with a vacuum insulation element with molded bowls and household refrigerating appliance
CN103968196A (en) 2013-02-06 2014-08-06 三星电子株式会社 Vacuum insulation material, insulation case unit, and refrigerator
EP2789951A1 (en) 2011-12-06 2014-10-15 Kabushiki Kaisha Toshiba, Inc. Insulated cabinet
US20140315011A1 (en) 2011-11-24 2014-10-23 Lg Hausys, Ltd. Vacuum insulation material for blocking radiant heat
WO2014175639A1 (en) 2013-04-26 2014-10-30 Lg Electronics Inc. Refrigerator
KR20140129552A (en) 2013-04-30 2014-11-07 한국과학기술원 Edge-sealing method and vacuum exhauster of vacuum insulation glass for sustainable use
US8881398B2 (en) 2011-05-26 2014-11-11 General Electric Company Method and apparatus for insulating a refrigeration appliance
EP2806239A2 (en) 2013-05-22 2014-11-26 LG Electronics, Inc. Refrigerator and method of manufacturing the same
CN104204646A (en) 2012-03-23 2014-12-10 松下电器产业株式会社 Vacuum insulation material and insulated housing using same
CN104254749A (en) 2012-03-21 2014-12-31 株式会社东芝 Refrigerator
EP2824405A2 (en) 2013-07-11 2015-01-14 Seven-Air Gebr. Meyer AG High power thermo panel
US20150030800A1 (en) 2013-07-26 2015-01-29 Samsung Electronics Co., Ltd. Vacuum heat insulating material and refrigerator including the same
CN104344653A (en) 2013-09-27 2015-02-11 海尔集团公司 Refrigerator
US20150068401A1 (en) 2012-03-21 2015-03-12 Panasonic Corporation Gas adsorbing device and hollow body housing the same
KR101506413B1 (en) 2010-12-27 2015-03-26 아사히 가세이 케미칼즈 가부시키가이샤 Heat insulation material and production method for same
CN104567215A (en) 2013-10-22 2015-04-29 株式会社东芝 Refrigerator door and refrigerator
CN104729201A (en) 2013-12-19 2015-06-24 日立空调·家用电器株式会社 Refrigerator
CN104746690A (en) 2013-12-25 2015-07-01 戴长虹 Double-vacuum-layer metal vacuum composite plate with edge sealed by seal strip and manufacturing method thereof
US20150192356A1 (en) 2014-01-07 2015-07-09 Samsung Electronics Co., Refrigerator
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
EP2952839A1 (en) 2014-06-03 2015-12-09 BSH Hausgeräte GmbH Door for a household appliance and household appliance
US20160109172A1 (en) 2014-10-16 2016-04-21 Samsung Electronics Co., Ltd. Refrigerator
US9328951B2 (en) 2013-04-01 2016-05-03 Lg Electronics Inc. Refrigerator
CN105546923A (en) 2010-05-28 2016-05-04 株式会社东芝 Thermal-insulating box body for food storage warehouse
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US9463918B2 (en) 2014-02-20 2016-10-11 Aarne H. Reid Vacuum insulated articles and methods of making same
US20160356542A1 (en) 2015-06-05 2016-12-08 Lg Electronics Inc. Refrigerator hinge and manufacturing method thereof
WO2016208193A1 (en) 2015-06-24 2016-12-29 パナソニックIpマネジメント株式会社 Gas-adsorbing device and evacuated insulating material using same
WO2017023095A1 (en) 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9791204B2 (en) 2014-07-06 2017-10-17 Lg Electronics Inc. Refrigerator door and manufacturing method of the same
WO2017192121A1 (en) 2016-05-03 2017-11-09 Whirlpool Corporation Hinge support assembly for a vacuum insulated appliance cabinet
US20170325634A1 (en) 2014-12-19 2017-11-16 Dow Global Technologies Llc Vacuum vessels
WO2018044274A1 (en) 2016-08-30 2018-03-08 Whirlpool Corporation Hermetically sealed overmolded plastic thermal bridge breaker with liner and wrapper for a vacuum insulated structure
US9945600B2 (en) 2015-06-04 2018-04-17 Lg Electronics Inc. Refrigerator
CN108354755A (en) 2018-03-22 2018-08-03 周少华 A kind of examination couch of the Neurology inspection with automatic disinfecting function
US20180266620A1 (en) 2015-12-09 2018-09-20 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
US20180299060A1 (en) 2015-10-19 2018-10-18 Samsung Electromics Co., Ltd. Refrigerator and manufacturing method therefor
US20180313492A1 (en) 2016-03-02 2018-11-01 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator

Patent Citations (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413169A (en) 1919-07-25 1922-04-18 Charles B Lawton Insulating construction
US1588707A (en) 1924-07-23 1926-06-15 Csiga Alexander Vacuum ice chest
US2000882A (en) 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US1845353A (en) 1928-12-14 1932-02-16 Virgil K Snell Heat-insulating construction
US2708774A (en) 1949-11-29 1955-05-24 Rca Corp Multiple glazed unit
US2715976A (en) 1952-04-28 1955-08-23 Motor Products Corp Breaker strip assembly
US2768046A (en) 1952-07-09 1956-10-23 Gen Electric Insulating structures
DE956899C (en) 1952-10-28 1957-01-24 Gen Electric Heat isolator
US2729863A (en) 1952-12-11 1956-01-10 Gen Electric Insulated cabinet
US2786241A (en) 1954-06-02 1957-03-26 Whirlpool Seeger Corp Refrigerator door and gasket seal
US3091946A (en) 1958-03-27 1963-06-04 Gen Motors Corp Cabinet and process for making same
GB890372A (en) 1959-01-27 1962-02-28 Union Carbide Corp Vacuum panel insulation
US3161265A (en) 1959-01-27 1964-12-15 Union Carbide Corp Vacuum panel insulation
US3370740A (en) 1965-07-28 1968-02-27 James H. Anderson Vacuum jacketed joint construction
US3289423A (en) 1965-11-30 1966-12-06 Union Carbide Corp Load support means for thermally insulated containers
US4056211A (en) 1976-08-30 1977-11-01 Rockwell International Corporation Support and retention liner gasket
DE2802910A1 (en) 1977-02-03 1978-08-10 Alain Balleyguier COMPOSED THERMALLY INSULATING MATERIAL AND THEIR APPLICATION FOR THE PRODUCTION OF A GAS CONTAINER
DE2939878A1 (en) 1979-10-02 1981-04-16 Friedrich 5600 Wuppertal Hensberg Thermal insulation wall panels - has vacuum sections with insulated supports and radiation shields
DE3121351A1 (en) 1981-05-29 1982-12-16 Genbee Osaka Kawaguchi Spacer for a vacuum insulating device
EP0071090A1 (en) 1981-07-16 1983-02-09 INDESIT INDUSTRIA ELETTRODOMESTICI ITALIANA S.p.A. Thermal insulating system for refrigerating apparatus and relative realization process
US4646934A (en) 1986-01-21 1987-03-03 Mcallister Ian R Vacuum insulated shipping container and method
US4959111A (en) 1986-08-19 1990-09-25 Whirlpool Corporation Heavy gas-filled multilayer insulation panels and method of manufacture thereof
US4822117A (en) 1987-06-12 1989-04-18 General Electric Company Refrigerator case/liner interface and related components for automated assembly
US5033803A (en) 1988-07-12 1991-07-23 Sanden Corporation Display case
US5011729A (en) 1989-11-15 1991-04-30 Mcallister Ian R Vacuum insulated panels with concave surfaces on the surface layers
US5185981A (en) 1989-11-20 1993-02-16 Perfil En Frio, S.A. Abutment of insulating panels
US5018328A (en) 1989-12-18 1991-05-28 Whirlpool Corporation Multi-compartment vacuum insulation panels
US5200015A (en) 1990-05-18 1993-04-06 Messerschmitt-Bolkow-Blohm Gmbh Joining process for vacuum heat insulating elements
JPH04341694A (en) 1991-05-20 1992-11-27 Kubota Corp Structure of vacuum heat insulation box body
JPH0510494A (en) 1991-07-03 1993-01-19 Kubota Corp End portion structure of vacuum insulation box
DE9204365U1 (en) 1992-03-31 1992-07-02 Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen Wall element and/or door with low thermal transmittance
WO1993025843A1 (en) 1992-06-08 1993-12-23 Saes Getters S.P.A. Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device
US5361598A (en) 1992-09-10 1994-11-08 Electrolux Research & Innovation Aktiebolag Refrigerator or freezer walls
US5361598B1 (en) 1992-09-10 1999-02-09 Electrolux Res & Innovation Refrigerator or freezer walls
EP0658733A1 (en) 1993-12-16 1995-06-21 AEG Hausgeräte GmbH Wall element
EP0658716A1 (en) 1993-12-16 1995-06-21 AEG Hausgeräte GmbH Element for thermal insulation
JPH07234067A (en) 1994-02-21 1995-09-05 Hitachi Ltd Vacuum thermal insulation door for refrigerator and the like
US5512345A (en) 1994-03-28 1996-04-30 Kabushiki Kaisha Toshiba Vacuum insulator casing and method of making vacuum insulator panel
CN1132346A (en) 1994-03-28 1996-10-02 株式会社东芝 Method for mfg. of heat insulation frame and vacuum heat insulating board
US5532034A (en) 1994-12-06 1996-07-02 Whirlpool Corporation Getter system for vacuum insulation panel
US5795639A (en) 1995-03-16 1998-08-18 Owens Fiberglas Technology, Inc. Vacuum insulation panel having blended wool filler and method for manufacturing
US5947479A (en) 1995-03-31 1999-09-07 John Crane Inc. Mechanical seal with flexible metal diaphragm
US5843353A (en) 1995-04-13 1998-12-01 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
JPH09145241A (en) 1995-11-20 1997-06-06 Mitsubishi Chem Corp Vacuum heat-insulating material
US5694789A (en) 1996-01-16 1997-12-09 Lg Electronics Inc. Cam operated door seal for refrigerator
US6192703B1 (en) 1996-06-12 2001-02-27 Vacupanel, Inc. Insulating vacuum panel, method for manufacturing the insulated vacuum panel and insulated containers employing such panel
CN1191959A (en) 1997-02-27 1998-09-02 三菱电机株式会社 Vacuum heat-insulating panel and method for producing the same, and refrigerator using the same
US6001890A (en) 1997-05-01 1999-12-14 Imperial Chemical Industries Plc Open celled cellular polyurethane products
NL1005962C1 (en) 1997-05-02 1998-11-03 Rudolf Wolfgang Van Der Pol Vacuum insulation panel
EP0892120A2 (en) 1997-06-25 1999-01-20 UVT GmbH Vacuum insulation panel
US20080110128A1 (en) 1997-10-16 2008-05-15 BSH Bosch und Siemens Hausgeräte GmbH Heat-insulated wall
DE19745825A1 (en) 1997-10-16 1999-04-22 Bosch Siemens Hausgeraete Thermally insulated cavity-walled case for e.g. Refrigerator
CN1276052A (en) 1997-10-16 2000-12-06 Bsh博施及西门子家用器具有限公司 Heat-insulating housing
US6038830A (en) 1997-10-16 2000-03-21 Bsh Bosch Und Siemens Hausgeraete Gmbh Heat insulated wall
US6029846A (en) 1997-10-16 2000-02-29 Bsh Bosch Und Siemens Hausgeraete Gmbh Thermally insulated housing
JPH11211334A (en) 1998-01-30 1999-08-06 Hoshizaki Electric Co Ltd Refrigerated display case
DE19803908A1 (en) 1998-02-02 1999-08-05 Thyssen Vakuum Isolationstechn Evacuated thermal insulation panel with thermally insulated edges
JPH11335114A (en) 1998-05-22 1999-12-07 Kawasaki Steel Corp Furnace body of heating furnace for purifying silicon
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
US6109712A (en) 1998-07-16 2000-08-29 Maytag Corporation Integrated vacuum panel insulation for thermal cabinet structures
US6168040B1 (en) 1998-09-05 2001-01-02 Isovac Gmbh Double-wall insulated container
DE19907182A1 (en) 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Heat-insulating wall, like refrigerator door, refrigerator housing or similar has supported in front of membrane cover, protection profile fixed on inner and/or outer cladding, overlapping this as far as possible.
US6485122B2 (en) 1999-02-19 2002-11-26 BSH Bosch Siemens Hausgeräte GmbH Heat-insulating wall
US20020041134A1 (en) 1999-02-19 2002-04-11 Ulrich Wolf Heat-insulating wall
DE29912917U1 (en) 1999-07-23 1999-11-18 BSH Bosch und Siemens Hausgeräte GmbH, 81669 München Insulating wall
US20020100250A1 (en) 1999-07-23 2002-08-01 Jurgen Hirath Heat-insulating walling
US6338536B1 (en) 1999-08-17 2002-01-15 Kabushiki Kaisha Toshiba Door opening device for food storage apparatus such as refrigerator
KR100411841B1 (en) 1999-08-17 2003-12-24 가부시끼가이샤 도시바 Door opening apparatus of a refrigerator
CN1515857A (en) 1999-08-17 2004-07-28 东芝株式会社 Door-opening device for storeroom
CN1286386A (en) 1999-08-27 2001-03-07 Lg电子株式会社 Refrigerator sealing gasket connecting structure
KR100343719B1 (en) 2000-01-14 2002-07-20 엘지전자주식회사 Refrigerator door equipped with vacuum insulating material panel
KR20010073363A (en) 2000-01-14 2001-08-01 구자홍 Refrigerator door equipped with vacuum insulating material panel
JP2002243091A (en) 2001-02-20 2002-08-28 Isuzu Motors Ltd Vacuum heat insulating material and heat insulating panel
US20040051427A1 (en) 2001-03-07 2004-03-18 Paolo Cittadini Improved sealing assembly for refrigerator cabinets and the like with a profile made of plastic material
US20020170265A1 (en) 2001-05-18 2002-11-21 Jamco Corporation Vacuum heat-insulating block
US20030080126A1 (en) 2001-05-22 2003-05-01 Integrated Biosystems, Inc. Systems and methods for freezing, storing and thawing biopharmaceutical material
US20110089802A1 (en) 2001-07-19 2011-04-21 Agc Flat Glass North America, Inc. Energy-free refrigeration door and method for making the same
JP2003106760A (en) 2001-09-27 2003-04-09 Mitsubishi Corp Highly heat insulating composite panel and structure using the same
US20030115838A1 (en) 2001-12-21 2003-06-26 Cabot Corporation Method of preparing aerogel-containing insulation article
EP1614954A1 (en) 2001-12-21 2006-01-11 Cabot Corporation Aerogel-containing insulation article
US20050235682A1 (en) 2002-03-13 2005-10-27 Chie Hirai Refrigerator
EP1484563A1 (en) 2002-03-13 2004-12-08 Matsushita Refrigeration Company Refrigerator
JP2003269688A (en) 2002-03-15 2003-09-25 Zojirushi Corp Evacuated heat insulating panel
US20030207075A1 (en) 2002-05-06 2003-11-06 Alcatel Rigid multilayer material for thermal insulation
US20050175809A1 (en) 2002-05-31 2005-08-11 Matsushita Refrigeration Co. Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN1666071A (en) 2002-07-01 2005-09-07 惠而浦有限公司 A vaccuum insulated refrigerator cabinet and method for assessing thermal conductivity thereof
JP2004044980A (en) 2002-07-15 2004-02-12 Toshiba Corp Refrigerator door
US20040091688A1 (en) 2002-11-11 2004-05-13 Morio Gaku Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board
JP2004196411A (en) 2002-12-20 2004-07-15 Mitsubishi Chem Mkv Co Cold insulation container
EP1477752A2 (en) 2003-05-14 2004-11-17 Chart Inc. Improved cryogenic freezer
US20040226956A1 (en) 2003-05-14 2004-11-18 Jeff Brooks Cryogenic freezer
CN1820173A (en) 2003-06-02 2006-08-16 Bsh博世和西门子家用器具有限公司 Door comprising insulating glazing and refrigerating appliance fitted therewith
CN1576678A (en) 2003-07-04 2005-02-09 松下电器产业株式会社 Vacuum heat insulating material and machine using the same vacuum heat insulation material
CN2700790Y (en) 2003-09-24 2005-05-18 青岛亨达实业有限公司 Glass door body of ice chest
KR20050065088A (en) 2003-12-24 2005-06-29 엘지전자 주식회사 Adiabatic structure in refrigerator cabinet and a manufacturing method thereof
JP2005214372A (en) 2004-02-02 2005-08-11 Sangaku Renkei Kiko Kyushu:Kk Sealed heat insulation structure and inter-heat insulation wall surface reinforcement method
WO2006003199A1 (en) 2004-07-05 2006-01-12 Luca Gandini A highly thermo and acoustic insulating vacuum panel
US20070243358A1 (en) 2004-07-05 2007-10-18 Luca Gandini Highly Thermo and Acoustic Insulating Vacuum Panel
CN1731053A (en) 2004-08-06 2006-02-08 三菱电机株式会社 Method for manufacturing refrigerator and refrigerator door
CN2748848Y (en) 2004-09-02 2005-12-28 孟范中 Vacuum heat insulation refrigerator
CN101072968A (en) 2004-12-07 2007-11-14 松下电器产业株式会社 Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
US20090031659A1 (en) 2005-01-24 2009-02-05 Rami Abraham Kalfon Evacuated Thermal Insulation Panel
CN101171472A (en) 2005-05-10 2008-04-30 Bsh博世和西门子家用器具有限公司 Refrigerator and method for the operation thereof
CN1896657A (en) 2005-07-15 2007-01-17 乐金电子(天津)电器有限公司 Door of refrigerator
KR20070052156A (en) 2005-11-16 2007-05-21 엘지전자 주식회사 Vacuum isolation panel and isolation structure applying same
US20070152551A1 (en) 2006-01-03 2007-07-05 Lg Electronics Inc. Fixing structure of insulation panel of prefabricated refrigerator and prefabricated refrigerator having the same
JP2007218509A (en) 2006-02-17 2007-08-30 Mitsubishi Electric Corp Refrigerator-freezer
US20070204648A1 (en) 2006-03-03 2007-09-06 Smale Jeffrey J Step-down top hinge for refrigerator door with external dispenser
JP2008045580A (en) 2006-08-11 2008-02-28 Hitachi Appliances Inc Vacuum heat insulating panel and equipment equipped therewith
GB2446053A (en) 2007-01-26 2008-07-30 Michael John Rickards A braced sound barrier vacuum panel
US20080289898A1 (en) 2007-01-26 2008-11-27 Michael John Rickards Braced sound barrier vacuum panel
JP2008249003A (en) 2007-03-30 2008-10-16 Hitachi Appliances Inc Vacuum insulation panel and appliance provided with it
CN101349493A (en) 2007-07-19 2009-01-21 日立空调·家用电器株式会社 Refrigerator
JP2009078261A (en) 2007-09-05 2009-04-16 Panasonic Corp Gas adsorbing device
US20090113899A1 (en) 2007-11-02 2009-05-07 John Dain Systems and Methods for Ultra Low Temperature Storage
US20100104923A1 (en) 2007-12-28 2010-04-29 Shinsuke Takeguchi Fuel cell separator and fuel cell comprising the same
CN201191121Y (en) 2007-12-29 2009-02-04 孟范中 Evacuated insulation box for ice locker
US8383225B2 (en) 2008-03-26 2013-02-26 Thomas Rotter Vacuum-insulation element
KR20090111632A (en) 2008-04-22 2009-10-27 김현우 Ultraviolet sterilizing apparatus for mattress
JP2010008011A (en) 2008-06-30 2010-01-14 Panasonic Corp Vacuum heat insulating box
CN102099646A (en) 2008-07-17 2011-06-15 松下电器产业株式会社 Heat insulator, heat-insulating box object, heat-insulating door, and refrigerator
US20100178439A1 (en) 2009-01-15 2010-07-15 Eversealed Windows, Inc. Flexible edge seal for vacuum insulating glazing units
KR20100097410A (en) 2009-02-26 2010-09-03 한국과학기술원 Vacuum insulator
KR20100099629A (en) 2009-03-03 2010-09-13 한국과학기술원 Vacuum insulator and filling material for vacuum insulator
KR101041086B1 (en) 2009-03-03 2011-06-14 한국과학기술원 Vacuum insulator
KR20100119937A (en) 2009-05-04 2010-11-12 한국과학기술원 Vacuum insulator and envelope for vacuum insulator
KR20100136614A (en) 2009-06-19 2010-12-29 (주)엘지하우시스 Vacuum insulation panel
CN201428906Y (en) 2009-07-09 2010-03-24 丁琪 Vacuum double-layer glass with support
KR20110015327A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Core for a vacuum insulation panel and vacuum insulation pannel using the same
US20120118002A1 (en) 2009-08-07 2012-05-17 Lg Electronics Inc. Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
US20120125039A1 (en) 2009-08-07 2012-05-24 Minkyu Hwang Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
KR20110015325A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
KR20110015322A (en) 2009-08-07 2011-02-15 엘지전자 주식회사 Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
US20120128920A1 (en) 2009-08-07 2012-05-24 Ilseob Yoon Core of vacuum insulation member and vacuum insulation member using the same
CN102032736A (en) 2009-09-28 2011-04-27 日立空调·家用电器株式会社 Refrigerator
CN201811526U (en) 2009-10-09 2011-04-27 株式会社东芝 Refrigerator
US8943770B2 (en) 2009-11-20 2015-02-03 Electrolux Home Products Pty Limited Insulated panel and method of assembly
US20130195544A1 (en) 2009-11-20 2013-08-01 Philip Sanders Insulated panel and method of assembly
EP2333179A1 (en) 2009-11-27 2011-06-15 Iso-Pan International GmbH Vacuum insulation panel
US20120269996A1 (en) 2009-12-18 2012-10-25 Jaeger Steffen Heat insulating glazing element and methods for its manufacture
US20110146333A1 (en) 2009-12-22 2011-06-23 Lg Electronics Inc. Refrigerator
US20130026900A1 (en) 2010-01-04 2013-01-31 Lg Electronics Inc. Refrigerator including multiple storage compartments
US20120231204A1 (en) 2010-03-04 2012-09-13 Lg Hausys, Ltd. Grooved type vacuum thermal insulation material and a production method for the same
KR20110100440A (en) 2010-03-04 2011-09-14 (주)엘지하우시스 Groove type vacuum heat insulation material
US20130008309A1 (en) 2010-03-26 2013-01-10 Panasonic Corporation Gas-adsorption device structure and method for using same
DE102011050473A1 (en) 2010-05-18 2011-11-24 Viktor Schatz Discontinuous radiation suppression unit for suppressing heat transfer in e.g. manufacturing evacuated rimless composite system utilized in e.g. roof wall, has support elements arranged in spacer arrangement
CN102261470A (en) 2010-05-28 2011-11-30 博西华家用电器有限公司 Sealing system and household appliance with sealing system
CN105546923A (en) 2010-05-28 2016-05-04 株式会社东芝 Thermal-insulating box body for food storage warehouse
US20110296797A1 (en) 2010-06-02 2011-12-08 Stark David H Two-piece hermetic seal bellows for single-side placement on an insulating glass unit or highly insulating vacuum glass unit
CN103154648A (en) 2010-07-12 2013-06-12 Bsh博世和西门子家用电器有限公司 Housing component for a refrigeration unit
CN201764779U (en) 2010-09-02 2011-03-16 许春钢 Filling material for refrigerating device heat insulation
CN103228851A (en) 2010-09-10 2013-07-31 Bsh博世和西门子家用电器有限公司 Vacuum body for a refrigeration device
CN103189696A (en) 2010-10-11 2013-07-03 Lg电子株式会社 Vacuum insulation glass panel and refrigerator having the same
JP2012087993A (en) 2010-10-20 2012-05-10 Toshiba Corp Insulating cabinet
EP2447639A2 (en) 2010-10-28 2012-05-02 LG Electronics Inc. Refrigerator comprising vacuum space
KR101227516B1 (en) 2010-10-28 2013-01-31 엘지전자 주식회사 A refrigerator comprising a vacuum space
US20120103006A1 (en) 2010-10-28 2012-05-03 Lg Electronics Inc. Refrigertor comprising vacuum space
US20120104923A1 (en) 2010-10-28 2012-05-03 Lg Electronics Inc. Refrigerator comprising vacuum space
CN104634047A (en) 2010-10-28 2015-05-20 Lg电子株式会社 Refrigerator
US8857931B2 (en) 2010-10-28 2014-10-14 Lg Electronics Inc. Refrigerator with vacuum space
CN104482707A (en) 2010-10-28 2015-04-01 Lg电子株式会社 Refrigerator
KR20120044558A (en) 2010-10-28 2012-05-08 엘지전자 주식회사 A refrigerator comprising a vaccum space
CN102455104A (en) 2010-10-28 2012-05-16 Lg电子株式会社 Refrigerator with vacuum space
CN102455103A (en) 2010-10-28 2012-05-16 Lg电子株式会社 Refrigerator comprising vacuum space
CN104457117A (en) 2010-10-28 2015-03-25 Lg电子株式会社 Refrigerator
CN102455105A (en) 2010-10-28 2012-05-16 Lg电子株式会社 Refrigerator comprising vacuum space
WO2012084874A1 (en) 2010-12-22 2012-06-28 Marguerite Georges High-performance thin thermal-insulation device
KR101506413B1 (en) 2010-12-27 2015-03-26 아사히 가세이 케미칼즈 가부시키가이샤 Heat insulation material and production method for same
CN102116402A (en) 2011-01-04 2011-07-06 合肥美的荣事达电冰箱有限公司 Vacuum thermal insulation component and manufacturing method thereof, as well as refrigeration device
DE102011014302A1 (en) 2011-03-17 2012-09-20 Liebherr-Hausgeräte Ochsenhausen GmbH Door element for refrigerator and/or freezer, has foam filled in interstice between vacuum insulation element and outer door panel
CN102735013A (en) 2011-03-31 2012-10-17 日立空调·家用电器株式会社 Refrigerator
US8881398B2 (en) 2011-05-26 2014-11-11 General Electric Company Method and apparatus for insulating a refrigeration appliance
JP2012255607A (en) 2011-06-09 2012-12-27 Toshiba Corp Heat insulation box
CN102818421A (en) 2011-06-09 2012-12-12 株式会社东芝 Heat insulation tank
US20120326587A1 (en) 2011-06-21 2012-12-27 Samsung Electronics Co., Ltd Refrigerator
CN102840729A (en) 2011-06-21 2012-12-26 三星电子株式会社 Refrigerator and method for manufacturing refrigerator door
WO2012176880A1 (en) 2011-06-24 2012-12-27 株式会社松田技術研究所 Vacuum insulated panel
WO2013007568A2 (en) 2011-07-14 2013-01-17 BSH Bosch und Siemens Hausgeräte GmbH Vacuum insulation element
DE102011079209A1 (en) 2011-07-14 2013-01-17 BSH Bosch und Siemens Hausgeräte GmbH Vacuum insulation element
CN103649658A (en) 2011-07-14 2014-03-19 Bsh博世和西门子家用电器有限公司 Vacuum insulation element
CN102927740A (en) 2011-08-12 2013-02-13 三星电子株式会社 Refrigerator
CN103370587A (en) 2011-08-31 2013-10-23 松下电器产业株式会社 Refrigerator and vacuum insulation material for same
US20130099650A1 (en) 2011-10-21 2013-04-25 Samsung Electronics Co., Ltd. Refrigerator and door for the same
CN103062981A (en) 2011-10-21 2013-04-24 三星电子株式会社 Refrigerator and method for manufacturing door of refrigerator
KR20130048528A (en) 2011-11-02 2013-05-10 엘지전자 주식회사 A refrigerator comprising a vacuum space
CN103090616A (en) 2011-11-02 2013-05-08 Lg电子株式会社 Refrigerator
US20130105494A1 (en) 2011-11-02 2013-05-02 Lg Electronics Inc. Refrigerator
KR20130048530A (en) 2011-11-02 2013-05-10 엘지전자 주식회사 A refrigerator comprising a vacuum space
US20130105496A1 (en) 2011-11-02 2013-05-02 Lg Electronics Inc. Refrigerator
CN103090615A (en) 2011-11-02 2013-05-08 Lg电子株式会社 Refrigerator
US10082328B2 (en) 2011-11-02 2018-09-25 Lg Electronics Inc. Refrigerator
KR20130054213A (en) 2011-11-16 2013-05-24 (주)엘지하우시스 Vacuum glass panel with pillar having getter function and method of manufacturing the same
US20140272208A1 (en) 2011-11-16 2014-09-18 Lg Hausys, Ltd. Vacuum glass panel having getter filler and method of manufacturing same
US20140315011A1 (en) 2011-11-24 2014-10-23 Lg Hausys, Ltd. Vacuum insulation material for blocking radiant heat
EP2789951A1 (en) 2011-12-06 2014-10-15 Kabushiki Kaisha Toshiba, Inc. Insulated cabinet
JP2013119966A (en) 2011-12-06 2013-06-17 Toshiba Corp Heat insulation box
DE102012100490A1 (en) 2012-01-23 2013-07-25 Götz von Waldeyer-Hartz Thermal wall for refrigerated vehicles and large size freezer cabinets, has coating layer with filler material and spacers made of polyurethane foam, and are arranged on folds to lock covering layers parallel to vacuum insulation layer core
EP2829827A1 (en) 2012-03-21 2015-01-28 Kabushiki Kaisha Toshiba Refrigerator
US20150068401A1 (en) 2012-03-21 2015-03-12 Panasonic Corporation Gas adsorbing device and hollow body housing the same
CN104254749A (en) 2012-03-21 2014-12-31 株式会社东芝 Refrigerator
CN104204646A (en) 2012-03-23 2014-12-10 松下电器产业株式会社 Vacuum insulation material and insulated housing using same
CN103363764A (en) 2012-03-26 2013-10-23 三菱电机株式会社 Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box
US8944541B2 (en) 2012-04-02 2015-02-03 Whirlpool Corporation Vacuum panel cabinet structure for a refrigerator
US20130257257A1 (en) 2012-04-02 2013-10-03 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US20130255304A1 (en) 2012-04-02 2013-10-03 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US20130293080A1 (en) 2012-05-02 2013-11-07 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing door thereof
CN103542660A (en) 2012-07-12 2014-01-29 三星电子株式会社 Refrigerator and manufacturing method thereof
CN103575038A (en) 2012-08-02 2014-02-12 开利公司 Frame and refrigerating device
JP2014037931A (en) 2012-08-20 2014-02-27 Toshiba Corp Refrigerator
WO2014049969A1 (en) 2012-09-25 2014-04-03 株式会社 東芝 Refrigerator
US20140103791A1 (en) 2012-10-12 2014-04-17 Dongbu Daewoo Electronics Corporation Refrigerator for preventing dewing on door gasket
US20140132142A1 (en) 2012-11-09 2014-05-15 Samsung Electronics Co., Ltd. Refrigerator and method of manufacturing inner door thereof
KR20120139648A (en) 2012-12-13 2012-12-27 엘지전자 주식회사 A refrigerator comprising a vacuum space
EP2936013A1 (en) 2012-12-18 2015-10-28 BSH Hausgeräte GmbH Door for a household refrigeration appliance comprising a vacuum insulating element with casted shells and household refrigeration appliance
DE102012223539A1 (en) 2012-12-18 2014-06-18 BSH Bosch und Siemens Hausgeräte GmbH Door for a household refrigerating appliance with a vacuum insulation element with molded bowls and household refrigerating appliance
RU129188U1 (en) 2012-12-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) THERMAL INSULATION PRODUCT
CN203095854U (en) 2013-01-25 2013-07-31 李梦琪 Insulating colored crystal glass and freezer
CN103968196A (en) 2013-02-06 2014-08-06 三星电子株式会社 Vacuum insulation material, insulation case unit, and refrigerator
US20140216100A1 (en) 2013-02-06 2014-08-07 Samsung Electronics Co., Ltd. Vacuum insulation material, insulation case unit, and refrigerator
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9328951B2 (en) 2013-04-01 2016-05-03 Lg Electronics Inc. Refrigerator
WO2014175639A1 (en) 2013-04-26 2014-10-30 Lg Electronics Inc. Refrigerator
KR20140129552A (en) 2013-04-30 2014-11-07 한국과학기술원 Edge-sealing method and vacuum exhauster of vacuum insulation glass for sustainable use
EP2806239A2 (en) 2013-05-22 2014-11-26 LG Electronics, Inc. Refrigerator and method of manufacturing the same
US20140346942A1 (en) 2013-05-22 2014-11-27 Lg Electronics Inc. Refrigerator and method of manufacturing the same
CN104180595A (en) 2013-05-22 2014-12-03 Lg电子株式会社 refrigerator and method of manufacturing the same
EP2824405A2 (en) 2013-07-11 2015-01-14 Seven-Air Gebr. Meyer AG High power thermo panel
US20150030800A1 (en) 2013-07-26 2015-01-29 Samsung Electronics Co., Ltd. Vacuum heat insulating material and refrigerator including the same
KR20150012712A (en) 2013-07-26 2015-02-04 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
CN104344653A (en) 2013-09-27 2015-02-11 海尔集团公司 Refrigerator
CN104567215A (en) 2013-10-22 2015-04-29 株式会社东芝 Refrigerator door and refrigerator
CN104729201A (en) 2013-12-19 2015-06-24 日立空调·家用电器株式会社 Refrigerator
CN104746690A (en) 2013-12-25 2015-07-01 戴长虹 Double-vacuum-layer metal vacuum composite plate with edge sealed by seal strip and manufacturing method thereof
US20150192356A1 (en) 2014-01-07 2015-07-09 Samsung Electronics Co., Refrigerator
US9463918B2 (en) 2014-02-20 2016-10-11 Aarne H. Reid Vacuum insulated articles and methods of making same
EP2952839A1 (en) 2014-06-03 2015-12-09 BSH Hausgeräte GmbH Door for a household appliance and household appliance
US9791204B2 (en) 2014-07-06 2017-10-17 Lg Electronics Inc. Refrigerator door and manufacturing method of the same
US20160109172A1 (en) 2014-10-16 2016-04-21 Samsung Electronics Co., Ltd. Refrigerator
US20170325634A1 (en) 2014-12-19 2017-11-16 Dow Global Technologies Llc Vacuum vessels
US9945600B2 (en) 2015-06-04 2018-04-17 Lg Electronics Inc. Refrigerator
US20160356542A1 (en) 2015-06-05 2016-12-08 Lg Electronics Inc. Refrigerator hinge and manufacturing method thereof
WO2016208193A1 (en) 2015-06-24 2016-12-29 パナソニックIpマネジメント株式会社 Gas-adsorbing device and evacuated insulating material using same
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
WO2017023095A1 (en) 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US20180299060A1 (en) 2015-10-19 2018-10-18 Samsung Electromics Co., Ltd. Refrigerator and manufacturing method therefor
US20180266620A1 (en) 2015-12-09 2018-09-20 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US20180313492A1 (en) 2016-03-02 2018-11-01 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
WO2017192121A1 (en) 2016-05-03 2017-11-09 Whirlpool Corporation Hinge support assembly for a vacuum insulated appliance cabinet
US20190101320A1 (en) 2016-05-03 2019-04-04 Whirlpool Corporation Hinge support assembly for a vacuum insulated appliance cabinet
WO2018044274A1 (en) 2016-08-30 2018-03-08 Whirlpool Corporation Hermetically sealed overmolded plastic thermal bridge breaker with liner and wrapper for a vacuum insulated structure
US20190128593A1 (en) 2016-08-30 2019-05-02 Whirlpool Corporation Hermetically sealed overmolded plastic thermal bridge breaker with refrigerator cabinet liner and wrapper for vacuum insulation
CN108354755A (en) 2018-03-22 2018-08-03 周少华 A kind of examination couch of the Neurology inspection with automatic disinfecting function

Non-Patent Citations (133)

* Cited by examiner, † Cited by third party
Title
Chinese Notice of Allowance dated Jun. 1, 2022 issued in CN Application No. 202110032072.4.
Chinese Office Action (with English translation) dated Aug. 13, 2019 issued in CN Application No. 201680045950.3.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045869.5.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045899.6.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045908.1.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680045935.9.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680046042.6.
Chinese Office Action (with English translation) dated Aug. 5, 2019 issued in CN Application No. 201680046048.3.
Chinese Office Action (with English translation) dated Jul. 15, 2019 issued in CN Application No. 201680045949.0.
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680045897.7.
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680045898.1.
Chinese Office Action (with English translation) dated Sep. 19, 2019 issued in CN Application No. 201680046047.9.
Chinese Office Action and Search Report dated Jul. 20, 2021 issued in Application 20101067100.X.
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248772.2.
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248789.8.
Chinese Office Action dated Apr. 6, 2021 issued in CN Application No. 202010248791.5.
Chinese Office Action dated Apr. 8, 2021 issued in CN Application No. 202010248891.8.
Chinese Office Action dated Aug. 2, 2021 issued in CN Application No. 202010972409.5.
Chinese Office Action dated Aug. 3, 2021 issued in CN Application No. 202010972419.9.
Chinese Office Action dated Aug. 30, 2023 issued in Application No. 202110718284.8.
Chinese Office Action dated Aug. 4, 2021 issued in CN Application No. 202010972442.8.
Chinese Office Action dated Dec. 3, 2021 issued in CN Application No. 202110032077.7.
Chinese Office Action dated Feb. 15, 2022 issued in CN Application No. 202010671000.X.
Chinese Office Action dated Feb. 18, 2022 issued in CN Application No. 202010975466.9.
Chinese Office Action dated Jun. 2, 2021 issued in CN Application No. 202010634146.7.
Chinese Office Action dated Jun. 23, 2021 issued in CN Application No. 202010669915.7.
Chinese Office Action dated Jun. 24, 2021 issued in CN Application No. 202010669926.5.
Chinese Office Action dated May 18, 2022 issued in CN Application No. 202110718315.X.
Chinese Office Action issued in Application No. 202010634146.7 dated Jun. 2, 2021.
European Office Action dated Jan. 11, 2021 issued in Application No. 16833313.6.
European Office Action dated Nov. 21, 2022 issued in EP Application No. 20168389.3.
European Search Report dated Apr. 3, 2019 issued in EP Application No. 16833325.0.
European Search Report dated Dec. 21, 2018 issued in EP Application No. 16833330.0.
European Search Report dated Feb. 13, 2019 issued in EP Application No. 16833309.4.
European Search Report dated Feb. 13, 2019 issued in EP Application No. 16833311.0.
European Search Report dated Feb. 20, 2019 issued in EP Application No. 16833313.6.
European Search Report dated Feb. 22, 2019 issued in EP Application No. 16833312.8.
European Search Report dated Feb. 26, 2019 issued in EP Application No. 16833324.3.
European Search Report dated Feb. 26, 2019 issued in EP Application No. 16833336.7.
European Search Report dated Feb. 8, 2022 issued in EP Application No. 21203498.7.
European Search Report dated Mar. 1, 2019 issued in EP Application No. 16833323.5.
European Search Report dated Mar. 1, 2019 issued in EP Application No. 16833338.3.
European Search Report dated Mar. 13, 2019 issued in EP Application No. 16833331.8.
European Search Report dated Mar. 15, 2019 issued in EP Application No. 16833326.8.
European Search Report dated Nov. 3, 2022 issued in EP Application No. 22151005.0.
European Search Report dated Oct. 11, 2021 issued in EP Application No. 21185349.4.
European Search Report dated Oct. 11, 2021 issued in EP Application No. 21185362.7.
Extended European Search Report dated Jul. 10, 2020 issued in Application 20168389.3.
International Search Report and Written Opinion dated Dec. 23, 2016 issued in Application No. PCT/KR2016/008512.
International Search Report and Written Opinion dated Dec. 23, 2016 issued in Application No. PCT/KR2016/008514.
International Search Report and Written Opinion dated Dec. 7, 2016 issued in Application No. PCT/KR2016/008516.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008466.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008468.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008469.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008470.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008501.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008502.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008505.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008519.
International Search Report and Written Opinion dated Nov. 21, 2016 issued in Application No. PCT/KR2016/008523.
International Search Report and Written Opinion dated Oct. 12, 2016 issued in Application No. PCT/KR2016/008465.
International Search Report and Written Opinion dated Oct. 12, 2016 issued in Application No. PCT/KR2016/008507.
Korean Notice of Allowance dated Jun. 1, 2022 issued in KR Application No. 10-2021-0085731.
Korean Notice of Allowance dated Nov. 2, 2022 issued in KR Application No. 10-2015-0109720.
Korean Office Action dated Aug. 1, 2021 issued in KR Application No. 10-2021-0085731.
Korean Office Action dated Aug. 8, 2022 issued in KR Application No. 10-2015-0109622.
Korean Office Action dated Jul. 31, 2023 issued in Application 10-2023-0020717.
Korean Office Action dated Jun. 5, 2020 issued in Application 10-2017-0093784.
Korean Office Action dated Nov. 1, 2023 issued in Application 10-2023-0015566.
Korean Office Action dated Nov. 13, 2023 issued in Application No. 10-2023-0014241.
Machine translation of EP 2 952 839.
Russian Office Action dated Sep. 25, 2018 issued in RU Application No. 2018107646.
U.S. Appl. No. 15/749,132, filed Jan. 31, 2018.
U.S. Appl. No. 15/749,156, filed Jan. 31, 2018.
U.S. Appl. No. 16/710,720, filed Dec. 11, 2019.
U.S. Appl. No. 16/929,523, filed Jul. 15, 2020.
U.S. Appl. No. 16/942,213, filed Jul. 29, 2020.
U.S. Appl. No. 16/942,262, filed Jul. 29, 2020.
U.S. Appl. No. 16/953,846, filed Nov. 20, 2020.
U.S. Appl. No. 17/021,582, filed Sep. 15, 2020.
U.S. Appl. No. 17/030,806, filed Sep. 24, 2020.
U.S. Appl. No. 17/072,231, filed Oct. 16, 2020.
U.S. Appl. No. 17/114,950, filed Dec. 8, 2020.
U.S. Appl. No. 17/134,911, filed Dec. 28, 2020.
U.S. Appl. No. 17/155,430, filed Jan. 22, 2021.
U.S. Appl. No. 17/170,005, filed Feb. 8, 2021.
U.S. Appl. No. 17/411,659, filed Aug. 25, 2021.
U.S. Appl. No. 17/582,596, filed Jan. 24, 2022.
U.S. Appl. No. 17/749,679, filed May 20, 2022.
U.S. Appl. No. 17/939,507, filed Sep. 7, 2022.
U.S. Appl. No. 17/980,088, filed Nov. 3, 2022.
U.S. Appl. No. 18/091,040, filed Dec. 29, 2022.
U.S. Appl. No. 18/091,203, filed Dec. 29, 2022.
U.S. Appl. No. 18/095,658, filed Jan. 11, 2023.
U.S. Appl. No. 18/095,658, filed May 20, 2022.
U.S. Notice of Allowance dated Mar. 23, 2023 issued in U.S. Appl. No. 16/953,846.
U.S. Office Action dated Apr. 27, 2023 issued in U.S. Appl. No. 17/072,231.
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,136.
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,139.
U.S. Office Action dated Jun. 13, 2019 issued in related U.S. Appl. No. 15/749,142.
U.S. Office Action dated Mar. 20, 2023 issued in co-pending related U.S. Appl. No. 17/030,806.
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,143.
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,147.
U.S. Office Action dated Oct. 17, 2019 issued in U.S. Appl. No. 15/749,162.
U.S. Office Action dated Oct. 4, 2019 issued in related U.S. Appl. No. 15/749,140.
U.S. Office Action dated Sep. 1, 2020 issued in U.S. Appl. No. 15/749,156.
U.S. Office Action issued in Application No. 15/749,132 dated Mar. 30, 2021.
U.S. Office Action issued in U.S. Appl. No. 15/749,156 dated Jun. 28, 2021.
United States Notice of Allowance dated Apr. 15, 2020 issued in U.S. Appl. No. 15/749,140.
United States Notice of Allowance dated Aug. 10, 2020 issued in U.S. Appl. No. 15/749,154.
United States Notice of Allowance dated Oct. 21, 2020 issued in U.S. Appl. No. 15/749,154.
United States Office Action dated Apr. 15, 2020 issued in U.S. Appl. No. 15/749,136.
United States Office Action dated Dec. 10, 2019 issued in U.S. Appl. No. 15/749,132.
United States Office Action dated Dec. 22, 2022 issued in co-pending related U.S. Appl. No. 16/953,846.
United States Office Action dated Feb. 18, 2020 issued in U.S. Appl. No. 15/749,146.
United States Office Action dated Jan. 18, 2023 issued in co-pending related U.S. Appl. No. 16/942,213.
United States Office Action dated Jul. 13, 2022 issued in co-pending related U.S. Appl. No. 17/134,911.
United States Office Action dated Jul. 26, 2022 issued in co-pending related U.S. Appl. No. 17/030,806.
United States Office Action dated Jul. 7, 2022 issued in co-pending related U.S. Appl. No. 16/710,720.
United States Office Action dated Jun. 10, 2022 issued in co-pending related U.S. Appl. No. 16/942,213.
United States Office Action dated Jun. 28, 2021 issued in co-pending related U.S. Appl. No. 15/749,156.
United States Office Action dated Mar. 2, 2022 issued in co-pending related U.S. Appl. No. 17/170,005.
United States Office Action dated Mar. 20, 2020 issued in U.S. Appl. No. 15/749,162.
United States Office Action dated Mar. 24, 2020 issued in U.S. Appl. No. 15/749,154.
United States Office Action dated Mar. 25, 2020 issued in U.S. Appl. No. 15/749,156.
United States Office Action dated Mar. 27, 2020 issued in U.S. Appl. No. 15/749,149.
United States Office Action dated Mar. 31, 2022 issued in co-pending related U.S. Appl. No. 16/929,523.
United States Office Action dated Nov. 25, 2022 issued in co-pending related U.S. Appl. No. 17/411,659.
United States Office Action dated Oct. 19, 2021 issued in co-pending related U.S. Appl. No. 17/021,582.
United States Office Action dated Oct. 26, 2021 issued in co-pending related U.S. Appl. No. 16/942,213.
United States Office Action dated Oct. 5, 2021 issued in co-pending related U.S. Appl. No. 16/942,262.
United States Office Action dated Oct. 6, 2022 issued in co-pending related U.S. Appl. No. 17/072,231.
United States Office Action dated Sep. 20, 2019 issued in U.S. Appl. No. 15/749,149.

Also Published As

Publication number Publication date
US20210140705A1 (en) 2021-05-13
CN111238146A (en) 2020-06-05
CN111238145B (en) 2022-05-13
CN111238143A (en) 2020-06-05
CN111238144A (en) 2020-06-05
KR102665225B1 (en) 2024-05-13
CN107923700A (en) 2018-04-17
US20180224196A1 (en) 2018-08-09
EP3332191A4 (en) 2019-05-01
EP3332191B1 (en) 2023-10-04
CN107923700B (en) 2020-04-03
CN111238146B (en) 2022-05-10
KR20230022927A (en) 2023-02-16
KR20170016191A (en) 2017-02-13
CN111238143B (en) 2022-06-28
CN111238144B (en) 2022-05-13
US10928119B2 (en) 2021-02-23
KR102498210B1 (en) 2023-02-09
WO2017023089A1 (en) 2017-02-09
CN111238145A (en) 2020-06-05
EP3332191A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
US20230392854A1 (en) Vacuum adiabatic body and refrigerator
US11927386B2 (en) Vacuum adiabatic body and refrigerator
US11573048B2 (en) Vacuum adiabatic body and refrigerator
US11585591B2 (en) Vacuum adiabatic body and refrigerator
US20240263869A1 (en) Vacuum adiabatic body and refrigerator
US11920723B2 (en) Vacuum adiabatic body and refrigerator
US20220163163A1 (en) Vacuum adiabatic body and refrigerator
US11365931B2 (en) Vacuum adiabatic body and refrigerator
EP3913308A1 (en) Vacuum adiabatic body and refrigerator
US20230168025A1 (en) Vacuum adiabatic body and refrigerator

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE