JP2008045580A - Vacuum heat insulating panel and equipment equipped therewith - Google Patents
Vacuum heat insulating panel and equipment equipped therewith Download PDFInfo
- Publication number
- JP2008045580A JP2008045580A JP2006219138A JP2006219138A JP2008045580A JP 2008045580 A JP2008045580 A JP 2008045580A JP 2006219138 A JP2006219138 A JP 2006219138A JP 2006219138 A JP2006219138 A JP 2006219138A JP 2008045580 A JP2008045580 A JP 2008045580A
- Authority
- JP
- Japan
- Prior art keywords
- insulation panel
- heat insulation
- vacuum
- vacuum heat
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Details Of Fluid Heaters (AREA)
- Electric Ovens (AREA)
- Cookers (AREA)
Abstract
Description
本発明は、熱影響を遮断する真空断熱パネルに関し、特に高温部発熱体等に使用する真空断熱パネルと、その製造方法及びそれを用いた機器に関する。 The present invention relates to a vacuum heat insulation panel that blocks heat influence, and more particularly, to a vacuum heat insulation panel used for a high temperature heating element, a manufacturing method thereof, and an apparatus using the same.
近年、地球温暖化に対する観点から、家電品を含め種々の製品に対し消費電力等のエネルギー削減が望まれている。例えば、冷蔵庫の消費電力は庫内の負荷量が一定であれば、冷却用圧縮機の効率や、熱漏洩量に関与する断熱材の断熱性能を向上させることにより、消費するエネルギーが削減できる。 In recent years, from the viewpoint of global warming, energy reduction such as power consumption is desired for various products including home appliances. For example, if the amount of power consumed by the refrigerator is constant, the energy consumed can be reduced by improving the efficiency of the cooling compressor and the heat insulating performance of the heat insulating material related to the amount of heat leakage.
これまで、熱伝導率を低減した高性能な真空断熱パネルが開発され、冷蔵庫や冷凍庫等に多く使用されてきた。特に、真空断熱パネルは発泡ウレタン等の断熱材に比べ熱伝導率が非常に優れる。真空断熱パネルの構造は、芯材となるコア材,アウトガスを吸着するゲッター剤を外被材に入れ、内部を減圧するものである。現在用いられている外被材は、汎用品の安価な有機フィルムを用いてガスバリヤ層の全面に接着剤で接着したラミネート法で作製している。ガスバリヤ層としてアルミ薄箔,アルミ蒸着,エバールフィルム,ポリエステルフィルム等を張り合わせ、保護層にナイロンフィルムを貼り付けるものである。溶着層にはポリエチレンフィルムやポリプロピレンフィルムを用いる。 Until now, high-performance vacuum insulation panels with reduced thermal conductivity have been developed and used in many refrigerators and freezers. In particular, the vacuum heat insulation panel has an excellent thermal conductivity compared to a heat insulating material such as urethane foam. The structure of the vacuum heat insulation panel is such that a core material serving as a core material and a getter agent that adsorbs outgas is put in a jacket material, and the inside is decompressed. The jacket material currently used is produced by a laminating method in which a general-purpose inexpensive organic film is used and the gas barrier layer is adhered to the entire surface with an adhesive. As the gas barrier layer, an aluminum thin foil, aluminum vapor deposition, Eval film, polyester film, etc. are bonded together, and a nylon film is pasted on the protective layer. A polyethylene film or a polypropylene film is used for the welding layer.
電子レンジ,加熱調理機,恒温槽,複写機,レーザープリンタ,車など、高温部材の周辺へも真空断熱パネルの適用が望まれており、耐熱性を有する真空断熱材の開発が要求されている。 The application of vacuum insulation panels to the periphery of high-temperature components such as microwave ovens, heating cookers, thermostats, photocopiers, laser printers, cars, etc. is desired, and the development of heat-resistant vacuum insulation materials is required. .
耐熱性の向上には、外被材の耐熱化が必要である。市販の高温用の外被材として、レトルト食品用であって、熱溶着層にプロピレンホモポリマー(CPP)を用いたラミネートフィルムがある。CPP層を熱溶着に用いた外被材の耐熱温度は約120℃である特開
2004−332929号公報(特許文献1)は熱溶着層,ガスバリヤ層,保護層を有するラミネートの外被材を備える真空断熱材が記載されており、熱溶着層として融点の高いフィルムを使用することが記載されている。
In order to improve heat resistance, it is necessary to increase the heat resistance of the jacket material. As a commercially available high-temperature coating material, there is a laminate film for retort foods and using a propylene homopolymer (CPP) as a heat-welded layer. Japanese Patent Application Laid-Open No. 2004-332929 (Patent Document 1), in which the heat resistance temperature of the jacket material using the CPP layer for heat welding is about 120 ° C., is a laminate jacket material having a heat welding layer, a gas barrier layer, and a protective layer. The vacuum heat insulating material provided is described, and it is described that a film having a high melting point is used as the heat welding layer.
特開2005−114013号公報(特許文献2)には断熱材の最外層に難燃性の自己消火性フィルムを備えることが記載されている。 JP-A-2005-1114013 (Patent Document 2) describes that an outermost layer of a heat insulating material is provided with a flame-retardant self-extinguishing film.
特開2005−114014号公報(特許文献3)は、接着層をアクリル,ポリエステル,エポキシ,シリコーン系の接着剤とすることが記載されている。 Japanese Patent Laying-Open No. 2005-114014 (Patent Document 3) describes that an adhesive layer is made of an acrylic, polyester, epoxy, or silicone adhesive.
特開2001−141179号公報(特許文献4)は、ガスバリヤ層に金属を使用した真空断熱材について記載されている。 Japanese Patent Application Laid-Open No. 2001-141179 (Patent Document 4) describes a vacuum heat insulating material using a metal for a gas barrier layer.
例えばオーブンレンジやクッキングヒータ等に使用する断熱パネルは少なくとも150℃以上の耐熱性が必要である。しかしながら、従来では耐熱性が高くコストの安い真空断熱材は提供されていない。 For example, a heat insulating panel used for a microwave oven, a cooking heater or the like needs to have a heat resistance of at least 150 ° C. or more. However, conventionally, a vacuum heat insulating material having high heat resistance and low cost has not been provided.
特許文献1ないし4に記載の真空断熱パネルは、耐熱フィルムでラミネートされる構成であり、高温環境下でアウトガスが発生するために真空断熱パネルの熱伝導率が高くなる。また、耐熱フィルムが非常に高価なことから、外被材のコストが高く問題となる。
The vacuum heat insulation panels described in
また、高温用の外被材として、アルミラミネート薄箔等の金属を溶接する方法がある。しかしながら、例えば200×1500mmのような現在の大きさにするのは困難である。その理由は、外被材の金属箔が厚くなり熱伝導率が高くなったり、外被材が大きく溶接時の平行を保つことが困難になる問題が生ずるからである。 Moreover, there exists a method of welding metals, such as an aluminum laminate thin foil, as a jacket material for high temperature. However, it is difficult to make the current size such as 200 × 1500 mm, for example. The reason is that the metal foil of the jacket material becomes thick and the thermal conductivity becomes high, or there are problems that the jacket material is large and it is difficult to keep parallel during welding.
また融点200℃以上のフッ素系フィルムの熱溶着層は、耐熱性や難燃性に優れるものの、非粘着性(接触角が100〜115度でシール剤として接着不可)のため、外被材の熱溶着層に用いると接着強度が低下し、断熱効果の維持がされない可能性がある。 Moreover, although the heat-bonding layer of the fluorine-based film having a melting point of 200 ° C. or higher is excellent in heat resistance and flame retardancy, it is non-adhesive (contact angle is 100 to 115 degrees and cannot be bonded as a sealant), so If it is used for the heat-welded layer, the adhesive strength is lowered and the heat insulation effect may not be maintained.
そこで本発明の目的は、安価で断熱効果の高い真空断熱パネルを提供することにある。 Therefore, an object of the present invention is to provide a vacuum heat insulating panel that is inexpensive and has a high heat insulating effect.
上記本願の課題を解決する発明の特徴は、一対の金属箔と、前記金属箔間に一または複数の開口部を有する形状に形成されまたは配置された接着層と、前記開口部に重ねて配置され、結合剤を含まない無機繊維の芯材と、ガス成分を吸着するゲッター剤とを有し、前記芯材及びゲッター剤を前記金属箔で被覆して減圧封止した真空パネルである。 The feature of the invention that solves the problem of the present application is that a pair of metal foils, an adhesive layer formed or arranged in a shape having one or a plurality of openings between the metal foils, and arranged over the openings. The vacuum panel has an inorganic fiber core material that does not contain a binder and a getter agent that adsorbs a gas component, and the core material and the getter agent are covered with the metal foil and sealed under reduced pressure.
前記溶着層は、溶着を行う金属箔の周縁部に額縁状に形成する。従来の前面に付す場合に比して、真空断熱パネルの厚みを薄くできると共に、コストを低減することが可能となる。なお、一の金属箔に複数の開口を設けた枠状の溶着層を形成し、それぞれに芯材等を配置して内部が複数に区切られた真空断熱パネルとすることも可能である。 The said welding layer is formed in frame shape in the peripheral part of the metal foil which welds. The thickness of the vacuum heat insulation panel can be reduced and the cost can be reduced as compared with the case of attaching to the conventional front surface. It is also possible to form a vacuum heat insulating panel in which a frame-like welded layer having a plurality of openings is formed in one metal foil, and a core material or the like is disposed on each of the layers, and the inside is divided into a plurality of sections.
溶着層は、酸素透過度の低い有機高分子を用いる。特に、有機高分子がポリイミド,ポリアミドイミド,ポリイミドシロキサン,ポリアミド樹脂の少なくともいずれかが好ましい。なお、ワニスを用いて溶着層を形成する場合は、ワニスの段階で、有機高分子化反応が完了していることが好ましい。 An organic polymer having a low oxygen permeability is used for the weld layer. In particular, the organic polymer is preferably at least one of polyimide, polyamideimide, polyimidesiloxane, and polyamide resin. In addition, when forming a welding layer using a varnish, it is preferable that the organic-polymerization reaction is completed in the stage of a varnish.
前記芯材は、平均繊維径が3〜5μmのグラスウールが好ましい。繊維径が大きくなると、熱伝導率が大きくなり、繊維径が小さいと取り扱いが不便になるからである。また、芯材はバインダー等の結合材を含まないものとする。バインダーよりアウトガスが発生し、熱伝導率が上がるのを避けるためである。 The core material is preferably glass wool having an average fiber diameter of 3 to 5 μm. This is because the thermal conductivity increases as the fiber diameter increases, and the handling becomes inconvenient when the fiber diameter is small. The core material does not include a binder such as a binder. This is to prevent outgassing from the binder and increase the thermal conductivity.
金属箔はアルミ合金箔,ステンレス箔が好ましい。頻繁に使用されるアルミ箔に比して、熱伝導率を低くすることが可能である。厚さは、ステンレス箔では20〜100μmの箔厚又はアルミ合金箔では15〜30μmの箔厚がよい。本発明によれば、従来よりもやや厚い金属箔でも使用が可能となる。 The metal foil is preferably an aluminum alloy foil or a stainless steel foil. Compared with frequently used aluminum foil, the thermal conductivity can be lowered. The thickness of the stainless steel foil is preferably 20 to 100 μm, or the aluminum alloy foil is preferably 15 to 30 μm. According to the present invention, it is possible to use a metal foil that is slightly thicker than before.
ラミネートフィルムはアルミ箔との組み合わせでよく使用されており、本願発明についても同様にラミネート加工を付しても問題はないが、必須ではない。ラミネートフィルムをなくすことにより、製造工程やコストの低減を図ることが可能である。 Laminate films are often used in combination with aluminum foil, and there is no problem even if the laminate processing is applied to the present invention, but it is not essential. By eliminating the laminate film, it is possible to reduce the manufacturing process and cost.
上記構成によれば、高温条件での使用が可能であって、断熱性が高くかつ価格の安い真空断熱パネルが提供可能である。 According to the above configuration, it is possible to provide a vacuum heat insulating panel that can be used under high temperature conditions, has high heat insulating properties, and is inexpensive.
さらに、本発明の断熱パネルを各種の高温部を有する製品に採用することにより、消費エネルギーを低減することが可能となる。特に、恒温槽,オーブンレンジやIHクッキングヒータなど機器又は機器内部が少なくとも150℃程度の高温の発熱部の熱影響を遮断することにより、消費電力量が低減できる。 Furthermore, energy consumption can be reduced by adopting the heat insulating panel of the present invention in products having various high temperature parts. In particular, the amount of power consumption can be reduced by blocking the thermal effect of a high-temperature heat generating portion of at least about 150 ° C. inside the device such as a thermostatic bath, a microwave oven, an IH cooking heater, or the inside of the device.
本発明の真空断熱パネル及び該真空断熱パネルを挿入した機器の構造と作製について、図面を参照して説明する。図1(a)は、従来真空断熱パネルの構造、図1(b)は外被材及び溶着部の断面模式図を示す。真空断熱パネル1内に無機繊維の芯材2とゲッター剤3を外被材4,溶着部5で減圧封止される構成の真空断熱パネルである。図2(a)は、本発明の真空断熱パネルの構造、図2(b)に外被材及び溶着部の断面模式図を示す。真空断熱パネル6内に結合剤を含有しない無機繊維材の芯材2とゲッター剤3を外被材7,溶着部8で減圧封止される構成の真空断熱パネルである。また、図2(c)には、金属箔9に溶着部8を額縁状形成した、溶着層形成部の斜視図を示す。
The structure and production of the vacuum heat insulation panel of the present invention and a device in which the vacuum heat insulation panel is inserted will be described with reference to the drawings. Fig.1 (a) shows the structure of the conventional vacuum heat insulation panel, FIG.1 (b) shows the cross-sectional schematic diagram of a jacket material and a welding part. This is a vacuum heat insulation panel having a configuration in which an inorganic
溶着層としては額縁状に構成されるもので、太さは約10〜30mm程、厚み約10〜
50μm程であることが好ましい。溶着層と外被材との間には、接着性を高める層や外被材の強度を高める層など、予め他の目的の層を設けてもよい。上記構成によれば、従来外被材の作製法のように高価格の耐熱フィルムを全面にラミネートすることがなく、価格が安くなる。また、接着強度が優れ、アウトガスの発生が抑えられるため、耐熱性が向上する。
As a welding layer, it is comprised in frame shape, thickness is about 10-30 mm, and thickness is about 10-10 mm.
It is preferably about 50 μm. Between the welding layer and the jacket material, a layer for other purposes such as a layer for improving adhesion and a layer for improving the strength of the jacket material may be provided in advance. According to the above configuration, a high-priced heat-resistant film is not laminated on the entire surface as in the conventional method of manufacturing a jacket material, and the price is reduced. Moreover, since the adhesive strength is excellent and generation of outgas is suppressed, heat resistance is improved.
結合剤を含まない無機繊維の芯材、及びゲッター剤を、金属薄箔で構成した外被材で覆い、内部を減圧して封止した真空断熱パネルである。特に、外被材の周縁部に、溶着層として枠状の有機高分子を用いる。シール層のみに酸素透過度が優れる有機高分子を使用することで各種のガス透過を防ぐことができる。また、アウトガスを抑制でき、経時劣化が抑制できる。さらに低コスト化を図ることができる。 This is a vacuum heat insulation panel in which a core material of inorganic fiber not containing a binder and a getter agent are covered with a jacket material made of a thin metal foil, and the inside is decompressed and sealed. In particular, a frame-like organic polymer is used as a welding layer at the peripheral edge of the jacket material. Various gas permeation can be prevented by using an organic polymer having excellent oxygen permeability only for the seal layer. Moreover, outgas can be suppressed and deterioration with time can be suppressed. Further cost reduction can be achieved.
溶着層は、酸素透過度の小さい有機高分子を用いる。酸素透過度が500cc/m2・day以下のものが好ましい。ここで、酸素透過度とはH2O,CO2,O2 ガス等の透過指標である。溶着層として、ポリイミド,ポリアミドイミド,ポリイミドシロキサン,ポリアミド樹脂の少なくともいずれかを用いることが好ましい。これらの樹脂は熱硬化性樹脂であるため、軟化温度がなく、高温での使用に適する。また、特に、ガラス転移温度が160〜230℃であるものが好ましい。ガラス転移温度の比較的低いポリイミド等の有機高分子を用いることで、約200℃の低温でも熱圧着が容易となる。 An organic polymer having a low oxygen permeability is used for the weld layer. The oxygen permeability is preferably 500 cc / m 2 · day or less. Here, the oxygen permeability is a permeation index such as H 2 O, CO 2 , O 2 gas. As the welding layer, it is preferable to use at least one of polyimide, polyamideimide, polyimidesiloxane, and polyamide resin. Since these resins are thermosetting resins, they do not have a softening temperature and are suitable for use at high temperatures. In particular, the glass transition temperature is preferably 160 to 230 ° C. By using an organic polymer such as polyimide having a relatively low glass transition temperature, thermocompression bonding becomes easy even at a low temperature of about 200 ° C.
このような構成によれば、高温での劣化が少なく、耐熱性の高い真空断熱パネルが得られる。また、接着の強度が強い。 According to such a configuration, a vacuum heat-insulating panel having little heat deterioration and high heat resistance can be obtained. In addition, the adhesive strength is strong.
ここで、ポリイミド,ポリアミドイミド,ポリイミドシロキサン,ポリアミドは溶剤可溶であり、ワニスにできる。溶剤にはN−メチル−2−ピロリドン,ジメチルアセトアミド,ジメチルホルムアミド,ジメチルスルホキサイド,スルホラン,アニソール,テトラヒドロフラン,ジオキサン,ブチルラクトン等が用いられる。 Here, polyimide, polyamideimide, polyimidesiloxane, and polyamide are solvent-soluble and can be made into a varnish. As the solvent, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, sulfolane, anisole, tetrahydrofuran, dioxane, butyllactone and the like are used.
ポリイミド等のワニスは、溶剤中に原料、例えばジアミン成分と酸成分とをほぼ等モルで加え、直接合成できる。 A varnish such as polyimide can be directly synthesized by adding raw materials, for example, a diamine component and an acid component in an approximately equimolar amount to a solvent.
ポリイミド樹脂を例に、以下説明する。一般的にポリイミドはジアミン成分と酸成分を反応させて合成する。ポリイミド樹脂は室温付近で反応させるとポリイミド前駆体ワニスが得られ、180℃付近で反応させるとポリイミドワニスが合成できる。 A description will be given below by taking a polyimide resin as an example. Generally, polyimide is synthesized by reacting a diamine component and an acid component. When the polyimide resin is reacted at around room temperature, a polyimide precursor varnish is obtained, and when reacted at around 180 ° C., a polyimide varnish can be synthesized.
ポリイミド樹脂を通常使用する場合、例えば銅箔積層基板のフレキシブルプリント配線板,半導体パッシベーション等にポリイミドを用いる場合には、ポリイミド前駆体タイプのポリイミドが適用され、塗膜形成後に250℃以上の高温で加熱脱水閉環させることができる。 When polyimide resin is usually used, for example, when polyimide is used for flexible printed wiring board of copper foil laminated substrate, semiconductor passivation, etc., polyimide precursor type polyimide is applied and at a high temperature of 250 ° C. or higher after coating film formation. It can be heated and dehydrated.
しかし、本願で用いる真空断熱用の外被材シール層としては、ポリイミド前駆体よりもポリイミドワニスが好適である。ポリイミド前駆体ワニスを外被材の熱溶着層に用いると、イミド化時の脱水閉環により水のアウトガスが発生し、ゲッター剤の量を多くしたりする必要が生じるからである。また、200℃程の温度で熱圧着のシールをした際、直接のポリイミドワニスの場合と比して接着強度が劣るためである。 However, a polyimide varnish is more preferable than a polyimide precursor as a vacuum sealing material sealing layer used in the present application. This is because when the polyimide precursor varnish is used for the heat-welded layer of the jacket material, water outgassing occurs due to dehydration ring closure during imidization, and the amount of getter agent needs to be increased. Also, when thermocompression sealing is performed at a temperature of about 200 ° C., the adhesive strength is inferior to that of a direct polyimide varnish.
本発明に使用するポリイミド等の樹脂は、原料から1段階で直接ワニス(反応液)が合成でき、ワニスの段階でイミド化が完了して、保存安定性に優れたワニスが好ましい。 The resin such as polyimide used in the present invention is preferably a varnish that can synthesize a varnish (reaction solution) directly from the raw material in one stage, complete imidization at the varnish stage, and has excellent storage stability.
ポリイミド合成のためのジアミン成分には例えば、3,4′−ジアミノジフェニルエーテル、3,3′−ジアミノジフェニルエーテル、3,3′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルメタン、3,3′−ジアミノジフェニルプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[3−(3−アミノフェノキシ)フェニル]スルホン、1,7−ジアミノヘプタン、1,6−ジアミノヘキサン、4,4′−メチレンビス
(2−メチルシクロヘキサンアミン),イソフタル酸ジヒドラジド,セバシン酸ジヒドラジド,コハク酸ジヒドラジド,ビス(3−アミノプロピル)テトラメチルジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン等をあげることができる。
Examples of diamine components for polyimide synthesis include 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 3,3'-diaminodiphenyl. Propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [3- (3-aminophenoxy) phenyl] sulfone, 1, 7-diaminoheptane, 1,6-diaminohexane, 4,4'-methylenebis (2-methylcyclohexaneamine), isophthalic acid dihydrazide, sebacic acid dihydrazide, succinic acid dihydrazide, bis (3-aminopropyl) tetramethyldisiloxane, 1,1,3,3-tetramethyl- , 1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (4-aminoethyl) can be mentioned disiloxane like.
ポリイミド合成のための酸成分には例えば、ビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物,シクロペンタンテトラカルボン酸二無水物,イソフタル酸クロライド,ステアリン酸クロライド等を用いて合成されるものである。 Examples of the acid component for the synthesis of polyimide include bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 3,3 ', 4,4'- Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride , Isophthalic acid chloride, stearic acid chloride and the like.
溶着層は、150℃での接着強度が10N/15mm以上のものがよい。高温環境下でもシール溶着部の接着強度が優れ、熱伝導率が経時劣化しにくいからである。真空断熱パネルの耐久性が向上する。なお、接着強度はステンレス箔やアルミ合金箔に有機高分子の塗布膜等を形成し、テンシロンを用いて評価した90°剥離力で確認した。 The weld layer preferably has an adhesive strength at 150 ° C. of 10 N / 15 mm or more. This is because the adhesive strength of the seal welded portion is excellent even in a high temperature environment, and the thermal conductivity is hardly deteriorated with time. The durability of the vacuum insulation panel is improved. The adhesive strength was confirmed by a 90 ° peeling force evaluated using Tensilon after forming a coating film of an organic polymer on a stainless steel foil or an aluminum alloy foil.
無機繊維材は、グラスウールが好ましい。グラスウールの平均繊維径により熱伝導率やコストが大きく異なる。平均繊維径が大きいグラスウールはコストが安価で好ましい。また、芯材の厚みを出しやすく、扱いが容易である。また、平均繊維径が小さいグラスウールは、繊維が同一方向に配列しにくく、接触熱抵抗が大きいため熱伝導率が低く好ましい。 The inorganic fiber material is preferably glass wool. Thermal conductivity and cost vary greatly depending on the average fiber diameter of glass wool. Glass wool having a large average fiber diameter is preferable because of its low cost. Moreover, the thickness of the core material can be easily obtained and handled easily. Further, glass wool having a small average fiber diameter is preferable because the fibers are less likely to be arranged in the same direction and the contact thermal resistance is large, so that the thermal conductivity is low.
本願発明には、無機繊維は3〜5μmの平均繊維径を有するものが特に好ましい。この繊維径のものは、熱流路がジグザクとなり、接触抵抗以外でも熱抵抗を増大させ、熱伝導率を低くさせることができる。 In the present invention, the inorganic fibers are particularly preferably those having an average fiber diameter of 3 to 5 μm. With this fiber diameter, the heat flow path becomes zigzag, and the thermal resistance can be increased and the thermal conductivity can be lowered other than the contact resistance.
無機繊維材は、結合材を含まないものが好ましい。結合材よりアウトガスが生じるものは、熱伝導率の維持のためにゲッター剤を多くする必要があるためである。 The inorganic fiber material preferably does not contain a binder. The reason why outgas is generated from the binder is that it is necessary to increase the amount of getter agent in order to maintain the thermal conductivity.
上述のとおり、内部のガスを吸着し熱伝導率を低く保つゲッター剤を芯材と共に封止する必要がある。真空断熱パネルの信頼性を高めるためである。ゲッター剤は必要に応じてドーソナイト,ハイドロタルサイト,金属水酸化物のガス吸着剤等、又はモレキュラ−シ−ブス,シリカゲル,酸化カルシウム,ゼオライト,活性炭,水酸化カリウム,水酸化ナトリウム,水酸化リチウム等の水分吸着剤等をそれぞれ、または混合して使用することが好ましい。 As described above, it is necessary to seal the getter agent that adsorbs the internal gas and keeps the thermal conductivity low together with the core material. This is to increase the reliability of the vacuum insulation panel. Getter agent may be dosorbite, hydrotalcite, metal hydroxide gas adsorbent, etc., or molecular sieves, silica gel, calcium oxide, zeolite, activated carbon, potassium hydroxide, sodium hydroxide, lithium hydroxide as required. It is preferable to use a water adsorbent or the like such as a mixture or a mixture thereof.
金属薄箔は、従来よりもやや厚い金属箔でも使用することができる。その結果、突き刺し切り裂きに対する高強度化やコストの低減を図ることができる。特にステンレス箔又はアルミ合金箔のいずれかが好ましい。熱伝導率のほか、強度や取り扱い性の観点より、ステンレス箔厚みが20〜100μm、アルミ合金箔の厚みは15〜30μmがよい。 The metal foil can be used even a metal foil that is slightly thicker than before. As a result, it is possible to increase the strength against piercing and tearing and reduce the cost. In particular, either stainless steel foil or aluminum alloy foil is preferable. In addition to thermal conductivity, the thickness of the stainless steel foil is preferably 20 to 100 μm and the thickness of the aluminum alloy foil is preferably 15 to 30 μm from the viewpoints of strength and handleability.
なお、金属箔を伝わって流れ込む熱量が少ない金属である、鉄,ニッケル,スズ,チタン,炭素鋼等を併用してもよい。また、アルミニウム,コバルト,ニッケル,亜鉛等の金属蒸着の併用してもかまわない。 In addition, you may use together iron, nickel, tin, titanium, carbon steel etc. which are metals with little heat amount which flows in along metal foil. Moreover, you may use together metal vapor deposition, such as aluminum, cobalt, nickel, and zinc.
溶着層の製法は特に限定はなく、適宜溶液塗布膜,フィルムの貼り付け,不織布等の含浸体の貼り付け等により行うことができる。 The method for producing the weld layer is not particularly limited, and can be appropriately performed by applying a solution coating film, a film, or an impregnated body such as a nonwoven fabric.
溶液塗布膜はスクリーン印刷,ロールコータ等により製造する。フィルムはガラス基板上にワニスをキャスティングし、90℃で乾燥した後、塗膜を引き剥がして得る。不織布等の含浸体は、強化繊維からなる補強材に溶液を含浸し、プリプレグ等として用いる。補強材はシート状,不織布状,繊維状のものを使用できる。特にガラス繊維を用いると熱伝導率が小さく好ましい。 The solution coating film is manufactured by screen printing, roll coater or the like. The film is obtained by casting a varnish on a glass substrate, drying at 90 ° C., and then peeling off the coating film. An impregnated body such as a nonwoven fabric is used as a prepreg or the like by impregnating a reinforcing material composed of reinforcing fibers with a solution. The reinforcing material can be in the form of a sheet, non-woven fabric, or fiber. In particular, the use of glass fiber is preferable because of its low thermal conductivity.
溶着層の溶着・封止は、熱圧着により行われる。熱圧着の手段には特に制限はなく、溶着層が固定されればよい。例えば熱プレス,熱ロール等が上げられる。特に真空プレス法を採用すると、減圧状態で加熱及び加圧ができ、欠陥のない外被材を作製できる。 The welding and sealing of the weld layer is performed by thermocompression bonding. There is no restriction | limiting in particular in the means of thermocompression bonding, What is necessary is just to fix a welding layer. For example, a hot press, a hot roll, etc. are raised. In particular, when a vacuum pressing method is employed, heating and pressurization can be performed in a reduced pressure state, and a jacket material having no defects can be produced.
本発明の真空断熱パネルは、家電品や建材等、断熱が必要な部位に適宜使用できる。特に、オーブン,レンジ,クッキングヒータ,給湯器等の高温部を保温する必要があるもの、また高温部と低温部を分離する必要のあるものに好適に採用可能である。 The vacuum heat insulation panel of the present invention can be appropriately used for a part requiring heat insulation, such as home appliances and building materials. In particular, it can be suitably used for an oven, a range, a cooking heater, a water heater, or the like that needs to keep a high temperature part, and a thing that needs to separate a high temperature part and a low temperature part.
例として、家電品としては、冷蔵庫,エアコン室外機等、建材としては壁材,浴室周り、その他自動車・鉄道等の車両や医療用検査機器,恒温容器等が挙げられる。なお、本発明は高温の150℃以上の発熱部を有する製品等に限らず、150℃以下で使用しても耐久性に優れ断熱を維持できるので好ましい。 Examples of home appliances include refrigerators and air conditioner outdoor units, and building materials include wall materials, bathroom surroundings, other vehicles such as automobiles and railroads, medical inspection equipment, and thermostatic containers. The present invention is not limited to a product having a high-temperature heat generating portion of 150 ° C. or higher, and is preferable because it has excellent durability and heat insulation even when used at 150 ° C. or lower.
また、最高温度を220℃程度以下のものとすることが好ましい。有機高分子の溶着層の劣化や変質が促進され、接着性が維持できなくなる場合が生ずるからである。 The maximum temperature is preferably about 220 ° C. or lower. This is because deterioration or alteration of the organic polymer weld layer is promoted, and adhesion may not be maintained.
図3は、本発明の真空断熱パネル6を挿入した恒温槽の断面模式図を示す。恒温槽の扉10と庫内スペース12の周辺に使用した例である。
FIG. 3 is a schematic cross-sectional view of a thermostatic chamber into which the vacuum
図4は、オーブンレンジの断面模式図を示す。オーブンレンジの扉14と庫内スペース13の内側に、本発明の真空断熱パネル6を挿入した例である。
FIG. 4 shows a schematic cross-sectional view of the microwave oven. This is an example in which the vacuum
図5は、IHクッキングヒータの断面模式図を示す。IHクッキングヒータのグリル周辺部に、本発明の真空断熱パネル6を挿入する。
FIG. 5 shows a schematic cross-sectional view of the IH cooking heater. The vacuum
〔実施例〕
実施例により本発明に使用したポリイミド,ポリアミドイミド,ポリイミドシロキサン,ポリアミドについて、合成方法,真空断熱パネルの作製及び熱伝導率の評価、それを用いた機器等について以下詳細に説明する。表1に真空断熱パネルに用いた芯材,外被材,溶着層,酸素透過度,ガラス転移温度,接着強度,初期熱伝導率,経時劣化後の熱伝導率を示す。なお、本発明はこれらの実施例によって何ら制限されるものではない。
〔Example〕
With respect to the polyimide, polyamideimide, polyimidesiloxane, and polyamide used in the present invention, the synthesis method, the production of a vacuum heat insulating panel, the evaluation of thermal conductivity, the equipment using the same, and the like will be described in detail below. Table 1 shows the core material, jacket material, welded layer, oxygen permeability, glass transition temperature, adhesive strength, initial thermal conductivity, and thermal conductivity after aging used for the vacuum insulation panel. In addition, this invention is not restrict | limited at all by these Examples.
実施例においては、酸素透過度,接着強度,ガラス転移温度の測定は下記の方法で行った。 In the examples, oxygen permeability, adhesive strength, and glass transition temperature were measured by the following methods.
酸素透過性
ワニスをガラス基板上にキャスティングし90℃で乾燥した後、引き剥がしさらに230℃で加熱処理してフィルムを得た。得られたフィルムを幅と長さが100mmになるように切断し、酸素透過度測定装置(MOCON社製,型式OX−TRAN2/21)を用いて、温度25℃,ドライ,24時間の条件で酸素透過度測定を行った。
The oxygen permeable varnish was cast on a glass substrate, dried at 90 ° C., peeled off, and further heat-treated at 230 ° C. to obtain a film. The obtained film was cut to have a width and length of 100 mm, and using an oxygen permeability measuring device (manufactured by MOCON, model OX-
接着強度
幅15mmの試料フィルムをステンレス箔の上に載せ、これを熱プレスにセットしてプレスを閉じて0.3〜1.0kgf/cm2 程の圧力のもとに200℃で5〜30分加圧し、その後、冷却することによって得られた試験試料を用いて90°剥離力の測定を行った。測定はJIS C6481に準拠して行い、試験機としてはオリエンテック社製のテンシロンMPW−300Sを使用した。
Adhesive strength A sample film with a width of 15 mm is placed on a stainless steel foil, set in a hot press, the press is closed, and a pressure of about 0.3 to 1.0 kgf / cm 2 is applied at 200 ° C. for 5 to 30 ° C. The 90 ° peel force was measured using a test sample obtained by partial pressurization and then cooling. The measurement was performed in accordance with JIS C6481, and Tensilon MPW-300S manufactured by Orientec was used as a testing machine.
ガラス転移温度
セイコー電子工業製の熱機械分析装置TMAを用いて、試験作製したフィルムに円筒石英ブローブを用い荷重をかけながら、昇温速度10℃/min の条件で室温より300℃の範囲内で測定した。
Glass transition temperature Using a thermomechanical analyzer TMA manufactured by Seiko Denshi Kogyo Co., Ltd., while applying a load using a cylindrical quartz probe to a test-produced film, within a range from room temperature to 300 ° C. at a temperature rising rate of 10 ° C./min. It was measured.
実施例1は、溶着層としてガラス転移温度176℃,酸素透過度390cc/m2・dayのポリイミドを用いた真空断熱パネルの例である。 Example 1 is an example of a vacuum heat insulation panel using polyimide having a glass transition temperature of 176 ° C. and an oxygen permeability of 390 cc / m 2 · day as a weld layer.
(ポリイミド溶着材1の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けた反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,4′−ジアミノジフェニルエーテル12.0g 、N−メチル−2−ピロリドン200g及びトルエン
30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g 、1,7−ジアミノヘプタン10.4g 、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で2時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除してポリイミドワニスを合成した。
(Synthesis of polyimide welding material 1)
A reaction vessel having a separable flask equipped with a stirrer and a cooling pipe equipped with a trap with a silicon cock was constructed. In this reaction vessel, the raw material bicyclo (2,2,2) oct-7-ene- 9.9 g of 2,3,5,6-tetracarboxylic dianhydride, 12.0 g of 3,4'-diaminodiphenyl ether, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene were placed in a nitrogen gas atmosphere at room temperature. After stirring for 10 minutes, the contents of the reaction vessel were heated to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm and reacted for 1 hour. Thereafter, the reaction solution was air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 16.1 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride. 1,7-diaminoheptane (10.4 g), N-methyl-2-pyrrolidone (160 g) and toluene (30 g) were added, and the mixture was stirred again for 2 hours while the temperature was raised to 180 ° C. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize polyimide varnish.
更に、ワニスの純度を向上して使用する場合には、得られた反応液(ワニス)を過剰のメタノールに注入し、ミキサーで撹拌することで樹脂粉末を析出させる。この粉末をメタノールで洗浄し常温で乾燥後、約150℃で減圧乾燥して、N−メチル−2−ピロリドンに再溶解させ使用することで高純度のポリイミドワニスが得られる。 Furthermore, when improving and using the purity of a varnish, the obtained reaction liquid (varnish) is inject | poured into excess methanol, and resin powder is precipitated by stirring with a mixer. The powder is washed with methanol, dried at room temperature, dried under reduced pressure at about 150 ° C., redissolved in N-methyl-2-pyrrolidone and used to obtain a high-purity polyimide varnish.
ワニスの重量平均分子量(Mw)は、東ソー社製TSK gel GMH−M 型ゲルカラム及びUV−8020型検出器を使用し測定した結果、重量平均分子量が42000、樹脂分含有量が23.2 重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度390cc/m2・dayでガラス転移温度が176℃、温度150℃における接着強度が13.8N/15mmあった。 The weight average molecular weight (Mw) of the varnish was measured using a TSK gel GMH-M type gel column and UV-8020 type detector manufactured by Tosoh Corporation. As a result, the weight average molecular weight was 42,000, and the resin content was 23.2% by weight. Met. Moreover, as a result of producing a film of about 25 μm and measuring physical properties, it had an oxygen permeability of 390 cc / m 2 · day, a glass transition temperature of 176 ° C., and an adhesive strength at a temperature of 150 ° C. of 13.8 N / 15 mm.
(ポリイミド溶着材1を用いた真空断熱パネル実施例1の作成)
合成したポリイミド溶着材1を外被材のシール層に使用し、真空断熱パネル例1を作成した。
(Creation of vacuum heat insulation panel Example 1 using polyimide welding material 1)
The synthesized
厚さ約30μmのステンレス箔にスクリーン印刷機を用いて、上記で合成したポリイミドワニスを周縁部に額縁状に約30μmの厚さで塗布した。塗膜を約70〜90℃で半固化し、一対のステンレス箔同士を熱プレス機に設置して、約200℃の温度と0.83kg/cm2の圧力をかけて三方を密閉シールした外被材を作製した。 The polyimide varnish synthesized as described above was applied to the periphery of the stainless foil having a thickness of about 30 μm in a frame shape at a thickness of about 30 μm using a screen printer. The coating film was semi-solidified at about 70-90 ° C, a pair of stainless foils were installed in a hot press machine, and sealed at three sides by applying a temperature of about 200 ° C and a pressure of 0.83 kg / cm 2 A substrate was prepared.
真空断熱パネルの芯材として、180℃で1時間のエージング処理を行い平均繊維径が3μmのグラスウールを使用した。半固化させた袋状の外被材に芯材のグラスウールとガス吸着のゲッター剤(モレキュラ−シ−ブス13X/活性炭)を詰めた。 As the core material of the vacuum heat insulating panel, glass wool having an average fiber diameter of 3 μm was used after aging treatment at 180 ° C. for 1 hour. The semi-solidified bag-shaped outer jacket material was filled with glass wool as a core material and a gas adsorption getter agent (Molecular Sieves 13X / activated carbon).
最終封着部にポリイミドを塗布し、真空断熱パネルの内部圧力が1.3Pa になるまで真空包装機のロータリーポンプで10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。 Polyimide was applied to the final sealing portion and evacuated with a rotary pump of the vacuum packaging machine for 10 minutes and with a diffusion pump for 10 minutes until the internal pressure of the vacuum heat insulation panel reached 1.3 Pa. Then, the edge part was sealed by heat sealing.
このようにして得られた真空断熱パネル例1(厚み:約8mm)の熱伝導率を測定した。英弘精機(株)製のAUTO−Λ、10℃の条件で初期熱伝導率は4.1mW/m・K であった。160℃で1ヶ月の劣化試験を行ったところ、劣化試験後の熱伝導率は5.2mW/m・Kを示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The thermal conductivity of the vacuum insulation panel example 1 (thickness: about 8 mm) thus obtained was measured. The initial thermal conductivity was 4.1 mW / m · K under conditions of AUTO-Λ and 10 ° C. manufactured by Eihiro Seiki Co., Ltd. When a deterioration test was conducted at 160 ° C. for one month, the thermal conductivity after the deterioration test was 5.2 mW / m · K. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
さらにポリイミドは熱硬化性樹脂であり、高温にしても軟化点はないため、ガラス転移温度より70〜80℃程度の高温までは接着性が維持できる。従って、真空断熱パネル実施例1は240〜260℃程度での使用まで耐えうると予想される。 Furthermore, since polyimide is a thermosetting resin and does not have a softening point even at a high temperature, the adhesiveness can be maintained up to a high temperature of about 70 to 80 ° C. from the glass transition temperature. Therefore, it is expected that the vacuum heat insulation panel Example 1 can withstand use at about 240 to 260 ° C.
(真空断熱パネル実施例1を用いた恒温槽例)
高温で使用される恒温槽の周辺部、扉背面は高温となるため、従来の真空断熱パネルを敷設できなかった。上記の真空断熱パネル実施例1を恒温槽の周辺部及び扉背面に挿入して使用した。
(An example of a thermostatic chamber using the vacuum insulation panel Example 1)
Since the periphery of the thermostatic chamber used at high temperatures and the back of the door are hot, conventional vacuum insulation panels could not be installed. The above vacuum insulation panel Example 1 was used by being inserted into the periphery of the thermostat and the back of the door.
真空断熱パネルを設けない場合と比して、消費電力量が約5%削減された。また、断熱効果は長期間維持できた。さらに、真空断熱パネルを用いることにより、従来の断熱パネルよりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。 Compared to the case where no vacuum insulation panel is provided, the power consumption is reduced by about 5%. Moreover, the heat insulation effect could be maintained for a long time. Furthermore, by using the vacuum heat insulation panel, the heat insulation layer can be made thinner than the conventional heat insulation panel, and the space in the cabinet can be widened with respect to the apparatus volume.
実施例2は、溶着層としてガラス転移温度226℃,酸素透過度420cc/m2・dayのポリイミドを用いた真空断熱パネルの例である。 Example 2 is an example of a vacuum heat insulation panel using polyimide having a glass transition temperature of 226 ° C. and an oxygen permeability of 420 cc / m 2 · day as a weld layer.
(ポリイミド溶着材2の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けた反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,4′−ジアミノジフェニルエーテル12.0g 、N−メチル−2−ピロリドン200g及びトルエン
30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g 、4,4′−メチレンビス(2−メチルシクロヘキサンアミン)19.1g 、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で1.5 時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除してポリイミドワニスを合成した。
(Synthesis of polyimide welding material 2)
A reaction vessel having a separable flask equipped with a stirrer and a cooling pipe equipped with a trap with a silicon cock was constructed. In this reaction vessel, the raw material bicyclo (2,2,2) oct-7-ene- 9.9 g of 2,3,5,6-tetracarboxylic dianhydride, 12.0 g of 3,4'-diaminodiphenyl ether, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene were placed in a nitrogen gas atmosphere at room temperature. After stirring for 10 minutes, the contents of the reaction vessel were heated to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm and reacted for 1 hour. Thereafter, the reaction solution was air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 16.1 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride. 4,4'-methylenebis (2-methylcyclohexaneamine) 19.1 g, N-methyl-2-pyrrolidone 160 g and toluene 30 g were added, and the mixture was stirred for 1.5 hours with the temperature raised to 180 ° C. went. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize polyimide varnish.
ワニスの重量平均分子量は62000、樹脂分含有量が20重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度420cc/m2・dayでガラス転移温度が226℃、温度150℃における接着強度が15.1N/15mm あった。 The weight average molecular weight of the varnish was 62000, and the resin content was 20% by weight. As a result of producing a film of about 25 μm and measuring physical properties, the glass transition temperature was 226 ° C. and the adhesive strength was 15.1 N / 15 mm at an oxygen permeability of 420 cc / m 2 · day and a temperature of 150 ° C.
(ポリイミド溶着材2を用いた真空断熱パネル実施例2の作成)
合成したポリイミド溶着材2を外被材のシール層に使用し、平均繊維径が3.5μm のグラスウールを芯材とした以外は、真空断熱パネル例1と同様に真空断熱パネル例2を作成した。
(Creation of vacuum heat insulation panel example 2 using polyimide welding material 2)
A vacuum heat insulation panel example 2 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the synthesized
このようにして得られた真空断熱パネル例2(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.1mW/m・K 、200℃で1ヶ月間の劣化試験後の熱伝導率が5.9mW/m・K を示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The heat conductivity of the vacuum insulation panel example 2 (thickness: about 8 mm) obtained in this way is the same measurement as that of the insulation panel example 1, with an initial thermal conductivity of 4.1 mW / m · The thermal conductivity after a deterioration test for 1 month at K, 200 ° C. was 5.9 mW / m · K. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
実施例1と同様に、ガラス転移温度より70〜80℃程度の高温までは接着性が維持できるので、真空断熱パネル実施例2は280℃程度での使用まで耐えうると予想される。 Similarly to Example 1, since the adhesiveness can be maintained up to a high temperature of about 70 to 80 ° C. from the glass transition temperature, it is expected that Example 2 of the vacuum heat insulation panel can withstand use at about 280 ° C.
(真空断熱パネル2を用いたオーブンレンジ例)
上記の真空断熱パネル例2をオーブンレンジの周辺部及び扉背面に挿入して効果を見た。恒温槽と同様、オーブンレンジは高温で従来真空断熱パネルを敷設できなかった。
(Example of microwave oven using vacuum insulation panel 2)
The above-mentioned vacuum heat insulation panel example 2 was inserted into the peripheral part of the microwave oven and the back of the door to see the effect. As with the thermostatic chamber, the microwave oven was hot and could not lay a conventional vacuum insulation panel.
真空断熱パネルを設けない場合と比して、消費電力量が約3%削減された。また、断熱効果は長期間維持できた。さらに、真空断熱パネルを用いることにより、従来の断熱パネルよりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。 Compared to the case where no vacuum heat insulation panel is provided, the power consumption is reduced by about 3%. Moreover, the heat insulation effect could be maintained for a long time. Furthermore, by using the vacuum heat insulation panel, the heat insulation layer can be made thinner than the conventional heat insulation panel, and the space in the cabinet can be widened with respect to the apparatus volume.
実施例3は、溶着層としてガラス転移温度161℃,酸素透過度390cc/m2・dayのポリイミドを用いた真空断熱パネルの例である。 Example 3 is an example of a vacuum thermal insulation panel using polyimide having a glass transition temperature of 161 ° C. and an oxygen transmission rate of 390 cc / m 2 · day as a weld layer.
(ポリイミド溶着材3の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けることにより反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,
4′−ジアミノジフェニルエーテル4g、1,7−ジアミノヘプタン5.2g 、N−メチル−2−ピロリドン200g及びトルエン30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g 、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g、1,7−ジアミノヘプタン10.4g、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で2.0時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除して、ポリイミドワニスを合成した。
(Synthesis of polyimide welding material 3)
A reaction vessel is constructed by attaching a cooling tube equipped with a trap with a silicon cock to a separable flask equipped with a stirrer, and the bicyclo (2,2,2) oct-7-ene as a raw material is contained in this reaction vessel. 9.9 g of -2,3,5,6-tetracarboxylic dianhydride, 3,
4 g of 4'-diaminodiphenyl ether, 5.2 g of 1,7-diaminoheptane, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene were added and stirred at room temperature in a nitrogen gas atmosphere for 10 minutes. The temperature was raised to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm to react for 1 hour. Thereafter, the reaction solution was air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 16.1 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride. 1,7-diaminoheptane (10.4 g), N-methyl-2-pyrrolidone (160 g) and toluene (30 g) were added, and the mixture was stirred at a temperature of 180 ° C. for 2.0 hours. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize a polyimide varnish.
ワニスの重量平均分子量は25000、樹脂分含有量が20重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度390cc/m2・dayでガラス転移温度が161℃、温度150℃における接着強度が12.5N/15mm あった。 The weight average molecular weight of the varnish was 25000, and the resin content was 20% by weight. As a result of producing a film of about 25 μm and measuring physical properties, the glass transition temperature was 161 ° C. and the adhesive strength at a temperature of 150 ° C. was 12.5 N / 15 mm with an oxygen permeability of 390 cc / m 2 · day.
(ポリイミド溶着材3を用いた真空断熱パネル実施例3の作成)
合成したポリイミド溶着材2を外被材のシール層に使用し、平均繊維径が4.5μm のグラスウールを芯材とした以外は、真空断熱パネル例1と同様に真空断熱パネル例3を作成した。
(Creation of vacuum heat insulation panel Example 3 using polyimide welding material 3)
A vacuum heat insulation panel example 3 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the synthesized
このようにして得られた真空断熱パネル例3(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.3mW/m・K、150℃ で1ヶ月間の劣化試験後の初期熱伝導率が5.5mW/m・K を示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The heat conductivity of the vacuum heat insulation panel example 3 (thickness: about 8 mm) obtained in this way is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 4.3 mW / m · The initial thermal conductivity was 5.5 mW / m · K after a deterioration test at K, 150 ° C. for one month. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
実施例1と同様に、ガラス転移温度より70〜80℃程度の高温までは接着性が維持できるので、真空断熱パネル実施例3は230〜240℃程度での使用まで耐えうると予想される。 Similarly to Example 1, since the adhesiveness can be maintained up to a high temperature of about 70 to 80 ° C. from the glass transition temperature, it is expected that the vacuum heat insulation panel Example 3 can withstand use at about 230 to 240 ° C.
(真空断熱パネル3を用いたクッキングヒータ例)
上記の真空断熱パネル例3をIHクッキングヒータのグリル周辺部に使用して効果を見た。恒温槽と同様、クッキングヒータには高温で従来真空断熱パネルを敷設できなかった。
(Example of cooking heater using vacuum insulation panel 3)
The above-described vacuum heat insulation panel example 3 was used in the periphery of the grill of the IH cooking heater to see the effect. As with the thermostat, the cooking heater could not be laid with a conventional vacuum insulation panel at high temperatures.
グリル壁面を断熱することにより制御回路への熱影響を排除することができた。さらに、真空断熱パネルを設けない場合と比して、消費電力量が約5%削減された。また、断熱効果は長期間維持できた。 The thermal influence on the control circuit could be eliminated by insulating the grill wall. Furthermore, compared with the case where a vacuum heat insulation panel is not provided, the power consumption was reduced by about 5%. Moreover, the heat insulation effect could be maintained for a long time.
上記の例より、同様に制御回路等の低温が必要な部分と高温部とを断熱する必要のある製品、例えば自動車等に適用しても同様の効果が得られると考える。 From the above example, it is considered that the same effect can be obtained even when applied to a product that needs to insulate a high-temperature part and a part that requires a low temperature, such as a control circuit, similarly.
実施例4は、溶着層としてガラス転移温度170℃,酸素透過度450cc/m2・dayのポリアミドイミドを用いた真空断熱パネルの例である。 Example 4 is an example of a vacuum heat insulating panel using a polyamideimide having a glass transition temperature of 170 ° C. and an oxygen permeability of 450 cc / m 2 · day as a weld layer.
(ポリアミドイミド溶着材4の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けた反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,4′−ジアミノジフェニルエーテル4g、N−メチル−2−ピロリドン200g及びトルエン30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g 、3,
3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g 、イソフタル酸ジヒドラジド15.5g 、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で2.5 時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除してポリアミドイミドワニスを合成した。
(Synthesis of polyamideimide welding material 4)
A reaction vessel having a separable flask equipped with a stirrer and a cooling pipe equipped with a trap with a silicon cock was constructed. In this reaction vessel, the raw material bicyclo (2,2,2) oct-7-ene- 9.9 g of 2,3,5,6-tetracarboxylic dianhydride, 4 g of 3,4'-diaminodiphenyl ether, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene are added, and at room temperature in a nitrogen gas atmosphere for 10 minutes. After stirring, the contents in the reaction vessel were heated to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm and reacted for 1 hour. Thereafter, the reaction solution is air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,
3 ', 4,4'-benzophenonetetracarboxylic dianhydride 16.1 g, isophthalic acid dihydrazide 15.5 g, N-methyl-2-pyrrolidone 160 g and toluene 30 g were added and the temperature was raised to 180 ° C again. The stirring reaction was performed for 2.5 hours. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize polyamideimide varnish.
ワニスの重量平均分子量が45000、樹脂分含有量が23.4 重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度450cc/m2・dayでガラス転移温度が170℃、温度150℃における接着強度が12.8N/15mmあった。 The weight average molecular weight of the varnish was 45000, and the resin content was 23.4% by weight. Moreover, as a result of producing a film of about 25 μm and measuring physical properties, it had an oxygen permeability of 450 cc / m 2 · day, a glass transition temperature of 170 ° C., and an adhesive strength at a temperature of 150 ° C. of 12.8 N / 15 mm.
(ポリアミドイミド溶着材4を用いた真空断熱パネル実施例4の作成)
合成したポリアミドイミド溶着材4を外被材のシール層に使用した以外は、真空断熱パネル例1と同様に真空断熱パネル例4を作成した。
(Creation of vacuum heat insulation panel Example 4 using polyamideimide welding material 4)
A vacuum heat insulation panel example 4 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the synthesized
このようにして得られた真空断熱パネル例4(厚み:約5mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.2mW/m・K 、160℃で1ヶ月間の劣化試験後の熱伝導率が5.3mW/m・K を示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The heat conductivity of the vacuum heat insulation panel example 4 (thickness: about 5 mm) obtained in this way is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 4.2 mW / m · The thermal conductivity after a deterioration test for one month at K, 160 ° C. was 5.3 mW / m · K. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
実施例1と同様に、ポリアミドイミド樹脂も熱硬化性樹脂であり、ガラス転移温度より70〜80℃程度の高温までは接着性が維持できるので、真空断熱パネル実施例4は230〜250℃程度での使用まで耐えうると予想される。 Similarly to Example 1, the polyamide-imide resin is also a thermosetting resin, and the adhesiveness can be maintained up to a high temperature of about 70 to 80 ° C. from the glass transition temperature, so that the vacuum heat insulating panel Example 4 is about 230 to 250 ° C. It is expected to withstand use in
実施例5は溶着層としてガラス転移温度165℃,酸素透過度400cc/m2・dayのポリイミドシロキサンを用いた真空断熱パネルの例である。 Example 5 is an example of a vacuum heat insulation panel using polyimide siloxane having a glass transition temperature of 165 ° C. and an oxygen permeability of 400 cc / m 2 · day as a weld layer.
(ポリイミドシロキサン溶着材5の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けた反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,4′−ジアミノジフェニルエーテル4g、N−メチル−2−ピロリドン200g及びトルエン30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g 、3,
3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g 、ビス(3−アミノプロピル)テトラメチルジシロキサン19.8g 、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で3.5 時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除してポリイミドシロキサンワニスを合成した。
(Synthesis of polyimide siloxane welding material 5)
A reaction vessel having a separable flask equipped with a stirrer and a cooling pipe equipped with a trap with a silicon cock was constructed. In this reaction vessel, the raw material bicyclo (2,2,2) oct-7-ene- 9.9 g of 2,3,5,6-tetracarboxylic dianhydride, 4 g of 3,4'-diaminodiphenyl ether, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene are added, and at room temperature in a nitrogen gas atmosphere for 10 minutes. After stirring, the contents in the reaction vessel were heated to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm and reacted for 1 hour. Thereafter, the reaction solution is air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,
Add 16.1 g of 3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 19.8 g of bis (3-aminopropyl) tetramethyldisiloxane, 160 g of N-methyl-2-pyrrolidone and 30 g of toluene, and again add 180 The reaction was stirred for 3.5 hours while the temperature was raised to ° C. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize polyimidesiloxane varnish.
ワニスの重量平均分子量が21000、樹脂分含有量が21.3 重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度400cc/m2・dayでガラス転移温度が165℃、温度150℃における接着強度が12.9N/15mmあった。 The weight average molecular weight of the varnish was 21000, and the resin content was 21.3% by weight. Moreover, as a result of producing a film of about 25 μm and measuring physical properties, the glass transition temperature was 165 ° C. and the adhesive strength was 12.9 N / 15 mm at an oxygen permeability of 400 cc / m 2 · day.
(ポリイミドシロキサン溶着材5を用いた真空断熱パネル実施例5の作成)
合成したポリイミドシロキサン溶着材5を外被材のシール層に使用し、ワニスを約40μmになるように塗布した以外は真空断熱パネル例1と同様に真空断熱パネル例5を作成した。
(Creation of vacuum insulation panel Example 5 using polyimide siloxane welding material 5)
A vacuum heat insulation panel example 5 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the synthesized polyimidesiloxane welding material 5 was used for the sealing layer of the jacket material and the varnish was applied to a thickness of about 40 μm.
このようにして得られた真空断熱パネル5(厚み:約10mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.1mW/m・K 、150℃で1ヶ月間の経時劣化試験後の熱伝導率が5.3mW/m・K を示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The heat conductivity of the vacuum heat insulation panel 5 (thickness: about 10 mm) obtained in this way was measured in the same manner as in heat insulation panel example 1, and the initial heat conductivity was 4.1 mW / m · K at 10 ° C. The thermal conductivity after aging test for 1 month at 150 ° C. was 5.3 mW / m · K. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
実施例1と同様に、ポリイミドシロキサン樹脂も熱硬化性樹脂であり、ガラス転移温度より70〜80℃程度の高温までは接着性が維持できるので、真空断熱パネル実施例5は230〜250℃程度での使用まで耐えうると予想される。 Similarly to Example 1, the polyimidesiloxane resin is also a thermosetting resin, and the adhesiveness can be maintained up to a high temperature of about 70 to 80 ° C. from the glass transition temperature, so that the vacuum heat insulating panel Example 5 is about 230 to 250 ° C. It is expected to withstand use in
実施例6は、溶着層としてガラス転移温度161℃,酸素透過度490cc/m2・dayのポリアミドを用いた真空断熱パネルの例である。 Example 6 is an example of a vacuum heat insulation panel using polyamide having a glass transition temperature of 161 ° C. and an oxygen transmission rate of 490 cc / m 2 · day as a weld layer.
(ポリアミド溶着材6の合成)
撹拌機を取り付けたセパラブルフラスコに、原料であるイソフタル酸クロライド8.1g、3,4′−ジアミノジフェニルエーテル12.0g 、N−メチル−2−ピロリドン
200gを入れ、常温以下の窒素ガス雰囲気下で、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷しながら、更にイソフタル酸クロライド20.3g、4,4′−メチレンビス(2−メチルシクロヘキサンアミン)19.1g 、N−メチル−2−ピロリドン160gを加え、約3時間の撹拌反応を行い、ポリアミドワニスを合成した。得られた反応液(ワニス)を過剰のメタノールに注入し、ミキサーで撹拌を行い樹脂粉末を析出させた。この粉末をメタノールで洗浄して常温で乾燥後、約150℃で減圧乾燥し、N−メチル−2−ピロリドンに再溶解させてポリアミドワニスを得た。
(Synthesis of polyamide welding material 6)
In a separable flask equipped with a stirrer, 8.1 g of isophthalic acid chloride, 12.0 g of 3,4'-diaminodiphenyl ether, and 200 g of N-methyl-2-pyrrolidone were put in a nitrogen gas atmosphere at room temperature or lower. Then, the number of revolutions of the stirrer was set to 180 rpm and the reaction was performed for 1 hour. Thereafter, 20.3 g of isophthalic acid chloride, 19.1 g of 4,4′-methylenebis (2-methylcyclohexaneamine) and 160 g of N-methyl-2-pyrrolidone were added while cooling the reaction solution with air, and the reaction was stirred for about 3 hours. To synthesize a polyamide varnish. The obtained reaction liquid (varnish) was poured into excess methanol and stirred with a mixer to precipitate resin powder. This powder was washed with methanol, dried at room temperature, dried under reduced pressure at about 150 ° C., and redissolved in N-methyl-2-pyrrolidone to obtain a polyamide varnish.
ワニスの重量平均分子量(Mw)が32000、樹脂分含有量量が20.2 重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度490
cc/m2・day でガラス転移温度が161℃、温度150℃における接着強度が13.2N/15mmあった。
The weight average molecular weight (Mw) of the varnish was 32000, and the resin content was 20.2% by weight. Moreover, as a result of producing a film of about 25 μm and measuring physical properties, the oxygen permeability was 490.
The glass transition temperature was 161 ° C. and the adhesive strength at a temperature of 150 ° C. was 13.2 N / 15 mm at cc / m 2 · day.
(ポリアミド溶着材6を用いた真空断熱パネル実施例6の作成)
合成したポリアミド溶着材6を外被材のシール層に使用し対外は、真空断熱パネル例1と同様に真空断熱パネル例6を作成した。なお、芯材の大きさは500mm×300mm×
10mmとした。
(Creation of vacuum heat insulation panel Example 6 using polyamide welding material 6)
The synthesized
It was 10 mm.
このようにして得られた真空断熱パネル例6(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.2mW/m・K 、150℃で1ヶ月間の劣化試験後の熱伝導率が5.1mW/m・Kを示した。 The heat conductivity of the vacuum heat insulation panel example 6 (thickness: about 8 mm) obtained in this way is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 4.2 mW / m · The thermal conductivity after deterioration test for 1 month at K, 150 ° C. was 5.1 mW / m · K.
上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
実施例7は、実施例2のポリイミド溶着材をガラス繊維に含浸して用い、アルミ合金箔を外被材として使用した真空断熱パネルの例である。 Example 7 is an example of a vacuum heat insulating panel in which the polyimide welding material of Example 2 is impregnated into glass fiber and an aluminum alloy foil is used as a covering material.
実施例1に示したポリイミド溶着材1のワニスをガラス繊維に含浸して約90℃で乾燥することで半固化状態のプリプレグを作製した。厚さ約15μmのアルミ合金箔上に前記プリプレグを額縁状に設置し、その上に同型のアルミ合金箔を置き、約200℃の温度と0.83kg/cm2の圧力をかけて熱プレス機を用いて、三方を密閉シールした外被材を作製した。
A glass fiber was impregnated with the varnish of the
芯材は、平均繊維径が3μmのグラスウールを180℃で1時間のエージング処理を行い用いた。外被材に、芯材とガス吸着のゲッター剤(モレキュラ−シ−ブス13X/活性炭)を詰め、最終封着部に前記プリプレグを設置し真空包装機のロータリーポンプで10分,拡散ポンプで10分,真空断熱パネルの内部圧力が1.3Pa になるまで排気させて、端部をヒートシールで封止した。 As the core material, glass wool having an average fiber diameter of 3 μm was used after aging treatment at 180 ° C. for 1 hour. The jacket material is filled with a core material and a gas adsorbing getter agent (molecular sieve 13X / activated carbon), the prepreg is installed in the final sealing part, 10 minutes by the rotary pump of the vacuum packaging machine, 10 by the diffusion pump The vacuum insulation panel was evacuated until the internal pressure of the vacuum insulation panel reached 1.3 Pa, and the ends were sealed with heat seal.
このようにして得られた真空断熱パネル例7(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.2mW/m・K、200℃ で1ヶ月間の劣化試験後の熱伝導率が5.4mW/m・K を示した。上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。 The heat conductivity of the vacuum heat insulation panel example 7 (thickness: about 8 mm) thus obtained is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 4.2 mW / m · The thermal conductivity after aging test for 1 month at K, 200 ° C. was 5.4 mW / m · K. As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment.
平均繊維径が6μmのグラスウール材を芯材として、実施例1と同様の真空断熱パネル例8を作製した。 A vacuum heat insulating panel example 8 similar to that of the example 1 was produced using a glass wool material having an average fiber diameter of 6 μm as a core material.
このようにして得られた真空断熱パネル例8(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が6.2mW/m・K 、160℃で1ヶ月間の劣化試験後の熱伝導率が9.8mW/m・Kを示した。 The heat conductivity of the vacuum heat insulation panel example 8 (thickness: about 8 mm) obtained in this way is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 6.2 mW / m · The thermal conductivity after a deterioration test for one month at K, 160 ° C. was 9.8 mW / m · K.
上記のとおり、本発明の真空断熱パネルは高温環境下においても経時劣化せず熱伝導率の維持が可能であった。ただし、グラスウール平均繊維径を6μmとすると熱伝導率の初期値が大きくなった。 As described above, the vacuum heat insulating panel of the present invention was able to maintain the thermal conductivity without being deteriorated with time even in a high temperature environment. However, when the glass wool average fiber diameter was 6 μm, the initial value of thermal conductivity was increased.
実施例9は、溶着層としてガラス転移温度152℃,酸素透過度390cc/m2・dayのポリイミドを用いた真空断熱パネルの例である。 Example 9 is an example of a vacuum heat insulation panel using a polyimide having a glass transition temperature of 152 ° C. and an oxygen permeability of 390 cc / m 2 · day as a weld layer.
(ポリイミド溶着材9の合成)
撹拌機を取り付けたセパラブルフラスコに、シリコンコック付きトラップを備えた冷却管を取り付けることにより反応槽を構成し、この反応槽に、原料であるビシクロ(2,2,2)オクタ−7−エン−2,3,5,6−テトラカルボン酸二無水物9.9g 、3,
4′−ジアミノジフェニルエーテル2g、1,7−ジアミノヘプタン6.5g 、N−メチル−2−ピロリドン200g及びトルエン30gを入れ、常温で窒素ガス雰囲気下に10分間撹拌した後、反応槽の内容物を180℃に昇温させ、撹拌機の回転数を180rpm に設定して1時間反応させた。その後、反応液を空冷し、更に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物14.7g 、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物16.1g、1,7−ジアミノヘプタン10.4g、N−メチル−2−ピロリドン160g及びトルエン30gを加え、再度180℃に昇温させた状態で2.0時間の撹拌反応を行った。この間、撹拌機の回転数は180rpm とし、生成する水はシリコンコックから排除して、ポリイミドワニスを合成した。
(Synthesis of polyimide welding material 9)
A reaction vessel is constructed by attaching a cooling tube equipped with a trap with a silicon cock to a separable flask equipped with a stirrer, and the bicyclo (2,2,2) oct-7-ene as a raw material is contained in this reaction vessel. 9.9 g of -2,3,5,6-tetracarboxylic dianhydride, 3,
After 4 g of 4'-diaminodiphenyl ether, 6.5 g of 1,7-diaminoheptane, 200 g of N-methyl-2-pyrrolidone and 30 g of toluene were stirred at room temperature in a nitrogen gas atmosphere for 10 minutes, the contents of the reaction vessel were The temperature was raised to 180 ° C., and the number of revolutions of the stirrer was set to 180 rpm to react for 1 hour. Thereafter, the reaction solution was air-cooled, and further, 14.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 16.1 g of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride. 1,7-diaminoheptane (10.4 g), N-methyl-2-pyrrolidone (160 g) and toluene (30 g) were added, and the mixture was stirred at a temperature of 180 ° C. for 2.0 hours. During this time, the rotational speed of the stirrer was 180 rpm, and water produced was excluded from the silicon cock to synthesize a polyimide varnish.
ワニスの重量平均分子量が180000、樹脂分含有量が20重量%であった。また、約25μmのフィルムを作製して、物性値を測定した結果、酸素透過度390cc/m2・
dayでガラス転移温度が152℃、温度150℃における接着強度が8.5N/15mmあった。
The weight average molecular weight of the varnish was 180000, and the resin content was 20% by weight. Moreover, as a result of producing a film of about 25 μm and measuring physical properties, the oxygen permeability was 390 cc / m 2.
In day, the glass transition temperature was 152 ° C., and the adhesive strength at a temperature of 150 ° C. was 8.5 N / 15 mm.
(ポリイミド溶着材9を用いた真空断熱パネル実施例9の作成)
合成したポリイミド溶着材8を外被材のシール層に使用した以外は、真空断熱パネル例1と同様に真空断熱パネル例9を作成した。
(Creation of vacuum heat insulation panel Example 9 using polyimide welding material 9)
A vacuum heat insulation panel example 9 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the synthesized
このようにして得られた真空断熱パネル例9(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が5.2mW/m・K 、200℃で1ヶ月間の劣化試験後の熱伝導率が18.5mW/m・Kを示した。 The heat conductivity of the vacuum heat insulation panel example 9 (thickness: about 8 mm) obtained in this way is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 5.2 mW / m · K, thermal conductivity after 1 month deterioration test at 200 ° C. was 18.5 mW / m · K.
このことから、従来品に比べて厚みが押さえられ、また通常の温度での断熱という効果は奏するものの、溶着層に用いる樹脂のガラス転移温度が160℃以下で、温度150℃における接着強度が10N/15mm以下となると、高温条件下では加温により接着力が低下して真空断熱パネルが破壊し長期間の熱伝導率の劣化を抑制できないことがわかった。従って、このような断熱パネルの用途は例えば温度130℃までの製品や、短期で使用する製品に限る必要がある。 Therefore, although the thickness is suppressed as compared with the conventional product and the effect of heat insulation at a normal temperature is exhibited, the glass transition temperature of the resin used for the welding layer is 160 ° C. or lower, and the adhesive strength at a temperature of 150 ° C. is 10 N. / 15 mm or less, it was found that, under high temperature conditions, the adhesive strength was reduced by heating and the vacuum heat insulating panel was broken, preventing deterioration of thermal conductivity over a long period of time. Therefore, it is necessary to limit the use of such a heat insulation panel to, for example, products up to a temperature of 130 ° C. and products used in a short period of time.
なお、従来頻繁に使用されているポリウレタン樹脂の使用開始時(劣化前)の熱電導率は18〜22mW/m・K程度である。 In addition, the thermal conductivity at the time of the start of use (before deterioration) of the conventionally used polyurethane resin is about 18 to 22 mW / m · K.
実施例10は、溶着層としてガラス転移温度140℃,酸素透過度220cc/m2・day、150℃での接着強度6.5N/15mm のエポキシ樹脂を用いた真空断熱パネルの例である。 Example 10 is an example of a vacuum heat insulating panel using an epoxy resin having a glass transition temperature of 140 ° C., an oxygen permeability of 220 cc / m 2 · day, and an adhesive strength of 6.5 N / 15 mm at 150 ° C. as a weld layer.
上記のエポキシ樹脂溶着材を外被材のシール層に使用した以外は、真空断熱パネル例1と同様に真空断熱パネル例10を作成した。 A vacuum heat insulation panel example 10 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the above epoxy resin welding material was used for the sealing layer of the jacket material.
得られた真空断熱パネル例10(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が6.5mW/m・K 、160℃で1ヶ月間の劣化試験後の熱伝導率が18.4mW/m・Kを示した。 The heat conductivity of the obtained vacuum heat insulation panel example 10 (thickness: about 8 mm) is the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity is 6.5 mW / m · K under the condition of 10 ° C., 160 ° C. The thermal conductivity after 1 month deterioration test was 18.4 mW / m · K.
このことから、従来品に比べて厚みが押さえられるという効果は奏するものの、溶着層にエポキシ樹脂を用いるとステンレス箔と接着性が低く、高温条件下では加温により真空断熱パネルが破壊し熱伝導率の劣化を抑制できないことがわかった。 Although this has the effect of reducing the thickness compared to conventional products, the use of epoxy resin for the weld layer results in low adhesion to the stainless steel foil, and the heat insulation of the vacuum insulation panel is destroyed by heating under high temperature conditions. It was found that the rate deterioration could not be suppressed.
実施例11は、溶着層としてガラス転移温度−10℃,酸素透過度8100cc/m2・
dayのポリプロピレンホモポリマーを用いた真空断熱パネルの例である。
Example 11 has a glass transition temperature of −10 ° C. and an oxygen permeability of 8100 cc / m 2 · as a weld layer.
It is an example of the vacuum heat insulation panel using the polypropylene homopolymer of day.
上記のポリプロピレンホモポリマーを外被材のシール層に使用した以外は、真空断熱パネル例1と同様に真空断熱パネル例11を作成した。 A vacuum heat insulation panel example 11 was prepared in the same manner as the vacuum heat insulation panel example 1 except that the above polypropylene homopolymer was used for the sealing layer of the jacket material.
得られた真空断熱パネル例11(厚み:約8mm)の熱伝導率は、断熱パネル例1と同様の測定で、10℃の条件で初期熱伝導率が4.9mW/m・K であった。しかし、160℃で1ヶ月間の劣化試験を行ったところ、溶着部が破壊され熱伝導率の測定はできなかった。従って、従来品に比べて厚みが押さえられるという効果は奏するものの、溶着層樹脂のガラス転移温度より高い温度では、真空断熱パネルの使用はできなかった。 The heat conductivity of the obtained vacuum heat insulation panel example 11 (thickness: about 8 mm) was the same measurement as that of the heat insulation panel example 1, and the initial heat conductivity was 4.9 mW / m · K at 10 ° C. . However, when a deterioration test was performed at 160 ° C. for one month, the welded portion was destroyed and the thermal conductivity could not be measured. Therefore, although there is an effect that the thickness can be suppressed as compared with the conventional product, the vacuum heat insulating panel cannot be used at a temperature higher than the glass transition temperature of the welded layer resin.
1…従来真空断熱パネル、2…芯材、3…ゲッター剤、4,7…外被材、4−1…ポリエチレンテレフタレートフィルム、4−2…ナイロンフィルム、4−3…アルミ箔、5,8…溶着部、6…本発明真空断熱パネル、9…金属箔、10…恒温槽扉、11…仕切り板、12…恒温槽庫内スペース、13…オーブンレンジ庫内スペース、14…オーブンレンジ扉、15…トッププレート、16…インダクションヒータ、17…グリル扉、18…グリルガラス、19…グリルハンドル、20…制御回路。
DESCRIPTION OF
Claims (12)
前記溶着層は、一または複数の開口部を有する形状に形成されまたは配置されていることを特徴とする真空断熱パネル。 An inorganic fiber core material, a getter agent, and a metal foil outer sheath material covering the core material and the getter agent, and having a welding layer for hermetically sealing a peripheral edge of the outer sheath material, A vacuum insulation panel with reduced pressure inside the material,
The vacuum heat insulating panel, wherein the welding layer is formed or arranged in a shape having one or a plurality of openings.
前記樹脂のガラス転移温度が160〜230℃であることを特徴とする真空断熱パネル。 A vacuum insulation panel according to claim 3,
The glass heat insulation temperature of the said resin is 160-230 degreeC, The vacuum heat insulation panel characterized by the above-mentioned.
前記金属箔はステンレス箔又はアルミ合金箔であることを特徴とする真空断熱パネル。 A vacuum insulation panel according to claim 1,
The vacuum heat insulation panel, wherein the metal foil is a stainless steel foil or an aluminum alloy foil.
前記芯材は平均繊維径が3〜5μmのグラスウールであることを特徴とする真空断熱パネル。 A vacuum insulation panel according to claim 1,
The vacuum insulation panel according to claim 1, wherein the core material is glass wool having an average fiber diameter of 3 to 5 µm.
前記溶着層は溶液塗布した塗膜,フィルム、または不織布含浸体の少なくともいずれかであることを特徴とする真空断熱パネル。 A vacuum insulation panel according to claim 1,
The vacuum heat insulating panel according to claim 1, wherein the welding layer is at least one of a coating film, a film or a nonwoven fabric impregnated body coated with a solution.
前記断熱部材は、無機繊維の芯材と、ゲッター剤と、前記芯材およびゲッター剤を覆う金属箔の外被材と、額縁形状を有し前記外被材の周縁部を密閉封止する溶着層を有し、前記外被材の内部を減圧した真空断熱パネルであることを特徴とする断熱箱体。 A heat insulating box having a heat retaining part heated by a heating means and a heat insulating member for maintaining the temperature state of the heat retaining part,
The heat insulating member includes an inorganic fiber core material, a getter agent, a metal foil outer sheath material covering the core material and the getter agent, and a frame shape that is hermetically sealed with a peripheral edge of the outer envelope material. A heat insulation box having a layer and being a vacuum heat insulation panel in which the inside of the jacket material is decompressed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006219138A JP2008045580A (en) | 2006-08-11 | 2006-08-11 | Vacuum heat insulating panel and equipment equipped therewith |
KR1020070079850A KR20080014644A (en) | 2006-08-11 | 2007-08-09 | Vacuum insulating panel and apparatus comprising the same |
CNB2007101403461A CN100516626C (en) | 2006-08-11 | 2007-08-09 | Vacuum heat-insulating board and instrument with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006219138A JP2008045580A (en) | 2006-08-11 | 2006-08-11 | Vacuum heat insulating panel and equipment equipped therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008045580A true JP2008045580A (en) | 2008-02-28 |
Family
ID=39084807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006219138A Pending JP2008045580A (en) | 2006-08-11 | 2006-08-11 | Vacuum heat insulating panel and equipment equipped therewith |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2008045580A (en) |
KR (1) | KR20080014644A (en) |
CN (1) | CN100516626C (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293708A (en) * | 2008-06-05 | 2009-12-17 | Hitachi Appliances Inc | Vacuum heat insulating material, apparatus having the same and method of manufacturing vacuum heat insulating material |
JP2009299967A (en) * | 2008-06-12 | 2009-12-24 | Asahi Kasei Fibers Corp | Hot water storage unit |
WO2010013504A1 (en) * | 2008-07-31 | 2010-02-04 | 日立アプライアンス株式会社 | Heat pump hot-water supply device |
WO2010013503A1 (en) * | 2008-07-31 | 2010-02-04 | 日立アプライアンス株式会社 | Heat pump hot-water supply device |
JP2011183367A (en) * | 2009-03-24 | 2011-09-22 | Panasonic Corp | Method of fabricating gas-adsorbing device, gas-adsorbing device, and method of using the same |
WO2012111267A1 (en) * | 2011-02-14 | 2012-08-23 | パナソニック株式会社 | Gas adsorption device and vacuum heat insulating material provided therewith |
JP2013107084A (en) * | 2011-11-17 | 2013-06-06 | Mitsubishi Electric Corp | Beam welding method, vacuum packaging method, vacuum insulating material produced by the vacuum packaging method, and heating cooker using the vacuum insulating material |
JP5335149B2 (en) * | 2011-05-25 | 2013-11-06 | 積水フイルム株式会社 | Gas barrier composite film and vacuum heat insulating material using the same |
JP2014524557A (en) * | 2011-08-23 | 2014-09-22 | エルジー・ハウシス・リミテッド | Vacuum heat insulating material provided with moisture and gas adsorption getter material and method for producing the same |
US20210033335A1 (en) * | 2015-08-03 | 2021-02-04 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11796246B2 (en) | 2015-08-03 | 2023-10-24 | Lg Electronics Inc. | Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator |
US11920723B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11920857B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11927386B2 (en) | 2015-08-03 | 2024-03-12 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12050046B2 (en) | 2015-08-03 | 2024-07-30 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12078409B2 (en) | 2015-08-03 | 2024-09-03 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102102796B (en) * | 2010-03-12 | 2012-10-17 | 福建赛特新材股份有限公司 | Vacuum insulation panel and manufacturing method thereof |
CN101876391A (en) * | 2010-05-24 | 2010-11-03 | 上海晨华电炉有限公司 | High-temperature vacuum thermal-insulating plate capable of insulating temperature above 350 DEG C |
CN101900473A (en) * | 2010-07-27 | 2010-12-01 | 王欣南 | Built-in integral L-shaped vacuum heat insulation slab for refrigerator and processing method thereof |
NL2008225C2 (en) * | 2012-02-03 | 2013-08-06 | Intergas Heating Assets B V | HEATING DEVICE. |
KR101783074B1 (en) * | 2013-03-12 | 2017-09-29 | (주)엘지하우시스 | Envelope including glass fiber for vacuum insulation panel and vacuum insulation panel having the same |
CN103422632B (en) * | 2013-07-17 | 2016-03-30 | 戴长虹 | There is composite evacuated plate of the stone material of getter and preparation method thereof |
CN104964124A (en) * | 2014-08-01 | 2015-10-07 | 常州山由帝奥绝缘材料制造有限公司 | Vacuum insulation board having gaps and/or through holes and method for producing same |
CN115816812A (en) * | 2014-09-25 | 2023-03-21 | 巴斯夫欧洲公司 | Method for producing composite element for vacuum insulation element |
KR102529852B1 (en) * | 2015-08-03 | 2023-05-08 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
KR102466446B1 (en) * | 2017-12-13 | 2022-11-11 | 엘지전자 주식회사 | Vacuum adiabatic body and refrigerator |
FR3083682B1 (en) * | 2018-07-12 | 2020-12-11 | Ethera | ANTI-ODOR COVER |
CN111089223A (en) * | 2019-12-19 | 2020-05-01 | 福建赛特冷链科技有限公司 | Vacuum insulation panel of composite pipeline |
JP7273772B2 (en) * | 2020-10-21 | 2023-05-15 | プライムプラネットエナジー&ソリューションズ株式会社 | LAMINATED ELECTRICITY STORAGE DEVICE MANUFACTURING METHOD AND LAMINATED ELECTRICITY STORAGE DEVICE INSPECTION METHOD |
CN113251243A (en) * | 2021-04-30 | 2021-08-13 | 广东美的厨房电器制造有限公司 | Film material for vacuum insulation panel, vacuum insulation panel and preparation method of vacuum insulation panel |
CN113915458B (en) * | 2021-11-02 | 2023-04-18 | 英索来欣(苏州)新材料科技有限公司 | Vacuum insulation panel core material |
CN114132022B (en) * | 2021-11-02 | 2022-08-16 | 河海大学 | Wedge-shaped lining plate for hard brittle high-modulus magnesium alloy and edge crack control rolling method and application thereof |
CN116066663B (en) * | 2023-02-15 | 2023-11-28 | 南通远顺耐纤有限公司 | Glass fiber core material heat insulation plate and preparation method thereof |
-
2006
- 2006-08-11 JP JP2006219138A patent/JP2008045580A/en active Pending
-
2007
- 2007-08-09 CN CNB2007101403461A patent/CN100516626C/en not_active Expired - Fee Related
- 2007-08-09 KR KR1020070079850A patent/KR20080014644A/en not_active Application Discontinuation
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293708A (en) * | 2008-06-05 | 2009-12-17 | Hitachi Appliances Inc | Vacuum heat insulating material, apparatus having the same and method of manufacturing vacuum heat insulating material |
JP2009299967A (en) * | 2008-06-12 | 2009-12-24 | Asahi Kasei Fibers Corp | Hot water storage unit |
CN102105753A (en) * | 2008-07-31 | 2011-06-22 | 日立空调·家用电器株式会社 | Heat pump hot-water supply device |
WO2010013503A1 (en) * | 2008-07-31 | 2010-02-04 | 日立アプライアンス株式会社 | Heat pump hot-water supply device |
JP2010032175A (en) * | 2008-07-31 | 2010-02-12 | Hitachi Appliances Inc | Heat pump water heater |
JP2010054183A (en) * | 2008-07-31 | 2010-03-11 | Hitachi Appliances Inc | Heat pump hot-water supply device |
KR101346444B1 (en) | 2008-07-31 | 2014-01-02 | 히타치 어플라이언스 가부시키가이샤 | Heat pump hot-water supply device |
KR101247892B1 (en) | 2008-07-31 | 2013-03-26 | 히타치 어플라이언스 가부시키가이샤 | Heat pump hot-water supply device |
WO2010013504A1 (en) * | 2008-07-31 | 2010-02-04 | 日立アプライアンス株式会社 | Heat pump hot-water supply device |
JP2011183367A (en) * | 2009-03-24 | 2011-09-22 | Panasonic Corp | Method of fabricating gas-adsorbing device, gas-adsorbing device, and method of using the same |
WO2012111267A1 (en) * | 2011-02-14 | 2012-08-23 | パナソニック株式会社 | Gas adsorption device and vacuum heat insulating material provided therewith |
US8940084B2 (en) | 2011-02-14 | 2015-01-27 | Panasonic Corporation | Gas adsorbing device and vacuum insulation panel provided with same |
JP5261616B2 (en) * | 2011-02-14 | 2013-08-14 | パナソニック株式会社 | Gas adsorption device and vacuum heat insulating material provided with the same |
JP5335149B2 (en) * | 2011-05-25 | 2013-11-06 | 積水フイルム株式会社 | Gas barrier composite film and vacuum heat insulating material using the same |
JP2014524557A (en) * | 2011-08-23 | 2014-09-22 | エルジー・ハウシス・リミテッド | Vacuum heat insulating material provided with moisture and gas adsorption getter material and method for producing the same |
US9228340B2 (en) | 2011-08-23 | 2016-01-05 | Lg Hausys, Ltd. | Vacuum thermal insulation material equipped with a getter material for water-fraction and gas adsorption, and production method therefor |
JP2013107084A (en) * | 2011-11-17 | 2013-06-06 | Mitsubishi Electric Corp | Beam welding method, vacuum packaging method, vacuum insulating material produced by the vacuum packaging method, and heating cooker using the vacuum insulating material |
US20210033335A1 (en) * | 2015-08-03 | 2021-02-04 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11796246B2 (en) | 2015-08-03 | 2023-10-24 | Lg Electronics Inc. | Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator |
US11920723B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11920858B2 (en) * | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11920857B2 (en) | 2015-08-03 | 2024-03-05 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US11927386B2 (en) | 2015-08-03 | 2024-03-12 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12050046B2 (en) | 2015-08-03 | 2024-07-30 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
US12078409B2 (en) | 2015-08-03 | 2024-09-03 | Lg Electronics Inc. | Vacuum adiabatic body and refrigerator |
Also Published As
Publication number | Publication date |
---|---|
CN100516626C (en) | 2009-07-22 |
CN101122360A (en) | 2008-02-13 |
KR20080014644A (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008045580A (en) | Vacuum heat insulating panel and equipment equipped therewith | |
JP2008249003A (en) | Vacuum insulation panel and appliance provided with it | |
JP4671897B2 (en) | Vacuum insulation, hot water supply equipment and electric water heater using vacuum insulation | |
EP2236276B1 (en) | Thermal insulating multiple layer blanket | |
KR101447767B1 (en) | Vacuum insulation panel for high operating temperature | |
JP4353185B2 (en) | Vacuum insulation | |
JP6123927B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation | |
CN107091392B (en) | Insulation and its manufacturing method | |
WO2017115851A1 (en) | Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member | |
JP2009293708A (en) | Vacuum heat insulating material, apparatus having the same and method of manufacturing vacuum heat insulating material | |
JP6446901B2 (en) | Vacuum heat insulating material, exterior material for vacuum heat insulating material, and heat insulating article | |
JP2017210986A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material | |
WO2018016351A1 (en) | Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member | |
JP7238566B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2009052680A (en) | Vacuum heat insulation material | |
JP4281607B2 (en) | Vacuum insulation | |
JP2017133694A (en) | Outer packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material | |
JP2017133568A (en) | Vacuum heat insulation material and equipment with vacuum heat insulation material | |
WO2016157931A1 (en) | Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member | |
JP2020008084A (en) | Outer packaging material for vacuum insulation material, vacuum heat insulation material, and articles with vacuum insulation material | |
JP2008149549A (en) | Method for producing metal laminate | |
CN113266729A (en) | Composite core material for vacuum insulation panel and preparation method thereof | |
CN113100640A (en) | Electric cooking appliance | |
CN113251243A (en) | Film material for vacuum insulation panel, vacuum insulation panel and preparation method of vacuum insulation panel | |
JP2018135995A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090609 |