WO2018016351A1 - Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member - Google Patents

Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member Download PDF

Info

Publication number
WO2018016351A1
WO2018016351A1 PCT/JP2017/024955 JP2017024955W WO2018016351A1 WO 2018016351 A1 WO2018016351 A1 WO 2018016351A1 JP 2017024955 W JP2017024955 W JP 2017024955W WO 2018016351 A1 WO2018016351 A1 WO 2018016351A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer packaging
heat insulating
vacuum heat
packaging material
gas barrier
Prior art date
Application number
PCT/JP2017/024955
Other languages
French (fr)
Japanese (ja)
Inventor
将博 今井
琢 棟田
誠 溝尻
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59081947&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018016351(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018016351A1 publication Critical patent/WO2018016351A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present disclosure relates to an outer packaging material for a vacuum heat insulating material that can form a vacuum heat insulating material, a vacuum heat insulating material, and an article with a vacuum heat insulating material.
  • the vacuum heat insulating material has a core material and an outer packaging material in which the core material is enclosed.
  • the inside of the bag body constituted by the outer packaging material is held in a vacuum state in which the core material is disposed and the pressure is lower than the atmospheric pressure. Since heat convection inside the bag is suppressed, the vacuum heat insulating material can exhibit good heat insulating performance.
  • the outer packaging material constituting the vacuum heat insulating material requires a gas barrier property for suppressing the passage of gas and a heat welding property for forming a bag body. Is done. Therefore, the outer packaging material for a vacuum heat insulating material is generally composed of a gas barrier film and a heat-weldable film (for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 and Patent Document 2 disclose that the outer packaging material may be bent when the vacuum heat insulating material is manufactured or used. Even when the outer packaging material for the vacuum heat insulating material is bent, it is desirable that defects such as minute cracks and minute pinholes hardly occur. Even if the vacuum insulation material with minute defects in the outer packaging material shows the same level of insulation performance as the one without it in the initial state, the insulation performance deteriorates during long-term use. This is because becomes larger.
  • This disclosure mainly aims to provide an outer packaging material for a vacuum heat insulating material and the like capable of forming a vacuum heat insulating material capable of maintaining good heat insulating performance.
  • the present disclosure is an outer packaging material for a vacuum heat insulating material having a heat-weldable film and a gas barrier film, and the tensile elastic modulus of the outer packaging material for the vacuum heat insulating material is 1.0 GPa or more and 4.0 GPa or less. And the ash content of the outer packaging material for vacuum heat insulating material is within the range of 1.0 mass% or more and 20 mass% or less.
  • the outer packaging material for vacuum heat insulating material may have two or more gas barrier films, or may have three or more gas barrier films.
  • the outer packaging material for a vacuum heat insulating material of the present disclosure may include the gas barrier film including a resin base material and a gas barrier layer containing an inorganic compound disposed on one or both surfaces of the resin base material. Good. Furthermore, you may have the overcoat layer containing an inorganic compound in the surface side opposite to the said resin base material of the said gas barrier layer.
  • the outer packaging material for a vacuum heat insulating material of the present disclosure may have a tensile elastic modulus of 2.0 GPa or more.
  • the gas barrier film may have a metal foil.
  • the outer packaging material for a vacuum heat insulating material of the present disclosure may have a tensile elastic modulus of the outer packaging material for a vacuum heat insulating material of 2.0 GPa or less.
  • the heat-weldable film may contain an inorganic compound.
  • the said outer packaging material for vacuum heat insulating materials may have made the protective film containing an inorganic compound in the surface side opposite to the said heat weldable film of the said gas barrier film.
  • the said outer packaging material for vacuum heat insulating materials may have the contact bonding layer containing an inorganic compound.
  • the present disclosure is a vacuum heat insulating material having a core material and an outer packaging material for vacuum heat insulating material in which the core material is enclosed, and the outer packaging material for vacuum heat insulating material is the above-described outer packaging material for vacuum heat insulating material. Provide vacuum insulation.
  • the present disclosure provides an article with a heat insulating region and a device with a vacuum heat insulating material including a vacuum heat insulating material, wherein the vacuum heat insulating material is the above-described vacuum heat insulating material.
  • an outer packaging material for a vacuum heat insulating material or the like that can form a vacuum heat insulating material capable of maintaining good heat insulating performance.
  • the outer packaging material for vacuum heat insulating material may be abbreviated as “external packaging material”.
  • the heat-weldable film side that is the inner side of the vacuum heat insulating material is the inner side of the outer packaging material and the outer side of the vacuum heat insulating material is a heat-weldable film The side far from the position may be described as “the outside of the outer packaging material”.
  • the outer packaging material of the present disclosure is an outer packaging material for vacuum heat insulating material having a heat-weldable film and a gas barrier film, and the tensile elastic modulus of the outer packaging material for vacuum heat insulating material is 1.0 GPa or more and 4.0 GPa or less.
  • the ash content of the outer packaging material for a vacuum heat insulating material is in the range of 1.0 mass% or more and 20 mass% or less.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the outer packaging material of the present disclosure.
  • an outer packaging material 10 of the present disclosure includes a heat-weldable film 1 and a gas barrier film 2, and the outer packaging material 10 has a tensile elastic modulus within a specific range and a specific range. It has the ash content.
  • FIG. 2 is a schematic cross-sectional view showing an example of a vacuum heat insulating material using the outer packaging material of the present disclosure.
  • the vacuum heat insulating material 20 includes a core material 11 and an outer packaging material 10 in which the core material 11 is enclosed.
  • the outer packaging material 10 is formed into a bag by joining the inner sides of the outer packaging material 10 at the end 12.
  • a core material 11 is disposed inside the bag body constituted by the outer packaging material 10 and is maintained in a vacuum state in which the pressure is lower than the atmospheric pressure.
  • reference numerals not described indicate the same members as those in FIG. 1, and thus description thereof is omitted here.
  • FIG. 3 is an explanatory view showing an example of the usage state of the vacuum heat insulating material, and is a cross-sectional view showing an example in which two vacuum heat insulating materials are used side by side.
  • the end portion 12 in the two vacuum heat insulating materials 20, the end portion 12 is bent to form a bent portion 13.
  • the area ratio occupied by the end portions 12 having low heat insulating performance when the two vacuum heat insulating materials 20 are viewed in plan is small.
  • tensile / compressive stress is applied to the bent portion 13.
  • tensile / compressive stress is also applied to the bent portion 14 that is the base portion of the end portion 12 on the core material 11 side, the corner portion 15 of the outer packaging material 10 that covers the corner portion of the core material 11, and the like. Therefore, minute defects are likely to occur in the outer packaging material 10 at the bent portion 13, the bent portion 14, and the corner portion 15.
  • the outer packaging material of the present disclosure has both the tensile elastic modulus of the outer packaging material and the ash content of the outer packaging material within a specific range, defects such as minute cracks and minute pinholes can be obtained even when folded. It is possible to form a vacuum heat insulating material that does not easily occur and can maintain a good heat insulating performance over a relatively long period of time.
  • characteristics of the outer packaging material and each configuration of the outer packaging material in the present disclosure will be described.
  • Tensile elastic modulus of vacuum insulation outer packaging material is in the range of 1.0 GPa or more and 4.0 GPa or less. If the tensile elastic modulus of the outer packaging material is less than the range, the outer packaging material may be too soft and the strength as the outer packaging material may be insufficient. If the tensile elastic modulus of the outer packaging material exceeds the range, the outer packaging material is too hard, and there is a possibility that minute cracks and minute pinholes are likely to occur.
  • the tensile elastic modulus of the outer packaging material can be 1.5 GPa or more, and can be 3.5 or less.
  • the tensile elastic modulus is preferably 2.0 GPa or more.
  • the tensile elastic modulus of the outer packaging material is preferably 2.0 GPa or less.
  • the tensile modulus was measured in accordance with JIS K7161-1: 2014 (Plastics-Determination of tensile properties-Part 1: General rules), and the outer packaging material was cut into a rectangle with a width of 15 mm, and a sample was collected.
  • JIS K7161-1: 2014 Plastics-Determination of tensile properties-Part 1: General rules
  • a method is used in which the tensile elastic modulus is measured under the conditions that the distance between chucks is 100 mm, the tensile speed is 100 mm / min, and the reserve force is used.
  • the measurement environment is 23 ° C. and humidity 55%.
  • the length of the sample is determined within a range in which a gripping tool is attached so that the length of the sample coincides with the axis of the testing machine and the gripping portion does not shift during measurement, and is, for example, about 120 mm.
  • the tensile tester is preferably Instron 5565 (Instron Japan).
  • the reserve force is, for example, the stress as ⁇ 0 and the elastic modulus as Et (if the appropriate elastic modulus or stress for the reserve force is unknown, test in advance to obtain the predicted value of the elastic modulus or stress. put) in the range of (E t / 10000) ⁇ ⁇ 0 ⁇ (E t / 3000).
  • At least five samples are measured, and the average of the measured values is taken as the value of the tensile modulus of the condition.
  • the value of a tensile elasticity modulus may change with directions in an outer packaging material surface, use of a surface average value is preferable.
  • the average of the values of the eight conditions obtained by changing the condition in the in-plane direction of the outer packaging material by approximately 22.5 degrees can be regarded as the in-plane average value.
  • the tensile elastic modulus is a value measured for one outer packaging material. Therefore, when the outer packaging material includes a film or a layer other than a heat-weldable film or a gas barrier film, it is a value measured in a state including those layers. For example, the film passes through an adhesive layer. In the case of being laminated, it is a value measured in a state including an adhesive. That is, the tensile elastic modulus is measured in a state including all films and layers existing in the outer packaging material. In addition, when the inner side of an outer packaging material is joined and it is a bag body, it is the value measured about the outer packaging material of the part which is not joined.
  • the ash content of the outer packaging material is in the range of 1.0 mass% or more and 20 mass% or less.
  • the tensile elastic modulus of the outer packaging material is within a specific range, and it is important that the ash content of the outer packaging material is also within a specific range. That is, even if the outer packaging material has a similar value of tensile modulus, if the ash content is different, the likelihood of occurrence of minute defects when bent is different.
  • the tensile elastic modulus of the outer packaging material is a characteristic that correlates with the stress applied to the bent portion when the outer packaging material is bent, and defects are likely to occur when a large stress is applied.
  • the ash content of an outer packaging material approximates the content rate of the inorganic compound component which occupies for the whole outer packaging material.
  • inorganic compounds are more fragile than organic compounds and are more likely to have defects than organic compounds when subjected to the same stress.
  • inorganic compounds, and inorganic compounds and organic compounds tend to be less bonded to each other than organic compounds.
  • the portion where defects are likely to occur when stress is applied to the outer packaging material is the inorganic compound itself, the inorganic compound, or the joint between the inorganic compound and the organic compound, rather than the organic compound. That is, when the content of the inorganic compound component in the entire outer packaging material is large, even if the stress is the same, there are many factors that can cause defects, and it can be said that minute defects are likely to occur when bent. .
  • the thickness of each film or layer in which the inorganic compound is used may be specified.
  • the inorganic compound component contained in the outer packaging material include the gas barrier film itself or a gas barrier layer constituting the gas barrier film.
  • the gas barrier film and the gas barrier layer are appropriately formed by various methods such as foil, vapor deposition, or coating.
  • membrane obtained, for example according to formation conditions differs, and an organic compound component may be contained in a film
  • an inorganic compound component may be included in a heat-bondable film, an adhesive layer, a protective film, or the like for various purposes, and the influence of the inorganic compound component needs to be considered.
  • gas barrier films and gas barrier layers there are various methods for forming these films and layers, their conditions, and raw materials, etc., so that only the thickness of these films causes the generation of minute defects when folded. It is difficult to evaluate the ease.
  • the inventors of the present disclosure pay attention to the ash content of the outer packaging material as a comprehensive index, and verify the ash value and the gas permeability when bent, and the fluctuation of the ash value and the thermal conductivity in the high temperature test. As a result, it was found that there was a good correlation between them, and the outer packaging material of the present disclosure was completed.
  • the ash content of the outer packaging material is, for example, a case where a plurality of gas barrier films having an inorganic compound are used, a case where the gas barrier film is composed of a layer having a plurality of inorganic compounds, or a heat-weldable film, a protective film, Alternatively, when the inorganic compound is used in a complicated manner as in the case where the inorganic compound is used in a configuration other than the gas barrier film such as an adhesive layer, the advantage as a comprehensive index is great.
  • the ash content of the outer packaging material can be 1.0% by mass or more, and further 1.5% by mass, 3.0% by mass, or 5.0% by mass or more. Further, the ash content of the outer packaging material can be 20% by mass or less, and further can be 16% by mass or less, 15% by mass or less, and 5.0% by mass or less.
  • the ash content of the outer packaging material can be in the range of 1.0 mass% or more and 16 mass% or less, and can be in the range of 1.0 mass% or more and 15 mass% or less, Furthermore, it can be in the range of 1.0 mass% or more and 5.0 mass% or less.
  • the ash content of the outer packaging material can be in the range of 1.5% by mass to 16% by mass, and can be in the range of 3.0% by mass to 16% by mass. Furthermore, it can be in the range of 5.0 mass% or more and 16 mass% or less.
  • the ash content is used to examine the ratio of the non-flammable inorganic compound remaining after the outer packaging material is burned out in the mass of the entire outer packaging material.
  • the mass of the measurement sample is measured using a thermogravimetric / differential thermal analyzer (TG-DTA) and then heated in an aluminum pan and in an air atmosphere at a heating rate of 10 ° C./min. After the temperature is raised from room temperature to 600 ° C., the measurement sample is incinerated by heating at 600 ° C. for 30 minutes as it is, and the value obtained by expressing the mass after heating with respect to the mass before heating as a percentage is defined as ash.
  • TG8120 manufactured by Rigaku Corporation can be used as the thermogravimetric / differential thermal simultaneous analyzer at this time.
  • Gas barrier film A gas barrier film is arrange
  • the gas barrier film is not particularly limited as long as a desired gas barrier property can be obtained, and a metal foil may be used as the gas barrier film (first aspect), and the resin base material and one of the resin base materials or You may use the laminated body which has a gas barrier layer containing the inorganic compound arrange
  • each aspect of the gas barrier film will be described.
  • the 1st aspect in this indication is an aspect in which the said gas barrier film is metal foil.
  • the metal foil is generally a thin stretch of metal, for example by tapping.
  • metal foils include metal foils such as aluminum, nickel, stainless steel, iron, copper, and titanium.
  • aluminum foils are preferably used. Since the metal foil has good gas barrier properties and excellent bending resistance, it is possible to obtain an outer packaging material having high gas barrier properties by using the metal foil as the gas barrier film, and maintain high gas barrier properties. be able to.
  • the metal foil may be a single layer or a laminate in which layers made of the same material or layers made of different materials are laminated.
  • the thickness of the metal foil (in the case of a laminate) is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within a predetermined range. 9 ⁇ m or less is preferable. Further, the lower limit of the thickness is not particularly limited, but can be, for example, 5 ⁇ m or more. If the thickness of the metal foil is less than 5 ⁇ m, pinholes or the like are likely to occur in the metal foil, and the gas barrier property may be lowered. On the other hand, if the thickness is greater than 9 ⁇ m, the ash content of the outer packaging material is within the above range. May be difficult to do.
  • the thickness of the metal foil may be 7 ⁇ m or less, or may be 6.5 ⁇ m or less.
  • the oxygen permeability is preferably 0.01 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the water vapor permeability is preferably 0.01 g / (m 2 ⁇ day) or less.
  • the oxygen permeability is more preferably 0.005 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability is measured in accordance with JIS K7126-2A: 2006 (Plastics-Film and Sheet-Gas permeability test method-Part 2: Isobaric method, Appendix A: Test method of oxygen gas permeability by electrolytic sensor method. ) Under the conditions of a temperature of 23 ° C. and a humidity of 60% RH, the outer side of the outer packaging material (the side where the gas barrier film of the heat-weldable film is disposed) is oxygen gas using an oxygen permeability measuring device. A method of measurement is used under the condition of a transmission area of 50 cm 2 so as to be in contact with each other.
  • the oxygen permeability measuring device is preferably OXTRAN (OXTRAN 2/21 10X, manufactured by MOCON, a US company).
  • the test gas is purged with at least 99.5% dry oxygen at a carrier gas flow rate of 10 cc / min for 60 minutes or more, and then the test gas is flowed.
  • the measurement was started after 12 hours were secured as the time from the start of flowing the test gas until the equilibrium state was reached. In one condition, at least three samples are measured, and the average of the measured values is taken as the oxygen permeability value for that condition.
  • the water vapor transmission rate is measured in accordance with JIS K7129-B: 2008 (Plastics-Film and Sheet-Determination of water vapor transmission rate (instrument measurement method), Appendix B: Infrared sensor method), temperature 40 ° C, humidity Under the condition of 90% RH (Condition 3), using the water vapor transmission rate measuring device, the outer side of the outer packaging material (the side where the gas barrier film of the heat-weldable film is disposed) becomes the high humidity side (the water vapor supply side). Thus, the measurement method is used under the condition of a transmission area of 50 cm 2 .
  • the water vapor transmission rate measuring device is preferably Permatran (PERMATRAN-3 / 33G +, manufactured by MOCON, an American company).
  • NIST film # 3 is used as a standard test piece. Under one condition, at least three samples are measured, and the average of the measured values is taken as the value of the water vapor permeability of the condition. The same applies to the methods for measuring oxygen permeability and water vapor permeability in the following description.
  • a protective film such as a resin film is disposed on the outer side of the gas barrier film (on the opposite side to the film capable of being thermally welded). This is because the gas barrier film can be protected from exposure to water vapor and physical stress. Since such a protective film is the same as that described in “4. Protective film” described later, description thereof is omitted here.
  • the gas barrier film of the 2nd aspect in this indication has a resin base material and a gas barrier layer containing an inorganic compound arranged on one or both sides of the resin base material.
  • the gas barrier film is preferably the second embodiment. This is because it is relatively difficult to reduce the thickness of the metal foil while maintaining the gas barrier property, whereas the gas barrier layer can provide the gas barrier property even with a relatively small thickness. Moreover, it is because it is easy to adjust the tensile elastic modulus and ash content of the outer packaging material by laminating a plurality of gas barrier layers or using a plurality of gas barrier films having a gas barrier layer.
  • FIG. 4 is a schematic cross-sectional view illustrating another example of the outer packaging material of the present disclosure.
  • the outer packaging material 10 having the gas barrier film 2 ′ of this aspect includes the heat-weldable film 1 and the gas barrier film 2 ′ in the same manner as the outer packaging material having the gas barrier film of the first aspect described above. It is what you have.
  • the gas barrier film 2 ′ of this aspect includes a resin base material 3 and a gas barrier layer 4 disposed on one surface side of the resin base material 3.
  • Gas barrier layer A gas barrier layer is arrange
  • the gas barrier layer is not particularly limited as long as it can exhibit a desired gas barrier property.
  • a layer having gas barrier properties for example, a metal layer, a layer mainly containing an inorganic compound, a layer mainly containing a mixed compound of an organic part and an inorganic part, or the like can be used.
  • a metal layer what is comprised from metals, such as aluminum, stainless steel, titanium, nickel, iron, copper, or an alloy containing these, can be mentioned.
  • the mixed compound of a resin part and an inorganic part of the layer which has the mixed compound of the said organic part and an inorganic part as a main component the mixed compound of a resin part and an inorganic part is mentioned, for example.
  • the organic compound constituting the organic part those described later as the resin of the resin substrate can be used, and as the inorganic compound constituting the inorganic part, the inorganic compound of the layer mainly composed of the inorganic compound is described later. Can be used. Or what shows gas barrier property independently among the things mentioned later as a material of an overcoat layer can be used, specifically, Kuraray Co., Ltd. Clarista CF etc. can be used.
  • the inorganic compound of the layer mainly composed of an inorganic compound may be any material that can exhibit a desired gas barrier property.
  • an inorganic compound containing one or more elements selected from silicon, aluminum, magnesium, calcium, potassium, tin, sodium, titanium, boron, yttrium, zirconium, mucerium, and zinc can do.
  • An inorganic compound may be used independently and may mix and use the above-mentioned material in arbitrary ratios.
  • the thickness of the gas barrier layer is not particularly limited as long as a desired gas barrier property can be exhibited. Although it depends on the type of the gas barrier layer, for example, it is in the range of 5 nm or more and 800 nm or less. It is preferable. If the thickness of the gas barrier layer is less than the above range, the film formation may be insufficient and the desired gas barrier property may not be exhibited, and the gas barrier layer may deteriorate over time. If the above range is exceeded, cracks are likely to occur and flexibility may be reduced, or if the gas barrier layer contains a metal or an alloy, a heat bridge is formed using the outer packaging material of the present disclosure. This is because there is a risk of occurrence.
  • the thickness of the gas barrier layer is more preferably in the range of 10 nm or more and 700 nm or less.
  • the gas barrier layer may be a single layer or a laminate of two or more. When two or more gas barrier layers are used, gas barrier layers having the same composition may be combined, or gas barrier layers having different compositions may be combined.
  • a conventionally known method can be used according to the type of the gas barrier layer.
  • a method of forming a gas barrier layer on a resin substrate using a dry film forming method such as a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method, specifically, a vacuum evaporation method or the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the method of sticking a resin base material and a gas barrier layer through an adhesive bond layer etc. using the ready-made gas barrier layer is mentioned.
  • the gas barrier properties of the gas barrier layer alone is preferably an oxygen permeability of at 0.5cc / (m 2 ⁇ day ⁇ atm) or less, 0.1cc / (m 2 ⁇ day ⁇ atm) or less It is more preferable that It is more preferable that the water vapor permeability is 0.5g / (m 2 ⁇ day) or less is preferably 0.1g / (m 2 ⁇ day) or less.
  • the resin base material is not particularly limited as long as it can support the gas barrier layer.
  • a resin film is preferably used.
  • the resin film may be unstretched or uniaxially or biaxially stretched.
  • the resin used for the resin substrate is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and cyclic.
  • polyolefins such as polyethylene and polypropylene
  • polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and cyclic.
  • polyamide, PET, polypropylene and the like are preferably used, and polyamide and PET are more preferably used from the viewpoints of toughness, oil resistance, chemical resistance, availability, and the like. It is done.
  • the resin base material of the gas barrier film disposed at a position closer to the heat-weldable film includes polyvinyl alcohol such as PVA and EVOH, (meth) acryl, cellulose, and polysaccharide. It is preferable to use a hydrophilic group-containing resin such as a natural polymer such as polyvinyl alcohol resin such as PVA or EVOH, and particularly EVOH. This is because the hydrophilic group-containing resin exhibits a high barrier property against oxygen even at a high temperature, so that the barrier property against oxygen as an outer packaging material can be improved.
  • the “hydrophilic group” refers to an atomic group that forms a weak bond with a water molecule by electrostatic interaction or hydrogen bond, and has an affinity for water, such as a hydroxy group (—OH), An atomic group containing a polar group or a dissociating group such as a carboxy group (—COOH), an amino group (—NH 2 ), a carbonyl group (> CO), or a sulfo group (—SO 3 H) shows its properties.
  • the resin base material may contain various plastic compounding agents and additives.
  • the additive include a lubricant, a crosslinking agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment, and a modifying resin.
  • the resin base material may be subjected to a surface treatment. This is because the adhesion to the gas barrier layer can be improved.
  • the thickness of the resin substrate is not particularly limited, but is, for example, in the range of 6 ⁇ m to 200 ⁇ m, more preferably in the range of 9 ⁇ m to 100 ⁇ m.
  • the gas barrier film may have an overcoat layer containing an inorganic compound on the surface of the gas barrier layer opposite to the resin substrate. This is because the gas barrier property of the gas barrier film can be improved.
  • Such an overcoat layer is not particularly limited, and those generally used as an overcoat agent can be used. For example, a mixed compound containing an organic portion and an inorganic portion can be used as the main component of the overcoat layer.
  • the thickness of the overcoat layer is not particularly limited, but can be, for example, in the range of 50 nm or more and 500 nm or less.
  • the mixed compound examples include various compounds such as an alumina phosphate-based mixed compound such as Clarista CF (registered trademark) manufactured by Kuraray Co., Ltd., and Besera (registered trademark) manufactured by Toppan Printing Co., Ltd.
  • Clarista CF registered trademark
  • Besera registered trademark
  • a gas barrier resin composition comprising a zinc acrylate-based mixed compound, a resin and an inorganic layered compound, or a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are the number of carbon atoms) 1 represents an organic group of 1 or more, 8 or less, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) And a sol-gel compound using a raw material liquid obtained by polycondensation by a sol-gel method can be used.
  • the water-soluble polymer examples include polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer, acrylic acid resin, natural polymer methyl cellulose, carboxymethyl cellulose, cellulose nanofiber, and polysaccharide.
  • a sol-gel compound for the overcoat layer. This is because the sol-gel compound has a high adhesive strength at the interface and can perform a process during film formation at a relatively low temperature, thereby suppressing deterioration of the resin base material due to heat.
  • the order of the above-described resin base material and gas barrier layer is not particularly limited, and is appropriately set according to the layer configuration of each layer other than the gas barrier film, the number of gas barrier films, etc. used together with the outer packaging material. can do.
  • the gas barrier layer 4 when the vacuum heat insulating material is formed using the outer packaging material 10, the gas barrier layer 4 may be disposed so as to be inside the resin base material 3.
  • the outer packaging material 10 includes the protective film 5
  • the gas barrier layer 4 may be disposed outside the resin base material 3.
  • the outer packaging material 10 has two gas barrier films 2 ′, as illustrated in FIG. 5B, even if the gas barrier layers 4 are arranged to face each other, as shown in FIG. As illustrated in FIG.
  • FIG. 5 is a schematic cross-sectional view illustrating another example of the outer packaging material of the present disclosure.
  • the outer packaging material of the present disclosure may include a plurality of gas barrier films as described above.
  • the number of gas barrier films in one outer packaging material is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within the above-described ranges. It can be in the range, and in particular, it is preferably in the range of 2 or more and 4 or less, particularly in the range of 2 or more and 3 or less. By increasing the number of gas barrier films to be used, the gas barrier properties of the outer packaging material can be improved.
  • each gas barrier film may be the same or different.
  • Heat-weldable film in the present disclosure can be heat-welded, and is a part that comes into contact with a core material when a vacuum heat insulating material is formed using the outer packaging material. Moreover, it is a site
  • the heat-weldable film material is preferably a thermoplastic resin because it can be melted and fused by heating.
  • polyethylene such as linear short-chain branched polyethylene (LLDPE) or unstretched polypropylene Polyolefins such as (CPP), polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyamides such as polyvinyl acetate, polyvinyl chloride, (meth) acryl, polyurethane, nylon
  • polyvinyl alcohol such as resin, polyvinyl alcohol (PVA), and ethylene-vinyl alcohol copolymer (EVOH).
  • a resin having a relatively high tensile elastic modulus such as polypropylene or polybutylene terephthalate (PBT) is used as a film material that can be thermally welded. It is because generation
  • the melting point of the heat-weldable film is preferably in the range of 80 ° C. or higher and 300 ° C. or lower, for example. If the melting point of the heat-weldable film is less than the above range, the sealing surface of the outer packaging material may be peeled off under the usage environment of the vacuum heat insulating material formed using the outer packaging material of the present disclosure. Further, if the melting point of the heat-weldable film exceeds the above range, the outer packaging material needs to be heat-welded at a high temperature, so that the gas barrier film and the like used together as the outer packaging material may be deteriorated by heat.
  • the melting point is more preferably in the range of 100 ° C. or more and 250 ° C. or less.
  • the heat-weldable film may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and a filler in addition to the above-described resin. These materials can be composed of inorganic compounds.
  • the thickness of the heat-weldable film is not particularly limited, and is preferably in the range of 15 ⁇ m or more and 100 ⁇ m or less, for example. When the thickness of the heat-weldable film is larger than the above range, the gas barrier property of the outer packaging material may be deteriorated. When the thickness is smaller than the above range, a desired adhesive force cannot be obtained. There is.
  • the thickness of the heat-weldable film is more preferably in the range of 25 ⁇ m or more and 90 ⁇ m or less, and further preferably in the range of 30 ⁇ m or more and 80 ⁇ m or less.
  • the tensile elastic modulus of the heat-weldable film is not particularly limited, and is preferably 1.0 GPa or more, for example.
  • the tensile modulus of the heat-weldable film is within the above range, so that the tensile modulus of the outer packaging material can be within the desired range, and the occurrence of cracks in the gas barrier film is suppressed. Because you can. Moreover, it is because generation
  • the tensile modulus of the heat-weldable film is preferably in the range of 1.0 GPa or more and 5.0 GPa or less, and more preferably in the range of 1.0 GPa or more and 3.0 GPa or less.
  • the outer packaging material of the present disclosure may have a protective film in addition to the above-described heat-weldable film and gas barrier film. It is because each film used together as an outer packaging material, such as a heat-weldable film and a gas barrier film, can be protected from damage and deterioration by having the protective film as a protective film.
  • the protective film can be distinguished from the above-described films in that no layer having a gas barrier property is disposed on either side of the protective film.
  • the arrangement position in the outer packaging material of the protective film is not particularly limited, it is preferably arranged on the opposite side of the gas barrier film from the thermally weldable film, and when forming a vacuum heat insulating material It is more preferable that a protective film is disposed at a position to be the outermost layer (outermost layer).
  • the protective film it is preferable to use a resin having a higher melting point than the heat-weldable film, and it may be in the form of a sheet or film.
  • a protective film for example, nylon, polyester, polyamide, polypropylene, polyurethane, amino resin, silicone resin, epoxy resin, thermosetting resin such as polyimide (PI), polyvinyl chloride (PVC), polycarbonate (PC) , Polystyrene (PS), polyvinyl alcohol (PVA), ethylene / vinyl acetate copolymer (EVAL), polyacrylonitrile (PAN), cellulose nanofiber (CNF), etc. ), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), expanded polypropylene (OPP), polyvinyl chloride (PVC) and the like are preferably used.
  • PI polyimide
  • PVC polyvinyl chloride
  • PC PC
  • PS Polystyrene
  • the protective film may be a single layer, or may be a multilayer formed by laminating layers made of the same material or layers made of different materials.
  • the protective film may be subjected to a surface treatment such as a corona discharge treatment from the viewpoint of improving the adhesion with other layers.
  • the thickness of the protective film is not particularly limited, but is generally in the range of 5 ⁇ m or more and 80 ⁇ m or less.
  • the protective film may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and a filler. These materials can be composed of inorganic compounds. Alternatively, a hard coat layer containing an inorganic compound may be formed.
  • Adhesive Layer The outer packaging material of the present disclosure may be bonded using a known adhesive.
  • the adhesive may contain an inorganic compound such as a silane coupling agent or a metal chelating agent in order to improve the adhesive force.
  • the outer packaging material for vacuum heat insulating material is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within the above-described ranges, and for example, 30 ⁇ m or more and 200 ⁇ m or less. It is preferable that it is in the range of 50 ⁇ m or more and 150 ⁇ m or less.
  • the method for producing the outer packaging material is not particularly limited as long as an outer packaging material having a desired configuration can be obtained, and a known method can be used. For example, a method of pasting each film manufactured in advance with an adhesive, a method of sequentially extruding the raw materials of each heat-melted film with a T-die or the like, and the like can be cited.
  • the oxygen permeability of 0.1cc / (m 2 ⁇ day ⁇ atm) or less is preferably Among them 0.05cc / (m 2 ⁇ day ⁇ atm) or less.
  • the vacuum heat insulating material for outer material water vapor permeability of 0.5g / (m 2 ⁇ day) or less, preferably 0.1g / (m 2 ⁇ day) or less, particularly 0.05g / (m 2 ⁇ day It is preferable that This is because a vacuum heat insulating material having high heat insulating performance can be formed by having the gas barrier property within the above-described range.
  • the vacuum heat insulating material of the present disclosure is a vacuum heat insulating material having a core material and a vacuum heat insulating material outer packaging material that encloses the core material, and the vacuum heat insulating material outer packaging material described above is the vacuum heat insulating material outer packaging material. It is characterized by being.
  • the vacuum heat insulating material of the present disclosure can be the same as that illustrated in FIG. According to this indication, it can be set as the vacuum heat insulating material which can maintain heat insulation performance for a long period of time because the outer packaging material for vacuum heat insulating materials is the above-mentioned outer packaging material for vacuum heat insulating materials.
  • the vacuum heat insulating material of the present disclosure has a vacuum heat insulating material outer packaging material and a core material.
  • the vacuum heat insulating material of the present disclosure will be described for each configuration.
  • Outer packaging material for vacuum heat insulating material The outer packaging material in the present disclosure encloses a core material.
  • the outer packaging material is the above-described outer packaging material.
  • Such an outer packaging material can be the same as the content described in the section “A.
  • the term “encapsulated” refers to sealing inside a bag formed using an outer packaging material.
  • the core material in the present disclosure is encapsulated with an outer packaging material for a vacuum heat insulating material.
  • the core material preferably has a low thermal conductivity.
  • the core material is preferably a porous material having a porosity of 50% or more, particularly 90% or more.
  • the powder may be either inorganic or organic, and for example, dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used.
  • dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used.
  • a mixture of dry silica and conductive powder is advantageous when used in a temperature range in which an increase in internal pressure occurs because deterioration in heat insulation performance associated with an increase in internal pressure of the vacuum heat insulating material is small.
  • the infrared absorptivity of the core material can be reduced.
  • examples of the foam include urethane foam, styrene foam, phenol foam, and the like. Among these, a foam that forms open cells is preferable.
  • the fiber body may be inorganic fiber or organic fiber, but it is preferable to use inorganic fiber from the viewpoint of heat insulation performance.
  • inorganic fibers include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, and rock wool. These inorganic fibers are preferable in that they have low thermal conductivity and are easier to handle than powders.
  • the core material may be the above-described material alone or a composite material in which two or more materials are mixed.
  • Vacuum heat insulating material The vacuum heat insulating material of this indication WHEREIN: The inside enclosed with the outer packaging material for vacuum heat insulating materials is pressure-reduced, and is made into the vacuum state.
  • the degree of vacuum inside the vacuum heat insulating material is preferably 5 Pa or less.
  • the heat conductivity of the vacuum heat insulating material is preferably low.
  • the heat conductivity (initial heat conductivity) at 25 ° C. of the vacuum heat insulating material is preferably 5 mW / (m ⁇ K) or less. This is because, by setting the heat conductivity of the vacuum heat insulating material in the range, the vacuum heat insulating material becomes difficult to conduct heat to the outside, so that a high heat insulating effect can be achieved.
  • the thermal conductivity (initial thermal conductivity) at 25 ° C. of the vacuum heat insulating material is more preferably 4 mW / (m ⁇ K) or less, and further preferably 3 mW / (m ⁇ K) or less.
  • the thermal conductivity is measured in accordance with JIS A1412-2: 1999 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials-Part 2: Heat flow meter method (HFM method)).
  • the time required for the test to be steady is 15 minutes or more, the standard plate type EPS, the temperature of the hot surface is 30 ° C., the temperature of the cold surface is 10 ° C., and the sample average temperature is 20 ° C.
  • a method in which the surface is arranged in the vertical direction and measured by a heat flow meter method is used.
  • the thermal conductivity measuring device is preferably Auto Lambda HC-074 (manufactured by Eiko Seiki Co., Ltd.).
  • the sample size is, for example, 29 ⁇ 0.5 cm wide and 30 ⁇ 0.5 cm long. Under one condition, at least three samples are measured, and the average of the measured values is taken as the thermal conductivity value of the condition.
  • Manufacturing method As a manufacturing method of the vacuum heat insulating material of this indication, a general method can be used. For example, two laminates that can form the above-described outer packaging material and cut into a quadrilateral are prepared. The respective heat-weldable films face each other, and the outer edges of the three sides of the two laminates are heat-welded to obtain a bag having one side open. After putting the core material through the opening of the bag, air is sucked from the opening of the bag. In the state where the inside of the bag body is depressurized, the remaining outer edge portion is heated. Thereby, a vacuum heat insulating material in which the core material is enclosed by the outer packaging material is obtained.
  • the vacuum heat insulating material of the present disclosure has low thermal conductivity and is excellent in heat insulating properties and durability even at high temperatures. Therefore, the vacuum heat insulating material can be used in a part that has a heat source and generates heat, or a part that becomes high temperature when heated from the outside.
  • the article with a vacuum heat insulating material of the present disclosure is an article having a heat insulating region and an article with a vacuum heat insulating material including the vacuum heat insulating material, wherein the vacuum heat insulating material is the above-described vacuum heat insulating material.
  • the heat insulating region is a region that is thermally insulated by a vacuum heat insulating material, for example, a region that is kept warm or cold, a region that surrounds a heat source or a cooling source, or a region that is isolated from a heat source or a cooling source. These areas may be spaces or objects.
  • electric devices such as refrigerators, freezers, heat insulators, and coolers, heat insulation containers, cold insulation containers, transport containers, containers, containers for storage containers, vehicles, aircraft, ships and other vehicles, houses, warehouses, etc. Buildings, etc.
  • vacuum heat insulating material in the present disclosure is the same as the content described in the above-mentioned section “B. Vacuum heat insulating material”, description thereof is omitted here.
  • the article with a vacuum heat insulating material of the present disclosure include a device having a heat source part or a heat retaining part inside the main body or inside, and a device with a vacuum heat insulating material provided with a vacuum heat insulating material.
  • the “heat source section” refers to a portion that generates heat in the apparatus main body or inside the apparatus when the apparatus itself is driven, such as a power source or a motor.
  • the “insulated part” refers to a part that does not have a heat source part in the apparatus body or inside, but the apparatus receives heat from an external heat source and becomes high temperature.
  • the outer packaging material is the above-described outer packaging material, and the vacuum heat insulating material can maintain the heat insulating performance for a long period of time
  • the heat from the heat source unit is generated by the vacuum heat insulating material. It heat-insulates and prevents that the temperature of the whole apparatus becomes high temperature
  • the apparatus which has a heat retaining part the temperature state of a heat retaining part can be maintained with a vacuum heat insulating material. Thereby, it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
  • the device in the present disclosure has a main body or a heat source section or a heat retaining section inside the main body.
  • equipment in the present disclosure include natural refrigerant heat pump water heaters, refrigerators, vending machines, rice cookers, pots, microwave ovens, commercial ovens, IH cooking heaters, electrical appliances such as OA equipment, automobiles, residential walls, and transportation. Container etc. are mentioned.
  • the vacuum heat insulating material may be directly attached to the heat source portion or the heat retaining portion of the device, and the vacuum heat insulating material is provided between the heat retaining portion and the heat source portion or the external heat source. It may be mounted so as to be sandwiched.
  • Example 1 Preparation of outer packaging material for vacuum insulation
  • an unstretched polypropylene film (CPP50) having a thickness of 50 ⁇ m is deposited as a heat-weldable film, and an aluminum film having a thickness of 40 nm is deposited as a first gas barrier film.
  • CPP50 unstretched polypropylene film
  • PET Al vapor-deposited PET12 (1)
  • Al vapor-deposited PET12 (1) with OC a film on which an overcoat layer (mixture of resin and inorganic layered compound) of about 230 nm is disposed
  • a silica film having a thickness of 10 nm is deposited, and a 15 ⁇ m thick nano film is deposited.
  • the outer cover material having a layer structure of the Ron film (SiO 2 deposited nylon 15) was prepared.
  • a deposited film side of the deposition film side and OC with Al deposition of the second gas barrier film PET 12 (1) of the Al deposition PET 12 (1) with OC is arranged to face the first gas barrier film, SiO 2 of the third gas barrier film It arrange
  • Each film was bonded with an adhesive layer.
  • the adhesive for forming the adhesive layer is composed of a main component mainly composed of polyester polyol (product name: RU-77T manufactured by Rock Paint), and a curing agent containing aliphatic polyisocyanate (product name: manufactured by Rock Paint).
  • Example 2 50 ⁇ m-thick linear short-chain branched polyethylene film (LLDPE50) as a film that can be heat-welded from the inner layer structure of the outer packaging material, and a 12 ⁇ m-thick ethylene-vinyl alcohol copolymer as the first gas barrier film
  • a film Al vapor-deposited EVOH12
  • a PET film thick-film Al vapor-deposited PET12
  • a metal oxide phosphorous as a third gas barrier film.
  • An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a PET film having an acid layer (Clarista CF12) was used.
  • Example 3 50 ⁇ m thick linear short-chain branched polyethylene film (LLDPE50) as a film that can be heat-welded from the inner layer structure of the outer packaging material, and 15 ⁇ m thick ethylene-vinyl alcohol copolymer as the first gas barrier film A film (Al vapor-deposited EVOH15), a 55-nm thick aluminum film deposited as a second gas barrier film, a 12- ⁇ m thick PET film (thick-film Al-deposited PET12), and a third gas barrier film, 55-nm thick An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a 12 ⁇ m thick PET film (thick film Al deposited PET12) on which an aluminum film was deposited was used.
  • LLDPE50 linear short-chain branched polyethylene film
  • Example 4 The layer structure of the outer packaging material was deposited from the inside as a heat-weldable film, a 30 ⁇ m thick unstretched polypropylene film (CPP30), and a first gas barrier film, a 30 nm thick silica film was deposited.
  • a PET film SiO 2 deposited PET 12 (1)
  • a silica film having a thickness of 30nm was deposited, and the thickness of 12 [mu] m PET film (SiO 2 deposited PET 12 (1)), the third barrier
  • the outer packaging material and the vacuum heat insulating material were obtained in the same manner as in Example 1 except that the film was a 15 ⁇ m thick nylon film (SiO 2 vapor deposited nylon 15) on which a 10 nm thick silica film was deposited. It was.
  • Example 5 Except that the layer structure of the outer packaging material is CPP50, a 6 ⁇ m thick aluminum foil (Al6), a 12 ⁇ m thick PET film (PET12), and a 25 ⁇ m thick nylon film (ON25) from the inside. In the same manner as in Example 1, an outer packaging material and a vacuum heat insulating material were obtained.
  • a film Al-deposited EVOH12
  • a 12 ⁇ m thick polyethylene terephthalate (PET) film Al-deposited PET12 (2)
  • an aluminum film of about 40 nm is deposited as a second gas barrier film
  • a protective layer of 25 ⁇ m in thickness An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that the nylon film (ON25) was used.
  • the layer structure of the outer packaging material is an unstretched polypropylene film (CPP40) having a thickness of 40 ⁇ m, a first gas barrier film, a second gas barrier film, and a third gas barrier film, each having a thickness of 10 nm.
  • CPP40 unstretched polypropylene film
  • An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a PET film having a thickness of 12 ⁇ m (SiO 2 vapor-deposited PET12 (2)) on which a silica film was deposited was obtained was obtained.
  • Example 4 An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that the layer structure of the outer packaging material was changed to an unstretched polypropylene film (CPP40) having a thickness of 40 ⁇ m, Al40, and ON25 from the inside.
  • CPP40 unstretched polypropylene film
  • the thermal conductivity of the vacuum heat insulating materials of Examples 1 to 5 in which the tensile elastic modulus of the outer packaging material is within a specific range and the ash content of the outer packaging material is within the specific range has a time-dependent value of 11.5 mW. It can be seen that the low thermal conductivity is maintained even after being stored at a high temperature. Note that ASTM C1484-09 stipulates that the heat insulating performance is 11.5 mW / mK or less as a vacuum heat insulating material. On the other hand, the thermal conductivity of the vacuum heat insulating materials of Comparative Examples 1 and 2 in which the ash content of the outer packaging material is low has a low initial value but a high temporal value.
  • the heat conductivity of the vacuum heat insulating materials of Comparative Examples 3 to 5 in which the ash content of the outer packaging material is high has a high initial value and a time-dependent value. This is because the ratio of the metal in the outer packaging material is too high and hardens, so that cracks and the like occur in the outer packaging material particularly at the twice bent portion, and the gas barrier property of the outer packaging material is low at the initial stage. I guess that.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

The present invention provides an outer packaging member for a vacuum heat insulating member having a film that can be heat-sealed and a gas barrier film, the outer packaging member for a vacuum heat insulating member characterized in that the modulus of tensile elasticity of the outer packaging member for a vacuum heat insulating member is within the range of 1.0-4.0 GPa inclusive, and the ash content of the outer packaging member for a vacuum heat insulating member is within the range of 1.0-20 mass% inclusive.

Description

真空断熱材用外包材、真空断熱材、および真空断熱材付き物品Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
 本開示は、真空断熱材を形成可能な真空断熱材用外包材、真空断熱材、および真空断熱材付き物品に関するものである。 The present disclosure relates to an outer packaging material for a vacuum heat insulating material that can form a vacuum heat insulating material, a vacuum heat insulating material, and an article with a vacuum heat insulating material.
 近年、地球温暖化防止のため温室効果ガスの削減が推進されており、電気製品や車両、設備機器ならびに建物等の省エネルギー化が求められている。中でも、消費電力量低減の観点から、電気製品等への真空断熱材の採用が進められている。電気製品等のように本体内部に発熱部を有する機器や、外部からの熱を利用した保温機能を有する機器においては、真空断熱材を備えることにより機器全体としての断熱性能を向上させることが可能となる。このため、真空断熱材の使用により、電気製品等の機器のエネルギー削減の取り組みがなされている。 In recent years, the reduction of greenhouse gases has been promoted to prevent global warming, and there is a demand for energy saving in electrical products, vehicles, equipment and buildings. Among these, from the viewpoint of reducing power consumption, the use of vacuum heat insulating materials for electrical products and the like is being promoted. In equipment that has a heat generating part inside the main body, such as electrical products, and equipment that has a heat retaining function using heat from the outside, it is possible to improve the heat insulation performance of the equipment as a whole by providing a vacuum heat insulating material It becomes. For this reason, efforts are being made to reduce the energy of devices such as electrical products by using vacuum heat insulating materials.
 真空断熱材とは、芯材と、その芯材が封入された外包材とを有するものである。外包材により構成された袋体の内部は、芯材が配置されるとともに、大気圧よりも圧力が低い真空状態に保持されている。袋体の内部の熱対流が抑制されるため、真空断熱材は、良好な断熱性能を発揮することができる。 The vacuum heat insulating material has a core material and an outer packaging material in which the core material is enclosed. The inside of the bag body constituted by the outer packaging material is held in a vacuum state in which the core material is disposed and the pressure is lower than the atmospheric pressure. Since heat convection inside the bag is suppressed, the vacuum heat insulating material can exhibit good heat insulating performance.
 真空断熱材の内部を真空状態に保持するために、真空断熱材を構成する外包材には、ガスが通過することを抑制するためのガスバリア性や、袋体とするための熱溶着性が要求される。そのため、真空断熱材用の外包材は、一般に、ガスバリアフィルムおよび熱溶着可能なフィルムから構成される(例えば、特許文献1および特許文献2)。 In order to keep the inside of the vacuum heat insulating material in a vacuum state, the outer packaging material constituting the vacuum heat insulating material requires a gas barrier property for suppressing the passage of gas and a heat welding property for forming a bag body. Is done. Therefore, the outer packaging material for a vacuum heat insulating material is generally composed of a gas barrier film and a heat-weldable film (for example, Patent Document 1 and Patent Document 2).
特開2006-70923号公報JP 2006-70923 A 特開2014-62562号公報JP 2014-62562 A 特開2013-103343号公報JP 2013-103343 A 特開2002-310385号公報JP 2002-310385 A 特開2011-143693号公報JP 2011-143893 A
 例えば、特許文献1および特許文献2には、真空断熱材の製造時や使用時に外包材が折り曲げられる場合があることが開示されている。真空断熱材用の外包材は、折り曲げられた場合であっても、微小なクラックや微小なピンホールなどの欠陥が発生しにくいことが望ましい。外包材に微小な欠陥が存在する真空断熱材は、初期状態ではそれが存在しないものと同等程度の断熱性能を示した場合であっても、長期間使用しているうちに、断熱性能の低下がより大きくなるためである。 For example, Patent Document 1 and Patent Document 2 disclose that the outer packaging material may be bent when the vacuum heat insulating material is manufactured or used. Even when the outer packaging material for the vacuum heat insulating material is bent, it is desirable that defects such as minute cracks and minute pinholes hardly occur. Even if the vacuum insulation material with minute defects in the outer packaging material shows the same level of insulation performance as the one without it in the initial state, the insulation performance deteriorates during long-term use. This is because becomes larger.
 本開示は、良好な断熱性能を維持することができる真空断熱材を形成可能な真空断熱材用外包材等を提供することを主目的とする。 This disclosure mainly aims to provide an outer packaging material for a vacuum heat insulating material and the like capable of forming a vacuum heat insulating material capable of maintaining good heat insulating performance.
 すなわち、本開示は、熱溶着可能なフィルムと、ガスバリアフィルムとを有する真空断熱材用外包材であって、前記真空断熱材用外包材の引張弾性率が、1.0GPa以上、4.0GPa以下の範囲内であり、前記真空断熱材用外包材の灰分が、1.0質量%以上、20質量%以下の範囲内である、真空断熱材用外包材を提供する。 That is, the present disclosure is an outer packaging material for a vacuum heat insulating material having a heat-weldable film and a gas barrier film, and the tensile elastic modulus of the outer packaging material for the vacuum heat insulating material is 1.0 GPa or more and 4.0 GPa or less. And the ash content of the outer packaging material for vacuum heat insulating material is within the range of 1.0 mass% or more and 20 mass% or less.
 本開示の真空断熱材用外包材は、前記真空断熱材用外包材が、2枚以上のガスバリアフィルムを有していてもよく、3枚以上のガスバリアフィルムを有していてもよい。 In the outer packaging material for vacuum heat insulating material of the present disclosure, the outer packaging material for vacuum heat insulating material may have two or more gas barrier films, or may have three or more gas barrier films.
 本開示の真空断熱材用外包材は、前記ガスバリアフィルムが、樹脂基材と、前記樹脂基材の片方または両方の面側に配置された、無機化合物を含むガスバリア層とを有していてもよい。さらに、前記ガスバリア層の前記樹脂基材とは反対の面側に、無機化合物を含むオーバーコート層を有していてもよい。 The outer packaging material for a vacuum heat insulating material of the present disclosure may include the gas barrier film including a resin base material and a gas barrier layer containing an inorganic compound disposed on one or both surfaces of the resin base material. Good. Furthermore, you may have the overcoat layer containing an inorganic compound in the surface side opposite to the said resin base material of the said gas barrier layer.
 本開示の真空断熱材用外包材は、前記真空断熱材用外包材の引張弾性率が、2.0GPa以上であってもよい。 The outer packaging material for a vacuum heat insulating material of the present disclosure may have a tensile elastic modulus of 2.0 GPa or more.
 本開示の真空断熱材用外包材は、前記ガスバリアフィルムが、金属箔を有していてもよい。 In the outer packaging material for a vacuum heat insulating material of the present disclosure, the gas barrier film may have a metal foil.
 本開示の真空断熱材用外包材は、前記真空断熱材用外包材の引張弾性率が、2.0GPa以下であってもよい。 The outer packaging material for a vacuum heat insulating material of the present disclosure may have a tensile elastic modulus of the outer packaging material for a vacuum heat insulating material of 2.0 GPa or less.
 本開示の真空断熱材用外包材は、前記熱溶着可能なフィルムが、無機化合物を含んでいてもよい。また、前記真空断熱材用外包材が、前記ガスバリアフィルムの前記熱溶着可能なフィルムとは反対の面側に、無機化合物を含む保護フィルムをしていてもよい。また、前記真空断熱材用外包材が、無機化合物を含む接着層を有していてもよい。 In the outer packaging material for vacuum heat insulating material of the present disclosure, the heat-weldable film may contain an inorganic compound. Moreover, the said outer packaging material for vacuum heat insulating materials may have made the protective film containing an inorganic compound in the surface side opposite to the said heat weldable film of the said gas barrier film. Moreover, the said outer packaging material for vacuum heat insulating materials may have the contact bonding layer containing an inorganic compound.
 本開示は、芯材と、前記芯材が封入された真空断熱材用外包材とを有する真空断熱材であって、前記真空断熱材用外包材が上述した真空断熱材用外包材である、真空断熱材を提供する。 The present disclosure is a vacuum heat insulating material having a core material and an outer packaging material for vacuum heat insulating material in which the core material is enclosed, and the outer packaging material for vacuum heat insulating material is the above-described outer packaging material for vacuum heat insulating material. Provide vacuum insulation.
 本開示は、熱絶縁領域を有する物品、および真空断熱材を備える真空断熱材付き機器であって、前記真空断熱材が上述した真空断熱材である、真空断熱材付き物品を提供する。 The present disclosure provides an article with a heat insulating region and a device with a vacuum heat insulating material including a vacuum heat insulating material, wherein the vacuum heat insulating material is the above-described vacuum heat insulating material.
 本開示においては、良好な断熱性能を維持することができる真空断熱材を形成可能な真空断熱材用外包材等を提供できる。 In the present disclosure, it is possible to provide an outer packaging material for a vacuum heat insulating material or the like that can form a vacuum heat insulating material capable of maintaining good heat insulating performance.
本開示の真空断熱材用外包材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the outer packaging material for vacuum heat insulating materials of this indication. 本開示の真空断熱材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the vacuum heat insulating material of this indication. 本開示の真空断熱材の使用状態の一例を示す説明図である。It is explanatory drawing which shows an example of the use condition of the vacuum heat insulating material of this indication. 本開示の真空断熱材用外包材の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the outer packaging material for vacuum heat insulating materials of this indication. 本開示の真空断熱材用外包材の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the outer packaging material for vacuum heat insulating materials of this indication.
 以下、本開示の真空断熱材用外包材、真空断熱材、および真空断熱材付き物品について、詳細に説明する。
 なお、本明細書において、「真空断熱材用外包材」を「外包材」と略する場合がある。
 また、外包材を用いて真空断熱材を形成した際に、真空断熱材の内側となる熱溶着可能なフィルム側を「外包材の内側」、真空断熱材の外側となる、熱溶着可能なフィルムから遠い方側を「外包材の外側」と記載する場合がある。
Hereinafter, the outer packaging material for vacuum heat insulating material, the vacuum heat insulating material, and the article with the vacuum heat insulating material of the present disclosure will be described in detail.
In the present specification, “external packaging material for vacuum heat insulating material” may be abbreviated as “external packaging material”.
In addition, when a vacuum heat insulating material is formed using an outer packaging material, the heat-weldable film side that is the inner side of the vacuum heat insulating material is the inner side of the outer packaging material and the outer side of the vacuum heat insulating material is a heat-weldable film The side far from the position may be described as “the outside of the outer packaging material”.
A.真空断熱材用外包材
 まず、本開示の真空断熱材用外包材について説明する。
 本開示の外包材は、熱溶着可能なフィルムと、ガスバリアフィルムとを有する真空断熱材用外包材であって、真空断熱材用外包材の引張弾性率が、1.0GPa以上、4.0GPa以下の範囲内であり、真空断熱材用外包材の灰分が、1.0質量%以上、20質量%以下の範囲内である。
A. First, the outer packaging material for vacuum heat insulating material according to the present disclosure will be described.
The outer packaging material of the present disclosure is an outer packaging material for vacuum heat insulating material having a heat-weldable film and a gas barrier film, and the tensile elastic modulus of the outer packaging material for vacuum heat insulating material is 1.0 GPa or more and 4.0 GPa or less. And the ash content of the outer packaging material for a vacuum heat insulating material is in the range of 1.0 mass% or more and 20 mass% or less.
 本開示の外包材について、図を参照して説明する。図1は、本開示の外包材の一例を示す概略断面図である。図1に例示するように、本開示の外包材10は熱溶着可能なフィルム1およびガスバリアフィルム2を有するものであり、外包材10は特定の範囲内の引張弾性率を有しかつ特定の範囲内の灰分を有するものである。 The outer packaging material of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating an example of the outer packaging material of the present disclosure. As illustrated in FIG. 1, an outer packaging material 10 of the present disclosure includes a heat-weldable film 1 and a gas barrier film 2, and the outer packaging material 10 has a tensile elastic modulus within a specific range and a specific range. It has the ash content.
 また、図2は、本開示の外包材を用いた真空断熱材の一例を示す概略断面図である。図2に例示するように、真空断熱材20は、芯材11と、芯材11が封入された外包材10とを有するものである。外包材10は、端部12で外包材10の内側どうしが接合されて、袋体となっている。外包材10により構成された袋体の内部は、芯材11が配置され、大気圧よりも圧力が低い真空状態に保持されている。なお、図2中の説明しない符号については、図1と同一の部材を示すものであるので、ここでの説明は省略する。 FIG. 2 is a schematic cross-sectional view showing an example of a vacuum heat insulating material using the outer packaging material of the present disclosure. As illustrated in FIG. 2, the vacuum heat insulating material 20 includes a core material 11 and an outer packaging material 10 in which the core material 11 is enclosed. The outer packaging material 10 is formed into a bag by joining the inner sides of the outer packaging material 10 at the end 12. A core material 11 is disposed inside the bag body constituted by the outer packaging material 10 and is maintained in a vacuum state in which the pressure is lower than the atmospheric pressure. In FIG. 2, reference numerals not described indicate the same members as those in FIG. 1, and thus description thereof is omitted here.
 また、図3は、真空断熱材の使用状態の一例を示す説明図であり、2個の真空断熱材を並べて使用する例を示す断面図である。図3では、2個の真空断熱材20では、端部12が折り曲げられて屈曲部13が形成されている。端部12を折り曲げないで並べられた場合と比較して、2個の真空断熱材20を平面視した際の、断熱性能が低い端部12の占める面積割合が少ない。しかし、屈曲部13には、引張・圧縮応力がかかる。また、端部12の芯材11側の付け根部分である折り曲げ部14や、芯材11の角の部分を覆う外包材10の角部15などにも引張・圧縮応力がかかる。そのため、屈曲部13、折り曲げ部14、角部15では、外包材10に微小な欠陥が生じやすい。 FIG. 3 is an explanatory view showing an example of the usage state of the vacuum heat insulating material, and is a cross-sectional view showing an example in which two vacuum heat insulating materials are used side by side. In FIG. 3, in the two vacuum heat insulating materials 20, the end portion 12 is bent to form a bent portion 13. Compared with the case where the end portions 12 are arranged without being bent, the area ratio occupied by the end portions 12 having low heat insulating performance when the two vacuum heat insulating materials 20 are viewed in plan is small. However, tensile / compressive stress is applied to the bent portion 13. Further, tensile / compressive stress is also applied to the bent portion 14 that is the base portion of the end portion 12 on the core material 11 side, the corner portion 15 of the outer packaging material 10 that covers the corner portion of the core material 11, and the like. Therefore, minute defects are likely to occur in the outer packaging material 10 at the bent portion 13, the bent portion 14, and the corner portion 15.
 さらに、真空断熱材の端部12が真空断熱材の外縁の隣り合う2辺に存在し、これらの2辺の両方を折り曲げた場合には、2本の折り曲げ線の交点は2回折り曲げられることになる。この交点のように複数回の折り曲げを受けた折曲部は、屈曲回数が1回の場合の屈曲部よりもさらに強い引張・圧縮応力がかかるため、微小な欠陥がより生じやすい。 Furthermore, when the end portions 12 of the vacuum heat insulating material are present on two adjacent sides of the outer edge of the vacuum heat insulating material, and both of these two sides are bent, the intersection of the two folding lines is bent twice. become. A bent portion that has been bent a plurality of times, such as this intersection point, is subjected to a stronger tensile / compressive stress than a bent portion in the case where the number of times of bending is 1, so that minute defects are more likely to occur.
 本開示の外包材は、外包材の引張弾性率と外包材の灰分の両方が特定の範囲内であるため、折り曲げられた場合であっても、微小なクラックや微小なピンホールなどの欠陥が発生しにくく、良好な断熱性能を比較的長期間にわたって維持することができる真空断熱材が形成可能である。
 以下、本開示における外包材の特性や、外包材の各構成について、説明する。
Since the outer packaging material of the present disclosure has both the tensile elastic modulus of the outer packaging material and the ash content of the outer packaging material within a specific range, defects such as minute cracks and minute pinholes can be obtained even when folded. It is possible to form a vacuum heat insulating material that does not easily occur and can maintain a good heat insulating performance over a relatively long period of time.
Hereinafter, characteristics of the outer packaging material and each configuration of the outer packaging material in the present disclosure will be described.
 1.真空断熱材用外包材の特性
(1)真空断熱材用外包材の引張弾性率
 本開示において、外包材の引張弾性率は、1.0GPa以上、4.0GPa以下の範囲内である。外包材の引張弾性率がその範囲に満たないと、外包材が柔らか過ぎて、外包材としての強度が不十分である可能性がある。外包材の引張弾性率がその範囲を超えると、外包材が固すぎて、微小なクラックや微小なピンホールが発生しやすくなる可能性がある。外包材の引張弾性率は、1.5GPa以上とすることができ、3.5以下とすることができる。また、後述するように、樹脂基材と、その樹脂基材の片方または両方の面側に配置された、無機化合物を含むガスバリア層とを有する積層体をガスバリアフィルムとして用いる場合は、外包材の引張弾性率は、2.0GPa以上であることが好ましく、一方、金属箔をガスバリアフィルムとして用いる場合は、外包材の引張弾性率は、2.0GPa以下であることが好ましい。
1. Characteristics of vacuum insulation outer packaging material (1) Tensile elastic modulus of vacuum insulation outer packaging material In the present disclosure, the tensile elastic modulus of the outer packaging material is in the range of 1.0 GPa or more and 4.0 GPa or less. If the tensile elastic modulus of the outer packaging material is less than the range, the outer packaging material may be too soft and the strength as the outer packaging material may be insufficient. If the tensile elastic modulus of the outer packaging material exceeds the range, the outer packaging material is too hard, and there is a possibility that minute cracks and minute pinholes are likely to occur. The tensile elastic modulus of the outer packaging material can be 1.5 GPa or more, and can be 3.5 or less. Further, as will be described later, when a laminate having a resin base material and a gas barrier layer containing an inorganic compound disposed on one or both sides of the resin base material is used as a gas barrier film, The tensile elastic modulus is preferably 2.0 GPa or more. On the other hand, when the metal foil is used as the gas barrier film, the tensile elastic modulus of the outer packaging material is preferably 2.0 GPa or less.
 引張弾性率の測定方法は、JIS K7161-1:2014(プラスチック-引張特性の求め方-第1部:通則)に準拠し、外包材を幅15mmの長方形にカットしてサンプルを採取した後、引張試験機を用いて、チャック間距離100mm、引張速度100mm/min、予備力の使用有り、の条件で、引張弾性率を測定する方法を用いる。測定環境は23℃、湿度55%の環境とする。サンプルの長さは、試験機の軸にサンプルの長さが一致するようにつかみ具を取り付けられかつ測定中につかみ部分がずれない範囲で決定し、例えば120mm程度である。引張試験機は、インストロン5565(インストロン・ジャパン社製)が好ましい。予備力は、例えば、応力をσ、弾性率をEとして(予備力のための適切な弾性率や応力が不明なときは事前に試験をして弾性率や応力の予測値を求めておく)、(E/10000)≦σ≦(E/3000)の範囲である。1つの条件では少なくとも5つのサンプルを測定し、それらの測定値の平均をその条件の引張弾性率の値とする。なお、引張弾性率の値は外包材面内の方向によって異なる場合があるので、面内平均値の使用が好ましい。外包材の面内方向の条件を概ね22.5度ずつ変えて採取した8つの条件の値の平均を面内平均値とみなすことができる。 The tensile modulus was measured in accordance with JIS K7161-1: 2014 (Plastics-Determination of tensile properties-Part 1: General rules), and the outer packaging material was cut into a rectangle with a width of 15 mm, and a sample was collected. Using a tensile tester, a method is used in which the tensile elastic modulus is measured under the conditions that the distance between chucks is 100 mm, the tensile speed is 100 mm / min, and the reserve force is used. The measurement environment is 23 ° C. and humidity 55%. The length of the sample is determined within a range in which a gripping tool is attached so that the length of the sample coincides with the axis of the testing machine and the gripping portion does not shift during measurement, and is, for example, about 120 mm. The tensile tester is preferably Instron 5565 (Instron Japan). The reserve force is, for example, the stress as σ 0 and the elastic modulus as Et (if the appropriate elastic modulus or stress for the reserve force is unknown, test in advance to obtain the predicted value of the elastic modulus or stress. put) in the range of (E t / 10000) ≦ σ 0 ≦ (E t / 3000). Under one condition, at least five samples are measured, and the average of the measured values is taken as the value of the tensile modulus of the condition. In addition, since the value of a tensile elasticity modulus may change with directions in an outer packaging material surface, use of a surface average value is preferable. The average of the values of the eight conditions obtained by changing the condition in the in-plane direction of the outer packaging material by approximately 22.5 degrees can be regarded as the in-plane average value.
 引張弾性率は、1枚の外包材について測定された値である。したがって、外包材が、熱溶着可能なフィルムやガスバリアフィルム以外のフィルムや層を含むものである場合は、それらの層も含む状態で測定された値であり、例えば、前記フィルムが接着剤の層を介して積層されている場合は、接着剤も含む状態で測定された値である。すなわち、引張弾性率は、外包材に存在する全てのフィルムや層を含む状態で測定されたものである。なお、外包材の内側どうしが接合されて袋体となっている場合には、接合されていない部分の外包材について測定された値である。 The tensile elastic modulus is a value measured for one outer packaging material. Therefore, when the outer packaging material includes a film or a layer other than a heat-weldable film or a gas barrier film, it is a value measured in a state including those layers. For example, the film passes through an adhesive layer. In the case of being laminated, it is a value measured in a state including an adhesive. That is, the tensile elastic modulus is measured in a state including all films and layers existing in the outer packaging material. In addition, when the inner side of an outer packaging material is joined and it is a bag body, it is the value measured about the outer packaging material of the part which is not joined.
(2)真空断熱材用外包材の灰分
 本開示において、外包材の灰分は、1.0質量%以上、20質量%以下の範囲内である。断熱性能を長期間維持するためには、外包材の引張弾性率が特定の範囲内であるだけでは不十分であり、さらに、外包材の灰分も特定の範囲内であることが重要である。すなわち、同様の引張弾性率の値を示す外包材であっても、灰分の値が異なる場合には、折り曲げられたときの微小な欠陥の発生のしやすさが異なる。
(2) Ash content of outer packaging material for vacuum heat insulating material In the present disclosure, the ash content of the outer packaging material is in the range of 1.0 mass% or more and 20 mass% or less. In order to maintain the heat insulation performance for a long period of time, it is not sufficient that the tensile elastic modulus of the outer packaging material is within a specific range, and it is important that the ash content of the outer packaging material is also within a specific range. That is, even if the outer packaging material has a similar value of tensile modulus, if the ash content is different, the likelihood of occurrence of minute defects when bent is different.
 外包材の引張弾性率は、外包材が折り曲げられたときにその折り曲げられた個所にかかる応力と相関する特性であり、大きい応力がかかる場合には欠陥が発生しやすい。そして、外包材の灰分は、外包材全体に占める無機化合物成分の含有率を近似する。一般に、無機化合物は、有機化合物よりも脆く、同じ応力がかかったときには有機化合物よりも欠陥が発生しやすい。また、一般に、無機化合物どうしや、無機化合物と有機化合物は、有機化合物どうしよりも、互いの接合が弱くなる傾向がある。そのため、外包材に応力がかかった場合に欠陥が生じやすい箇所は、有機化合物よりも、無機化合物自体、無機化合物どうし、あるいは無機化合物と有機化合物の接合部である。すなわち、外包材全体に占める無機化合物成分の含有率が大きい場合には、かかる応力は同じでも、欠陥の原因となり得る因子が多く含まれ、折り曲げられたときの微小な欠陥が発生しやすいと言える。 The tensile elastic modulus of the outer packaging material is a characteristic that correlates with the stress applied to the bent portion when the outer packaging material is bent, and defects are likely to occur when a large stress is applied. And the ash content of an outer packaging material approximates the content rate of the inorganic compound component which occupies for the whole outer packaging material. In general, inorganic compounds are more fragile than organic compounds and are more likely to have defects than organic compounds when subjected to the same stress. In general, inorganic compounds, and inorganic compounds and organic compounds tend to be less bonded to each other than organic compounds. Therefore, the portion where defects are likely to occur when stress is applied to the outer packaging material is the inorganic compound itself, the inorganic compound, or the joint between the inorganic compound and the organic compound, rather than the organic compound. That is, when the content of the inorganic compound component in the entire outer packaging material is large, even if the stress is the same, there are many factors that can cause defects, and it can be said that minute defects are likely to occur when bent. .
 そこで、無機化合物が使用されているそれぞれのフィルムや層の厚さをそれぞれ特定することも考えられる。外包材に含まれる無機化合物成分としては、例えば、ガスバリアフィルム自体あるいはガスバリアフィルムを構成するガスバリア層を挙げることができる。しかし、後述のように、ガスバリアフィルムやガスバリア層は、箔、蒸着、または塗布のように様々な方法で形成されたものが適宜用いられる。また、蒸着や塗布では、例えば、形成条件により得られる膜の密度は異なり、膜に有機化合物成分が含まれることもある。そのため、ガスバリアフィルムやガスバリア層の厚さだけで、折り曲げられたときの微小な欠陥の発生のしやすさを評価することは困難である。また、無機化合物成分の含有量を、ガスバリアフィルムやガスバリア層の厚さだけから決定することも困難である。さらに、後述するように、熱融着可能なフィルム、接着層、保護フィルムなどに、様々な目的で無機化合物成分を含有させる場合があり、その無機化合物成分の影響も考慮する必要がある。しかし、ガスバリアフィルムやガスバリア層と同様に、これらのフィルムや層の形成方法やその条件、あるいは原材料などは様々であるため、それらの厚さだけで、折り曲げられたときの微小な欠陥の発生のしやすさを評価することは困難である。 Therefore, it may be possible to specify the thickness of each film or layer in which the inorganic compound is used. Examples of the inorganic compound component contained in the outer packaging material include the gas barrier film itself or a gas barrier layer constituting the gas barrier film. However, as will be described later, the gas barrier film and the gas barrier layer are appropriately formed by various methods such as foil, vapor deposition, or coating. Moreover, in vapor deposition and application | coating, the density of the film | membrane obtained, for example according to formation conditions differs, and an organic compound component may be contained in a film | membrane. For this reason, it is difficult to evaluate the ease of occurrence of minute defects when folded only by the thickness of the gas barrier film or gas barrier layer. It is also difficult to determine the content of the inorganic compound component only from the thickness of the gas barrier film or gas barrier layer. Further, as will be described later, an inorganic compound component may be included in a heat-bondable film, an adhesive layer, a protective film, or the like for various purposes, and the influence of the inorganic compound component needs to be considered. However, as with gas barrier films and gas barrier layers, there are various methods for forming these films and layers, their conditions, and raw materials, etc., so that only the thickness of these films causes the generation of minute defects when folded. It is difficult to evaluate the ease.
 そこで、本開示の発明者らは、総合的な指標として外包材の灰分に着目し、灰分の値と折り曲げたときのガス透過度や、灰分の値と高温試験における熱伝導率の変動を検証した結果、これらについて、良好な相関関係があることを見出し、本開示の外包材を完成させた。 Therefore, the inventors of the present disclosure pay attention to the ash content of the outer packaging material as a comprehensive index, and verify the ash value and the gas permeability when bent, and the fluctuation of the ash value and the thermal conductivity in the high temperature test. As a result, it was found that there was a good correlation between them, and the outer packaging material of the present disclosure was completed.
 外包材の灰分は、例えば、無機化合物を有する複数のガスバリアフィルムが使用されているケース、ガスバリアフィルムが複数の無機化合物を有する層で構成されているケース、または熱溶着可能なフィルム、保護フィルム、もしくは接着層のようにガスバリアフィルム以外の構成で無機化合物が使用されているケースのように、無機化合物の使用態様が複雑な場合に、総合的な指標としての利点が大きい。 The ash content of the outer packaging material is, for example, a case where a plurality of gas barrier films having an inorganic compound are used, a case where the gas barrier film is composed of a layer having a plurality of inorganic compounds, or a heat-weldable film, a protective film, Alternatively, when the inorganic compound is used in a complicated manner as in the case where the inorganic compound is used in a configuration other than the gas barrier film such as an adhesive layer, the advantage as a comprehensive index is great.
 外包材の灰分は、1.0質量%以上とすることができ、さらには1.5質量%以上、3.0質量%以上、5.0質量%以上とすることができる。また、外包材の灰分は、20質量%以下とすることができ、さらには16質量%以下、15質量%以下、5.0質量%以下とすることができる。例えば、外包材の灰分は、1.0質量%以上、16質量%以下の範囲内とすることができ、また、1.0質量%以上、15質量%以下の範囲内とすることができ、さらに、1.0質量%以上、5.0質量%以下の範囲内とすることができる。また、例えば、外包材の灰分は、1.5質量%以上、16質量%以下の範囲内とすることができ、また、3.0質量%以上、16質量%以下の範囲内とすることができ、さらに、5.0質量%以上、16質量%以下の範囲内とすることができる。 The ash content of the outer packaging material can be 1.0% by mass or more, and further 1.5% by mass, 3.0% by mass, or 5.0% by mass or more. Further, the ash content of the outer packaging material can be 20% by mass or less, and further can be 16% by mass or less, 15% by mass or less, and 5.0% by mass or less. For example, the ash content of the outer packaging material can be in the range of 1.0 mass% or more and 16 mass% or less, and can be in the range of 1.0 mass% or more and 15 mass% or less, Furthermore, it can be in the range of 1.0 mass% or more and 5.0 mass% or less. Further, for example, the ash content of the outer packaging material can be in the range of 1.5% by mass to 16% by mass, and can be in the range of 3.0% by mass to 16% by mass. Furthermore, it can be in the range of 5.0 mass% or more and 16 mass% or less.
 前記灰分は、外包材全体の質量における、外包材が燃え尽きたあとに残る不燃性の無機化合物の割合を調べるものである。本開示においては、熱重量/示差熱同時分析装置(TG-DTA)を用いて、測定試料の質量を測定した後、アルミパン中、かつ、大気雰囲気下で、昇温速度10℃/分で室温から600℃まで昇温後、そのまま600℃で30分間加熱して測定試料を灰化し、加熱前の質量に対する加熱後の質量を百分率で表した値を灰分とする。この際の熱重量/示差熱同時分析装置としては、株式会社リガク製のTG8120を用いることができる。 The ash content is used to examine the ratio of the non-flammable inorganic compound remaining after the outer packaging material is burned out in the mass of the entire outer packaging material. In the present disclosure, the mass of the measurement sample is measured using a thermogravimetric / differential thermal analyzer (TG-DTA) and then heated in an aluminum pan and in an air atmosphere at a heating rate of 10 ° C./min. After the temperature is raised from room temperature to 600 ° C., the measurement sample is incinerated by heating at 600 ° C. for 30 minutes as it is, and the value obtained by expressing the mass after heating with respect to the mass before heating as a percentage is defined as ash. As the thermogravimetric / differential thermal simultaneous analyzer at this time, TG8120 manufactured by Rigaku Corporation can be used.
 2.ガスバリアフィルム
 ガスバリアフィルムは、熱溶着可能なフィルムの外側に配置されるものであり、外包材のガスバリア性に主に寄与するものである。ガスバリアフィルムは所望のガスバリア性が得られるものであれば特に限定されるものではなく、金属箔をガスバリアフィルムとして用いてもよく(第1態様)、樹脂基材と、その樹脂基材の片方または両方の面側に配置された、無機化合物を含むガスバリア層とを有する積層体をガスバリアフィルムとして用いてもよい(第2態様)。
 以下、ガスバリアフィルムの各態様について説明する。
2. Gas barrier film A gas barrier film is arrange | positioned on the outer side of the film which can be heat-welded, and mainly contributes to the gas barrier property of an outer packaging material. The gas barrier film is not particularly limited as long as a desired gas barrier property can be obtained, and a metal foil may be used as the gas barrier film (first aspect), and the resin base material and one of the resin base materials or You may use the laminated body which has a gas barrier layer containing the inorganic compound arrange | positioned at both surface sides as a gas barrier film (2nd aspect).
Hereinafter, each aspect of the gas barrier film will be described.
(1)第1態様
 本開示における第1態様は、前記ガスバリアフィルムが金属箔である態様である。金属箔は、一般に、金属を、例えばたたくことによって、薄く伸ばしたものである。このような金属箔としては、例えばアルミニウム、ニッケル、ステンレス、鉄、銅、チタン等の金属箔を挙げることができ、中でもアルミニウム箔が好適に用いられる。金属箔はガスバリア性が良好で、かつ、耐屈曲性に優れているため、ガスバリアフィルムとして金属箔を用いることにより、ガスバリア性が高い外包材を得ることができ、また、高いガスバリア性を維持することができる。
(1) 1st aspect The 1st aspect in this indication is an aspect in which the said gas barrier film is metal foil. The metal foil is generally a thin stretch of metal, for example by tapping. Examples of such metal foils include metal foils such as aluminum, nickel, stainless steel, iron, copper, and titanium. Among these, aluminum foils are preferably used. Since the metal foil has good gas barrier properties and excellent bending resistance, it is possible to obtain an outer packaging material having high gas barrier properties by using the metal foil as the gas barrier film, and maintain high gas barrier properties. be able to.
 金属箔は、単層であってもよく、同一材料から成る層または異なる材料から成る層を積層させた積層体であってもよい。また、金属箔の厚さ(積層体である場合は、厚さの合計)は、外包材の引張弾性率および灰分を所定の範囲内とできるものであれば特に限定されるものではなく、例えば、9μm以下であることが好ましい。また、厚さの下限は特に限定されるものではないが、例えば5μm以上とすることができる。金属箔の厚さが5μmよりも小さいと、金属箔にピンホール等が生じやすくなり、ガスバリア性が低下する場合があり、一方、9μmよりも大きいと、外包材の灰分を上述の範囲内とすることが困難となる場合がある。金属箔の厚さは、7μm以下でもよく、6.5μm以下でもよい。 The metal foil may be a single layer or a laminate in which layers made of the same material or layers made of different materials are laminated. The thickness of the metal foil (in the case of a laminate) is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within a predetermined range. 9 μm or less is preferable. Further, the lower limit of the thickness is not particularly limited, but can be, for example, 5 μm or more. If the thickness of the metal foil is less than 5 μm, pinholes or the like are likely to occur in the metal foil, and the gas barrier property may be lowered. On the other hand, if the thickness is greater than 9 μm, the ash content of the outer packaging material is within the above range. May be difficult to do. The thickness of the metal foil may be 7 μm or less, or may be 6.5 μm or less.
 前記金属箔のガスバリア性としては、酸素透過度が0.01cc/(m・day・atm)以下であることが好ましい。また、水蒸気透過度が0.01g/(m・day)以下であることが好ましい。金属箔の酸素および水蒸気透過度が上述の範囲内であることにより、外部より浸透した水分やガス等を内部の芯材まで浸透しにくくすることができる。酸素透過度は、0.005cc/(m・day・atm)以下であることがより好ましい。なお、酸素透過度の測定は、JIS K7126-2A:2006(プラスチック-フィルム及びシート-ガス透過度試験方法-第2部:等圧法、付属書A:電解センサ法による酸素ガス透過度の試験方法)に準拠して、温度23℃、湿度60%RHの条件で、酸素透過度測定装置を用いて、外包材の外側(熱溶着可能なフィルムのガスバリアフィルムが配置された側)が酸素ガスに接するようにして、透過面積50cmの条件で、測定する方法を用いる。酸素透過度測定装置は、オクストラン(OXTRAN2/21 10X、米国企業のモコン(MOCON)社製)が好ましい。試験ガスは少なくとも99.5%の乾燥酸素を用いて、キャリアーガス流量10cc/分で60分以上パージした後、試験ガスを流す。試験ガスを流し始めてから平衡状態に達するまでの時間として12時間を確保した後、測定を開始した。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の酸素透過度の値とする。水蒸気透過度の測定は、JIS K7129-B:2008(プラスチック-フィルム及びシート-水蒸気透過度の求め方(機器測定法)、付属書B:赤外線センサ法)に準拠して、温度40℃、湿度90%RHの条件(条件3)で、水蒸気透過度測定装置を用いて、外包材の外側(熱溶着可能なフィルムのガスバリアフィルムが配置された側)が高湿度側(水蒸気供給側)になるようにして、透過面積50cmの条件で、測定する方法を用いる。水蒸気透過度測定装置は、パ-マトラン(PERMATRAN-3/33G+、米国企業のモコン(MOCON)社製)が好ましい。標準試験片としてNISTフィルム#3を用いる。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の水蒸気透過度の値とする。以下の説明における酸素透過度および水蒸気透過度の測定方法についても同様とする。 As the gas barrier property of the metal foil, the oxygen permeability is preferably 0.01 cc / (m 2 · day · atm) or less. The water vapor permeability is preferably 0.01 g / (m 2 · day) or less. When the oxygen and water vapor permeability of the metal foil is within the above-described range, it is possible to make it difficult for moisture, gas, and the like that have permeated from the outside to penetrate into the inner core material. The oxygen permeability is more preferably 0.005 cc / (m 2 · day · atm) or less. The oxygen permeability is measured in accordance with JIS K7126-2A: 2006 (Plastics-Film and Sheet-Gas permeability test method-Part 2: Isobaric method, Appendix A: Test method of oxygen gas permeability by electrolytic sensor method. ) Under the conditions of a temperature of 23 ° C. and a humidity of 60% RH, the outer side of the outer packaging material (the side where the gas barrier film of the heat-weldable film is disposed) is oxygen gas using an oxygen permeability measuring device. A method of measurement is used under the condition of a transmission area of 50 cm 2 so as to be in contact with each other. The oxygen permeability measuring device is preferably OXTRAN (OXTRAN 2/21 10X, manufactured by MOCON, a US company). The test gas is purged with at least 99.5% dry oxygen at a carrier gas flow rate of 10 cc / min for 60 minutes or more, and then the test gas is flowed. The measurement was started after 12 hours were secured as the time from the start of flowing the test gas until the equilibrium state was reached. In one condition, at least three samples are measured, and the average of the measured values is taken as the oxygen permeability value for that condition. The water vapor transmission rate is measured in accordance with JIS K7129-B: 2008 (Plastics-Film and Sheet-Determination of water vapor transmission rate (instrument measurement method), Appendix B: Infrared sensor method), temperature 40 ° C, humidity Under the condition of 90% RH (Condition 3), using the water vapor transmission rate measuring device, the outer side of the outer packaging material (the side where the gas barrier film of the heat-weldable film is disposed) becomes the high humidity side (the water vapor supply side). Thus, the measurement method is used under the condition of a transmission area of 50 cm 2 . The water vapor transmission rate measuring device is preferably Permatran (PERMATRAN-3 / 33G +, manufactured by MOCON, an American company). NIST film # 3 is used as a standard test piece. Under one condition, at least three samples are measured, and the average of the measured values is taken as the value of the water vapor permeability of the condition. The same applies to the methods for measuring oxygen permeability and water vapor permeability in the following description.
 外包材におけるガスバリアフィルムが第1態様のものである場合、ガスバリアフィルムの外側(熱溶着可能なフィルムとは反対側)に樹脂製のフィルムなどの保護フィルムが配置されていることが好ましい。ガスバリアフィルムを水蒸気への暴露や、物理的な応力から保護することができるからである。このような保護フィルムについては、後述する「4.保護フィルム」において説明されているものと同様であるため、ここでの説明は省略する。 When the gas barrier film in the outer packaging material is of the first aspect, it is preferable that a protective film such as a resin film is disposed on the outer side of the gas barrier film (on the opposite side to the film capable of being thermally welded). This is because the gas barrier film can be protected from exposure to water vapor and physical stress. Since such a protective film is the same as that described in “4. Protective film” described later, description thereof is omitted here.
(2)第2態様
 本開示における第2態様のガスバリアフィルムは、樹脂基材と、その樹脂基材の片方または両方の面側に配置された、無機化合物を含むガスバリア層とを有するものである。本開示においては、ガスバリアフィルムが第2態様のものであることが好ましい。金属箔はガスバリア性を維持しつつ厚さを小さくすることが比較的困難であるのに対して、ガスバリア層は比較的小さい厚さでもガスバリア性が得られるためである。また、ガスバリア層を複数積層したり、ガスバリア層を有するガスバリアフィルムを複数用いることによって、外包材の引張弾性率や灰分を調整しやすいからである。
(2) 2nd aspect The gas barrier film of the 2nd aspect in this indication has a resin base material and a gas barrier layer containing an inorganic compound arranged on one or both sides of the resin base material. . In the present disclosure, the gas barrier film is preferably the second embodiment. This is because it is relatively difficult to reduce the thickness of the metal foil while maintaining the gas barrier property, whereas the gas barrier layer can provide the gas barrier property even with a relatively small thickness. Moreover, it is because it is easy to adjust the tensile elastic modulus and ash content of the outer packaging material by laminating a plurality of gas barrier layers or using a plurality of gas barrier films having a gas barrier layer.
 本態様のガスバリアフィルムを有する外包材について、図を参照して説明する。図4は、本開示の外包材の他の例を示す概略断面図である。図4に例示するように、本態様のガスバリアフィルム2´を有する外包材10は、上述した第1態様のガスバリアフィルムを有する外包材と同様に、熱溶着可能なフィルム1およびガスバリアフィルム2´を有するものである。本態様のガスバリアフィルム2´は、樹脂基材3と、その樹脂基材3の一方の面側に配置されたガスバリア層4とを有する。 The outer packaging material having the gas barrier film of this aspect will be described with reference to the drawings. FIG. 4 is a schematic cross-sectional view illustrating another example of the outer packaging material of the present disclosure. As illustrated in FIG. 4, the outer packaging material 10 having the gas barrier film 2 ′ of this aspect includes the heat-weldable film 1 and the gas barrier film 2 ′ in the same manner as the outer packaging material having the gas barrier film of the first aspect described above. It is what you have. The gas barrier film 2 ′ of this aspect includes a resin base material 3 and a gas barrier layer 4 disposed on one surface side of the resin base material 3.
(a)ガスバリア層
 ガスバリア層は、樹脂基材の片方または両方の面側に配置され、無機化合物を含むものであり、ガスバリアフィルムのガスバリア性に主に寄与するものである。前記ガスバリア層は、所望のガスバリア性を発揮できるものであれば特に限定されるものではない。このようなガスバリア性を有する層としては、例えば、金属層、無機化合物を主成分とする層、有機部分及び無機部分の混合化合物を主成分とする層などを用いることができる。金属層としては、アルミニウム、ステンレス、チタン、ニッケル、鉄、銅等の金属またはこれらを含む合金から構成されるものを挙げることができる。また、前記有機部分及び無機部分の混合化合物を主成分とする層の有機部分及び無機部分の混合化合物としては、例えば、樹脂部分と無機部分との混合化合物が挙げられる。例えば、有機部分を構成する有機化合物としては、樹脂基材の樹脂として後述するものを用いることができ、無機部分を構成する無機化合物としては、無機化合物を主成分とする層の無機化合物として後述するものを用いることができる。あるいは、オーバーコート層の材料として後述するもののうち、単独でガスバリア性を示すものを用いることができ、具体的には、株式会社クラレ製のクラリスタCFなどを用いることができる。
(A) Gas barrier layer A gas barrier layer is arrange | positioned at the one or both surface side of a resin base material, contains an inorganic compound, and mainly contributes to the gas barrier property of a gas barrier film. The gas barrier layer is not particularly limited as long as it can exhibit a desired gas barrier property. As such a layer having gas barrier properties, for example, a metal layer, a layer mainly containing an inorganic compound, a layer mainly containing a mixed compound of an organic part and an inorganic part, or the like can be used. As a metal layer, what is comprised from metals, such as aluminum, stainless steel, titanium, nickel, iron, copper, or an alloy containing these, can be mentioned. Moreover, as a mixed compound of the organic part and inorganic part of the layer which has the mixed compound of the said organic part and an inorganic part as a main component, the mixed compound of a resin part and an inorganic part is mentioned, for example. For example, as the organic compound constituting the organic part, those described later as the resin of the resin substrate can be used, and as the inorganic compound constituting the inorganic part, the inorganic compound of the layer mainly composed of the inorganic compound is described later. Can be used. Or what shows gas barrier property independently among the things mentioned later as a material of an overcoat layer can be used, specifically, Kuraray Co., Ltd. Clarista CF etc. can be used.
 無機化合物を主成分とする層の無機化合物としては、所望のガスバリア性を発揮できる材料であればよく、例えば、無機酸化物、無機酸化窒化物、無機窒化物、無機酸化炭化物、無機酸化炭化窒化物および酸化珪素亜鉛等から選ばれる1または2以上の無機化合物等が挙げられる。具体的には、珪素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、チタン、ホウ素、イットリウム、ジルコニウ、ムセリウム、および亜鉛から選ばれる1種または2種以上の元素を含有する無機化合物を挙げることができる。より具体的には、珪素酸化物、アルミニウム酸化物、マグネシウム酸化物、チタン酸化物、スズ酸化物、珪素亜鉛合金酸化物、インジウム合金酸化物、珪素窒化物、アルミニウム窒化物、チタン窒化物、酸化窒化珪素等を挙げることができる。無機化合物は、単独で用いてもよいし、上述の材料を任意の割合で混合して用いてもよい。 The inorganic compound of the layer mainly composed of an inorganic compound may be any material that can exhibit a desired gas barrier property. For example, the inorganic oxide, inorganic oxynitride, inorganic nitride, inorganic oxide carbide, inorganic oxycarbonitride 1 or 2 or more inorganic compounds selected from the above and silicon oxide zinc. Specifically, an inorganic compound containing one or more elements selected from silicon, aluminum, magnesium, calcium, potassium, tin, sodium, titanium, boron, yttrium, zirconium, mucerium, and zinc Can do. More specifically, silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, silicon zinc alloy oxide, indium alloy oxide, silicon nitride, aluminum nitride, titanium nitride, oxidation Examples thereof include silicon nitride. An inorganic compound may be used independently and may mix and use the above-mentioned material in arbitrary ratios.
 ガスバリア層の厚さは、所望のガスバリア性を発揮することができるものであれば特に限定されるものではなく、ガスバリア層の種類にもよるが、例えば、5nm以上、800nm以下の範囲内であることが好ましい。ガスバリア層の厚さが上述の範囲に満たないと、製膜が不十分となり所望のガスバリア性を示すことができない場合があり、また、時間の経過により劣化するおそれがあるからである。上述の範囲を超えると、クラックが発生しやすくなり可撓性が低下するおそれや、ガスバリア層が金属や合金を含む場合、本開示の外包材を用いて形成された真空断熱材において、ヒートブリッジが生じるおそれがあるからである。ガスバリア層の厚さは、10nm以上、700nm以下の範囲内であることがより好ましい。 The thickness of the gas barrier layer is not particularly limited as long as a desired gas barrier property can be exhibited. Although it depends on the type of the gas barrier layer, for example, it is in the range of 5 nm or more and 800 nm or less. It is preferable. If the thickness of the gas barrier layer is less than the above range, the film formation may be insufficient and the desired gas barrier property may not be exhibited, and the gas barrier layer may deteriorate over time. If the above range is exceeded, cracks are likely to occur and flexibility may be reduced, or if the gas barrier layer contains a metal or an alloy, a heat bridge is formed using the outer packaging material of the present disclosure. This is because there is a risk of occurrence. The thickness of the gas barrier layer is more preferably in the range of 10 nm or more and 700 nm or less.
 樹脂基材とガスバリア層を組み合わせて、ガスバリアフィルム全体として所望の強度を得ることにより、上述したような薄いガスバリア層であっても、損傷等を抑制することができる。 By combining the resin base material and the gas barrier layer to obtain a desired strength as the whole gas barrier film, damage or the like can be suppressed even with the thin gas barrier layer as described above.
 ガスバリア層は、単層であってもよく、2つ以上を積層したものであってもよい。2つ以上のガスバリア層を用いる場合は、同一組成のガスバリア層を組み合わせてもよく、異なる組成のガスバリア層を組み合わせてもよい。 The gas barrier layer may be a single layer or a laminate of two or more. When two or more gas barrier layers are used, gas barrier layers having the same composition may be combined, or gas barrier layers having different compositions may be combined.
 樹脂基材の一方の面側にガスバリア層を形成する方法としては、ガスバリア層の種類に応じて従来公知の方法を用いることができる。例えば、物理気相成長(PVD)法や化学気相成長(CVD)法等の乾式製膜法を用いて樹脂基材にガスバリア層を製膜する方法、具体的には、真空蒸着法等を用いることができる。また、既製のガスバリア層を用い、樹脂基材とガスバリア層とを熱圧着させる方法、樹脂基材とガスバリア層を接着剤層を介して貼合する方法等が挙げられる。 As a method for forming the gas barrier layer on one surface side of the resin base material, a conventionally known method can be used according to the type of the gas barrier layer. For example, a method of forming a gas barrier layer on a resin substrate using a dry film forming method such as a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method, specifically, a vacuum evaporation method or the like. Can be used. Moreover, the method of sticking a resin base material and a gas barrier layer through an adhesive bond layer etc. using the ready-made gas barrier layer is mentioned.
 前記ガスバリア層単独(1層)のガスバリア性としては、酸素透過度が0.5cc/(m・day・atm)以下であることが好ましく、0.1cc/(m・day・atm)以下であることがより好ましい。また、水蒸気透過度が0.5g/(m・day)以下であることが好ましく0.1g/(m・day)以下であることがより好ましい。 As the gas barrier properties of the gas barrier layer alone (one layer) is preferably an oxygen permeability of at 0.5cc / (m 2 · day · atm) or less, 0.1cc / (m 2 · day · atm) or less It is more preferable that It is more preferable that the water vapor permeability is 0.5g / (m 2 · day) or less is preferably 0.1g / (m 2 · day) or less.
(b)樹脂基材
 樹脂基材は、前記ガスバリア層を支持可能なものであれば特に限定されるものではない。例えば、樹脂フィルムが好適に用いられる。前記樹脂基材が樹脂フィルムである場合、前記樹脂フィルムは未延伸であってもよく、一軸または二軸延伸されたものであってもよい。
(B) Resin base material The resin base material is not particularly limited as long as it can support the gas barrier layer. For example, a resin film is preferably used. When the resin base material is a resin film, the resin film may be unstretched or uniaxially or biaxially stretched.
 樹脂基材に用いられる樹脂は、特に限定されるものではなく、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル、環状ポリオレフィン、ポリスチレン、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、(メタ)アクリル、ポリカーボネート、ポリビニルアルコール(PVA)やエチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール、エチレン-ビニルエステル共重合体ケン化物、ナイロン等のポリアミド、ポリイミド、ポリウレタン、ポリアセタール、セルロース等の各種の樹脂を使用することができる。本開示においては、上述の樹脂の中でも、ポリアミド、PET、ポリプロピレン等が好適に用いられ、強靭性、耐油性、耐薬品性、入手容易性等の各観点から、ポリアミドおよびPETがより好適に用いられる。 The resin used for the resin substrate is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT), and cyclic. Polyolefin, polystyrene, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), (meth) acryl, polycarbonate, polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH) ) And other resins such as polyamide-polyamide, polyurethane, polyacetal, cellulose, etc. It is possible. In the present disclosure, among the above-mentioned resins, polyamide, PET, polypropylene and the like are preferably used, and polyamide and PET are more preferably used from the viewpoints of toughness, oil resistance, chemical resistance, availability, and the like. It is done.
 外包材に複数のガスバリアフィルムが用いられる場合、より熱溶着可能なフィルムに近い位置に配置されるガスバリアフィルムの樹脂基材にはPVA、EVOHなどのポリビニルアルコール、(メタ)アクリル、セルロース、多糖類などの天然高分子等の親水基含有樹脂が用いられることが好ましく、中でもPVAやEVOH等のポリビニルアルコール系樹脂、特にはEVOHが用いられることが好ましい。親水基含有樹脂は高温においても、酸素に対する高いバリア性を発揮するものであるため、外包材としての酸素に対するバリア性を向上させることができるからである。なお、「親水基」とは、静電的相互作用や水素結合などによって水分子と弱い結合をつくり、水に対して親和性示す原子団をいうものであり、例えばヒドロキシ基(-OH)、カルボキシ基(-COOH)、アミノ基(-NH)、カルボニル基(>CO)、スルホ基(-SOH)などの極性基や解離基を含む原子団がその性質を示す。 When a plurality of gas barrier films are used for the outer packaging material, the resin base material of the gas barrier film disposed at a position closer to the heat-weldable film includes polyvinyl alcohol such as PVA and EVOH, (meth) acryl, cellulose, and polysaccharide. It is preferable to use a hydrophilic group-containing resin such as a natural polymer such as polyvinyl alcohol resin such as PVA or EVOH, and particularly EVOH. This is because the hydrophilic group-containing resin exhibits a high barrier property against oxygen even at a high temperature, so that the barrier property against oxygen as an outer packaging material can be improved. The “hydrophilic group” refers to an atomic group that forms a weak bond with a water molecule by electrostatic interaction or hydrogen bond, and has an affinity for water, such as a hydroxy group (—OH), An atomic group containing a polar group or a dissociating group such as a carboxy group (—COOH), an amino group (—NH 2 ), a carbonyl group (> CO), or a sulfo group (—SO 3 H) shows its properties.
 前記樹脂基材には、種々のプラスチック配合剤や添加剤等が含まれていてもよい。添加剤としては、例えば、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。また、前記樹脂基材は、表面処理が施されていてもよい。ガスバリア層との密着性を向上させることができるからである。 The resin base material may contain various plastic compounding agents and additives. Examples of the additive include a lubricant, a crosslinking agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment, and a modifying resin. The resin base material may be subjected to a surface treatment. This is because the adhesion to the gas barrier layer can be improved.
 樹脂基材の厚さは、特に限定されないが、例えば6μm以上、200μm以下の範囲内、より好ましくは9μm以上、100μm以下の範囲内である。 The thickness of the resin substrate is not particularly limited, but is, for example, in the range of 6 μm to 200 μm, more preferably in the range of 9 μm to 100 μm.
(c)オーバーコート層
 ガスバリアフィルムは、ガスバリア層の樹脂基材とは反対の面側に、無機化合物を含むオーバーコート層を有していてもよい。ガスバリアフィルムのガスバリア性を向上させることができるからである。このようなオーバーコート層は、特に限定されるものではなく、一般にオーバーコート剤として用いられているものを用いることができる。例えば、オーバーコート層の主成分として、有機部分及び無機部分を含む混合化合物を用いることができる。
(C) Overcoat layer The gas barrier film may have an overcoat layer containing an inorganic compound on the surface of the gas barrier layer opposite to the resin substrate. This is because the gas barrier property of the gas barrier film can be improved. Such an overcoat layer is not particularly limited, and those generally used as an overcoat agent can be used. For example, a mixed compound containing an organic portion and an inorganic portion can be used as the main component of the overcoat layer.
 オーバーコート層の厚さは、特に限定されないが、例えば、50nm以上、500nm以下の範囲内とすることができる。 The thickness of the overcoat layer is not particularly limited, but can be, for example, in the range of 50 nm or more and 500 nm or less.
 前記混合化合物としては、種々のものがあるが、例えば、株式会社クラレ社製のクラリスタCF(登録商標)などのリン酸アルミナ系の混合化合物、凸版印刷株式会社製のベセーラ(登録商標)などのアクリル酸亜鉛系の混合化合物、樹脂および無機層状化合物とからなるガスバリア性樹脂組成物、または、一般式R M(OR(ただし、式中、R、Rは、炭素数1以上、8以下の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される1種以上のアルコキシドと、水溶性高分子とを含有し、更に、ゾルゲル法によって重縮合して得られる原料液によるゾルゲル化合物などを用いることができる。前記水溶性高分子としては、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール共重合体、アクリル酸系樹脂、天然高分子系のメチルセルロース、カルボキシメチルセルロース、セルロースナノファイバー、多糖類などが挙げられる。本開示においては、ゾルゲル化合物をオーバーコート層に用いることが好ましい。前記ゾルゲル化合物は、界面における接着強度が高く、また、製膜時の処理を比較的低温において行なうことができるため、前記樹脂基材等の熱による劣化を抑制することができるからである。 Examples of the mixed compound include various compounds such as an alumina phosphate-based mixed compound such as Clarista CF (registered trademark) manufactured by Kuraray Co., Ltd., and Besera (registered trademark) manufactured by Toppan Printing Co., Ltd. A gas barrier resin composition comprising a zinc acrylate-based mixed compound, a resin and an inorganic layered compound, or a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are the number of carbon atoms) 1 represents an organic group of 1 or more, 8 or less, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) And a sol-gel compound using a raw material liquid obtained by polycondensation by a sol-gel method can be used. Examples of the water-soluble polymer include polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer, acrylic acid resin, natural polymer methyl cellulose, carboxymethyl cellulose, cellulose nanofiber, and polysaccharide. In the present disclosure, it is preferable to use a sol-gel compound for the overcoat layer. This is because the sol-gel compound has a high adhesive strength at the interface and can perform a process during film formation at a relatively low temperature, thereby suppressing deterioration of the resin base material due to heat.
(d)その他
 上述した樹脂基材およびガスバリア層の順序は特に限定されるものではなく、外包材に共に用いられる、ガスバリアフィルム以外の各層の層構成や、ガスバリアフィルムの数などに応じて適宜設定することができる。例えば、図4に例示されているように、外包材10を用いて真空断熱材を形成した際に、ガスバリア層4が樹脂基材3の内側になるように配置されてもよく、また、図5(a)に例示されているように、外包材10が保護フィルム5を有する場合などは、ガスバリア層4が樹脂基材3の外側になるように配置されてもよい。さらに、前記外包材10が2つのガスバリアフィルム2´を有する場合は、図5(b)に例示されているように、それぞれのガスバリア層4が向き合うように配置されても、図5(c)に例示されているように、両方のガスバリア層4が樹脂基材3の内側になるように配置されても、図5(d)に例示されているように、両方のガスバリア層4が樹脂基材3の外側になるように配置されてもよい。さらに、図5(e)および図5(f)に例示されているように、真空断熱材の最外層にガスバリアフィルム2´が配置される場合は、ガスバリア層4を保護する観点から、最外層のガスバリアフィルム2´のガスバリア層4は、樹脂基材3の内側になるように配置されることが好ましい。なお、図5は、本開示の外包材の他の例を示す概略断面図である。
(D) Others The order of the above-described resin base material and gas barrier layer is not particularly limited, and is appropriately set according to the layer configuration of each layer other than the gas barrier film, the number of gas barrier films, etc. used together with the outer packaging material. can do. For example, as illustrated in FIG. 4, when the vacuum heat insulating material is formed using the outer packaging material 10, the gas barrier layer 4 may be disposed so as to be inside the resin base material 3. As illustrated in 5 (a), when the outer packaging material 10 includes the protective film 5, the gas barrier layer 4 may be disposed outside the resin base material 3. Further, when the outer packaging material 10 has two gas barrier films 2 ′, as illustrated in FIG. 5B, even if the gas barrier layers 4 are arranged to face each other, as shown in FIG. As illustrated in FIG. 5, even if both gas barrier layers 4 are disposed so as to be inside the resin base material 3, both gas barrier layers 4 are formed on the resin base as illustrated in FIG. You may arrange | position so that it may become the outer side of the material 3. FIG. Furthermore, as illustrated in FIGS. 5 (e) and 5 (f), when the gas barrier film 2 ′ is disposed in the outermost layer of the vacuum heat insulating material, from the viewpoint of protecting the gas barrier layer 4, the outermost layer The gas barrier layer 4 of the gas barrier film 2 ′ is preferably arranged so as to be inside the resin base material 3. FIG. 5 is a schematic cross-sectional view illustrating another example of the outer packaging material of the present disclosure.
(3)その他
 本開示の外包材は、上述したようなガスバリアフィルムを複数有していてもよい。1つの外包材におけるガスバリアフィルムの数は、外包材の引張弾性率および灰分を上述した範囲内とすることができるものであれば特に限定されるものではなく、例えば1枚以上、5枚以下の範囲内とすることができ、中でも2枚以上、4枚以下の範囲内、特には2枚以上、3枚以下の範囲内であることが好ましい。用いるガスバリアフィルムの数を増やすことにより、外包材のガスバリア性を向上することができるが、ガスバリアフィルムの数が多すぎると、外包材の灰分を上述した範囲内とすることが困難となり、屈曲部におけるクラック等の発生を抑制することが困難となる可能性があるからである。外包材が複数のガスバリアフィルムを有する場合、各ガスバリアフィルムの構成は同じでもよく、異なっていてもよい。
(3) Others The outer packaging material of the present disclosure may include a plurality of gas barrier films as described above. The number of gas barrier films in one outer packaging material is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within the above-described ranges. It can be in the range, and in particular, it is preferably in the range of 2 or more and 4 or less, particularly in the range of 2 or more and 3 or less. By increasing the number of gas barrier films to be used, the gas barrier properties of the outer packaging material can be improved. However, if the number of gas barrier films is too large, it becomes difficult to make the ash content of the outer packaging material within the above-mentioned range, and the bent portion This is because it may be difficult to suppress the occurrence of cracks and the like. When the outer packaging material has a plurality of gas barrier films, the configuration of each gas barrier film may be the same or different.
 3.熱溶着可能なフィルム
 本開示における熱溶着可能なフィルムは、熱溶着が可能なものであり、前記外包材を用いて真空断熱材を形成する際に、芯材と接する部位である。また、対向する外包材同士の端部を熱溶着する熱溶着面を形成する部位である。
3. Heat-weldable film The heat-weldable film in the present disclosure can be heat-welded, and is a part that comes into contact with a core material when a vacuum heat insulating material is formed using the outer packaging material. Moreover, it is a site | part which forms the heat welding surface which heat-welds the edge part of the outer packaging materials which oppose.
 前記熱溶着可能なフィルムの材料としては、加熱によって溶融し、融着することが可能であることから熱可塑性樹脂が好ましく、例えば直鎖状短鎖分岐ポリエチレン(LLDPE)等のポリエチレンや未延伸ポリプロピレン(CPP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル、ポリ酢酸ビニル、ポリ塩化ビニル、(メタ)アクリル、ポリウレタン、ナイロン等のポリアミド系樹脂、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコールが挙げられる。 The heat-weldable film material is preferably a thermoplastic resin because it can be melted and fused by heating. For example, polyethylene such as linear short-chain branched polyethylene (LLDPE) or unstretched polypropylene Polyolefins such as (CPP), polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyamides such as polyvinyl acetate, polyvinyl chloride, (meth) acryl, polyurethane, nylon Examples thereof include polyvinyl alcohol such as resin, polyvinyl alcohol (PVA), and ethylene-vinyl alcohol copolymer (EVOH).
 本開示においては、ポリプロピレンやポリブチレンテレフタレート(PBT)等の引張弾性率が比較的高い樹脂が熱溶着可能なフィルムの材料として用いられることが好ましい。熱溶着の際に微小な欠陥の発生を抑制することができるからである。 In the present disclosure, it is preferable that a resin having a relatively high tensile elastic modulus, such as polypropylene or polybutylene terephthalate (PBT), is used as a film material that can be thermally welded. It is because generation | occurrence | production of a micro defect can be suppressed in the case of heat welding.
 前記熱溶着可能なフィルムの融点としては、例えば80℃以上、300℃以下の範囲内であることが好ましい。熱溶着可能なフィルムの融点が前記範囲に満たないと、本開示の外包材を用いて形成された真空断熱材の使用環境下において、外包材の封止面が剥離する可能性がある。また、熱溶着可能なフィルムの融点が前記範囲を超えると、外包材を高温で熱溶着する必要があるため、外包材として共に用いられるガスバリアフィルム等が熱により劣化される可能性がある。融点は、100℃以上、250℃以下の範囲内であることがより好ましい。 The melting point of the heat-weldable film is preferably in the range of 80 ° C. or higher and 300 ° C. or lower, for example. If the melting point of the heat-weldable film is less than the above range, the sealing surface of the outer packaging material may be peeled off under the usage environment of the vacuum heat insulating material formed using the outer packaging material of the present disclosure. Further, if the melting point of the heat-weldable film exceeds the above range, the outer packaging material needs to be heat-welded at a high temperature, so that the gas barrier film and the like used together as the outer packaging material may be deteriorated by heat. The melting point is more preferably in the range of 100 ° C. or more and 250 ° C. or less.
 また、前記熱溶着可能なフィルムは、上述した樹脂の他に、アンチブロッキング剤、滑剤、難燃化剤、充填剤等の他の材料を含んでいてもよい。これらの材料は、無機化合物で構成され得る。 The heat-weldable film may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and a filler in addition to the above-described resin. These materials can be composed of inorganic compounds.
 前記熱溶着可能なフィルムの厚さは、特に限定されるものではなく、例えば、15μm以上、100μm以下の範囲内が好ましい。熱溶着可能なフィルムの厚さが上述の範囲よりも大きいと、外包材のガスバリア性が低下する場合等があり、厚さが上述の範囲よりも小さいと、所望の接着力が得られない場合がある。熱溶着可能なフィルムの厚さは、25μm以上、90μm以下の範囲内がより好ましく、30μm以上、80μm以下の範囲内がさらに好ましい。 The thickness of the heat-weldable film is not particularly limited, and is preferably in the range of 15 μm or more and 100 μm or less, for example. When the thickness of the heat-weldable film is larger than the above range, the gas barrier property of the outer packaging material may be deteriorated. When the thickness is smaller than the above range, a desired adhesive force cannot be obtained. There is. The thickness of the heat-weldable film is more preferably in the range of 25 μm or more and 90 μm or less, and further preferably in the range of 30 μm or more and 80 μm or less.
 熱溶着可能なフィルムの引張弾性率は、特に限定されるものではなく、例えば、1.0GPa以上であることが好ましい。熱溶着可能なフィルムの引張弾性率が上述の範囲内であることにより、外包材の引張弾性率を所望される範囲内のものとすることができ、ガスバリアフィルムへのクラックの発生を抑制することができるからである。また、前記真空断熱材に用いられる芯材からの突き刺しによるピンホールの発生を抑制できるからである。熱溶着可能なフィルムの引張弾性率は、1.0GPa以上、5.0GPa以下の範囲内であることが好ましく、1.0GPa以上、3.0GPa以下の範囲内であることがより好ましい。 The tensile elastic modulus of the heat-weldable film is not particularly limited, and is preferably 1.0 GPa or more, for example. The tensile modulus of the heat-weldable film is within the above range, so that the tensile modulus of the outer packaging material can be within the desired range, and the occurrence of cracks in the gas barrier film is suppressed. Because you can. Moreover, it is because generation | occurrence | production of the pinhole by the stab from the core material used for the said vacuum heat insulating material can be suppressed. The tensile modulus of the heat-weldable film is preferably in the range of 1.0 GPa or more and 5.0 GPa or less, and more preferably in the range of 1.0 GPa or more and 3.0 GPa or less.
 4.保護フィルム
 本開示の外包材は、上述した熱溶着可能なフィルムやガスバリアフィルムの他に、保護フィルムを有していてもよい。外包材が保護フィルムを有することにより、熱溶着可能なフィルムやガスバリアフィルムなど、外包材として共に用いられる各フィルムを、損傷や劣化から保護することができるからである。保護フィルムは、そのいずれの面にもガスバリア性を有する層が配置されていない点で、上述した各フィルムと区別することが可能である。保護フィルムの外包材における配置位置は特に限定されるものではないが、前記ガスバリアフィルムの前記熱溶着可能なフィルムとは反対の面側に配置されていることが好ましく、真空断熱材を形成する際に最外層(最表層)となる位置に、保護フィルムが配置されていることがより好ましい。
4). Protective Film The outer packaging material of the present disclosure may have a protective film in addition to the above-described heat-weldable film and gas barrier film. It is because each film used together as an outer packaging material, such as a heat-weldable film and a gas barrier film, can be protected from damage and deterioration by having the protective film as a protective film. The protective film can be distinguished from the above-described films in that no layer having a gas barrier property is disposed on either side of the protective film. Although the arrangement position in the outer packaging material of the protective film is not particularly limited, it is preferably arranged on the opposite side of the gas barrier film from the thermally weldable film, and when forming a vacuum heat insulating material It is more preferable that a protective film is disposed at a position to be the outermost layer (outermost layer).
 保護フィルムとしては、熱溶着可能なフィルムよりも高融点の樹脂を用いることが好ましく、シート状でもフィルム状でもよい。このような保護フィルムとして、例えば、ナイロン、ポリエステル、ポリアミド、ポリプロピレン、ポリウレタン、アミノ樹脂、シリコーン樹脂、エポキシ樹脂、ポリイミド(PI)等の熱硬化性樹脂、ポリ塩化ビニル(PVC)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリビニルアルコール(PVA)、エチレン・酢酸ビニル共重合体(EVAL)、ポリアクリロニトリル(PAN)、セルロースナノファイバー(CNF)等のシートまたはフィルム等が挙げられ、中でも延伸ナイロン(ONY)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、延伸ポリプロピレン(OPP)、ポリ塩化ビニル(PVC)等が好適に用いられる。 As the protective film, it is preferable to use a resin having a higher melting point than the heat-weldable film, and it may be in the form of a sheet or film. As such a protective film, for example, nylon, polyester, polyamide, polypropylene, polyurethane, amino resin, silicone resin, epoxy resin, thermosetting resin such as polyimide (PI), polyvinyl chloride (PVC), polycarbonate (PC) , Polystyrene (PS), polyvinyl alcohol (PVA), ethylene / vinyl acetate copolymer (EVAL), polyacrylonitrile (PAN), cellulose nanofiber (CNF), etc. ), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), expanded polypropylene (OPP), polyvinyl chloride (PVC) and the like are preferably used.
 保護フィルムは、単層であってもよく、同一材料から成る層または異なる材料から成る層を積層させて多層としたものであってもよい。また保護フィルムは、他の層との密着性の向上が図れるという点から、コロナ放電処理等の表面処理が施されていてもよい。また、保護フィルムの厚さは、特に限定されるものではないが、一般的に5μm以上、80μm以下の範囲内程度である。 The protective film may be a single layer, or may be a multilayer formed by laminating layers made of the same material or layers made of different materials. The protective film may be subjected to a surface treatment such as a corona discharge treatment from the viewpoint of improving the adhesion with other layers. The thickness of the protective film is not particularly limited, but is generally in the range of 5 μm or more and 80 μm or less.
 保護フィルムは、アンチブロッキング剤、滑剤、難燃化剤、充填剤等の他の材料を含んでいてもよい。これらの材料は、無機化合物で構成され得る。あるいは、無機化合物を含むハードコート層などが形成されていてもよい。 The protective film may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and a filler. These materials can be composed of inorganic compounds. Alternatively, a hard coat layer containing an inorganic compound may be formed.
 5.接着層
 本開示の外包材は、公知の接着剤を用いて接合されていてもよい。接着剤には、接着力を向上させるために、シランカップリング剤や金属キレート剤などの無機化合物を含有させることができる。
5. Adhesive Layer The outer packaging material of the present disclosure may be bonded using a known adhesive. The adhesive may contain an inorganic compound such as a silane coupling agent or a metal chelating agent in order to improve the adhesive force.
 6.真空断熱材用外包材
 外包材の厚さは、外包材の引張弾性率および灰分を上述した範囲内とすることができるものであれば特に限定されるものではなく、例えば、30μm以上、200μm以下の範囲内であることが好ましく、中でも50μm以上、150μm以下の範囲内であることが好ましい。
6). The outer packaging material for vacuum heat insulating material The thickness of the outer packaging material is not particularly limited as long as the tensile elastic modulus and ash content of the outer packaging material can be within the above-described ranges, and for example, 30 μm or more and 200 μm or less. It is preferable that it is in the range of 50 μm or more and 150 μm or less.
 外包材の製造方法としては、所望の構成の外包材を得ることができるものであれば特に限定されるものではなく、公知の方法を用いることができる。例えば、予め製造した各フィルムを接着剤で貼り合せる方法や、熱溶融させた各フィルムの原材料をTダイ等で順次押出しして積層体を得る方法等が挙げられる。 The method for producing the outer packaging material is not particularly limited as long as an outer packaging material having a desired configuration can be obtained, and a known method can be used. For example, a method of pasting each film manufactured in advance with an adhesive, a method of sequentially extruding the raw materials of each heat-melted film with a T-die or the like, and the like can be cited.
 外包材は、酸素透過度が0.1cc/(m・day・atm)以下、中でも0.05cc/(m・day・atm)以下であることが好ましい。また、真空断熱材用外包材は、水蒸気透過度が0.5g/(m・day)以下、中でも0.1g/(m・day)以下、特には0.05g/(m・day)以下であることが好ましい。外包材が上述の範囲内のガスバリア性を有することにより、高い断熱性能を有する真空断熱材を形成することができるからである。 Outer cover material, the oxygen permeability of 0.1cc / (m 2 · day · atm) or less, is preferably Among them 0.05cc / (m 2 · day · atm) or less. Further, the vacuum heat insulating material for outer material water vapor permeability of 0.5g / (m 2 · day) or less, preferably 0.1g / (m 2 · day) or less, particularly 0.05g / (m 2 · day It is preferable that This is because a vacuum heat insulating material having high heat insulating performance can be formed by having the gas barrier property within the above-described range.
B.真空断熱材
 次に、本開示の真空断熱材について説明する。本開示の真空断熱材は、芯材と、前記芯材を封入する真空断熱材用外包材とを有する真空断熱材であって、前記真空断熱材用外包材が上述した真空断熱材用外包材であることを特徴とするものである。
B. Next, the vacuum heat insulating material of the present disclosure will be described. The vacuum heat insulating material of the present disclosure is a vacuum heat insulating material having a core material and a vacuum heat insulating material outer packaging material that encloses the core material, and the vacuum heat insulating material outer packaging material described above is the vacuum heat insulating material outer packaging material. It is characterized by being.
 本開示の真空断熱材については、既に説明した図2に例示するものと同様とすることができる。本開示によれば、真空断熱材用外包材が上述の真空断熱材用外包材であることにより、長期間断熱性能を維持することができる真空断熱材とすることができる。 The vacuum heat insulating material of the present disclosure can be the same as that illustrated in FIG. According to this indication, it can be set as the vacuum heat insulating material which can maintain heat insulation performance for a long period of time because the outer packaging material for vacuum heat insulating materials is the above-mentioned outer packaging material for vacuum heat insulating materials.
 本開示の真空断熱材は、真空断熱材用外包材および芯材を有するものである。
 以下、本開示の真空断熱材について、構成ごとに説明する。
The vacuum heat insulating material of the present disclosure has a vacuum heat insulating material outer packaging material and a core material.
Hereinafter, the vacuum heat insulating material of the present disclosure will be described for each configuration.
 1.真空断熱材用外包材
 本開示における外包材は、芯材を封入するものである。また、外包材は、上述した外包材である。このような外包材については、「A.真空断熱材用外包材」の項に記載した内容と同様とすることができるので、ここでの説明は省略する。
 なお、封入されるとは、外包材を用いて形成された袋体の内部に密封されることをいうものである。
1. Outer packaging material for vacuum heat insulating material The outer packaging material in the present disclosure encloses a core material. The outer packaging material is the above-described outer packaging material. Such an outer packaging material can be the same as the content described in the section “A. Outer packaging material for vacuum heat insulating material”, and the description thereof is omitted here.
The term “encapsulated” refers to sealing inside a bag formed using an outer packaging material.
 2.芯材
 本開示における芯材は、真空断熱材用外包材により封入されるものである。
 芯材としては、熱伝導率の低いものであることが好ましい。芯材は、その空隙率が50%以上、特に90%以上の多孔質材であることが好ましい。
2. Core Material The core material in the present disclosure is encapsulated with an outer packaging material for a vacuum heat insulating material.
The core material preferably has a low thermal conductivity. The core material is preferably a porous material having a porosity of 50% or more, particularly 90% or more.
 芯材を構成する材料としては、粉体、発泡体、繊維体等を用いることができる。
 粉体としては、無機系、有機系のいずれでもよく、例えば、乾式シリカ、湿式シリカ、凝集シリカ粉末、導電性粉体、炭酸カルシウム粉末、パーライト、クレー、タルク等を用いることができる。なかでも乾式シリカと導電性粉体との混合物は、真空断熱材の内圧上昇に伴う断熱性能の劣化が小さいため、内圧上昇が生じる温度範囲で使用する際に有利である。さらに、上述の材料に酸化チタンや酸化アルミニウムやインジウムドープ酸化錫等の赤外線吸収率が小さい物質を輻射抑制材として添加すると、芯材の赤外線吸収率を小さくすることができる。
As a material constituting the core material, powder, foam, fiber, or the like can be used.
The powder may be either inorganic or organic, and for example, dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used. Among these, a mixture of dry silica and conductive powder is advantageous when used in a temperature range in which an increase in internal pressure occurs because deterioration in heat insulation performance associated with an increase in internal pressure of the vacuum heat insulating material is small. Furthermore, when a substance having a small infrared absorptance such as titanium oxide, aluminum oxide or indium-doped tin oxide is added as a radiation suppressing material to the above-described material, the infrared absorptivity of the core material can be reduced.
 また、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等があり、これらのなかでも連続気泡を形成する発泡体が好ましい。 Also, examples of the foam include urethane foam, styrene foam, phenol foam, and the like. Among these, a foam that forms open cells is preferable.
 また、繊維体としては、無機繊維でもよく有機繊維でもよいが、断熱性能の観点から無機繊維を用いることが好ましい。このような無機繊維としては、グラスウールやグラスファイバー等のガラス繊維、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、セラミック繊維、ロックウール等を挙げることができる。これらの無機繊維は、熱伝導率が低く、粉体よりも取り扱いが容やすである点で好ましい。 The fiber body may be inorganic fiber or organic fiber, but it is preferable to use inorganic fiber from the viewpoint of heat insulation performance. Examples of such inorganic fibers include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, and rock wool. These inorganic fibers are preferable in that they have low thermal conductivity and are easier to handle than powders.
 芯材は、上述した材料を単独で使用してもよく、2種以上の材料を混合した複合材であってもよい。 The core material may be the above-described material alone or a composite material in which two or more materials are mixed.
 3.真空断熱材
 本開示の真空断熱材は、真空断熱材用外包材で封入された内部が減圧され、真空状態とされたものである。真空断熱材内部の真空度としては、5Pa以下であることが好ましい。真空断熱材内部の真空度を上述の範囲内とすることにより、内部に残存する空気の対流による熱伝導を小さいものとすることができ、優れた断熱性を発揮することが可能となる。
3. Vacuum heat insulating material The vacuum heat insulating material of this indication WHEREIN: The inside enclosed with the outer packaging material for vacuum heat insulating materials is pressure-reduced, and is made into the vacuum state. The degree of vacuum inside the vacuum heat insulating material is preferably 5 Pa or less. By setting the degree of vacuum inside the vacuum heat insulating material within the above range, heat conduction due to convection of air remaining inside can be reduced, and excellent heat insulation can be exhibited.
 また、真空断熱材の熱伝導率は低いことが好ましく、例えば、真空断熱材の25℃における熱伝導率(初期熱伝導率)は、5mW/(m・K)以下であることが好ましい。真空断熱材の熱伝導率を範囲とすることにより、真空断熱材は熱を外部に伝導しにくくなることから、高い断熱効果を奏することができるからである。真空断熱材の25℃における熱伝導率(初期熱伝導率)は、4mW/(m・K)以下であることがより好ましく、3mW/(m・K)以下であることがさらに好ましい。なお、熱伝導率の測定は、JIS A1412-2:1999(熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法(HFM法))に準拠し、熱伝導率測定装置を用いて、試験の定常に要する時間15分以上、標準板の種類EPS、高温面の温度30℃、低温面の温度10℃、サンプル平均温度20℃、の条件で、サンプルの両方の主面が上下方向を向くように配置し、熱流計法により測定する方法を用いる。熱伝導率測定装置は、オートラムダHC-074(英弘精機社製)が好ましい。サンプルの大きさは、例えば、幅29±0.5cm、長さ30±0.5cmである。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の熱伝導率の値とする。 Also, the heat conductivity of the vacuum heat insulating material is preferably low. For example, the heat conductivity (initial heat conductivity) at 25 ° C. of the vacuum heat insulating material is preferably 5 mW / (m · K) or less. This is because, by setting the heat conductivity of the vacuum heat insulating material in the range, the vacuum heat insulating material becomes difficult to conduct heat to the outside, so that a high heat insulating effect can be achieved. The thermal conductivity (initial thermal conductivity) at 25 ° C. of the vacuum heat insulating material is more preferably 4 mW / (m · K) or less, and further preferably 3 mW / (m · K) or less. The thermal conductivity is measured in accordance with JIS A1412-2: 1999 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials-Part 2: Heat flow meter method (HFM method)). Using the apparatus, the time required for the test to be steady is 15 minutes or more, the standard plate type EPS, the temperature of the hot surface is 30 ° C., the temperature of the cold surface is 10 ° C., and the sample average temperature is 20 ° C. A method in which the surface is arranged in the vertical direction and measured by a heat flow meter method is used. The thermal conductivity measuring device is preferably Auto Lambda HC-074 (manufactured by Eiko Seiki Co., Ltd.). The sample size is, for example, 29 ± 0.5 cm wide and 30 ± 0.5 cm long. Under one condition, at least three samples are measured, and the average of the measured values is taken as the thermal conductivity value of the condition.
 4.製造方法
 本開示の真空断熱材の製造方法としては、一般的な方法を用いることができる。例えば、上述の外包材を形成可能な積層体で、四辺形に切断されたものを2枚準備する。それぞれの熱溶着可能なフィルムどうしを向き合わせて、2枚の積層体の三辺の外縁部を熱溶着させることによって、一辺が開口している袋体を得る。袋体の開口部から芯材を入れた後、袋体の開口部から空気を吸引する。袋体の内部が減圧された状態で、残る一辺の外縁部を加熱する。これによって、芯材が外包材により封入された真空断熱材が得られる。
4). Manufacturing method As a manufacturing method of the vacuum heat insulating material of this indication, a general method can be used. For example, two laminates that can form the above-described outer packaging material and cut into a quadrilateral are prepared. The respective heat-weldable films face each other, and the outer edges of the three sides of the two laminates are heat-welded to obtain a bag having one side open. After putting the core material through the opening of the bag, air is sucked from the opening of the bag. In the state where the inside of the bag body is depressurized, the remaining outer edge portion is heated. Thereby, a vacuum heat insulating material in which the core material is enclosed by the outer packaging material is obtained.
 5.用途
 本開示の真空断熱材は、熱伝導率が低く、高温下においても断熱性および耐久性に優れるものである。従って、真空断熱材は、熱源を有し発熱する部位や、外部から加熱されることにより高温となる部位に用いることができる。
5. Applications The vacuum heat insulating material of the present disclosure has low thermal conductivity and is excellent in heat insulating properties and durability even at high temperatures. Therefore, the vacuum heat insulating material can be used in a part that has a heat source and generates heat, or a part that becomes high temperature when heated from the outside.
C.真空断熱材付き物品
 次に、本開示の真空断熱材付き物品について説明する。
 本開示の真空断熱材付き物品は、熱絶縁領域を有する物品、および真空断熱材を備える真空断熱材付き物品であって、上記真空断熱材が、上述の真空断熱材であるものである。
C. Next, an article with a vacuum heat insulating material of the present disclosure will be described.
The article with a vacuum heat insulating material of the present disclosure is an article having a heat insulating region and an article with a vacuum heat insulating material including the vacuum heat insulating material, wherein the vacuum heat insulating material is the above-described vacuum heat insulating material.
 熱絶縁領域は、真空断熱材により熱絶縁された領域であり、例えば、保温や保冷された領域、熱源や冷却源を取り囲んでいる領域、熱源や冷却源から隔離されている領域である。これらの領域は、空間であっても物体であってもよい。 The heat insulating region is a region that is thermally insulated by a vacuum heat insulating material, for example, a region that is kept warm or cold, a region that surrounds a heat source or a cooling source, or a region that is isolated from a heat source or a cooling source. These areas may be spaces or objects.
 物品として、例えば、冷蔵庫、冷凍庫、保温器、保冷器等の電気機器、保温容器、保冷容器、輸送容器、コンテナ、貯蔵容器等の容器、車両、航空機、船舶等の乗り物、家屋、倉庫等の建築物、等が挙げられる。 As articles, for example, electric devices such as refrigerators, freezers, heat insulators, and coolers, heat insulation containers, cold insulation containers, transport containers, containers, containers for storage containers, vehicles, aircraft, ships and other vehicles, houses, warehouses, etc. Buildings, etc.
 本開示における真空断熱材については、上述した「B.真空断熱材」の項で説明した内容と同様であるため、ここでの説明は省略する。 Since the vacuum heat insulating material in the present disclosure is the same as the content described in the above-mentioned section “B. Vacuum heat insulating material”, description thereof is omitted here.
 本開示の真空断熱材付き物品の具体例として、本体又は内部に熱源部または被保温部を有する機器、および真空断熱材を備える真空断熱材付き機器が挙げられる。 Specific examples of the article with a vacuum heat insulating material of the present disclosure include a device having a heat source part or a heat retaining part inside the main body or inside, and a device with a vacuum heat insulating material provided with a vacuum heat insulating material.
 ここで、「熱源部」とは、機器自体が駆動することにより、当該機器本体または機器内部において発熱する部位をいうものであり、例えば電源やモーター等をいう。また、「被保温部」とは、機器本体または内部に熱源部を有さないが、機器が外部の熱源から熱を受けて、高温になる部位をいうものである。 Here, the “heat source section” refers to a portion that generates heat in the apparatus main body or inside the apparatus when the apparatus itself is driven, such as a power source or a motor. The “insulated part” refers to a part that does not have a heat source part in the apparatus body or inside, but the apparatus receives heat from an external heat source and becomes high temperature.
 本開示によれば、外包材が上述の外包材であり、真空断熱材が長期間断熱性能を維持することができるため、熱源部を有する機器においては、真空断熱材により熱源部からの熱を断熱し、機器全体の温度が高温となることを防止し、一方、被保温部を有する機器においては、真空断熱材により被保温部の温度状態を保つことができる。これにより、消費電力を抑えた高い省エネルギー特性を有する機器とすることができる。 According to the present disclosure, since the outer packaging material is the above-described outer packaging material, and the vacuum heat insulating material can maintain the heat insulating performance for a long period of time, in the apparatus having the heat source unit, the heat from the heat source unit is generated by the vacuum heat insulating material. It heat-insulates and prevents that the temperature of the whole apparatus becomes high temperature, On the other hand, in the apparatus which has a heat retaining part, the temperature state of a heat retaining part can be maintained with a vacuum heat insulating material. Thereby, it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
 本開示における機器とは、本体又は本体の内部に熱源部または被保温部を有するものである。本開示における機器としては、例えば、自然冷媒ヒートポンプ給湯機、冷蔵庫、自動販売機、炊飯ジャー、ポット、電子レンジ、業務用オーブン、IHクッキングヒーター、OA機器等の電化機器、自動車、住宅壁、輸送用コンテナ等が挙げられる。 The device in the present disclosure has a main body or a heat source section or a heat retaining section inside the main body. Examples of equipment in the present disclosure include natural refrigerant heat pump water heaters, refrigerators, vending machines, rice cookers, pots, microwave ovens, commercial ovens, IH cooking heaters, electrical appliances such as OA equipment, automobiles, residential walls, and transportation. Container etc. are mentioned.
 真空断熱材を機器に装着する態様としては、当該機器の熱源部または被保温部に直接真空断熱材を貼り付けてもよく、被保温部と熱源部または外部熱源との間に真空断熱材を挟みこむようにして装着してもよい。 As a mode of attaching the vacuum heat insulating material to the device, the vacuum heat insulating material may be directly attached to the heat source portion or the heat retaining portion of the device, and the vacuum heat insulating material is provided between the heat retaining portion and the heat source portion or the external heat source. It may be mounted so as to be sandwiched.
 なお、本開示は、上述した実施形態に限定されるものではない。上述した実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 Note that the present disclosure is not limited to the above-described embodiment. The above-described embodiment is an exemplification, and any configuration that has substantially the same configuration as the technical idea described in the scope of the claims of the present disclosure and that exhibits the same effect can be used. It is included in the technical scope of the present disclosure.
 以下に実施例および比較例を示し、本開示をさらに具体的に説明する。
[実施例1]
(真空断熱材用外包材の作製)
 外包材の内側から、熱溶着可能なフィルムとして、厚さ50μmの未延伸ポリプロピレンフィルム(CPP50)と、第1ガスバリアフィルムとして、厚さ40nmのアルミニウム膜が蒸着された、厚さ12μmのポリエチレンテレフタレート(PET)フィルム(Al蒸着PET12(1))の蒸着膜上に、約230nmのオーバーコート層(樹脂と無機層状化合物の混合物)が配置されたフィルム(OC付Al蒸着PET12(1))と、第2ガスバリアフィルムとして、Al蒸着PET12(1)の蒸着膜上に、約230nmのオーバーコート層(樹脂と無機層状化合物の混合物)が配置されたフィルム(OC付Al蒸着PET12(1))と、第3ガスバリアフィルムとして、厚さ10nmのシリカ膜が蒸着された、厚さ15μmのナイロンフィルム(SiO蒸着ナイロン15)との層構成を有する外包材を作製した。第1ガスバリアフィルムのOC付Al蒸着PET12(1)の蒸着膜側と第2ガスバリアフィルムのOC付Al蒸着PET12(1)の蒸着膜側とが向かい合うように配置し、第3ガスバリアフィルムのSiO蒸着ナイロン15のシリカ膜が内側を向くように配置した。なお、各フィルムは、接着層で接合した。接着層を形成するための接着剤は、ポリエステルポリオールを主成分とする主剤(ロックペイント社製 製品名:RU-77T)、脂肪族系ポリイソシアネートを含む硬化剤(ロックペイント社製 製品名:H-7)、および酢酸エチルの溶剤が、重量配合比が主剤:硬化剤:溶剤=10:1:14となるように混合された、2液硬化型の接着剤を用いた。上述した接着剤を外側となる側のフィルムの一方の面に塗布量3.5g/mとなるように塗布して接着層を形成し、接着層が形成された外側となる側のフィルムと内側となる側のフィルムとを接着層を間に挟んで加圧した。
 下記表1に、各実施例および比較例の外包材の層構成を示す。表1においては、外包材を用いて真空断熱材を形成する際に外側となるフィルムを表の左側に、内側となるフィルムを表の右側に記載した。また、前記外包材に用いられた各フィルムの製品名を表2に示す。なお、各フィルム名の最後の数字は、各フィルムの厚さ(μm)を表している。
Hereinafter, the present disclosure will be described more specifically with reference to examples and comparative examples.
[Example 1]
(Preparation of outer packaging material for vacuum insulation)
From the inside of the outer packaging material, an unstretched polypropylene film (CPP50) having a thickness of 50 μm is deposited as a heat-weldable film, and an aluminum film having a thickness of 40 nm is deposited as a first gas barrier film. (PET) film (Al vapor-deposited PET12 (1)), a film (Al vapor-deposited PET12 (1) with OC) on which an overcoat layer (mixture of resin and inorganic layered compound) of about 230 nm is disposed, As a two-gas barrier film, a film (Al-deposited PET 12 (1) with OC) in which an overcoat layer (a mixture of a resin and an inorganic layered compound) of about 230 nm is disposed on the deposited film of Al-deposited PET12 (1), 3 As a gas barrier film, a silica film having a thickness of 10 nm is deposited, and a 15 μm thick nano film is deposited. The outer cover material having a layer structure of the Ron film (SiO 2 deposited nylon 15) was prepared. A deposited film side of the deposition film side and OC with Al deposition of the second gas barrier film PET 12 (1) of the Al deposition PET 12 (1) with OC is arranged to face the first gas barrier film, SiO 2 of the third gas barrier film It arrange | positioned so that the silica membrane of vapor deposition nylon 15 might face the inner side. Each film was bonded with an adhesive layer. The adhesive for forming the adhesive layer is composed of a main component mainly composed of polyester polyol (product name: RU-77T manufactured by Rock Paint), and a curing agent containing aliphatic polyisocyanate (product name: manufactured by Rock Paint). -7), and a two-component curable adhesive in which a solvent of ethyl acetate was mixed so that the weight ratio was main agent: curing agent: solvent = 10: 1: 14. An adhesive layer is formed by applying the above-mentioned adhesive on one surface of the film on the outer side so as to have an application amount of 3.5 g / m 2, and the film on the outer side on which the adhesive layer is formed; The film on the inner side was pressed with an adhesive layer in between.
Table 1 below shows the layer structure of the outer packaging material of each example and comparative example. In Table 1, when forming the vacuum heat insulating material using the outer packaging material, the outer film is described on the left side of the table, and the inner film is described on the right side of the table. Table 2 shows product names of the films used for the outer packaging material. In addition, the last number of each film name represents the thickness (micrometer) of each film.
(真空断熱材の作製)
 得られた実施例1~5および比較例1~5の各外包材について、各外包材を2枚重ねて、四辺形の三辺をヒートシールして一辺のみが開口した袋体を作成した。芯材として300mm×300mm×30mmのグラスウールを用い、乾燥処理を行った後、袋体に、芯材および乾燥剤として5gの酸化カルシウムを収納して、袋体内部を排気した。その後、袋体の開口部分をヒートシールにより密封して、真空断熱材を得た。到達圧力は0.05Paとした。
(Preparation of vacuum insulation)
With respect to the obtained outer packaging materials of Examples 1 to 5 and Comparative Examples 1 to 5, two outer packaging materials were overlapped, and a three-sided quadrilateral was heat-sealed to create a bag body having only one side opened. The glass wool of 300 mm × 300 mm × 30 mm was used as a core material, and after drying treatment, 5 g of calcium oxide was stored in the bag body as a core material and a desiccant, and the inside of the bag body was evacuated. Then, the opening part of the bag body was sealed by heat sealing to obtain a vacuum heat insulating material. The ultimate pressure was 0.05 Pa.
[実施例2]
 外包材の層構成を内側から、熱溶着可能なフィルムとして、厚さ50μmの直鎖状短鎖分岐ポリエチレンフィルム(LLDPE50)と、第1ガスバリアフィルムとして、厚さ12μmのエチレン-ビニルアルコール共重合体フィルム(Al蒸着EVOH12)と、第2ガスバリアフィルムとして、厚さ55nmのアルミニウム膜が蒸着された、厚さ12μmのPETフィルム(厚膜Al蒸着PET12)と、第3ガスバリアフィルムとして、金属酸化物リン酸層を有するPETフィルム(クラリスタCF12)と、にしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Example 2]
50 μm-thick linear short-chain branched polyethylene film (LLDPE50) as a film that can be heat-welded from the inner layer structure of the outer packaging material, and a 12 μm-thick ethylene-vinyl alcohol copolymer as the first gas barrier film A film (Al vapor-deposited EVOH12), a PET film (thick-film Al vapor-deposited PET12) having a thickness of 55 nm deposited as a second gas barrier film, and a metal oxide phosphorous as a third gas barrier film. An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a PET film having an acid layer (Clarista CF12) was used.
[実施例3]
 外包材の層構成を内側から、熱溶着可能なフィルムとして、厚さ50μmの直鎖状短鎖分岐ポリエチレンフィルム(LLDPE50)と、第1ガスバリアフィルムとして、厚さ15μmのエチレン-ビニルアルコール共重合体フィルム(Al蒸着EVOH15)と、第2ガスバリアフィルムとして、厚さ55nmのアルミニウム膜が蒸着された、厚さ12μmのPETフィルム(厚膜Al蒸着PET12)と、第3ガスバリアフィルムとして、厚さ55nmのアルミニウム膜が蒸着された、厚さ12μmのPETフィルム(厚膜Al蒸着PET12)と、にしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Example 3]
50 μm thick linear short-chain branched polyethylene film (LLDPE50) as a film that can be heat-welded from the inner layer structure of the outer packaging material, and 15 μm thick ethylene-vinyl alcohol copolymer as the first gas barrier film A film (Al vapor-deposited EVOH15), a 55-nm thick aluminum film deposited as a second gas barrier film, a 12-μm thick PET film (thick-film Al-deposited PET12), and a third gas barrier film, 55-nm thick An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a 12 μm thick PET film (thick film Al deposited PET12) on which an aluminum film was deposited was used.
[実施例4]
 外包材の層構成を内側から、熱溶着可能なフィルムとして、厚さ30μmの未延伸ポリプロピレンフィルム(CPP30)と、第1ガスバリアフィルムとして、厚さ30nmのシリカ膜が蒸着された、厚さ12μmのPETフィルム(SiO蒸着PET12(1))と、第2ガスバリアフィルムとして、厚さ30nmのシリカ膜が蒸着された、厚さ12μmのPETフィルム(SiO蒸着PET12(1))と、第3ガスバリアフィルムとして、厚さ10nmのシリカ膜が蒸着された、厚さ15μmのナイロンフィルム(SiO蒸着ナイロン15)と、にしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Example 4]
The layer structure of the outer packaging material was deposited from the inside as a heat-weldable film, a 30 μm thick unstretched polypropylene film (CPP30), and a first gas barrier film, a 30 nm thick silica film was deposited. a PET film (SiO 2 deposited PET 12 (1)), as the second gas barrier film, a silica film having a thickness of 30nm was deposited, and the thickness of 12 [mu] m PET film (SiO 2 deposited PET 12 (1)), the third barrier The outer packaging material and the vacuum heat insulating material were obtained in the same manner as in Example 1 except that the film was a 15 μm thick nylon film (SiO 2 vapor deposited nylon 15) on which a 10 nm thick silica film was deposited. It was.
[実施例5]
 外包材の層構成を内側から、CPP50と、厚さ6μmのアルミニウム箔(Al6)と、厚さ12μmのPETフィルム(PET12)と、厚さ25μmのナイロンフィルム(ON25)と、にしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Example 5]
Except that the layer structure of the outer packaging material is CPP50, a 6 μm thick aluminum foil (Al6), a 12 μm thick PET film (PET12), and a 25 μm thick nylon film (ON25) from the inside. In the same manner as in Example 1, an outer packaging material and a vacuum heat insulating material were obtained.
[比較例1]
 外包材の層構成を内側から、熱溶着可能なフィルムとして、厚さ50μmの直鎖状短鎖分岐ポリエチレンフィルム(LLDPE50)と、第1ガスバリアフィルムとして、厚さ12μmのエチレン-ビニルアルコール共重合体フィルム(Al蒸着EVOH12)と、第2ガスバリアフィルムとして、約40nmのアルミニウム膜が蒸着された厚さ12μmのポリエチレンテレフタレート(PET)フィルム(Al蒸着PET12(2))と、保護層として厚さ25μmのナイロンフィルム(ON25)と、にしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Comparative Example 1]
50 μm-thick linear short-chain branched polyethylene film (LLDPE50) as a film that can be heat-welded from the inner layer structure of the outer packaging material, and a 12 μm-thick ethylene-vinyl alcohol copolymer as the first gas barrier film A film (Al-deposited EVOH12), a 12 μm thick polyethylene terephthalate (PET) film (Al-deposited PET12 (2)) on which an aluminum film of about 40 nm is deposited as a second gas barrier film, and a protective layer of 25 μm in thickness An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that the nylon film (ON25) was used.
[比較例2]
 外包材の層構成を内側から、熱溶着可能なフィルムとして、厚さ40μmの未延伸ポリプロピレンフィルム(CPP40)と、第1ガスバリアフィルム、第2ガスバリアフィルム、第3ガスバリアフィルとしてそれぞれ、厚さ10nmのシリカ膜が蒸着された、厚さ12μmのPETフィルム(SiO蒸着PET12(2))としたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Comparative Example 2]
As a film that can be thermally welded from the inside, the layer structure of the outer packaging material is an unstretched polypropylene film (CPP40) having a thickness of 40 μm, a first gas barrier film, a second gas barrier film, and a third gas barrier film, each having a thickness of 10 nm. An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that a PET film having a thickness of 12 μm (SiO 2 vapor-deposited PET12 (2)) on which a silica film was deposited was obtained.
[比較例3]
 外包材の層構成を内側から、厚さ80μmの未延伸ポリプロピレンフィルム(CPP80)と、厚さ40μmのアルミニウム箔(Al40)と、厚さ15μmのナイロンフィルム(ON15)と、PET12とにしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Comparative Example 3]
Other than having made the layer structure of the outer packaging material into 80 μm thick unstretched polypropylene film (CPP80), 40 μm thick aluminum foil (Al40), 15 μm thick nylon film (ON15), and PET12 from the inside. Obtained the outer packaging material and the vacuum heat insulating material in the same manner as in Example 1.
[比較例4]
 外包材の層構成を内側から、厚さ40μmの未延伸ポリプロピレンフィルム(CPP40)と、Al40と、ON25とにしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Comparative Example 4]
An outer packaging material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that the layer structure of the outer packaging material was changed to an unstretched polypropylene film (CPP40) having a thickness of 40 μm, Al40, and ON25 from the inside.
[比較例5]
 外包材の層構成を内側から、厚さ25μmの未延伸ポリプロピレンフィルム(CPP25)と、厚さ25μmのアルミニウム箔(Al25)と、厚さ12μmのナイロンフィルム(ON12)とにしたこと以外は、実施例1と同様にして外包材および真空断熱材を得た。
[Comparative Example 5]
Except that the layer structure of the outer packaging material was changed from the inside to an unstretched polypropylene film (CPP25) with a thickness of 25 μm, an aluminum foil (Al25) with a thickness of 25 μm, and a nylon film (ON12) with a thickness of 12 μm. In the same manner as in Example 1, an outer packaging material and a vacuum heat insulating material were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
(真空断熱材用外包材の引張弾性率の測定)
 実施例1~5および比較例1~5で得られた各外包材について、引張弾性率を上述の方法で測定した。引張弾性率の測定結果を下記表3に示す。
[Evaluation]
(Measurement of tensile modulus of outer packaging material for vacuum insulation)
With respect to the outer packaging materials obtained in Examples 1 to 5 and Comparative Examples 1 to 5, the tensile modulus was measured by the method described above. The measurement results of the tensile modulus are shown in Table 3 below.
(真空断熱材用外包材の灰分の測定)
 実施例1~5および比較例1~5で得られた各外包材について、灰分を上述の方法で測定した。引張弾性率の測定結果を下記表3に示す。
(Measurement of ash content of outer packaging material for vacuum insulation)
The ash content of each outer packaging material obtained in Examples 1 to 5 and Comparative Examples 1 to 5 was measured by the method described above. The measurement results of the tensile modulus are shown in Table 3 below.
(2回屈曲部のガスバリア性の測定)
 実施例1~5および比較例1~5で得られた各真空断熱材の矩形の各辺について、芯材が配置されていない場所(芯材の外周)であり、かつ、対向する外包材同士が熱溶着されていない場所において、対向する外包材を一方向へ折り曲げた。その後、各辺が折り曲げられた真空断熱材の屈曲部を開き、真空断熱材から、2回折り曲げを受けた2回屈曲部を含む部分の外包材を切り出し、外包材の2回屈曲部を透過する水蒸気および酸素についての測定を行った。酸素透過度および水蒸気透過度は上述の方法で測定した。測定結果を下記表3に示す。
(Measurement of gas barrier property of the twice bent part)
About each side of the rectangle of each vacuum heat insulating material obtained in Examples 1 to 5 and Comparative Examples 1 to 5, it is a place where the core material is not disposed (the outer periphery of the core material), and the facing outer packaging materials The opposite outer packaging material was bent in one direction at a place where no heat welding was performed. Then, the bent portion of the vacuum heat insulating material with each side bent is opened, and the outer packaging material including the two-time bent portion subjected to the two-fold bending is cut out from the vacuum heat insulating material, and transmitted through the two-time bent portion of the outer packaging material. Measurements were made for water vapor and oxygen. Oxygen permeability and water vapor permeability were measured by the methods described above. The measurement results are shown in Table 3 below.
(熱伝導率の測定)
 実施例1~5および比較例1~5で得られた各真空断熱材について、加熱試験前後の熱伝導率を測定した。まず、加熱試験前の熱伝導率として上記手順で製造した真空断熱材の熱伝導率を測定した。次に、加熱試験後の熱伝導率として温度100℃の恒温室(湿度は無管理)に500時間入れた後の真空断熱材の熱伝導率を測定した。熱伝導率は上述の方法で測定した。測定結果を下記表3に示す。
(Measurement of thermal conductivity)
With respect to the vacuum heat insulating materials obtained in Examples 1 to 5 and Comparative Examples 1 to 5, the thermal conductivity before and after the heating test was measured. First, the heat conductivity of the vacuum heat insulating material manufactured by the said procedure was measured as heat conductivity before a heating test. Next, as the thermal conductivity after the heating test, the thermal conductivity of the vacuum heat insulating material after being placed in a temperature-controlled room having a temperature of 100 ° C. (humidity is not controlled) for 500 hours was measured. The thermal conductivity was measured by the method described above. The measurement results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(まとめ)
 外包材の引張弾性率が特定の範囲内であり、かつ、外包材の灰分が特定の範囲内である実施例1~5の真空断熱材は、熱伝導率の経時値がいずれも11.5mW/mK以下であり、高温で保管された後も、低い熱伝導率が維持されていることが分かる。なお、ASTM C1484-09においては、真空断熱材として、断熱性能が11.5mW/mK以下であることが規定されている。一方、外包材の灰分が低い比較例1~2の真空断熱材の熱伝導率は、初期値は低いが、経時値が高い。これは、外包材が高温に曝されることによりガスバリアフィルムが劣化し、外包材としてのガスバリア性が低下していることに起因すると推測される。また、外包材の灰分が高い比較例3~5の真空断熱材の熱伝導率は、初期値も、経時値も高い。これは、外包材における金属の割合が高すぎて固くなるため、特に2回屈曲部において外包材にクラック等が発生し、初期の段階で、外包材のガスバリア性が低くなっていることに起因すると推測される。比較例3~5の真空断熱材の2回屈曲部において外包材にクラック等が発生していることは、2回屈曲部における酸素透過度の測定結果からも推測される。なお、実施例1の2回屈曲部における水蒸気透過度が比較的高い値となっているが、真空断熱材には乾燥剤が収納されているため、実施例1程度の水蒸気の透過であれば、真空断熱材としての熱伝導率への影響は極めて少ないことが、熱伝導率の測定結果(初期値および経時値)から分かる。
(Summary)
In the vacuum heat insulating materials of Examples 1 to 5 in which the tensile elastic modulus of the outer packaging material is within a specific range and the ash content of the outer packaging material is within the specific range, the thermal conductivity has a time-dependent value of 11.5 mW. It can be seen that the low thermal conductivity is maintained even after being stored at a high temperature. Note that ASTM C1484-09 stipulates that the heat insulating performance is 11.5 mW / mK or less as a vacuum heat insulating material. On the other hand, the thermal conductivity of the vacuum heat insulating materials of Comparative Examples 1 and 2 in which the ash content of the outer packaging material is low has a low initial value but a high temporal value. This is presumed to be due to the deterioration of the gas barrier film as a result of the outer packaging material being exposed to a high temperature and the gas barrier properties as the outer packaging material being lowered. In addition, the heat conductivity of the vacuum heat insulating materials of Comparative Examples 3 to 5 in which the ash content of the outer packaging material is high has a high initial value and a time-dependent value. This is because the ratio of the metal in the outer packaging material is too high and hardens, so that cracks and the like occur in the outer packaging material particularly at the twice bent portion, and the gas barrier property of the outer packaging material is low at the initial stage. I guess that. The occurrence of cracks or the like in the outer packaging material at the twice bent portions of the vacuum heat insulating materials of Comparative Examples 3 to 5 is also inferred from the measurement results of oxygen permeability at the twice bent portions. In addition, although the water vapor permeability in the 2nd bending part of Example 1 is a comparatively high value, since the desiccant is accommodated in the vacuum heat insulating material, if it is permeation | transmission of the water vapor | steam about Example 1. It can be seen from the measurement results (initial value and time-lapse value) of the thermal conductivity that the influence on the thermal conductivity as a vacuum heat insulating material is extremely small.
 1 … 熱溶着可能なフィルム
 2、2´ … ガスバリアフィルム
 3 … 樹脂基材
 4 … ガスバリア層
 5 … 保護フィルム
 10 … 真空断熱材用外包材
 11 … 芯材
 20 …真空断熱材
DESCRIPTION OF SYMBOLS 1 ... Heat-weldable film 2, 2 '... Gas barrier film 3 ... Resin base material 4 ... Gas barrier layer 5 ... Protective film 10 ... Outer packaging material for vacuum heat insulating material 11 ... Core material 20 ... Vacuum heat insulating material

Claims (13)

  1.  熱溶着可能なフィルムと、ガスバリアフィルムとを有する真空断熱材用外包材であって、
     前記真空断熱材用外包材の引張弾性率が、1.0GPa以上、4.0GPa以下の範囲内であり、
     前記真空断熱材用外包材の灰分が、1.0質量%以上、20質量%以下の範囲内である、真空断熱材用外包材。
    A vacuum heat insulating outer packaging material having a heat-weldable film and a gas barrier film,
    The tensile elastic modulus of the vacuum insulation outer packaging material is in the range of 1.0 GPa or more and 4.0 GPa or less,
    The outer packaging material for vacuum heat insulating materials, wherein the ash content of the outer packaging material for vacuum heat insulating materials is in the range of 1.0 mass% or more and 20 mass% or less.
  2.  前記真空断熱材用外包材が、2枚以上のガスバリアフィルムを有することを特徴とする請求項1に記載の真空断熱材用外包材。 The outer packaging material for vacuum heat insulating materials according to claim 1, wherein the outer packaging material for vacuum heat insulating materials has two or more gas barrier films.
  3.  前記真空断熱材用外包材が、3枚以上のガスバリアフィルムを有することを特徴とする請求項2に記載の真空断熱材用外包材。 The outer packaging material for vacuum heat insulating material according to claim 2, wherein the outer packaging material for vacuum heat insulating material has three or more gas barrier films.
  4.  前記ガスバリアフィルムが、樹脂基材と、前記樹脂基材の片方または両方の面側に配置された、無機化合物を含むガスバリア層とを有することを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The said gas barrier film has a resin base material and the gas barrier layer containing the inorganic compound arrange | positioned at the one or both surface side of the said resin base material, The any one of Claim 1 to 3 characterized by the above-mentioned. The outer packaging material for a vacuum heat insulating material according to one item.
  5.  前記ガスバリア層の前記樹脂基材とは反対の面側に、無機化合物を含むオーバーコート層を有することを特徴とする請求項4に記載の真空断熱材用外包材。 The outer packaging material for a vacuum heat insulating material according to claim 4, further comprising an overcoat layer containing an inorganic compound on a surface of the gas barrier layer opposite to the resin base material.
  6.  前記真空断熱材用外包材の引張弾性率が、2.0GPa以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for vacuum heat insulating materials according to any one of claims 1 to 3, wherein the tensile elastic modulus of the outer packaging material for vacuum heat insulating materials is 2.0 GPa or more.
  7.  前記ガスバリアフィルムが、金属箔を有することを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for a vacuum heat insulating material according to any one of claims 1 to 3, wherein the gas barrier film has a metal foil.
  8.  前記真空断熱材用外包材の引張弾性率が、2.0GPa以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for a vacuum heat insulating material according to any one of claims 1 to 3, wherein the tensile elastic modulus of the outer packaging material for a vacuum heat insulating material is 2.0 GPa or less.
  9.  前記熱溶着可能なフィルムが、無機化合物を含むことを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for a vacuum heat insulating material according to any one of claims 1 to 3, wherein the heat-weldable film contains an inorganic compound.
  10.  前記真空断熱材用外包材が、前記ガスバリアフィルムの前記熱溶着可能なフィルムとは反対の面側に、無機化合物を含む保護フィルムを有することを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for a vacuum heat insulating material has a protective film containing an inorganic compound on the surface of the gas barrier film opposite to the heat-weldable film. The outer packaging material for a vacuum heat insulating material according to one item.
  11.  前記真空断熱材用外包材が、無機化合物を含む接着層を有することを特徴とする請求項1から請求項3のいずれか一項に記載の真空断熱材用外包材。 The outer packaging material for vacuum heat insulating material according to any one of claims 1 to 3, wherein the outer packaging material for vacuum heat insulating material has an adhesive layer containing an inorganic compound.
  12.  芯材と、前記芯材が封入された真空断熱材用外包材とを有する真空断熱材であって、
     前記真空断熱材用外包材は、熱溶着可能なフィルムと、ガスバリアフィルムとを有し、
     前記真空断熱材用外包材の引張弾性率が、1.0GPa以上、4.0GPa以下の範囲内であり、
     前記真空断熱材用外包材の灰分が、前記真空断熱材用外包材に対して1.0質量%以上、20質量%以下の範囲内である、真空断熱材。
    A vacuum heat insulating material having a core material and a vacuum heat insulating material encapsulating the core material,
    The outer packaging material for vacuum heat insulating material has a heat-weldable film and a gas barrier film,
    The tensile elastic modulus of the vacuum insulation outer packaging material is in the range of 1.0 GPa or more and 4.0 GPa or less,
    The vacuum heat insulating material whose ash content of the said outer packaging material for vacuum heat insulating materials exists in the range of 1.0 mass% or more and 20 mass% or less with respect to the said outer packaging material for vacuum heat insulating materials.
  13.  熱絶縁領域を有する物品、および真空断熱材を備える真空断熱材付き物品であって、
     前記真空断熱材は、芯材と、前記芯材が封入された真空断熱材用外包材とを有し、
     前記真空断熱材用外包材は、熱溶着可能なフィルムと、ガスバリアフィルムとを有し、
     前記真空断熱材用外包材の引張弾性率が、1.0GPa以上、4.0GPa以下の範囲内であり、
     前記真空断熱材用外包材の灰分が、前記真空断熱材用外包材に対して1.0質量%以上、20質量%以下の範囲内である、真空断熱材付き物品。
    An article having a thermal insulation region, and an article with a vacuum insulation comprising a vacuum insulation,
    The vacuum heat insulating material has a core material and an outer packaging material for a vacuum heat insulating material in which the core material is enclosed,
    The outer packaging material for vacuum heat insulating material has a heat-weldable film and a gas barrier film,
    The tensile elastic modulus of the vacuum insulation outer packaging material is in the range of 1.0 GPa or more and 4.0 GPa or less,
    The article with a vacuum heat insulating material, wherein the ash content of the vacuum heat insulating material outer packaging material is in the range of 1.0% by mass to 20% by mass with respect to the vacuum heat insulating material outer packaging material.
PCT/JP2017/024955 2016-07-21 2017-07-07 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member WO2018016351A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-143210 2016-07-21
JP2016143210 2016-07-21
JP2016195118A JP6149997B1 (en) 2016-07-21 2016-09-30 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2016-195118 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018016351A1 true WO2018016351A1 (en) 2018-01-25

Family

ID=59081947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024955 WO2018016351A1 (en) 2016-07-21 2017-07-07 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member

Country Status (2)

Country Link
JP (2) JP6149997B1 (en)
WO (1) WO2018016351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431858A4 (en) * 2016-03-18 2019-02-13 Panasonic Intellectual Property Management Co., Ltd. Vacuum thermal insulation material and home appliance, house wall and transport equipment provided with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076197B2 (en) * 2017-11-30 2022-05-27 大王製紙株式会社 Heat-sealing film fusion method, packaging method and packaging
JP7305922B2 (en) * 2018-03-30 2023-07-11 大日本印刷株式会社 Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP2011143693A (en) * 2010-01-18 2011-07-28 Dainippon Printing Co Ltd Laminate for vacuum heat insulating material and vacuum heat insulating material
JP2013103343A (en) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd Covering material for vacuum heat insulating material, and vacuum heat insulating material using the same
JP2015092105A (en) * 2013-09-30 2015-05-14 東洋製罐グループホールディングス株式会社 Vacuum heat insulating material
JP2016028886A (en) * 2014-07-11 2016-03-03 株式会社クラレ Vapor deposition film, packaging material and vacuum heat insulation body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178456A (en) * 2000-12-12 2002-06-26 Nippon Paper Industries Co Ltd Biodegradable multilayer film
JP2006070923A (en) * 2004-08-31 2006-03-16 Hitachi Home & Life Solutions Inc Vacuum heat insulating material and refrigerator
JP2011074934A (en) * 2009-09-29 2011-04-14 Mitsubishi Electric Corp Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
JP2012111188A (en) * 2010-11-26 2012-06-14 Nitto Denko Corp Thermal insulating flame-retardant polymer member
JP2012086438A (en) * 2010-10-19 2012-05-10 Nitto Denko Corp High strength flame retardant polymer member
JP2014062562A (en) * 2012-09-20 2014-04-10 Dainippon Printing Co Ltd Vacuum heat insulation material and manufacturing method of vacuum heat insulation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP2011143693A (en) * 2010-01-18 2011-07-28 Dainippon Printing Co Ltd Laminate for vacuum heat insulating material and vacuum heat insulating material
JP2013103343A (en) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd Covering material for vacuum heat insulating material, and vacuum heat insulating material using the same
JP2015092105A (en) * 2013-09-30 2015-05-14 東洋製罐グループホールディングス株式会社 Vacuum heat insulating material
JP2016028886A (en) * 2014-07-11 2016-03-03 株式会社クラレ Vapor deposition film, packaging material and vacuum heat insulation body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431858A4 (en) * 2016-03-18 2019-02-13 Panasonic Intellectual Property Management Co., Ltd. Vacuum thermal insulation material and home appliance, house wall and transport equipment provided with same

Also Published As

Publication number Publication date
JP6149997B1 (en) 2017-06-21
JP2018021662A (en) 2018-02-08
JP2018021653A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6187718B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
CN108700244B (en) Outer packaging material for vacuum insulation material, and product with vacuum insulation material
JP6471769B2 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
WO2017115851A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
JP2018189163A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
WO2018016351A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
JP2018059532A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6776618B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and equipment with vacuum heat insulating material
JP7238566B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2021183416A (en) Barrier film
JP6245332B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2018059524A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2018189227A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2018189240A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2018135995A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6187719B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6401721B2 (en) Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP2020063844A (en) Outer wrapping material for vacuum heat insulation material, vacuum heat insulation material, and item with vacuum heat insulation material
JP2021001649A (en) Laminate for vacuum heat insulation material and vacuum heat insulation material using the same
JP2018059625A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6369597B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2018189226A (en) External packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP7056181B2 (en) Laminated material for vacuum heat insulating material and vacuum heat insulating material using it
JP2017211001A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830871

Country of ref document: EP

Kind code of ref document: A1