JP2015092105A - Vacuum heat insulating material - Google Patents

Vacuum heat insulating material Download PDF

Info

Publication number
JP2015092105A
JP2015092105A JP2014202553A JP2014202553A JP2015092105A JP 2015092105 A JP2015092105 A JP 2015092105A JP 2014202553 A JP2014202553 A JP 2014202553A JP 2014202553 A JP2014202553 A JP 2014202553A JP 2015092105 A JP2015092105 A JP 2015092105A
Authority
JP
Japan
Prior art keywords
gas barrier
layer
heat insulating
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014202553A
Other languages
Japanese (ja)
Inventor
浩介 植田
Kosuke Ueda
浩介 植田
雄介 小賦
Yusuke Obu
雄介 小賦
佳史子 川合
Kashiko Kawai
佳史子 川合
瞬也 南郷
Shunya Nango
瞬也 南郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2014202553A priority Critical patent/JP2015092105A/en
Publication of JP2015092105A publication Critical patent/JP2015092105A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material of high productivity and economical efficiency, superior in heat insulating performance and gas barrier property, capable of exhibiting excellent heat insulating performance for a long time, and employing an exterior material including a gas barrier material able to be directly laminated with a thermoplastic resin by extrusion coating.SOLUTION: In a vacuum heat insulating material 1 composed of a core material 2 and an exterior material 3 covering the core material, and of which inside is decompressed and sealed, the exterior material is composed of a gas barrier laminate composed of at least a heat welded layer and a gas barrier material, the gas barrier material is composed of at least a gas barrier layer including 1.4 wt.% or less of monovalent metallic element, 5.0-18.0 wt.% of polyvalent metallic element, and 0.01-3.0 wt.% to the total weight of nitrogen and carbon, of a nitrogen element, a deposition layer and a plastic base material. The thermal welded layer is formed by extrusion coating the gas barrier material with the thermoplastic resin.

Description

本発明は、真空断熱材に関するものであり、より詳細には、優れたガスバリア性及び断熱性能を有すると共に生産性にも優れたガスバリア性積層体を外装材として備えて成る真空断熱材に関する。   The present invention relates to a vacuum heat insulating material, and more particularly, to a vacuum heat insulating material comprising a gas barrier laminate having excellent gas barrier properties and heat insulating performance as well as excellent productivity as an exterior material.

多孔質構造の芯材を外装材で被覆した後、内部を減圧し封止して成る真空断熱材は、気体熱伝導率の寄与がほとんどないことから、グラスウール等の断熱材に比して、薄肉で優れた断熱効果を発現可能であり、冷蔵庫や炊飯器等の生活関連や、床暖房や断熱パネル等の住宅関連等、種々の分野で利用されている。   After covering the core material of the porous structure with the exterior material, the vacuum heat insulating material formed by depressurizing and sealing the inside has almost no contribution of gas thermal conductivity, so compared to heat insulating materials such as glass wool, It is thin and can exhibit an excellent heat insulation effect, and is used in various fields such as life-related items such as refrigerators and rice cookers, and housing-related items such as floor heating and heat insulation panels.

このような真空断熱材において、芯材を覆う外装材は、優れた密封性を有することは勿論、真空断熱材内部の減圧状態を維持し得る高いガスバリア性を有することが要求されており、従来は外装材として、アルミニウム箔を含む積層体が広く使用されていた。
しかしながら、アルミニウム箔を含む積層体を外装材として使用する場合には、アルミニウムの熱伝導率が高いため、このアルミニウム箔による熱伝導によって断熱効果が低減されてしまうという問題があった。
In such a vacuum heat insulating material, the exterior material covering the core material is required to have high gas barrier properties capable of maintaining a reduced pressure state inside the vacuum heat insulating material as well as having excellent sealing properties. As an exterior material, a laminate including an aluminum foil has been widely used.
However, when a laminate including an aluminum foil is used as an exterior material, the heat conductivity of aluminum is high, and thus there is a problem that the heat insulation effect is reduced by the heat conduction by the aluminum foil.

アルミニウム箔によるこのような問題を解決するために、金属或いは無機物を蒸着して成る蒸着膜を備えて成る積層体を真空断熱材の外装材とすることが提案されているが(特許文献1,2)、蒸着膜はクラックやピンホール等の発生によりガスバリア性が低下するという問題がある。
このような観点から、真空断熱材の外装材として、蒸着層と、ポリアルコール系ポリマーとポリアクリル酸系ポリマーとの混合物からなる、ガスバリア性を有するポリアクリル酸系樹脂層と熱溶着層とを有するラミネートフィルムを用いることが提案されている(特許文献3,4)。
上記外装材に使用されるポリアクリル酸系樹脂層は、ポリアルコール系ポリマーとポリアクリル酸系ポリマーとの混合物溶液を、蒸着層の上に流延して形成した乾燥塗膜を100℃以上の高温で熱処理した後、金属イオンが含まれている水中に浸漬することにより、エステル結合されなかったポリアクリル酸系ポリマーの遊離カルボン酸同士をイオン架橋することにより形成され、優れたガスバリア性を有することが記載されている。
In order to solve such problems caused by aluminum foil, it has been proposed to use a laminate comprising a deposited film formed by depositing a metal or an inorganic substance as an exterior material for a vacuum heat insulating material (Patent Document 1, 2) The deposited film has a problem that the gas barrier property is lowered due to the occurrence of cracks, pinholes and the like.
From such a viewpoint, as a vacuum heat insulating material exterior material, a vapor deposition layer, a polyacrylic acid resin layer having a gas barrier property, and a heat welding layer, which is a mixture of a polyalcohol polymer and a polyacrylic acid polymer. It has been proposed to use a laminate film having the same (Patent Documents 3 and 4).
The polyacrylic acid-based resin layer used for the exterior material is a dry coating film formed by casting a mixture solution of a polyalcohol-based polymer and a polyacrylic acid-based polymer on a vapor deposition layer at 100 ° C. or higher. After heat treatment at high temperature, it is formed by ionic crosslinking of free carboxylic acids of polyacrylic acid polymers that are not ester-bonded by immersing them in water containing metal ions, and has excellent gas barrier properties It is described.

特開2004−172493号公報JP 2004-172493 A 特開2004−130654号公報JP 2004-130654 A 特開2005−337405号公報JP 2005-337405 A 特許第3685206号Japanese Patent No. 3685206

しかしながら、上述したポリアクリル酸系樹脂は、100℃以上の高温或いは長時間の加熱により高度に架橋させることが必要であるため、蒸着層への影響が大きいという問題がある。またガスバリア性を向上させるために、金属イオンとのイオン架橋に際して長時間の浸漬処理が必要であることから、生産性に劣ると共に、多大なエネルギーや水を消費する等の問題もある。更に可撓性の点でも十分満足するものではなく、蒸着層の保護を十分行うことができない。
またこのようなガスバリア材に押出コートにより他の熱可塑性樹脂から成る層を積層する場合には、ドライラミネートによりガスバリア材に予め他の基材を積層してガスバリア材を保護する必要があることから、工程数が多く、生産性及び経済性の点で未だ十分満足するものではなかった。またドライラミネートには接着性樹脂が使用され、この接着性樹脂の溶剤がガスバリア性積層体に残留するおそれもあり、残留溶剤は真空断熱材内部の減圧状態を損なう可能性もあるため、ガスバリア性積層体の製造に際してドライラミネートの回数を低減させることが望まれている。
従って本発明の目的は、断熱性能及びガスバリア性に優れ、長期にわたって優れた断熱性能を発現可能であると共に、押出コートにより熱可塑性樹脂を直接積層可能なガスバリア材を含有する外装材を用いた生産性及び経済性に優れた真空断熱材を提供することである。
本発明の他の目的は、高温での加熱の必要がなく、生産性に優れた外装材を使用した真空断熱材を提供することである。
However, since the polyacrylic acid-based resin described above needs to be highly crosslinked by heating at a high temperature of 100 ° C. or higher or for a long time, there is a problem that the influence on the vapor deposition layer is large. In addition, in order to improve the gas barrier property, a long immersion treatment is required for ionic crosslinking with metal ions, which results in inferior productivity and problems such as consuming a great deal of energy and water. Furthermore, it is not fully satisfactory in terms of flexibility, and the deposited layer cannot be sufficiently protected.
In addition, when a layer made of another thermoplastic resin is laminated on such a gas barrier material by extrusion coating, it is necessary to previously laminate another base material on the gas barrier material by dry lamination to protect the gas barrier material. However, the number of processes was large, and it was not yet satisfactory in terms of productivity and economy. In addition, an adhesive resin is used for dry lamination, and the solvent of this adhesive resin may remain in the gas barrier laminate, and the residual solvent may impair the reduced pressure inside the vacuum heat insulating material. It is desired to reduce the number of times of dry lamination when manufacturing a laminated body.
Accordingly, the object of the present invention is to produce using an exterior material containing a gas barrier material that has excellent heat insulation performance and gas barrier properties, can exhibit excellent heat insulation performance over a long period of time, and can be directly laminated with a thermoplastic resin by extrusion coating. It is providing the vacuum heat insulating material excellent in property and economy.
Another object of the present invention is to provide a vacuum heat insulating material that uses an exterior material that does not require heating at a high temperature and has excellent productivity.

本発明によれば、芯材と、該芯材を被覆する外装材とから成り、内部を減圧密封した真空断熱材において、前記外装材が、少なくとも熱溶着層及びガスバリア材から成るガスバリア性積層体から成り、前記ガスバリア材が、ポリカルボン酸系ポリマーから成り、1.4重量%以下の1価の金属元素と、5.0乃至18.0重量%の多価金属元素と、窒素、炭素の総重量に対して0.01乃至3.0重量%の窒素元素を含むガスバリア層、蒸着層、及びプラスチック基材から少なくとも成り、前記熱溶着層が、熱可塑性樹脂を前記ガスバリア材上に押出コートすることにより形成されていることを特徴とする真空断熱材が提供される。   According to the present invention, a gas barrier laminate comprising a core material and an exterior material covering the core material, wherein the exterior material comprises at least a heat-welded layer and a gas barrier material. The gas barrier material is made of a polycarboxylic acid-based polymer, 1.4% by weight or less of a monovalent metal element, 5.0 to 18.0% by weight of a polyvalent metal element, nitrogen, carbon It consists at least of a gas barrier layer containing 0.01 to 3.0% by weight of nitrogen element with respect to the total weight, a vapor deposition layer, and a plastic substrate, and the heat welding layer is formed by extrusion coating a thermoplastic resin on the gas barrier material. The vacuum heat insulating material characterized by being formed is provided.

本発明の真空断熱材においては、
1.前記ガスバリア層が、蒸着層が形成されたプラスチック基材上に形成されていること、
2.前記カルボン酸系ポリマーがポリ(メタ)アクリル酸であること、
3.前記カルボン酸系ポリマーがカルボキシル基に対するモル比で多くとも4.5%以下の範囲で部分中和されていること、
4.前記熱可塑性樹脂が、エチレン−(メタ)アクリル酸共重合体又はアイオノマー樹脂であること、
5.前記熱可塑性樹脂が、シングルサイト系触媒を用いて重合したポリオレフィンまたは酸化防止剤無添加のポリオレフィン樹脂またはカルボキシル基または水酸基と化学結合を形成可能な反応基を含有するポリオレフィン樹脂であること、
6.前記ポリオレフィン樹脂が、密度0.950g/cm以下であること、
7.前記ポリオレフィン樹脂が、MFR7.0g/10分以上であること、
8.ガスバリア層が、昇温速度10℃/分での熱重量分析(TGA)測定における200℃から320℃までの重量減少分が10%以下であり且つ20Hzでの動的粘弾性(DMS)測定における200℃のtanδから50℃のtanδを引いたときの差が0.010以上であること、
9.前記1価の金属元素が、ナトリウム又はカリウムであること、
10.前記多価金属元素が、カルシウム、マグネシウム、亜鉛、鉄の少なくとも1種であること、
11.前記ガスバリア層の表層における炭素、酸素及び窒素の総量に対する窒素の含有量が1atm%以上であること、
12.前記ガスバリア材が、蒸着層が形成されたプラスチック基材の該蒸着層又はプラスチック基材の一方の表面に、1分子中に少なくとも2個のイソシアネート基を有するイソシアネート化合物を含有するアンダーコート層が形成され、該アンダーコート層上にガスバリア層が形成されていること、
13.前記ガスバリア層又はアンダーコート層の少なくとも一方が、蒸着層と隣接すること、
14.ガスバリア材が、蒸着層を2層有し、該2つの蒸着層の間にガスバリア層及びアンダーコート層が形成されていること、
15.ガスバリア層及びアンダーコート層の両方が、蒸着層に隣接すること、
16.前記アンダーコート層中に、多価金属のアルカリ性化合物を含有すること、
17.前記多価金属のアルカリ性化合物が、カルシウム、マグネシウム、亜鉛の何れかの炭酸塩、水酸化物の少なくとも1種類から成ること、
18.イソシアネート化合物が、直鎖状の脂肪族イソシアネート化合物と骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物の組み合わせであること、
19.前記脂肪族イソシアネート化合物が、イソシアヌレート構造を有すること、
20.前記アンダーコート層のガスバリア層側に、多価金属のアルカリ性化合物を含まない領域(x)が形成されており、該領域(x)の窒素の含有量が領域(x)以外のアンダーコート層の窒素の含有量よりも多いこと、が好適である。
In the vacuum heat insulating material of the present invention,
1. The gas barrier layer is formed on a plastic substrate on which a vapor deposition layer is formed;
2. The carboxylic acid polymer is poly (meth) acrylic acid,
3. The carboxylic acid polymer is partially neutralized in a molar ratio to the carboxyl group of at most 4.5%,
4). The thermoplastic resin is an ethylene- (meth) acrylic acid copolymer or an ionomer resin;
5. The thermoplastic resin is a polyolefin polymerized using a single-site catalyst, an antioxidant-free polyolefin resin, or a polyolefin resin containing a reactive group capable of forming a chemical bond with a carboxyl group or a hydroxyl group;
6). The polyolefin resin has a density of 0.950 g / cm 3 or less,
7). The polyolefin resin is MFR 7.0 g / 10 min or more,
8). The gas barrier layer has a weight loss from 200 ° C. to 320 ° C. of 10% or less in thermogravimetric analysis (TGA) measurement at a heating rate of 10 ° C./min, and in dynamic viscoelasticity (DMS) measurement at 20 Hz. The difference when subtracting tan δ at 50 ° C. from tan δ at 200 ° C. is 0.010 or more,
9. The monovalent metal element is sodium or potassium;
10. The polyvalent metal element is at least one of calcium, magnesium, zinc and iron;
11. The nitrogen content relative to the total amount of carbon, oxygen and nitrogen in the surface layer of the gas barrier layer is 1 atm% or more;
12 The gas barrier material forms an undercoat layer containing an isocyanate compound having at least two isocyanate groups in one molecule on one surface of the vapor-deposited layer or the plastic substrate of the plastic substrate on which the vapor-deposited layer is formed. A gas barrier layer is formed on the undercoat layer,
13. At least one of the gas barrier layer or the undercoat layer is adjacent to the vapor deposition layer;
14 The gas barrier material has two vapor deposition layers, and a gas barrier layer and an undercoat layer are formed between the two vapor deposition layers;
15. Both the gas barrier layer and the undercoat layer are adjacent to the deposited layer;
16. Containing an alkaline compound of a polyvalent metal in the undercoat layer,
17. The alkaline compound of the polyvalent metal is composed of at least one of calcium, magnesium, zinc carbonate and hydroxide;
18. The isocyanate compound is a combination of a linear aliphatic isocyanate compound and an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton;
19. The aliphatic isocyanate compound has an isocyanurate structure;
20. A region (x) not containing an alkali compound of a polyvalent metal is formed on the gas barrier layer side of the undercoat layer, and the content of nitrogen in the region (x) of the undercoat layer other than the region (x) More than the nitrogen content is preferred.

本発明の真空断熱材は、優れたガスバリア性及び可撓性を有するガスバリア層が積層されてなるガスバリア性積層体を外装材として用いているため、長期にわたって優れた断熱効果を発現できる。しかも従来の真空断熱材の外装材において、ガスバリア性及び輻射熱を遮断する能力(反射率)を確保するために使用されていたアルミニウム箔等を使用する必要がないため、アルミニウム箔からの熱橋(ヒートブリッジ)による断熱効果低減のおそれがない。   Since the vacuum heat insulating material of the present invention uses a gas barrier laminate in which gas barrier layers having excellent gas barrier properties and flexibility are laminated as an exterior material, it can exhibit an excellent heat insulating effect over a long period of time. Moreover, in the conventional vacuum insulation material, it is not necessary to use an aluminum foil or the like that has been used to secure gas barrier properties and ability to block radiant heat (reflectance). There is no fear of reducing the heat insulation effect due to the heat bridge.

またこのガスバリア性積層体は、熱可塑性樹脂を押出ラミネートによりガスバリア層上に直接積層できることから、従来のポリカルボン酸系ポリマーから成るガスバリア材のように、ガスバリア層への押出ラミネートに際して予めドライラミネートにより他の基材を積層してガスバリア材を保護する必要がなく、生産性及び経済性に優れていると共に、ラミネートに際して溶剤を使用する必要がないことから、ガスバリア性積層体に接着層に起因する残留溶剤のおそれもなく、残留溶剤は真空断熱材内部の減圧状態を損なわせうるため、その点でも本発明の真空断熱材は長期にわたって優れた断熱効果を発現できる。
すなわち本発明の真空断熱材に用いられるガスバリア性積層体のガスバリア層は、押出コートによるラミネートにおける加工温度範囲において熱分解を起こさない耐熱分解性を有すると共に、この加工温度範囲において未架橋部分が存在することから、熱エネルギーによる一定の分子運動性が確保され、ガスバリア層内に生じる応力を緩和することが可能であり、これにより耐クラック性が確保され、直接ガスバリア層に熱可塑性樹脂を押出コートすることが可能になるのである。
In addition, since this gas barrier laminate can directly laminate a thermoplastic resin on the gas barrier layer by extrusion laminating, it is previously dry-laminated by extrusion laminating to the gas barrier layer like a conventional gas barrier material made of a polycarboxylic acid polymer. It is not necessary to protect the gas barrier material by laminating other base materials, and it is excellent in productivity and economy, and since it is not necessary to use a solvent for the lamination, the gas barrier laminate is caused by the adhesive layer. There is no fear of residual solvent, and the residual solvent can impair the reduced pressure inside the vacuum heat insulating material. Therefore, the vacuum heat insulating material of the present invention can exhibit an excellent heat insulating effect for a long time.
That is, the gas barrier layer of the gas barrier laminate used for the vacuum heat insulating material of the present invention has heat decomposition resistance that does not cause thermal decomposition in the processing temperature range in the laminate by extrusion coating, and there is an uncrosslinked portion in this processing temperature range. Therefore, it is possible to ensure a certain molecular mobility due to thermal energy and relieve stress generated in the gas barrier layer, thereby ensuring crack resistance, and directly applying a thermoplastic resin to the gas barrier layer by extrusion coating It becomes possible to do.

上記加工温度範囲における耐熱分解性は、熱重量分析(TGA)測定における重量減少により表わすことが可能であり、一方上記加工温度範囲における耐クラック性は、動的粘弾性(DMS)測定におけるtanδの差によって表わすことが可能であることから、本発明においては、ガスバリア材のポリカルボン酸系ポリマーから成るガスバリア層が、層昇温速度10℃/での熱重量分析(TGA)測定における200℃から320℃までの重量減少分が10%以下、特に3乃至9%の範囲にあり、且つ20Hzでの動的粘弾性(DMS)測定における200℃のtanδから50℃のtanδを引いたときの差が0.010以上、特に0.011乃至0.060の範囲にあることが好ましく、これによりガスバリア層上に直接熱可塑性樹脂をより好適に押出コートすることが可能になる。   Thermal decomposition resistance in the processing temperature range can be expressed by weight loss in thermogravimetric analysis (TGA) measurement, while crack resistance in the processing temperature range is tan δ in dynamic viscoelasticity (DMS) measurement. In the present invention, the gas barrier layer composed of the polycarboxylic acid polymer of the gas barrier material can be expressed by a difference from 200 ° C. in thermogravimetric analysis (TGA) measurement at a layer heating rate of 10 ° C. /. Difference in weight loss up to 320 ° C. of 10% or less, especially 3 to 9%, and subtraction of tan δ at 50 ° C. from tan δ at 200 ° C. in dynamic viscoelasticity (DMS) measurement at 20 Hz Is preferably 0.010 or more, and particularly preferably in the range of 0.011 to 0.060, so that the thermoplastic resin is directly applied on the gas barrier layer. Ri becomes possible to suitably extrusion coating.

本発明において外装材に用いるガスバリア性積層体においては、ガスバリア層へ直接押し出しラミネートする熱可塑性樹脂として、ポリオレフィン樹脂、エチレン−(メタ)アクリル共重合体、アイオノマー樹脂を用いることにより、前記ガスバリア層への押出しに際して、ガスバリア層の熱分解を生じることがなく、ガスバリア層に対して優れた接着性を発現でき、層間剥離が防止されていると共に、ガスバリア性積層体が屈曲等の応力を受けた場合にも、ガスバリア層にクラックが発生することを抑制でき、安定したガスバリア性を発現することが可能になる。   In the gas barrier laminate used for the exterior material in the present invention, a polyolefin resin, an ethylene- (meth) acrylic copolymer, and an ionomer resin are used as the thermoplastic resin to be directly extruded and laminated to the gas barrier layer. When extruding the gas barrier layer, it does not cause thermal decomposition of the gas barrier layer, can exhibit excellent adhesion to the gas barrier layer, prevents delamination, and the gas barrier laminate is subjected to stress such as bending In addition, the occurrence of cracks in the gas barrier layer can be suppressed, and stable gas barrier properties can be exhibited.

またこのガスバリア材は、ポリカルボン酸系ポリマーを、架橋剤を用いて共有結合による架橋をしなくてもガスバリア性や可撓性や耐水性に優れており、架橋反応に必要な熱処理工程を簡略化することができる。
更に多価金属含有組成物を含有するアンダーコート層上にガスバリア層を形成することにより、浸漬処理や噴霧処理を行わなくても、多価金属によるイオン架橋率を高めることができるので、優れたガスバリア性を有する外装材を生産性よく作成することが可能になる。またこのアンダーコート層は、1分子中に少なくとも2個のイソシアネート基を有するイソシアネート化合物を含有することから、ガスバリア層/アンダーコート層、アンダーコート層/基材、の各界面付近にイソシアネート化合物が存在し、ポリカルボン酸系ポリマーのカルボキシル基やプラスチック基材に含まれる水酸基等の官能基と界面反応、或いは界面での極性基間同士による電気的な凝集力が発生し、層間接着性を更に向上することが可能になる。
In addition, this gas barrier material has excellent gas barrier properties, flexibility and water resistance even if the polycarboxylic acid polymer is not cross-linked by a covalent bond using a cross-linking agent, simplifying the heat treatment process required for the cross-linking reaction. Can be
Furthermore, by forming a gas barrier layer on the undercoat layer containing the polyvalent metal-containing composition, it is possible to increase the ionic crosslinking rate by the polyvalent metal without performing immersion treatment or spray treatment. It becomes possible to produce an exterior material having gas barrier properties with high productivity. Since this undercoat layer contains an isocyanate compound having at least two isocyanate groups in one molecule, there is an isocyanate compound in the vicinity of each interface of the gas barrier layer / undercoat layer and undercoat layer / substrate. In addition, interfacial reactions with functional groups such as carboxyl groups of polycarboxylic acid polymers and hydroxyl groups contained in plastic substrates, or electrical cohesion between polar groups at the interface occur, further improving interlayer adhesion It becomes possible to do.

本発明の真空断熱材の一例の断面構造を示す図である。It is a figure which shows the cross-section of an example of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材に用いるガスバリア材の一例の積層構造を示す図である。It is a figure which shows the laminated structure of an example of the gas barrier material used for the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材に用いるガスバリア材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of another example of the gas barrier material used for the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の一例の積層構造を示す図である。It is a figure which shows the laminated structure of an example of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention. 本発明の真空断熱材の外装材の他の一例の積層構造を示す図である。It is a figure which shows the laminated structure of other examples of the exterior material of the vacuum heat insulating material of this invention.

真空断熱材1は、図1に示すように、芯材2と、この芯材2を被覆する外装材3とから成り、この外装材をヒートシールにより溶着して密封し、内部の減圧状態を維持してなるものであり、本発明においては、用いる外装材として、前述した特定のガスバリア材を有するガスバリア性積層体を用いることが重要な特徴である。
すなわち、ポリカルボン酸系ポリマーを多価金属によりイオン架橋してなるガスバリア材は従来より公知であるが、本発明においてはこのようなガスバリア材において、1価の金属元素、多価金属元素、及び窒素の含有量を所定の範囲に制御することによって、優れたガスバリア性、可撓性、耐水性、及び屈曲加工後の耐水性が得られることを見出し、かかるガスバリア材を真空断熱材の外装材に用いることにより、上述した効果を発現できる
ことを見出した。
As shown in FIG. 1, the vacuum heat insulating material 1 is composed of a core material 2 and an exterior material 3 that covers the core material 2. The exterior material is welded and sealed by heat sealing, and the internal decompressed state is reduced. In the present invention, it is an important feature that the gas barrier laminate having the specific gas barrier material described above is used as the exterior material to be used.
That is, a gas barrier material obtained by ion-crosslinking a polycarboxylic acid polymer with a polyvalent metal is conventionally known. In the present invention, in such a gas barrier material, a monovalent metal element, a polyvalent metal element, and It has been found that by controlling the nitrogen content within a predetermined range, excellent gas barrier properties, flexibility, water resistance, and water resistance after bending can be obtained, and such a gas barrier material is used as an exterior material for a vacuum heat insulating material. It has been found that the above-described effects can be exhibited by using in the above.

尚、本発明におけるガスバリア材におけるガスバリア層中の1価の金属元素及び多価金属元素はそれぞれ、ポリカルボン酸系ポリマーを部分的に中和するために用いられる1価金属含有化合物、ポリカルボン酸系ポリマーのカルボキシル基間をイオン架橋するために用いられる多価金属のアルカリ性化合物に由来し、また窒素元素はイソシアネート化合物に由来するものであり、これらの元素の含有量が上記範囲にあることにより、上述した作用効果が発現される。
これらの金属元素の含有量は、ガスバリア層を灰化させた後、ICP質量分析装置を用いることにより測定することができ、またガスバリア層中の窒素元素は、燃焼法によって測定することができ、またガスバリア層の表層における炭素、酸素及び窒素の原子の含有量は、XPS(X‐ray Photo-electronic Spectroscopy:X線光電子分光法)による表面分析によって測定することができる。
In addition, the monovalent metal element and the polyvalent metal element in the gas barrier layer in the gas barrier material of the present invention are respectively a monovalent metal-containing compound and a polycarboxylic acid used for partially neutralizing the polycarboxylic acid-based polymer. Derived from an alkaline compound of a polyvalent metal used for ionic crosslinking between carboxyl groups of a polymer, and the nitrogen element is derived from an isocyanate compound, and the content of these elements is in the above range. The above-described effects are exhibited.
The content of these metal elements can be measured by using an ICP mass spectrometer after ashing the gas barrier layer, and the nitrogen element in the gas barrier layer can be measured by a combustion method, Further, the content of carbon, oxygen and nitrogen atoms in the surface layer of the gas barrier layer can be measured by surface analysis using XPS (X-ray Photo-electronic Spectroscopy).

(ガスバリア材)
本発明の真空断熱材の外装材に使用されるガスバリア材は、ポリカルボン酸系ポリマーから成り、1.4重量%以下の1価の金属元素と、少なくとも5.0乃至18.0重量%の多価金属元素と、窒素、炭素の総重量に対して0.01乃至3.0重量%の窒素元素を含むガスバリア層が、蒸着層が形成されたプラスチック基材上、又はアンダーコート層を介して蒸着層が形成されたプラスチック基材上に形成されたガスバリア材として提供されるが、特に図2に示すように、ガスバリア層11がアンダーコート層12を介して蒸着層13aが形成されたプラスチック基材13b上に形成されてなるガスバリア材を好適に使用することができる。
また、ガスバリア材は蒸着層が形成されたプラスチック基材上、又はアンダーコート層を介して蒸着層が形成されたプラスチック基材上に形成されたガスバリア層上にさらに蒸着層を形成することでさらに好適に使用することができるし、基材に蒸着層が形成されていないプラスチック基材を用い、そのプラスチック基材上又はアンダーコート層を介したプラスチック基材上に、形成されたガスバリア層上に蒸着層を形成してもよい。
(Gas barrier material)
The gas barrier material used for the exterior material of the vacuum heat insulating material of the present invention is composed of a polycarboxylic acid polymer, 1.4% by weight or less of a monovalent metal element, and at least 5.0 to 18.0% by weight. A gas barrier layer containing a polyvalent metal element and nitrogen element of 0.01 to 3.0% by weight with respect to the total weight of nitrogen and carbon is formed on a plastic substrate on which a vapor deposition layer is formed, or through an undercoat layer. 2 is provided as a gas barrier material formed on a plastic substrate on which a vapor-deposited layer is formed. In particular, as shown in FIG. 2, the gas barrier layer 11 is a plastic in which a vapor-deposited layer 13a is formed via an undercoat layer 12. A gas barrier material formed on the base material 13b can be suitably used.
Further, the gas barrier material is further formed by forming a vapor deposition layer on the plastic substrate on which the vapor deposition layer is formed, or on the gas barrier layer formed on the plastic substrate on which the vapor deposition layer is formed through the undercoat layer. It can be preferably used, and a plastic base material on which a vapor-deposited layer is not formed is used, on the plastic base material or on the plastic base material through the undercoat layer, on the formed gas barrier layer A vapor deposition layer may be formed.

本発明に用いるガスバリア材は、ポリカルボン酸系ポリマーを主構成成分とし、このポリカルボン酸系ポリマーのカルボキシル基を多価金属でイオン架橋してなると共に、イソシアネート化合物に由来する窒素元素の存在により、優れたガスバリア性、可撓性及び耐水性、更には屈曲加工後の耐水性や耐ブロッキング性を有するガスバリア材として作成されるものであるが、ガスバリア層中の1価の金属元素、多価金属元素及び窒素元素の含有量が上記範囲内にあることが重要である。
このような特徴を有するガスバリア層は、ポリカルボン酸系ポリマー、該ポリマーの部分中和を行う場合に必要な1価の金属元素を有する塩基性化合物及びイソシアネート化合物を含有するガスバリア層形成用組成物を、蒸着層を有するプラスチック基材上に施すことにより形成され、このガスバリア層中のカルボキシル基を多価金属でイオン架橋することによりガスバリア材とすることができる。
また、ガスバリア層とアンダーコート層との組み合わせから成るガスバリア材においては、イソシアネート化合物及び多価金属のアルカリ性化合物を含有するアンダーコート層上にポリカルボン酸系ポリマーを含有する溶液を塗布して層を形成することにより、アンダーコート層から多価金属イオン及びイソシアネート化合物をポリカルボン酸系ポリマーに効率よく供給し、アンダーコート層上にガスバリア層、即ちアンダーコート層を介してプラスチック基材上にガスバリア層を形成して成るガスバリア材とすることができる。
The gas barrier material used in the present invention comprises a polycarboxylic acid polymer as a main component, and the carboxyl group of this polycarboxylic acid polymer is ionically cross-linked with a polyvalent metal, and also due to the presence of a nitrogen element derived from an isocyanate compound. It is created as a gas barrier material having excellent gas barrier properties, flexibility and water resistance, and further water resistance and blocking resistance after bending processing. It is important that the contents of the metal element and the nitrogen element are within the above ranges.
A gas barrier layer having such characteristics is a composition for forming a gas barrier layer, which comprises a polycarboxylic acid polymer, a basic compound having a monovalent metal element necessary for partial neutralization of the polymer, and an isocyanate compound. Is applied to a plastic substrate having a vapor deposition layer, and the carboxyl group in the gas barrier layer can be ion-crosslinked with a polyvalent metal to form a gas barrier material.
Further, in a gas barrier material comprising a combination of a gas barrier layer and an undercoat layer, a layer is formed by applying a solution containing a polycarboxylic acid polymer on an undercoat layer containing an isocyanate compound and an alkali compound of a polyvalent metal. By forming, a polyvalent metal ion and an isocyanate compound are efficiently supplied from the undercoat layer to the polycarboxylic acid polymer, and the gas barrier layer on the undercoat layer, that is, the gas barrier layer on the plastic substrate through the undercoat layer. It can be set as the gas barrier material formed.

[ポリカルボン酸系ポリマー]
ガスバリア層を構成するポリカルボン酸系ポリマーとしては、上述した耐水性という作用効果を発現する上では1価の金属元素による部分中和を下記の範囲で行うことが可能である。1価金属元素によって部分中和される量が、特にカルボキシル基に対するモル比で4.5%以下、より好ましくは4.0%以下の範囲で部分中和されているポリカルボン酸系ポリマーが、ガスバリア材中の1価の金属元素の量を上記範囲に制御する上で望ましい。上記範囲よりも中和量が多いと、上記範囲にある場合に比して屈曲加工後の耐水性及び高温高湿度条件下でのガスバリア性に劣るようになる。
1価の金属としては、特にナトリウム、カリウムが好適であり、1価金属化合物としてこれらの水酸化物を用いてポリカルボン酸系ポリマーを中和することが好適である。
[Polycarboxylic acid polymer]
As the polycarboxylic acid polymer constituting the gas barrier layer, partial neutralization with a monovalent metal element can be performed within the following range in order to exhibit the above-described effect of water resistance. A polycarboxylic acid-based polymer that is partially neutralized in an amount of 4.5% or less, more preferably 4.0% or less, particularly in a molar ratio with respect to a carboxyl group, is partially neutralized by a monovalent metal element. It is desirable for controlling the amount of the monovalent metal element in the gas barrier material within the above range. When the neutralization amount is larger than the above range, the water resistance after bending and the gas barrier property under high temperature and high humidity conditions are inferior to those in the above range.
As the monovalent metal, sodium and potassium are particularly preferable, and it is preferable to neutralize the polycarboxylic acid polymer using these hydroxides as the monovalent metal compound.

ポリカルボン酸系ポリマーとしては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリイタコン酸、アクリル酸−メタクリル酸コポリマー等のカルボキシル基を有するモノマーの単独重合体又は共重合体を挙げることができ、特に、ポリアクリル酸、ポリメタクリル酸が好ましい。
ポリカルボン酸系ポリマーの「重量平均分子量」は、特に限定されないが、2000乃至5,000,000、特に10,000乃至1,000,000の範囲にあることが好ましい。
尚、上記「重量平均分子量」の測定は、分離カラムとして「TSK G4000PWXL」、「TSK G3000PWXL」(東ソー株式会社製)の2本を用いて、溶離液として50mmolリン酸水溶液を用い40℃及び流速1.0ml/分において、クロマトグラムと標準ポリカルボン酸系ポリマーの検量線から求めた。
Examples of the polycarboxylic acid-based polymer include homopolymers or copolymers of monomers having a carboxyl group, such as polyacrylic acid, polymethacrylic acid, polymaleic acid, polyitaconic acid, and acrylic acid-methacrylic acid copolymer. Polyacrylic acid and polymethacrylic acid are preferred.
The “weight average molecular weight” of the polycarboxylic acid polymer is not particularly limited, but is preferably in the range of 2000 to 5,000,000, particularly 10,000 to 1,000,000.
In addition, the measurement of the above “weight average molecular weight” was carried out by using two columns, “TSK G4000PWXL” and “TSK G3000PWXL” (manufactured by Tosoh Corporation) as separation columns, using a 50 mmol phosphoric acid aqueous solution as an eluent, and a flow rate of 40 ° C. It was determined from a calibration curve of a standard polycarboxylic acid polymer at 1.0 ml / min.

[イソシアネート化合物]
ガスバリア層にイソシアネート化合物が含有されていることによって、ガスバリア層に上述した範囲の窒素元素を存在させることができる。
イソシアネート化合物としては、後述するアンダーコート層に用いるイソシアネート系硬化剤として例示するイソシアネート化合物の中から適宜選択して使用することができるが、イソシアネート化合物の中でも、ポリカルボン酸系ポリマーと相溶性に乏しいもの、例えばイソホロンジイソシアネート及びその誘導体等を用いることが好適である。これにより、イソシアネート化合物をガスバリア材表面に効率的にブリードアウトさせて、ガスバリア材表面にイソシアネート化合物に由来する化学結合を存在させることができ、屈曲加工後の耐水性をガスバリア層に付与することが可能になる。
[Isocyanate compound]
By containing an isocyanate compound in the gas barrier layer, nitrogen elements in the above-described range can be present in the gas barrier layer.
As the isocyanate compound, it can be used by appropriately selecting from the isocyanate compounds exemplified as the isocyanate curing agent used in the undercoat layer described later, but among the isocyanate compounds, the compatibility with the polycarboxylic acid polymer is poor. It is preferable to use those such as isophorone diisocyanate and derivatives thereof. As a result, the isocyanate compound can be effectively bleed out on the surface of the gas barrier material to allow chemical bonds derived from the isocyanate compound to exist on the surface of the gas barrier material, and water resistance after bending can be imparted to the gas barrier layer. It becomes possible.

[アンダーコート層を含有しないガスバリア材]
アンダーコート層を含有しないガスバリア材においては、ポリカルボン酸系ポリマー、該ポリマーに部分中和を施す場合には1価の金属元素を有する塩基性化合物、及びイソシアネート化合物を含有するガスバリア層形成用組成物を調製し、このガスバリア層形成用組成物から成るフィルム、シート或いは塗膜を、多価金属のアルカリ性化合物含有組成物によってポリカルボン酸系ポリマーのカルボキシル基をイオン架橋することによって形成することができる。
ガスバリア層形成用組成物は、ポリカルボン酸系ポリマー及びイソシアネート化合物を水を含む溶媒に溶解させてもよいし、或いはこれらの成分の水含有溶液を混合することにより調製することができ、ポリカルボン酸系ポリマーが解離している溶液である。
ポリカルボン酸系ポリマーを溶解する溶媒としては、水だけでもよいが、メタノール、エタノール、イソプロパノール等のアルコール、2−ブタノン、アセトン等のケトン、トルエン等の芳香族系溶剤と水との混合溶媒であってもよく、特に水よりも低沸点の溶剤を水と組み合わせて用いることができる。
イソシアネート化合物をブリードアウトさせる観点からは、有機溶剤を水100重量部に対して10乃至400重量部の量で配合することが好ましい。
[Gas barrier material containing no undercoat layer]
In a gas barrier material that does not contain an undercoat layer, a composition for forming a gas barrier layer containing a polycarboxylic acid polymer, a basic compound having a monovalent metal element when the polymer is partially neutralized, and an isocyanate compound A film, sheet or coating film comprising the composition for forming a gas barrier layer is formed by ion-crosslinking carboxyl groups of a polycarboxylic acid polymer with an alkaline compound-containing composition of a polyvalent metal. it can.
The composition for forming a gas barrier layer may be prepared by dissolving a polycarboxylic acid polymer and an isocyanate compound in a solvent containing water, or by mixing a water-containing solution of these components. It is a solution in which the acid polymer is dissociated.
The solvent for dissolving the polycarboxylic acid-based polymer may be only water, but may be a mixed solvent of water such as alcohol such as methanol, ethanol or isopropanol, ketone such as 2-butanone or acetone, or aromatic solvent such as toluene and water. In particular, a solvent having a boiling point lower than that of water can be used in combination with water.
From the viewpoint of bleeding out the isocyanate compound, the organic solvent is preferably blended in an amount of 10 to 400 parts by weight with respect to 100 parts by weight of water.

また上記成分以外にも、無機分散体を含有することもできる。このような無機分散体は、外部からの水分をブロックし、ガスバリア材を保護する機能を有し、ガスバリア性や耐水性を更に向上させることができる。
かかる無機分散体は、球状、針状、層状等、形状は問わないが、ポリカルボン酸系ポリマーに対して濡れ性を有し、ガスバリア材形成用組成物中において、良好に分散するものが使用される。特に水分をブロックし得るという見地から、層状結晶構造を有するケイ酸塩化合物、例えば、水膨潤性雲母、クレイ等が好適に使用される。これらの無機分散体は、アスペクト比が30以上5000以下であることが層状に分散させ、水分をブロックするという点で好適である。
無機分散体の含有量はポリカルボン酸系ポリマー及びイソシアネート化合物の合計100重量部に対し、5乃至100重量部の量で含有していることが好ましい。
In addition to the above components, an inorganic dispersion can also be contained. Such an inorganic dispersion has a function of blocking moisture from the outside and protecting the gas barrier material, and can further improve gas barrier properties and water resistance.
Such inorganic dispersions may be spherical, needle-like, layered, etc., but may have any shape, but have wettability with respect to the polycarboxylic acid polymer, and those that disperse well in the composition for forming a gas barrier material are used. Is done. In particular, from the viewpoint that water can be blocked, a silicate compound having a layered crystal structure such as water-swellable mica and clay is preferably used. These inorganic dispersions preferably have an aspect ratio of 30 or more and 5000 or less in that they are dispersed in layers and block moisture.
The content of the inorganic dispersion is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the total of the polycarboxylic acid polymer and the isocyanate compound.

ガスバリア層形成用組成物中の樹脂組成物に含まれるポリカルボン酸系ポリマー量、すなわち遊離カルボキシル基量が、酸価で少なくとも150KOHmg/g以上、特に250乃至970KOHmg/gの範囲であることが好ましい。ここで酸価とは、樹脂1g中に含まれる酸性遊離官能基を中和するのに必要な水酸化カリウムのmg数を、アルカリ中和滴定に基づく常法により求めたものである。
またイソシアネート化合物は、ポリカルボン酸系ポリマー100重量部に対して、0.04乃至12重量部、特に0.1乃至7重量部の量で含有して成ることが好適である。
ガスバリア層形成用組成物を、用いるポリカルボン酸系ポリマーやイソシアネート化合物の種類や含有量、或いはガスバリア層形成用組成物の塗工量にもよるが、40乃至110℃の温度で、1秒乃至1分間(ピーク保持時間)加熱し、シート、フィルム又は塗膜を形成する。次いでこのシート、フィルム又は塗膜中のカルボキシル基を多価金属によって、イオン架橋することによりガスバリア層を製造することができる。
The amount of polycarboxylic acid-based polymer contained in the resin composition in the gas barrier layer forming composition, that is, the amount of free carboxyl groups, is preferably at least 150 KOHmg / g or more, particularly 250 to 970 KOHmg / g in terms of acid value. . Here, the acid value is obtained by determining the number of mg of potassium hydroxide necessary for neutralizing the acidic free functional group contained in 1 g of the resin by a conventional method based on alkali neutralization titration.
The isocyanate compound is preferably contained in an amount of 0.04 to 12 parts by weight, particularly 0.1 to 7 parts by weight, based on 100 parts by weight of the polycarboxylic acid polymer.
Depending on the type and content of the polycarboxylic acid polymer and isocyanate compound used or the coating amount of the gas barrier layer forming composition, the gas barrier layer forming composition is used at a temperature of 40 to 110 ° C. for 1 second to Heat for 1 minute (peak retention time) to form a sheet, film or coating. Subsequently, the gas barrier layer can be produced by ion-crosslinking carboxyl groups in the sheet, film or coating film with a polyvalent metal.

多価金属によるイオン架橋は、これに限定されないが、ガスバリア層を、多価金属のアルカリ性化合物を含有する水、或いは多価金属のアルカリ性化合物を含有するアルコール溶液で処理することにより容易に金属イオン架橋構造を形成することができる。
多価金属のアルカリ性化合物を含有する水による処理としては、(i)多価金属のアルカリ性化合物を含有する水中へのガスバリア材の浸漬処理、(ii)多価金属のアルカリ性化合物を含有する水のガスバリア材へのスプレー処理、(iii)(i)乃至(ii)の処理後に高湿度下にガスバリア材を置く雰囲気処理、(iv)多価金属のアルカリ性化合物を含有する水でレトルト処理(好ましくは、包材と熱水が直接接触する方法)、等を挙げることができる。
上記処理(iii)は、上記処理(i)〜(ii)後のエージング効果をもたらす処理であり、(i)〜(ii)処理の短時間化を可能にする。上記処理(i)〜(iii)の何れの場合も使用する処理水は冷水でも構わないが、多価金属のアルカリ性化合物を含有する水がガスバリア材に作用しやすいように、多価金属のアルカリ性化合物を含有する水の温度を20℃以上、特に40乃至100℃の温度とする。処理時間は、(i)〜(ii)の場合は、3秒以上、特に10秒乃至4日程度処理を行うことが好ましく、(iii)の場合は、(i)〜(ii)処理を0.5秒以上、特に1秒乃至1時間程度処理した後、高湿度下にガスバリア材を置く雰囲気処理を1時間以上、特に2時間乃至14日程度処理することが好ましい。上記処理(iv)の場合は、処理温度は101℃以上、特に120乃至140℃の温度であり、1秒以上、特に3秒乃至120分程度処理を行う。
また何れの処理の場合も、多価金属のアルカリ性化合物を含有する水は、中性乃至アルカリ性であることが好ましい。
Ion cross-linking with a polyvalent metal is not limited to this, but the metal barrier can be easily treated by treating the gas barrier layer with water containing an alkali compound of a polyvalent metal or an alcohol solution containing an alkali compound of a polyvalent metal. A crosslinked structure can be formed.
The treatment with water containing an alkali compound of a polyvalent metal includes (i) immersion treatment of a gas barrier material in water containing an alkali compound of a polyvalent metal, (ii) water containing an alkaline compound of a polyvalent metal Spray treatment to gas barrier material, (iii) atmosphere treatment in which gas barrier material is placed under high humidity after treatment of (i) to (ii), (iv) retort treatment with water containing alkaline compound of polyvalent metal (preferably , A method in which the packaging material and hot water are in direct contact), and the like.
The process (iii) is a process that brings about the aging effect after the processes (i) to (ii), and enables the processes (i) to (ii) to be shortened. The treated water used in any of the above treatments (i) to (iii) may be cold water, but the alkalinity of the polyvalent metal so that the water containing the alkaline compound of the polyvalent metal can easily act on the gas barrier material. The temperature of the water containing the compound is set to 20 ° C. or higher, particularly 40 to 100 ° C. In the case of (i) to (ii), the processing time is preferably 3 seconds or more, particularly about 10 seconds to 4 days, and in the case of (iii), the processing time (i) to (ii) is 0. After the treatment for 5 seconds or more, particularly 1 second to 1 hour, it is preferable to perform an atmosphere treatment in which the gas barrier material is placed under high humidity for 1 hour or more, particularly 2 hours to 14 days. In the case of the treatment (iv), the treatment temperature is 101 ° C. or higher, particularly 120 to 140 ° C., and the treatment is performed for 1 second or longer, particularly 3 seconds to 120 minutes.
In any case, the water containing the alkali compound of the polyvalent metal is preferably neutral to alkaline.

また多価金属のアルカリ性化合物を含有するアルコール系溶液による処理としては、多価金属のアルカリ性化合物を含有するアルコール系溶液を、上述したガスバリア材形成用組成物から成るフィルム、シート、塗膜上に塗布することにより行うことができる。ガスバリア材形成用組成物から成るフィルム等にアルコール系溶液は浸み込みやすいことから、効率よく多価金属をガスバリア材形成用組成物に含浸させることができ、水による処理に比して工程数或いは処理時間を短縮することができ、生産性に優れている。
多価金属のアルカリ性化合物を含有するアルコール系溶液に用いる溶媒としては、用いる多価金属のアルカリ性化合物の種類によっても異なるが、メタノール、エタノール、イソプロパノール等を挙げることができる。
In addition, as the treatment with the alcohol-based solution containing the polyvalent metal alkaline compound, the alcohol-based solution containing the polyvalent metal alkaline compound is applied onto the film, sheet, or coating film comprising the gas barrier material-forming composition described above. This can be done by coating. Since the alcohol-based solution is likely to soak into a film or the like made of the gas barrier material forming composition, the polyvalent metal can be efficiently impregnated in the gas barrier material forming composition, and the number of steps compared to treatment with water. Or processing time can be shortened and it is excellent in productivity.
Examples of the solvent used in the alcohol-based solution containing the polyvalent metal alkaline compound include methanol, ethanol, isopropanol, and the like, although they vary depending on the type of the polyvalent metal alkaline compound used.

多価金属イオンとしては、ポリカルボン酸系ポリマーのカルボキシル基を架橋可能である限り特に制限されず、アルカリ土類金属(マグネシウムMg,カルシウムCa、ストロンチウムSr,バリウムBa等)、周期表8族金属(鉄Fe,ルテニウムRu等)、周期表11族金属(銅Cu等)、周期表12族金属(亜鉛Zn等)、周期表13族金属(アルミニウムAl等)等の金属イオンが例示できるが、特に2〜3価であることが好ましく、好適にはカルシウム、マグネシウムイオン、亜鉛等の2価の金属イオンを使用できる。また、上記金属イオンは1種又は2種以上組み合わせて使用できる。
多価金属のアルカリ性化合物としては、上記金属の、水酸化物(例えば、水酸化マグネシウム、水酸化カルシウム等)、炭酸塩(例えば、炭酸マグネシウム、炭酸カルシウム等)、有機酸塩、例えば、カルボン酸塩(例えば、酢酸亜鉛、酢酸カルシウム等の酢酸塩、或いは乳酸亜鉛、乳酸カルシウム等の乳酸塩等)等を例示できるが、安全性の観点や金属イオン架橋が形成される際の副生成物がガスバリア材中に留まらない点で、カルシウム又はマグネシウムの炭酸塩、水酸化物の少なくとも1種類を使用することが特に好ましい。
The polyvalent metal ion is not particularly limited as long as the carboxyl group of the polycarboxylic acid polymer can be cross-linked. Alkaline earth metal (magnesium Mg, calcium Ca, strontium Sr, barium Ba, etc.), Group 8 metal of the periodic table Examples include metal ions such as iron (Fe, ruthenium Ru, etc.), periodic table group 11 metals (copper Cu, etc.), periodic table group 12 metals (zinc Zn, etc.), periodic table group 13 metals (aluminum Al, etc.), In particular, it is preferably 2 to 3 valent, and preferably a divalent metal ion such as calcium, magnesium ion or zinc can be used. Moreover, the said metal ion can be used 1 type or in combination of 2 or more types.
Examples of alkaline compounds of polyvalent metals include hydroxides (eg, magnesium hydroxide, calcium hydroxide, etc.), carbonates (eg, magnesium carbonate, calcium carbonate, etc.), organic acid salts, eg, carboxylic acids of the above metals. Salts (for example, acetates such as zinc acetate and calcium acetate, or lactates such as zinc lactate and calcium lactate) can be exemplified, but by-products when a metal ion bridge is formed from the viewpoint of safety In view of not staying in the gas barrier material, it is particularly preferable to use at least one of calcium or magnesium carbonate and hydroxide.

多価金属のアルカリ性化合物を水に含有させる場合は、水中に金属原子換算で0.125mmol/L以上であることが好ましく、0.5mmol/L以上であることがより好ましく、2.5mmol/L以上であることが更に好ましい。
同様に、多価金属のアルカリ性化合物をアルコール系溶媒に含有させる場合は、アルコール系溶媒中に用いる多価金属のアルカリ性化合物の種類、塗工量によっても異なるが、用いる多価金属が溶液中に金属原子換算で、1mmol/L以上であることが好ましく、10mmol/L以上であることがより好ましく、30mmol/L以上であることが更に好ましい。
上記多価金属のアルカリ性化合物を含有する溶液による処理を行ったガスバリア材は、ポリカルボン酸系ポリマーのカルボキシル基間が、多価金属イオンにより20%以上、特に30%以上の割合でイオン架橋されていることが望ましい。
When an alkali compound of a polyvalent metal is contained in water, it is preferably 0.125 mmol / L or more, more preferably 0.5 mmol / L or more, in terms of metal atom in water, and 2.5 mmol / L. It is still more preferable that it is above.
Similarly, when an alkaline compound of a polyvalent metal is contained in an alcoholic solvent, the polyvalent metal used in the solution varies depending on the type of polyvalent metal alkaline compound used in the alcoholic solvent and the coating amount. In terms of metal atom, it is preferably 1 mmol / L or more, more preferably 10 mmol / L or more, and further preferably 30 mmol / L or more.
In the gas barrier material that has been treated with the solution containing the alkali compound of the polyvalent metal, the carboxyl groups of the polycarboxylic acid polymer are ion-crosslinked at a ratio of 20% or more, particularly 30% or more with polyvalent metal ions. It is desirable that

[アンダーコート層を含有するガスバリア材]
アンダーコート層を含有するガスバリア材は、前述したとおり、蒸着層が形成されたプラスチック基材の少なくとも一方の面にガスバリア層を有しており、蒸着層又はプラスチック基材とガスバリア層の間に、1分子中に少なくとも2個のイソシアネート基を有するイソシアネート化合物及び多価金属のアルカリ性化合物を含有するアンダーコート層が形成されている。
蒸着層が形成されたプラスチック基材上に、イソシアネート化合物及び多価金属のアルカリ性化合物を含有するアンダーコート層を形成し、このアンダーコート層上にポリカルボン酸系ポリマーを含有する溶液を塗布してガスバリア層を形成する。これにより、アンダーコート層中に存在する多価金属イオン及びイソシアネート化合物がポリカルボン酸系ポリマー中に供給されて、ガスバリア層中に所定量の多価金属元素及び窒素元素を存在させることが可能になる。その結果、ポリカルボン酸系ポリマーは金属イオン架橋されると共に、ポリカルボン酸系ポリマー中に供給されたイソシアネート化合物の大部分はガスバリア層表面にブリードアウトし、イソシアネート化合物に由来する化学結合をガスバリア層の表面に存在させることが可能になり、残余のイソシアネート化合物はアンダーコート層との界面近傍に留まり、主としてアンダーコート層中の成分とポリカルボン酸系ポリマー間を架橋するか、もしくはイソシアネート化合物同士で反応する。その結果、前述したガスバリア材と同様に、優れたガスバリア性、可撓性及び耐水性を有すると共に、屈曲加工後の耐水性や耐ブロッキング性についても優れたガスバリア性積層体とすることができる。
[Gas barrier material containing undercoat layer]
As described above, the gas barrier material containing the undercoat layer has a gas barrier layer on at least one surface of the plastic substrate on which the vapor deposition layer is formed, and between the vapor deposition layer or the plastic substrate and the gas barrier layer, An undercoat layer containing an isocyanate compound having at least two isocyanate groups in one molecule and an alkali compound of a polyvalent metal is formed.
An undercoat layer containing an isocyanate compound and an alkali compound of a polyvalent metal is formed on a plastic substrate on which a vapor-deposited layer is formed, and a solution containing a polycarboxylic acid polymer is applied onto the undercoat layer. A gas barrier layer is formed. As a result, the polyvalent metal ions and isocyanate compound present in the undercoat layer are supplied into the polycarboxylic acid-based polymer, so that a predetermined amount of the polyvalent metal element and nitrogen element can be present in the gas barrier layer. Become. As a result, the polycarboxylic acid polymer is cross-linked with metal ions, and most of the isocyanate compound supplied into the polycarboxylic acid polymer bleeds out to the surface of the gas barrier layer, and chemical bonds derived from the isocyanate compound are removed from the gas barrier layer. The remaining isocyanate compound remains in the vicinity of the interface with the undercoat layer, and mainly crosslinks between the component in the undercoat layer and the polycarboxylic acid-based polymer, or between the isocyanate compounds. react. As a result, it is possible to obtain a gas barrier laminate that has excellent gas barrier properties, flexibility, and water resistance, as well as excellent water resistance and blocking resistance after bending, as with the gas barrier material described above.

[アンダーコート層]
アンダーコート層は、主材樹脂、1分子中にイソシアネート基を少なくとも2個有するイソシアネート系硬化剤及び多価金属のアルカリ性化合物から成るものであるが、主材樹脂が金属元素を樹脂骨格中に含むポリエステルポリオールであること、イソシアネート系硬化剤が直鎖状の脂肪族イソシアネート化合物と骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物の組み合わせであることが特に好適である。
すなわち、主材樹脂として金属元素を樹脂骨格中に含むポリエステルポリオールは、それ自体アンダーコート剤としてアンダーコート層をプラスチック基材に接着性よく積層することができると共に、金属元素を有することにより水含有溶剤に対して膨潤しやすいことから、ポリカルボン酸系ポリマーを有する塗料を塗布することにより膨潤して、アンダーコート層中に存在する多価金属イオンを効果的にバリア層中に移行させることが可能になる。
[Undercoat layer]
The undercoat layer is composed of a main material resin, an isocyanate curing agent having at least two isocyanate groups in one molecule, and an alkali compound of a polyvalent metal, but the main material resin contains a metal element in the resin skeleton. It is particularly preferred that the polyester polyol is a combination of a linear aliphatic isocyanate compound and an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton.
That is, the polyester polyol containing a metal element as a main resin in the resin skeleton can itself be laminated with an adhesive as an undercoat agent on a plastic substrate, and also contains water by having a metal element. Since it swells easily with respect to the solvent, it can be swollen by applying a paint having a polycarboxylic acid polymer to effectively transfer polyvalent metal ions present in the undercoat layer into the barrier layer. It becomes possible.

またイソシアネート系硬化剤として、主材樹脂に対して相溶性の異なる直鎖状の脂肪族イソシアネート化合物と骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物の組み合わせを用いることによって、イソシアネート化合物のアンダーコート層内におけるブリードアウトの挙動を制御することが可能になる。
すなわち、直鎖状の脂肪族イソシアネート化合物は主材樹脂に対して相溶性が高いことから、アンダーコート層内に均一に拡散する。これに対して骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物は主材樹脂に対する相溶性が劣るため、アンダーコート層のバリア層側及び基材側にブリードアウトし、特にバリア層側に濃化して、図3に示すようにアンダーコート層12には、多価金属のアルカリ性化合物を含まない領域(x)14が形成され、該領域(x)14の窒素の含有量が領域(x)以外のアンダーコート層12の窒素の含有量よりも多くなっている。
In addition, by using a combination of a linear aliphatic isocyanate compound having different compatibility with the main material resin and an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton as the isocyanate curing agent, It is possible to control the bleed-out behavior of the compound in the undercoat layer.
That is, since the linear aliphatic isocyanate compound is highly compatible with the main resin, it diffuses uniformly into the undercoat layer. In contrast, an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton has poor compatibility with the main resin, and therefore bleeds out to the barrier layer side and the substrate side of the undercoat layer. As shown in FIG. 3, the undercoat layer 12 is formed with a region (x) 14 that does not contain an alkali compound of a polyvalent metal, and the nitrogen content in the region (x) 14 is the region. It is larger than the nitrogen content of the undercoat layer 12 other than (x).

[主材樹脂]
アンダーコート層に用いる主材樹脂としては、金属元素が樹脂骨格中に含まれる非水系樹脂を用いることが好適であり、ウレタン系、エポキシ系、アクリル系、ポリエステル系等を樹脂分とするものであることが好ましく、これらのポリマーを構成するモノマーに金属塩基を導入させておくことによって、形成される樹脂骨格中に金属元素を含ませることができる。尚、「非水系樹脂」とは、水分を含む溶媒に分散させたエマルジョンやラテックス、或いは水溶性の樹脂を除く概念であり、これにより、水含有溶剤との接触時に生じる過度な膨潤によるアンダーコート層の機械的強度の低下が有効に防止されている。
樹脂のモノマーに導入させておくのに好適な金属塩基としては、多価金属の分散性を向上させるため極性を有する官能基を有していることが望ましく、スルホン酸金属塩基、リン酸金属塩基等を挙げることができる。また金属元素としては、リチウムLi,カリウムK,ナトリウムNa,マグネシウムMg,カルシウムCa,銅Cu,鉄Fe等を挙げることができるが、1価の金属元素であることが特に好適であり、本発明においては、特にスルホン酸ナトリウムが導入されていることが好適である。
[Main resin]
As the main material resin used for the undercoat layer, it is preferable to use a non-aqueous resin in which a metal element is contained in the resin skeleton, and urethane-based, epoxy-based, acrylic-based, polyester-based, etc. It is preferable that a metal element is introduced into the monomer constituting these polymers, so that a metal element can be included in the formed resin skeleton. The “non-aqueous resin” is a concept that excludes an emulsion or latex dispersed in a solvent containing water, or a water-soluble resin, and thereby an undercoat caused by excessive swelling that occurs upon contact with a water-containing solvent. A decrease in the mechanical strength of the layer is effectively prevented.
As the metal base suitable for introduction into the resin monomer, it is desirable to have a functional group having polarity in order to improve the dispersibility of the polyvalent metal. Etc. Examples of the metal element include lithium Li, potassium K, sodium Na, magnesium Mg, calcium Ca, copper Cu, and iron Fe. A monovalent metal element is particularly preferable, and the present invention. In particular, sodium sulfonate is preferably introduced.

本発明に用いるガスバリア材においては、基材との優れた接着性を得るため、また多価金属のアルカリ性化合物の分散性を高めるために、イソシアネート系硬化剤を用いることから、イソシアネート系硬化剤に対する主材樹脂として、ポリエステルポリオールやポリエーテルポリオール、或いはこれらのウレタン変性物等のポリオール成分を用いることが好ましく、これによりアンダーコート層中にウレタン結合が形成され、基材との優れた接着性及び多価金属のアルカリ性化合物の分散性を高めることができる。尚、ポリオール成分中の水酸基分を反応させるのに必要なイソシアネート系硬化剤の重量を1当量としたとき、イソシアネート系硬化剤は少なくとも4当量以上となるように存在していることが好ましい。   In the gas barrier material used in the present invention, an isocyanate curing agent is used in order to obtain excellent adhesion to the substrate and to increase the dispersibility of the alkali compound of the polyvalent metal. As the main material resin, it is preferable to use a polyol component such as polyester polyol, polyether polyol, or a modified urethane thereof, whereby a urethane bond is formed in the undercoat layer, and excellent adhesion to the substrate and The dispersibility of the polyvalent metal alkaline compound can be increased. In addition, when the weight of the isocyanate curing agent necessary for reacting the hydroxyl content in the polyol component is 1 equivalent, the isocyanate curing agent is preferably present so as to be at least 4 equivalents or more.

ウレタン系ポリマー形成に使用されるポリオール成分としては、ポリエステルポリオール又はそのウレタン変性物が好ましい。これらのポリエステルポリオール成分としては、多価カルボン酸もしくはそれらのジアルキルエステルまたはそれらの混合物と、グリコール類もしくはそれらの混合物とを反応させて得られるポリエステルポリオールが挙げられる。
前記ポリエステルポリオールのガラス転移温度は、−50℃乃至100℃が好ましく、−20℃乃至80℃がより好ましい。また、これらのポリエステルポリオールの数平均分子量は1000乃至10万が好ましく、3000乃至8万がより好ましい。
多価カルボン酸としては、例えばイソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸、アジピン酸、アゼライン酸、セバシン酸,シクロヘキサンジカルボン酸の脂肪族多価カルボン酸が挙げられる。
グリコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6ーヘキサンジオールなどが挙げられる。
As the polyol component used for forming the urethane-based polymer, a polyester polyol or a urethane-modified product thereof is preferable. Examples of these polyester polyol components include polyester polyols obtained by reacting polyvalent carboxylic acids or their dialkyl esters or mixtures thereof with glycols or mixtures thereof.
The glass transition temperature of the polyester polyol is preferably -50 ° C to 100 ° C, more preferably -20 ° C to 80 ° C. The number average molecular weight of these polyester polyols is preferably from 1,000 to 100,000, more preferably from 3,000 to 80,000.
Examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid, and aliphatic polyvalent carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and cyclohexanedicarboxylic acid.
Examples of the glycol include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol, and 1,6-hexanediol.

本発明においては、上記ポリオール成分或いは多価カルボン酸成分に、金属塩基が導入された成分を共重合させることにより、樹脂骨格中に金属元素を有する非水系樹脂とすることができる。
このような金属塩基が導入された多価カルボン酸としては、スルホテレフタル酸、5−スルホイソフタル酸、4−スルホナフタレン−2,7−ジカルボン酸、5〔4−スルホフェノキシ〕イソフタル酸等の金属塩を挙げることができる。また金属塩基が導入されたポリオールとしては2−スルホ−1,4−ブタンジオール、2,5−ジメチル−3−スルホ−2,5−ヘキサンジオール等の金属塩が挙げられる。特に好ましいものは5−ナトリウムスルホイソフタル酸である。
金属塩基が導入された成分は、0.01乃至10モル%の量で共重合されていることが望ましい。上記範囲よりも少ない場合には、多価金属イオンの移行を十分促進することができず、一方上記範囲よりも多い場合には、耐水性に劣るようになる。
In the present invention, a non-aqueous resin having a metal element in the resin skeleton can be obtained by copolymerizing a component having a metal base introduced into the polyol component or the polyvalent carboxylic acid component.
Examples of the polyvalent carboxylic acid introduced with such a metal base include metals such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and 5 [4-sulfophenoxy] isophthalic acid. Mention may be made of salts. Examples of the polyol having a metal base introduced include metal salts such as 2-sulfo-1,4-butanediol and 2,5-dimethyl-3-sulfo-2,5-hexanediol. Particularly preferred is 5-sodium sulfoisophthalic acid.
The component into which the metal base has been introduced is desirably copolymerized in an amount of 0.01 to 10 mol%. When the amount is less than the above range, the migration of polyvalent metal ions cannot be sufficiently promoted. On the other hand, when the amount is more than the above range, the water resistance is poor.

尚、金属元素が非水系樹脂の樹脂骨格中に含まれるか否かは、例えば、原料樹脂の蛍光X線による分析により検出することができる。
(蛍光X線分析装置の測定条件)
使用機器:理学電機製 ZSX100e
測定条件: 測定対象 Na−Kα線
測定径 30mm
X線出力 50kV-70mA
測定時間 40s
Whether or not the metal element is contained in the resin skeleton of the non-aqueous resin can be detected, for example, by analyzing the raw material resin with fluorescent X-rays.
(Measurement conditions of X-ray fluorescence analyzer)
Equipment used: ZSX100e manufactured by Rigaku Corporation
Measurement conditions: Measurement object Na-Kα ray
Measurement diameter 30mm
X-ray output 50kV-70mA
Measurement time 40s

[イソシアネート系硬化剤]
アンダーコート層に用いられるイソシアネート系硬化剤としては、前述した通り、直鎖状の脂肪族イソシアネート化合物と骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物を組み合わせで用いることが特に好ましい。
また直鎖状脂肪族イソシアネート化合物と前記脂環式イソシアネート化合物は重量比で、60:40乃至15:85、特に55:45乃至30:70の割合で配合されることが望ましい。上記範囲よりも直鎖状脂肪族イソシアネート化合物が少ない場合には、十分な接着性を得ることができず、また上記範囲よりも脂環式イソシアネート化合物が少ない場合には、領域(x)を形成することが困難になるおそれがある。
[Isocyanate curing agent]
As the isocyanate curing agent used in the undercoat layer, as described above, it is particularly preferable to use a combination of a linear aliphatic isocyanate compound and an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton. .
The linear aliphatic isocyanate compound and the alicyclic isocyanate compound are desirably blended in a weight ratio of 60:40 to 15:85, particularly 55:45 to 30:70. When the linear aliphatic isocyanate compound is less than the above range, sufficient adhesion cannot be obtained, and when the alicyclic isocyanate compound is less than the above range, the region (x) is formed. May be difficult to do.

直鎖状の脂肪族イソシアネートとしては、テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等を挙げることができ、中でもイソシアヌレート構造を有するものであることが好適であり、具体的には、1,6−ヘキサメチレンジイソシアネートを構造単位とするイソシアヌレート体を好適に使用することができる。
また、骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物としては、1,3−シクロヘキシレンジイソシアネート、4−シクロヘキシレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジイソシアネート等を挙げることができ、中でもイソホロンジイソシアネート及びその誘導体を好適に使用することができる。
上記直鎖状脂肪族ポリイソシアネート化合物及び脂環式イソシアネート化合物としては、上記ポリイソシアネート単量体から誘導されたイソシアヌレート、ビューレット、アロファネート等の多官能ポリイソシアネート化合物、あるいはトリメチロールプロパン、グリセリン等の3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネート化合物等を用いることもできる。
Examples of the linear aliphatic isocyanate include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, and trimethylhexamethylene diisocyanate. Among them, those having an isocyanurate structure are preferable. Specifically, an isocyanurate body having 1,6-hexamethylene diisocyanate as a structural unit can be preferably used.
Examples of the alicyclic isocyanate compound having an alicyclic ring structure in the skeleton include 1,3-cyclohexylene diisocyanate, 4-cyclohexylene diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 4,4. Examples include '-dicyclohexylmethane diisocyanate and 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate. Among them, isophorone diisocyanate and derivatives thereof can be preferably used.
Examples of the linear aliphatic polyisocyanate compound and the alicyclic isocyanate compound include polyfunctional polyisocyanate compounds such as isocyanurate, burette and allophanate derived from the polyisocyanate monomer, or trimethylolpropane and glycerin. A polyfunctional polyisocyanate compound containing a terminal isocyanate group obtained by a reaction with a trifunctional or higher functional polyol compound can also be used.

アンダーコート層において、直鎖状脂肪族イソシアネート化合物は、溶剤揮散と共に拡散する際にアンダーコート層内に均一に拡散しやすいという点から、ガラス転移温度(Tg)が−20℃以下、数平均分子量(Mn)が1200以下、特にガラス転移温度(Tg)が−40℃以下、数平均分子量(Mn)が1100以下であることが好ましい。また、脂環式イソシアネート化合物は、アンダーコート層のバリア層側、或いはプラスチック基材側に留まって、領域(x)を形成することが容易になるという点から、ガラス転移温度(Tg)が50℃以上、数平均分子量(Mn)が400以上、特にガラス転移温度(Tg)が60℃以上、数平均分子量(Mn)が500以上であることが好ましい。   In the undercoat layer, the linear aliphatic isocyanate compound is easily diffused uniformly in the undercoat layer when diffusing with the solvent volatilization, so that the glass transition temperature (Tg) is −20 ° C. or less and the number average molecular weight. It is preferable that (Mn) is 1200 or less, particularly that the glass transition temperature (Tg) is −40 ° C. or less and the number average molecular weight (Mn) is 1100 or less. In addition, the alicyclic isocyanate compound remains on the barrier layer side of the undercoat layer or the plastic substrate side, and it is easy to form the region (x), so that the glass transition temperature (Tg) is 50. It is preferable that the number average molecular weight (Mn) is 400 or more, particularly the glass transition temperature (Tg) is 60 ° C. or more and the number average molecular weight (Mn) is 500 or more.

[多価金属のアルカリ性化合物]
アンダーコート層に含有させる多価金属のアルカリ性化合物としては、前述したものを用いることができるが、ポリカルボン酸系ポリマーから成るガスバリア層に移行した多価金属のアルカリ性化合物が速やかに溶解するという点で、多価金属のアルカリ性化合物の粒子の表面には化学処理が施されていないものであることが好ましい。
また、アンダーコート層中の領域(x)以外の部分に多価金属のアルカリ性化合物の粒子が残存することがあり、粒子の残存量にもよるが、粒子の1次粒径が0.5μmを超えるとガスバリア材のコーティング層(アンダーコート層及びガスバリア層)の透明性がわずかながら低下することがある。よって、多価金属のアルカリ性金属粒子の1次粒径は0.5μm以下であることが好ましく、0.4μm以下であることが特に好ましい。多価金属のアルカリ性化合物粒子の1次粒径は、走査型電子顕微鏡の2次電子像での観察により求めることができる。
[Alkaline compound of polyvalent metal]
As the polyvalent metal alkaline compound to be contained in the undercoat layer, those mentioned above can be used, but the polyvalent metal alkaline compound transferred to the gas barrier layer composed of the polycarboxylic acid polymer is quickly dissolved. Thus, it is preferable that the surface of the particles of the alkali compound of the polyvalent metal is not subjected to chemical treatment.
In addition, the particles of the polyvalent metal alkaline compound may remain in a portion other than the region (x) in the undercoat layer, and the primary particle diameter of the particles is 0.5 μm depending on the amount of the remaining particles. If it exceeds, the transparency of the coating layer (undercoat layer and gas barrier layer) of the gas barrier material may slightly decrease. Therefore, the primary particle diameter of the alkali metal particles of the polyvalent metal is preferably 0.5 μm or less, and particularly preferably 0.4 μm or less. The primary particle diameter of the alkali compound particles of the polyvalent metal can be determined by observation with a secondary electron image of a scanning electron microscope.

本発明においては、アンダーコート層を形成する組成物(以下、「アンダーコート層形成用組成物」という)において、多価金属のアルカリ性化合物の含有量は、多価金属イオン1個に対してカルボキシル基2個が反応するとして、金属原子換算で、ガスバリア層形成用組成物中に存在するポリカルボン酸系ポリマーのカルボキシル基に対して、0.3当量以上となるように含有するこが好ましく、特に高温高湿度条件下におかれる用途に用いる場合には、0.6当量以上となるように含有することが高温高湿度条件でのガスバリア性を維持する上で好ましい。上記範囲よりも多価金属のアルカリ性化合物の含有量が少ないと、ポリカルボン酸系ポリマーの架橋を充分に行うことができず、ガスバリア性を確保することが困難になる。
またポリカルボン酸系ポリマーに多価金属イオンを供給した後のアンダーコート層においては、層中に残存する多価金属のアルカリ性化合物の粒子の量が少ないことが好ましい。これにより、副生物が発生するリスクを低減することができ、真空断熱材の外装材として断熱性能を長期にわたって維持することが可能になる。具体的には、多価金属のアルカリ性化合物の仕込み量(当量)とイオン架橋に使用された量(当量)の差である残存量(当量)が、1.1以下、特に0.3以下であることが好ましい。
アンダーコート層形成用組成物中の樹脂分の含有量は、15乃至80重量%、特に20乃至60重量%となるように調製することが好ましい。
またアンダーコート層形成用組成物において樹脂分は非水系であることが望ましく、トルエン、2−ブタノン、シクロヘキサノン、ソルベッソ、イソホロン、キシレン、酢酸エチル、酢酸ブチル等の溶剤で調製することができるが、特に低温での層形成を可能にするために低沸点溶媒を用いることが好ましい。これらの溶剤は単独或いは混合液に溶解させてもよいし、或いは各成分の溶液を混合することによっても調製できる。
また上記成分の他に、公知である硬化促進触媒,充填剤、軟化剤、老化防止剤、安定剤、接着促進剤、レベリング剤、消泡剤、可塑剤、無機フィラー、粘着付与性樹脂、繊維類、顔料等の着色剤、可使用時間延長剤等を使用することもできる。
In the present invention, in the composition for forming the undercoat layer (hereinafter referred to as “undercoat layer forming composition”), the content of the alkali compound of the polyvalent metal is carboxyl to one polyvalent metal ion. As two groups react, it is preferable to contain 0.3 equivalent or more with respect to the carboxyl group of the polycarboxylic acid polymer present in the gas barrier layer forming composition in terms of metal atoms, In particular, when used for applications under high-temperature and high-humidity conditions, the content is preferably 0.6 equivalent or more from the viewpoint of maintaining gas barrier properties under high-temperature and high-humidity conditions. If the content of the alkali compound of the polyvalent metal is less than the above range, the polycarboxylic acid polymer cannot be sufficiently crosslinked, and it becomes difficult to ensure gas barrier properties.
In the undercoat layer after supplying polyvalent metal ions to the polycarboxylic acid polymer, it is preferable that the amount of polyvalent metal alkaline compound particles remaining in the layer is small. Thereby, the risk that by-products are generated can be reduced, and the heat insulating performance can be maintained over a long period of time as an exterior material of the vacuum heat insulating material. Specifically, the residual amount (equivalent) which is the difference between the charged amount (equivalent) of the alkaline compound of the polyvalent metal and the amount (equivalent) used for ionic crosslinking is 1.1 or less, particularly 0.3 or less. Preferably there is.
The resin content in the composition for forming an undercoat layer is preferably 15 to 80% by weight, particularly 20 to 60% by weight.
In addition, the resin component in the undercoat layer forming composition is preferably non-aqueous, and can be prepared with a solvent such as toluene, 2-butanone, cyclohexanone, solvesso, isophorone, xylene, ethyl acetate, butyl acetate, In particular, it is preferable to use a low boiling point solvent in order to make it possible to form a layer at a low temperature. These solvents may be dissolved alone or in a mixed solution, or can be prepared by mixing solutions of respective components.
In addition to the above components, known curing accelerator catalysts, fillers, softeners, anti-aging agents, stabilizers, adhesion promoters, leveling agents, antifoaming agents, plasticizers, inorganic fillers, tackifying resins, fibers , Colorants such as pigments, usable time extenders and the like can also be used.

アンダーコート層上に施すガスバリア層形成用組成物としては、イソシアネート化合物を含有しない以外は、前述したアンダーコート層を含有しないガスバリア材におけるガスバリア層形成用組成物と同様のものを使用することができる。
尚、ガスバリア層形成用組成物においては、多価金属のアルカリ性化合物を溶解させてガスバリア層形成用組成物へ移行させるために、溶媒に水が含まれることが必須である。更にアンダーコート層と良親和の溶剤を水と混合させることがアンダーコート層との親和性を向上させ、多価金属のアルカリ性化合物のガスバリア層形成用組成物への移行を促進させる上で望ましい。アンダーコート層と良親和の溶剤としては、アンダーコート層形成用組成物に用いる樹脂分によって異なるが、例えばウレタン系ポリマーを用いた場合には、メタノール、エタノール、イソプロパノール等のアルコール、2−ブタノン、アセトン等のケトン等を好適に用いることができる。
更にイソシアネート化合物のガスバリア層形成用組成物への移行量を制御する観点から、水100重量部に対して1900重量部以下、特に5乃至900重量部の量で他の溶剤を配合することが望ましく、10乃至400重量部の量で配合することが更に望ましい。
As the gas barrier layer-forming composition applied on the undercoat layer, the same composition as the gas barrier layer-forming composition in the gas barrier material not containing the undercoat layer described above can be used except that it does not contain an isocyanate compound. .
In the gas barrier layer forming composition, it is essential that the solvent contains water in order to dissolve the alkali compound of the polyvalent metal and transfer it to the gas barrier layer forming composition. Furthermore, it is desirable to mix a solvent having a good affinity with the undercoat layer with water in order to improve the affinity with the undercoat layer and promote the transition of the alkaline compound of the polyvalent metal to the gas barrier layer forming composition. The solvent having good affinity with the undercoat layer varies depending on the resin component used in the composition for forming the undercoat layer. For example, when a urethane polymer is used, alcohol such as methanol, ethanol, isopropanol, 2-butanone, A ketone such as acetone can be preferably used.
Furthermore, from the viewpoint of controlling the amount of the isocyanate compound transferred to the gas barrier layer forming composition, it is desirable to blend other solvent in an amount of 1900 parts by weight or less, particularly 5 to 900 parts by weight with respect to 100 parts by weight of water. It is further desirable to blend in an amount of 10 to 400 parts by weight.

[プラスチック基材]
本発明において、ガスバリア層或いはアンダーコート層を形成するプラスチック基材は、熱成形可能な熱可塑性樹脂から成るフィルム又はシートから成り、特に蒸着層を形成したものを好適に用いることができる。
蒸着層はプラスチック基材の少なくとも一方の面に形成されていればよく、またガスバリア層又はアンダーコート層は、蒸着層又はプラスチック基材表面の何れに形成されていてもよいが、前述したガスバリア層は耐クラック性に優れていることから、蒸着層上に形成することが好ましく、これにより蒸着層のクラック等の発生を防止することができる。
フィルム又はシートの製造方法としては、Tダイ法、インフレーション製膜法、キャスト製膜法等の従来公知の成形法を挙げることができる。
フィルム又はシートは、延伸温度で、逐次或は同時二軸延伸し、延伸後のフィルム又はシートを熱固定することにより製造された二軸延伸フィルム又はシートとして用いることもできる。
フィルム又はシートの厚みは、これに限定されないが、5〜3000μmの範囲にあることが好適である。
[Plastic substrate]
In the present invention, the plastic substrate on which the gas barrier layer or the undercoat layer is formed is composed of a film or sheet made of a thermoformable thermoplastic resin, and in particular, one having a vapor deposition layer can be suitably used.
The vapor deposition layer may be formed on at least one surface of the plastic substrate, and the gas barrier layer or the undercoat layer may be formed on either the vapor deposition layer or the plastic substrate surface. Since it is excellent in crack resistance, it is preferably formed on the vapor deposition layer, whereby the occurrence of cracks and the like in the vapor deposition layer can be prevented.
Examples of the method for producing a film or sheet include conventionally known forming methods such as a T-die method, an inflation film forming method, and a cast film forming method.
The film or sheet can be used as a biaxially stretched film or sheet produced by biaxially stretching sequentially or simultaneously at a stretching temperature and heat-setting the stretched film or sheet.
Although the thickness of a film or a sheet | seat is not limited to this, It is suitable to exist in the range of 5-3000 micrometers.

プラスチック基材を構成する樹脂の適当な例は、低−、中−或いは高−密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン−共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体等のオレフィン系共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド;ポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン−アクリロニトリル共重合体(ABS樹脂)等のスチレン系共重合体;ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体等の塩化ビニル系共重合体;ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体等のアクリル系共重合体;ポリカーボネート等である。   Suitable examples of the resin constituting the plastic substrate include low-, medium- or high-density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-copolymer, ionomer, Olefin copolymers such as ethylene-vinyl acetate copolymer and ethylene-vinyl alcohol copolymer; polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, polyethylene naphthalate; nylon 6, nylon 6,6 , Nylon 6,10, polyamide such as metaxylylene adipamide; polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin), etc. Tylene copolymer; Vinyl chloride copolymer such as polyvinyl chloride and vinyl chloride-vinyl acetate copolymer; Acrylic copolymer such as polymethyl methacrylate and methyl methacrylate / ethyl acrylate copolymer; is there.

これらの熱可塑性樹脂は単独で使用しても或いは2種以上のブレンド物の形で存在していてもよい、またプラスチック基体は、単層の構成でも、或いは例えば同時溶融押出しや、その他のラミネーションによる2層以上の積層構成であってもよい。
勿論、前記の溶融成形可能な熱可塑性樹脂には、所望に応じて顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、滑剤等の添加剤の1種或いは2種類以上を樹脂100重量部当りに合計量として0.001部乃至5.0部の範囲内で添加することもできる。
また、ガスバリア材を補強するために、ガラス繊維、芳香族ポリアミド繊維、カーボン繊維、パルプ、コットン・リンター等の繊維補強材、或いはカーボンブラック、ホワイトカーボン等の粉末補強材、或いはガラスフレーク、アルミフレーク等のフレーク状補強材の1種類或いは2種類以上を、前記熱可塑性樹脂100重量部当り合計量として2乃至150重量部の量で配合でき、更に増量の目的で、重質乃至軟質の炭酸カルシウム、雲母、滑石、カオリン、石膏、クレイ、硫酸バリウム、アルミナ粉、シリカ粉、炭酸マグネシウム等の1種類或いは2種類以上を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
さらに、ガスバリア性の向上を目指して、鱗片状の無機微粉末、例えば水膨潤性雲母、クレイ等を前記熱可塑性樹脂100重量部当り合計量として5乃至100重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
These thermoplastic resins may be used alone or present in the form of a blend of two or more, and the plastic substrate may be in a single layer configuration or, for example, co-melt extrusion or other lamination It may be a laminated structure of two or more layers.
Of course, the melt-moldable thermoplastic resin may contain one or more additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, lubricants, etc. as required per 100 parts by weight of the resin. The total amount can be added in the range of 0.001 to 5.0 parts.
In order to reinforce the gas barrier material, fiber reinforcement such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp, cotton linter, etc., powder reinforcement such as carbon black, white carbon, glass flake, aluminum flake, etc. One or two or more types of flaky reinforcing materials such as the above can be blended in a total amount of 2 to 150 parts by weight per 100 parts by weight of the thermoplastic resin, and heavy or soft calcium carbonate for the purpose of increasing the amount. , Mica, talc, kaolin, gypsum, clay, barium sulfate, alumina powder, silica powder, magnesium carbonate and the like in an amount of 5 to 100 parts by weight as a total amount per 100 parts by weight of the thermoplastic resin Even if it mix | blends according to a prescription known per se, it does not interfere.
Furthermore, with the aim of improving gas barrier properties, a prescription known per se in the amount of 5 to 100 parts by weight as a total amount of scaly inorganic fine powders such as water-swellable mica and clay per 100 parts by weight of the thermoplastic resin There is no problem even if it is blended according to.

プラスチック基材に形成する蒸着層は、従来公知の物理的或いは化学的気相蒸着法を用いて形成することができ、例えば酸化ケイ素や酸化アルミニウムのような無機物系の蒸着層、或いはアルミニウム等の金属系の蒸着層を形成することができる。これにより、ガスバリア材の存在と相俟って、外装材のガスバリア性又は輻射熱を遮断する能力(反射率)の少なくとも一方の向上を図ることができる。   The vapor deposition layer formed on the plastic substrate can be formed using a conventionally known physical or chemical vapor deposition method. For example, an inorganic vapor deposition layer such as silicon oxide or aluminum oxide, or aluminum can be used. A metal-based vapor deposition layer can be formed. Thereby, in combination with the presence of the gas barrier material, it is possible to improve at least one of the gas barrier property of the exterior material or the ability to block radiant heat (reflectance).

アンダーコート層を含有するガスバリア材は、上述した蒸着層が形成されたプラスチック基材の少なくとも一方の表面に、まず前述したアンダーコート層形成用組成物を塗布する。
アンダーコート層形成用組成物の塗工量は、アンダーコート層形成用組成物中の樹脂分及び多価金属のアルカリ性化合物の仕込み量によって決定され、一概に規定することができないが、形成されるアンダーコート層中に樹脂分が0.02乃至5.0g/m、特に0.1乃至2.5g/mの範囲にあり、且つ次いで塗布するガスバリア層形成用組成物溶液中のポリカルボン酸系ポリマーのカルボキシル基に対して、多価金属イオンが、前述したように、0.3当量以上になるように塗布することが好ましい。上記範囲よりも樹脂分が少ないと、アンダーコート層をプラスチック基材に固着させることが困難となり、一方上記範囲よりも樹脂分が多くても経済性に劣るだけで格別なメリットがない。
またプラスチック基体上に塗布されたアンダーコート層形成用組成物は、用いる塗料の種類及び塗工量にもよるが、50乃至200℃の温度で0.5秒乃至5分間、特に、60乃至140℃の温度で1秒乃至2分間、乾燥させることによって、アンダーコート層を形成することが可能であり、これによりプラスチック基材に影響を与えることなく、経済的にアンダーコート層を形成できる。
The gas barrier material containing an undercoat layer first applies the above-described composition for forming an undercoat layer to at least one surface of the plastic substrate on which the above-described vapor deposition layer is formed.
The coating amount of the composition for forming an undercoat layer is determined by the resin content in the composition for forming an undercoat layer and the charged amount of the alkali compound of the polyvalent metal. The resin content in the undercoat layer is in the range of 0.02 to 5.0 g / m 2 , particularly 0.1 to 2.5 g / m 2 , and then the polycarboxylic acid in the gas barrier layer forming composition solution to be applied As described above, it is preferable that the polyvalent metal ion is applied in an amount of 0.3 equivalent or more with respect to the carboxyl group of the acid polymer. If the resin content is less than the above range, it is difficult to fix the undercoat layer to the plastic substrate. On the other hand, even if the resin content is greater than the above range, it is inferior in economic efficiency and has no particular merit.
Further, the composition for forming an undercoat layer applied on a plastic substrate depends on the type and amount of paint used, and is at a temperature of 50 to 200 ° C. for 0.5 seconds to 5 minutes, particularly 60 to 140. It is possible to form an undercoat layer by drying at a temperature of 1 ° C. for 1 second to 2 minutes, whereby the undercoat layer can be formed economically without affecting the plastic substrate.

次いで形成されたアンダーコート層の上に、ガスバリア層形成用組成物を塗布する。ガスバリア層形成用組成物中に含まれるポリカルボン酸系ポリマー量、すなわち遊離カルボキシル基量は、酸価で少なくとも150KOHmg/g以上、特に250乃至970KOHmg/gの範囲であることが好ましい。
ガスバリア層形成用組成物の塗工量は、ガスバリア層中にイオン架橋が形成される前の樹脂分のみの乾燥状態で、0.3乃至4.5g/m、特に0.5乃至3.0g/mの範囲となるように塗布することが好ましい。上記範囲よりも塗工量が少ないと、十分なガスバリア性が得られない。一方上記範囲よりも樹脂分が多くても経済性に劣るだけで格別なメリットがない。
次いで、塗布されたガスバリア層形成用組成物の加熱処理を行うが、この加熱処理の際にアンダーコート層中の多価金属イオンとイソシアネート化合物がガスバリア層形成用組成物中に移行して、ポリカルボン酸系ポリマーのカルボキシル基間に金属イオン架橋構造を形成し、イソシアネート化合物に由来する窒素元素がガスバリア層の表層及びアンダーコート層との界面近傍に存在することになる。特にガスバリア層形成用組成物中に移行したイソシアネート化合物の大部分は、ガスバリア層表層にブリードアウトし、イソシアネート化合物に由来する化学結合をガスバリア層の表面に形成する。
このガスバリア層形成用組成物の加熱条件は、40乃至110℃、特に50乃至100℃の温度で、1秒乃至1分の範囲にあることが好ましく、2秒乃至30秒の範囲にあることがより好ましい。
尚、ガスバリア層は充分に乾燥させ、ガスバリア層の含水率を低減させることが望ましい。これにより、水蒸気の発生を抑制することが可能になり、真空断熱材の外装材として断熱性能を長期にわたって維持することが可能になる。
Next, a gas barrier layer forming composition is applied on the formed undercoat layer. The amount of the polycarboxylic acid-based polymer contained in the gas barrier layer forming composition, that is, the amount of free carboxyl groups, is preferably at least 150 KOHmg / g or more, particularly 250 to 970 KOHmg / g in terms of acid value.
The coating amount of the gas barrier layer-forming composition is 0.3 to 4.5 g / m 2 , particularly 0.5 to 3.3 in the dry state of only the resin component before ionic crosslinking is formed in the gas barrier layer. It is preferable to apply in a range of 0 g / m 2 . If the coating amount is less than the above range, sufficient gas barrier properties cannot be obtained. On the other hand, even if the resin content is larger than the above range, it is inferior in economic efficiency and has no particular advantage.
Next, the applied gas barrier layer forming composition is subjected to heat treatment. During this heat treatment, the polyvalent metal ions and isocyanate compound in the undercoat layer migrate into the gas barrier layer forming composition, A metal ion cross-linked structure is formed between the carboxyl groups of the carboxylic acid polymer, and the nitrogen element derived from the isocyanate compound is present in the vicinity of the interface between the surface layer of the gas barrier layer and the undercoat layer. In particular, most of the isocyanate compound that has migrated into the gas barrier layer-forming composition bleeds out to the surface layer of the gas barrier layer to form chemical bonds derived from the isocyanate compound on the surface of the gas barrier layer.
The heating condition of the gas barrier layer forming composition is preferably in the range of 1 second to 1 minute, preferably in the range of 2 seconds to 30 seconds, at a temperature of 40 to 110 ° C., particularly 50 to 100 ° C. More preferred.
It is desirable that the gas barrier layer be sufficiently dried to reduce the moisture content of the gas barrier layer. Thereby, it becomes possible to suppress generation | occurrence | production of water vapor | steam, and it becomes possible to maintain heat insulation performance over a long term as an exterior material of a vacuum heat insulating material.

上述したアンダーコート層形成用組成物及びガスバリア層形成用組成物の塗布、及び乾燥或いは加熱処理は、従来公知の方法により行うことができる。
塗布方法としては、これに限定されないが、例えばスプレー塗装、浸漬、或いはバーコーター、ロールコーター、グラビアコーター等により塗布することが可能である。
また乾燥或いは加熱処理は、オーブン乾燥(加熱)、赤外線加熱、高周波加熱等により行うことができる。
Application | coating of the composition for undercoat layer formation and gas barrier layer formation composition which were mentioned above, and drying or heat processing can be performed by a conventionally well-known method.
The coating method is not limited to this, but for example, spray coating, dipping, or coating by a bar coater, roll coater, gravure coater or the like is possible.
The drying or heat treatment can be performed by oven drying (heating), infrared heating, high-frequency heating, or the like.

(外装材)
本発明の真空断熱材に用いる外装材は、上述したガスバリア材上に熱溶着層を構成する熱可塑性樹脂を押出コートにより積層することにより形成されるガスバリア性積層体を用いることが重要な特徴であり、このガスバリア性積層体を外装材の一部として用いる限り、ガスバリア性積層体の他の層は従来公知の外装材と同様に構成することができるが、本発明においては特に以下に示す層構成を有するガスバリア性積層体を好適に使用することができる。
すなわち、本発明の真空断熱材に用いる外装材に用いる好適なガスバリア性積層体は、図4に示すように、内面側から順に、熱溶着層4、ガスバリア材5、接着層6、保護層8の積層構造、或いは図5に示すように、内面側から順に、熱溶着層4、ガスバリア材5、接着層6a、蒸着フィルム層(プラスチック基材7a及び蒸着層7b)7、接着層6b、保護層8の積層構造等を例示することができる。
(Exterior material)
The exterior material used for the vacuum heat insulating material of the present invention is characterized by the use of a gas barrier laminate formed by laminating the thermoplastic resin constituting the heat-welded layer on the gas barrier material described above by extrusion coating. Yes, as long as this gas barrier laminate is used as a part of the exterior material, the other layers of the gas barrier laminate can be configured in the same manner as a conventionally known exterior material. A gas barrier laminate having a configuration can be preferably used.
That is, the preferred gas barrier laminate used for the exterior material used in the vacuum heat insulating material of the present invention is, as shown in FIG. 4, in order from the inner surface side, the thermal welding layer 4, the gas barrier material 5, the adhesive layer 6, and the protective layer 8. As shown in FIG. 5, in order from the inner surface side, a heat-welded layer 4, a gas barrier material 5, an adhesive layer 6a, a vapor-deposited film layer (plastic base material 7a and vapor-deposited layer 7b) 7, an adhesive layer 6b, and a protective layer A laminated structure of the layer 8 can be exemplified.

図4又は図5に示すガスバリア材5は、外面側から順にPETフィルム5a及びPETフィルム5aに蒸着されたアルミニウム蒸着層5bから成る蒸着フィルムから成る基材にアンダーコート層5cを介してガスバリア層5dが形成されており、蒸着層と共に可撓性を有するガスバリア層が形成されていることにより、特に優れたガスバリア性を発現することが可能になる。
ガスバリア材の積層構成は図4又は図5に示した具体例に限定されるものではなく、例えば図4又は5におけるガスバリア材5が、基材樹脂側にも蒸着層5biiを形成した図6に示す層構成でもよいし、ガスバリア層5d上にも蒸着層5biiを形成した図7に示す層構成でもよいし、蒸着フィルムの基材樹脂側にアンダーコート層5cを介してガスバリア層5dを形成した図8に示す層構成でもよいし、さらにガスバリア層5d上に蒸着層5biiを形成した図9に示す層構成でもよい。耐熱分解性と耐クラック性の観点から、熱溶着層はガスバリア層上に直接押出コートすることが好ましいが、図10に示すように、プラスチック基材5a上に蒸着層を形成せず、ガスバリア層5d上に公知の技術により蒸着層5biを形成し、さらにこの蒸着層上に直接押出コートしてもよい。
本発明において、ガスバリア材の積層構成としては、ガスバリア層又はアンダーコート層の少なくとも一方が蒸着層に隣接していることが好ましい。すなわち、ガスバリア層は高温条件下では分子振動によりバリア性が低下するおそれがあるが、蒸着層と隣接することにより、ガスバリア層の分子振動が抑制され、ガスバリア層へ酸素が溶解しにくくなり、高温条件下でもガスバリア性を維持することが可能になる。
好適な積層構成としては、ガスバリア材が蒸着層を2層有し、この2つの蒸着層の間にガスバリア層及びアンカーコート層が形成されている層構成(図7及び図9)を例示でき、特にガスバリア層及びアンダーコート層の両方が蒸着層と隣接している層構成(図7)が好適である。
The gas barrier material 5 shown in FIG. 4 or FIG. 5 has a gas barrier layer 5d via an undercoat layer 5c on a base material composed of a PET film 5a and an aluminum deposited layer 5b deposited on the PET film 5a in order from the outer surface side. Since the gas barrier layer having flexibility is formed together with the vapor deposition layer, particularly excellent gas barrier properties can be expressed.
The laminated structure of the gas barrier material is not limited to the specific example shown in FIG. 4 or FIG. 5. For example, the gas barrier material 5 in FIG. 4 or 5 is formed in FIG. The layer structure shown in FIG. 7 in which the vapor deposition layer 5bii is formed also on the gas barrier layer 5d may be used, or the gas barrier layer 5d is formed on the base resin side of the vapor deposition film via the undercoat layer 5c. The layer configuration shown in FIG. 8 may be used, or the layer configuration shown in FIG. 9 in which the vapor deposition layer 5bii is formed on the gas barrier layer 5d may be used. From the viewpoint of thermal decomposition resistance and crack resistance, it is preferable that the heat-welded layer is directly extrusion-coated on the gas barrier layer. However, as shown in FIG. 10, the vapor barrier layer is not formed on the plastic substrate 5a. A vapor deposition layer 5bi may be formed on 5d by a known technique, and may be directly extrusion coated on this vapor deposition layer.
In the present invention, as a laminated structure of the gas barrier material, it is preferable that at least one of the gas barrier layer and the undercoat layer is adjacent to the vapor deposition layer. That is, the barrier property of the gas barrier layer may decrease due to molecular vibration under high temperature conditions, but by adjoining the vapor deposition layer, the molecular vibration of the gas barrier layer is suppressed, making it difficult for oxygen to dissolve in the gas barrier layer. The gas barrier property can be maintained even under conditions.
As a suitable laminated structure, the gas barrier material has two layers of vapor deposition layers, and a layer structure (FIGS. 7 and 9) in which a gas barrier layer and an anchor coat layer are formed between the two vapor deposition layers can be exemplified. In particular, a layer structure (FIG. 7) in which both the gas barrier layer and the undercoat layer are adjacent to the vapor deposition layer is suitable.

本発明においては、押出機で溶融混練された熱可塑性樹脂をTダイや環状ダイ等からガスバリア材に押出すことにより、熱溶着層が形成されたガスバリア材を成形できるが、熱溶着層として熱可塑性樹脂を押出コートする際に接着層と熱溶着層を共押出ラミネートしてもよい。
また、熱溶着層と成る熱可塑性樹脂をガスバリア材のガスバリア層へ押出コートすると共に、ガスバリア材の他方の面に熱可塑性樹脂から成る他の層を形成してもよく、例えば接着性樹脂を介して保護層を形成するプラスチック基材を積層するサンドイッチラミネート又は保護層と成る熱可塑性を押出コートすることもでき、これにより図4に示したガスバリア性積層体を、一度もドライラミネーション工程を行わず製造することができる。
この際、必要に応じて押出ライン上でのガスバリア材または基材へのコロナ放電処理やプラズマ処理、熱可塑性樹脂溶融膜へのオゾン処理、基材へのアンカーコート塗布等を施しても良い。
また、異なる種類の熱可塑性樹脂を同時にラミネートする共押出ラミネートや、タンデム押出機により複数回の押出ラミネートを同一ライン上で行っても良い。
In the present invention, a gas barrier material in which a heat-welded layer is formed can be formed by extruding a thermoplastic resin melt-kneaded by an extruder from a T die or an annular die to a gas barrier material. When the plastic resin is extrusion coated, the adhesive layer and the heat welding layer may be coextruded.
In addition, the thermoplastic resin serving as the heat welding layer may be extrusion coated onto the gas barrier layer of the gas barrier material, and another layer made of the thermoplastic resin may be formed on the other surface of the gas barrier material, for example, via an adhesive resin. 4 can be extrusion coated with a sandwich laminate or a thermoplastic layer to form a protective layer, whereby the gas barrier laminate shown in FIG. 4 is never subjected to a dry lamination step. Can be manufactured.
At this time, if necessary, corona discharge treatment or plasma treatment on the gas barrier material or the substrate on the extrusion line, ozone treatment on the thermoplastic resin molten film, anchor coat application on the substrate, or the like may be performed.
Further, co-extrusion lamination in which different types of thermoplastic resins are laminated at the same time, or multiple times of extrusion lamination by a tandem extruder may be performed on the same line.

ガスバリア性積層体の最内層に設けられる熱溶着層を構成する樹脂としては、従来公知のヒートシール性樹脂を挙げることができ、これに限定されないが、低−、中−或いは高−密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等のオレフィン系樹脂、酸変性ポリオレフィン樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリアクリロニトリルなどのアクリル樹脂を例示できるが、接着性の観点から、ガスバリア層と水素結合を形成する、エチレン−(メタ)アクリル酸共重合体又はアイオノマー樹脂を用いることが特に好適である。
同様に、接着性の観点から酸化防止剤無添加のオレフィン樹脂や、シングルサイト系触媒により重合したオレフィン樹脂や、基材やガスバリア層表面のカルボキシル基や水酸基といった極性基と化学結合が形成できるエポキシ基等の反応基を含有するオレフィン系樹脂も好適に使用することができる。これらは、上記エチレン−(メタ)アクリル酸共重合体又はアイオノマー樹脂と比較して、高湿度下でも接着強度の低下が起こりにくいため、特に耐水性を求められる用途に適している。
尚、ここでいう酸化防止剤無添加とは樹脂内に含まれる酸化防止剤が10ppm以下のものを示し、溶融押出時に樹脂の酸化が促されることで、樹脂内に極性基が増加し、基材やガスバリア材との凝集力を高めることができる。また後者の反応基を有するオレフィン系樹脂の場合、溶融押出時の熱を利用して化学反応を行うだけでなく、押出ラミネート後での経時保管やオーブンや恒温器内での熱処理(キュア)により、より反応を促して接着性を高めることが可能である。
また、シングルサイト系触媒により重合したオレフィン樹脂としては分子量分布が小さく低密度という特徴を有するメタロセン触媒などに代表されるシングルサイト系触媒を用いて重合された直鎖状低密度ポリエチレンを挙げることができる。このようなオレフィン系樹脂は、押出後の冷却時に結晶化が起こりにくく、結晶化による歪みが小さいためアンカー効果の点で特に有利である。
Examples of the resin constituting the heat-welded layer provided in the innermost layer of the gas barrier laminate can include conventionally known heat-sealable resins, including, but not limited to, low-, medium-, or high-density polyethylene, Examples include linear low density polyethylene, olefin resins such as polypropylene and ethylene-propylene copolymers, acid-modified polyolefin resins, polyester resins such as polyethylene terephthalate, and acrylic resins such as polyacrylonitrile. It is particularly preferable to use an ethylene- (meth) acrylic acid copolymer or ionomer resin that forms hydrogen bonds with the gas barrier layer.
Similarly, from the viewpoint of adhesion, an olefin resin with no antioxidant added, an olefin resin polymerized by a single-site catalyst, and an epoxy capable of forming a chemical bond with a polar group such as a carboxyl group or a hydroxyl group on the surface of a substrate or gas barrier layer An olefin resin containing a reactive group such as a group can also be suitably used. These are particularly suitable for applications where water resistance is required because the adhesive strength is less likely to decrease even under high humidity as compared to the ethylene- (meth) acrylic acid copolymer or ionomer resin.
Incidentally, the term “antioxidant-free” as used herein means that the antioxidant contained in the resin is 10 ppm or less, and the oxidation of the resin is promoted at the time of melt extrusion, so that polar groups increase in the resin. The cohesive force with the material and the gas barrier material can be increased. In the case of an olefin resin having the latter reactive group, not only the chemical reaction is carried out by utilizing the heat at the time of melt extrusion, but also by aging storage after extrusion lamination and heat treatment (curing) in an oven or a thermostat. It is possible to enhance the adhesion by promoting the reaction.
Examples of the olefin resin polymerized by a single site catalyst include linear low density polyethylene polymerized using a single site catalyst represented by a metallocene catalyst having a low molecular weight distribution and low density. it can. Such an olefin resin is particularly advantageous in terms of an anchor effect because crystallization hardly occurs during cooling after extrusion and distortion due to crystallization is small.

これらのオレフィン系樹脂の中でも、密度(測定条件は23℃、JIS−K6922−1に準拠)0.950g/cm以下が好ましく、アンカー効果の点から、特に密度0.920g/cm以下が好ましい。また、押出加工適性の点からメルトフローレート(MFR:測定条件は190℃、2.16kg荷重、JIS−K6922−1に準拠)は0.1g/10分以上が好ましく、溶融状態で基材やガスバリア層へ浸み込みやすく、優れた接着性が得られやすいという点から、特にMFR7.0g/10分以上が好ましい。
更に、熱可塑性樹脂がガスバリア層と十分に接着しており、この熱可塑性樹脂が柔軟であるほど、積層体が屈曲や引張りなどの応力を受けた際に、この応力を緩和する効果が高くなるため、ガスバリア層のクラック発生を抑制でき、酸素・窒素バリア安定性の点で有効である。
Among these olefin-based resins, the density (measurement conditions are 23 ° C., conforming to JIS-K6922-1) is preferably 0.950 g / cm 3 or less, and in view of the anchor effect, the density is particularly 0.920 g / cm 3 or less. preferable. In addition, the melt flow rate (MFR: measurement condition is 190 ° C., 2.16 kg load, conforming to JIS-K6922-1) is preferably 0.1 g / 10 min or more from the point of extrusion processability. MFR of 7.0 g / 10 min or more is particularly preferable from the viewpoint that it can easily penetrate into the gas barrier layer and easily obtain excellent adhesiveness.
Furthermore, the thermoplastic resin is sufficiently adhered to the gas barrier layer, and the more flexible the thermoplastic resin, the higher the effect of relaxing the stress when the laminate is subjected to stress such as bending or tension. Therefore, the occurrence of cracks in the gas barrier layer can be suppressed, which is effective in terms of oxygen / nitrogen barrier stability.

またガスバリア材、蒸着フィルム、保護層の間に必要により形成される接着層としては、従来公知の接着性樹脂を用いることができ、これに限定されないが、前述したようにサンドウィッチラミネートにより接着性樹脂を基材樹脂上に押出供給して他の層(例えば、保護層等)を積層する場合には、熱溶着層について上述した樹脂を使用することが好ましく、ドライラミネートによる積層の場合は、ウレタン系接着剤を好適に使用することができる。   In addition, as the adhesive layer formed between the gas barrier material, the vapor deposition film, and the protective layer as necessary, a conventionally known adhesive resin can be used, but is not limited thereto, but as described above, the adhesive resin is formed by sandwich lamination. When the other layer (for example, a protective layer) is laminated by extruding the resin onto the base resin, it is preferable to use the resin described above for the heat-welded layer. In the case of lamination by dry lamination, urethane is used. A system adhesive can be suitably used.

ガスバリア性積層体の最外層に設けられ、外装材の機械的強度や耐水性を向上させる保護層を構成する樹脂としては、これに限定されないが、ナイロン6、ナイロン6,6、ナイロン6,10、メタキシリレンアジパミド等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリエチレンナフタレート等のポリエステル樹脂、或いはエチレン・4フッ化エチレン共重合体樹脂、ポリプロピレン、ポリエチレン等のオレフィン系樹脂を使用することができ、特に外装材の機械的強度、耐突き刺し性等の点から、二軸延伸フィルムから成ることが望ましい。最も好適な保護層としては、二軸延伸ナイロンフィルムを挙げることができる。
蒸着フィルムは、これに限定されないが、上述したポリエステル、ポリオレフィン、ポリアミド等から成る基材フィルムに、酸化ケイ素、酸化アルミニウム、シリカとアルミナの混合体、ダイヤモンドライクカーボンのような無機物系の蒸着層、或いはアルミニウム等の金属系の蒸着層を形成した蒸着フィルムを好適に使用することができるが、ガスバリア材上に蒸着層を直接形成することもできる。
本発明において外装材として用いられるガスバリア積層体における、熱溶着層、蒸着フィルム及び保護層の厚みは、特に限定されず、従来真空断熱材の外装材に用いられていた範囲のものを使用することができるが、具体的には、熱溶着層が20〜100μm、蒸着層が100〜20000Å、蒸着層を形成する基材が5〜100μm、保護層が5〜100μmの範囲にあることが好適である。
The resin constituting the protective layer provided in the outermost layer of the gas barrier laminate and improving the mechanical strength and water resistance of the exterior material is not limited to this, but nylon 6, nylon 6, 6, nylon 6, 10 Polyamide resins such as metaxylylene adipamide; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, polyethylene naphthalate, or ethylene / tetrafluoroethylene copolymer resin, polypropylene, polyethylene, etc. Olefin-based resins can be used, and in particular, from the viewpoint of mechanical strength of the exterior material, puncture resistance, and the like, it is desirable to be made of a biaxially oriented film. The most suitable protective layer can include a biaxially stretched nylon film.
The vapor deposition film is not limited to this, but the base film made of the above-described polyester, polyolefin, polyamide, etc., silicon oxide, aluminum oxide, a mixture of silica and alumina, an inorganic vapor deposition layer such as diamond-like carbon, Or although the vapor deposition film which formed metal-type vapor deposition layers, such as aluminum, can be used conveniently, a vapor deposition layer can also be directly formed on a gas barrier material.
In the gas barrier laminate used as an exterior material in the present invention, the thicknesses of the heat-welded layer, the deposited film and the protective layer are not particularly limited, and those in the range conventionally used for the exterior material of the vacuum heat insulating material should be used. Specifically, it is preferable that the heat welding layer is 20 to 100 μm, the vapor deposition layer is 100 to 20000 mm, the base material forming the vapor deposition layer is 5 to 100 μm, and the protective layer is 5 to 100 μm. is there.

(真空断熱材の製造方法)
本発明の真空断熱材は、前述した外装材を用いる以外は従来公知の真空断熱材と同様にして製造することができ、これに限定されないが、芯材を前述した外装材によって被覆し、この外装材の熱溶着層同士を重ね合わせた後、真空チャンバー内で減圧し、所定内圧に到達した後、熱溶着層を熱溶着して密封することにより製造する。
芯材としては、これに限定されないが、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化ケイ素繊維等の繊維、或いはシリカ、パーライト、カーボンブラック等の粉末を使用することができる。
(Method for manufacturing vacuum insulation)
The vacuum heat insulating material of the present invention can be produced in the same manner as a conventionally known vacuum heat insulating material except that the above-described exterior material is used, and is not limited thereto, but the core material is covered with the above-described exterior material, After the heat-welded layers of the exterior material are overlapped with each other, the pressure is reduced in a vacuum chamber, and after reaching a predetermined internal pressure, the heat-welded layer is heat-welded and sealed.
The core material is not limited to this, but fiber such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, silicon carbide fiber, or powder such as silica, pearlite, or carbon black should be used. Can do.

本発明を次の実施例によりさらに説明するが、本発明は次の例により何らかの制限を受けるものではない。なお、実施例及び比較例の各種測定方法及び評価方法は以下の通りであり、各実施例のアンダーコート層及びバリア層の組成を表1に、外装材の層構成を表2に、熱溶着層に用いた樹脂種を表3に記載する。   The present invention is further illustrated by the following examples, but the invention is not limited in any way by the following examples. The various measurement methods and evaluation methods of the examples and comparative examples are as follows. The composition of the undercoat layer and the barrier layer of each example is shown in Table 1, the layer structure of the exterior material is shown in Table 2, and thermal welding is performed. Table 3 shows the resin types used for the layers.

以下の方法を用いて、ガスバリア層中の一価の金属元素、多価金属元素および窒素元素の含有量を測定した。
(一価の金属元素と多価金属元素の含有量)
ポリカルボン酸系ポリマーから成るガスバリア材をアルカリ性溶液に浸漬して溶解させた後、蒸発乾固させて得られた固体をオーブンで灰化させる。得られた灰をICP発光分光分析装置(サーモフィッシャーサイエンティフィック株式会社製 iCAP6000)で分析することで、一価の金属元素ならびに多価金属元素の重量比を分析した。
The contents of monovalent metal element, polyvalent metal element and nitrogen element in the gas barrier layer were measured using the following method.
(Content of monovalent metal element and polyvalent metal element)
A gas barrier material composed of a polycarboxylic acid-based polymer is immersed in an alkaline solution and dissolved, and then the solid obtained by evaporating to dryness is incinerated in an oven. The obtained ash was analyzed with an ICP emission spectroscopic analyzer (iCAP6000 manufactured by Thermo Fisher Scientific Co., Ltd.), thereby analyzing the weight ratio of the monovalent metal element and the polyvalent metal element.

(窒素元素の含有量)
ポリカルボン酸系ポリマーから成るガスバリア材をアルカリ性溶液に浸漬して溶解させた後、蒸発乾固させて得られた固体を有機元素分析装置(CE Instruments社製 Thermoquest EA1110型)を用いた燃焼法による分析により、窒素と酸素の総重量に対する窒素の重量比を測定した。
(Content of nitrogen element)
A gas barrier material composed of a polycarboxylic acid-based polymer is immersed in an alkaline solution to be dissolved, and then the solid obtained by evaporation to dryness is obtained by a combustion method using an organic element analyzer (Thermoquest EA1110 manufactured by CE Instruments). The weight ratio of nitrogen to the total weight of nitrogen and oxygen was determined by analysis.

(ガスバリア層の表層の窒素元素の含有量)
実施例に記載の各ガスバリア層の表層をXPS(アルバック・ファイ社製 Quantum−2000)にて表面分析し、表層における炭素、酸素及び窒素の総量に対する窒素の含有量を測定した。
(Content of nitrogen element in the surface layer of the gas barrier layer)
The surface layer of each gas barrier layer described in the examples was subjected to surface analysis using XPS (Quantum-2000 manufactured by ULVAC-PHI), and the nitrogen content relative to the total amount of carbon, oxygen and nitrogen in the surface layer was measured.

(アンダーコート層及び領域(x)の各窒素含有量)
以下の方法を用いて、各領域における炭素、酸素及び窒素の総量に対する窒素の含有量を測定した。
領域(x):実施例に記載の各ガスバリア材をアルカリ性水溶液に浸漬してガスバリア層を溶解後、露出した表面をXPSにて組成分析。
アンダーコート層:実施例に記載の各ガスバリア材を傾斜切削し、該当する領域をXPSにて組成分析。
(Nitrogen content of undercoat layer and region (x))
Using the following method, the nitrogen content relative to the total amount of carbon, oxygen, and nitrogen in each region was measured.
Region (x): Each gas barrier material described in the examples was immersed in an alkaline aqueous solution to dissolve the gas barrier layer, and then the exposed surface was subjected to composition analysis by XPS.
Undercoat layer: Each gas barrier material described in the examples is subjected to inclined cutting, and the corresponding region is subjected to composition analysis by XPS.

(イオン架橋率)
イオン架橋率は、イオン架橋形成後の実施例に記載の各ガスバリア層を用い、フーリエ変換赤外分光光度計で測定し算出する。イオン架橋の形成により、カルボン酸はカルボン酸塩へと転換する。一般に、カルボン酸の特性吸収帯は、920〜970cm−1付近、1700〜1710cm−1付近、2500〜3200cm−1付近の波長に、更に酸無水物では1770〜1800cm−1付近の波長にある。また、カルボン酸塩の特性吸収帯は、1480〜1630cm−1付近の波長にある。イオン架橋率の算出には、1600〜1800cm−1のカルボン酸および酸無水物の波長領域に頂点を有するピークの高さと、1480〜1630cm−1のカルボン酸塩の波長領域に頂点を有するピークの高さを用いる。より好ましくは、1695〜1715cm−1(i)と1540〜1610cm−1(ii)の波長領域に頂点を有するピークの高さを用いる。各試料の赤外吸収スペクトルを検出し、(i)および(ii)の波長での吸光度を測定しピーク高さを得る。
カルボン酸とカルボン酸塩の吸光度係数を同じと見なし、カルボキシル基の塩転換率(カルボン酸からカルボン酸塩へ変換した割合)、即ちイオン架橋率Xを下記式(1)により算出する。また、イオン架橋に使用された多価金属のアルカリ性化合物当量Yを下記式(2)により算出する。
X=(ii)のピーク高さ/[(i)のピーク高さ+(ii)のピーク高さ]…(1)
Y=X/100 …(2)
尚、(i)及び(ii)のピーク高さは、当ピークのすそ部分がベースラインに重なる点とピーク頂点の吸光度差をいう。
(フーリエ変換赤外分光光度計の測定条件)
使用機器:Digilab社製 FTS7000series
測定方法:ゲルマニウムプリズムを用いた一回反射法
測定波長領域:4000〜700cm−1
(Ion crosslinking rate)
The ionic crosslinking rate is calculated by measuring with a Fourier transform infrared spectrophotometer using each gas barrier layer described in Examples after the formation of ionic crosslinking. The formation of ionic bridges converts the carboxylic acid to the carboxylate. In general, the characteristic absorption band of the carboxylic acid, 920~970Cm around -1, 1700~1710Cm around -1, the wavelength around 2500~3200Cm -1, at a wavelength of around 1770~1800Cm -1 in yet anhydride. In addition, the characteristic absorption band of the carboxylate is at a wavelength near 1480 to 1630 cm −1 . For the calculation of the ionic crosslinking rate, the peak height having a peak in the wavelength region of carboxylic acid and acid anhydride of 1600 to 1800 cm −1 and the peak having a peak in the wavelength region of carboxylate of 1480 to 1630 cm −1 are calculated. Use height. More preferably, peak heights having apexes in the wavelength regions of 1695 to 1715 cm −1 (i) and 1540 to 1610 cm −1 (ii) are used. The infrared absorption spectrum of each sample is detected, and the absorbance at the wavelengths (i) and (ii) is measured to obtain the peak height.
Assuming that the absorbance coefficients of the carboxylic acid and the carboxylate are the same, the salt conversion rate of the carboxyl group (the ratio of conversion from the carboxylic acid to the carboxylate), that is, the ionic crosslinking rate X is calculated by the following formula (1). Moreover, the alkaline compound equivalent Y of the polyvalent metal used for the ion crosslinking is calculated by the following formula (2).
X = peak height of (ii) / [peak height of (i) + peak height of (ii)] (1)
Y = X / 100 (2)
The peak heights (i) and (ii) refer to the difference in absorbance between the point where the skirt portion of the peak overlaps the baseline and the peak apex.
(Measurement conditions of Fourier transform infrared spectrophotometer)
Equipment used: Digilab FTS7000series
Measurement method: single reflection method using germanium prism Measurement wavelength region: 4000 to 700 cm −1

(熱重量分析)
ガスバリア層を形成後に、プラスチック基材またはアンダーコート層からガスバリア層を剥離して熱重量分析(TGA、日立ハイテクサイエンス社製、TG/DTA7220)を行い、200℃〜320℃までの重量減少分を算出した。
昇温速度:10℃/分
測定温度:20℃〜900℃
200℃から320℃までの重量減少分%=(200℃でのサンプル重量−320℃でのサンプル重量)/開始時のサンプル重量×100
(Thermogravimetric analysis)
After the gas barrier layer is formed, the gas barrier layer is peeled off from the plastic substrate or the undercoat layer and thermogravimetric analysis (TGA, manufactured by Hitachi High-Tech Science Co., Ltd., TG / DTA7220) is performed. Calculated.
Temperature increase rate: 10 ° C / min Measurement temperature: 20 ° C to 900 ° C
% Weight loss from 200 ° C. to 320 ° C. = (Sample weight at 200 ° C.−sample weight at 320 ° C.) / Sample weight at start × 100

(動的粘弾性測定)
環境制御型ナノインデンター(Hysitron製 Tribo Scope、エスアイアイ・ナノテクノロジー製 E−sweep型 複合装置)を用いて、ガスバリア層の動的粘弾性(DMS)測定を行い、200℃のtanδから50℃のtanδを引いたときの差を算出した。
使用圧子:球形圧子
測定雰囲気:真空(10−3Pa以下)
測定温度:23〜300℃
測定周波数:20Hz
(Dynamic viscoelasticity measurement)
Using an environmentally controlled nanoindenter (Tribo Scope from Hysitron, E-sweep type composite device from SII Nanotechnology), the dynamic viscoelasticity (DMS) measurement of the gas barrier layer is carried out. The difference when subtracting tan δ was calculated.
Working indenter: Spherical indenter Measurement atmosphere: Vacuum (10 -3 Pa or less)
Measurement temperature: 23-300 ° C
Measurement frequency: 20Hz

外装材の各種測定方法及び評価方法を記載する。
(酸素透過量)
実施例に記載の各外装材を酸素透過量測定装置(Modern Control社製、OX―TRAN2/20)を用いて測定した。但し、測定条件は温度80℃、相対湿度0%とした。
Various measurement methods and evaluation methods for exterior materials are described.
(Oxygen transmission rate)
Each exterior material described in the Examples was measured using an oxygen permeation measuring device (manufactured by Modern Control, OX-TRAN 2/20). However, the measurement conditions were a temperature of 80 ° C. and a relative humidity of 0%.

(窒素透過量)
実施例に記載の各外装材をJIS K7126 の気体透過試験A法(差圧法)に準拠し測定した。但し、測定条件は温度80℃、相対湿度0%とした。
(Nitrogen permeation)
Each exterior material described in the examples was measured according to the gas permeation test method A (differential pressure method) of JIS K7126. However, the measurement conditions were a temperature of 80 ° C. and a relative humidity of 0%.

(水蒸気透過量)
実施例に記載の各積層体を水蒸気透過量測定装置(Modern Control社製、PERMATRAN−W 3/30)を用いて測定した。測定条件は温度40℃、相対湿度90%とした。
(Water vapor transmission rate)
Each laminate described in the examples was measured using a water vapor transmission rate measuring device (manufactured by Modern Control, PERMATRAN-W 3/30). The measurement conditions were a temperature of 40 ° C. and a relative humidity of 90%.

真空断熱材の各種測定方法及び評価方法を記載する。
(熱伝導率)
実施例に記載の各真空断熱材を、温度80℃の恒温槽で100日保管した前後で熱伝導率を測定した。また、熱伝導率の差分はその前後の値の差とした。差分の値が小さいことは、真空断熱材内部の真空度が高く保持されていることを意味し、断熱効果が経時的にも維持されていることを示す。
Various measurement methods and evaluation methods for vacuum insulation are described.
(Thermal conductivity)
The thermal conductivity was measured before and after each vacuum heat insulating material described in the Examples was stored in a thermostatic bath at a temperature of 80 ° C. for 100 days. The difference in thermal conductivity was the difference between the values before and after. A small value of the difference means that the degree of vacuum inside the vacuum heat insulating material is kept high, and indicates that the heat insulating effect is maintained over time.

(実施例1)
(ポリカルボン酸系ポリマーとしてポリアクリル酸(東亞合成製、AC-10LHP、Mw=25万)を用い、メタノール/2−プロパノール/MEK/水混合溶媒(重量比で25/25/40/10)に、固形分が6重量%になるように溶解した後、ポリアクリル酸に対して中和度2%となるように20重量%水酸化ナトリウム水溶液を加えて主溶液を得た。前記主溶液に、直鎖状脂肪族ポリイソシアネート(住化バイエルウレタン製、スミジュールN3300、1,6-ヘキサメチレンジイソシアネートベースのイソシアヌレート型、固形分100重量%、Tg=−60℃、Mn=680)をポリアクリル酸に対して0.4重量部加え、脂環式ポリイソシアネート(住化バイエルウレタン製、デスモジュールZ4470、イソホロンジイソシアネートベースのイソシアヌレート型、酢酸ブチル溶解品、固形分70重量%、Tg=70℃、Mn=1200)を、溶媒を除いた重量がポリアクリル酸に対して0.4重量部となるよう加え、バリア材前駆体用コーティング液とした。前記コーティング液をバーコーターにより、アルミ蒸着層が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)のアルミ蒸着面に塗布した後、コンベア型電気オーブンにより、設定温度105℃、パスタイム40秒の条件で熱処理をして、バリア材前駆体を有するフィルムを得た。水道水1Lに対して塩化カルシウムを金属換算で360mmol(40g)添加し、次いで水酸化カルシウムを11g添加することにより、pHを12.0(水温24℃での値)に調整した後、40℃に暖めてよく攪拌しながら前記バリア材前駆体を有するフィルムを3秒間浸漬処理した。湯中から取り出し乾燥させ、塗工量1.5g/mのガスバリア層を有するガスバリア材を得た。
Example 1
(Polyacrylic acid (manufactured by Toagosei Co., Ltd., AC-10LHP, Mw = 250,000) as a polycarboxylic acid polymer, methanol / 2-propanol / MEK / water mixed solvent (25/25/40/10 by weight)) After dissolving so that the solid content was 6% by weight, a 20% by weight sodium hydroxide aqueous solution was added so that the degree of neutralization was 2% with respect to polyacrylic acid to obtain a main solution. Linear aliphatic polyisocyanate (manufactured by Sumika Bayer Urethane, Sumidur N3300, isocyanurate type based on 1,6-hexamethylene diisocyanate, solid content 100% by weight, Tg = −60 ° C., Mn = 680) 0.4 parts by weight based on polyacrylic acid, alicyclic polyisocyanate (manufactured by Sumika Bayer Urethane, Desmodur Z4470, isophorone diisocyanate) Nate-based isocyanurate type, butyl acetate dissolved product, solid content 70% by weight, Tg = 70 ° C., Mn = 1200) was added so that the weight excluding the solvent was 0.4 parts by weight with respect to polyacrylic acid. The coating liquid for barrier material precursor was applied to the aluminum vapor deposition surface of a polyethylene terephthalate film (Oike Kogyo, Tetrait PC) on which an aluminum vapor deposition layer was formed with a bar coater, A film having a barrier material precursor was obtained by heat treatment in an oven under the conditions of a set temperature of 105 ° C. and a pass time of 40 seconds, and 360 mmol (40 g) of calcium chloride was added in terms of metal to 1 L of tap water, Then, after adjusting the pH to 12.0 (value at a water temperature of 24 ° C.) by adding 11 g of calcium hydroxide, 0 ℃ to warm for 3 seconds immersed films with the barrier material precursor with good stirring. Dried taken out from the hot water, to obtain a gas-barrier material having a gas barrier layer of the coated amount 1.5 g / m 2 .

外装材の作製方法を説明する。
ガスバリア材のガスバリア層上にコロナ処理を施し、熱溶着層として反応基含有低密度ポリエチレン樹脂(以下、「反応基含有LDPE」と表記)(日本ポリエチレン製、ノバテックTMLD LC605Y、MFR 7.3g/10分、密度0.918g/cm)50μmを260℃、ライン速度100m/分で押出ラミネートしたガスバリア性積層体得た。このガスバリア性積層体のPETフィルム上に、厚み2μmのウレタン系接着剤、厚み15μmの最外層となる二軸延伸ナイロンフィルを順次ドライラミネートして、外装材を得た。外装材の層構成については表2に示す。
この外装材を用いて、前述の真空断熱材の製造方法により真空断熱材を得た。
A method for manufacturing the exterior material will be described.
The gas barrier layer of the gas barrier material is subjected to corona treatment, and a reactive group-containing low-density polyethylene resin (hereinafter referred to as “reactive group-containing LDPE”) (made by Nippon Polyethylene, Novatec LD LC605Y, MFR 7.3 g / A gas barrier laminate was obtained by extrusion laminating 50 μm for 10 minutes at a density of 0.918 g / cm 3 ) at 260 ° C. and a line speed of 100 m / min. On the PET film of the gas barrier laminate, a urethane adhesive having a thickness of 2 μm and a biaxially stretched nylon film serving as an outermost layer having a thickness of 15 μm were sequentially dry-laminated to obtain an exterior material. Table 2 shows the layer structure of the exterior material.
Using this exterior material, a vacuum heat insulating material was obtained by the method for manufacturing a vacuum heat insulating material described above.

(実施例2)
水/エタノール混合溶媒(重量比で30/70)1Lに対して塩化カルシウムを金属換算で720mmol(80g)添加し、次いで水酸化カルシウムを22g添加することにより、塗工処理液を調製し、実施例1の浸漬処理に変えて、実施例1のバリア材前駆体上に前記塗工処理液をバーコーターで塗工後、乾燥させることでガスバリア層を有するガスバリア材を得た以外は、実施例1と同様の方法で外装材及び真空断熱材を得た。
(Example 2)
A coating treatment solution was prepared by adding 720 mmol (80 g) of calcium chloride to 1 L of water / ethanol mixed solvent (weight ratio 30/70) and then adding 22 g of calcium hydroxide. In place of the immersion treatment of Example 1, the coating treatment liquid was applied on the barrier material precursor of Example 1 with a bar coater and then dried to obtain a gas barrier material having a gas barrier layer. The exterior material and the vacuum heat insulating material were obtained by the same method as 1.

(実施例3)
実施例2において、主溶液の水酸化ナトリウムの替わりに水酸化カリウムを加え、塗工処理液の塩化カルシウムと水酸化カルシウムの替わりに、塩化マグネシウムと水酸化マグネシウムを加える以外は、実施例2と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 3)
In Example 2, potassium hydroxide is added instead of sodium hydroxide as the main solution, and magnesium chloride and magnesium hydroxide are added instead of calcium chloride and calcium hydroxide as the coating treatment solution. In the same manner, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained.

(実施例4)
重量比50/50の2種のポリエステルポリオール、バイロン200(東洋紡績製、樹脂骨格中に金属元素を含有していない非水系樹脂:蛍光X線にて確認)及びバイロンGK570(東洋紡績製、樹脂骨格中に金属元素を含有する非水系樹脂:蛍光X線にて確認)を、酢酸エチル/MEK混合溶媒(重量比で65/35)で溶解した液に、炭酸カルシウム(宇部マテリアルズ製、CS3N−A、一次粒径:0.3μm)をポリエステルポリオールに対して280重量部になるよう配合して全固形分を35重量%とした後、ガラスビーズ(東新理興製、BZ-04)によりミル分散してペーストを得た。このペーストに、直鎖状脂肪族ポリイソシアネート(住化バイエルウレタン製、スミジュールN3300)をポリエステルポリオールに対して20重量部加え、脂環式ポリイソシアネート(住化バイエルウレタン製、デスモジュールZ4470)を、溶媒を除いた重量がポリエステルポリオールに対して20重量部となるよう加え、全固形分が25重量%になるよう前記混合溶媒にて調製し、多価金属のアルカリ性化合物を含有するアンダーコート層形成用組成物から成るアンダーコート用コーティング液とした。
前記アンダーコート用コーティング液をバーコーターにより、厚み12μmのアルミ蒸着層が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)のアルミ蒸着層上に塗布した後、ボックス型の電気オーブンにより、設定温度70℃、処理時間2分の条件で熱処理し、塗工量1.4g/mのアンダーコート層を有するフィルムとした。
Example 4
Two polyester polyols with a weight ratio of 50/50, Byron 200 (manufactured by Toyobo Co., Ltd., non-aqueous resin containing no metal element in the resin skeleton: confirmed by fluorescent X-ray) and Byron GK570 (manufactured by Toyobo Co., Ltd., resin) Calcium carbonate (CS3N, manufactured by Ube Materials Co., Ltd.) was dissolved in a solution obtained by dissolving a non-aqueous resin containing a metal element in the skeleton: confirmed by fluorescent X-rays with an ethyl acetate / MEK mixed solvent (65/35 by weight). -A, primary particle size: 0.3 μm) was blended so as to be 280 parts by weight with respect to the polyester polyol to make the total solid content 35% by weight, and then glass beads (manufactured by Toshin Riko, BZ-04) To obtain a paste. To this paste, 20 parts by weight of linear aliphatic polyisocyanate (Sumijur Bayer Urethane, Sumidur N3300) is added to the polyester polyol, and alicyclic polyisocyanate (Suidia Bayer Urethane, Desmodur Z4470) is added. The undercoat layer containing a polyvalent metal alkaline compound prepared by adding the mixed solvent so that the weight excluding the solvent is 20 parts by weight with respect to the polyester polyol, and the total solid content is 25% by weight. An undercoat coating liquid comprising the forming composition was obtained.
After applying the coating liquid for undercoat on the aluminum vapor deposition layer of a polyethylene terephthalate film (Oike Kogyo, Tetrait PC) on which a 12 μm thick aluminum vapor deposition layer was formed by a bar coater, using a box-type electric oven, A film having an undercoat layer with a coating amount of 1.4 g / m 2 was heat-treated under the conditions of a set temperature of 70 ° C. and a treatment time of 2 minutes.

ポリカルボン酸系ポリマーとしてポリアクリル酸(東亞合成製、AC-10LP、Mw=2.5万)を用い、水/アセトン混合溶媒(重量比で80/20)に、固形分が10重量%になるように溶解した後、ポリアクリル酸に対して中和度2.5%となるように20重量%水酸化ナトリウム水溶液を加えて主溶液を得た。
前記主溶液をバーコーターにより、アンダーコート層を有する上記フィルムのアンダーコート層上に、塗工量が1.5g/mになるよう塗布してガスバリア材前駆体層とした。ここでガスバリア材前駆体層の塗工量とは、厚み12μmのアルミ蒸着層が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)に直接主溶液を塗布して乾燥した、即ちイオン架橋を形成させずに主溶液中のポリアクリル酸だけを乾燥して求めた塗工量のことである。
前記主溶液を塗布後の上記フィルムをコンベア型の電気オーブンにより、設定温度80℃、パスタイム5秒の条件で熱処理することで、ガスバリア材前駆体層中にイオン架橋を形成させたガスバリア層を、アンダーコート層上に有するフィルム、即ちガスバリア材を得た。前記ガスバリア材のガスバリア層上に熱溶着層、ガスバリア材のPETフィルム上に最外層、実施例1と同様に形成して外装材を作成した。この外装材を用い、実施例1と同様の方法で真空断熱材を得た。
Polyacrylic acid (manufactured by Toagosei Co., Ltd., AC-10LP, Mw = 25,000) is used as the polycarboxylic acid polymer, and the solid content is 10% by weight in a water / acetone mixed solvent (80/20 by weight). Then, a 20 wt% aqueous sodium hydroxide solution was added to obtain a main solution so that the degree of neutralization was 2.5% with respect to polyacrylic acid.
The main solution was applied by a bar coater onto the undercoat layer of the film having an undercoat layer so that the coating amount was 1.5 g / m 2 to obtain a gas barrier material precursor layer. Here, the coating amount of the gas barrier material precursor layer means that the main solution was directly applied to a polyethylene terephthalate film (Oike Kogyo, Tetrait PC) on which an aluminum vapor deposition layer having a thickness of 12 μm was formed. It is the coating amount obtained by drying only the polyacrylic acid in the main solution without forming the.
A gas barrier layer in which ion crosslinking is formed in the gas barrier material precursor layer by heat-treating the film after applying the main solution by a conveyor-type electric oven under conditions of a set temperature of 80 ° C. and a pass time of 5 seconds. A film having an undercoat layer, that is, a gas barrier material was obtained. A heat welding layer was formed on the gas barrier layer of the gas barrier material, an outermost layer was formed on the PET film of the gas barrier material, and an exterior material was formed in the same manner as in Example 1. Using this exterior material, a vacuum heat insulating material was obtained in the same manner as in Example 1.

(実施例5)
実施例4において、熱溶着層の反応基含有LDPEをエチレン−メタクリル酸共重合樹脂(以下、「EMAA」と表記)(三井・デュポンポリケミカル製、ニュクレルAN42012C、MFR 7.0g/10分、密度0.940g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 5)
In Example 4, the reactive group-containing LDPE of the heat-welded layer is an ethylene-methacrylic acid copolymer resin (hereinafter referred to as “EMAA”) (Mitsui / DuPont Polychemical, Nucrel AN42012C, MFR 7.0 g / 10 min, density) A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the amount was 0.940 g / cm 3 ).

(実施例6)
実施例4において、熱溶着層の反応基含有LDPEをアイオノマー樹脂(三井・デュポンポリケミカル製、ハイミラン1652、MFR 5.5g/10分、密度0.950g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 6)
In Example 4, the reactive group-containing LDPE of the heat-welded layer was changed to an ionomer resin (manufactured by Mitsui DuPont Polychemicals, Himiran 1652, MFR 5.5 g / 10 min, density 0.950 g / cm 3 ). 4 were used to obtain a gas barrier material, an exterior material, and a vacuum heat insulating material.

(実施例7)
実施例4において、熱溶着層の反応基含有LDPEを酸化防止剤無添加のメタロセン系直鎖状低密度ポリエチレン樹脂(以下、「酸防無m−LLDPE」と表記)(東ソー製、ルミタック08L51A、MFR 21g/10分、密度0.898g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 7)
In Example 4, the reactive group-containing LDPE of the heat-welded layer is a metallocene-based linear low-density polyethylene resin (hereinafter referred to as “acid-free m-LLDPE”) with no antioxidant added (Tosoh Corporation, LumiTac 08L51A, A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that MFR was 21 g / 10 minutes and the density was 0.898 g / cm 3 .

(実施例8)
実施例4において、熱溶着層の反応基含有LDPEをメタロセン系直鎖状低密度ポリエチレン(以下、「m−LLDPE」と表記)(日本ポリエチレン製、カーネルKC577T、MFR15g/10分、密度0.910g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 8)
In Example 4, the reactive group-containing LDPE of the heat-welded layer is a metallocene linear low-density polyethylene (hereinafter referred to as “m-LLDPE”) (manufactured by Nippon Polyethylene, Kernel KC577T, MFR 15 g / 10 min, density 0.910 g). Gas barrier material, exterior material, and vacuum heat insulating material were obtained in the same manner as in Example 4 except that / cm 3 ).

(実施例9)
実施例4において、熱溶着層の反応基含有LDPEを酸化防止剤無添加の低密度ポリエチレン(以下、「酸防無LDPE」と表記)(日本ユニカー製、NUC−8080、MFR 7.5g/10分、密度0.918g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
Example 9
In Example 4, the reactive group-containing LDPE of the heat-welded layer is a low-density polyethylene (hereinafter referred to as “acid-free LDPE”) with no antioxidant added (made by Nihon Unicar, NUC-8080, MFR 7.5 g / 10). The gas barrier material, the exterior material, and the vacuum heat insulating material were obtained in the same manner as in Example 4 except that the density was 0.918 g / cm 3 ).

(実施例10)
実施例4において、熱溶着層の反応基含有LDPEを酸防無添加LDPE(日本ポリエチレン製、ノバテックLC520、MFR3.6g/10分、密度0.923g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 10)
In Example 4, the reactive group-containing LDPE of the heat-welded layer was changed to non-acid-protective LDPE (Nippon Polyethylene, Novatec LC520, MFR 3.6 g / 10 min, density 0.923 g / cm 3 ). A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as described above.

(実施例11)
実施例4において、熱溶着層の反応基含有LDPEをメタロセン系ポリプロピレン(以下m―PP)(日本ポリプロ製、ウィンテックWFX4TA、MFR7.0g/10分、密度0.9g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 11)
In Example 4, except that the reactive group-containing LDPE of the heat-welded layer is a metallocene polypropylene (hereinafter m-PP) (manufactured by Nippon Polypro, Wintech WFX4TA, MFR 7.0 g / 10 min, density 0.9 g / cm 3 ). Obtained the gas barrier material, the exterior material, and the vacuum heat insulating material in the same manner as in Example 4.

(実施例12)
実施例4において、熱溶着層の反応基含有LDPEを接着性ポリオレフィン(三井化学製、ADMERQE840、MFR9.2g/10分、密度0.89g/cm)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 12)
In Example 4, the reactive group-containing LDPE of the heat-welding layer was changed to adhesive polyolefin (manufactured by Mitsui Chemicals, ADMERQE840, MFR 9.2 g / 10 min, density 0.89 g / cm 3 ). A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained by the method.

(実施例13)
実施例4において、アルミ蒸着層が形成されたポリエチレンテレフタレート(尾池工業製、テトライトPC)をアルミ蒸着層が形成された2軸延伸ナイロン(以下、「AL蒸着―ONY」と表記)とし、このAL蒸着―ONYを外装袋の最外層とした外装材を得た。外装材の層構成を表2に示す。この外装材を用い、前述の真空断熱材の製造方法により、真空断熱材を得た。
(Example 13)
In Example 4, polyethylene terephthalate (made by Oike Kogyo Co., Ltd., Tetrait PC) on which an aluminum vapor deposition layer was formed was used as biaxially stretched nylon (hereinafter referred to as “AL vapor deposition-ONY”) on which an aluminum vapor deposition layer was formed. An exterior material having AL deposition-ONY as the outermost layer of the exterior bag was obtained. Table 2 shows the layer structure of the exterior material. Using this exterior material, a vacuum heat insulating material was obtained by the above-described method for manufacturing a vacuum heat insulating material.

(実施例14)
実施例4において、アンダーコート用コーティング液の炭酸カルシウム配合量をポリエステルポリオールに対して100重量部とし、アンダーコート層(A)の塗工量を1.0g/mとし、溶液(B‘)の塗工量を2.0g/mとする以外は実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 14)
In Example 4, the calcium carbonate content of the undercoat coating solution is 100 parts by weight with respect to the polyester polyol, the coating amount of the undercoat layer (A) is 1.0 g / m 2 , and the solution (B ′) A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the coating amount was 2.0 g / m 2 .

(実施例15)
実施例4において、主溶液中の水/アセトン混合溶媒(重量比で80/20)を水/アセトン混合溶媒(重量比で20/80)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 15)
In Example 4, the gas barrier was prepared in the same manner as in Example 4 except that the water / acetone mixed solvent (80/20 by weight) in the main solution was changed to water / acetone mixed solvent (20/80 by weight). A material, an exterior material, and a vacuum heat insulating material were obtained.

(実施例16)
実施例4において、アンダーコート用コーティング液中の炭酸カルシウムをポリエステルポリオールに対して530重量部になるよう配合する以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 16)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material are obtained in the same manner as in Example 4 except that the calcium carbonate in the undercoat coating solution is blended to 530 parts by weight with respect to the polyester polyol. It was.

(実施例17)
実施例4において、主溶液中に水酸化ナトリウムを添加しないこと以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 17)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that sodium hydroxide was not added to the main solution.

(実施例18)
実施例4において、主溶液中のポリアクリル酸に対する中和度を4.5%とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 18)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the degree of neutralization with respect to polyacrylic acid in the main solution was 4.5%.

(実施例19)
実施例4において、主溶液中の水/アセトン混合溶媒の重量比を90/10とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 19)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight ratio of the water / acetone mixed solvent in the main solution was 90/10.

(実施例20)
実施例4において、直鎖状脂肪族ポリイソシアネート(住化バイエルウレタン製、スミジュールN3300)をポリエステルポリオールに対して30重量部加え、脂環式ポリイソシアネートを、溶媒を除いた重量がポリエステルポリオールに対して30重量部となるよう加え、主溶液中の水/アセトン混合溶媒の重量比を30/70とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 20)
In Example 4, 30 parts by weight of a linear aliphatic polyisocyanate (Sumitor N3300, manufactured by Sumika Bayer Urethane Co., Ltd.) is added to the polyester polyol, and the weight of the alicyclic polyisocyanate excluding the solvent is added to the polyester polyol. In addition, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight ratio of the water / acetone mixed solvent in the main solution was 30/70, with the addition of 30 parts by weight. It was.

(実施例21)
実施例4において、主溶液中の水酸化ナトリウム水溶液を水酸化カリウム水溶液とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 21)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the sodium hydroxide aqueous solution in the main solution was changed to a potassium hydroxide aqueous solution.

(実施例22)
実施例4において、アンダーコート用コーティング液中の炭酸カルシウムを炭酸マグネシウム(和光純薬製)とし、アンダーコート層の塗工量を1.2g/mとする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 22)
In Example 4, calcium carbonate in the undercoat coating solution is magnesium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), and the coating amount of the undercoat layer is 1.2 g / m 2 . A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained by the method.

(実施例23)
実施例4において、アンダーコート用コーティング液中の炭酸カルシウムを水酸化カルシウム(和光純薬製)とし、アンダーコート層の塗工量を1.1g/mとする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 23)
In Example 4, calcium carbonate in the undercoat coating solution is calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.), and the coating amount of the undercoat layer is 1.1 g / m 2. Thus, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained.

(実施例24)
実施例4において、デスモジュールZ4470を、タケネートD110N(三井化学製、キシリレンジイソシアネートベースのアダクト型、固形分75%)とし、溶媒を除いた重量がポリエステルポリオールに対して20重量部とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 24)
In Example 4, the death module Z4470 was Takenate D110N (manufactured by Mitsui Chemicals, xylylene diisocyanate-based adduct type, solid content 75%), and the weight excluding the solvent was 20 parts by weight with respect to the polyester polyol. A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4.

(実施例25)
実施例4において、スミジュールN3300をスミジュールHT(住化バイエルウレタン製、1,6-ヘキサメチレンジイソシアネートベースのアダクト型、固形分75%)とし、溶媒を除いた重量がポリエステルポリオールに対して20重量%とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 25)
In Example 4, Sumidur N3300 was Sumidur HT (manufactured by Sumika Bayer Urethane, 1,6-hexamethylene diisocyanate-based adduct type, solid content 75%), and the weight excluding the solvent was 20 with respect to the polyester polyol. A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight percent was used.

(実施例26)
実施例4において、アンダーコート用コーティング液中のバイロンGK570を、バイロン550(東洋紡績製、樹脂骨格中に金属元素を含有していない非水系樹脂:蛍光X線にて確認)とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 26)
In Example 4, except that Byron GK570 in the coating liquid for undercoat is Byron 550 (manufactured by Toyobo Co., Ltd., non-aqueous resin not containing metal element in resin skeleton: confirmed by fluorescent X-ray), In the same manner as in Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained.

(実施例27)
実施例4において、熱溶着層を、接着性ポリオレフィン(三井化学製、ADMER NE827、MFR5.6g/10分、密度0.909g/cm)と低密度ポリエチレン(以下、LDPEと表記)(日本ポリエチレン製、ノバテックTMLD LC600A、MFR7.0g/10分、密度0.918g/cm)を50μm(接着性ポリオレフィン5μm、低密度ポリエチレン45μm)、260℃、ライン速度100m/分で共押出ラミネートする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 27)
In Example 4, the heat-welded layer was made of adhesive polyolefin (manufactured by Mitsui Chemicals, ADMER NE827, MFR 5.6 g / 10 min, density 0.909 g / cm 3 ) and low-density polyethylene (hereinafter referred to as LDPE) (Nippon Polyethylene). NOVATEC LD LC600A, MFR 7.0 g / 10 min, density 0.918 g / cm 3 ), 50 μm (adhesive polyolefin 5 μm, low density polyethylene 45 μm), 260 ° C., except for coextrusion lamination at a line speed of 100 m / min Obtained the gas barrier material, the exterior material, and the vacuum heat insulating material in the same manner as in Example 4.

(実施例28)
実施例4において、アンダーコート用コーティング液をバーコーターにより、厚み12μmのアルミ蒸着が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)のポリエチレンテレフタレート上に塗布すること以外は実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 28)
Example 4 is the same as Example 4 except that the coating liquid for undercoat is applied onto the polyethylene terephthalate of a polyethylene terephthalate film (manufactured by Oike Kogyo Co., Ltd., Tetraite PC) on which a 12 μm thick aluminum vapor deposition is formed by a bar coater. In the same manner, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained.

(実施例29)
実施例4において、アンダーコート用コーティング液をバーコーターにより、厚み12μmのPETフィルム上に塗布し、ガスバリア層(B)上にアルミ蒸着を施す以外は実施例4と同様な方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 29)
In Example 4, the gas barrier material and the exterior were coated in the same manner as in Example 4 except that the coating liquid for undercoat was applied onto a PET film having a thickness of 12 μm by a bar coater and aluminum was deposited on the gas barrier layer (B). Materials and vacuum insulation were obtained.

(実施例30)
実施例4において、ガスバリア材のPETフィルム上に厚み2μmのウレタン系接着剤、厚み12μmのアルミ蒸着層が形成されたPETフィルム(尾池工業製、テトライトPC)、厚み2μmのウレタン系接着剤、厚み15μmの二軸延伸ナイロンフィルを順次ドライラミネートする以外は実施例4と同様な方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 30)
In Example 4, a 2 μm-thick urethane adhesive on a PET film as a gas barrier material, a PET film having a 12 μm-thick aluminum vapor deposition layer (Oike Kogyo, Tetrait PC), a 2 μm-thick urethane adhesive, A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that dry lamination of 15 μm thick biaxially stretched nylon fill was sequentially performed.

(実施例31)
実施例4において、ガスバリア材のガスバリア層上にアルミ蒸着層を形成し、アルミ蒸着層を2層有するガスバリア材を得る以外は実施例4と同様な方法で外装材及び真空断熱材を得た。
(Example 31)
In Example 4, an exterior material and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that an aluminum vapor deposition layer was formed on the gas barrier layer of the gas barrier material to obtain a gas barrier material having two aluminum vapor deposition layers.

(実施例32)
実施例28において、ガスバリア材のガスバリア層上にアルミ蒸着層を形成し、アルミ蒸着層を2層有するガスバリア材を得る以外は実施例27と同様な方法で外装材及び真空断熱材を得た。
(Example 32)
In Example 28, an exterior material and a vacuum heat insulating material were obtained in the same manner as in Example 27 except that an aluminum vapor deposition layer was formed on the gas barrier layer of the gas barrier material to obtain a gas barrier material having two aluminum vapor deposition layers.

(実施例33)
実施例30においてアンダーコート用コーティング液をバーコーターにより、厚み12μmのテックバリアTX(三菱樹脂製、シリカ蒸着系バリアフィルム)の基材上に塗布すること以外は実施例と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Example 33)
A gas barrier material was prepared in the same manner as in Example 30, except that the coating liquid for undercoat in Example 30 was applied onto a 12 μm thick Tech Barrier TX (made by Mitsubishi Plastics, silica-deposited barrier film) using a bar coater. The exterior material and the vacuum heat insulating material were obtained.

(比較例1)
実施例1において、直鎖状脂肪族ポリイソシアネート(住化バイエルウレタン製、スミジュールN3300)をポリエステルポリオールに対して20重量部加え、脂環式ポリイソシアネート(住化バイエルウレタン製、デスモジュールZ4470)を添加しない以外は、実施例1と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 1)
In Example 1, 20 parts by weight of a linear aliphatic polyisocyanate (Sumika Bayer Urethane, Sumidur N3300) was added to the polyester polyol, and an alicyclic polyisocyanate (Sumika Bayer Urethane, Desmodur Z4470). A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that was not added.

(比較例2)
実施例4において、主溶液中の水/アセトン混合溶媒の重量比を15/85とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 2)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight ratio of the water / acetone mixed solvent in the main solution was 15/85.

(比較例3)
実施例4において、主溶液中のポリアクリル酸AC-10LPの替わりにAC-10LHPを用い、ポリアクリル酸に対して中和度2%となるように20重量%水酸化ナトリウム水溶液を加えて、実施例4と同様の方法でガスバリア材を得た。さらに、このガスバリア材を、水道水1Lに対して塩化カルシウムを40g、水酸化カルシウムを11g添加して40℃に暖めた浸漬処理液に、よく攪拌しながら3秒間浸漬処理した以外は、実施例4と同様の方法で外装材及び真空断熱材を得た。
(Comparative Example 3)
In Example 4, instead of polyacrylic acid AC-10LP in the main solution, AC-10LHP was used, and 20% by weight sodium hydroxide aqueous solution was added so that the degree of neutralization was 2% with respect to polyacrylic acid. A gas barrier material was obtained in the same manner as in Example 4. Further, this gas barrier material was subjected to an immersion treatment for 3 seconds with good stirring in an immersion treatment solution which was heated to 40 ° C. by adding 40 g of calcium chloride and 11 g of calcium hydroxide to 1 L of tap water. 4 and the exterior material and the vacuum heat insulating material were obtained by the same method.

(比較例4)
実施例4において、主溶液中の水/アセトン混合溶媒の重量比を100/0とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 4)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight ratio of the water / acetone mixed solvent in the main solution was set to 100/0.

(比較例5)
実施例4において、主溶液中のポリアクリル酸に対する中和度を5.0%とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 5)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the degree of neutralization with respect to polyacrylic acid in the main solution was 5.0%.

(比較例6)
実施例4において、直鎖状脂肪族ポリイソシアネートをポリエステルポリオールに対して35重量%加え、脂環式ポリイソシアネートを、溶媒を除いた重量がポリエステルポリオールに対して35重量%となるよう加え、主溶液中の水/アセトン混合溶媒の重量比を30/70とする以外は、実施例4と同様の方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 6)
In Example 4, 35% by weight of linear aliphatic polyisocyanate was added to the polyester polyol, and alicyclic polyisocyanate was added so that the weight excluding the solvent was 35% by weight with respect to the polyester polyol. A gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the weight ratio of the water / acetone mixed solvent in the solution was 30/70.

(比較例7)
ポリアクリル酸(東亞合成製、AC-10LHP、Mw=25万)を水に溶解して固形分15%の水溶液とした後、ポリアクリル酸に対して中和度2%となるように20重量%水酸化ナトリウム水溶液を加えた。この部分中和ポリアクリル酸水溶液に対し、固形分15重量%の溶性澱粉(和光純薬製)水溶液を、70:30の重量比で混合し、混合液を得た。この水溶液を、厚み12μmの2軸延伸ポリエチレンテレフタレートフィルムにバーコーターを用い塗布し、ボックス型の電気オーブンにより、設定温度200℃、処理時間10分の条件で熱処理し、塗工量1.5g/mのガスバリア材を得て、実施例1と同様の方法で外装材及び真空断熱材を得た。
(Comparative Example 7)
Polyacrylic acid (manufactured by Toagosei Co., Ltd., AC-10LHP, Mw = 250,000) is dissolved in water to make an aqueous solution having a solid content of 15%, and then 20 wt. % Aqueous sodium hydroxide was added. To this partially neutralized polyacrylic acid aqueous solution, a soluble starch (made by Wako Pure Chemical Industries) aqueous solution having a solid content of 15% by weight was mixed at a weight ratio of 70:30 to obtain a mixed solution. This aqueous solution was applied to a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm using a bar coater, and heat-treated with a box-type electric oven at a set temperature of 200 ° C. for a treatment time of 10 minutes. An m 2 gas barrier material was obtained, and an exterior material and a vacuum heat insulating material were obtained in the same manner as in Example 1.

(比較例8)
比較例7において、熱処理を行った後、水道水1Lに対して塩化カルシウムを40g、水酸化カルシウムを11g添加して40℃に暖めた浸漬処理液に、よく攪拌しながら3秒間ガスバリア材を浸漬処理し、実施例1と同様の方法で外装材及び真空断熱材を得た。
(Comparative Example 8)
In Comparative Example 7, after heat treatment, the gas barrier material was immersed for 3 seconds in the immersion treatment liquid that was heated to 40 ° C. by adding 40 g of calcium chloride and 11 g of calcium hydroxide to 1 L of tap water. The exterior material and the vacuum heat insulating material were obtained in the same manner as in Example 1.

(比較例9)
実施例1において、厚み12μmのアルミ蒸着層が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)上にバリア材前駆体用コーティング液を塗布せず、アルミ蒸着が形成されたポリエチレンテレフタレートフィルム(尾池工業製、テトライトPC)のアルミ蒸着上に反応基含有LDPEを押出ラミネートする以外は、実施例1と同様の方法で真空断熱材を得た。
(Comparative Example 9)
In Example 1, a polyethylene terephthalate film in which an aluminum vapor deposition was formed without applying a coating solution for a barrier material precursor onto a polyethylene terephthalate film (Oike Kogyo, Tetrait PC) on which an aluminum vapor deposition layer having a thickness of 12 μm was formed. A vacuum heat insulating material was obtained in the same manner as in Example 1 except that reactive group-containing LDPE was extruded and laminated on aluminum vapor deposition (Teito PC, manufactured by Oike Kogyo Co., Ltd.).

(比較例10)
実施例4において、アンダーコート用コーティング液をバーコーターにより、厚み12μmのポリエチレンテレフタレートフィルムに塗布する以外は実施例4と同様な方法でガスバリア材、外装材及び真空断熱材を得た。
(Comparative Example 10)
In Example 4, a gas barrier material, an exterior material, and a vacuum heat insulating material were obtained in the same manner as in Example 4 except that the coating liquid for undercoat was applied to a polyethylene terephthalate film having a thickness of 12 μm by a bar coater.

上記実施例及び比較例で得られたガスバリア層のイオン架橋率と、ICP発光分光分析装置より求めた一価の金属元素と多価金属元素の含有量と、有機元素分析装置より求めた窒素、炭素の総量に対する窒素の含有量と、ガスバリア層表面、アンダーコート層、領域(x)におけるXPSによる組成分析から求めた炭素、酸素及び窒素の総量に対する窒素の含有量と、熱重量分析での200℃から320℃までの重量減少分と、動的粘弾性測定で200℃のtanδから50℃のtanδを引いたときの差、酸素・窒素・水蒸気透過量と、熱伝導率の測定結果を表4に示す。   The ionic crosslinking rate of the gas barrier layer obtained in the above examples and comparative examples, the content of monovalent metal elements and polyvalent metal elements determined from an ICP emission spectroscopic analyzer, and the nitrogen determined from an organic element analyzer, The nitrogen content with respect to the total amount of carbon, the nitrogen content with respect to the total amount of carbon, oxygen and nitrogen obtained from the composition analysis by XPS in the gas barrier layer surface, the undercoat layer, and the region (x), and the thermogravimetric analysis result of 200 Table shows the weight loss from ℃ to 320 ℃, the difference when subtracting tan δ from 50 ℃ from tan δ at 200 ℃ in dynamic viscoelasticity measurement, oxygen, nitrogen, water vapor transmission rate, and thermal conductivity measurement results 4 shows.

実施例においては何れの評価も良好な結果を示したが、多価金属元素量が少ない比較例2酸素・窒素透過量が多く、一価の金属元素量が過剰な比較例5は酸素・窒素透過量が僅かに多く、有機元素分析装置により求めた窒素、炭素の総量に対する窒素の含有量が少ない比較例4は酸素・窒素透過量が僅かに多く、有機元素分析装置により求めた窒素、炭素の総量に対する窒素の含有量が過剰な比較例1及び6は酸素、窒素透過量が多く、ガスバリア材を用いていない比較例9は酸素・窒素透過量が多く、アルミ蒸着層を有していない比較例10は水蒸気透過量が多く、何れの比較例も初期と100日後の熱伝導率の差分において高い値を示した。   In the examples, all the evaluations showed good results. However, Comparative Example 2 in which the amount of polyvalent metal elements was small. Comparative Example 5 in which the amount of oxygen and nitrogen permeation was large and the amount of monovalent metal elements was excessive was oxygen and nitrogen. Comparative Example 4 having a slightly higher permeation amount and a low nitrogen content relative to the total amount of nitrogen and carbon determined by the organic element analyzer has a slightly higher oxygen / nitrogen permeation amount, and nitrogen and carbon determined by the organic element analyzer Comparative Examples 1 and 6 in which the nitrogen content is excessive with respect to the total amount of oxygen have a large amount of oxygen and nitrogen permeation, and Comparative Example 9 in which no gas barrier material is used has a large amount of oxygen / nitrogen permeation and does not have an aluminum vapor deposition layer. Comparative Example 10 had a large amount of water vapor permeation, and all Comparative Examples showed high values in the difference in thermal conductivity between the initial stage and 100 days later.

本発明の真空断熱材は、優れたガスバリア性及び耐水性を有する外装材が用いられていることから、長期にわたって内部の減圧状態を維持することができ、優れた断熱性能を維持できる。冷蔵庫やクーラーボックス等の保温・保冷用途のほか、住宅建材等にも好適に使用することができる。また本発明の真空断熱材に用いる外装材は、生産性及び経済性に優れていることから、汎用品への用途にも使用し得る。   Since the vacuum heat insulating material of the present invention uses an exterior material having excellent gas barrier properties and water resistance, it can maintain an internal reduced pressure state over a long period of time, and can maintain excellent heat insulating performance. In addition to heat and cold insulation applications such as refrigerators and cooler boxes, it can also be suitably used for residential building materials. Moreover, since the exterior material used for the vacuum heat insulating material of this invention is excellent in productivity and economical efficiency, it can be used also for the use to a general purpose product.

1 真空断熱材、2 芯材、3 外装材、4 熱溶着層、
5 ガスバリア材、
5a ポリエチレンテレフタレート、
5b ,5biiアルミ蒸着層
5c アンダーコート層、 5d ガスバリア層
6 接着層、
7 蒸着フィルム、
7a 基材樹脂、7a ポリエチレンテレフタレート、
7b蒸着層、7bアルミ蒸着層、
8 保護層、11 ガスバリア層、12 アンダーコート層。
1 vacuum heat insulating material, 2 core material, 3 exterior material, 4 heat welding layer,
5 Gas barrier material,
5a polyethylene terephthalate,
5b i , 5b ii aluminum vapor deposition layer 5c undercoat layer, 5d gas barrier layer 6 adhesive layer,
7 Deposition film,
7a base resin, 7a i polyethylene terephthalate,
7b vapor deposition layer, 7b i aluminum vapor deposition layer,
8 protective layer, 11 gas barrier layer, 12 undercoat layer.

Claims (21)

芯材と、該芯材を被覆する外装材とから成り、内部を減圧密封した真空断熱材において、
前記外装材が、少なくとも熱溶着層及びガスバリア材から成るガスバリア性積層体から成り、
前記ガスバリア材が、ポリカルボン酸系ポリマーから成り、1.4重量%以下の1価の金属元素と、5.0乃至18.0重量%の多価金属元素と、窒素、炭素の総重量に対して0.01乃至3.0重量%の窒素元素を含むガスバリア層、蒸着層、及びプラスチック基材から少なくとも成り、
前記熱溶着層が、熱可塑性樹脂を前記ガスバリア材上に押出コートすることにより形成されていることを特徴とする真空断熱材。
In a vacuum heat insulating material consisting of a core material and an exterior material covering the core material, the inside of which is sealed under reduced pressure,
The exterior material is composed of a gas barrier laminate comprising at least a heat welding layer and a gas barrier material,
The gas barrier material is composed of a polycarboxylic acid polymer, and the total weight of nitrogen and carbon is 1.4% by weight or less of a monovalent metal element, 5.0 to 18.0% by weight of a polyvalent metal element. It comprises at least a gas barrier layer containing 0.01 to 3.0% by weight of nitrogen element, a vapor deposition layer, and a plastic substrate,
The vacuum heat insulating material, wherein the heat welding layer is formed by extrusion coating a thermoplastic resin on the gas barrier material.
前記ガスバリア層が、蒸着層が形成されたプラスチック基材上に形成されている請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the gas barrier layer is formed on a plastic substrate on which a vapor deposition layer is formed. 前記ポリカルボン酸系ポリマーがポリ(メタ)アクリル酸である請求項1又は2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the polycarboxylic acid-based polymer is poly (meth) acrylic acid. 前記ポリカルボン酸系ポリマーがカルボキシル基に対するモル比で、多くとも4.5%以下の範囲で部分中和されている請求項1〜3の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the polycarboxylic acid-based polymer is partially neutralized in a molar ratio to a carboxyl group of at most 4.5%. 前記熱可塑性樹脂が、ポリオレフィン樹脂、エチレン−(メタ)アクリル酸共重合体又はアイオノマー樹脂である請求項1〜4の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 4, wherein the thermoplastic resin is a polyolefin resin, an ethylene- (meth) acrylic acid copolymer, or an ionomer resin. 前記熱可塑性樹脂が、シングルサイト系触媒を用いて重合したポリオレフィン樹脂、酸化防止剤無添加のポリオレフィン樹脂、カルボキシル基または水酸基と化学結合を形成可能な反応基を含有するポリオレフィン樹脂の何れかである請求項1〜5の何れかに記載の真空断熱材。   The thermoplastic resin is any one of a polyolefin resin polymerized using a single-site catalyst, a polyolefin resin without addition of an antioxidant, and a polyolefin resin containing a carboxyl group or a reactive group capable of forming a chemical bond with a hydroxyl group. The vacuum heat insulating material in any one of Claims 1-5. 前記ポリオレフィン樹脂が、密度0.950g/cm以下の請求項5又は6に記載の真空断熱材。 The vacuum heat insulating material according to claim 5 or 6, wherein the polyolefin resin has a density of 0.950 g / cm 3 or less. 前記ポリオレフィン樹脂が、MFR7.0g/10分以上の請求項5〜7の何れかに記載の真空断熱材   The vacuum heat insulating material according to any one of claims 5 to 7, wherein the polyolefin resin is MFR 7.0 g / 10 min or more. 前記ガスバリア層が、昇温速度10℃/分での熱重量分析(TGA)測定における200℃から320℃までの重量減少分が10%以下であり且つ20Hzでの動的粘弾性(DMS)測定における200℃のtanδから50℃のtanδを引いたときの差が0.010以上である請求項1〜8の何れかに記載の真空断熱材。   The gas barrier layer has a weight loss from 200 ° C. to 320 ° C. of 10% or less in thermogravimetric analysis (TGA) measurement at a heating rate of 10 ° C./min, and dynamic viscoelasticity (DMS) measurement at 20 Hz. The vacuum heat insulating material according to claim 1, wherein a difference when subtracting tan δ at 50 ° C. from tan δ at 200 ° C. is 0.010 or more. 前記1価の金属元素が、ナトリウム又はカリウムである請求項1〜9の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 9, wherein the monovalent metal element is sodium or potassium. 前記多価金属元素が、カルシウム、マグネシウム、亜鉛、鉄の少なくとも1種である請求項1〜10の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 10, wherein the polyvalent metal element is at least one of calcium, magnesium, zinc, and iron. 前記ガスバリア層の表層における炭素、酸素及び窒素の総量に対する窒素の含有量が1atm%以上である請求項1〜11の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 11, wherein a content of nitrogen with respect to a total amount of carbon, oxygen, and nitrogen in a surface layer of the gas barrier layer is 1 atm% or more. 前記ガスバリア材が、蒸着層が形成されたプラスチック基材の該蒸着層又はプラスチック基材の一方の表面に、1分子中に少なくとも2個のイソシアネート基を有するイソシアネート化合物を含有するアンダーコート層が形成され、該アンダーコート層上にガスバリア層が形成されている請求項1〜12の何れかに記載の真空断熱材。   The gas barrier material forms an undercoat layer containing an isocyanate compound having at least two isocyanate groups in one molecule on one surface of the vapor-deposited layer or the plastic substrate of the plastic substrate on which the vapor-deposited layer is formed. The vacuum heat insulating material according to claim 1, wherein a gas barrier layer is formed on the undercoat layer. 前記ガスバリア層又はアンダーコート層の少なくとも一方が、蒸着層と隣接する請求項13記載の真空断熱材。   The vacuum heat insulating material according to claim 13, wherein at least one of the gas barrier layer and the undercoat layer is adjacent to the vapor deposition layer. 前記ガスバリア材が、蒸着層を2層有し、該2つの蒸着層の間にガスバリア層及びアンダーコート層が形成されている請求項13又は14に記載の真空断熱材。   The vacuum heat insulating material according to claim 13 or 14, wherein the gas barrier material has two vapor deposition layers, and a gas barrier layer and an undercoat layer are formed between the two vapor deposition layers. 前記ガスバリア層及びアンダーコート層の両方が、蒸着層に隣接する請求項15記載の真空断熱材。   The vacuum heat insulating material according to claim 15, wherein both the gas barrier layer and the undercoat layer are adjacent to the vapor deposition layer. 前記アンダーコート層中に、多価金属のアルカリ性化合物を含有する請求項13〜16の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 13 to 16, wherein the undercoat layer contains an alkaline compound of a polyvalent metal. 前記多価金属のアルカリ性化合物が、カルシウム、マグネシウム、亜鉛の何れかの炭酸塩、水酸化物の少なくとも1種類から成る請求項17に記載の真空断熱材   The vacuum heat insulating material according to claim 17, wherein the alkaline compound of the polyvalent metal comprises at least one of calcium, magnesium, zinc carbonate and hydroxide. 前記イソシアネート化合物が、直鎖状の脂肪族イソシアネート化合物と骨格中に脂環式の環状構造を有する脂環式イソシアネート化合物の組み合わせである請求項13〜18の何れかに記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 13 to 18, wherein the isocyanate compound is a combination of a linear aliphatic isocyanate compound and an alicyclic isocyanate compound having an alicyclic ring structure in the skeleton. 前記脂肪族イソシアネート化合物が、イソシアヌレート構造を有する請求項19に記載の真空断熱材。   The vacuum heat insulating material according to claim 19, wherein the aliphatic isocyanate compound has an isocyanurate structure. 前記アンダーコート層のガスバリア材側に、多価金属のアルカリ性化合物を含まない領域(x)が形成されており、該領域(x)の窒素の含有量が領域(x)以外のアンダーコート層の窒素の含有量よりも多いことを特徴とする請求項13〜22の何れかに記載の真空断熱材。   A region (x) not containing an alkali compound of a polyvalent metal is formed on the gas barrier material side of the undercoat layer, and the content of nitrogen in the region (x) of the undercoat layer other than the region (x) The vacuum heat insulating material according to any one of claims 13 to 22, wherein the content of the vacuum heat insulating material is greater than the content of nitrogen.
JP2014202553A 2013-09-30 2014-09-30 Vacuum heat insulating material Pending JP2015092105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202553A JP2015092105A (en) 2013-09-30 2014-09-30 Vacuum heat insulating material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013205341 2013-09-30
JP2013205341 2013-09-30
JP2014202553A JP2015092105A (en) 2013-09-30 2014-09-30 Vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2015092105A true JP2015092105A (en) 2015-05-14

Family

ID=53195358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202553A Pending JP2015092105A (en) 2013-09-30 2014-09-30 Vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2015092105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116578A1 (en) 2015-12-28 2017-07-06 Whirlpool Corporation Multilayer barrier materials with pvd or plasma coating for vacuum insulated structure
WO2018016351A1 (en) * 2016-07-21 2018-01-25 大日本印刷株式会社 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
US10619912B2 (en) 2015-12-28 2020-04-14 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116578A1 (en) 2015-12-28 2017-07-06 Whirlpool Corporation Multilayer barrier materials with pvd or plasma coating for vacuum insulated structure
EP3397909A4 (en) * 2015-12-28 2019-08-07 Whirlpool Corporation Multilayer barrier materials with pvd or plasma coating for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10619912B2 (en) 2015-12-28 2020-04-14 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
WO2018016351A1 (en) * 2016-07-21 2018-01-25 大日本印刷株式会社 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member

Similar Documents

Publication Publication Date Title
JP2015092106A (en) Vacuum heat insulating material
JP6131947B2 (en) Gas barrier material and gas barrier laminate
JP6379555B2 (en) Vacuum insulation
TW201640713A (en) Electrical storage device outer-package material
TWI634692B (en) Lithium-ion battery exterior materials
CN103155207A (en) Exterior material for lithium ion battery
JP5756408B2 (en) Undercoat paint composition
JP5733213B2 (en) Gas barrier laminate and method for producing the same
WO2015046614A1 (en) Vacuum heat insulating material
CN110998895A (en) Outer packaging material for electricity storage device
JP2013235719A (en) Cladding for lithium ion secondary battery
US9132613B2 (en) Gas barrier laminate and method of producing the same
JP2015092105A (en) Vacuum heat insulating material
JPWO2007037044A1 (en) Gas barrier material, method for producing the same, and gas barrier packaging material
JPWO2010001836A1 (en) Method for producing gas barrier laminate
WO2016051584A1 (en) Vacuum heat-insulation material
JP2017019238A (en) Gas barrier laminate
WO2020158873A1 (en) Outer package material for all-solid-state batteries, and all-solid-state battery using same
JP2015091651A (en) Vacuum heat insulation material
JP6989071B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2015022991A1 (en) Gas barrier material and gas barrier laminate
JP2017087616A (en) Gas barrier laminated body
JP2018049704A (en) Sheath material for battery