JPH09145241A - Vacuum heat-insulating material - Google Patents

Vacuum heat-insulating material

Info

Publication number
JPH09145241A
JPH09145241A JP30141195A JP30141195A JPH09145241A JP H09145241 A JPH09145241 A JP H09145241A JP 30141195 A JP30141195 A JP 30141195A JP 30141195 A JP30141195 A JP 30141195A JP H09145241 A JPH09145241 A JP H09145241A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
container
vacuum heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30141195A
Other languages
Japanese (ja)
Inventor
Hiromichi Hotta
浩通 堀田
Koji Koura
孝次 小浦
Kensuke Oono
賢祐 大野
Mitsuru Awata
満 粟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30141195A priority Critical patent/JPH09145241A/en
Publication of JPH09145241A publication Critical patent/JPH09145241A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily make the inner part of a container vacuum, lower a heat conductivity and stabilize the heat conductivity for a long period by sealing a porous forming member having a specific density and including inorganic fibers and a thermoplastic resin as main components in a container with a gas barrier characteristic. SOLUTION: A porous forming member having a density of 100 to 700kg/m<3> and including inorganic fibers and a thermoplastic resin as main components is sealed in a container having a gas barrier characteristic. Preferably, a heat insulating core material is sealed and packed under a pressure reduced state by the coimtainer with the gas barrier characteristic and flexibility. Such a vacuum heat insulating material is obtained by arranging the heat insulating core material in the container, exhausting air in a vacuum packer and sealing the container when a prescribed degree of vacuum is obtained. Therefore, the forming member which is easily handled is used as the heat insulating core material, so that the container can be easily made vacuum, a heat conductivity can be lowered and the heat conductivity can be stabilized for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷蔵庫、炊飯器等の
家電製品、建築物の外壁、内壁等の建材等に用いられる
断熱材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating material used for home appliances such as refrigerators and rice cookers, and building materials such as outer and inner walls of buildings.

【0002】[0002]

【従来の技術】従来シリカ等の無機系微粉末、ガラス繊
維等の無機系繊維、連通型ウレタンフォーム等の有機系
成形体などの断熱芯材をガスバリアー性を有する容器
(袋)内に収容し、内部を減圧にしてシールすることに
より製造した真空断熱体を冷蔵庫の場合、内箱と外箱の
間に配置して、断熱材として用いている。
2. Description of the Related Art Conventionally, an inorganic fine powder such as silica, an inorganic fiber such as glass fiber, and an insulating core material such as an organic molding such as a continuous urethane foam are contained in a container (bag) having a gas barrier property. Then, in the case of a refrigerator, a vacuum heat insulator manufactured by sealing the interior of the refrigerator with reduced pressure is placed between the inner box and the outer box and used as a heat insulating material.

【0003】[0003]

【発明が解決しようとする課題】断熱芯材として、無機
系微粉末を用いた場合、真空断熱材を製造する時の粉末
の飛散防止および断熱材表面の平滑性を向上させるため
に、まず、無機系微粉末を通気性内袋に充填し、つい
で、平板状に加圧成形し、更に真空包装して真空断熱材
が製造されていた。このように、無機系微粉末を用る
と、断熱材の製造が煩雑であり、また、微粉末のため、
容易に真空排気が行なえないという問題がある。
When inorganic fine powder is used as the heat insulating core material, in order to prevent the powder from scattering during the production of the vacuum heat insulating material and improve the smoothness of the surface of the heat insulating material, first, A vacuum heat insulating material was manufactured by filling an air-permeable inner bag with an inorganic fine powder, press-molding it into a flat plate shape, and further vacuum packaging. As described above, when the inorganic fine powder is used, the production of the heat insulating material is complicated, and since the fine powder is used,
There is a problem that it cannot be easily evacuated.

【0004】また、無機系繊維を用いた場合も、通気性
内袋に充填する必要があり、繊維径が2μm以下でない
と得られた真空断熱材の平滑性が得られず、熱伝導率も
0.01Kcal/m・hr・℃以下にならないといわ
れている。(特開平7−139691号公報) さらに、連通型ウレタンフォーム等の有機成形体は、粉
末や繊維に比べて取り扱い易いが、独立気泡が残存し易
く、使用する発泡剤や原料に由来する揮発成分によっ
て、初期の真空度を保持することが困難であり、熱伝導
率が増加するという問題がある。
Also, when the inorganic fiber is used, it is necessary to fill it in the air-permeable inner bag. If the fiber diameter is not less than 2 μm, the smoothness of the obtained vacuum heat insulating material cannot be obtained and the thermal conductivity is also high. It is said that the temperature will not drop below 0.01 Kcal / m · hr · ° C. (JP-A-7-139691) Furthermore, an organic molded article such as a continuous-type urethane foam is easier to handle than powders and fibers, but closed cells tend to remain, and a volatile component derived from the foaming agent or raw material used. Therefore, it is difficult to maintain the initial degree of vacuum, and there is a problem that the thermal conductivity increases.

【0005】[0005]

【発明が解決しようとする課題】発明者らは、容器内を
容易に真空化でき、熱伝導率が低く且つ熱伝導率の長期
安定性の良い真空断熱材を提供するものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention provide a vacuum heat insulating material which can easily evacuate the inside of a container, has a low thermal conductivity and a long-term stability of the thermal conductivity.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題点に鑑
み鋭意検討した結果、密度が小さく、無機系繊維と熱可
塑性樹脂を主成分とする成形体を断熱芯材として用いる
ことにより、芯材の取り扱いが簡単で、熱伝導率が小さ
く、かつ熱伝導率の変化率が小さい真空断熱材が得られ
ることを見出し本発明に到達した。すなわち、本発明の
要旨は、ガスバリアー性を有する容器に、無機系繊維と
熱可塑性樹脂を主成分とし、密度が100〜700kg
/m3である多孔質成形体を封入してなる真空断熱材に
存する。
Means for Solving the Problems The present invention has been intensively studied in view of the above problems, and as a result, a core having a low density and using an inorganic fiber and a thermoplastic resin as a main component as a heat-insulating core material is obtained. The inventors have found that a vacuum heat insulating material can be obtained that is easy to handle, has a low thermal conductivity, and a small rate of change in thermal conductivity. That is, the gist of the present invention is to provide a container having gas barrier properties with an inorganic fiber and a thermoplastic resin as main components and a density of 100 to 700 kg.
/ M is 3 a porous compact consists in the vacuum heat insulating material formed by sealing.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の真空断熱材の基本的構成は、公知の真空断熱材
と同様にガスバリアー性、好ましくはガスバリアー性お
よび可とう性を有する容器により、断熱芯材が減圧状態
で密着包装されてなる。このような真空断熱材は、容器
内に断熱芯材を配置し、真空包装機中で排気処理を行
い、所定の真空度に到達した時点で容器をシールするこ
とにより得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The basic structure of the vacuum heat insulating material of the present invention is that the heat insulating core material is closely packed in a reduced pressure state in a container having a gas barrier property, preferably a gas barrier property and flexibility like a known vacuum heat insulating material. . Such a vacuum heat insulating material can be obtained by arranging a heat insulating core material in a container, performing an exhaust process in a vacuum packaging machine, and sealing the container when a predetermined vacuum degree is reached.

【0008】本発明の真空断熱材において容器内部は、
通常1トール以下に真空排気されることが望ましい。真
空度が1トールより大きいと、容器内部に存在する空気
の伝熱性が大きく、断熱性能が低下するので好ましくな
い。本発明において、容器の構成材料としては、ガスバ
リヤー性を有する限り、公知のフィルムを用いることが
できる。具体的には、プラスチックフィルムに金属箔を
積層するか、または、金属もしくは金属酸化物を蒸着し
てなる複合フィルム、それ自体がガスバリアー性を有
し、可とう性を有するフィルム等が挙げられる。
In the vacuum heat insulating material of the present invention, the inside of the container is
It is usually desirable to evacuate to less than 1 Torr. If the degree of vacuum is higher than 1 Torr, the heat conductivity of the air existing inside the container is large and the heat insulating performance is lowered, which is not preferable. In the present invention, a known film can be used as the constituent material of the container as long as it has gas barrier properties. Specifically, a composite film obtained by laminating a metal foil on a plastic film or vapor-depositing a metal or a metal oxide, a film having gas barrier property itself, and a flexible film, and the like can be mentioned. .

【0009】プラスチックフィルムとしては、ポリエス
テルフィルム、ポリプロピレンフィルム等が好適に使用
することができる。また、塩化ビニリデン系樹脂フイル
ム、塩化ビニリデン樹脂コートフイルム、ポリビニルア
ルコール系フイルム等それ自体がガスバリアー性を有す
るフィルムも好適である。金属箔としては、代表的に
は、アルミニウム、銅、鉄等が挙げられ、蒸着用金属ま
たは金属酸化物としては、代表的には、アルミニウム、
珪素酸化物、マグネシウム酸化物等が挙げられる。金属
酸化物を蒸着してなる複合フィルムを形成する場合は、
ポリビニルアルコール系フィルムが好適に使用される。
As the plastic film, polyester film, polypropylene film and the like can be preferably used. Further, films having a gas barrier property such as vinylidene chloride resin film, vinylidene chloride resin coat film, polyvinyl alcohol film and the like are also suitable. The metal foil is typically aluminum, copper, iron, or the like, and the metal or metal oxide for vapor deposition is typically aluminum,
Examples thereof include silicon oxide and magnesium oxide. When forming a composite film by depositing a metal oxide,
A polyvinyl alcohol film is preferably used.

【0010】複合フィルムの層構成は、2層であっても
よいが、金属層または金属酸化物層の両側に1層または
2層以上のプラスチックフィルムを設けた3層以上の層
構成が望ましい。3層以上の複合フィルムにおいては、
最外層フィルムに耐傷性の優れたフィルム(例えばポリ
エステルフィルム)を使用し、最内層フィルムにヒート
シール性の優れたフィルム(例えば、ポリエチレン、ポ
リプロピレン等のポリオレフィンフィルム、ナイロン
6、ナイロン66等のポリアミド樹脂フィルム、アクリ
ロニトリル・ブタジエン・スチレン共重合体、アクリロ
ニトリル・スチレン共重合体等のアクリロニトリル共重
合体フィルム、ポリメチルメタクリレート等のポリアク
リレートフィルム、好ましくはポリオレフィンフィル
ム)が使用される。これらの樹脂は、単独で用いても、
共重合させても、また、混合して使用しても良い。容器
の形状は、両端開放の筒状体が簡便である。
The layer structure of the composite film may be two layers, but a layer structure of three layers or more in which one or more plastic films are provided on both sides of the metal layer or the metal oxide layer is preferable. In a composite film with three or more layers,
A film having excellent scratch resistance (eg, polyester film) is used as the outermost layer film, and a film having excellent heat-sealing property is used as the innermost layer film (eg, polyolefin film such as polyethylene and polypropylene, polyamide resin such as nylon 6 and nylon 66). A film, an acrylonitrile / butadiene / styrene copolymer, an acrylonitrile copolymer film such as an acrylonitrile / styrene copolymer, a polyacrylate film such as polymethylmethacrylate, preferably a polyolefin film) is used. These resins may be used alone,
They may be copolymerized or mixed and used. The shape of the container is conveniently a tubular body with both ends open.

【0011】本発明においては、断熱芯材として多孔質
成形体を使用する。本発明で用いられる多孔質成形体
は、無機系繊維と熱可塑性樹脂とを主成分とする。主成
分とは、多孔質成形体の重量に対して、無機系繊維と熱
可塑性樹脂とを合わせて80重量%以上、好ましくは9
5重量%以上であることを示す。多孔質成形体の密度
は、100〜700kg/m3、好ましくは100〜6
00kg/m3、更に好ましくは100〜500kg/
3である。多孔質成形体の密度が、700kg/m3
超えると、多孔質成形体の空間部分の割合(空隙率)が
小さく、真空度を上げても真空断熱板の熱伝導率は固体
伝熱に支配されるため低下せず、また、100kg/m
3未満では、多孔質成形体の強度が弱くなり好ましくな
い。
In the present invention, a porous molded body is used as the heat insulating core material. The porous molded article used in the present invention contains an inorganic fiber and a thermoplastic resin as main components. The main component is 80% by weight or more, preferably 9% by weight of the inorganic fiber and the thermoplastic resin, with respect to the weight of the porous molded body.
It shows that it is 5% by weight or more. The density of the porous molded body is 100 to 700 kg / m 3 , preferably 100 to 6
00 kg / m 3 , more preferably 100 to 500 kg /
m is 3. When the density of the porous molded body exceeds 700 kg / m 3 , the ratio of the space portion (porosity) of the porous molded body is small, and even if the vacuum degree is increased, the thermal conductivity of the vacuum heat insulating plate becomes solid heat transfer. It does not decrease because it is dominated, and 100 kg / m
When it is less than 3 , the strength of the porous molded article becomes weak, which is not preferable.

【0012】本発明においては、多孔質成形体に、輻射
伝熱を遮蔽する効果がある輻射熱遮蔽材を含有させる
と、さらに熱伝導度が小さくなるので好ましい。輻射熱
遮蔽材としては、通常、金属酸化物、金属水酸化物、炭
化物等が挙げられ、好ましくはSi、Ti、Al等の金
属酸化物、金属水酸化物、炭化物、グラファイト、特に
好ましくは炭化珪素、酸化チタン等が用いられる。輻射
熱遮蔽材は、通常0.5〜30μmの微粒子として使用
される。多孔性成形体に含まれる輻射熱遮蔽材の割合
は、通常1〜20重量% 好ましくは5〜15重量%で
ある。
In the present invention, it is preferable that the porous molded body contains a radiant heat shielding material having an effect of shielding radiant heat, because the thermal conductivity is further reduced. The radiant heat shielding material usually includes metal oxides, metal hydroxides, carbides, etc., preferably metal oxides such as Si, Ti, Al, etc., metal hydroxides, carbides, graphite, particularly preferably silicon carbide. , Titanium oxide, etc. are used. The radiant heat shielding material is usually used as fine particles of 0.5 to 30 μm. The ratio of the radiation heat shielding material contained in the porous molded body is usually 1 to 20% by weight, preferably 5 to 15% by weight.

【0013】多孔質成形体を構成する無機系繊維として
は、ガラス繊維、アルミナ、シリカ−アルミナ、窒化珪
素、炭化珪素などからなるセラミック繊維、炭素繊維、
金属繊維、スラグウール繊維、ロックウール等が挙げら
れ、好ましくはガラス繊維、セラミック繊維、スラグウ
ール繊維、ロックウール等が用いられる。無機系繊維の
繊維径は、取り扱いのよさと経済的な観点より通常3μ
m以上、好ましくは6μm以上、また、十分な強度を発
現させるために通常30μm以下、好ましくは20μm
以下にすることが好ましい。繊維長は、強度発現の観点
から通常3mm以上、好ましくは6mm以上、また、均
一な分散が可能な点で、通常50mm以下、好ましくは
25mm以下とすることが望ましい。
The inorganic fibers constituting the porous molded article include glass fibers, ceramic fibers made of alumina, silica-alumina, silicon nitride, silicon carbide, carbon fibers,
Examples thereof include metal fibers, slag wool fibers and rock wool, and preferably glass fibers, ceramic fibers, slag wool fibers, rock wool and the like. The fiber diameter of the inorganic fiber is usually 3μ from the viewpoint of good handling and economical efficiency.
m or more, preferably 6 μm or more, and usually 30 μm or less, preferably 20 μm in order to develop sufficient strength.
It is preferable to set the following. The fiber length is usually 3 mm or more, preferably 6 mm or more from the viewpoint of strength development, and is usually 50 mm or less, preferably 25 mm or less from the viewpoint that uniform dispersion is possible.

【0014】多孔質成形体に含まれる無機系繊維の割合
は、通常10〜90重量%、好ましくは50〜90重量
%である。無機系繊維が10重量%に満たないと、繊維
のスプリングバックによる安定した膨張が生じず、ま
た、90重量%を超えると無機系繊維と熱可塑性樹脂と
の接着が困難になり、多孔質成形体としての強度が不十
分となる。
The proportion of the inorganic fiber contained in the porous molded body is usually 10 to 90% by weight, preferably 50 to 90% by weight. If the content of the inorganic fiber is less than 10% by weight, stable expansion due to springback of the fiber does not occur, and if it exceeds 90% by weight, the adhesion between the inorganic fiber and the thermoplastic resin becomes difficult and the porous molding is performed. The strength of the body becomes insufficient.

【0015】無機系繊維は、水中での良好な分散を目的
として親水性を向上させるために、水溶性高分子で表面
処理を行ってもよく、熱可塑性樹脂との接着性を向上さ
せ、強度発現を目的としてシランカップリング剤等で表
面処理を施してもよい。多孔質成形体を構成する熱可塑
性樹脂としては、ポリプロピレン、ポリエチレン、ポリ
スチレン、スチレン−ブタジエン−アクリロニトリル共
重合体、スチレン−アクリロニトリル共重合体、ポリア
ミド、ポリカーボネート、ポリアセタール、ポリエチレ
ンテレフタレート、ポリフェニレンオキシド、ポリスル
フォン、ポリフェニレンスルフィド等を挙げることがで
きる。これらは、2種類またはそれ以上の混合物および
変性物として用いることもできる。さらに、これらに一
般的に用いられる可塑剤、熱安定剤、光安定剤、充填
材、染顔料、耐衝撃材、増量材、核材、加工助剤等を混
合して用いることもできる。これらの熱可塑性樹脂のな
かでも、強度、耐久性、剛性の観点から見ると、ポリプ
ロピレン、ポリアミド、ポリエステル(ポリエチレンテ
レフタレート、ポリブチレンテレフタレート)等の結晶
性樹脂を使用することが好ましく、なかでも、成形性、
物性及び経済性のバランスからはポリプロピレンを使用
することが特に好ましい。
The inorganic fiber may be subjected to a surface treatment with a water-soluble polymer in order to improve hydrophilicity for the purpose of good dispersion in water, to improve adhesiveness with a thermoplastic resin, and to improve strength. You may perform surface treatment with a silane coupling agent etc. for the purpose of expression. The thermoplastic resin constituting the porous molded body, polypropylene, polyethylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polysulfone, Examples thereof include polyphenylene sulfide. These can also be used as a mixture or modification of two or more kinds. Further, a plasticizer, a heat stabilizer, a light stabilizer, a filler, a dye / pigment, an impact resistant material, an extender material, a core material, a processing aid and the like which are generally used may be mixed and used. Among these thermoplastic resins, from the viewpoint of strength, durability, and rigidity, it is preferable to use a crystalline resin such as polypropylene, polyamide, polyester (polyethylene terephthalate, polybutylene terephthalate). Among them, molding is preferable. sex,
It is particularly preferable to use polypropylene from the viewpoint of the balance of physical properties and economy.

【0016】多孔質成形体に含まれる熱可塑性樹脂の割
合は、通常10〜70重量%、好ましくは10〜40重
量%である。熱可塑性樹脂の割合が10重量%に満たな
いと、得られる多孔質成形体の強度が不十分であり、一
方、70重量%を超えると、密度が高くなりすぎ、十分
な熱伝導率が得られない。無機系繊維と熱可塑性樹脂か
らなる多孔質成形体は、シート状成形素材を加熱、し繊
維をスプリングバックさせた後、成形、冷却することに
より製造することができる。
The proportion of the thermoplastic resin contained in the porous molded body is usually 10 to 70% by weight, preferably 10 to 40% by weight. If the proportion of the thermoplastic resin is less than 10% by weight, the strength of the obtained porous molded article is insufficient, while if it exceeds 70% by weight, the density becomes too high and sufficient thermal conductivity is obtained. I can't. The porous molded body composed of the inorganic fiber and the thermoplastic resin can be manufactured by heating a sheet-shaped molding material to spring back the fiber, and then molding and cooling.

【0017】無機系繊維と熱可塑性樹脂からなる多孔質
成形体は、従来公知の方法により得られる。例えば、シ
ート状成形素材の製法としては、無機系繊維からなるマ
ットに溶融状態の熱可塑性樹脂を含浸させ、加熱、冷却
して、シート状成形素材とする方法(ラミネート法)、
熱可塑性樹脂粉粒体と一定長さの無機系繊維を乾式で混
合・分散させた後、混合物をウェブ状となし、加熱、加
圧、冷却してシート状成形素材とする方法(乾式分散
法)、熱可塑性樹脂粉粒体と一定長さの無機系繊維を水
中又は水泡中で分散・混合させた後、抄造によりウェブ
状となし、加熱、加圧、冷却してシート状成形素材とす
る方法(湿式分散法)などが挙げられる。本発明におい
ては、シート状成形素材の製法としては、上記のいずれ
でもよいが、無機系繊維の分散が均一になって安定した
物性が得られる分散法、特に湿式分散法を用いることが
好ましい。
The porous molded body composed of the inorganic fiber and the thermoplastic resin can be obtained by a conventionally known method. For example, as a method for producing a sheet-shaped molding material, a method in which a mat made of inorganic fibers is impregnated with a molten thermoplastic resin, heated and cooled to form a sheet-shaped molding material (laminating method),
A method in which a thermoplastic resin powder and a fixed length of inorganic fiber are dry mixed and dispersed, and then the mixture is made into a web shape, and heated, pressed and cooled to form a sheet-shaped molding material (dry dispersion method). ), A thermoplastic resin powder and inorganic fibers of a certain length are dispersed and mixed in water or water bubbles, and then formed into a web by papermaking, and heated, pressed and cooled to form a sheet-shaped molding material. A method (wet dispersion method) and the like can be mentioned. In the present invention, the method for producing the sheet-shaped molding material may be any of the above, but it is preferable to use a dispersion method, particularly a wet dispersion method, in which the inorganic fibers are uniformly dispersed and stable physical properties are obtained.

【0018】多孔質成形体は、シート状成形素材の膨張
を利用して製造することができる。具体的には、シート
状成形素材を遠赤外線加熱炉等で、熱可塑性樹脂の融点
または軟化点を超える温度にまで予熱する。これによっ
て、熱可塑性樹脂の無機系繊維に対する結合力が弱まる
ため、無機系繊維の残留応力が開放され、無機系繊維の
元に戻ろうとするスプリングバックにより、シート状成
形素材の厚さは、予熱前の厚さの10倍程度にまで膨張
する。
The porous molded body can be manufactured by utilizing the expansion of the sheet-shaped molding material. Specifically, the sheet-shaped molding material is preheated to a temperature exceeding the melting point or softening point of the thermoplastic resin in a far infrared heating furnace or the like. As a result, the binding force of the thermoplastic resin to the inorganic fibers is weakened, the residual stress of the inorganic fibers is released, and the thickness of the sheet-shaped molding material is preheated due to springback to return to the original state of the inorganic fibers. It expands to about 10 times the previous thickness.

【0019】多孔質成形体はこのシート状成形素材の膨
張を利用して成形される。この膨張したシート状成形素
材を成形型内に挿入し、目的とする形状、密度を有する
多孔質成形体を製造することができる(特公昭52−1
2283号公報、特公昭55−9119号公報、特開平
5−16277号公報、特開平6−134876号公報
等参照)。
The porous molded body is molded by utilizing the expansion of the sheet-shaped molding material. By inserting this expanded sheet-shaped molding material into a molding die, a porous molding having a desired shape and density can be produced (Japanese Patent Publication No. 52-1).
2283, JP-B-55-9119, JP-A-5-16277, JP-A-6-134876, etc.).

【0020】[0020]

【発明の効果】本発明の真空断熱材は、断熱芯材とし
て、取り扱いが容易な成形体を用いるので容易に真空化
することができ、また、熱伝導率が低く、揮発性物質を
含まないので、容器を傷つけることもなく、熱伝導率の
長期安定性がよい。
EFFECTS OF THE INVENTION The vacuum heat insulating material of the present invention uses a molded body which is easy to handle as a heat insulating core material, so that it can be easily evacuated and has a low thermal conductivity and does not contain a volatile substance. Therefore, the long-term stability of the thermal conductivity is good without damaging the container.

【0021】[0021]

【実施例】以下、本発明の真空断熱体について実施例に
より更に詳細に説明するが、本発明はその要旨を越えな
い限り、これらの実施例に限定されるものではない。 実施例1 無機系繊維として直径10μm、長さ13mmのガラス
繊維と、熱可塑性樹脂として直径3μmの球状ペレット
を機械粉砕しその粉砕品の篩い分けにより70メッシュ
から10メッシュまでに分級したポリプロピレン粉末を
用いて抄造法によりガラス繊維含有量60重量%ポリプ
ロピレン樹脂40重量%の組成で不織材料を製造した。
この不織布をホットプレスで200℃に予熱してポリプ
ロピレンを溶融させ、冷却プレスで一旦3kgf/cm
2の圧力を加えてポリプロピレンとガラス繊維を良くな
じませた後、まだポリプロピレンが溶融状態にある間に
冷却プレスの間隔を拡大し、ガラス繊維をスプリングバ
ックさせて冷却する事によって板厚5mmで密度360
kg/m3の成形板を得た。
EXAMPLES The vacuum heat insulator of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. Example 1 A glass fiber having a diameter of 10 μm and a length of 13 mm as an inorganic fiber, and a spherical pellet having a diameter of 3 μm as a thermoplastic resin were mechanically crushed, and polypropylene powder classified from 70 mesh to 10 mesh by sieving the crushed product was used. A non-woven material having a composition with a glass fiber content of 60% by weight and a polypropylene resin of 40% by weight was produced by the papermaking method.
This non-woven fabric is preheated to 200 ° C. with a hot press to melt polypropylene and once cooled with a cooling press to 3 kgf / cm.
After the polypropylene and the glass fiber are well blended by applying the pressure of 2 , the gap between the cooling presses is expanded while the polypropylene is still in a molten state, and the glass fiber is springed back to cool the plate to a density of 5 mm. 360
A molded plate of kg / m 3 was obtained.

【0022】得られた成形体を20cm角に切り、その
ままラミネートフィルム製容器(最外層15μmポリエ
チレンテレフタレート/9μmAl箔/最内層12μm
ナイロン)に入れ、真空包装機内で真空度0.1トール
で封入し真空パネルを得た。シリカ等と比べ内袋が必要
なく、直接手で容易に取り扱う事が出来、得られた真空
断熱材は表面が平滑でひび割れ等はなかった。また、真
空度0.1トールに到達する時間は30分であった。得
られた真空断熱材の熱伝導率を英弘精機社製熱伝導率計
で測定したところ、0.0070Kcal/m・hr・
℃であり、1年経過後も熱伝導率に変化はなかった。
The obtained molded body was cut into 20 cm square pieces, and the laminated film container (outermost layer 15 μm polyethylene terephthalate / 9 μm Al foil / innermost layer 12 μm)
Nylon) and sealed in a vacuum packaging machine at a vacuum degree of 0.1 torr to obtain a vacuum panel. Compared to silica and the like, an inner bag is not required and it can be handled directly by hand. The obtained vacuum heat insulating material has a smooth surface and no cracks. The time required to reach a vacuum degree of 0.1 Torr was 30 minutes. When the thermal conductivity of the obtained vacuum heat insulating material was measured by a thermal conductivity meter manufactured by Eiko Instruments Co., Ltd., it was 0.0070 Kcal / m · hr ·
The temperature was 0 ° C, and there was no change in the thermal conductivity after one year.

【0023】実施例2 ガラス繊維の含有量を70重量%、ポリプロピレン樹脂
の含有量を30重量%とした他は実施例1と同様に不織
材料を製造した。実施例1と同様に加熱、加圧、冷却す
ることにより、板厚5mmで密度340kg/m3の成
形板を得た。得られた成形体を20cm角に切り、その
まま実施例1と同様のラミネートフィルム製容器に入
れ、真空包装機内で真空度0.1トールで封入し真空断
熱材を得た。得られた真空断熱材は表面が平滑でひび割
れ等はなかった。また、真空度0.1トールに到達する
時間は30分であった。得られた真空断熱材の熱伝導率
を英弘精機社製熱伝導率計で測定したところ、0.00
44Kcal/m・hr・℃であり、1年経過後も熱伝
導率に変化はなかった。
Example 2 A non-woven material was produced in the same manner as in Example 1 except that the content of glass fiber was 70% by weight and the content of polypropylene resin was 30% by weight. By heating, pressurizing and cooling in the same manner as in Example 1, a molded plate having a plate thickness of 5 mm and a density of 340 kg / m 3 was obtained. The obtained molded body was cut into 20 cm square pieces, placed in the same laminated film container as in Example 1, and sealed in a vacuum packaging machine at a vacuum degree of 0.1 Torr to obtain a vacuum heat insulating material. The obtained vacuum heat insulating material had a smooth surface and had no cracks or the like. The time required to reach a vacuum degree of 0.1 Torr was 30 minutes. The thermal conductivity of the obtained vacuum heat insulating material was measured with a thermal conductivity meter manufactured by Eiko Seiki Co., Ltd.
It was 44 Kcal / m · hr · ° C, and there was no change in thermal conductivity even after 1 year.

【0024】実施例3 ガラス繊維の含有量を85重量%、ポリプロピレン樹脂
の含有量を15重量%とした他は実施例1と同様に不織
材料を製造した。実施例1と同様に加熱、加圧、冷却す
ることにより、板厚5mmで密度600g/m3の不織
材料を製造した。得られた成形体を20cm角に切り、
そのまま実施例1と同様のラミネートフィルム製容器に
入れ、真空包装機内で真空度0.1トールで封入し真空
断熱材を得た。得られた真空断熱材は表面が平滑でひび
割れ等はなかった。また、真空度0.1トールに到達す
る時間は30分であった。得られた真空断熱材の熱伝導
率を英弘精機社製熱伝導率計で測定したところ、0.0
044Kcal/m・hr・℃であり、1年経過後も熱
伝導率に変化はなかった。
Example 3 A non-woven material was produced in the same manner as in Example 1 except that the glass fiber content was 85% by weight and the polypropylene resin content was 15% by weight. By heating, pressurizing and cooling in the same manner as in Example 1, a nonwoven material having a plate thickness of 5 mm and a density of 600 g / m 3 was produced. The obtained molded body is cut into 20 cm squares,
It was put in the same laminated film container as in Example 1 as it was, and sealed in a vacuum packaging machine at a vacuum degree of 0.1 Torr to obtain a vacuum heat insulating material. The obtained vacuum heat insulating material had a smooth surface and had no cracks or the like. The time required to reach a vacuum degree of 0.1 Torr was 30 minutes. When the thermal conductivity of the obtained vacuum heat insulating material was measured by a thermal conductivity meter manufactured by Eiko Instruments Co., Ltd., it was 0.0
It was 044 Kcal / m · hr · ° C, and there was no change in the thermal conductivity even after 1 year.

【0025】実施例4 実施例2においてガラス繊維、ポリプロピレン粉末及び
輻射熱遮蔽材SiCが重量比7:3:1になるようSi
Cを添加した。得られた板厚5mmの成形板の密度は4
00kg/m3であった。得られた成形体を20cm角
に切り、そのまま実施例1と同様のラミネートフィルム
製容器に入れ、真空包装機内で真空度0.1トールで封
入し真空断熱材を得た。真空化時の取扱いも問題なく、
得られた真空断熱材は表面が平滑でひび割れ等はなかっ
た。得られた真空断熱材の熱伝導率を英弘精機社製熱伝
導率計で測定したところ、0.0030Kcal/m・
hr・℃であり、1年経過後も熱伝導率に変化はなかっ
た。
Example 4 In Example 2, the glass fiber, the polypropylene powder and the radiant heat shielding material SiC were made to have a weight ratio of 7: 3: 1.
C was added. The density of the obtained formed plate having a thickness of 5 mm is 4
It was 00 kg / m 3 . The obtained molded body was cut into 20 cm square pieces, placed in the same laminated film container as in Example 1, and sealed in a vacuum packaging machine at a vacuum degree of 0.1 Torr to obtain a vacuum heat insulating material. There is no problem in handling during vacuuming.
The obtained vacuum heat insulating material had a smooth surface and had no cracks or the like. When the thermal conductivity of the obtained vacuum heat insulating material was measured by a thermal conductivity meter manufactured by Eiko Instruments Co., Ltd., it was 0.0030 Kcal / m.
It was hr.degree. C., and there was no change in the thermal conductivity even after one year.

【0026】比較例1 実施例1と同様に不織材料をホットプレスで200℃に
予熱してポリプロピレンを溶融させ、冷却プレスで一旦
3kgf/cm2の圧力を加えてポリプロピレンとガラ
ス繊維を良くなじませた後、ガラス繊維をスプリングバ
ックさせることなく冷却することによって板厚5mmで
密度900g/m3の不織材料を製造した。得られた成
形体を20cm角に切り、そのまま実施例1と同様のラ
ミネートフィルム製容器に入れ、真空包装機内で真空度
0.1トールで封入し真空断熱材を得た。得られた真空
断熱材の熱伝導率を英弘精機社熱伝導率計で測定したと
ころ、0.100Kcal/m・hr・℃であり、断熱
材としての性能を示さなかった。
Comparative Example 1 In the same manner as in Example 1, the nonwoven material was preheated to 200 ° C. by a hot press to melt the polypropylene, and a pressure of 3 kgf / cm 2 was once applied to the polypropylene by a cooling press to well blend the polypropylene and the glass fiber. After that, the glass fiber was cooled without being spring-back to produce a nonwoven material having a plate thickness of 5 mm and a density of 900 g / m 3 . The obtained molded body was cut into 20 cm square pieces, placed in the same laminated film container as in Example 1, and sealed in a vacuum packaging machine at a vacuum degree of 0.1 Torr to obtain a vacuum heat insulating material. The heat conductivity of the obtained vacuum heat insulating material was 0.100 Kcal / m · hr · ° C. when measured with a heat conductivity meter of Eiko Seiki Co., Ltd., and the performance as a heat insulating material was not shown.

【0027】比較例2 ガラス繊維の含有量を25重量%、ポリプロピレン樹脂
の含有量を75重量%としたほかは実施例1と同様に不
織材料を製造した。この不織布を実施例1と同様に成形
して、板厚5mmで密度830kg/m3の成形板を得
た。得られた成形体を20cm角に切り、そのまま実施
例1と同様のラミネートフィルム製容器に入れ、真空包
装機内で真空度0.1トールで封入し真空断熱材を得
た。得られた真空断熱材の熱伝導率を英弘精機社熱伝導
率計で測定したところ、0.05Kcal/m・hr・
℃であり全く断熱材としての性能を示さなかった。
Comparative Example 2 A nonwoven material was produced in the same manner as in Example 1 except that the glass fiber content was 25% by weight and the polypropylene resin content was 75% by weight. This nonwoven fabric was molded in the same manner as in Example 1 to obtain a molded plate having a plate thickness of 5 mm and a density of 830 kg / m 3 . The obtained molded body was cut into 20 cm square pieces, placed in the same laminated film container as in Example 1, and sealed in a vacuum packaging machine at a vacuum degree of 0.1 Torr to obtain a vacuum heat insulating material. When the thermal conductivity of the obtained vacuum heat insulating material was measured by a thermal conductivity meter of Eiko Seiki Co., Ltd., it was 0.05 Kcal / m · hr ·
The temperature was 0 ° C and did not show any performance as a heat insulating material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟田 満 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsuru Awata 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガスバリアー性を有する容器に、無機系
繊維と熱可塑性樹脂とを主成分とし、密度が100〜7
00kg/m3である多孔質成形体を封入してなる真空
断熱材。
1. A container having a gas barrier property, containing an inorganic fiber and a thermoplastic resin as main components and having a density of 100 to 7.
A vacuum heat insulating material in which a porous molded body of 00 kg / m 3 is enclosed.
【請求項2】 多孔質成形体が、熱可塑性樹脂を10〜
70重量%含有することを特徴とする請求項1に記載の
真空断熱材。
2. The porous molded body contains 10 to 10 thermoplastic resins.
70 weight% is contained, The vacuum heat insulating material of Claim 1 characterized by the above-mentioned.
【請求項3】 多孔質成形体が、無機系繊維を10〜9
0重量%含有することを特徴とする請求項1または2に
記載の真空断熱材。
3. The porous molded body contains 10 to 9 inorganic fibers.
The vacuum heat insulating material according to claim 1 or 2, wherein the vacuum heat insulating material contains 0% by weight.
【請求項4】 多孔質成形体が、輻射熱遮蔽材を1〜2
0重量%含有することを特徴とする請求項1ないし3い
ずれか1項に記載の真空断熱材。
4. The porous molded body comprises a radiant heat shielding material in an amount of 1 to 2.
The vacuum heat insulating material according to claim 1, wherein the vacuum heat insulating material contains 0% by weight.
【請求項5】 無機系繊維の繊維径が3〜30μm、繊
維長が3〜50mmであることを特徴とする請求項1な
いし4いずれか1項に記載の真空断熱材。
5. The vacuum heat insulating material according to claim 1, wherein the inorganic fiber has a fiber diameter of 3 to 30 μm and a fiber length of 3 to 50 mm.
【請求項6】 ガスバリアー性および可とう性を有する
容器内に、無機系繊維と熱可塑性樹脂からなり、密度が
100〜700kg/m3である多孔質成形体を収容し
た後、容器内部を1トール以下に真空排気し、容器を密
着シールすることを特徴とする真空断熱材の製造方法。
6. A container having a gas barrier property and flexibility is accommodated in a container having a density of 100 to 700 kg / m 3 and made of an inorganic fiber and a thermoplastic resin. A method for producing a vacuum heat insulating material, which comprises evacuating to 1 torr or less and closely sealing the container.
JP30141195A 1995-11-20 1995-11-20 Vacuum heat-insulating material Pending JPH09145241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30141195A JPH09145241A (en) 1995-11-20 1995-11-20 Vacuum heat-insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30141195A JPH09145241A (en) 1995-11-20 1995-11-20 Vacuum heat-insulating material

Publications (1)

Publication Number Publication Date
JPH09145241A true JPH09145241A (en) 1997-06-06

Family

ID=17896561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30141195A Pending JPH09145241A (en) 1995-11-20 1995-11-20 Vacuum heat-insulating material

Country Status (1)

Country Link
JP (1) JPH09145241A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
KR20210084395A (en) * 2020-12-01 2021-07-07 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
US11274785B2 (en) 2015-08-03 2022-03-15 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11365931B2 (en) 2015-08-04 2022-06-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11592230B2 (en) 2015-08-03 2023-02-28 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11796246B2 (en) 2015-08-03 2023-10-24 Lg Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11274785B2 (en) 2015-08-03 2022-03-15 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11592230B2 (en) 2015-08-03 2023-02-28 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11796246B2 (en) 2015-08-03 2023-10-24 Lg Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11365931B2 (en) 2015-08-04 2022-06-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
KR20210084395A (en) * 2020-12-01 2021-07-07 엘지전자 주식회사 Vacuum adiabatic body and refrigerator

Similar Documents

Publication Publication Date Title
JPH09145241A (en) Vacuum heat-insulating material
TWI743082B (en) Laminates comprising reinforced aerogel composites
US5977197A (en) Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
US5858501A (en) Evacuated insulation panel having non-wrinkled surfaces
US20020025427A1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one other layer, process for producing the same and their use
CN107266774B (en) Aerogel composite material and preparation method thereof
AU6299400A (en) Method of manufacturing a thermal insulation body
CN101808793A (en) Process for producing heat-expandable base for interior vehicular trim and process for producing base for interior vehicular trim from the same
JPH0466178B2 (en)
JP2010281444A (en) Heat insulating material
EP0928806B1 (en) Expanded resin beads
JPH09229290A (en) Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator
JP2008215492A (en) Vacuum heat insulation material
US5844014A (en) Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
JPH11351493A (en) Vacuum insulation panel and manufacture of the same
JP2574028B2 (en) Insulation structure
JP3191968B2 (en) Floor heating members
JPH04232047A (en) Method of improving appearance of fiber reinforced thermoplastic resin
WO2000075557A1 (en) Evacuated insulation article having a plurality of porous inner supports
JP3859330B2 (en) Method for producing molded body having high density skin layer
US11619396B2 (en) Insulation film
EP1219672A4 (en) Thermoplastic resin foam and process for producing the same
JP7454827B2 (en) vacuum insulation
JPH03140718A (en) Heater device
JP2001099392A (en) Vacuum heat insulating body and heat insulating box body