JPH09229290A - Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator - Google Patents

Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Info

Publication number
JPH09229290A
JPH09229290A JP8065211A JP6521196A JPH09229290A JP H09229290 A JPH09229290 A JP H09229290A JP 8065211 A JP8065211 A JP 8065211A JP 6521196 A JP6521196 A JP 6521196A JP H09229290 A JPH09229290 A JP H09229290A
Authority
JP
Japan
Prior art keywords
vacuum
material
density
composite material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8065211A
Other languages
Japanese (ja)
Inventor
Hiromichi Hotta
Koji Koura
Kensuke Oono
浩通 堀田
賢祐 大野
孝次 小浦
Original Assignee
Mitsubishi Chem Corp
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chem Corp, 三菱化学株式会社 filed Critical Mitsubishi Chem Corp
Priority to JP8065211A priority Critical patent/JPH09229290A/en
Publication of JPH09229290A publication Critical patent/JPH09229290A/en
Application status is Pending legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Abstract

PROBLEM TO BE SOLVED: To shorten a time required for producing a vacuum by using a composite material for vacuum thermal insulator made by combining inorganic fiber dispersed at random with thermoplastic resin into a compressed formed body having a specified density and sealing it in a gas-proof container.
SOLUTION: Nonwoven material having a density of 130kg/m3 which consists of 40% glass fiber and 60% polypropylene resin by weight is manufactured, wherein they are dispersed at random. The nonwoven material is preheated to 200°C by a heating press to melt polypropylene resin and then a pressure of 3kgf/cm2 is applied on the material and cooled by a cooling press to produce a compressed formed body having a thickness of 1.5mm and a density of 2000kg/m3. The compressed formed body is cut into a block of 20cm square and is put in a container made of laminated film, just as it is, and is sealed at 0.05Torr of vacuum, whereby a composite material for vacuum thermal insulator. Moreover, it is heated at 180°C for one hour in a vacuum heater to expand it by a spring back, which produces a vacuum thermal insulator housing a porous formed material having a density of 360kg/m3.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明が属する技術分野】本発明は、冷蔵庫、炊飯器等の家電製品、建築物の外壁、内壁等の建材に使用される真空断熱材に関するものである。 The present invention relates] are those refrigerators, household appliances cooker such, the outer wall of the building relates to a vacuum heat insulating material used for building materials of the inner wall or the like. 特に、本発明は、真空断熱材の製造に有用な真空断熱材用複合材の改良に関するものである。 In particular, the present invention relates to an improvement of a useful vacuum heat insulating material for a composite material for the manufacture of vacuum heat insulating material.

【0002】 [0002]

【従来の技術】従来、冷蔵庫の真空断熱材としては、シリカ等の無機系微粉末、ガラス繊維等の無機系繊維、ウレタンフォーム等の有機系多孔質成形体を、ガスバリアー性容器に収容し内部を減圧にしてシールしたものが使用され、実際には該断熱材が冷蔵庫の内箱と外箱の間に収容される。 Conventionally, as a vacuum heat insulating material of a refrigerator, an inorganic fine powder such as silica, inorganic fibers such as glass fiber, an organic porous molded body such as urethane foam, and housed in a gas barrier container is used inside that sealed in the vacuum, actually the thermal insulation material is accommodated between the inner box and the outer box of the refrigerator.

【0003】 [0003]

【発明が解決しようとする課題】真空断熱材はその製造上真空化が必要であるが、従来の多孔質成形体は多数の微小孔を有し、成形体全体が工業的に経済的に得られる0.05トール程度の真空度に到達するのには、これら微小孔の排気抵抗が大きく長時間を必要としていた。 Although the vacuum heat insulating material [0004] is a need that manufacturing vacuuming, conventional porous shaped body has a large number of fine holes, the entire compact is industrially economically obtained to reach the 0.05 torr vacuum of about to be, exhaust resistance of these micropores had largely takes a long time.

【0004】 [0004]

【課題を解決するための手段】本発明は、上記問題点を解決すべく鋭意検討した結果、真空排気工程は微小孔を持たない成形体を使用することによって、所要時間を短縮し、また、多孔質化工程は成形体を構成する無機系繊維のスプリングバック膨張能を利用することによって、 Means for Solving the Problems The present invention is a result of extensive investigations to solve the above problems, the evacuation process by using a molded body having no micropores, and shorten the required time, also, by porous step utilizing spring-back expansion ability of the inorganic fibers constituting the molded body,
加熱するだけで所望の断熱性を達成できることを、さらに、加熱時の膨張量に比例して真空度も上がり容易に高真空化できることを見出したことにより、達成された。 To be able to achieve the desired thermal insulation only by heating, further, by the finding that easily high vacuum of up even vacuum in proportion to the amount of expansion during heating, was achieved.

【0005】すなわち、本発明の要旨は、(1) ランダムに分散された無機系繊維が熱可塑性樹脂で接合された、密度1600〜2500kg/m 3の圧縮成形体およびこれを真空封入したガスバリアー性容器からなる真空断熱材用複合材および(2) かかる真空断熱材用複合材を、熱可塑性樹脂の軟化点以上の温度に加熱して、 Namely, the gist of the present invention, (1) randomly dispersed inorganic fibers are bonded with a thermoplastic resin, compression molding having a density 1600~2500kg / m 3 and it was vacuum-sealed gas barrier the vacuum heat insulating material for a composite material consisting of sex container and (2) according vacuum insulation material for a composite material is heated to a temperature above the softening point of the thermoplastic resin,
ガスバリアー性容器内に真空封入されている成形体を膨張させ、密度100〜700kg/m 3の多孔質成形体とすること特徴とする真空断熱材の製造方法に存する。 The molded product is vacuum sealed in a gas-barrier container is expanded, it consists in the manufacturing method of the vacuum heat insulating material, characterized by a porous compact of a density 100~700kg / m 3.

【0006】 [0006]

【発明の実施の形態】以下、本発明の実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter will be described an embodiment of the present invention. 本発明の真空断熱材用複合材は、第1の素材である圧縮成形体と、第2の素材であるガスバリアー性容器とを複合したものであり、さらに、該成形体はランダムに分散された無機系繊維とこれらを接合するための熱可塑性樹脂を含む。 The vacuum heat insulating material for a composite material of the present invention comprises a compression molded body is a first material, and a composite of a gas barrier container is a second material, further, the molded product is randomly distributed and including inorganic fibers and a thermoplastic resin for bonding them. しかも、この複合材を取扱性および断熱性の優れた断熱材とするのに重要な要件は、該成形体が、上記接合状態で密度1600〜2500kg Moreover, an important requirement for the composite material and handling and heat insulating properties of excellent thermal insulation molded body is, density 1600~2500kg in the bonding state
/m 3まで圧縮されていること、および、ガスバリアー性容器に真空封入されていることである。 / M 3 that have been compressed to, and is to be vacuum-sealed in a gas barrier property containers. すなわち、これらの要件が、所望のスプリングバック能または断熱性の賦与を可能にする。 That is, these requirements allows for imparting a desired spring back performance or thermal insulation.

【0007】しかして、本発明における圧縮成形体の製造方法は、上述したようなスプリングバック能を有するランダム分散体が得られるものであれば、特に制限はない。 [0007] Thus, the manufacturing method of the compacts of the present invention, as long as the random dispersion having spring-back capability, as described above, is not particularly limited. 理解を容易にするために、具体例を挙げて説明すれば、まず、無機系繊維および熱可塑性樹脂のランダム分散体または不織材料を得るには、通常、特公昭52−1 For ease of understanding, description will discuss a specific example, first, obtaining a random dispersion or nonwoven material of the inorganic fibers and thermoplastic resin is usually Sho 52-1
2283号公報、特公昭55−9119号公報、特開平5−16277号公報、特開平6−134876号公報等に記載の、いわゆる抄造技術を応用するのがよい。 2283, JP-B-55-9119, JP-A No. 5-16277, JP-described in JP-A 6-134876 Patent Publication, it is preferable to apply the so-called papermaking technology. すなわち、無機系繊維と熱可塑樹脂粉末を、必要に応じて気泡や表面活性剤の助けをかりて、水中に均等に分散したものを、ワイヤの上に展開して水を分離し、乾燥して不織材料とする。 That is, the inorganic fibers and the thermoplastic resin powder, optionally with the aid of air bubbles and surface active agent, a material obtained by uniformly dispersing in water, expand to separate water on the wire, dried and non-woven material Te. 次に、この不織材料を加熱加圧して熱可塑性樹脂を溶融させ、ランダムに分散した無機系繊維を接合可能な状態にしたのち、冷却固定して圧縮成形体とする。 Next, this melt the nonwoven material by heating and pressing a thermoplastic resin, after the inorganic fibers dispersed randomly bondable state, the compression molded body was cooled fixed.

【0008】加熱加圧工程は、不織材料を、必要に応じてその両面に板状体、例えばステンレス製鏡板を重ね合わせた上で、加熱プレス盤内に挿入することにより、また加圧は繊維破損が生じない程度の圧力で行われる。 [0008] heating and pressing step, a nonwoven material, a plate-like body on both sides thereof as necessary, in terms of superposition of, for example, stainless steel panel, by inserting a heated press platen in, also pressurization fiber breakage is carried out at a pressure of a degree that does not occur. 冷却固定工程は、加熱プレス盤から取り出された不織材料を冷却プレス盤内に挿入し、目的とする密度1600〜 Cooling fixing step, inserts the non-woven material that has been removed from the heating press platen the cooling press platen in the density and an object 1600~
2500kg/m 3の圧縮成形体を製造しうる条件で加圧冷却し、必要に応じて板状体を取り外すことによって行われる。 2500 kg / m pressure and pressure cooled with conditions that may make compressed moldings of 3, is carried out by removing the plate-like body as needed. なお、所望とあれば、加熱プレス盤から取り出された不織材料は、冷却プレス盤に挿入する前に、熱可塑性樹脂が溶融した状態のままで加圧を除去し、両面の板状体を重ね合わせたままで、不織材料を一旦スプリングバックにより膨張させる、解圧工程を実施してもよい。 Incidentally, if desired, non-woven material that has been removed from the heating press platen, prior to insertion into a cooling press machine, the thermoplastic resin is removed under pressure in the state in which the molten, both sides of the plate member while superposed, the nonwoven material once inflated by the spring-back may be carried out Kai圧 process. さらには、加熱加圧、解圧、冷却固定の各工程を連続的に実施する、ダブルベルトコンベア式連続プレスの採用も、生産性の観点からは非常に有効である。 Further, heat and pressure, Kai圧, carried out continuously the steps of cooling stationary, the adoption of the double-belt conveyor type continuous press also very effective in terms of productivity.

【0009】無機系繊維としては、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール等が使用できる。 [0009] As the inorganic fibers, glass fibers, ceramic fibers, slag wool fibers, rock wool or the like can be used. 無機系繊維の形状は、直径が、取扱いの容易さと経済的観点から3μm以上で、十分な強度を発現させるため30μm以下にすることが好ましく、さらには6〜 The shape of the inorganic fibers, is in the ease of handling and economic point of view from 3μm or more, preferably to less than sufficient strength 30μm for expressing diameter, more 6
20μmが好ましい。 20μm is preferable. 繊維長は、強度発現の観点から3 Fiber length, 3 from the viewpoint of strength development
mm以上で、均一な分散が可能な50mm以下にすることが好ましく、さらには6〜25mmが好ましい。 In mm or more, preferably to less than homogeneous dispersion capable 50 mm, more 6~25mm is preferred. また、この無機系繊維は、水中での良好な分散または親水性の向上を目的として、水溶性高分子で表面処理すること、熱可塑性樹脂との接着性を向上させ強度発現を目的として、シランカップリング剤等で表面処理することが好ましい。 Further, the inorganic fibers, for the purpose of good dispersion or improve the hydrophilicity in water, be surface treated with a water-soluble polymer, for the purpose of strength development to improve the adhesion between the thermoplastic resin, silane it is preferred to surface treatment with a coupling agent.

【0010】熱可塑性樹脂は、ポリプロピレン、ポリエチレン、ポリスチレン、スチレンーブタジエンーアクリロニトリル共重合体、スチレンーアクリロニトリル共重合体、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリフェニレンオキシド、ポリスルフォン、ポリフェニレンスルフィド等の樹脂であり、またこれら2種類またはそれ以上の混合物および変性物も含み、これらに一般的に用いられる可塑剤、熱安定剤、光安定剤、充填材、染顔料、耐衝撃材、 [0010] Thermoplastic resins are polypropylene, polyethylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polysulfone, resin such as polyphenylene sulfide , and the addition of these two or more mixtures and modified products also include, plasticizer used these generally, heat stabilizers, light stabilizers, fillers, dyes and pigments, impact resistant material,
増量材、核材、加工助剤等を添加することもできる。 Extender, nuclear material, may be added processing aids and the like. 熱可塑性樹脂としては、無機系繊維と共に水中に分散させることを考慮し、適当な大きさと形状のものが選択される。 As the thermoplastic resin, considering that is dispersed in water together with inorganic fibers, it is selected of any suitable size and shape.

【0011】圧縮成形体を構成する主要な成分である上記の無機系繊維と熱可塑性樹脂の量は、成形体が、無機系繊維および熱可塑性樹脂を、それぞれ、30〜90重量%および10〜70重量%含有するように選択することが好ましい。 [0011] The amount of the inorganic fibers and the thermoplastic resin is the major component constituting the compression molded body, the molded body is, the inorganic fibers and thermoplastic resin, respectively, 30 to 90 wt% and 10 to it is preferably selected so as to contain 70 wt%. すなわち、無機系繊維が多いと成形体は強度不足となり、少ないとスプリングバック後の密度が高くなりすぎ十分な熱伝導率が得られなくなり、いずれも好ましくない。 That is, inorganic fibers is often a molded article becomes insufficient strength, less the longer sufficient thermal conductivity density becomes too high after spring back obtained, either case is not preferable.

【0012】圧縮成形体は、上記無機系繊維および熱可塑性樹脂のほか、輻射遮蔽材を含有することができる。 [0012] Compression molded body, in addition to the above-mentioned inorganic fibers and thermoplastic resin may contain a radiation shielding material.
すなわち、断熱効果を向上させるために、固体伝熱、気体伝熱を小さくすると、輻射伝熱の割合があがる。 That is, in order to improve the heat insulating effect, solid heat transfer, reducing the gas heat transfer, is increased the proportion of radiant heat transfer. このような場合に、輻射伝熱を遮蔽するために使用されるのが輻射遮蔽材であり、通常、金属酸化物、金属水酸化物、炭化物等が有効である。 In such a case, a radiation shielding material that is used to shield the radiant heat transfer, typically, metal oxides, metal hydroxides, carbides etc. are effective. 特に、Si、Ti,Al等の酸化物、水酸化物、炭化物やグラファイト等が有効であり、炭化珪素、酸化チタン等の使用が好ましい。 In particular, Si, Ti, oxides such as Al, are effective hydroxides, carbides, graphite or the like, silicon carbide, the use of titanium oxide preferably. 使用量としては、成形体が、熱可塑性樹脂および無機系繊維の合計量100重量部に対して、輻射熱遮蔽材を1〜2 The amount used, the molded body is, 100 parts by weight of the total amount of the thermoplastic resin and inorganic fibers, the radiant heat shielding member 1 to 2
0重量部、好ましくは5〜15重量部含有することが好ましい。 0 parts by weight, preferably preferably contains 5 to 15 parts by weight. また、輻射遮蔽材は、通常0.5〜30μmの微粒子として使用され、圧縮成形体の製造工程の任意の段階において、例えば無機系繊維、熱可塑性樹脂とともに水中に分散される。 Further, the radiation shielding material is used as fine particles of normally 0.5 to 30 m, at any stage of the manufacturing process of the compression molded body, for example, inorganic fibers, are dispersed in water together with a thermoplastic resin.

【0013】本発明において、圧縮成形体の密度は、前記の不織材料の加圧冷却時の条件によって左右されるが、中でも重要な条件は、圧縮成形体を構成する諸材料の密度および配合組成であり、また、空間部分の割合である。 [0013] In the present invention, the density of the compression molded body is influenced by the conditions at the time of pressurized cooling of the non-woven material, among them important condition, the density and the formulation of various materials constituting the compression molded body a composition, also the ratio of the space portion. 従って、構成材料が同一であり、空間部分の割合が一定の場合には、材料の配合組成によって圧縮成形体の密度を制御することができる。 Thus, the material is the same, when the ratio of the space portion is constant, it is possible to control the density of the compression molded body depending on the composition of the material. また、圧縮成形体の形状は、後記のガスバリアー性容器の形状、言い換えれば真空断熱材が適用される具体的な用途によって相違するが、一般的には、平板状あるいは該平板を裁断、ブロー成形、スタンプ成形等によって賦形した3次元形状のものが挙げられる。 The shape of the compression moldings, below the gas barrier properties container shape, which varies by the specific application in which the vacuum heat insulating material is applied in other words, in general, cutting a plate-like or tabular, blow molding include the three-dimensional shape that is shaped by stamping or the like. さらに、該圧縮成形体を加熱膨張させたときの形状が、ガスバリアー性容器内に十分収容できるものであるよう、膨張前の成形体の形状を選定しなければならない。 Furthermore, the shape when heated expands the compressed shaped bodies, as are those sufficient accommodated in the gas barrier property containers shall appoint shape of the molded body before expansion.

【0014】本発明において、上記圧縮成形体を真空封入すべき、ガスバリアー性容器としては、公知のガスバリアー性材料、例えばプラスチックや金属のフイルムやシートを、真空断熱材の用途に適した所要の形状に成形したもの使用することができる。 [0014] In the present invention, to be vacuum-sealed to the compression molded body, required as a gas barrier container, known gas barrier materials, for example plastic or metal film or sheet, suitable for use in vacuum heat insulating material It may be of use those that have been molded into a shape. プラスチックフイルムとしては、金属箔を積層または金属を蒸着した複合フイルム、塩化ビニリデン系樹脂フイルム、塩化ビニリデン樹脂コートフイルム、ポリビニルアルコール系フイルム等が挙げられる。 The plastic film, a composite film with a deposit of stacked or metal a metal foil, vinylidene resin film chloride, vinylidene resin coated film chloride, polyvinyl alcohol film, and the like. 金属シートとしては、アルミニュウム、銅、鉄等のシートが好ましい。 As the metal sheet, aluminum, copper, sheet iron or the like. ガスバリアー性材料は、ガスバリアー層のほかに、必要に応じ、表面層および溶着層を有する多層構造をとることもできる。 Gas barrier material, in addition to the gas barrier layer, if necessary, may take a multilayer structure having a surface layer and the welding layer. 表面層は、ポリエステル樹脂からなり、通常、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。 Surface layer is made of a polyester resin, usually, polyethylene terephthalate, polybutylene terephthalate, and the like. また、溶着層は溶着可能な樹脂からなり、通常、 Further, the welding layer is made of weldable resin, usually,
ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のアクリロニトリル共重合体、ポリメチルメタクリレート等のポリアクリレート、好ましくはポリオレフィン樹脂が挙げられる。 Polyethylene, polyolefin resins such as polypropylene, nylon 6, polyamide resins such as nylon 66, acrylonitrile-butadiene-styrene copolymer, acrylonitrile copolymers such as acrylonitrile-styrene copolymers, polyacrylates such as polymethyl methacrylate, preferably include the polyolefin resin. これらの樹脂は、単独で用いても、共重合させても、また、混合して使用しても良い。 These resins may be used alone, be copolymerized, also may be used in combination.

【0015】本発明の真空断熱材用複合材において、上記圧縮成形体を収納したガスバリアー性容器の内部は、 [0015] In the vacuum heat insulating material for a composite material of the present invention, the inside of the gas barrier container containing the compression molded body,
通常1Torr以下に真空排気される。 The following is evacuated to the normal 1 Torr. 真空度が1To The degree of vacuum is 1To
rrより大きいと、容器内部に存在する空気による伝熱が増加し、断熱性能が低下するので好ましくない。 And rr larger, heat transfer is increased due to the air present inside the container, since the heat insulating performance is undesirably reduced. 真空化に要する時間は、通常10〜20分程度であり、従来の多孔質成形体の真空化に比べ、短時間で十分ある。 The time required for evacuation is generally approximately 10 to 20 minutes, compared to a vacuum of conventional porous shaped body, a short time is enough. 真空排気した後は、適当な手段でシールし、真空封入を完了する。 After evacuation, sealed by appropriate means, to complete the vacuum-sealed.

【0016】本発明の真空断熱材の製造方法は、上記真空断熱材用複合材を加熱し、容器内に収容された成形体を膨張させ、所定密度の多孔質成形体とすることによって行われる。 The manufacturing method of vacuum insulation material of the present invention is carried out by heating the vacuum heat insulating material for a composite material, inflating the molded body contained in the container, a porous molded body having a predetermined density . しかして、熱膨張の際の加熱条件は、熱可塑性樹脂の軟化点以上の温度であることが必要であり、 Thus, the heating conditions during the thermal expansion, must be a temperature above the softening point of the thermoplastic resin,
容器がプラスチックフィルムまたは合成樹脂層を含む場合は、これらプラスチックまたは合成樹脂が溶融しない温度であることも必要である。 If the container comprises a plastic film or a synthetic resin layer, it is also necessary these plastic or synthetic resin is at a temperature which does not melt. 実際の加熱温度は、熱可塑性樹脂の種類によっても相違するが、通常100〜2 The actual heating temperature differs depending on the kind of thermoplastic resin, usually 100-2
50℃、好ましくは150〜200℃が選ばれる。 50 ° C., preferably selected is 150 to 200 ° C.. また、加熱時間は通常15分〜2時間程度である。 The heating time is usually 15 minutes to 2 hours.

【0017】つぎに熱膨張後の多孔質成形体の密度は、 [0017] Then density of the porous formed article after thermal expansion,
700kg/m 3を越えると空間部分の割合(空隙率) The proportion of the space portion exceeds 700 kg / m 3 (porosity)
が小さく真空度を上げても真空断熱板の熱伝導率は固体伝熱に支配されるため低下しない。 Does not decrease the thermal conductivity of the vacuum heat insulating plate is governed by the solid heat transfer also increased the small vacuum. また、100kg/ In addition, 100kg /
3以下では、空隙率が大きくなり、繊維間隔が拡大するので、反対に熱伝導率が上昇する。 m 3 In the following, the porosity is increased, since the fiber spacing is enlarged, the thermal conductivity is increased in the opposite. 従って、多孔質成形体の密度は100〜700kg/m 3 、好ましくは1 Thus, the density of the porous molded body 100~700kg / m 3, preferably 1
00〜600kg/m 3 、更に好ましくは100〜50 00~600kg / m 3, more preferably 100 to 50
0kg/m 3と低いことが好ましい。 It is preferably as low as 0 kg / m 3.

【0018】 [0018]

【発明の効果】本発明の真空断熱材用複合材においては、ガスバリアー性容器に密度の大きい圧縮成形体を真空封入するので、容易に真空化可能で、従来例の欠点を除去するものである。 In vacuum insulation material for a composite material of the present invention, since the vacuum-sealed large compacts of density gas barrier container, easily evacuated can, intended to eliminate the drawbacks of the prior art is there. ちなみに、真空化に要する時間は、密度の小さい多孔質成形体を真空封入する従来例に比べ、約1/3程度と短時間である。 Incidentally, the time required for evacuation, as compared to less porous compact density in conventional vacuum sealed, it is short and about 1/3 degree. 本発明の真空断熱材の製造方法においては、断熱材用複合材として既に真空封入されている成形体を後膨張させるので、取扱いに優れ、かつ優れた断熱性を有する。 In the manufacturing method of the vacuum heat insulating material of the present invention, since already is post inflate the molded article is vacuum-sealed as a heat insulating material for a composite material excellent in handling, and has excellent thermal insulation properties. 例えば、冷蔵庫などに組み込む場合、移送、保管の面で場所を取らない。 For example, If you want to include, such as the refrigerator, transfer, it does not take the place in terms of storage. また、後膨張により、更に高真空化が達成でき、低熱伝導率かつ熱伝導の長期安定性のよい、真空断熱材を得ることができる。 Further, the rear expansion, further can be achieved a high vacuum of, low thermal conductivity and good long-term stability of thermal conductivity, it is possible to obtain a vacuum heat insulating material.

【0019】 [0019]

【実施例】以下、本発明の実施形態を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、 EXAMPLES Hereinafter, described in further detail by the embodiment example of the present invention, the present invention as long as not exceeding the gist thereof,
これら実施例に示された形態のみに限定されるものではない。 It is not limited only to the embodiment shown in these examples.

【0020】実施例1 [真空断熱材用複合材]無機系繊維として直径10μ [0020] Example 1 [vacuum insulation material for a composite material having a diameter of 10μ as inorganic fibers
m、長さ13mmのガラス繊維を用い、熱可塑性樹脂として直径3mmの球状ペレットを機械粉砕しその粉砕品の篩い分けにより70メッシュから10メッシュまでに分級したポリプロピレン粉末を用いて、いわゆる抄造法に従い、水中に調製された均一分散体から水を分離し乾燥することにより、密度130kg/m 3で、ランダムに分散されたガラス繊維60重量%およびポリプロピレン樹脂40重量%の組成の不織材料を製造した。 m, a glass fiber length of 13 mm, the spherical pellets having a diameter of 3mm as the thermoplastic resin using a polypropylene powder classified to from 70 mesh to 10 mesh by sieving machine ground that the ground product, in accordance with the so-called paper-making method , produced by the water was separated dried from a homogeneous dispersion prepared in water, at a density 130 kg / m 3, a non-woven material of a random 60% by weight glass fibers dispersed in and polypropylene resin 40% by weight of the composition did.

【0021】この不織材料を、加熱プレスで200℃に予熱してポリプロピレンを溶融させ、ポリプロピレンとガラス繊維を良くなじませた後、冷却プレスで3kgf [0021] After the non-woven material, preheated to 200 ° C. at a heating press polypropylene and melted, thereby better fit the polypropylene and glass fibers, 3 kgf in a cooling press
/cm 2の圧力を加えて冷却することによって、板厚1.5mm、密度2000kg/m 3の圧縮成形体を得た。 / By applying pressure in cm 2 and cooled to obtain a plate thickness 1.5 mm, a compression molding having a density of 2000 kg / m 3.

【0022】得られた成形体を20cm角に切り、そのままラミネートフィルム製容器(構成:表面層15μm The cut obtained compact to 20cm square, as it is a laminate film container (construction: the surface layer 15μm
PET、ガスバリアー層9μmAl箔、融着層12μm PET, gas barrier layer 9μmAl foil, fusion layer 12μm
ナイロン)に入れ、排気量1500l/minの真空ポンプを有する真空包装機内で真空度0.05Torrで封入し、真空断熱材用複合材を得た。 Placed in a nylon), sealed with vacuum 0.05Torr a vacuum packaging machine having a vacuum pump of the gas exhaust amount 1500 l / min, to obtain a vacuum heat insulating material for a composite material. 真空化に要した時間は15分で、これは密度340kg/m 3の多孔質成形体をガスバリアー性容器に入れ0.05Torrにした場合と比べて約1/3で済んだ。 Time 15 minutes required for the evacuation, which after completion of about 1/3 as compared with the case where the porous shaped body density of 340 kg / m 3 was 0.05Torr placed in a gas barrier property containers.

【0023】[真空断熱材]得られた真空断熱材用複合材を、さらに180℃で1時間、真空加熱機中で加熱すると、成形体はスプリングバックにより後膨張し、密度360kg/m 3の多孔質成形体を収容する真空断熱材が得られた。 [0023] the vacuum heat insulating material] The resulting vacuum thermal insulating material for a composite material, a further 1 hour at 180 ° C., when heated in a vacuum heating apparatus, the molded body post-expanded by the spring back, the density of 360 kg / m 3 vacuum heat insulating material for accommodating the porous molded article was obtained. 得られた真空断熱材の断熱性を評価するために、英弘精機社熱伝導率計で測定された熱伝導率は、 To evaluate the thermal insulation of the resulting vacuum thermal insulating material, EKO Instruments Shanetsu thermal conductivity measured by the conductivity meter,
0.0060Kcal/m・hr・℃であった。 Was 0.0060Kcal / m · hr · ℃. なお、 It should be noted that,
参考まで、加熱膨張前の真空断熱材用複合材の熱伝導率は、0.460Kcal/m・hr・℃であった。 For reference, the thermal conductivity of the vacuum heat insulating material for a composite material before thermal expansion was 0.460Kcal / m · hr · ℃.

【0024】実施例2 実施例1において、組成をガラス繊維85重量%およびポリプロピレン樹脂15重量%に変更したほかは、実施例1と全く同様にして、真空断熱材用複合材および真空断熱材を得た。 [0024] In Example 1, except that the composition was changed to 85 wt% of glass fibers and polypropylene resin 15% by weight, in the same manner as in Example 1, the vacuum heat insulating material for a composite material and the vacuum heat insulating material Obtained.

【0025】[真空断熱材用複合材]無機系繊維として直径10μm、長さ13mmのガラス繊維を用い、熱可塑性樹脂として直径3mmの球状ペレットを機械粉砕しその粉砕品の篩い分けにより70メッシュから10メッシュまでに分級したポリプロピレン粉末を用いて、いわゆる抄造法に従い、水中に調製された均一分散体から水を分離し乾燥することにより、密度170kg/m [0025] [vacuum insulation material for a composite material having a diameter of 10μm as inorganic fibers, a glass fiber length of 13 mm, the spherical pellets having a diameter of 3mm as the thermoplastic resin from the 70 mesh by sieving machine ground that the ground product 10 using the polypropylene powder and classified by mesh, in accordance with the so-called paper-making method, by the water was separated dried from a homogeneous dispersion prepared in water, density 170 kg / m
3で、ランダムに分散されたガラス繊維85重量%およびポリプロピレン樹脂15重量%の組成の不織材料を製造した。 3, to produce a non-woven material of a random 85% by weight glass fibers dispersed in and polypropylene resin 15% by weight of the composition.

【0026】この不織材料を、加熱プレスで200℃に予熱してポリプロピレンを溶融させ、ポリプロピレンとガラス繊維を良くなじませた後、冷却プレスで3kgf [0026] After the non-woven material, preheated to 200 ° C. at a heating press polypropylene and melted, thereby better fit the polypropylene and glass fibers, 3 kgf in a cooling press
/cm 2の圧力を加えて冷却することによって、板厚1.5mm、密度2500kg/m 3の圧縮成形体を得た。 / By applying pressure in cm 2 and cooled to obtain a plate thickness 1.5 mm, a compression molding having a density of 2500 kg / m 3.

【0027】得られた成形体を20cm角に切り、そのままラミネートフィルム製容器(構成:表面層15μm The cut obtained compact to 20cm square, as it is a laminate film container (construction: the surface layer 15μm
PET、ガスバリアー層9μmAl箔、融着層12μm PET, gas barrier layer 9μmAl foil, fusion layer 12μm
ナイロン)に入れ、排気量1500l/minの真空ポンプを有する真空包装機内で真空度0.05Torrで封入し、真空断熱材用複合材を得た。 Placed in a nylon), sealed with vacuum 0.05Torr a vacuum packaging machine having a vacuum pump of the gas exhaust amount 1500 l / min, to obtain a vacuum heat insulating material for a composite material. 真空化に要した時間は15分で、これは密度600kg/m 3の多孔質成形体をガスバリアー性容器に入れ0.05Torrにした場合と比べて約1/3で済んだ。 Time 15 minutes required for the evacuation, which after completion of about 1/3 as compared with the case where the porous shaped body density of 600 kg / m 3 was 0.05Torr placed in a gas barrier property containers.

【0028】[真空断熱材]得られた真空断熱材用複合材を、さらに180℃で1時間、真空加熱機中で加熱すると、成形体はスプリングバックにより後膨張し、密度600kg/m 3の多孔質成形体を収容する真空断熱材が得られた。 [0028] the vacuum heat insulating material] The resulting vacuum thermal insulating material for a composite material, a further 1 hour at 180 ° C., when heated in a vacuum heating apparatus, the molded body post-expanded by the spring back, the density of 600 kg / m 3 vacuum heat insulating material for accommodating the porous molded article was obtained. 得られた真空断熱材の断熱性を評価するために、英弘精機社熱伝導率計で測定された熱伝導率は、 To evaluate the thermal insulation of the resulting vacuum thermal insulating material, EKO Instruments Shanetsu thermal conductivity measured by the conductivity meter,
0.0060Kcal/m・hr・℃であった。 Was 0.0060Kcal / m · hr · ℃.

【0029】実施例3 実施例1において、ガラス繊維およびポリプロピレン粉末の合計量100重量部に対して、輻射熱遮蔽材SiC [0029] In Example 3 Example 1, 100 parts by weight of the total amount of glass fibers and polypropylene powder, radiation heat shielding material SiC
を10重量部の割合で追加したほかは、実施例1と全く同様にして、真空断熱材用複合材および真空断熱材を得た。 In addition added in an amount of 10 parts by weight, in the same manner as in Example 1 to obtain a vacuum heat insulating material for a composite material and the vacuum heat insulating material. その際、得られた圧縮成形体は、板厚1.5mm、 At that time, the resulting compression molded product, sheet thickness 1.5 mm,
密度2100kg/m 3で真空化に要した時間は15 The time required to evacuated at a density 2100 kg / m 3 15
分。 Minute. また、得られた真空断熱材は、密度400kg/m The obtained vacuum heat insulating material has a density 400 kg / m
3の多孔質成形体を収容し、熱伝導率は0.0050K 3 of the porous compact housing, thermal conductivity 0.0050K
cal/m・hr・℃であった。 Was cal / m · hr · ℃.

【0030】比較例 実施例1において、組成をガラス繊維25重量%およびポリプロピレン樹脂75重量%に変更したほかは、実施例1と全く同様にして、真空断熱材用複合材および真空断熱材を得た。 [0030] In Comparative Example 1, except for changing the 25 wt% glass fibers and polypropylene resin 75% by weight of the composition, in the same manner as in Example 1, to obtain a vacuum heat insulating material for a composite material and the vacuum heat insulating material It was. その際、得られた圧縮成形体は、板厚1.5mm、密度1400kg/m 3であった。 At that time, the resulting compression molded product, sheet thickness 1.5 mm, a density of 1400 kg / m 3. また、 Also,
得られた真空断熱材は、密度600kg/m 3の多孔質成形体を収容し、熱伝導率は0.110Kcal/m・ The resulting vacuum thermal insulating material, houses a porous compact of density 600 kg / m 3, the thermal conductivity 0.110Kcal / m ·
hr・℃であった。 It was hr · ℃.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 F25D 23/06 F25D 23/06 V ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 in identification symbol Agency Docket No. FI art display portion F25D 23/06 F25D 23/06 V

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ランダムに分散された無機系繊維が熱可塑性樹脂で接合された、密度1600〜2500kg/m 1. A randomly dispersed inorganic fibers are bonded with a thermoplastic resin, a density 1600~2500kg / m
    3の圧縮成形体およびこれを真空封入したガスバリアー性容器からなる真空断熱材用複合材。 3 compacts and which the vacuum heat insulating material for a composite material made of a gas barrier container was vacuum sealed in.
  2. 【請求項2】成形体が、無機系繊維および熱可塑性樹脂を、それぞれ、30〜90重量%および10〜70重量%含有することを特徴とする請求項1記載の真空断熱材用複合材。 2. A molded body, the inorganic fibers and thermoplastic resin, respectively, 30 to 90 wt% and claim 1 vacuum insulation material for composite material, wherein the containing 10-70 wt%.
  3. 【請求項3】成形体が、熱可塑性樹脂および無機系繊維の合計量100重量部に対して、輻射熱遮蔽材を1〜2 3. A molded article, the total amount 100 parts by weight of the thermoplastic resin and inorganic fibers, the radiant heat shielding member 1 to 2
    0重量部含有することを特徴とする請求項1または2に記載の真空断熱材用複合材。 0 vacuum heat insulating material for a composite material according to claim 1 or 2, characterized in that it contains parts by weight.
  4. 【請求項4】無機系繊維が、繊維径3〜30μm、繊維長3〜50mmであることを特徴とする請求項1ないし3のいずれか1項に記載の真空断熱材用複合材。 Wherein the inorganic fibers, fiber diameter 3 to 30 .mu.m, the vacuum heat insulating material for a composite material according to any one of claims 1 to 3, characterized in that a fiber length 3 to 50 mm.
  5. 【請求項5】請求項1〜4に記載の真空断熱材用複合材を、熱可塑性樹脂の軟化点以上の温度に加熱して、ガスバリアー性容器内に真空封入されている成形体を膨張させ、密度100〜700kg/m 3の多孔質成形体とすることを特徴とする真空断熱材の製造方法。 5. A vacuum heat insulating material for a composite material according to claim 1, is heated to a temperature above the softening point of the thermoplastic resin, the molded product is vacuum sealed in a gas-barrier container expansion is allowed, the manufacturing method of the vacuum heat insulating material, characterized in that a porous molded body density 100~700kg / m 3.
JP8065211A 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator Pending JPH09229290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065211A JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065211A JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Publications (1)

Publication Number Publication Date
JPH09229290A true JPH09229290A (en) 1997-09-05

Family

ID=13280363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065211A Pending JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Country Status (1)

Country Link
JP (1) JPH09229290A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940239A1 (en) * 1998-03-06 1999-09-08 Matsushita Electric Industrial Co., Ltd. Recycling of cured phenolic resin and a product such as a vacuum thermal insulator obtained thereby
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
WO2008078838A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2008078839A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
JP2017043078A (en) * 2015-08-24 2017-03-02 株式会社巴川製紙所 Composite sheet for heat shielding and electromagnetic wave shielding and utilization thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940239A1 (en) * 1998-03-06 1999-09-08 Matsushita Electric Industrial Co., Ltd. Recycling of cured phenolic resin and a product such as a vacuum thermal insulator obtained thereby
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP4642265B2 (en) * 2001-04-17 2011-03-02 株式会社クラレ Vacuum insulation structure
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
WO2008078838A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2008078839A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
JP2008179785A (en) * 2006-12-26 2008-08-07 Sumitomo Chemical Co Ltd Propylene resin composition and pellet thereof and molded body made from the same
JP2008179784A (en) * 2006-12-26 2008-08-07 Sumitomo Chemical Co Ltd Propylene resin composition and pellet thereof and molded body made from the same
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
CN104105917A (en) * 2012-02-14 2014-10-15 井前工业株式会社 Vacuum insulation material and method for manufacturing same
JPWO2013121992A1 (en) * 2012-02-14 2015-05-11 井前工業株式会社 Vacuum heat insulating material and manufacturing method thereof
CN104105917B (en) * 2012-02-14 2016-08-24 井前工业株式会社 Vacuum heat insulation materials and manufacture method thereof
JP2017043078A (en) * 2015-08-24 2017-03-02 株式会社巴川製紙所 Composite sheet for heat shielding and electromagnetic wave shielding and utilization thereof

Similar Documents

Publication Publication Date Title
US3488714A (en) Formed laminate structure and method of preparation
CN101065526B (en) Composite thermoplastic sheets including natural fibers
US5151246A (en) Methods for manufacturing foamable metal bodies
US5713974A (en) Insulation microspheres and method of manufacture
US5226210A (en) Method of forming metal fiber mat/polymer composite
US7037865B1 (en) Composite materials
EP0190582B1 (en) Thermal insulating slabs for freezers and refrigerators comprising an envelope filled with precipitated silica which is subsequently compressed and the process for their manufacture
EP0344726A2 (en) Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
US6887563B2 (en) Composite aerogel material that contains fibres
CN1111705C (en) Vacuum heat-insulating panel and method for producing the same, and refrigerator using the same
CA1238565A (en) Resinous compositions
CA1299480C (en) Method of making laminated reinforced thermoplastic sheets and articlesmade therefrom
US20020144482A1 (en) Shapeable vacuum insulation panel containing a single core component
EP1363772B1 (en) Composite material comprising a polypropylene cover layer and a polypropylene foam sheet
EP0591553B1 (en) Skinned in-mold expansion molding product of polypropylene resin and production thereof
EP1653146B1 (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
KR100368851B1 (en) Method of producing a composite material and is composed of more than one fiber web and airgel particles
US5779847A (en) Process for high performance, permeable fibrous structure
US3411967A (en) Process of simultaneously foaming and laminating polyolefin film to a solid backing
US5049439A (en) Thermoformable article
EP0331447A2 (en) Process for preparation of molded laminated article
US20040180176A1 (en) Vaccum insulation article
JP4118331B2 (en) Airgel composite containing fibers
DE69919188T2 (en) Vacuum insulating plate and method for preparing the same
WO2001081817A1 (en) Vacuum insulating material and device using the same