JPH0510494A - End portion structure of vacuum insulation box - Google Patents

End portion structure of vacuum insulation box

Info

Publication number
JPH0510494A
JPH0510494A JP3161940A JP16194091A JPH0510494A JP H0510494 A JPH0510494 A JP H0510494A JP 3161940 A JP3161940 A JP 3161940A JP 16194091 A JP16194091 A JP 16194091A JP H0510494 A JPH0510494 A JP H0510494A
Authority
JP
Japan
Prior art keywords
membrane
box
curved portion
inner box
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161940A
Other languages
Japanese (ja)
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Masanobu Morimoto
眞布 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3161940A priority Critical patent/JPH0510494A/en
Publication of JPH0510494A publication Critical patent/JPH0510494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PURPOSE:To provide the end portion structure of a vacuum insulation box improved in its durability to repetitive thermal stress. CONSTITUTION:A curved portion 19 for absorbing thermal deformation of an inner box 11 and a stopper 20 for limiting the deformation of the curved portion within a fixed range are provided in a portion of the inner box 11 in the vicinity of the membrane 15 of a vacuum insulation box. Though the thermal deformation of the inner box 11 is absorbed by the curved portion 19, the deformation of the curved portion 19 is limited within a fixed range thereby by the stopper 20 and the stress of the membrane 15 is uniformalized by further thermal deformation to be reduced so as to improve the durability of the vacuum insulation box.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空断熱箱体の端部構造
に関し、得に高温の物を収容するのに好適な真空断熱箱
体の端部構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an end structure of a vacuum insulation box body, and more particularly to an end structure of a vacuum insulation box body suitable for accommodating a hot object.

【0002】[0002]

【従来の技術】従来の真空断熱箱体は、たとえば図8に
示すように、内箱11と外箱12とにより一方に開口13を有
する二重壁構造の箱体を形成し、内箱11と外箱12との間
に真空断熱層14を形成し、真空断熱層14を密封するメン
ブレン15により内箱11の端部壁16と外箱12との開口側周
縁を連結している。そして、外箱12の開口側周縁に設け
たフランジ17を利用することで、断熱蓋18が被せられ
る。
2. Description of the Related Art A conventional vacuum heat-insulating box body, for example, as shown in FIG. 8, forms a double-walled box body having an opening 13 in one side by an inner box 11 and an outer box 12. A vacuum heat insulating layer (14) is formed between the outer box (12) and the outer box (12), and a peripheral wall (16) of the inner box (11) and the outer box (12) are connected by a membrane (15) that seals the vacuum heat insulating layer (14). Then, by using the flange 17 provided on the peripheral edge of the outer box 12 on the opening side, the heat insulating lid 18 is covered.

【0003】しかし、この図8に示す真空断熱箱体に高
温の物を収容すると、図9に示すように、内箱11が温度
上昇してメンブレン側に長さΔSだけ膨脹し、図示の端
部構造ではメンブレン15に変形が集中する。そのため、
メンブレン15に発生する応力が最も大きくなり、内箱11
の加熱、冷却を繰り返すとメンブレン15が真っ先に破損
するおそれがあり、真空断熱箱体の寿命がメンブレン15
により定まってしまうという問題点がある。
However, when a high-temperature object is accommodated in the vacuum insulation box body shown in FIG. 8, the inner box 11 rises in temperature and expands toward the membrane by a length ΔS, as shown in FIG. In the partial structure, the deformation concentrates on the membrane 15. for that reason,
The stress generated in the membrane 15 becomes the largest, and the inner box 11
Repeated heating and cooling of the membrane may damage the membrane 15 first, and the life of the vacuum insulation box will be
There is a problem that it is decided by.

【0004】このため従来、図10に示すように、内箱11
の熱変形を吸収する湾曲部19を形成した真空断熱箱体が
提案されている。この湾曲部19は半円形の断面形状を有
している。
For this reason, conventionally, as shown in FIG.
There has been proposed a vacuum insulation box body having a curved portion 19 that absorbs the thermal deformation of the. The curved portion 19 has a semicircular cross-sectional shape.

【0005】[0005]

【発明が解決しようとする課題】この図10に示される真
空断熱箱体では、湾曲部19が内箱11の熱変形を吸収する
のでメンブレン15に発生する応力は低下するが、反対に
湾曲部19により大きな応力が発生するという問題点があ
る。このことは、湾曲部19の加工を容易にするために、
この湾曲部19の長さをメンブレン15と同等またはそれに
より短くした場合に顕著である。
In the vacuum heat insulating box body shown in FIG. 10, since the curved portion 19 absorbs the thermal deformation of the inner box 11, the stress generated in the membrane 15 is reduced, but the curved portion is opposite. There is a problem that a large stress is generated by 19. This is because in order to facilitate the processing of the curved portion 19,
This is remarkable when the length of the curved portion 19 is equal to or shorter than that of the membrane 15.

【0006】そこで本発明はこのような問題点を解決
し、応力の発生を確実に低く抑えることのできる真空断
熱箱体の端部構造を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide an end structure of a vacuum heat insulating box which can surely suppress the generation of stress.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、内箱と外箱とにより一方に開口を有する二重
壁構造の箱体を形成し、内箱と外箱との間に真空断熱層
を形成し、この真空断熱層を密封するメンブレンにより
内箱と外箱との開口側の周縁を連結した真空断熱箱体に
おいて、前記メンブレンの近傍における内箱の部分に、
この内箱の熱変形を吸収する湾曲部と、この湾曲部の変
形を一定範囲に制限する部材とを設けたものである。
In order to achieve the above object, the present invention forms a double-walled box body having an opening in one side by an inner box and an outer box, and between the inner box and the outer box. A vacuum heat insulating layer is formed in the vacuum heat insulating box body in which the peripheral edges of the inner box and the outer box on the opening side are connected by a membrane that seals the vacuum heat insulating layer, in the inner box portion in the vicinity of the membrane,
A bending portion that absorbs thermal deformation of the inner box and a member that limits the deformation of the bending portion within a certain range are provided.

【0008】[0008]

【作用】上記構成によると、内箱がメンブレン側へ熱変
形したときに、その熱変形の一部を湾曲部が吸収する。
その際、変形を制限する部材が湾曲部の変形を一定範囲
に制限して、湾曲部およびメンブレンに発生する応力を
平均化して小さくする。そのため、湾曲部またはメンブ
レンの応力が過大になって真空断熱箱体の寿命が低下す
るという実態の発生が防止される。
According to the above construction, when the inner box is thermally deformed toward the membrane side, the curved portion absorbs a part of the thermal deformation.
At this time, the member that restricts the deformation limits the deformation of the bending portion to a certain range, and averages and reduces the stress generated in the bending portion and the membrane. Therefore, it is possible to prevent the actual situation that the stress of the curved portion or the membrane becomes excessive and the life of the vacuum insulation box body is shortened.

【0009】[0009]

【実施例】【Example】

実施例1 図1および図2に示すように、内箱11の端部壁16におけ
るメンブレン15の近傍の部分には、内箱11の熱変形を吸
収するための湾曲部19が、内箱11の内周の全長にわたっ
て形成されている。また、この湾曲部19には、この湾曲
部19の変形を一定範囲ΔLに制限するためのストッパ20
を設けている。
Example 1 As shown in FIGS. 1 and 2, a curved portion 19 for absorbing thermal deformation of the inner box 11 is provided in a portion of the end wall 16 of the inner box 11 near the membrane 15. Is formed over the entire length of the inner circumference of. Further, the bending portion 19 has a stopper 20 for limiting the deformation of the bending portion 19 within a certain range ΔL.
Is provided.

【0010】湾曲部19は半円形の断面形状を有し、ま
た、ストッパ20は断面形状が凸形の抑止板21と断面形状
がZ字形の案内板22とを有している。この抑止板21は、
中央の突起部23が湾曲部19の内部にはまり込むように設
置され、その奥側の端縁が端部壁16に固着されるととも
に、常温時に突起部23の手前側部分と湾曲部19の手前側
端部との間に隙間ΔLが存在するように構成されてい
る。抑止板21の手前側の端縁は、端部壁16に固着された
案内板22内に摺動自在に挿入されている。
The curved portion 19 has a semicircular cross section, and the stopper 20 has a restraining plate 21 having a convex cross section and a guide plate 22 having a Z-shaped cross section. This restraint plate 21,
The protrusion 23 at the center is installed so as to fit into the inside of the curved portion 19, and the rear edge of the protrusion 23 is fixed to the end wall 16, and the front side portion of the protrusion 23 and the curved portion 19 are kept at room temperature. It is configured such that a gap ΔL exists between the front side end portion. The front edge of the restraint plate 21 is slidably inserted into a guide plate 22 fixed to the end wall 16.

【0011】なお、ストッパ20は、湾曲部19の内周方向
の全長にわたって設けてもよいが、ヒートブリッジとな
るので、断熱性能が強く要求される場合には、前記内周
方向における複数個所にそれぞれ部分的に設置してもよ
い。
The stopper 20 may be provided over the entire length of the curved portion 19 in the inner circumferential direction, but since it becomes a heat bridge, it is provided at a plurality of locations in the inner circumferential direction when heat insulation performance is strongly required. Each may be partially installed.

【0012】このような構成の真空断熱箱体に高温の物
を収容すると、内箱11が温度上昇し、メンブレン15に向
けて膨脹する。そのとき、まず湾曲部19が変形すること
で、内箱11の熱膨脹が吸収される。内箱11がある程度以
上変形すると、隙間ΔLが詰まり、突起部23が湾曲部19
の手前側部分に当たる。この時点以降は湾曲部19の変形
が防止され、内箱11の膨脹力は突起部23を介してメンブ
レン15に伝達され、このメンブレン15に変形が生じるこ
とになる。
When a high-temperature object is accommodated in the vacuum insulation box body having such a structure, the inner box 11 rises in temperature and expands toward the membrane 15. At that time, first, the curved portion 19 is deformed to absorb the thermal expansion of the inner box 11. When the inner box 11 is deformed to a certain extent or more, the gap ΔL is clogged, and the protrusion 23 is curved.
Hit the front side of. After this time, the bending portion 19 is prevented from being deformed, the expansion force of the inner box 11 is transmitted to the membrane 15 via the protrusion 23, and the membrane 15 is deformed.

【0013】このように、内箱11の熱膨脹は、長さΔL
分が湾曲部19の変形によって吸収され、その残りである
長さΔM分が、メンブレン15の変形となって現れること
になる。すなわち、ΔLの長さに対応した湾曲部19の変
形とΔMに対応したメンブレン15の変形とがバランスさ
れ、これら湾曲部19およびメンブレン15に発生する応力
が平均化して小さくなる。その結果、湾曲部19やメンブ
レン15の応力が過大になって真空断熱箱体の寿命が低下
することが防止される。
As described above, the thermal expansion of the inner box 11 has a length ΔL.
The amount is absorbed by the deformation of the curved portion 19, and the remaining length ΔM appears as the deformation of the membrane 15. That is, the deformation of the curved portion 19 corresponding to the length of ΔL and the deformation of the membrane 15 corresponding to ΔM are balanced, and the stresses generated in the curved portion 19 and the membrane 15 are averaged and reduced. As a result, it is possible to prevent the stress of the curved portion 19 and the membrane 15 from becoming excessive and the life of the vacuum heat insulating box from being shortened.

【0014】図3に示す二次元モデルについて、有限要
素法により応力解析した結果を、表1に示す。ここで、
図3(a) のモデルは、湾曲部を有しないもので、長さA
=250mm 、幅B=60mm、内箱11およびメンブレン15の板
厚t=1mm、外箱12の板厚T=3mmとし、内箱11の基端
に強制変位δ=6mmを与えている。図3(b) のモデル
は、図3(a) のモデルのメンブレン15よりC=125mm 離
れた位置の内箱11の部分に半径R=20mmの半円形の湾曲
部19を形成したものである。図3(c) のモデルは、図3
(b) のモデルの湾曲部にストッパを併設したもので、湾
曲部19の変形量λを2.5mm に制限している。また、表1
に示す数値は、図3(a) のモデルに発生する応力強さ
(=最大主応力−最小主応力=最大せん断応力×2)を
1とした場合の比を示している。
Table 1 shows the results of stress analysis by the finite element method for the two-dimensional model shown in FIG. here,
The model in Fig. 3 (a) does not have a curved portion and has a length A
= 250 mm, width B = 60 mm, plate thickness t = 1 mm of the inner box 11 and the membrane 15 and plate thickness T = 3 mm of the outer box 12, and a forced displacement δ = 6 mm is given to the base end of the inner box 11. The model of FIG. 3 (b) has a semicircular curved portion 19 with a radius R = 20 mm formed in the inner box 11 at a position C = 125 mm away from the membrane 15 of the model of FIG. 3 (a). .. The model in Fig. 3 (c) is
In the model (b), the curved portion is provided with a stopper, and the deformation amount λ of the curved portion 19 is limited to 2.5 mm. Also, Table 1
The numerical values shown in are the ratios when the stress intensity (= maximum principal stress−minimum principal stress = maximum shear stress × 2) occurring in the model of FIG.

【0015】 [0015]

【0016】表1より、図3(c) のモデルすなわち本発
明のものが最も耐久性にすぐれていることがわかる。 実施例2 図4に示すように、実施例1における湾曲部19とストッ
パ20とを複数設けたものである。湾曲部19およびメンブ
レン15に発生する応力が実施例1の場合よりもさらに小
さくなる。 実施例3 実施例1における湾曲部19の断面形状は半円形に限定さ
れるものではなく、図5に示すような方形や、他の形状
を選択することができる。 実施例4 図6に示すように、メンブレン15を3層の蛇腹構造とし
たものである。このような構成であると、メンブレン15
の許容変形量を大きくすることができるので、湾曲部19
およびメンブレン15に発生する応力が実施例1の場合よ
りもかなり小さくなる。 実施例5 図7に示すように、実施例1におけるストッパ20を最も
応力の集中する箱体のコーナ部に設けたものである。こ
のような構成であると、ストッパ20によるとヒートブリ
ッジが小さくなり、断熱性能が向上する。
From Table 1, it is understood that the model of FIG. 3 (c), that is, the model of the present invention has the most durability. Embodiment 2 As shown in FIG. 4, a plurality of curved portions 19 and stoppers 20 in Embodiment 1 are provided. The stress generated in the curved portion 19 and the membrane 15 is smaller than that in the first embodiment. Third Embodiment The sectional shape of the curved portion 19 in the first embodiment is not limited to a semicircle, and a square as shown in FIG. 5 or another shape can be selected. Example 4 As shown in FIG. 6, the membrane 15 has a three-layer bellows structure. With such a structure, the membrane 15
Since the allowable deformation amount of
And the stress generated in the membrane 15 is much smaller than that in the first embodiment. Embodiment 5 As shown in FIG. 7, the stopper 20 in Embodiment 1 is provided at the corner portion of the box body where the stress is most concentrated. With such a configuration, the stopper 20 reduces the heat bridge and improves the heat insulating performance.

【0017】[0017]

【発明の効果】以上述べたように本発明によれば、内箱
が熱変形したときにその変形の一部を湾曲部が吸収する
とともに、その残部によってメンブレンが変形する。し
かも、その際にストッパが湾曲部の変形を一定範囲に制
限して、湾曲部の変形とメンブレンの変形がバランスさ
れる。そのため、湾曲部およびメンブレンに発生する応
力を平均化して小さくすることができ、内箱の加熱、冷
却の繰り返しによる熱応力に対する真空断熱箱体の耐久
性を大幅に向上させることができる。
As described above, according to the present invention, when the inner box is thermally deformed, the curved portion absorbs a part of the deformation and the remaining portion deforms the membrane. Moreover, at that time, the stopper limits the deformation of the bending portion to a certain range, and the deformation of the bending portion and the deformation of the membrane are balanced. Therefore, the stress generated in the curved portion and the membrane can be averaged and reduced, and the durability of the vacuum insulation box body against the thermal stress due to repeated heating and cooling of the inner box can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1にもとづく真空断熱箱体の断
面図である。
FIG. 1 is a sectional view of a vacuum heat insulating box body according to a first embodiment of the present invention.

【図2】図1の真空断熱箱体の端部構造を示す要部の断
面図である。
2 is a cross-sectional view of a main part showing an end structure of the vacuum heat insulating box body of FIG.

【図3】真空断熱箱体の端部構造に関して有限要素法に
より応力解析を行ったときの二次元モデルの説明図であ
る。
FIG. 3 is an explanatory diagram of a two-dimensional model when a stress analysis is performed by a finite element method on the end structure of the vacuum heat insulating box.

【図4】本発明の実施例2の真空断熱箱体の端部構造を
示す要部の断面図である。
FIG. 4 is a cross-sectional view of essential parts showing an end structure of a vacuum heat insulating box according to a second embodiment of the present invention.

【図5】本発明の実施例3の真空断熱箱体の端部構造を
示す要部の断面図である。
FIG. 5 is a cross-sectional view of a main part showing an end structure of a vacuum heat insulating box according to a third embodiment of the present invention.

【図6】本発明の実施例4の真空断熱箱体の端部構造を
示す要部の断面図である。
FIG. 6 is a sectional view of a main part showing an end structure of a vacuum heat insulating box according to a fourth embodiment of the present invention.

【図7】本発明の実施例5にもとづく真空断熱箱体の斜
視図である。
FIG. 7 is a perspective view of a vacuum heat insulating box body according to a fifth embodiment of the present invention.

【図8】従来の真空断熱箱体の一例を示す断面図であ
る。
FIG. 8 is a cross-sectional view showing an example of a conventional vacuum insulation box body.

【図9】図8に示す真空断熱箱体の端部構造を示す要部
の断面図である。
9 is a cross-sectional view of a main part showing an end structure of the vacuum heat insulating box body shown in FIG.

【図10】従来の真空断熱箱体の端部構造の他の例を示す
断面図である。
FIG. 10 is a cross-sectional view showing another example of the end structure of the conventional vacuum heat insulating box.

【符号の説明】[Explanation of symbols]

11 内箱 12 外箱 13 開口 14 真空断熱層 15 メンブレン 19 湾曲部 20 ストッパ 11 Inner box 12 Outer box 13 Opening 14 Vacuum insulation layer 15 Membrane 19 Curved part 20 Stopper

Claims (1)

【特許請求の範囲】 【請求項1】 内箱と外箱とにより一方に開口を有する
二重壁構造の箱体を形成し、内箱と外箱との間に真空断
熱層を形成し、この真空断熱層を密封するメンブレンに
より内箱と外箱との開口側の周縁を連結した真空断熱箱
体において、前記メンブレンの近傍における内箱の部分
に、この内箱の熱変形を吸収する湾曲部と、この湾曲部
の変形を一定範囲に制限する部材とを設けたことを特徴
とする真空断熱箱体の端部構造。
Claim: What is claimed is: 1. A double-walled box body having an opening on one side is formed by an inner box and an outer box, and a vacuum heat insulating layer is formed between the inner box and the outer box. In a vacuum heat-insulating box body in which the opening-side peripheral edges of the inner box and the outer box are connected by a membrane that seals the vacuum heat-insulating layer, the inner box portion near the membrane has a curvature that absorbs thermal deformation of the inner box. An end structure of a vacuum heat-insulating box body, comprising: a portion and a member that limits deformation of the curved portion within a certain range.
JP3161940A 1991-07-03 1991-07-03 End portion structure of vacuum insulation box Pending JPH0510494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161940A JPH0510494A (en) 1991-07-03 1991-07-03 End portion structure of vacuum insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161940A JPH0510494A (en) 1991-07-03 1991-07-03 End portion structure of vacuum insulation box

Publications (1)

Publication Number Publication Date
JPH0510494A true JPH0510494A (en) 1993-01-19

Family

ID=15744935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161940A Pending JPH0510494A (en) 1991-07-03 1991-07-03 End portion structure of vacuum insulation box

Country Status (1)

Country Link
JP (1) JPH0510494A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245812A (en) * 2012-05-30 2013-12-09 Sharp Corp Heat insulator
EP3971501A1 (en) * 2015-08-04 2022-03-23 LG Electronics Inc. Vacuum adiabatic body and refrigerator
EP4043818A3 (en) * 2015-08-03 2022-11-30 LG Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11796246B2 (en) 2015-08-03 2023-10-24 Lg Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245812A (en) * 2012-05-30 2013-12-09 Sharp Corp Heat insulator
EP4043818A3 (en) * 2015-08-03 2022-11-30 LG Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11796246B2 (en) 2015-08-03 2023-10-24 Lg Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
EP3971501A1 (en) * 2015-08-04 2022-03-23 LG Electronics Inc. Vacuum adiabatic body and refrigerator

Similar Documents

Publication Publication Date Title
JPH0510494A (en) End portion structure of vacuum insulation box
JP2776646B2 (en) Structure of vacuum insulation box
JP4313748B2 (en) Multilayer gasket for cylinder head including at least one thick wedge member
JPH0742547A (en) Double pipe for exhaust system for vehicle
JPH0716018Y2 (en) Exhaust manifold heat shield
JPS621627Y2 (en)
JPH07214196A (en) Positioning device of metallic mold for plastic working of superplastic material
JP6411102B2 (en) Fastening positioning structure
US7188477B2 (en) High temperature dynamic seal for scramjet variable geometry
JP2005003226A (en) Core part structure of heat exchanger
US10221748B2 (en) Structure of warm-up catalytic converter for high-power engine
JPH0313528Y2 (en)
JPS5976805U (en) Protective device for gas contact parts
JPH07174020A (en) Double pipe for exhaust system of vehicle
JP2507706Y2 (en) Muffle structure in muffle type continuous heat treatment furnace
ITPN20010069A1 (en) OVEN WITH OSCILLATING ELEMENT FOR FASTENING THE FAN
JPH0129499Y2 (en)
JPS6016732Y2 (en) Cooling fan ventilation duct device
JP2753234B2 (en) Ceramic stationary blade
JP2560955Y2 (en) Exhaust manifold mounting structure for internal combustion engine
JPS6143140Y2 (en)
JPH0738648Y2 (en) Pipe manifold
JPH0639048Y2 (en) Exhaust silencer
JPH11108456A (en) Heat exchanger for combustion device
JPS6244159Y2 (en)