JP2776646B2 - Structure of vacuum insulation box - Google Patents

Structure of vacuum insulation box

Info

Publication number
JP2776646B2
JP2776646B2 JP3113617A JP11361791A JP2776646B2 JP 2776646 B2 JP2776646 B2 JP 2776646B2 JP 3113617 A JP3113617 A JP 3113617A JP 11361791 A JP11361791 A JP 11361791A JP 2776646 B2 JP2776646 B2 JP 2776646B2
Authority
JP
Japan
Prior art keywords
box
membrane
heat insulating
inner box
curved portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3113617A
Other languages
Japanese (ja)
Other versions
JPH04341694A (en
Inventor
忠雄 山路
洋 山崎
眞布 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3113617A priority Critical patent/JP2776646B2/en
Publication of JPH04341694A publication Critical patent/JPH04341694A/en
Application granted granted Critical
Publication of JP2776646B2 publication Critical patent/JP2776646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空断熱箱体の構造に
関し、特に高温の品物を収容するのに好適な真空断熱箱
体の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a vacuum heat insulating box, and more particularly to a structure of a vacuum heat insulating box suitable for accommodating high-temperature items.

【0002】[0002]

【従来の技術】従来の真空断熱箱体は、たとえば図9に
示すように、内箱1と外箱2とにより一方に開口3を有
する二重壁構造の箱体を形成して、内箱1と外箱2との
間に真空断熱層4を形成している。また、真空断熱層4
を密封するメンブレン5により、内箱1の端部壁6と外
箱2との開口側周縁どうしを連結している。外箱2の開
周縁に設けたフランジ7に断熱蓋8が被せられること
で、真空断熱容器が構成される。真空断熱層4には、粉
末断熱材が充填されている。メンブレン5は薄板で構成
され、熱伝導による放熱を少なくして断熱特性を維持す
るようにされている。
2. Description of the Related Art As shown in FIG. 9, for example, a conventional vacuum insulation box is formed by forming an inner box 1 and an outer box 2 into a double-walled box having an opening 3 on one side. A vacuum heat insulating layer 4 is formed between 1 and the outer box 2. In addition, the vacuum insulation layer 4
Of the inner box 1 and the outer peripheral edge of the outer box 2 are connected to each other by a membrane 5 for sealing the inner wall. A vacuum insulation container is formed by covering the flange 7 provided on the open peripheral edge of the outer box 2 with the insulation cover 8. The vacuum heat insulating layer 4 is filled with a powder heat insulating material. The membrane 5 is made of a thin plate, and is configured to reduce heat radiation due to heat conduction and maintain heat insulation properties.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の真
空断熱箱体に高温の品物を収容すると、図10に示すよう
に、内箱1が温度上昇してメンブレン側に長さΔlだけ
膨張する。そして図示の端部構造ではメンブレン5に変
形が集中して、図示のa部に大きな応力が発生する。
However, when a high-temperature article is accommodated in the above-mentioned conventional vacuum insulated box, the inner box 1 rises in temperature and expands toward the membrane by a length Δl as shown in FIG. . Then, in the illustrated end structure, deformation concentrates on the membrane 5 and a large stress is generated in the illustrated a portion.

【0004】その原因を図11により説明する。内箱1が
メンブレン側にΔlだけ膨張することにより、図11(a)
に示すように、図10のa部におけるメンブレンの内面お
よび外面に曲げによる圧縮応力および引張応力がそれぞ
れ発生する。また内箱1およびメンブレン5の周方向へ
の膨張が外箱2で拘束されることにより、図11(b) に示
すように、図10のa部の断面に圧縮応力が発生する。そ
のため、図11(c) に示すように、このa部には、同図
(a)(b)の応力を合計した応力が発生し、特にメンブレン
5の真空層側表面に大きな圧縮応力が発生する。その結
果、内箱1の加熱,冷却を繰り返すとこのa部が熱応力
によって破損するおそれがあり、真空断熱箱体の寿命す
なわち耐久性が低下するという問題点がある。
The cause will be described with reference to FIG. When the inner box 1 expands toward the membrane by Δl, the inner box 1 expands as shown in FIG.
As shown in FIG. 10, a compressive stress and a tensile stress due to bending are generated on the inner surface and the outer surface of the membrane at the portion a in FIG. Further, as the expansion of the inner case 1 and the membrane 5 in the circumferential direction is restrained by the outer case 2, a compressive stress is generated in the cross section of the portion a in FIG. 10 as shown in FIG. For this reason, as shown in FIG.
(a) The total stress of (b) is generated, and a large compressive stress is generated particularly on the surface of the membrane 5 on the vacuum layer side. As a result, when heating and cooling of the inner box 1 are repeated, this part a may be damaged by thermal stress, and there is a problem that the life, that is, the durability of the vacuum insulated box body is reduced.

【0005】そこで本発明はこのような問題点を解決
し、メンブレンに作用する応力を緩和して、真空断熱箱
体の寿命を向上させることを目的とする。
[0005] Accordingly, an object of the present invention is to solve such a problem and to alleviate the stress acting on the membrane to improve the life of the vacuum heat insulating box.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、内箱と外箱とにより一方に開口を有する二
重構造の箱体を形成し、内箱と外箱との間に真空断熱層
を形成し、この真空断熱層を密封するメンブレンにより
内箱と外箱との開口側周縁を連結した真空断熱箱体にお
いて、前記内箱におけるメンブレンの近傍の部分に、内
部からメンブレンへの方向の内箱の熱抵抗を増大させる
湾曲部を形成し、この湾曲部の内部に、断熱材とこの湾
曲部の変形を一定範囲に制限する変形抑止部材とを設け
たものである。
In order to achieve the above object, the present invention forms a double-structured box having an opening on one side by an inner box and an outer box. A vacuum heat insulating layer is formed on the inner side of the inner box and the outer side of the outer box by a membrane that seals the vacuum heat insulating layer. A curved portion is formed to increase the thermal resistance of the inner box in the direction of, and a heat insulating material and a deformation suppressing member for limiting the deformation of the curved portion to a certain range are provided inside the curved portion.

【0007】[0007]

【作用】上記構成の真空断熱箱体においては、内箱にお
けるメンブレンの近傍の部分に湾曲部を形成しているの
で、その部分の伝熱径路が長くなって熱抵抗が増大す
る。そのため、内箱の開口側周縁部分およびメンブレン
の温度が低下して、内箱およびメンブレンの周方向への
膨張による圧縮応力(図11(b) )が減少する。また、湾
曲部の内部に変形抑止部材を設けているので、湾曲部の
変形が制限され、この湾曲部に発生する応力がメンブレ
ンに発生する応力と同等またはそれ以下となる。この結
果、熱応力に対する真空断熱箱体の寿命が向上する。さ
らに、湾曲部の内部の断熱材は、空隙を無くして空気の
対流を阻止し、またヒートブリッジ部の熱抵抗を増加し
て放熱量を減少させる。そのため、真空断熱箱体の断熱
性能が向上する。
In the vacuum heat insulating box having the above-described structure, the curved portion is formed in a portion of the inner box in the vicinity of the membrane, so that the heat transfer path in that portion becomes longer and the thermal resistance increases. Therefore, the temperature of the peripheral portion of the inner box on the opening side and the temperature of the membrane decrease, and the compressive stress (FIG. 11 (b)) due to the expansion of the inner box and the membrane in the circumferential direction decreases. Further, since the deformation suppressing member is provided inside the bending portion, the deformation of the bending portion is restricted, and the stress generated in the bending portion becomes equal to or less than the stress generated in the membrane. As a result, the life of the vacuum insulated box against thermal stress is improved. Furthermore, the heat insulating material inside the curved portion eliminates air gaps to prevent air convection, and increases the thermal resistance of the heat bridge portion to reduce the amount of heat radiation. Therefore, the heat insulating performance of the vacuum heat insulating box is improved.

【0008】[0008]

【実施例】【Example】

(実施例1)図1および図2に示すように、内箱1の端
部壁6におけるメンブレン近傍部分には、内箱1の内部
からメンブレンへ向かう方向の熱抵抗を増大させる湾曲
部19を、真空断熱層4内に突出するように形成してい
る。湾曲部19の内部には、断熱材20を充填するととも
に、図3に示すように、湾曲部19の変形を一定範囲ΔL
に制限する複数の変形抑止部材21を、適当間隔おきに挿
入している。また、湾曲部19には金網などの押さえ部材
22を設けることにより、断熱材20および変形抑止部材21
が湾曲部19から脱出しないように支持している。断熱材
20としては、ロックウール,グラスウール,セラミック
ウールなどが好適である。また、変形抑止部材21は、図
4(a) に示すような鞍形枠体とするか、または図4(b)
に示すようなブロック状に成形されている。その材料に
は、耐圧性とある程度の断熱性とを有する珪酸カルシウ
ム成形体や断熱キャスタなどが使用される。
(Embodiment 1) As shown in FIG. 1 and FIG. 2, a curved portion 19 for increasing thermal resistance in a direction from the inside of the inner box 1 toward the membrane is provided in a portion of the end wall 6 of the inner box 1 near the membrane. Are formed so as to protrude into the vacuum heat insulating layer 4. The inside of the curved portion 19 is filled with a heat insulating material 20 and, as shown in FIG.
Are inserted at appropriate intervals. In addition, a holding member such as a wire mesh is
By providing the heat insulating material 20 and the deformation suppressing member 21
Are supported so as not to escape from the curved portion 19. Insulation
20 is preferably rock wool, glass wool, ceramic wool, or the like. Further, the deformation suppressing member 21 may be a saddle-shaped frame as shown in FIG.
It is formed in a block shape as shown in FIG. As the material, a calcium silicate molded body having a pressure resistance and a certain degree of heat insulating property, a heat insulating caster, or the like is used.

【0009】上記構成の真空断熱箱体に高温の品物を収
容すると、内箱11が温度上昇する。このとき、湾曲部19
は端部壁6の伝熱径路を延長することになり、その熱抵
抗を増大させる。そのため、内箱1が温度上昇しても、
湾曲部19を形成しない場合に比べ端部壁6の開口側周縁
部分およびメンブレン5の温度が低下する。このため、
端部壁6およびメンブレン5が周方向に膨張することに
よりメンブレン5の縁部Aに発生する圧縮応力(図11
(b) )が減少する。
When a high-temperature article is accommodated in the vacuum insulation box having the above-mentioned structure, the temperature of the inner box 11 rises. At this time, the bending portion 19
Will extend the heat transfer path of the end wall 6 and increase its thermal resistance. Therefore, even if the temperature of the inner box 1 rises,
The temperature of the peripheral portion of the end wall 6 on the opening side and the temperature of the membrane 5 are lower than when the curved portion 19 is not formed. For this reason,
The compressive stress generated at the edge A of the membrane 5 due to the circumferential expansion of the end wall 6 and the membrane 5 (FIG. 11)
(b)) decreases.

【0010】また、湾曲部19の内部に変形抑止部材21を
挿入しているので、温度上昇にもとづくメンブレン側へ
の内箱1の膨張は、図3に示すように、湾曲部19の変形
量ΔLおよびメンブレン5の変形量ΔMにより吸収され
る。そのため、メンブレン5の変形量ΔMは湾曲部19を
形成しない場合の変形量すなわち図10のΔlよりも減少
して、内箱1の膨張により縁部Aに発生する曲げ応力
(図11(a) )が減少する。同時に、湾曲部19において許
容しうる変形量ΔLを適当に設定しておくと、湾曲部19
に発生する応力をメンブレン5に発生する応力と同等ま
たはそれ以下に制限することができる。なお、場合によ
っては、変形抑止部材21を厚くして変形量ΔLを0にし
てもよい。
Further, since the deformation suppressing member 21 is inserted into the inside of the curved portion 19, the expansion of the inner box 1 toward the membrane due to the temperature rise causes the amount of deformation of the curved portion 19 as shown in FIG. It is absorbed by ΔL and the deformation amount ΔM of the membrane 5. Therefore, the deformation amount ΔM of the membrane 5 is smaller than the deformation amount when the curved portion 19 is not formed, that is, Δl in FIG. 10, and the bending stress generated at the edge portion A due to the expansion of the inner box 1 (FIG. 11A) ) Decreases. At the same time, if the allowable deformation amount ΔL in the bending portion 19 is appropriately set, the bending portion 19
Can be limited to be equal to or less than the stress generated in the membrane 5. In some cases, the deformation suppressing member 21 may be thickened to set the deformation amount ΔL to zero.

【0011】以上の結果、真空断熱箱体に発生する熱応
力が低減し、繰り返し負荷される熱応力に対する真空断
熱箱体の寿命が向上する。さらに、湾曲部19の内部に充
填した断熱材20は、湾曲部19内の空隙を無くして空気の
対流を阻止し、またヒートブリッジ部の熱抵抗を増加し
て放熱量を減少させる。そのため、真空断熱箱体の断熱
性能の向上を図ることもできる。
As a result, the thermal stress generated in the vacuum insulated box is reduced, and the life of the vacuum insulated box with respect to the repeatedly applied thermal stress is improved. Further, the heat insulating material 20 filled in the inside of the curved portion 19 eliminates a gap in the curved portion 19 to prevent convection of air, and also increases the thermal resistance of the heat bridge portion to reduce the amount of heat radiation. Therefore, the heat insulating performance of the vacuum heat insulating box can be improved.

【0012】図5の斜線部に示す断熱境界について、湾
曲部19の長さXとメンブレン5の縁部Aの温度TA との
関係を一次元の伝熱計算により求めた結果を、図6のグ
ラフに示す。ただし、図5において、内箱1の端部壁6
の長さをメンブレン5の長さLに等しくし、端部壁6の
内側部Bの温度TB を300 ℃、メンブレン5の外箱側縁
部Cの温度TC を0℃とした。図6から判るように、湾
曲部19の長さXをメンブレン5の長さLに等しくする
と、縁部Aの温度TA は湾曲部19を形成しない場合の15
0 ℃から100 ℃に大幅に低下する。これにより、縁部A
に発生する圧縮応力(図11(b) )は2/3程度に減少す
る。なお、湾曲部19の長さXを2L以上にするには、湾
曲部19を2箇所以上形成してこれに対処する。 (実施例2)図7に示すように、実施例1における湾曲
部19を端部壁6に2箇所形成し、湾曲部19の長さを倍増
したものである。このようなものであると、メンブレン
5の縁部Aに発生する圧縮応力(図11(b) )を大幅に減
少させるとともに、断熱性能を向上させることができ
る。 (実施例3)図8に示すように、実施例1におけるメン
ブレン5を3層の蛇腹構造にして変形を容易にしたもの
である。これにより、縁部Aに発生する熱応力(図11
(c) )を減少させることができる。
[0012] Adiabatic boundary indicated by the shaded portion of FIG. 5, the results obtained by heat transfer calculation relation of one-dimensional temperature T A of the length X and the edge A of the membrane 5 of the bending portion 19, FIG. 6 Is shown in the graph. However, in FIG.
Of length equal to the length L of the membrane 5, 300 ° C. the temperature T B of the inner portion B of the end wall 6, the temperature T C of the outer box side edge C of the membrane 5 was 0 ° C.. As can be seen from FIG. 6, if the length X of the curved portion 19 is equal to the length L of the membrane 5, the temperature T A of the edge A in the case of not forming the curved portion 19 15
Significantly drops from 0 ° C to 100 ° C. Thereby, the edge A
Compressive stress (FIG. 11 (b)) is reduced to about 2/3. In order to make the length X of the bending portion 19 2 L or more, two or more bending portions 19 are formed to cope with this. (Embodiment 2) As shown in FIG. 7, two curved portions 19 in the first embodiment are formed on the end wall 6, and the length of the curved portion 19 is doubled. With such a structure, the compressive stress (FIG. 11 (b)) generated at the edge A of the membrane 5 can be greatly reduced, and the heat insulation performance can be improved. (Embodiment 3) As shown in FIG. 8, the membrane 5 in Embodiment 1 has a three-layer bellows structure to facilitate deformation. As a result, the thermal stress generated at the edge A (FIG. 11)
(c)) can be reduced.

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、内箱
のメンブレン近傍部分に湾曲部を形成して内箱の内部か
らメンブレンへの方向の熱抵抗を増大させているので、
収容物により内箱が温度上昇した場合であっても、メン
ブレンと内箱との接続部の温度上昇が抑制され、その発
生応力を低くすることができる。また、湾曲部内に設け
た変形抑止部材が湾曲部の変形を一定範囲に制限して湾
曲部およびメンブレンに発生する応力を平均化するの
で、湾曲部に発生する応力を一定値以下に制限すること
ができる。以上の結果、真空断熱箱体の熱応力に対する
耐久性を向上することができる。
As described above, according to the present invention, a curved portion is formed in the vicinity of the membrane of the inner box to increase the thermal resistance in the direction from the inside of the inner box to the membrane.
Even when the temperature of the inner box rises due to the contents, the rise in the temperature of the connection between the membrane and the inner box is suppressed, and the generated stress can be reduced. Further, since the deformation suppressing member provided in the bending portion limits the deformation of the bending portion to a certain range and averages the stress generated in the bending portion and the membrane, the stress generated in the bending portion is limited to a certain value or less. Can be. As a result, the durability of the vacuum insulated box against thermal stress can be improved.

【0014】さらに、湾曲部内に設けた断熱材が空隙を
無くして空気の対流を阻止するとともに、ヒートブリッ
ジ部の熱抵抗を増加して放熱量を減少させるので、真空
断熱箱体の断熱性能を向上させることができる。
Further, the heat insulating material provided in the curved portion eliminates air gaps to prevent air convection, and increases the thermal resistance of the heat bridge portion to reduce the amount of heat radiation. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にもとづく真空断熱箱体の断
面図である。
FIG. 1 is a sectional view of a vacuum insulated box according to one embodiment of the present invention.

【図2】図1における要部の拡大断面図である。FIG. 2 is an enlarged sectional view of a main part in FIG.

【図3】図2に示す部分の変形例の断面図である。FIG. 3 is a sectional view of a modification of the part shown in FIG.

【図4】図3における変形抑止部材の斜視図である。FIG. 4 is a perspective view of a deformation suppressing member in FIG. 3;

【図5】図1の真空断熱箱体についての伝熱計算を行う
ためにモデル化した断熱境界の説明図である。
5 is an explanatory diagram of an adiabatic boundary modeled for performing heat transfer calculation for the vacuum insulated box of FIG. 1;

【図6】図5のモデルにもとづく伝熱計算により求めた
湾曲部の長さとメンブレンの温度との関係を示すグラフ
である。
FIG. 6 is a graph showing the relationship between the length of a curved portion and the temperature of a membrane obtained by a heat transfer calculation based on the model of FIG.

【図7】本発明の他の実施例にもとづく真空断熱箱体の
要部の断面図である。
FIG. 7 is a sectional view of a main part of a vacuum heat insulating box according to another embodiment of the present invention.

【図8】本発明のさらに他の実施例にもとづく真空断熱
箱体の要部の断面図である。
FIG. 8 is a sectional view of a main part of a vacuum insulated box according to still another embodiment of the present invention.

【図9】従来の真空断熱箱体の一例を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing an example of a conventional vacuum heat insulating box.

【図10】図9に示した従来の真空断熱箱体の端部構造を
示す拡大断面図である。
10 is an enlarged sectional view showing an end structure of the conventional vacuum heat insulating box shown in FIG.

【図11】従来の真空断熱箱体におけるメンブレンに発生
する応力の説明図である。
FIG. 11 is an explanatory diagram of stress generated in a membrane in a conventional vacuum heat insulating box.

【符号の説明】[Explanation of symbols]

1 内箱 2 外箱 3 開口 4 真空断熱層 5 メンブレン 19 湾曲部 20 断熱材 21 変形抑止部材 DESCRIPTION OF SYMBOLS 1 Inner box 2 Outer box 3 Opening 4 Vacuum heat insulating layer 5 Membrane 19 Curved part 20 Heat insulating material 21 Deformation suppressing member

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F16L 59/00 - 59/22 F25D 23/06 F28F 9/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F16L 59/00-59/22 F25D 23/06 F28F 9/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内箱と外箱とにより一方に開口を有する
二重構造の箱体を形成し、内箱と外箱との間に真空断熱
層を形成し、この真空断熱層を密封するメンブレンによ
り内箱と外箱との開口側周縁を連結した真空断熱箱体に
おいて、前記内箱におけるメンブレンの近傍の部分に、
内部からメンブレンへの方向の内箱の熱抵抗を増大させ
る湾曲部を形成し、この湾曲部の内部に、断熱材とこの
湾曲部の変形を一定範囲に制限する変形抑止部材とを設
けたことを特徴とする真空断熱箱体の構造。
An inner box and an outer box form a double-structured box having an opening on one side, a vacuum heat insulating layer is formed between the inner box and the outer box, and the vacuum heat insulating layer is sealed. In a vacuum heat-insulating box in which the opening side edges of the inner box and the outer box are connected by a membrane, in a portion of the inner box near the membrane,
A curved portion for increasing the thermal resistance of the inner box in the direction from the inside to the membrane is formed, and a heat insulating material and a deformation suppressing member for limiting the deformation of the curved portion to a certain range are provided inside the curved portion. The structure of a vacuum insulated box characterized by the following.
JP3113617A 1991-05-20 1991-05-20 Structure of vacuum insulation box Expired - Lifetime JP2776646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113617A JP2776646B2 (en) 1991-05-20 1991-05-20 Structure of vacuum insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113617A JP2776646B2 (en) 1991-05-20 1991-05-20 Structure of vacuum insulation box

Publications (2)

Publication Number Publication Date
JPH04341694A JPH04341694A (en) 1992-11-27
JP2776646B2 true JP2776646B2 (en) 1998-07-16

Family

ID=14616754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113617A Expired - Lifetime JP2776646B2 (en) 1991-05-20 1991-05-20 Structure of vacuum insulation box

Country Status (1)

Country Link
JP (1) JP2776646B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687361A5 (en) * 1994-05-24 1996-11-29 Sigg Haushaltgeraete Waermeisolierende bottle as well as methods for their preparation.
JP2007150336A (en) * 2007-01-09 2007-06-14 Nsk Ltd Substrate transporting apparatus
KR102498210B1 (en) 2015-08-03 2023-02-09 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102525550B1 (en) 2015-08-03 2023-04-25 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102456642B1 (en) * 2015-08-03 2022-10-19 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
EP3954956A1 (en) 2015-08-03 2022-02-16 LG Electronics Inc. Vacuum adiabatic body and refrigerator
KR20170016188A (en) 2015-08-03 2017-02-13 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102466469B1 (en) 2015-08-03 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102497139B1 (en) * 2015-08-03 2023-02-07 엘지전자 주식회사 Vacuum adiabatic body
KR102529853B1 (en) 2015-08-03 2023-05-08 엘지전자 주식회사 Vacuum adiabatic body, fabricating method for the Vacuum adiabatic body, porous substance package, and refrigerator
KR102525551B1 (en) 2015-08-03 2023-04-25 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102442973B1 (en) 2015-08-03 2022-09-14 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102502160B1 (en) 2015-08-03 2023-02-21 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102466470B1 (en) 2015-08-04 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator

Also Published As

Publication number Publication date
JPH04341694A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JP2776646B2 (en) Structure of vacuum insulation box
JPS6396395A (en) Joint insulating structure for vacuum-heat -insulating element
KR101233353B1 (en) Packing method for vacuum insulation panel using foil
JPH04266696A (en) Structure for eliminating thermal extention/contraction of vacuum thermal insulation body
JPH0771690A (en) Thermal extension/contraction absorbing structure for vacuum heat insulator
KR20210006698A (en) Vacuum adiabatic body and refrigerator
JPS5939272Y2 (en) Insulation device for high temperature containers, etc.
JPH06281090A (en) Structure of vacuum heat-insulating wall
JP2755244B2 (en) Mold cap for semiconductor device
JPH08121681A (en) Heat insulated container and manufacture thereof
JPS62255781A (en) Vacuum heat-insulating material for electrical apparatus
JP2549719B2 (en) Box insulation
JPH07224982A (en) Flexible tube
JPH08100978A (en) Inside condensation preventing structure
JPH0595877U (en) Thermal stress relaxation structure of heat insulation container
JPS5952213B2 (en) Local annealing method for welded structures
JPS6022286Y2 (en) Insulation cylinder of vacuum insulation container
JPH08114297A (en) Heat insulated box body
JPH07317988A (en) Heat insulating container
JPS6144073Y2 (en)
JPH02137204A (en) Method of supplying oil into closed oil-immersed electric equipment
JP2564035B2 (en) Vacuum insulation
JPH04194576A (en) Case of refrigerator
JPS59229166A (en) Manufacture of vacuum heat-insulating pack
JPH08114296A (en) Heat insulated box body