JPS6144073Y2 - - Google Patents

Info

Publication number
JPS6144073Y2
JPS6144073Y2 JP1981156820U JP15682081U JPS6144073Y2 JP S6144073 Y2 JPS6144073 Y2 JP S6144073Y2 JP 1981156820 U JP1981156820 U JP 1981156820U JP 15682081 U JP15682081 U JP 15682081U JP S6144073 Y2 JPS6144073 Y2 JP S6144073Y2
Authority
JP
Japan
Prior art keywords
heat insulating
heat
piping
ultra
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981156820U
Other languages
Japanese (ja)
Other versions
JPS5861997U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15682081U priority Critical patent/JPS5861997U/en
Publication of JPS5861997U publication Critical patent/JPS5861997U/en
Application granted granted Critical
Publication of JPS6144073Y2 publication Critical patent/JPS6144073Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Description

【考案の詳細な説明】 本考案は超高温流体輸送用配管の保温構造に関
する。
[Detailed Description of the Invention] The present invention relates to a heat insulation structure for ultra-high temperature fluid transport piping.

高温の熱流体を輸送する配管は、稼動時その使
用温度に相当した熱膨脹をし、特に配管の長さ方
向の線膨脹によつて、配管に施された保温構造体
の成形保温材相互間に間隙を生じ、熱損失が増加
する傾向にあつた。このような問題を解決するた
めに、従来保温構造体を構成する成形保温材の長
さ方向の継目に、石綿、ロツクウールなどのよう
な弾力性耐熱性目地材を圧縮して詰め込み、もつ
てこの目地材の復元膨脹を利用して間隙発生を防
止することが提案されている。ところが、例えば
管内温度500℃のステンレス鋼配管では、配管10
m当りの線膨脹は約9cmであるなど、線膨脹率が
かなり大きいために、このような従来工法では、
圧縮充填された目地材が充分完全に復元膨脹して
も発生間隙を充分に詰めるに至らず、熱損失防止
効果が尚十分でないと共に、多層に被覆された成
形保温材の継目の一つ一つに目地材を詰め込むを
必要とし、この詰め込みにかなりの手数がかか
り、施工上にも大きな問題があつた。また従来で
は保温構造体の組立てに際し、成形保温材のそれ
ぞれを、配管に対し針金を用いて固縛している
が、このような構造では配管が高温膨脹(稼動
時)したとき針金が伸びてしまい、低温収縮(非
稼動時)したとき、成形保温材の取付状態が極め
て不安定となるなどの難点があつた。
Piping that transports high-temperature thermal fluid undergoes thermal expansion corresponding to the operating temperature during operation, and linear expansion in the length direction of the piping causes damage between the molded insulation materials of the insulation structure attached to the piping. Gaps were formed and heat loss tended to increase. In order to solve these problems, conventionally, elastic heat-resistant joint materials such as asbestos, rock wool, etc. are compressed and stuffed into the longitudinal joints of the molded insulation materials that make up the insulation structure. It has been proposed to prevent the formation of gaps by utilizing the restoration expansion of the joint material. However, for example, in stainless steel piping with an internal temperature of 500°C,
Because the linear expansion rate per meter is approximately 9 cm, the linear expansion rate is quite large, so with this conventional construction method,
Even if the compressed joint material fully recovers and expands, it will not be able to fully fill the gaps, and the heat loss prevention effect will not be sufficient. It was necessary to fill the joint with joint material, which required a considerable amount of work and caused major problems during construction. Furthermore, in the past, when assembling a heat-retaining structure, each molded heat-insulating material was secured to the piping using a wire, but in such a structure, when the pipe expands at high temperatures (during operation), the wire stretches. However, when it shrinks at low temperatures (when not in operation), the molded heat insulating material is attached in an extremely unstable manner.

本考案はこのような従来の問題を悉く除去する
ことを目的としてなされたもので、即ち本考案
は、無機質成形保温材を上下に多段的に積層する
と共に、各層ごとに成形保温材の相互を長手方向
に釘、かすがいなどの金具を用いて接続一体化し
て組立てた超高温流体輸送用配管の保温構造体で
あつて、該保温構造体は長手方向に適当な間隔を
存して断面階段状の非連結部を有し、この非連結
部間の保温構造体は、それぞれ独立していて、熱
膨脹、収縮に基因する配管の長手方向への伸縮が
この非連結部に於ける開閉により補正吸収される
よう構成されており、更に開かれた非連結部から
の放熱を防止するために、保温構造体の非連結部
の外周部を取り囲むように、無機質繊維製の筒状
保温体が非連結部の開閉動に追随できるように覆
設されていることを特徴とする超高温流体輸送用
配管の保温構造に係る。
The present invention was made with the aim of eliminating all of these conventional problems. Specifically, the present invention stacks inorganic molded heat insulating materials vertically in multiple stages, and also mutually interconnects the molded heat insulating materials for each layer. A heat insulating structure for pipes for transporting ultra-high temperature fluids, which is assembled by connecting and integrating them in the longitudinal direction using metal fittings such as nails and screws. The heat insulation structures between the unconnected parts are independent, and the expansion and contraction in the longitudinal direction of the piping due to thermal expansion and contraction is compensated by opening and closing of the unconnected parts. Furthermore, in order to prevent heat radiation from the open unconnected parts, a cylindrical heat insulating body made of inorganic fiber is placed around the outer periphery of the unconnected parts of the heat insulating structure. The present invention relates to a heat insulation structure for ultra-high temperature fluid transport piping, characterized in that it is covered so that it can follow the opening and closing movements of a connecting part.

以下に本考案の一実施例を添附図面にもとづき
説明すると次の通りである。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

図に於て、1は超高温流体、例えば過熱蒸気の
輸送に用いられる配管a上に施された保温構造体
であつて、該保温構造体1は、各種材質の無機質
成形保温材1a、例えば密度0.15g/cm以下の
けい酸カルシウム成形保温材1aを用いて組立て
られる。
In the figure, reference numeral 1 denotes a heat insulating structure provided on a pipe a used for transporting an ultra-high temperature fluid, such as superheated steam. It is assembled using calcium silicate molded heat insulating material 1a with a density of 0.15 g/cm3 or less .

保温構造体1を構成する成形保温材1aは、所
定の外径の筒状体を複数個例えば3〜6個程度に
分割して得られたものであつて、配管aの長さ方
向に継目1b(第2図及び第3図参照)を介して
並列されると共に、上下に多段的に積重され且つ
各層に於て、長さ方向の継目1bの部分で、かす
がい2a(第2図参照)や釘2b(第3図参照)
などを用いて接続一体化され、この際各層の継目
1bは、図示するように階段状に少しずらしてお
くことが好ましい。尚円周方向の継目1c(第1
図参照)は配管aの半径方向の熱膨脹に追随させ
るために、フリーにしておくことが有利である
が、場合によつては長さ方向の継目1bと同様に
接続一体化する場合もある。また保温構造体1の
各層間には、熱輻射にもとづく熱損失を防止する
ために、アルミニウム箔、ステンレススチール箔
などのような光沢面を有する金属薄板3(第1図
にのみ示す)を介装しておくことができる。第1
図に於て、4は各層ごとに成形保温板1aを配管
aに結縛する針金、5は保温構造体1の最外層を
被覆する外皮であつて、外皮5としては、一般に
アルミニウム板や亜鉛引き鉄板などの金属板が用
いられる。
The molded heat insulating material 1a constituting the heat insulating structure 1 is obtained by dividing a cylindrical body with a predetermined outer diameter into a plurality of pieces, for example, about 3 to 6 pieces, and has a joint in the length direction of the pipe a. 1b (see Figures 2 and 3), and are stacked vertically in multiple stages, and in each layer, at the longitudinal seam 1b, there is a glazing 2a (see Figure 2). ) and nail 2b (see Figure 3)
At this time, it is preferable that the seams 1b of each layer are slightly staggered in a stepwise manner as shown in the figure. Note that the circumferential seam 1c (first
It is advantageous to leave the piping (see figure) free in order to follow the thermal expansion in the radial direction of the pipe a, but in some cases it may be integrally connected in the same way as the longitudinal joint 1b. In addition, a thin metal plate 3 (shown only in FIG. 1) with a glossy surface such as aluminum foil or stainless steel foil is interposed between each layer of the heat insulation structure 1 to prevent heat loss due to thermal radiation. You can keep it equipped. 1st
In the figure, numeral 4 is a wire that ties the molded heat insulation plate 1a to the pipe a for each layer, and 5 is an outer skin that covers the outermost layer of the heat insulation structure 1. The outer skin 5 is generally made of an aluminum plate or a zinc plate. A metal plate such as a drawn iron plate is used.

このようにして組立てられた保温構造体1に
は、熱膨脹、収縮に基因する配管aの長さ方向へ
の伸縮に追随して開閉する断面階段状の非連結部
6が、適当な間隔、例えば5〜15m、有利には10
m前後の間隔で形成される。このような断面階段
状の非連結部6は、例えば図示するように、長さ
方向の継目1bを利用し、所定個所の継目1b′を
フリーのままにしておくことによつて容易に形成
できるが、場合によつては継目1b′以外の部分
に、切削などの適宜の手段を適用して形成しても
よい。この非連結部6の形成によつて保温構造体
1は非連結部6,6間ごとに独立するので、外皮
5は、独立する保温構造体1ごとに設けられる。
The heat insulation structure 1 assembled in this way has unconnected parts 6 with stepped cross sections that open and close following the expansion and contraction of the pipe a in the length direction due to thermal expansion and contraction, at appropriate intervals, e.g. 5-15m, advantageously 10
They are formed at intervals of about m. Such an unconnected portion 6 having a stepped cross-section can be easily formed, for example, by using the longitudinal seams 1b and leaving the seams 1b' free at predetermined locations, as shown in the figure. However, in some cases, parts other than the seam 1b' may be formed by appropriate means such as cutting. Due to the formation of the unconnected portions 6, the heat retaining structure 1 becomes independent between the unconnected portions 6, 6, so the outer skin 5 is provided for each independent heat retaining structure 1.

配管aの熱膨脹による長さ方向への伸長に追随
して保温構造体1の非連結部6が開かれたとき、
この開かれた非連結部6からの放熱を防止するた
めに、非連結部6の外周部を取り囲むように、無
機質繊維製の筒状保温体7が、非連結部6の開閉
動に追随できるように覆設される。
When the uncoupled portion 6 of the heat insulation structure 1 is opened following the extension in the length direction due to thermal expansion of the pipe a,
In order to prevent heat radiation from the opened non-coupled portion 6, a cylindrical heat insulator 7 made of inorganic fiber can follow the opening and closing movement of the non-coupled portion 6 so as to surround the outer periphery of the non-coupled portion 6. It will be covered like this.

筒状保温体7の形成手段としては、岩綿、ガラ
ス繊維などのような無機質繊維を非連結部6の外
周部に層をなすように巻きつけると共に、このよ
うに形成された筒状の無機繊維層7aに金属板か
らなる外皮7bを施すなどの手段を例示できる。
この場合外皮7b内に無機繊維層7aが圧縮充填
されるような形態をとることが望ましい。
As a means for forming the cylindrical heat insulating body 7, inorganic fibers such as rock wool or glass fibers are wound around the outer periphery of the unconnected portion 6 in a layered manner, and the cylindrical inorganic fibers formed in this way are For example, the fiber layer 7a may be covered with an outer skin 7b made of a metal plate.
In this case, it is desirable that the inorganic fiber layer 7a be compressed and filled within the outer skin 7b.

また筒状保温体7を非連結部6の開閉動に追随
させる手段として、図には筒状保温体7の一端部
(第4〜5図に於て左側)を釘3などを用いて、
一方側の保温構造体1の端部に固着し、他部は他
方側の保温構造体1にフリーに覆設してなる場合
が示されている。この場合覆設長さは、非連結部
6に生ずることが予測される最大間隔に充分対応
できるような長さに決定される。
In addition, as a means for causing the cylindrical heat insulating body 7 to follow the opening and closing movements of the non-coupling portion 6, one end of the cylindrical heat insulating body 7 (the left side in FIGS. 4 and 5) is attached with a nail 3 or the like in the figure.
A case is shown in which it is fixed to one end of the heat retaining structure 1 and the other part is freely covered by the heat retaining structure 1 on the other side. In this case, the covering length is determined to be a length that can sufficiently accommodate the maximum distance that is expected to occur in the unconnected portions 6.

上述の構成を有する本考案保温構造に於て、非
稼動時(低温時)に於ては、保温構造体1,1間
の非連結部6は第4図に示すように閉じている。
In the heat retaining structure of the present invention having the above-described configuration, when the heat retaining structure is not in operation (at low temperature), the non-connecting portion 6 between the heat retaining structures 1 is closed as shown in FIG. 4.

一方稼動時に於て、配管aが、内部を流通する
超高温流体により加熱され熱膨脹して長手方向に
伸長すると、この伸長に追随して、保温構造体
1,1間の非連結部6が開き、この伸長は、非連
結部6,6間の配管長さを一単位として、各単位
ごとに、各非連結部6に於て、補正吸収される。
この時非連結部6には、第5図に示すように間隔
6aが生ずるが、この間隔6aは非連結部6の階
段状形状により半径方向に不連続状となり、更に
間隔6aの外端側は、無機質繊維製の筒状保温体
7によつて外気と遮断されるので、間隔6aより
の放熱を効果的に防止できる。
On the other hand, during operation, when the pipe a is heated by the ultra-high temperature fluid flowing inside and expands thermally and extends in the longitudinal direction, the unconnected portion 6 between the heat insulating structures 1 and 1 opens following this extension. , this elongation is corrected and absorbed in each unconnected part 6 for each unit, with the piping length between the unconnected parts 6 being one unit.
At this time, a gap 6a is created in the unconnected part 6 as shown in FIG. 5, but this interval 6a becomes discontinuous in the radial direction due to the step-like shape of the unconnected part 6, and furthermore, the outer end of the interval 6a is isolated from the outside air by the cylindrical heat insulating body 7 made of inorganic fibers, so that heat dissipation through the interval 6a can be effectively prevented.

この場合第5図に示すように、間隔6aが各層
に於てそれぞれ独立して発生するように各層の非
連結部6の位置を設定しておくことにより、放熱
をより一層効果的に防止できる。
In this case, as shown in FIG. 5, by setting the positions of the unconnected parts 6 of each layer so that the intervals 6a occur independently in each layer, heat radiation can be prevented even more effectively. .

このように本考案に於ては、超高温流体輸送用
配管aの熱膨脹に基因する長さの方向の伸縮を、
保温構造体1に適当な間隔例えば10m程度の間隔
のもとに形成した非連結部6の開閉動により補正
吸収するような構成にしたので、このような配管
aの伸縮に対処するための工事を、保温構造体に
単に10m程度の間隔のもとに施せばよく施工を著
るしく簡略化できると共に、配管aの伸長により
形成される間隔6aを、保温構造体1の非連結体
6に覆設した筒状保温体7により外気と遮閉する
ような構造にしたので、この覆設長さを適宜設定
することにより、線膨脹率が高く従つて大きな間
隔6aが生ずるような場合であつてもこれに容易
に対処させることができ、間隔6aよりの放熱を
確実に防止できる。更に筒状保温体7の構成要部
を無機質繊維から構成したので、これを保温構造
体1の外周面に容易に密着することが可能とな
り、高い放熱防止効果が得られる。
In this way, in the present invention, the expansion and contraction in the length direction due to thermal expansion of the ultra-high temperature fluid transport pipe a is
Since the heat insulating structure 1 is configured to compensate for the opening and closing movements of unconnected parts 6 formed at appropriate intervals, for example, about 10 m, construction work to cope with such expansion and contraction of piping a is required. The construction can be significantly simplified by simply applying the above to the heat insulating structure at intervals of about 10 m, and the spacing 6a formed by the extension of the pipe a can be applied to the unconnected body 6 of the heat insulating structure 1. Since the structure is such that it is shielded from the outside air by the covered cylindrical heat insulating body 7, by appropriately setting the covered length, it can be used in cases where the coefficient of linear expansion is high and a large gap 6a occurs. However, this can be easily dealt with, and heat dissipation from the space 6a can be reliably prevented. Furthermore, since the main constituent parts of the cylindrical heat insulating body 7 are made of inorganic fibers, it can be easily adhered to the outer circumferential surface of the heat insulating structure 1, and a high heat radiation prevention effect can be obtained.

更に本考案に於ては、成形保温材1aの相互を
長さ方向に、釘、かすがいなどを用いて接続一体
化したので、配管aの伸縮を繰返し受けても成形
保温材1aが長さ方向に分離されることがなくな
り、堅牢構造の保温構造を提供できる。
Furthermore, in the present invention, the molded heat insulators 1a are connected and integrated in the length direction using nails, screws, etc., so even if the pipe a is repeatedly expanded and contracted, the molded heat insulators 1a will not change in length. There is no possibility of separation in the direction, and a robust heat-retaining structure can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示し、第1図はその
一部切欠き斜面図、第2図及び第3図は成形保温
材の長さ方向の接続一体化手段の具体例を示す要
部拡大断面図、第4図及び第5図は非連結部の開
閉時の状況を示す要部拡大断面図、第6図は、筒
状保温体の配設間隔状況を示す説明図である。 図に於て、1は保温構造体、2aはかすがい、
2bは釘、3は金属薄板、4は針金、5は外皮、
6は非連結部、7は筒状保温体である。
The drawings show one embodiment of the present invention, and FIG. 1 is a partially cutaway perspective view thereof, and FIGS. 2 and 3 are main parts showing a specific example of the lengthwise connection and integration means of the molded heat insulating material. FIG. 4 and FIG. 5 are enlarged cross-sectional views of main parts showing the state of opening and closing of the uncoupled portion, and FIG. 6 is an explanatory view showing the arrangement spacing of the cylindrical heat insulators. In the figure, 1 is the heat insulation structure, 2a is the glazing,
2b is a nail, 3 is a thin metal plate, 4 is a wire, 5 is an outer skin,
6 is a non-connecting portion, and 7 is a cylindrical heat insulating body.

Claims (1)

【実用新案登録請求の範囲】 無機質成形保温材を上下に多段的に積層する
と共に、各層ごとに成形保温材の相互を長手方
向に釘、かすがいなどの金具を用いて接続一体
化して、組立てた超高温流体輸送用配管の保温
構造体であつて、該保温構造体は長手方向に適
当な間隔を存して断面階段状の非連結部を有
し、この非連結部間の保温構造体は、それぞれ
独立していて、熱膨脹、収縮に基因する配管の
長手方向への伸縮がこの非連結部に於ける開閉
により補正吸収されるよう構成されており、更
に開かれた非連結部からの放熱を防止するため
に、保温構造体の非連結部の外周部を取り囲む
ように、無機質繊維製の筒状保温体が、非連結
部の開閉動に追随できるように覆設されている
ことを特徴とする超高温流体輸送用配管の保温
構造。 保温構造体の各層間にアルミニウム箔、ステ
ンレススチール箔などのような光沢面を有する
金属薄板が介装されていることを特徴とする実
用新案登録請求の範囲第1項記載の超高温流体
輸送用配管の保温構造。
[Scope of Claim for Utility Model Registration] Inorganic molded heat insulating materials are stacked vertically in multiple stages, and the molded heat insulating materials for each layer are connected and integrated in the longitudinal direction using metal fittings such as nails or gaiters. A heat insulating structure for ultra-high temperature fluid transport piping, the heat insulating structure having non-connected portions with a stepped cross section at appropriate intervals in the longitudinal direction, and a heat insulating structure between the non-connected portions. are independent from each other, and are configured so that expansion and contraction in the longitudinal direction of the piping due to thermal expansion and contraction is compensated for and absorbed by opening and closing of this unconnected part, and furthermore, In order to prevent heat radiation, a cylindrical heat insulating body made of inorganic fiber is placed around the outer periphery of the unconnected part of the heat insulating structure so that it can follow the opening and closing movements of the unconnected part. Features a heat-retaining structure for ultra-high temperature fluid transport piping. The ultra-high temperature fluid transport device according to claim 1 of the utility model registration claim, characterized in that a thin metal plate with a glossy surface, such as aluminum foil or stainless steel foil, is interposed between each layer of the heat-retaining structure. Heat insulation structure for piping.
JP15682081U 1981-10-20 1981-10-20 Heat insulation structure for ultra-high temperature fluid transport piping Granted JPS5861997U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15682081U JPS5861997U (en) 1981-10-20 1981-10-20 Heat insulation structure for ultra-high temperature fluid transport piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15682081U JPS5861997U (en) 1981-10-20 1981-10-20 Heat insulation structure for ultra-high temperature fluid transport piping

Publications (2)

Publication Number Publication Date
JPS5861997U JPS5861997U (en) 1983-04-26
JPS6144073Y2 true JPS6144073Y2 (en) 1986-12-12

Family

ID=29949350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15682081U Granted JPS5861997U (en) 1981-10-20 1981-10-20 Heat insulation structure for ultra-high temperature fluid transport piping

Country Status (1)

Country Link
JP (1) JPS5861997U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111446A (en) * 1974-07-18 1976-01-29 Ono Gijutsu Kenkyusho Jugen SHITSUSHI KIGENZOSOCHI
JPS5210446A (en) * 1975-07-09 1977-01-26 Toyama Kamaboko Kk Method of processing paste of fish meat for eating raw

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111446A (en) * 1974-07-18 1976-01-29 Ono Gijutsu Kenkyusho Jugen SHITSUSHI KIGENZOSOCHI
JPS5210446A (en) * 1975-07-09 1977-01-26 Toyama Kamaboko Kk Method of processing paste of fish meat for eating raw

Also Published As

Publication number Publication date
JPS5861997U (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US4442585A (en) Method of construction for thermal and acoustic insulation blankets
US2964064A (en) Fluid conduit insulating means
CN208474785U (en) A kind of prefabricated direct-buried steam insulation pipe of long heat transport net
JPS5945981A (en) Refractory cover
JP2776646B2 (en) Structure of vacuum insulation box
US2773513A (en) Subterranean insulated conduit unit having spacer channel between pipes
US4582094A (en) Insulation for hot gas piping
JPS6144073Y2 (en)
US2695254A (en) Terminal end closure for thermally insulated conduits
US3848897A (en) Thermal shield
US4566495A (en) Concentric walled conduit for a tubular conduit string
CN209278732U (en) The insulation construction of high temperature and high pressure steam pipeline
US4614016A (en) Method of insulating pipe with thermo-lock interfit insulation
RU183979U1 (en) DESIGN OF INPUT PIPELINE SYSTEM IN THE BUILDING
EP0293203A1 (en) Freeze resistant pipe
US2089909A (en) Insulation or covering
US20080006434A1 (en) Low Thermal Conductivity Reusable Insulation Jacket for Pipe, Tubing, Valves, and Fittings
EP0615569A1 (en) Insulated ventilation duct component and method of producing the same
US2378214A (en) Expansion means
RU189055U1 (en) Composite insulation product
US456661A (en) Steam-pipe covering
CN207702033U (en) Heating furnace concetrated pipe removable flexible insulation construction
JPS5838215Y2 (en) Heat retention tube with holding piece
CN206647627U (en) A kind of backplate furnace wall tube seal structure through walls
CN105674312B (en) A kind of high-temperature flue manhole door device