JPH04266696A - Structure for eliminating thermal extention/contraction of vacuum thermal insulation body - Google Patents

Structure for eliminating thermal extention/contraction of vacuum thermal insulation body

Info

Publication number
JPH04266696A
JPH04266696A JP3027604A JP2760491A JPH04266696A JP H04266696 A JPH04266696 A JP H04266696A JP 3027604 A JP3027604 A JP 3027604A JP 2760491 A JP2760491 A JP 2760491A JP H04266696 A JPH04266696 A JP H04266696A
Authority
JP
Japan
Prior art keywords
wall
sealing member
contraction
box
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3027604A
Other languages
Japanese (ja)
Other versions
JP2593004B2 (en
Inventor
Tadao Yamaji
山路 忠雄
Hiroshi Yamazaki
洋 山崎
Masanobu Morimoto
森本 眞布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3027604A priority Critical patent/JP2593004B2/en
Publication of JPH04266696A publication Critical patent/JPH04266696A/en
Application granted granted Critical
Publication of JP2593004B2 publication Critical patent/JP2593004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce thermal stress generated on a sealing member of a vacuum thermal insulation body or in the vicinity thereof by utilizing an inexpensive structure easy to manufacture. CONSTITUTION:An end face of a vacuum thermal insulation body 15 formed between inner and outer boxes. 11, 12 is sealed by means of a sealing member 16. The sealing member 16 is composed of a bellows member which can extend/ contract in a thermal extention/contraction direction of the inner box 11. In respect to plates 17 to 19 composing the bellows member, the plate near the inner box 11 gets gradually thicker than the plate on the side of the outer box 12. Stress applied to the plates 17 to 19 is equalized, and thereby generation of excessive stress is prevented, and durability of the vacuum thermal insulation body is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内室へ収納した物を高
温または低温の状態に保温する真空断熱体の熱伸縮吸収
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal expansion/contraction absorbing structure for a vacuum heat insulator that keeps objects stored in an interior chamber at a high or low temperature.

【0002】0002

【従来の技術】従来より、この種の真空断熱体として、
図5に示すように内壁1と外壁2とを備えた有底の箱体
が知られている。この箱体は、その開口3を蓋体4で閉
じるように構成されているが、内壁1と外壁2との間に
真空断熱部5を形成して、その開口3側の端面を封止部
材6により密封している。一般に封止部材6は、内壁1
の熱伸縮を吸収して真空断熱体に発生する熱応力を低減
可能な構造にする必要がある。ところで、図示した従来
の封止部材6は、図6に詳しく示すように、溝形の断面
形状を有し、その両側縁が内壁1と外壁2とに溶接され
ている。しかし、これだけでは内壁1の熱伸縮を吸収で
きないので、内壁1の壁面に凹溝7を形成してこの熱伸
縮を吸収している。
[Prior Art] Conventionally, as this type of vacuum insulator,
As shown in FIG. 5, a bottomed box including an inner wall 1 and an outer wall 2 is known. This box body is constructed so that its opening 3 is closed with a lid body 4, and a vacuum insulation part 5 is formed between the inner wall 1 and the outer wall 2, and the end surface on the side of the opening 3 is sealed with a sealing member. It is sealed by 6. Generally, the sealing member 6 is attached to the inner wall 1
It is necessary to create a structure that can absorb the thermal expansion and contraction of vacuum insulation and reduce the thermal stress generated in the vacuum insulation. By the way, as shown in detail in FIG. 6, the illustrated conventional sealing member 6 has a groove-shaped cross-sectional shape, and both side edges of the sealing member 6 are welded to the inner wall 1 and the outer wall 2. However, since this alone cannot absorb the thermal expansion and contraction of the inner wall 1, grooves 7 are formed in the wall surface of the inner wall 1 to absorb this thermal expansion and contraction.

【0003】さらに、封止部材6の他の例として、図7
および図8に示すようなものがある。図7に示すものは
、封止部材6がC時形の断面形状を有し、その両端縁が
内壁1と外壁2とに溶接されている。したがって、内壁
1が熱伸縮したときに変形してこの熱伸縮を吸収する。 また、図8に示すものでは、封止部材6は、内壁1の熱
伸縮方向に伸縮可能な蛇腹状に形成されている。ここで
、蛇腹を構成する3枚の板材8,9,10は、すべて同
じ板厚になっている。
Furthermore, as another example of the sealing member 6, FIG.
and as shown in FIG. In the sealing member 6 shown in FIG. 7, the sealing member 6 has a C-shaped cross-sectional shape, and both ends of the sealing member 6 are welded to the inner wall 1 and the outer wall 2. Therefore, when the inner wall 1 undergoes thermal expansion and contraction, it deforms and absorbs this thermal expansion and contraction. Moreover, in the one shown in FIG. 8, the sealing member 6 is formed in a bellows shape that can be expanded and contracted in the direction of thermal expansion and contraction of the inner wall 1. Here, the three plates 8, 9, and 10 forming the bellows all have the same plate thickness.

【0004】0004

【発明が解決しようとする課題】しかし、上記従来の熱
伸縮吸収構造のうち、図6に示すものは、封止部材6の
近傍に発生する応力は小さくなるが、条件によっては凹
溝7に過大な応力が発生するおそれがある。また、図7
に示すものは、封止部材6の溶接部に過大な応力が発生
するおそれがある。しかも、そのうえに、溶接部は高い
精度で加工する必要があるので、製造上不利になるとい
う問題点がある。さらに、図8に示すものは、板材8,
9,10に発生する応力が各板材ごとに異なり、疲労寿
命の短い部分が存在する欠点がある。
[Problems to be Solved by the Invention] However, among the above-mentioned conventional heat expansion/contraction absorption structures, the one shown in FIG. 6 reduces the stress generated near the sealing member 6, but depending on the conditions, Excessive stress may occur. Also, Figure 7
In the case shown in , excessive stress may be generated in the welded portion of the sealing member 6. Furthermore, since the welded portion must be processed with high precision, there is a problem in that it is disadvantageous in terms of manufacturing. Furthermore, what is shown in FIG.
There is a drawback that the stress generated at parts 9 and 10 differs for each plate material, and there are parts with short fatigue life.

【0005】そこで本発明はこのような問題点を解決し
、製作しやすく、しかも安価な構造を用いて、封止部材
およびその近傍に発生する熱応力を低減できるようにす
ることを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve these problems and to reduce the thermal stress generated in the sealing member and its vicinity by using a structure that is easy to manufacture and inexpensive. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、内壁と外壁とを有するとともに、これら内壁
と外壁との間に形成された真空断熱部の端面を封止部材
により密封しした真空断熱体において、前記封止部材を
内壁の熱伸縮方向に伸縮可能な蛇腹部材にて構成し、こ
の蛇腹部材の板材の厚さを、内壁に接続した板材側ほど
厚く、かつ外壁に接続した板材側ほど薄く設定したもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has an inner wall and an outer wall, and seals the end face of a vacuum insulation section formed between the inner wall and the outer wall with a sealing member. In the vacuum heat insulating body, the sealing member is made of a bellows material that can expand and contract in the direction of thermal expansion and contraction of the inner wall, and the thickness of the plate material of the bellows material is such that the side of the plate material connected to the inner wall is thicker and the plate material is connected to the outer wall. The thinner the plate material side is, the thinner it is.

【0007】[0007]

【作用】上記構成の熱伸縮吸収構造においては、封止部
材を内壁の熱伸縮方向に伸縮可能な蛇腹部材にて構成し
ているので、封止部材が内壁の熱伸縮を円滑に吸収し、
真空断熱体に発生する熱応力を低減する。また、蛇腹部
材を構成する板材の厚さを、内壁に接続した板材側すな
わち大きな応力が発生しようとする側ほど厚く、かつ外
壁に接続した板材側すなわち発生しようとする応力が小
さくなる側ほど薄く設定しているので、蛇腹部材に発生
する応力が均一化する。したがって、真空断熱体の耐久
性が増大する。
[Operation] In the heat expansion/contraction absorption structure having the above configuration, the sealing member is made of a bellows material that can expand and contract in the direction of thermal expansion and contraction of the inner wall, so the sealing member smoothly absorbs the thermal expansion and contraction of the inner wall.
Reduces thermal stress generated in vacuum insulation. In addition, the thickness of the plate material constituting the bellows material is made thicker on the side of the plate material connected to the inner wall, that is, the side where a large stress is likely to be generated, and thinner as the plate material side connected to the outer wall, that is, the side where the stress is expected to be smaller. This setting equalizes the stress generated in the bellows material. Therefore, the durability of the vacuum insulation body is increased.

【0008】[0008]

【実施例】図1〜図3の実施例は、真空断熱体として、
収納物を高温状態に保温する真空断熱箱体を例示する。 この真空断熱箱体は、図1および図2に示すように、内
壁としての内箱11と外壁としての外箱12とを備えた
有底の箱体である。その開口13は、蓋体14で閉じら
れる。内箱11と外箱12との間には真空断熱部15が
形成され、この真空断熱部15における開口13側の端
面は、封止部材16により密封されている。
[Embodiment] The embodiment shown in FIGS. 1 to 3 is a vacuum heat insulating body.
A vacuum insulated box body that keeps stored items at a high temperature is illustrated. As shown in FIGS. 1 and 2, this vacuum insulated box is a bottomed box including an inner box 11 as an inner wall and an outer box 12 as an outer wall. The opening 13 is closed with a lid 14. A vacuum heat insulating section 15 is formed between the inner box 11 and the outer box 12, and the end surface of the vacuum heat insulating section 15 on the opening 13 side is sealed with a sealing member 16.

【0009】次に、この真空断熱箱体における熱伸縮吸
収構造を説明する。図3に示すように、封止部材16を
内箱11の熱伸縮方向に伸縮可能な蛇腹部材にて構成し
、蛇腹を形成する3枚の板材17,18,19のうち、
内箱11に溶接した最も開口端側の第1層の板材17の
板厚を最も厚く設定している。そして第2層の板材18
の板厚を中間の厚さに設定し、外箱12に溶接した最も
奥側の第3層の板材19の板厚を最も薄く設定している
Next, the thermal expansion/contraction absorption structure of this vacuum insulated box will be explained. As shown in FIG. 3, the sealing member 16 is made of a bellows member that can expand and contract in the direction of thermal expansion and contraction of the inner box 11, and among the three plate members 17, 18, and 19 forming the bellows,
The thickness of the first layer of plate material 17 welded to the inner box 11 closest to the open end is set to be the thickest. And the second layer plate material 18
The thickness of the third layer plate 19 welded to the outer case 12, which is the innermost layer, is set to be the thinnest.

【0010】上記構成の熱伸縮吸収構造によれば、内箱
11が高温により伸長したときに、蛇腹構造の封止部材
16も伸長して内箱11の伸長を円滑に吸収し、真空断
熱箱体に発生する熱応力を低減する。その際、3枚の板
材17,18,19に発生しようとする変形量すなわち
応力は、板材17が最も大きく、板材18が中間で、板
材19が最も小さい。ところが、板材17を最も厚く、
板材18を中間の厚さに、そして板材19を最も薄く設
定してあるため、各板材17,18,19に発生する応
力は均一で、しかも小さな値となる。
According to the thermal expansion/contraction absorption structure having the above configuration, when the inner box 11 is expanded due to high temperature, the sealing member 16 having the bellows structure also expands to smoothly absorb the expansion of the inner box 11, and the vacuum insulation box Reduces thermal stress generated in the body. At this time, the amount of deformation, that is, the stress that is going to occur in the three plate materials 17, 18, and 19, is the largest in the plate 17, the intermediate in the plate 18, and the smallest in the plate 19. However, if the plate material 17 is the thickest,
Since the plate material 18 is set to have an intermediate thickness and the plate material 19 is set to be the thinnest, the stress generated in each of the plate materials 17, 18, and 19 is uniform and has a small value.

【0011】このように、真空断熱箱体は、発生する熱
応力が小さく、熱伸縮吸収構造部における応力が均一化
されるので、繰返し熱負荷に対する疲労寿命が延びる。 しかも、このような熱伸縮吸収構造は、その構造が簡単
で、製作しやすく、安価である。
[0011] As described above, in the vacuum insulated box, the generated thermal stress is small and the stress in the thermal expansion/contraction absorbing structure is made uniform, so that the fatigue life against repeated thermal loads is extended. Moreover, such a heat-stretchable absorbing structure has a simple structure, is easy to manufacture, and is inexpensive.

【0012】本発明者らが本実施例の熱伸縮吸収構造に
ついて行った試作試験の結果を表1に示す。
[0012] Table 1 shows the results of a prototype test conducted by the present inventors on the heat-stretchable absorbent structure of this example.

【0013】[0013]

【表1】[Table 1]

【0014】ただし、表中の応力強さはASMEに準拠
してFEM解析により求めた応力強さ(=最大主応力−
最小主応力)で、その値は従来品Aの数値を1としてそ
の比を示している。また、真空断熱箱体は、内寸法を幅
1400mm×高さ1200mm×長さ2300mm、
真空断熱部15の厚さを60mm、内部温度を330 
℃とした。
[0014] However, the stress intensities in the table are the stress intensities determined by FEM analysis in accordance with ASME (=maximum principal stress -
(minimum principal stress), and its value shows the ratio, taking the value of conventional product A as 1. In addition, the vacuum insulation box has internal dimensions of 1400 mm width x 1200 mm height x 2300 mm length.
The thickness of the vacuum insulation part 15 is 60 mm, and the internal temperature is 330 mm.
℃.

【0015】上表から判るように、本発明によれば、従
来のものに比べ、応力強さ、寿命ともすぐれている。上
記実施例では、収納物を高温状態に保温する場合につい
て説明したが、他の実施例として、収納物を低温状態に
保冷する場合の熱伸縮吸収構造を図4に示す。この場合
は、内箱11が低温により収縮するので、内箱11に溶
接する板材17を最も奥側の層としてその板厚を最も厚
く設定し、中間層の板材18の板厚を両板材17,19
中間の厚さに設定し、外箱12に溶接する板材19を最
も開口端側の層としてその板厚を最も薄く設定する。こ
れにより、図1〜図3の実施例の場合と同様の作用効果
を奏する。
As can be seen from the above table, the present invention has superior stress strength and life compared to the conventional one. In the above embodiment, a case has been described in which the stored items are kept at a high temperature. As another example, a thermal expansion/contraction absorption structure for keeping the stored items at a low temperature is shown in FIG. In this case, since the inner box 11 contracts due to low temperature, the plate material 17 to be welded to the inner box 11 is set as the innermost layer and its thickness is set to be the thickest, and the thickness of the intermediate layer plate material 18 is set to the thickness of both plate materials 17 and 17. ,19
The thickness is set to be intermediate, and the plate material 19 to be welded to the outer box 12 is set to be the layer closest to the open end, and its thickness is set to be the thinnest. As a result, the same effects as in the embodiments shown in FIGS. 1 to 3 can be achieved.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、封止
部材を内壁の熱伸縮方向に伸縮可能な蛇腹部材にて構成
したので、封止部材が内箱の熱伸縮を円滑に吸収し、真
空断熱箱体に発生する熱応力を低減できる。しかも、蛇
腹部材を構成する板材の厚さを、内壁に接続した板材側
ほど厚く、かつ外壁に接続した板材側ほど薄く設定した
ので、各板材に発生する応力を均一化することができる
。さらに、構造が簡単で、製作が容易なものとすること
ができる。したがって、繰返し熱負荷に対する真空断熱
体の耐久性を増大させることができるのみならず、これ
を安価に製造することができる。
As described above, according to the present invention, the sealing member is made of a bellows material that can expand and contract in the direction of thermal expansion and contraction of the inner wall, so that the sealing member smoothly absorbs the thermal expansion and contraction of the inner box. Therefore, the thermal stress generated in the vacuum insulated box can be reduced. In addition, the thickness of the plates constituting the bellows material is set to be thicker on the side of the plate connected to the inner wall and thinner on the side of the plate connected to the outer wall, so that the stress generated in each plate can be made uniform. Furthermore, the structure can be simple and manufacturing can be facilitated. Therefore, not only can the durability of the vacuum insulation body against repeated thermal loads be increased, but also it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の熱伸縮吸収構造を利用した
真空断熱箱体の断面図である。
FIG. 1 is a cross-sectional view of a vacuum insulation box using a thermal expansion/contraction absorption structure according to an embodiment of the present invention.

【図2】図1における右側面図である。FIG. 2 is a right side view in FIG. 1.

【図3】図1に示した熱伸縮吸収構造の拡大断面図であ
る。
FIG. 3 is an enlarged cross-sectional view of the thermal expansion/contraction absorption structure shown in FIG. 1;

【図4】本発明の他の実施例の熱伸縮吸収構造の拡大断
面図である。
FIG. 4 is an enlarged cross-sectional view of a heat-stretchable absorbing structure according to another embodiment of the present invention.

【図5】従来の熱伸縮吸収構造の一例を利用した真空断
熱箱体の断面図である。
FIG. 5 is a sectional view of a vacuum insulation box using an example of a conventional thermal expansion/contraction absorption structure.

【図6】図5に示した熱伸縮吸収構造の拡大断面図であ
る。
FIG. 6 is an enlarged cross-sectional view of the thermal expansion/contraction absorption structure shown in FIG. 5;

【図7】従来の熱伸縮吸収構造の他の例を示す拡大断面
図である。
FIG. 7 is an enlarged sectional view showing another example of a conventional thermal expansion/contraction absorption structure.

【図8】従来の熱伸縮吸収構造のさらに他の例を示す拡
大断面図である。
FIG. 8 is an enlarged cross-sectional view showing still another example of a conventional thermal expansion/contraction absorption structure.

【符号の説明】[Explanation of symbols]

11            内箱(内壁)12   
         外箱(外壁)15        
    真空断熱部16            封止
部材17,18,19    板材
11 Inner box (inner wall) 12
Outer box (outer wall) 15
Vacuum insulation part 16 Sealing member 17, 18, 19 Plate material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内壁と外壁とを有するとともに、これ
ら内壁と外壁との間に形成された真空断熱部の端面を封
止部材により密封した真空断熱体において、前記封止部
材を内壁の熱伸縮方向に伸縮可能な蛇腹部材にて構成し
、この蛇腹部材の板材の厚さを、内壁に接続した板材側
ほど厚く、かつ外壁に接続した板材側ほど薄く設定した
ことを特徴とする真空断熱体の熱伸縮吸収構造。
1. A vacuum insulation body having an inner wall and an outer wall, and in which an end face of a vacuum insulation portion formed between the inner wall and the outer wall is sealed with a sealing member, wherein the sealing member is used to control thermal expansion and contraction of the inner wall. A vacuum insulating body comprising a bellows member that can be expanded and contracted in the direction, and the thickness of the plate of the bellows member is set to be thicker on the side of the plate connected to the inner wall and thinner as the side of the plate connected to the outer wall is set. Heat-stretch absorption structure.
JP3027604A 1991-02-22 1991-02-22 Thermal expansion and contraction absorption structure of vacuum insulation Expired - Lifetime JP2593004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027604A JP2593004B2 (en) 1991-02-22 1991-02-22 Thermal expansion and contraction absorption structure of vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027604A JP2593004B2 (en) 1991-02-22 1991-02-22 Thermal expansion and contraction absorption structure of vacuum insulation

Publications (2)

Publication Number Publication Date
JPH04266696A true JPH04266696A (en) 1992-09-22
JP2593004B2 JP2593004B2 (en) 1997-03-19

Family

ID=12225531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027604A Expired - Lifetime JP2593004B2 (en) 1991-02-22 1991-02-22 Thermal expansion and contraction absorption structure of vacuum insulation

Country Status (1)

Country Link
JP (1) JP2593004B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003962A1 (en) 2007-01-26 2008-07-31 Peter Wasseroth Sheet-edge bond for vacuum insulating glazing, which overstretches between glass panes in bent manner in cross section and closes in gas proof manner against outer atmosphere, has sheet bent, which is braced by beadings or shafts
JP2012207682A (en) * 2011-03-29 2012-10-25 Matsuda Gijutsu Kenkyusho:Kk Vacuum heat insulation panel
JP2013245812A (en) * 2012-05-30 2013-12-09 Sharp Corp Heat insulator
JP2014009723A (en) * 2012-06-28 2014-01-20 Sharp Corp Heat insulating material and heating device including the same
EP3078926A1 (en) * 2015-04-06 2016-10-12 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
JP2019002529A (en) * 2017-06-19 2019-01-10 株式会社デンソー Heat insulation device
JP2019094964A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Double heat insulation wall structure
CN112629134A (en) * 2015-08-03 2021-04-09 Lg电子株式会社 Vacuum heat insulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203538A (en) * 2009-03-04 2010-09-16 Fuji Electric Retail Systems Co Ltd Vacuum heat insulation material and heat insulation board
JP5637714B2 (en) * 2010-03-29 2014-12-10 Ckd株式会社 Connection structure of vacuum double piping

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003962A1 (en) 2007-01-26 2008-07-31 Peter Wasseroth Sheet-edge bond for vacuum insulating glazing, which overstretches between glass panes in bent manner in cross section and closes in gas proof manner against outer atmosphere, has sheet bent, which is braced by beadings or shafts
JP2012207682A (en) * 2011-03-29 2012-10-25 Matsuda Gijutsu Kenkyusho:Kk Vacuum heat insulation panel
JP2013245812A (en) * 2012-05-30 2013-12-09 Sharp Corp Heat insulator
JP2014009723A (en) * 2012-06-28 2014-01-20 Sharp Corp Heat insulating material and heating device including the same
EP3078926A1 (en) * 2015-04-06 2016-10-12 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
CN106052238A (en) * 2015-04-06 2016-10-26 三星电子株式会社 Vacuum insulation panel and refrigerator including same
US10065389B2 (en) 2015-04-06 2018-09-04 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including the same
CN106052238B (en) * 2015-04-06 2019-11-26 三星电子株式会社 Vacuum insulation panel and refrigerator including the vacuum insulation panel
CN112629134A (en) * 2015-08-03 2021-04-09 Lg电子株式会社 Vacuum heat insulator
CN112629134B (en) * 2015-08-03 2022-08-26 Lg电子株式会社 Vacuum heat insulator
JP2019002529A (en) * 2017-06-19 2019-01-10 株式会社デンソー Heat insulation device
JP2019094964A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Double heat insulation wall structure

Also Published As

Publication number Publication date
JP2593004B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JPH04266696A (en) Structure for eliminating thermal extention/contraction of vacuum thermal insulation body
US3604716A (en) Self-tightening seal
US6231944B1 (en) Method for producing a thermal, acoustical and/or vibrational abatement shield and shield produced thereby
JP2776646B2 (en) Structure of vacuum insulation box
JPS6259546B2 (en)
US4794748A (en) Sealing device for expansion gaps between evacuated heat insulating wall components
US7744982B2 (en) Edge insulation for vacuum insulation panels
EP3666618B1 (en) Connection diaphragm using porous double lightweight panel
JPH0771690A (en) Thermal extension/contraction absorbing structure for vacuum heat insulator
JP2870568B2 (en) Vacuum insulation
JPH0614131Y2 (en) Seal ring
JP3138394B2 (en) Vacuum double bellows pipe
US6133821A (en) PTC thermistor with improved flash pressure resistance
CN211117561U (en) Corrugated gasket and sealing structure
JPH04127498U (en) Structure of vacuum insulated box
JP2755244B2 (en) Mold cap for semiconductor device
JP2001280510A (en) Sealing structure
JP2758108B2 (en) End structure of vacuum insulator
JPS6193575A (en) Ignition plug
US20220290758A1 (en) Gasket
JPH066219Y2 (en) Metal laminated gasket
JP2936465B2 (en) Metal gasket
JPH10303072A (en) Can body
JPH05187598A (en) Vacuum heat insulating container
JP2521332Y2 (en) Vacuum insulation container