M436131 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種發光二極體(led)導熱基板結構,特定言 之,係關於一種具有薄導熱片之發光二極體導熱基板結構。 【先前技術】 二 由於發光二極體製程良率的進步及價格的日益親民,發光二極 體光源除了原本僅使用於裝飾或警示的用途外,在現今也逐漸被 使用於取代傳統日光燈管以進行照明用途。然而,因為發光二極 體光源屬於高功率的照明設備,所以在發光的同時,通常也將伴 Ik著產生相當局的工作溫度。如此一來,倘若無法對這些發光二 極體光源進行有效散熱,則於長時間使用下,將嚴重縮短發光 極體光源的平均壽命,從而增加額外的維修支出費用。 為解決上述發光二極體光源工作溫度過高的問題,業界目前多 採用將發光二極體光源設置於—結合純及終端散熱機構 熱座或散熱韓片)之電路板的方式’以協助發光二極體光源期 產生的熱能經由純傳導至散熱機構而進行散熱。 之改良研究已幾至_,若無料對其他料進行改良,實'= 進一步提升散熱效果。 、 鑑於此’本創作旨在提供-種改良之發光二極體導熱基板結構。 【新型内容】 本創作旨在提供 M436131 • · . 更能同時滿足加工製作便易、減輕重量以及適合終端照明薄型化 •與彈性化設計等需求,一舉克服前述傳統發光二極體基板結構所 面臨之各項難題。 為達到上述目的,本創作提供一種發光二極體導熱基板結構, 包括: 一電路板,具有一絕緣層及一位於該絕緣層上方之金屬線路 層; 複數個發光二極體元件,承載於該金屬線路層之上方並與該 金屬線路層電性連接; 一厚度小於約0.5毫米之導熱片,具一上表面及一與該上表 面相對之下表面,且以該上表面與該電路板相貼合;以及 一散熱機構,與該導熱片之下表面相貼合。 為讓上述目的、技術特徵、和優點能更明顯易懂,下文係以較 佳實施例配合所附圖式進行詳細說明。在不背離本創作之精神 下,本創作尚可以多種不同形式之態樣來實踐,不應將本創作保 .®護範圍解釋為限於說明書所陳述者。此外,在所附圖式中,為明 確起見,可能誇示各物件及區域的尺寸,而未按照實際比例繪示。 另,除非文中有另外說明,於本說明書申(尤其是在後述專利申 請範圍中)所使用之「一」、「該」及類似用語應理解為包含單數 及複數形式。 【實施方式】 第1圖顯示本創作之發光二極體導熱基板結構之一實施態樣的 示意圖,其中發光二極體導熱基板結構100包括一電路板1、複數 5 M436131 個發光二極體元件2、一導熱片3及、一散熱機構*。 如第1圖所示,電路板!係包含—絕緣層U及一位於絕緣層^ 上方之金屬電路層12,金屬電路層12係_刻等程序而具有所欲 之電路圖案。金屬電路層12上方係承載有複數個發光二極體元件 2 ’發光二極體元件2可藉由焊接、覆晶、晶片直接封裝“— board ’ COB)或跳線連接等方式與金屬線路層12電性連接。電路 板1下方貼合有-導熱片3,該導熱片3具有—上表面及—與該上 表面相對之下表面並以該上表面與電路板ί相貼合。導熱片3下 方則另與-散熱機才冓4相貼合。當發光二極體元件2進行發光時, 所產生之熱能可依序傳導經過電路板丨及導熱片3,最終藉由散熱 機構4散逸至大氣中,以此達到散熱之效果。 本創作相關領域技藝人士通常認為,應使用較厚之鋁板(約 毫米至約1.5毫米)以獲致較好的散熱效益,然而,本案創作人研 究後意外發現,使用較厚之導熱片並無法提供較好的散、熱效益, 甚至容易於導熱片内發生蓄熱情形。因此,於本創作中係採用 一經相對薄化之導熱片3,以改良發光二極體導熱基板結構1〇〇 之散熱效果,其中,導熱片3之厚度係小於約〇 5毫米。於本創作 之部分實施態樣中’導熱片3之厚度係約0.15毫米。導熱片3之 材料則無特殊限制,可以各種合宜之導熱材料構成,舉例言之, 導熱片3可為一金屬導熱片或合金導熱片,較佳係鋁導熱片、鋼 導熱片或不鏽鋼導熱片,更佳係鋁導熱片。於本創作之部分實施 態樣中’係採用厚度約0.15毫米之鋁片作為導熱片3。 於本創作中,散熱機構4之構成材料及結構並無特殊限制,可 M436131 « . 為任何半導體業界所悉知之散熱機構。舉例言之,散熱機構4可 •為一金屬導熱機構或合金導熱機構,更佳係鋁導熱機構、銅導熱 機構或不鏽鋼導熱機構,尤佳係鋁導熱機構;且其結構可為一散 熱鰭片、散熱板、散熱基板、或均溫板。於本創作之部分實施態 樣中係採用一鋁散熱鰭片作為散熱機構4。 除第1圖所示之電路板結構外,本創作之發光二極體導熱基板 結構亦可視需要採用其他種類之電路板,例如,可採用其他具單 層電路設計之電路板、或採用具有多層電路設計(以複數層絕緣 層及複數層金屬電路層交錯疊合而成)之電路板。惟,所採用之 電路板與導熱片3接觸之側面仍須為絕緣層(非金屬電路層),以 避免電性短路。 第2圖所示為本創作之發光二極體導熱基板結構之另一實施態 樣之示意圖。其中,發光二極體導熱基板結構101除包括一電路 板1、複數個發光二極體元件2、一導熱片3及一散熱機構4外, 更包含一防焊層5。防焊層5 (可透過如網印、黃光微影等方式形 .®成)係披覆於電路板1之金屬線路層上方之未承載有發光二極體 元件的區域,從而能藉由防焊層5之反射效果,達到提升光利用 性及賦予炫麗燈光表現之功效。防焊層5之材料並無特殊限制, 可採用業界所悉知之合宜材料,如Taiyo公司所生產之PSR-4000。 茲以下列具體實施態樣進一步例示說明本創作,該實施態樣僅 為例示所用,並無限制本創作範圍之意涵。 [實施例] 7 M436131 採用一由厚度為80微米絕緣層(熱傳導係數為2瓦/公尺· 溫度差)及-㈣電路層所構成之電路板,於其銅㈣路層^ 承載複數個發光二極體元件,並以焊接之方式形成電性連接十 後於電路板下方(絕緣層側)貼合—厚度為015毫米之銘散吸 並於紹散熱片之下方再貼合_ls散錢片,獲得發光二極體 基板結構1。 … [比較例] 重複實施例之製備步驟’惟採用一厚度為丨毫米之鋁散熱片 獲得比較發光二極體導熱基板結構Γ。 〈散熱效果測試〉 以電源供應器提供電力分別點亮發光二極體導熱基板結構【及 1之發光二極體元件並待穩定之後,測量發光二極體元件之發光功 率P,以及測量發光二極體元件端之溫度Ts與散熱鰭片端之溫度M436131 V. New Description: [New Technology Field] This paper is about a light-emitting diode (LED) heat-conducting substrate structure. Specifically, it relates to a light-emitting diode heat-conducting substrate structure with a thin heat-conducting sheet. [Prior Art] Secondly, due to the progress of the light-emitting diode system and the increasing price of the light-emitting diode, the light-emitting diode light source has been gradually used to replace the traditional fluorescent tube in addition to the original use of decoration or warning. For lighting purposes. However, since the illuminating diode source is a high-power illuminating device, it is usually accompanied by an operating temperature of the phase controller while illuminating. As a result, if these light-emitting diode light sources cannot be effectively dissipated, the average life of the light-emitting body light source will be severely shortened under long-term use, thereby increasing the additional maintenance cost. In order to solve the problem that the operating temperature of the above-mentioned light-emitting diode light source is too high, the industry currently adopts a method of disposing a light-emitting diode light source in a circuit board combining pure and terminal heat-dissipating mechanism hot seat or heat-dissipating Korean film to assist light emission. The heat generated during the diode light source is dissipated via pure conduction to the heat dissipating mechanism. The improvement research has been several to _, if no material is improved on other materials, the real '= further improve the heat dissipation effect. In view of this, the present invention aims to provide an improved light-emitting diode thermal conductive substrate structure. [New Content] This creation aims to provide M436131 • · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The various problems. In order to achieve the above object, the present invention provides a light-emitting diode thermal conductive substrate structure, comprising: a circuit board having an insulating layer and a metal circuit layer above the insulating layer; and a plurality of light emitting diode elements carried thereon Above the metal circuit layer and electrically connected to the metal circuit layer; a thermal conductive sheet having a thickness of less than about 0.5 mm, having an upper surface and a surface opposite to the upper surface, and the upper surface is opposite to the circuit board a bonding; and a heat dissipating mechanism that conforms to the lower surface of the thermal pad. The above objects, technical features, and advantages will be more apparent from the following description. Without departing from the spirit of this creation, this creation can be practiced in a variety of different forms, and the scope of this creation should not be construed as being limited to those stated in the specification. Further, in the drawings, the dimensions of the various items and regions may be exaggerated for clarity, and are not shown in actual scale. In addition, the terms "a", "an" and "the" are used in the singular and plural terms. [Embodiment] FIG. 1 is a schematic view showing an embodiment of a light-emitting diode thermal conductive substrate structure of the present invention, wherein the light-emitting diode thermal conductive substrate structure 100 comprises a circuit board 1, and a plurality of 5 M436131 light-emitting diode components. 2. A thermal pad 3 and a heat dissipating mechanism*. As shown in Figure 1, the board! The insulating layer U and a metal circuit layer 12 over the insulating layer are included, and the metal circuit layer 12 is programmed to have a desired circuit pattern. The metal circuit layer 12 carries a plurality of light emitting diode elements 2 above. The light emitting diode element 2 can be connected to the metal circuit layer by soldering, flip chip, wafer direct packaging "-board" COB) or jumper connection. 12 electrically connected. The lower surface of the circuit board 1 is bonded with a heat conductive sheet 3 having an upper surface and a surface opposite to the upper surface and the upper surface is bonded to the circuit board. 3, the lower part is attached to the heat dissipating device. When the light emitting diode element 2 emits light, the generated thermal energy can be sequentially transmitted through the circuit board and the heat conducting sheet 3, and finally dissipated by the heat dissipating mechanism 4. To the atmosphere, to achieve the effect of heat dissipation. Those skilled in the art of this field generally believe that thicker aluminum sheets (about mm to about 1.5 mm) should be used to achieve better heat dissipation benefits. However, the creators of this case have studied accidents. It has been found that the use of thicker thermal conductive sheets does not provide better dispersion and heat benefits, and even heat storage in the thermal conductive sheet is easy. Therefore, in the present creation, a relatively thinned thermally conductive sheet 3 is used to improve the luminous illumination. The heat dissipation effect of the heat conductive sheet 3 is less than about 毫米5 mm. In some embodiments of the present invention, the thickness of the heat conductive sheet 3 is about 0.15 mm. The material of the heat conductive sheet 3 There is no special limitation, and it can be composed of various suitable thermal conductive materials. For example, the thermal conductive sheet 3 can be a metal thermal conductive sheet or an alloy thermal conductive sheet, preferably an aluminum thermal conductive sheet, a steel thermal conductive sheet or a stainless steel thermal conductive sheet, and more preferably an aluminum alloy. The thermal conductive sheet. In some implementations of the present invention, an aluminum sheet having a thickness of about 0.15 mm is used as the heat conductive sheet 3. In the present creation, the material and structure of the heat dissipating mechanism 4 are not particularly limited, and M436131 « . Any heat sink mechanism known to the semiconductor industry. For example, the heat dissipating mechanism 4 can be a metal heat conducting mechanism or an alloy heat conducting mechanism, preferably an aluminum heat conducting mechanism, a copper heat conducting mechanism or a stainless steel heat conducting mechanism, and particularly preferably an aluminum heat conducting mechanism; The structure may be a heat sink fin, a heat sink, a heat sink substrate, or a temperature equalization plate. In some implementations of the present invention, an aluminum heat sink fin is used as a heat sink. 4. In addition to the circuit board structure shown in Figure 1, the light-emitting diode thermal conductive substrate structure of the present invention may also adopt other types of circuit boards as needed, for example, other circuit boards with single-layer circuit design, or adopt A circuit board having a multi-layer circuit design (interleaved with a plurality of insulating layers and a plurality of metal circuit layers). However, the side of the circuit board in contact with the thermal conductive sheet 3 must be an insulating layer (non-metal circuit layer) In order to avoid electrical short circuit, Fig. 2 is a schematic view showing another embodiment of the structure of the light-emitting diode thermal conductive substrate of the present invention, wherein the light-emitting diode thermal conductive substrate structure 101 comprises a circuit board 1. The plurality of light-emitting diode elements 2, a heat-conducting sheet 3 and a heat-dissipating mechanism 4 further comprise a solder resist layer 5. The solder resist layer 5 (which can be formed by means of screen printing, yellow light lithography, etc.) The region above the metal circuit layer of the circuit board 1 that does not carry the light-emitting diode element can improve the light utilization and the performance of the dazzling light performance by the reflection effect of the solder resist layer 5. The material of the solder resist layer 5 is not particularly limited, and may be a suitable material known in the art, such as the PSR-4000 manufactured by Taiyo Corporation. The present invention is further illustrated by the following specific embodiments, which are for illustrative purposes only and are not intended to limit the scope of the present invention. [Embodiment] 7 M436131 uses a circuit board composed of an 80 μm thick insulating layer (thermal conductivity of 2 W/meter · temperature difference) and - (4) circuit layer, and carries a plurality of light-emitting layers on the copper (four) road layer The diode element is formed by soldering and then electrically connected to the bottom of the circuit board (on the side of the insulating layer). The thickness of the electrode is 015 mm and is absorbed under the heat sink. A sheet is obtained to obtain a light-emitting diode substrate structure 1. [Comparative Example] The preparation steps of the repeated examples were repeated except that an aluminum heat sink having a thickness of 丨 mm was used to obtain a comparative light-emitting diode heat-conductive substrate structure. <Thermal heat effect test> The power supply is supplied with power to respectively illuminate the light-emitting diode heat-conducting substrate structure [and the light-emitting diode component of 1 and to be stabilized, and then the luminous power P of the light-emitting diode component is measured, and the light-emitting diode is measured. Temperature Ts of the body element end and temperature of the heat sink fin end
Th,以下式(1)計算發光二極體導熱基板結構之熱阻Rth,結果 如表1所示:Th, the following formula (1) calculates the thermal resistance Rth of the structure of the light-emitting diode heat-conductive substrate, and the results are as shown in Table 1:
Rth = (Ts-Th)/P 式(1) 表1 ts (°C) Th (°C) P (瓦) Rth (0C/瓦) 實施例 45.7 41.8 14.73 0.26 Ljt較例 46.5 41.4 14.75 0.35 如表1所示,本創作之發光二極體導熱基板結構(實施例)之 熱阻下降至0.26°C/瓦’較傳統發光二極體導熱基板(比較例)結 構下降達約25%之譜’此可證實本創作之發光二極體導熱基板結 吧冲13,1 構確實具有.較佳之散熱效果。 上述實施·為麻性㈣補作之原似其功效,並闇述本 創作之技㈣徵,而非詩_本創作之保魏^任何孰来本 7作者在不違背本射之技㈣理及精神下,可輕易完成之改變 =排,均屬本創作所主張之_。因此,本創作之權利保護範 圍係如後附申請專利範圍所列。 【圖式簡單說明】 的示意圖;以及 籲0第1®所示為本創作之發光二極體導熱基板結構之-實施態本 實 第2圖所示為根據本創作之發光二極體導熱基板結構之另一 施態樣的不意圖。 【主要元件符號說明】 1 電路板 2 發光二極體元件 3 導熱片 4 散熱機構 5 防焊層 11 絕緣層 12 金屬線路層 100,101 發光二極體導熱基板結構Rth = (Ts-Th) / P Formula (1) Table 1 ts (°C) Th (°C) P (Watts) Rth (0C/Watt) Example 45.7 41.8 14.73 0.26 Ljt Comparative Example 46.5 41.4 14.75 0.35 As shown in Fig. 1, the thermal resistance of the light-emitting diode thermal conductive substrate structure (example) of the present invention is lowered to 0.26 ° C / watt, which is about 25% lower than that of the conventional light-emitting diode thermal conductive substrate (comparative example). This proves that the light-emitting diode of the present invention has a heat-dissipating substrate junction, and the 13, 1 structure does have a better heat dissipation effect. The above-mentioned implementation is the original effect of the hemp (4) supplement, and it implies the skill of the creation (4), not the poem _ the creation of the Wei Wei ^ any 孰来本7 author does not violate the technique of the shot (4) Under the spirit, the changes that can be easily completed = row, are all advocated by this creation. Therefore, the scope of the rights protection of this creation is as listed in the attached patent application. A schematic diagram of a simple description of the drawing; and a structure of a light-emitting diode of a light-emitting diode shown in the first embodiment of the present invention - FIG. 2 is a schematic diagram of a light-emitting diode thermal substrate according to the present invention. Another aspect of the structure is not intended. [Main component symbol description] 1 Circuit board 2 Light-emitting diode component 3 Thermal pad 4 Heat sink mechanism 5 Solder mask 11 Insulation layer 12 Metal circuit layer 100,101 Light-emitting diode heat-conducting substrate structure