TWI839042B - 蝕刻方法 - Google Patents

蝕刻方法 Download PDF

Info

Publication number
TWI839042B
TWI839042B TW111149910A TW111149910A TWI839042B TW I839042 B TWI839042 B TW I839042B TW 111149910 A TW111149910 A TW 111149910A TW 111149910 A TW111149910 A TW 111149910A TW I839042 B TWI839042 B TW I839042B
Authority
TW
Taiwan
Prior art keywords
etching
atoms
molecule
compound
hydrogen
Prior art date
Application number
TW111149910A
Other languages
English (en)
Other versions
TW202336857A (zh
Inventor
鈴木淳
Original Assignee
日商力森諾科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商力森諾科股份有限公司 filed Critical 日商力森諾科股份有限公司
Publication of TW202336857A publication Critical patent/TW202336857A/zh
Application granted granted Critical
Publication of TWI839042B publication Critical patent/TWI839042B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Magnetic Heads (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

提供一種即使係被認為能壓低側蝕率之低溫蝕刻法,仍不易產生顆粒之蝕刻方法。蝕刻方法具備:將具有蝕刻對象物之被蝕刻構件(4)之溫度作成0℃以下,使含有蝕刻化合物之蝕刻氣體與被蝕刻構件(4)接觸而將蝕刻對象物予以蝕刻的蝕刻步驟,該蝕刻對象物含有矽,該蝕刻化合物為分子內具有氟原子、氫原子、及氧原子之中至少1種原子之化合物。蝕刻氣體含有或不含有具有至少1種金屬之金屬雜質,且在含有金屬雜質時,所含有之全部種類之金屬之濃度總和為4000質量ppb以下。

Description

蝕刻方法
本發明關於蝕刻方法。
在製造半導體元件時係藉由電漿蝕刻而在晶圓上形成配線,但邁向配線之微細化,而逐漸變得要求線寬20nm以下之配線。因此,電漿蝕刻中在晶圓上產生、殘留直徑100nm以下之微小顆粒時,會有配線短路,成為其後之蝕刻或沉積步驟等之障礙,導致無法形成配線的憂慮。其結果係由於會在晶圓內產生無法取得如設計般之電特性的區域,故半導體元件之生產性會降低。因此,電漿蝕刻中係以不易產生顆粒為佳。作為不易產生顆粒之電漿蝕刻法,已知有在常溫以上之溫度下進行蝕刻之高溫蝕刻法。
另一方面,對於在製造半導體元件時所使用之電漿蝕刻,則要求低側蝕率(side etch rate)。即,高長寬比之開口部之蝕刻中,不易產生在遮罩正下方之蝕刻對象物層(例如含矽層)之橫方向之蝕刻為佳。高溫蝕刻法雖不易產生顆粒,但難謂側蝕率為足夠低。作為低側蝕率之電漿蝕刻法,已知有在0℃以下之溫度下進行蝕刻的低溫蝕刻法(例如參照專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本國專利公開公報 2019年第153771號
[發明所欲解決之課題]
然而,低溫蝕刻法之側蝕率雖低,但容易產生顆粒。 本發明之課題在於提供一種即使係被認為能壓低側蝕率之低溫蝕刻法,仍不易產生顆粒之蝕刻方法。 [用以解決課題之手段]
為了解決前述課題,本發明之一態樣為如以下之[1]~[12]所述。 [1] 一種蝕刻方法,其具備:將具有蝕刻對象物之被蝕刻構件之溫度作成0℃以下,使蝕刻氣體與前述被蝕刻構件接觸而蝕刻前述蝕刻對象物的蝕刻步驟,其中該蝕刻對象物含有矽,該蝕刻氣體含有蝕刻化合物,該蝕刻化合物為分子內具有氟原子、氫原子、及氧原子之中至少1種原子之化合物, 前述蝕刻氣體含有或不含有具有至少1種金屬之金屬雜質,在含有前述金屬雜質時,所含有之全部種類之前述金屬之濃度總和為4000質量ppb以下。
[2] 如[1]之蝕刻方法,其中所含有之全部種類之前述金屬之濃度總和為10質量ppb以上4000質量ppb以下。 [3] 如[1]或[2]之蝕刻方法,其中前述金屬雜質具有鹼金屬、鹼土類金屬、鉻、錳、鐵、鈷、鎳、銅、鋅、鋁、及錫之中至少1種。 [4] 如[3]之蝕刻方法,其中前述鹼金屬為鋰、鈉、及鉀之中至少1種,前述鹼土類金屬為鎂及鈣之至少1種。
[5] 如[1]~[4]中任一項之蝕刻方法,其中所含有之全部種類之前述金屬之各濃度皆為1質量ppb以上。 [6] 如[1]~[5]中任一項之蝕刻方法,其中前述蝕刻化合物為分子內具有氟原子且分子內不具有氫原子及氧原子之化合物、分子內具有氫原子且分子內不具有氟原子及氧原子之化合物、分子內具有氧原子且分子內不具有氟原子及氫原子之化合物、分子內具有氟原子及氫原子且分子內不具有氧原子之化合物、分子內具有氟原子及氧原子且分子內不具有氫原子之化合物、分子內具有氫原子及氧原子且分子內不具有氟原子之化合物之中至少1種。
[7] 如[6]之蝕刻方法,其中前述分子內具有氟原子且分子內不具有氫原子及氧原子之化合物為六氟化硫、三氟化氮、三氟化氯、七氟化碘、五氟化溴、三氟化磷、三氟碘甲烷、氟氣、碳原子數1以上3以下之鏈狀飽和全氟碳、碳原子數2以上6以下之不飽和全氟碳、碳原子數3以上6以下之環狀全氟碳、及碳原子數1以上3以下之海龍(halon)之中至少1種。 [8] 如[6]之蝕刻方法,其中前述分子內具有氫原子且分子內不具有氟原子及氧原子之化合物為溴甲烷、二溴甲烷、氫氣、硫化氫、氯化氫、溴化氫、氨、碳原子數1以上3以下之烷、碳原子數2以上4以下之烯、及碳原子數3以上6以下之環狀烷之中至少1種。
[9] 如[6]之蝕刻方法,其中前述分子內具有氧原子且分子內不具有氟原子及氫原子之化合物為氧氣、一氧化碳、二氧化碳、硫化羰基、及二氧化硫之中至少1種。 [10] 如[6]之蝕刻方法,其中前述分子內具有氟原子及氫原子且分子內不具有氧原子之化合物為碳原子數1以上4以下之鏈狀飽和氫氟碳、碳原子數2以上6以下之不飽和氫氟碳、碳原子數3以上6以下之環狀氫氟碳、及氟化氫之中至少1種。
[11] 如[6]之蝕刻方法,其中前述分子內具有氟原子及氧原子且分子內不具有氫原子之化合物為氟化羰基、二氟化氧、次氟酸三氟甲酯、碳原子數2以上4以下之全氟醚、及碳原子數3以上5以下之全氟酮之中至少1種。 [12] 如[6]之蝕刻方法,其中前述分子內具有氫原子及氧原子且分子內不具有氟原子之化合物為水、碳原子數1以上3以下之醇、碳原子數2以上4以下之醚、及碳原子數3以上5以下之酮之中至少1種。 [發明效果]
根據本發明,即使係被認為能壓低側蝕率之低溫蝕刻法,仍不易產生顆粒。
以下說明關於本發明之一實施形態。尚且,本實施形態為展示本發明之一例者,本發明並非係受到本實施形態所限定者。又,能對於本實施形態施加各種變更或改良,施加此種變更或改良之形態也係能包括在本發明中。
本實施形態之蝕刻方法具備:將具有蝕刻對象物之被蝕刻構件之溫度作成0℃以下,使含有蝕刻化合物之蝕刻氣體與被蝕刻構件接觸而將蝕刻對象物予以蝕刻的蝕刻步驟,該蝕刻對象物含有矽,該蝕刻化合物為分子內具有氟原子、氫原子、及氧原子之中至少1種原子之化合物。且,蝕刻氣體含有或不含有具有至少1種金屬之金屬雜質,且在含有金屬雜質時,所含有之全部種類之金屬之濃度總和為4000質量ppb以下。
使上述含有蝕刻化合物之蝕刻氣體與被蝕刻構件進行接觸時,由於含有矽之蝕刻對象物與蝕刻氣體中之上述蝕刻化合物進行反應,從而進行蝕刻對象物之蝕刻。相對於此,由於遮罩等之非蝕刻對象物幾乎不會有上述蝕刻化合物進行反應,故幾乎不會進行非蝕刻對象物之蝕刻。因此,根據本實施形態之蝕刻方法,與非蝕刻對象物相比而可選擇性地將蝕刻對象物予以蝕刻(即,可取得高蝕刻選擇性)。
又,本實施形態之蝕刻方法由於係在0℃以下之溫度下進行蝕刻之低溫蝕刻法,故能以低側蝕率來進行蝕刻。並且,根據本實施形態之蝕刻方法,由於蝕刻氣體含有金屬雜質,或即使含有金屬雜質,也仍為極微量,故在蝕刻中不易產生顆粒。 因此,本實施形態之蝕刻方法可利用在半導體元件之製造。例如,若對於具有由矽化合物構成之薄膜之半導體基板適用本實施形態之蝕刻方法,進行由矽化合物構成之薄膜之蝕刻,即可製造半導體元件。本實施形態之蝕刻方法由於不易產生成為收率降低肇因之顆粒,故半導體元件之生產性高。
存在於蝕刻後之被蝕刻構件表面上之顆粒數係可使用市售之裝置進行測量。例如,若使用KLA-Tencor股份有限公司製之Surfscan SP1,則可檢測出直徑50nm以上之顆粒。存在於蝕刻後之被蝕刻構件表面上之顆粒數係以0.5個/cm 2以下為佳,以0.1個/cm 2以下為較佳,以0.05個/cm 2以下為更佳。
尚且,本發明中之蝕刻係意指去除被蝕刻構件所具有之蝕刻對象物之一部分或全部而將被蝕刻構件加工成指定形狀(例如三次元形狀)(例如,將被蝕刻構件所具有之由矽化合物構成之膜狀蝕刻對象物加工成指定膜厚)。又,本發明中之「金屬之濃度」並非係指金屬雜質之濃度,而係金屬雜質所具有之金屬之濃度。並且,本發明中之「金屬之濃度」之「金屬」係包含金屬原子與金屬離子。
以下,更加詳細說明關於本實施形態之蝕刻方法。 [蝕刻方法] 本實施形態之蝕刻方法可使用:使用電漿之電漿蝕刻、不使用電漿之無電漿蝕刻之任一者。作為電漿蝕刻,可舉出例如,反應性離子蝕刻(RIE:Reactive Ion Etching)、感應耦合型電漿(ICP:Inductively Coupled Plasma)蝕刻、電容耦合型電漿(CCP:Capacitively Coupled Plasma)蝕刻、電子迴旋共振(ECR:Electron Cyclotron Resonance)電漿蝕刻、微波電漿蝕刻。 又,電漿蝕刻中,可在設置有被蝕刻構件之腔室內產生電漿,亦可區分成電漿產生室與設置被蝕刻構件之腔室(即,亦可使用遠程電漿)。藉由使用遠程電漿之蝕刻,則有能以更高選擇性來蝕刻含有矽之蝕刻對象物的情況。
[蝕刻化合物] 蝕刻氣體所含有之蝕刻化合物係會與含有矽之蝕刻對象物進行反應,從而使蝕刻對象物之蝕刻進行的化合物。蝕刻化合物之種類只要係分子內具有氟原子、氫原子、及氧原子之中至少1種原子之化合物,即並未受到特別限定者,可舉出例如下述之化合物。 即,作為蝕刻化合物之例,可舉出如:分子內具有氟原子且分子內不具有氫原子及氧原子之化合物、分子內具有氫原子且分子內不具有氟原子及氧原子之化合物、分子內具有氧原子且分子內不具有氟原子及氫原子之化合物、分子內具有氟原子及氫原子且分子內不具有氧原子之化合物、分子內具有氟原子及氧原子且分子內不具有氫原子之化合物、分子內具有氫原子及氧原子且分子內不具有氟原子之化合物、分子內具有氟原子、氫原子、及氧原子之化合物。
作為分子內具有氟原子且分子內不具有氫原子及氧原子之化合物之具體例,可舉出如,六氟化硫(SF 6)、三氟化氮(NF 3)、三氟化氯(ClF 3)、七氟化碘(IF 7)、五氟化溴(BrF 5)、三氟化磷(PF 3)、三氟碘甲烷(CF 3I)、氟氣(F 2)、碳原子數1以上3以下之鏈狀飽和全氟碳、碳原子數2以上6以下之不飽和全氟碳、碳原子數3以上6以下之環狀全氟碳、及碳原子數1以上3以下之海龍。 作為碳原子數1以上3以下之鏈狀飽和全氟碳之具體例,可舉出如,四氟甲烷(CF 4)、六氟乙烷(C 2F 6)、八氟丙烷(C 3F 8)。
作為碳原子數2以上6以下之不飽和全氟碳之具體例,可舉出如,四氟乙烯(C 2F 4)、六氟丙烯(C 3F 6)、八氟-1-丁烯(C 4F 8)、八氟-2-丁烯(C 4F 8)、全氟異丁烯(C 4F 8)、六氟丁二烯(C 4F 6)、六氟-1-丁炔(C 4F 6)、六氟-2-丁炔(C 4F 6)、十氟-1-戊烯(C 5F 10)、十氟-2-戊烯(C 5F 10)、全氟-2-甲基-2-丁烯(C 5F 10)、八氟-1,4-戊二烯(C 5F 8)、八氟-2,3-戊二烯(C 5F 8)、八氟-1,3-戊二烯(C 5F 8)、八氟-2-戊炔(C 5F 8)、五氟-3-三氟甲基-1-丁炔(C 5F 8)、十二氟-1-己烯(C 6F 12)、十二氟-2-己烯(C 6F 12)、十二氟-3-己烯(C 6F 12)、全氟-4-甲基-2-戊烯(C 6F 12)、全氟(2-甲基-2-戊烯)(C 6F 12)、全氟(2,3-二甲基-2-丁烯)(C 6F 12)、十氟-1,5-己二烯(C 6F 10)、十氟-2,4-己二烯(C 6F 10)、十氟-1,3-己二烯(C 6F 10)、十氟-1,4-己二烯(C 6F 10)、十氟-1-己炔(C 6F 10)、十氟-2-己炔(C 6F 10)、十氟-3-己炔(C 6F 10)。
作為碳原子數3以上6以下之環狀全氟碳之具體例,可舉出如,六氟環丙烷(C 3F 6)、八氟環丁烷(C 4F 8)、全氟環丁烯(C 4F 6)、全氟環戊烯(C 5F 8)、全氟環戊烷(C 5F 10)、全氟甲基環丁烷(C 5F 10)、六氟苯(C 6F 6)、全氟環己烷(C 6F 12)、全氟甲基環戊烷(C 6F 12)、全氟-1,2-二甲基環丁烷(C 6F 12)、全氟-2,4-二甲基環丁烷(C 6F 12)、全氟-3,4-二甲基環丁烷(C 6F 12)、全氟-4,4-二甲基環丁烷(C 6F 12)。
作為碳原子數1以上3以下之海龍之具體例,可舉出如,溴三氟甲烷(CBrF 3)、二溴二氟甲烷(CBr 2F 2)、三溴氟甲烷(CBr 3F)、溴五氟乙烷(C 2BrF 5)、二溴四氟乙烷(C 2Br 2F 4)、三溴三氟乙烷(C 2Br 3F 3)、四溴二氟乙烷(C 2Br 4F 2)、五溴氟乙烷(C 2Br 5F)、溴三氟乙烯(C 2BrF 3)、二溴二氟乙烯(C 2Br 2F 2)、三溴氟乙烯(C 2Br 3F)、溴七氟丙烷(C 3BrF 7)、二溴六氟丙烷(C 3Br 2F 6)、三溴五氟丙烷(C 3Br 3F 5)、四溴四氟丙烷(C 3Br 4F 4)、五溴三氟丙烷(C 3Br 5F 3)、六溴二氟丙烷(C 3Br 6F 2)、七溴氟丙烷(C 3Br 7F)、溴五氟丙烯(C 3BrF 5)、二溴四氟丙烯(C 3Br 2F 4)、三溴三氟丙烯(C 3Br 3F 3)、四溴二氟丙烯(C 3Br 4F 2)、五溴氟丙烯(C 3Br 5F)、溴五氟環丙烷(C 3BrF 5)、二溴四氟環丙烷(C 3Br 2F 4)、三溴三氟環丙烷(C 3Br 3F 3)、四溴二氟環丙烷(C 3Br 4F 2)、五溴氟環丙烷(C 3Br 5F)、溴三氟環丙烯(C 3BrF 3)、二溴二氟環丙烯(C 3Br 2F 2)、三溴氟環丙烯(C 3Br 3F)。 尚且,一般而言海龍係意指烴所具有之氫原子之一部分或全部被鹵素原子取代之鹵化烴當中具有溴原子者,但在本發明中則意指烴所具有之氫原子之全部被鹵素原子取代之鹵化烴當中具有溴原子及氟原子者。
作為分子內具有氫原子且分子內不具有氟原子及氧原子之化合物之具體例,可舉出如,溴甲烷(CH 3Br)、二溴甲烷(CH 2Br 2)、氫氣(H 2)、硫化氫(H 2S)、氯化氫(HCl)、溴化氫(HBr)、氨(NH 3)、碳原子數1以上3以下之烷、碳原子數2以上4以下之烯、及碳原子數3以上6以下之環狀烷。 作為碳原子數1以上3以下之烷之具體例,可舉出如,甲烷(CH 4)、乙烷(C 2H 6)、丙烷(C 3H 8)。
作為碳原子數2以上4以下之烯之具體例,可舉出如,乙烯(C 2H 4)、丙烯(C 3H 6)、1-丁烯(C 4H 8)、2-丁烯(C 4H 8)、異丁烯(C 4H 8)。 作為碳原子數3以上6以下之環狀烷之具體例,可舉出如,環丙烷(C 3H 6)、環丁烷(C 4H 8)、環戊烷(C 5H 10)、環己烷(C 6H 12)。 尚且,上述之烷、烯、及環狀烷在本發明中係意指分子內不具有氟原子及氧原子者。
作為分子內具有氧原子且分子內不具有氟原子及氫原子之化合物之具體例,可舉出如,氧氣(O 2)、臭氧(O 3)、一氧化碳(CO)、二氧化碳(CO 2)、硫化羰基(COS)、及二氧化硫(SO 2)。 作為分子內具有氟原子及氫原子且分子內不具有氧原子之化合物之具體例,可舉出如,碳原子數1以上4以下之鏈狀飽和氫氟碳、碳原子數2以上6以下之不飽和氫氟碳、碳原子數3以上6以下之環狀氫氟碳、及氟化氫(HF)。
作為碳原子數1以上4以下之鏈狀飽和氫氟碳之具體例,可舉出如,氟甲烷(CH 3F)、二氟甲烷(CH 2F 2)、三氟甲烷(CHF 3)、氟乙烷(C 2H 5F)、二氟乙烷(C 2H 4F 2)、三氟乙烷(C 2H 3F 3)、四氟乙烷(C 2H 2F 4)、五氟乙烷(C 2HF 5)、氟丙烷(C 3H 7F)、二氟丙烷(C 3H 6F 2)、三氟丙烷(C 3H 5F 3)、四氟丙烷(C 3H 4F 4)、五氟丙烷(C 3H 3F 5)、六氟丙烷(C 3H 2F 6)、七氟丙烷(C 3HF 7)、氟丁烷(C 4H 9F)、二氟丁烷(C 4H 8F 2)、三氟丁烷(C 4H 7F 3)、四氟丁烷(C 4H 6F 4)、五氟丁烷(C 4H 5F 5)、六氟丁烷(C 4H 4F 6)、七氟丁烷(C 4H 3F 7)、八氟丁烷(C 4H 2F 8)、九氟丁烷(C 4HF 9)、氟甲基丙烷(C 4H 9F)、二氟甲基丙烷(C 4H 8F 2)、三氟甲基丙烷(C 4H 7F 3)、四氟甲基丙烷(C 4H 6F 4)、五氟甲基丙烷(C 4H 5F 5)、六氟甲基丙烷(C 4H 4F 6)、七氟甲基丙烷(C 4H 3F 7)、八氟甲基丙烷(C 4H 2F 8)、九氟甲基丙烷(C 4HF 9)。
作為碳原子數2以上6以下之不飽和氫氟碳之具體例,可舉出如,2,3,3,3-四氟丙烯(C 3H 2F 4)、1,3,3,3-四氟丙烯(C 3H 2F 4)、順-1,1,1,4,4,4-六氟-2-丁烯(C 4H 2F 6)、反-1,1,1,4,4,4-六氟-2-丁烯(C 4H 2F 6)。
作為碳原子數3以上6以下之環狀氫氟碳之具體例,可舉出如,氟環丙烷(C 3H 5F)、二氟環丙烷(C 3H 4F 2)、三氟環丙烷(C 3H 3F 3)、四氟環丙烷(C 3H 2F 4)、五氟環丙烷(C 3HF 5)、氟環丁烷(C 4H 7F)、二氟環丁烷(C 4H 6F 2)、三氟環丁烷(C 4H 5F 3)、四氟環丁烷(C 4H 4F 4)、五氟環丁烷(C 4H 3F 5)、六氟環丁烷(C 4H 2F 6)、七氟環丁烷(C 4HF 7)、氟甲基環丙烷(C 4H 7F)、二氟甲基環丙烷(C 4H 6F 2)、三氟甲基環丙烷(C 4H 5F 3)、四氟甲基環丙烷(C 4H 4F 4)、五氟甲基環丙烷(C 4H 3F 5)、六氟甲基環丙烷(C 4H 2F 6)、七氟甲基環丙烷(C 4HF 7)、氟環戊烷(C 5H 9F)、二氟環戊烷(C 5H 8F 2)、三氟環戊烷(C 5H 7F 3)、四氟環戊烷(C 5H 6F 4)、五氟環戊烷(C 5H 5F 5)、六氟環戊烷(C 5H 4F 6)、七氟環戊烷(C 5H 3F 7)、八氟環戊烷(C 5H 2F 8)、九氟環戊烷(C 5HF 9)、氟甲基環丁烷(C 5H 9F)、二氟甲基環丁烷(C 5H 8F 2)、三氟甲基環丁烷(C 5H 7F 3)、四氟甲基環丁烷(C 5H 6F 4)、五氟甲基環丁烷(C 5H 5F 5)、六氟甲基環丁烷(C 5H 4F 6)、七氟甲基環丁烷(C 5H 3F 7)、八氟甲基環丁烷(C 5H 2F 8)、九氟甲基環丁烷(C 5HF 9)、氟二甲基環丙烷(C 5H 9F)、二氟二甲基環丙烷(C 5H 8F 2)、三氟二甲基環丙烷(C 5H 7F 3)、四氟二甲基環丙烷(C 5H 6F 4)、五氟二甲基環丙烷(C 5H 5F 5)、六氟二甲基環丙烷(C 5H 4F 6)、七氟二甲基環丙烷(C 5H 3F 7)、八氟二甲基環丙烷(C 5H 2F 8)、九氟二甲基環丙烷(C 5HF 9)、氟乙基環丙烷(C 5H 9F)、二氟乙基環丙烷(C 5H 8F 2)、三氟乙基環丙烷(C 5H 7F 3)、四氟乙基環丙烷(C 5H 6F 4)、五氟乙基環丙烷(C 5H 5F 5)、六氟乙基環丙烷(C 5H 4F 6)、七氟乙基環丙烷(C 5H 3F 7)、八氟乙基環丙烷(C 5H 2F 8)、九氟乙基環丙烷(C 5HF 9)、氟環己烷(C 6H 11F)、二氟環己烷(C 6H 10F 2)、三氟環己烷(C 6H 9F 3)、四氟環己烷(C 6H 8F 4)、五氟環己烷(C 6H 7F 5)、六氟環己烷(C 6H 6F 6)、七氟環己烷(C 6H 5F 7)、八氟環己烷(C 6H 4F 8)、九氟環己烷(C 6H 3F 9)、十氟環己烷(C 6H 2F 10)、十一氟環己烷(C 6HF 11)。 尚且,本發明中,氫氟碳意指烴所具有之氫原子之一部被氟原子取代之化合物。
作為分子內具有氟原子及氧原子且分子內不具有氫原子之化合物之具體例,可舉出如,氟化羰基(COF 2)、二氟化氧(OF 2)、次氟酸三氟甲酯(CF 3OF)、碳原子數2以上4以下之全氟醚、及碳原子數3以上5以下之全氟酮。 作為碳原子數2以上4以下之全氟醚之具體例,可舉出如,全氟二甲基醚(CF 3OCF 3)、全氟甲基乙基醚(CF 3OC 2F 5)、全氟二乙基醚(C 2F 5OC 2F 5)、全氟甲基丙基醚(CF 3OC 3F 7)。 作為碳原子數3以上5以下之全氟酮之具體例,可舉出如,全氟丙酮(CF 3COCF 3)、全氟丁酮(CF 3COC 2F 5)、全氟戊酮(CF 3COC 3F 7、C 2F 5COC 2F 5)。 尚且,本發明中,全氟醚係意指醚所具有之烴基之氫原子全部被氟原子取代之化合物,全氟酮係意指酮所具有之烴基之氫原子全部被氟原子取代之化合物。
作為分子內具有氫原子及氧原子且分子內不具有氟原子之化合物之具體例,可舉出如,水(H 2O)、碳原子數1以上3以下之醇、碳原子數2以上4以下之醚、及碳原子數3以上5以下之酮。 作為碳原子數1以上3以下之醇之具體例,可舉出如,甲醇(CH 3OH)、乙醇(C 2H 5OH)、丙醇(C 3H 7OH)、異丙醇(C 3H 7OH)。 作為碳原子數2以上4以下之醚之具體例,可舉出如,二甲基醚(CH 3OCH 3)、二乙基醚(C 2H 5OC 2H 5)、甲基乙基醚(CH 3OC 2H 5)、甲基丙基醚(CH 3OC 3H 7)。 作為碳原子數3以上5以下之酮之具體例,可舉出如,丙酮(CH 3COCH 3)、丁酮(CH 3COC 2H 5)、戊酮(CH 3COC 3H 7、C 2H 5COC 2H 5)。
作為分子內具有氟原子、氫原子、及氧原子之化合物之具體例,可舉出如,碳原子數2以上4以下之氫氟醚、碳原子數2以上4以下之氟醇、碳原子數3以上5以下之氫氟酮。 作為碳原子數2以上4以下之氫氟醚之具體例,可舉出如,五氟二甲基醚(CHF 2OCF 3)、四氟二甲基醚(CHF 2OCHF 2、CH 2FOCF 3)、三氟二甲基醚(CH 3OCF 3、CH 2FOCHF 2)、二氟二甲基醚(CH 3OCHF 2、CH 2FOCH 2F)、氟二甲基醚(CH 3OCH 2F)、二氟甲基五氟乙基醚(CHF 2OC 2F 5)、三氟甲基四氟乙基醚(CF 3OC 2HF 4)、氟甲基五氟乙基醚(CH 2FOC 2F 5)、二氟甲基四氟乙基醚(CHF 2OC 2HF 4)、三氟甲基三氟乙基醚(CF 3OC 2H 2F 3)、甲基五氟乙基醚(CH 3OC 2F 5)、氟甲基四氟乙基醚(CH 2FOC 2HF 4)、二氟甲基三氟乙基醚(CHF 2OC 2H 2F 3)、三氟甲基二氟乙基醚(CF 3OC 2H 3F 2)、甲基四氟乙基醚(CH 3OC 2HF 4)、氟甲基三氟乙基醚(CH 2FOC 2H 2F 3)、二氟甲基二氟乙基醚(CHF 2OC 2H 3F 2)、三氟甲基氟乙基醚(CF 3OC 2H 4F)、甲基三氟乙基醚(CH 3OC 2H 2F 3)、氟甲基二氟乙基醚(CH 2FOC 2H 3F 2)、二氟甲基氟乙基醚(CHF 2OC 2H 4F)、三氟甲基乙基醚(CF 3OC 2H 5)、甲基二氟乙基醚(CH 3OC 2H 3F 2)、氟甲基氟乙基醚(CH 2FOC 2H 4F)、二氟乙基醚(CHF 2OC 2H 5)、甲基氟乙基醚(CH 3OC 2H 4F)、氟甲基乙基醚(CH 2FOC 2H 5)、四氟乙基五氟乙基醚(C 2HF 4OC 2F 5)、雙四氟乙基醚(C 2HF 4OC 2HF 4)、五氟乙基三氟乙基醚(C 2F 5OC 2H 2F 3)、五氟乙基二氟乙基醚(C 2F 5OC 2H 3F 2)、四氟乙基三氟乙基醚(C 2HF 4OC 2H 2F 3)、五氟乙基氟乙基醚(C 2F 5OC 2H 4F)、四氟乙基二氟乙基醚(C 2HF 4OC 2H 3F 2)、雙三氟乙基醚(C 2H 2F 3OC 2H 2F 3)、乙基五氟乙基醚(C 2H 5OC 2F 5)、氟乙基四氟乙基醚(C 2H 4FOC 2HF 4)、二氟乙基三氟乙基醚(C 2H 3F 2OC 2H 2F 3)、乙基四氟乙基醚(C 2H 5OC 2HF 4)、氟乙基三氟乙基醚(C 2H 4FOC 2H 2F 3)、雙二氟乙基醚(C 2H 3F 2OC 2H 3F 2)、乙基二氟乙基醚(C 2H 5OC 2H 3F 2)、雙氟乙基醚(C 2H 4FOC 2H 4F)、乙基氟乙基醚(C 2H 5OC 2H 4F)、二氟甲基七氟丙基醚(CHF 2OC 3F 7)、三氟甲基六氟丙基醚(CF 3OC 3HF 6)、氟甲基七氟丙基醚(CH 2FOC 3F 7)、二氟甲基六氟丙基醚(CHF 2OC 3HF 6)、三氟甲基五氟丙基醚(CF 3OC 3H 2F 5)、甲基七氟丙基醚(CH 3OC 3F 7)、氟甲基六氟丙基醚(CH 2FOC 3HF 6)、二氟甲基五氟丙基醚(CHF 2OC 3H 2F 5)、三氟甲基四氟丙基醚(CF 3OC 3H 3F 4)、甲基六氟丙基醚(CH 3OC 3HF 6)、氟甲基五氟丙基醚(CH 2FOC 3H 2F 5)、二氟甲基四氟丙基醚(CHF 2OC 3H 3F 4)、三氟甲基三氟丙基醚(CF 3OC 3H 4F 3)、甲基五氟丙基醚(CH 3OC 3H 2F 5)、氟甲基四氟丙基醚(CH 2FOC 3H 3F 4)、二氟甲基三氟丙基醚(CHF 2OC 3H 4F 3)、三氟甲基二氟丙基醚(CF 3OC 3H 5F 2)、甲基四氟丙基醚(CH 3OC 3H 3F 4)、氟甲基三氟丙基醚(CH 2FOC 3H 4F 3)、二氟甲基二氟丙基醚(CHF 2OC 3H 5F 2)、三氟甲基氟丙基醚(CF 3OC 3H 6F)、甲基三氟丙基醚(CH 3OC 3H 4F 3)、氟甲基二氟丙基醚(CH 2FOC 3H 2F 5)、二氟甲基氟丙基醚(CHF 2OC 3H 6F)、三氟甲基丙基醚(CF 3OC 3H 7)、甲基二氟丙基醚(CH 3OC 3H 5F 2)、氟甲基氟丙基醚(CH 2FOC 3H 6F)、二氟甲基丙基醚(CHF 2OC 3H 7)、甲基氟丙基醚(CH 3OC 3H 6F)、氟甲基丙基醚(CH 2FOC 3H 7)。
作為碳原子數2以上4以下之氟醇之具體例,可舉出如,三氟乙醇(CF 3CH 2OH)、六氟-2-丙醇(CF 3CH(OH)CF 3)、五氟丙醇(C 2F 5CH 2OH)、五氟-2-丙醇(CF 3CH(OH)CHF 2)、四氟丙醇(C 2HF 4CH 2OH)、四氟-2-丙醇(CF 3CH(OH)CH 2F、CHF 2CH(OH)CHF 2)、三氟丙醇(C 2H 2F 3CH 2OH)、三氟-2-丙醇(CF 3CH(OH)CH 3、CHF 2CH(OH)CH 2F)、二氟丙醇(C 2H 3F 2CH 2OH)、二氟-2-丙醇(CHF 2CH(OH)CH 3、CH 2FCH(OH)CH 2F)、氟丙醇(C 2H 4FCH 2OH)、氟-2-丙醇(CH 2FCH(OH)CH 3)、全氟-t-丁醇(CF 3C(CF 3)(OH)CF 3)。
作為碳原子數3以上5以下之氫氟酮之具體例,可舉出如,五氟丙酮(CF 3COCHF 2)、四氟丙酮(CF 3COCH 2F、CHF 2COCHF 2)、三氟丙酮(CF 3COCH 3、CHF 2COCH 2F)、二氟丙酮(CHF 2COCH 3、CH 2FCOCH 2F)、七氟丁酮(C 2F 5COCHF 2、C 2HF 4COCF 3)、六氟丁酮(C 2F 5COCH 2F、C 2HF 4COCHF 2、C 2H 2F 3COCH 3)、五氟丁酮(C 2F 5COCH 3、C 2HF 4COCH 2F、C 2H 2F 3COCHF 2、C 2H 3F 2COCF 3)、四氟丁酮(C 2HF 4COCH 3、C 2H 2F 3COCH 2F、C 2H 3F 2COCHF 2、C 2H 4FCOCF 3)、三氟丁酮(C 2H 2F 3COCH 3、C 2H 3F 2COCH 2F、C 2H 4FCOCHF 2、C 2H 5COCF 3)、二氟丁酮(C 2H 3F 2COCH 3、C 2H 4FCOCH 2F、C 2H 5COCHF 2)、氟丁酮(C 2H 4FCOCH 3、C 2H 5COCH 2F)、九氟-3-戊酮(C 2F 5COC 2HF 4)、八氟-3-戊酮(C 2F 5COC 2H 2F 3、C 2HF 4COC 2HF 4)、七氟-3-戊酮(C 2F 5COC 2H 3F 2、C 2HF 4COC 2H 2F 3)、六氟-3-戊酮(C 2F 5COC 2H 4F、C 2HF 4COC 2H 3F 2、C 2H 2F 3COC 2H 2F 3)、五氟-3-戊酮(C 2F 5COC 2H 5、C 2HF 4COC 2H 4F、C 2H 2F 3COC 2H 3F 2)、四氟-3-戊酮(C 2HF 4COC 2H 5、C 2H 2F 3COC 2H 4F、C 2H 3F 2COC 2H 3F 2)、三氟-3-戊酮(C 2H 2F 3COC 2H 5、C 2H 3F 2COC 2H 4F)、二氟-3-戊酮(C 2H 3F 2COC 2H 5、C 2H 4FCOC 2H 4F)、氟-3-戊酮(C 2H 4FCOC 2H 5)、九氟-2-戊酮(CHF 2COC 3F 7、CF 3COC 3HF 6)、八氟-2-戊酮(CH 2FCOC 3F 7、CHF 2COC 3HF 6、CF 3COC 3H 2F 5)、七氟-2-戊酮(CH 3COC 3F 7、CH 2FCOC 3HF 6、CHF 2COC 3H 2F 5、CF 3COC 3H 3F 4)、六氟-2-戊酮(CH 3COC 3HF 6、CH 2FCOC 3H 2F 5、CHF 2COC 3H 3F 4、CF 3COC 3H 4F 3)、五氟-2-戊酮(CH 3COC 3H 2F 5、CH 2FCOC 3H 3F 4、CHF 2COC 3H 4F 3、CF 3COC 3H 5F 2)、四氟-2-戊酮(CH 3COC 3H 3F 4、CH 2FCOC 3H 4F 3、CHF 2COC 3H 5F 2、CF 3COC 3H 6F)、三氟-2-戊酮(CH 3COC 3H 4F 3、CH 2FCOC 3H 5F 2、CHF 2COC 3H 6F、CF 3COC 3H 7)、二氟-2-戊酮(CH 3COC 3H 5F 2、CH 2FCOC 3H 6F、CHF 2COC 3H 7)、氟-2-戊酮(CH 3COC 3H 6F、CH 2FCOC 3H 7)。 該等蝕刻化合物係可單獨使用1種,亦可組合使用2種以上。
[蝕刻氣體] 蝕刻氣體為含有上述蝕刻化合物之氣體。蝕刻氣體可為僅由上述蝕刻化合物所構成之氣體,也可為含有上述蝕刻化合物與稀釋氣體之混合氣體。又,亦可為含有上述蝕刻化合物與稀釋氣體與添加氣體之混合氣體。 作為稀釋氣體,可使用選自氮氣(N 2)、氦(He)、氖(Ne)、氬(Ar)、氪(Kr)、及氙(Xe)之至少1種。
相對於蝕刻氣體之總量,稀釋氣體之含量係以90體積%以下為佳,以50體積%以下為較佳。又,相對於蝕刻氣體之總量,稀釋氣體之含量係以10體積%以上為佳。 從提升蝕刻速度之觀點,相對於蝕刻氣體之總量,蝕刻氣體中之蝕刻化合物之含量係以5體積%以上為佳,以10體積%以上為更佳。又,從抑制蝕刻化合物之使用量之觀點,相對於蝕刻氣體之總量,以90體積%以下為佳,以80體積%以下為更佳。
蝕刻氣體係藉由混合構成蝕刻氣體之複數成分(蝕刻化合物、稀釋氣體等)而取得,且複數成分之混合係也皆可在腔室內外進行。即,可各自獨立地將構成蝕刻氣體之複數成分導入至腔室內,而在腔室內進行混合,亦可混合構成蝕刻氣體之複數成分而取得蝕刻氣體,且將取得之蝕刻氣體導入至腔室內。
[金屬雜質] 蝕刻氣體含有或不含有:具有至少1種金屬之金屬雜質。在含有金屬雜質時,蝕刻氣體所含有之全部種類之金屬之濃度總和由於為4000質量ppb以下之低濃度,故如前述般在蝕刻中不易產生顆粒。所含有之全部種類之金屬之濃度總和係以1000質量ppb以下為佳,以100質量ppb以下為較佳。 在蝕刻中若產生水時,水會在成為0℃以下之被蝕刻構件表面進行凝聚。在將分子內具有氟原子之化合物使用作為蝕刻化合物之情況,蝕刻中產生之氟化氫自由基若與被蝕刻構件表面之水進行接觸時,則由於會產生氫氟酸,故會促進利用化學反應之蝕刻而蝕刻速度提升。
然而,蝕刻氣體中若含有金屬雜質,則由於金屬雜質與氫氟酸之反應而生成之金屬氟化物會成為肇因,進而會有導致顆粒生成的憂慮。又,由於金屬氟化物為化學性安定且為低揮發性,故難以使用乾式製程來去除。故,可能會成為其後之蝕刻或沉積步驟等之障礙。因此,蝕刻氣體中所含有之金屬雜質之量係以較少為佳,蝕刻氣體所含有之全部種類之金屬之濃度總和則有必要在4000質量ppb以下。
尚且,蝕刻氣體所含有之全部種類之金屬之濃度總和亦可為10質量ppb以上。又,蝕刻氣體所含有之全部種類之金屬之各濃度也可皆在1質量ppb以上。 蝕刻氣體中之金屬之濃度係能以感應耦合電漿質量分析計(ICP-MS)進行定量。在此,不含有金屬雜質係意指無法以感應耦合電漿質量分析計進行定量的情況。
作為金屬雜質所具有之金屬,可舉出如,鹼金屬、鹼土類金屬,或屬於周期表第3~14族之金屬(例如過渡金屬)。 作為鹼金屬之例,可舉出如,鋰(Li)、鈉(Na)、鉀(K)、銣(Rb)、銫(Cs)、鍅(Fr),作為鹼土類金屬之例,可舉出如,鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)、鐳(Ra)。 作為屬於周期表第3~14族之金屬之例,可舉出如,鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋁(Al)、及錫(Sn)。 金屬雜質所具有之金屬可為該等金屬之中之1種,亦可為2種以上。
上述金屬雜質會有作為金屬單質、金屬化合物、金屬鹵化物、金屬錯合物而被含有蝕刻氣體中的情況。作為蝕刻氣體中之金屬雜質之形態,可舉出如,微粒子、液滴、氣體等。尚且,認為上述之金屬雜質係來自在合成上述蝕刻化合物時所使用之原料、反應器、純化裝置、填充容器等而混入於蝕刻氣體者。
作為從上述蝕刻化合物去除上述金屬雜質之方法,例如有,使上述蝕刻化合物通過過濾器的方法、與吸附劑接觸的方法、以蒸餾進行分離的方法等。且,具體而言,例如,將上述蝕刻化合物封入於不鏽鋼製缸體中,在保持於缸體內壓下之蝕刻化合物之沸點以下的狀態下,例如若為四氟甲烷之情況,可在些許高於1氣壓之缸體內壓下保持於-125℃之狀態下,藉由後述實施例記載之方法等來釋出氣相部,而取得金屬濃度經降低之蝕刻氣體。以藉由此種去除金屬雜質之步驟,而將蝕刻氣體所含有之金屬之濃度總和作成4000質量ppb以下後,將蝕刻氣體供給至蝕刻為佳。
[蝕刻步驟之溫度條件] 由於本實施形態之蝕刻方法為低溫蝕刻法,故係將被蝕刻構件之溫度作成0℃以下來進行蝕刻,以將被蝕刻構件之溫度作成-20℃以下為佳,以作成-40℃以下為較佳。若將被蝕刻構件之溫度作成上述範圍內來進行蝕刻,則能在更低側蝕率下進行蝕刻。 在此,溫度條件之溫度係指被蝕刻構件之溫度,但也使用設置於蝕刻裝置腔室內之支撐被蝕刻構件之載台的溫度。 關於進行蝕刻時所產生之電漿與被蝕刻構件之間之構成電位差之偏功率,根據所欲之蝕刻形狀而選自0~10000W即可,在進行選擇性蝕刻時則以0~1000W程度為佳。
[蝕刻步驟之壓力條件] 本實施形態之蝕刻方法中之蝕刻步驟之壓力條件並非係受到特別限定者,以作成10Pa以下為佳,以作成5Pa以下為較佳。壓力條件若在上述範圍內,則容易使電漿安定地產生。另一方面,蝕刻步驟之壓力條件係以0.05Pa以上為佳。壓力條件若在上述範圍內,則產生諸多電離離子而容易取得充足之電漿密度。 蝕刻氣體之流量係因應腔室之容積或將腔室內予以減壓之排氣設備之能力,以腔室內之壓力會保持固定之方式來適宜設定即可。
[被蝕刻構件] 藉由本實施形態之蝕刻方法來進行蝕刻之被蝕刻構件係具有蝕刻對象之蝕刻對象物,且亦可更具有非蝕刻對象之非蝕刻對象物。 在被蝕刻構件具有蝕刻對象物與非蝕刻對象物之情況,被蝕刻構件可為具有以蝕刻對象物所形成之部分與以非蝕刻對象物所形成之部分的構件,也可為以蝕刻對象物與非蝕刻對象物之混合物所形成的構件。又,被蝕刻構件亦可具有蝕刻對象物、非蝕刻對象物以外者。 又,被蝕刻構件之形狀並非係受到特別限定者,例如,也可為板狀、箔狀、膜狀、粉末狀、塊狀。作為被蝕刻構件之例,可舉出如,前述之半導體基板。
[蝕刻對象物] 蝕刻對象物可為僅以含有矽之材料所形成者,可為具有僅以含有矽之材料所形成之部分與以其他材質所形成之部分者,也可為以含有矽之材料與其他材質之混合物所形成者。作為含有矽之材料,可舉出例如,氧化矽、氮化矽、聚矽、矽鍺(SiGe)。該等含有矽之材料係可單獨使用1種,亦可組合使用2種以上。
作為氧化矽之例,可舉出如二氧化矽(SiO 2)。又,氮化矽係指以任意比例具有矽及氮之化合物,可舉出如Si 3N 4為例。氮化矽之純度並無特別限定,以30質量%以上為佳,較佳為60質量%以上,更佳為90質量%以上。 又,蝕刻對象物之形狀並非係受到特別限定者,例如,可為板狀、箔狀、膜狀、粉末狀、塊狀。並且,蝕刻對象物上可形成也可不形成圖型或孔等之形狀。
[非蝕刻對象物] 非蝕刻對象物由於係實質上不與上述蝕刻化合物反應,或,與上述蝕刻化合物之反應為極慢,故即使藉由本實施形態之蝕刻方法來進行蝕刻,蝕刻仍幾乎不會進行者。非蝕刻對象物只要係具有如上述般之性質,即並非係受到特別限定者,可舉出例如,光阻、非晶碳、氮化鈦,或銅、鎳、鈷等之金屬,或該等金屬之氧化物、氮化物。該等之中,從操作性及取得容易性之觀點,以光阻、非晶碳為較佳。
又,非蝕刻對象物係可使用作為抑制利用蝕刻氣體之蝕刻對象物之蝕刻用之阻劑或遮罩。故,本實施形態之蝕刻方法由於能利用在將經圖型化之非蝕刻對象物利用作為阻劑或遮罩,而將蝕刻對象物加工成指定形狀(例如,將被蝕刻構件所具有之膜狀蝕刻對象物加工成指定膜厚)等之方法,故能適宜使用於半導體元件之製造。又,由於非蝕刻對象物幾乎不會受到蝕刻,故可抑制半導體元件中本應不被蝕刻之部分受到蝕刻,且可防止因蝕刻而喪失半導體元件之特性。
其次,參照圖1並同時說明能實施本實施形態之蝕刻方法之蝕刻裝置之構成之一例,與使用該蝕刻裝置之蝕刻方法之一例。圖1之蝕刻裝置為使用電漿來進行蝕刻之電漿蝕刻裝置。首先,說明關於圖1之蝕刻裝置。 圖1之蝕刻裝置具備:在內部進行蝕刻之腔室3、在腔室3之內部生成電漿之電漿產生裝置(未圖示)、在腔室3之內部將進行蝕刻之被蝕刻構件4予以支撐之載台5、隔著載台5而使被蝕刻構件4冷卻之冷卻部6、測量被蝕刻構件4之溫度之溫度計(未圖示)、將腔室3之內部予以減壓之真空泵8,及測量腔室3之內部壓力之壓力計7。
電漿產生裝置之電漿生成機構之種類並非係受到特別限定者,可為對平行板施加高頻電壓者,也可為對線圈流通高頻電流者。在電漿中若對被蝕刻構件4施加高頻電壓,則由於會對被蝕刻構件4附加負電壓,正離子會高速且垂直地入射至被蝕刻構件4,故變得能異向性蝕刻。圖1之蝕刻裝置中,載台5與電漿產生裝置之高頻電源受到連接,而變得能對載台5施加高頻電壓。
又,圖1之蝕刻裝置具備對腔室3之內部供給蝕刻氣體之蝕刻氣體供給部。該蝕刻氣體供給部具有:供給蝕刻化合物氣體之蝕刻化合物氣體供給部1、供給稀釋氣體之稀釋氣體供給部2、連接蝕刻化合物氣體供給部1與腔室3之配管、及連接稀釋氣體供給部2與腔室3之配管。尚且,可在與稀釋氣體供給部2相同之形態下,一併設置供給添加氣體之設備(未圖示)。又,被供給至腔室3內之蝕刻氣體等之氣體係經由未圖示之排氣用配管而能排出至腔室3外。
且,在使用蝕刻化合物氣體作為蝕刻氣體之情況,藉由使用真空泵8將腔室3內部減壓後,從蝕刻化合物氣體供給部1送出蝕刻化合物氣體,經由配管而將蝕刻化合物氣體供給至腔室3即可。 又,在使用蝕刻化合物氣體與惰性氣體等之稀釋氣體之混合氣體作為蝕刻氣體之情況,藉由使用真空泵8將腔室3內部減壓後,從蝕刻化合物氣體供給部1送出蝕刻化合物氣體,並一同從稀釋氣體供給部2送出稀釋氣體即可。藉此,在腔室3內蝕刻化合物氣體與稀釋氣體受到混合而成為蝕刻氣體。
本實施形態之蝕刻方法係可使用如圖1之蝕刻裝置般之在半導體元件製造步驟中所使用之一般性電漿蝕刻裝置,且能使用之蝕刻裝置之構成並無特別限定。 例如,腔室3之溫度調節機構之構成由於係只要能將被蝕刻構件4之溫度調節成任意溫度即可,故可為如圖1之蝕刻裝置般使用裝在外部之冷卻部6從腔室3之外側來冷卻載台5之構成,也可為在載台5上直接具備冷卻載台5之冷卻部的構成。 [實施例]
以下展示實施例及比較例來更加具體說明本發明。調製出以各種濃度來含有金屬雜質之蝕刻化合物之氣體。以下說明蝕刻化合物之氣體之調製例。
(調製例1) 準備3個錳鋼製之容量1L缸體(能密閉之圓筒型容器)。依序將該等缸體稱為缸體A、缸體B、缸體C。對缸體A填充四氟甲烷(常壓下之沸點:-128℃)300g,藉由冷卻至-125℃而使其液化,在幾乎100kPa之狀態下形成液相部與氣相部。缸體B、C係使用真空泵將內部減壓成1kPa以下後冷卻至-196℃。 從缸體A之存在氣相部之上側出口取出四氟甲烷之氣體200g,並移送至減壓狀態之缸體B。將殘留於缸體A之四氟甲烷100g作為試樣1-1。其後,從上側出口取出殘留於缸體A之四氟甲烷之氣體,並藉由如以下之方法使用感應耦合電漿質量分析計來測量各種金屬之濃度。
即,以20℃使缸體A內之液相四氟甲烷進行氣化,並同時從該氣相部取出四氟甲烷氣體,以100mL/min之流量來流通至濃度1mol/L之硝酸水溶液100g,使其接觸(起泡)而吸收金屬雜質。流通四氟甲烷氣體後之濃度1mol/L之硝酸水溶液之質量為80g(M1)。又,四氟甲烷氣體之流通前後之缸體A之質量差為50g(M2)。 採取濃度1mol/L之硝酸水溶液10g(M3),使用容量瓶以超純水稀釋成100mL(V)。使用感應耦合電漿質量分析計來測量藉此操作所調製之水溶液中之各種金屬之濃度,藉由該測量值(c1)與下述式來算出四氟甲烷中之金屬濃度(C)。將結果展示於表1。
其次,使缸體B之溫度升溫至-125℃而形成液相部與氣相部,從缸體B之存在氣相部之上側出口取出四氟甲烷之氣體100g,並移送至減壓狀態之缸體C。將殘留於缸體B之四氟甲烷100g作為試樣1-2。其後,從上側出口取出殘留於缸體B之四氟甲烷之氣體,並使用感應耦合電漿質量分析計來測量各種金屬之濃度。將結果展示於表1。 又,將缸體C內之四氟甲烷100g作為試樣1-3。從缸體C之存在氣相部之上側出口取出四氟甲烷之氣體,使用感應耦合電漿質量分析計來測量各種金屬之濃度。將結果展示於表1。
(調製例2) 除了將甲烷(常壓下之沸點:-162℃)使用作為蝕刻化合物之點,與將液化溫度作成-153℃之點以外,其他係與進行與調製例1相同之操作,而調製出試樣2-1、2-2、2-3。且,與前述之調製例1之情況同樣地操作,使用感應耦合電漿質量分析計來測量個別試樣之各種金屬之濃度。將結果展示於表2。
(調製例3) 除了使用氧氣(常壓下之沸點:-183℃)作為蝕刻化合物之點,與將液化溫度作成-153℃之點以外,其他係與進行與調製例1相同之操作,而調製出試樣3-1、3-2、3-3。且,與前述之調製例1之情況同樣地操作,使用感應耦合電漿質量分析計來測量個別試樣之各種金屬之濃度。將結果展示於表3。
(調製例4) 除了使用二氟甲烷(常壓下之沸點:-52℃)作為蝕刻化合物之點,與將液化溫度作成-50℃之點以外,其他係與進行與調製例1相同之操作,而調製出試樣4-1、4-2、4-3。且,與前述之調製例1之情況同樣地操作,使用感應耦合電漿質量分析計來測量個別試樣之各種金屬之濃度。將結果展示於表4。
(調製例5) 除了使用氟化羰基(常壓下之沸點:-85℃)作為蝕刻化合物之點,與將液化溫度作成-78℃之點以外,其他係與進行與調製例1相同之操作,而調製出試樣5-1、5-2、5-3。且,與前述之調製例1之情況同樣地操作,使用感應耦合電漿質量分析計來測量個別試樣之各種金屬之濃度。將結果展示於表5。
(調製例6) 除了使用二甲基醚(常壓下之沸點:-24℃)作為蝕刻化合物之點,與將液化溫度作成-20℃之點以外,其他係與進行與調製例1相同之操作,而調製出試樣6-1、6-2、6-3。且,與前述之調製例1之情況同樣地操作,使用感應耦合電漿質量分析計來測量個別試樣之各種金屬之濃度。將結果展示於表6。
(實施例1) 在半導體晶圓之表面上,不以層合之方式,而係以分別露出於表面之方式來形成厚度1000nm之矽氧化膜,與厚度1000nm之矽氮化膜,並將此做為試驗體。且,使用蝕刻氣體進行試驗體之蝕刻。 使用SAMCO股份有限公司製之ICP蝕刻裝置RIE-230iP作為蝕刻裝置。具體而言,將試樣1-3之四氟甲烷以流量10mL/min,將試樣2-3之甲烷以流量5mL/min,將試樣3-3之氧氣以流量5mL/min,將氬以流量30mL/min,來個別獨立地導入至腔室內,在腔室內進行混合而調製出蝕刻氣體。且,取出腔室內之蝕刻氣體之一部分,使用感應耦合電漿質量分析計來測量蝕刻氣體之各種金屬之濃度。將結果展示於表7。
其次,以500W來施加高頻電壓,而在腔室內使蝕刻氣體電漿化。且,在壓力3Pa、試驗體之溫度-50℃、偏功率100W之蝕刻條件下,進行腔室內之試驗體之蝕刻。 蝕刻結束後,將試驗體之溫度作成20℃,並一同將氬以流量30mL/min來導入至腔室內來沖洗試驗體之表面。其後,從腔室內取出試驗體,分別測量存在於矽氧化膜及矽氮化膜表面上之顆粒數。顆粒數之測量係使用KLA-Tencor股份有限公司製之Surfscan SP1來進行。將結果展示於表7。如表7所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例2) 除了取代試樣1-3之四氟甲烷而改用試樣1-2之四氟甲烷之點以外,其他係進行與實施例1相同之操作來進行試驗體之蝕刻。將金屬濃度之測量結果與顆粒數之測量結果結果展示於表7。如表7所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(比較例1) 除了取代試樣1-3之四氟甲烷而改用試樣1-1之四氟甲烷之點以外,其他係進行與實施例1相同之操作來進行試驗體之蝕刻。將金屬濃度之測量結果與顆粒數之測量結果展示於表7。如表7所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(實施例3) 除了將試樣2-3之甲烷以流量10mL/min,將試樣1-3之四氟甲烷以流量5mL/min,將試樣3-3之氧氣以流量5mL/min,將氬以流量30mL/min,來個別獨立地導入至腔室內,且在腔室內進行混合而調製出蝕刻氣體之點以外,其他係進行與實施例1相同之操作來進行試驗體之蝕刻。 蝕刻結束後,將試驗體之溫度作成20℃,並一同將氬以流量30mL/min導入至腔室內,並沖洗試驗體之表面。沖洗結束後,從腔室內取出試驗體,與實施例1同樣地操作來測量顆粒數。將金屬濃度之測量結果與顆粒數之測量結果展示於表8。 如表8所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例4) 除了取代試樣2-3之甲烷而改用試樣2-2之甲烷之點以外,其他係進行與實施例3相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表8。如表8所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(比較例2) 除了取代試樣2-3之甲烷而改用試樣2-1之甲烷之點以外,其他係進行與實施例3相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表8。如表8所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(實施例5) 除了將試樣3-3之氧氣以流量10mL/min,將試樣4-3之二氟甲烷以流量10mL/min,將氬以流量30mL/min,來個別獨立地導入至腔室內,在腔室內進行混合而調製出蝕刻氣體之點以外,其他係進行與實施例3相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表9。如表9所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例6) 除了取代試樣3-3之氧氣而改用試樣3-2之氧氣之點以外,其他係進行與實施例5相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表9。如表9所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例7) 除了取代試樣4-3之二氟甲烷而改用試樣4-2之二氟甲烷之點以外,其他係進行與實施例5相同之操作來進行試驗體之蝕刻及沖洗。將金屬之濃度之測量結果與顆粒數之測量結果展示於表9。如表9所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(比較例3) 除了取代試樣3-3之氧氣而改用試樣3-1之氧氣之點以外,其他係進行與實施例5相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表9。如表9所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(比較例4) 除了取代試樣4-3之二氟甲烷而改用試樣4-1之二氟甲烷之點以外,其他係進行與實施例5相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表9。如表9所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(實施例8) 除了將試樣5-3之氟化羰基以流量10mL/min,將試樣2-3之甲烷以流量10mL/min,將氬以流量30mL/min,來個別獨立地導入至腔室內,在腔室內進行混合而調製出蝕刻氣體之點以外,其他係進行與實施例3相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表10。如表10所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例9) 除了取代試樣5-3之氟化羰基而改用試樣5-2之氟化羰基之點以外,其他係進行與實施例8相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表10。如表10所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(比較例5) 除了取代試樣5-3之氟化羰基而改用試樣5-1之氟化羰基之點以外,其他係進行與實施例8相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表10。如表10所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(實施例10) 除了將試樣6-3之二甲基醚以流量10mL/min,將試樣1-3之四氟甲烷以流量10mL/min,將氬以流量30mL/min,來個別獨立地導入至腔室內,在腔室內進行混合而調製出蝕刻氣體之點以外,其他係進行與實施例3相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表11。如表11所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(實施例11) 除了取代試樣6-3之二甲基醚而改用試樣6-2之二甲基之點以外,其他係進行與實施例10相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表11。如表11所示般,由於顆粒數為0.1個/cm 2以下,故得知因蝕刻所產生之顆粒受到抑制。
(比較例6) 除了取代試樣6-3之二甲基醚而改用試樣6-1之二甲基醚之點以外,其他係進行與實施例10相同之操作來進行試驗體之蝕刻及沖洗。將金屬濃度之測量結果與顆粒數之測量結果展示於表11。如表11所示般,由於顆粒數超過0.5個/cm 2,故得知因蝕刻所產生之顆粒並未受到抑制。
(實施例12) 除了將試驗體之溫度作成-5℃之點以外,其他係進行與實施例1相同之操作來進行試驗體之蝕刻。存在於矽氧化膜表面上之顆粒數為0.04個/cm 2,存在於矽氮化膜表面上之顆粒數為0.03個/cm 2,故因蝕刻產生之顆粒受到抑制。
(比較例7) 除了將試驗體之溫度作成-5℃之點以外,其他係進行與比較例1相同之操作來進行試驗體之蝕刻。存在於矽氧化膜表面上之顆粒數為1.4個/cm 2,存在於矽氮化膜表面上之顆粒數為1.1個/cm 2,故因蝕刻產生之顆粒並未受到抑制。
(參考例1) 除了將試驗體之溫度作成25℃之點以外,其他係進行與實施例1相同之操作來進行試驗體之蝕刻。存在於矽氧化膜表面上之顆粒數為0.02個/cm 2,存在於矽氮化膜表面上之顆粒數為0.03個/cm 2,故因蝕刻產生之顆粒受到抑制。
(參考例2) 除了將試驗體之溫度作成25℃之點以外,其他係進行與比較例1相同之操作來進行試驗體之蝕刻。存在於矽氧化膜表面上之顆粒數為0.07個/cm 2,存在於矽氮化膜表面上之顆粒數為0.05個/cm 2,故因蝕刻產生之顆粒受到抑制。
1:蝕刻化合物氣體供給部 2:稀釋氣體供給部 3:腔室 4:被蝕刻構件 5:載台 6:冷卻部 7:壓力計 8:真空泵
[圖1]說明本發明之蝕刻方法之一實施形態之蝕刻裝置之一例之示意圖。
1:蝕刻化合物氣體供給部
2:稀釋氣體供給部
3:腔室
4:被蝕刻構件
5:載台
6:冷卻部
7:壓力計
8:真空泵

Claims (10)

  1. 一種蝕刻方法,其具備:將具有蝕刻對象物之被蝕刻構件之溫度作成0℃以下,使蝕刻氣體與前述被蝕刻構件接觸而蝕刻前述蝕刻對象物的蝕刻步驟,其中該蝕刻對象物含有矽,該蝕刻氣體含有蝕刻化合物,該蝕刻化合物為分子內具有氟原子、氫原子、及氧原子之中至少1種原子之化合物,前述蝕刻化合物為分子內具有氟原子且分子內不具有氫原子及氧原子之化合物、分子內具有氫原子且分子內不具有氟原子及氧原子之化合物、分子內具有氧原子且分子內不具有氟原子及氫原子之化合物、分子內具有氟原子及氫原子且分子內不具有氧原子之化合物、分子內具有氟原子及氧原子且分子內不具有氫原子之化合物、及分子內具有氫原子及氧原子且分子內不具有氟原子之化合物之中至少1種,前述分子內具有氟原子且分子內不具有氫原子及氧原子之化合物為三氟化氮、三氟化氯、七氟化碘、五氟化溴、三氟化磷、三氟碘甲烷、氟氣、碳原子數1以上3以下之鏈狀飽和全氟碳、碳原子數2以上6以下之不飽和全氟碳、碳原子數3以上6以下之環狀全氟碳、及碳原子數1以上3以下之海龍(halon)之中至少1種,前述蝕刻氣體含有或不含有具有至少1種金屬之金屬雜質,在含有前述金屬雜質時,所含有之全部種類之前述金屬之濃度總和為4000質量ppb以下。
  2. 如請求項1之蝕刻方法,其中前述分子內具有氫原子且分子內不具有氟原子及氧原子之化合物為溴甲烷、二溴甲烷、氫氣、硫化氫、氯化氫、溴化氫、氨、碳原子數1以上3以下之烷、碳原子數2以上4以下之烯、及碳原子數3以上6以下之環狀烷之中至少1種。
  3. 如請求項1之蝕刻方法,其中前述分子內具有氧原子且分子內不具有氟原子及氫原子之化合物為氧氣、一氧化碳、二氧化碳、硫化羰基、及二氧化硫之中至少1種。
  4. 如請求項1之蝕刻方法,其中前述分子內具有氟原子及氫原子且分子內不具有氧原子之化合物為碳原子數1以上4以下之鏈狀飽和氫氟碳、碳原子數2以上6以下之不飽和氫氟碳、碳原子數3以上6以下之環狀氫氟碳、及氟化氫之中至少1種。
  5. 如請求項1之蝕刻方法,其中前述分子內具有氟原子及氧原子且分子內不具有氫原子之化合物為氟化羰基、二氟化氧、次氟酸三氟甲酯、碳原子數2以上4以下之全氟醚、及碳原子數3以上5以下之全氟酮之中至少1種。
  6. 如請求項1之蝕刻方法,其中前述分子內具有氫原子及氧原子且分子內不具有氟原子之化合物為水、碳原子數1以上3以下之醇、碳原子數2以上4以下之醚、及碳原子數3以上5以下之酮之中至少1種。
  7. 如請求項1~6中任一項之蝕刻方法,其中 所含有之全部種類之前述金屬之濃度總和為10質量ppb以上4000質量ppb以下。
  8. 如請求項1~6中任一項之蝕刻方法,其中前述金屬雜質具有鹼金屬、鹼土類金屬、鉻、錳、鐵、鈷、鎳、銅、鋅、鋁、及錫之中至少1種。
  9. 如請求項8之蝕刻方法,其中前述鹼金屬為鋰、鈉、及鉀之中至少1種,前述鹼土類金屬為鎂及鈣之至少1種。
  10. 如請求項1~6中任一項之蝕刻方法,其中所含有之全部種類之前述金屬之各濃度皆為1質量ppb以上。
TW111149910A 2022-02-16 2022-12-26 蝕刻方法 TWI839042B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-022023 2022-02-16
JP2022022023 2022-02-16

Publications (2)

Publication Number Publication Date
TW202336857A TW202336857A (zh) 2023-09-16
TWI839042B true TWI839042B (zh) 2024-04-11

Family

ID=87577943

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149910A TWI839042B (zh) 2022-02-16 2022-12-26 蝕刻方法

Country Status (2)

Country Link
TW (1) TWI839042B (zh)
WO (1) WO2023157441A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201604956A (zh) * 2014-05-02 2016-02-01 萬國商業機器公司 藉由蝕刻室預處理提升矽蝕刻製程之蝕刻速率

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796067B1 (ko) * 2006-05-09 2008-01-21 울산화학주식회사 반도체 제조용 건식 에칭 개스 및 그의 제조방법
JP6788176B2 (ja) * 2015-04-06 2020-11-25 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
WO2016172740A2 (en) * 2015-11-10 2016-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Etching reactants and plasma-free oxide etching processes using the same
JP6822763B2 (ja) * 2015-11-16 2021-01-27 セントラル硝子株式会社 ドライエッチング方法
JP6867581B2 (ja) * 2016-02-09 2021-04-28 セントラル硝子株式会社 フッ素ガスの精製方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201604956A (zh) * 2014-05-02 2016-02-01 萬國商業機器公司 藉由蝕刻室預處理提升矽蝕刻製程之蝕刻速率

Also Published As

Publication number Publication date
WO2023157441A1 (ja) 2023-08-24
TW202336857A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
JP6280143B2 (ja) 微小電気機械システムの生産方法
JP4786111B2 (ja) 弗化水素を含有する弗素化溶媒組成物
JP4978512B2 (ja) プラズマエッチング方法
JP2002500444A (ja) フッ素化されたカルボニル化合物を用いるエッチング及びクリニングの方法
JP6788177B2 (ja) ドライエッチング方法、ドライエッチング剤及び半導体装置の製造方法
WO2011093263A1 (ja) ドライエッチング剤及びそれを用いたドライエッチング方法
JP6032033B2 (ja) シリコンのドライエッチング方法
JP6544215B2 (ja) ドライエッチング方法
TWI532097B (zh) 蝕刻氣體及蝕刻方法
KR20100080774A (ko) 플라즈마 에칭 방법
JP2002500443A (ja) 地球温暖化影響を減少させたヒドロフルオロカーボンエッチング化合物
TWI839042B (zh) 蝕刻方法
TWI664317B (zh) 乾式蝕刻劑、乾式蝕刻方法及半導體裝置之製造方法
JP7445150B2 (ja) ドライエッチング方法及び半導体デバイスの製造方法
JP2009206394A (ja) 炭素系ハードマスクの形成方法
JP6168128B2 (ja) 基板の処理方法及びその方法に用いる溶剤
TWI749422B (zh) 鹵氟化物之蝕刻方法、半導體之製造方法
TW201103972A (en) Process for the manufacture of etched items
WO2023157442A1 (ja) エッチング方法
TW202407760A (zh) 蝕刻方法
TW202407801A (zh) 蝕刻方法
TW202231612A (zh) 蝕刻氣體、蝕刻方法,及半導體元件之製造方法
TW202229631A (zh) 蝕刻氣體、蝕刻方法,及半導體元件之製造方法
EP3075003A1 (en) Etching process