WO2023157441A1 - エッチング方法 - Google Patents

エッチング方法 Download PDF

Info

Publication number
WO2023157441A1
WO2023157441A1 PCT/JP2022/045918 JP2022045918W WO2023157441A1 WO 2023157441 A1 WO2023157441 A1 WO 2023157441A1 JP 2022045918 W JP2022045918 W JP 2022045918W WO 2023157441 A1 WO2023157441 A1 WO 2023157441A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
molecule
compound
atom
carbon atoms
Prior art date
Application number
PCT/JP2022/045918
Other languages
English (en)
French (fr)
Inventor
淳 鈴木
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023157441A1 publication Critical patent/WO2023157441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to an etching method.
  • the plasma etching used in manufacturing semiconductor devices is required to have a low side etch rate. That is, it is preferable that the etching target layer (for example, the silicon-containing layer) directly under the mask is not easily etched in the lateral direction during the etching of the high-aspect-ratio opening.
  • the high-temperature etching method does not generate particles easily, but the side etch rate is not sufficiently low.
  • a plasma etching method with a low side etch rate a low-temperature etching method in which etching is performed at a temperature of 0° C. or less is known (see Patent Document 1, for example).
  • An object of the present invention is to provide an etching method in which particles are less likely to occur even in a low-temperature etching method that is said to be able to keep the side etch rate low.
  • one aspect of the present invention is as follows [1] to [12].
  • the temperature of a member to be etched having an etching target containing silicon is set to 0° C. or lower, and an etching compound is a compound having at least one atom selected from a fluorine atom, a hydrogen atom, and an oxygen atom in its molecule.
  • the etching gas contains or does not contain metal impurities having at least one kind of metal, and when the metal impurities are contained, the total concentration of all the metals contained is 4000 mass ppb or less. etching method.
  • [2] The etching method according to [1], wherein the total concentration of all the metals contained is 10 mass ppb or more and 4000 mass ppb or less.
  • the metal impurities include at least one of alkali metals, alkaline earth metals, chromium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, and tin. etching method.
  • the alkali metal is at least one of lithium, sodium, and potassium, and the alkaline earth metal is at least one of magnesium and calcium.
  • the etching method according to any one of [1] to [4], wherein each concentration of all the metals contained is 1 mass ppb or more.
  • the etching compound contains a fluorine atom in the molecule and does not have a hydrogen atom and an oxygen atom in the molecule, a compound that has a hydrogen atom in the molecule and does not have a fluorine atom and an oxygen atom in the molecule, Compounds containing an oxygen atom and no fluorine and hydrogen atoms in the molecule Compounds containing a fluorine atom and a hydrogen atom in the molecule and no oxygen atoms in the molecule Compounds containing a fluorine atom and an oxygen atom in the molecule Any one of [1] to [5], which is at least one of a compound having a 1.
  • the compound having a fluorine atom in the molecule and not having a hydrogen atom and an oxygen atom in the molecule is sulfur hexafluoride, nitrogen trifluoride, chlorine trifluoride, iodine heptafluoride, and bromine pentafluoride. , phosphorus trifluoride, trifluoroiodomethane, fluorine gas, chain saturated perfluorocarbons having 1 to 3 carbon atoms, unsaturated perfluorocarbons having 2 to 6 carbon atoms, cyclic compounds having 3 to 6 carbon atoms.
  • the etching method according to [6] wherein at least one of perfluorocarbon and halon having 1 to 3 carbon atoms is used.
  • the compound having a hydrogen atom in the molecule and not having a fluorine atom and an oxygen atom in the molecule is bromomethane, dibromomethane, hydrogen gas, hydrogen sulfide, hydrogen chloride, hydrogen bromide, ammonia, carbon atom number 1
  • the compound having an oxygen atom in the molecule and not having a fluorine atom and a hydrogen atom in the molecule is at least one of oxygen gas, carbon monoxide, carbon dioxide, carbonyl sulfide, and sulfur dioxide [ 6].
  • the compound having a fluorine atom and a hydrogen atom in the molecule and not having an oxygen atom in the molecule is a chain saturated hydrofluorocarbon having 1 to 4 carbon atoms, or an unsaturated compound having 2 to 6 carbon atoms.
  • the etching method according to [6] wherein the etching method is at least one of a hydrofluorocarbon, a cyclic hydrofluorocarbon having 3 to 6 carbon atoms, and hydrogen fluoride.
  • the compound having a fluorine atom and an oxygen atom in the molecule and not having a hydrogen atom in the molecule is carbonyl fluoride, oxygen difluoride, trifluoromethyl hypofluoride, or a compound having 2 to 4 carbon atoms.
  • the compound having a hydrogen atom and an oxygen atom in the molecule and not having a fluorine atom in the molecule is water, an alcohol having 1 to 3 carbon atoms, an ether having 2 to 4 carbon atoms, and carbon
  • particles are less likely to occur even with the low-temperature etching method, which is said to be able to keep the side etch rate low.
  • the temperature of the member to be etched having an etching target containing silicon is set to 0° C. or lower, and at least one atom selected from fluorine atoms, hydrogen atoms, and oxygen atoms is contained in the molecule.
  • the method includes an etching step of bringing an etching gas containing an etching compound, which is a compound, into contact with a member to be etched to etch the object to be etched.
  • the etching gas may or may not contain metal impurities having at least one kind of metal, and if it contains metal impurities, the total concentration of all the contained metals is 4000 mass ppb or less.
  • the etching gas containing the etching compound When the etching gas containing the etching compound is brought into contact with the member to be etched, the object to be etched containing silicon reacts with the etching compound in the etching gas, so that the etching of the object to be etched proceeds.
  • non-etching objects such as masks hardly react with the etching compound, so etching of the non-etching objects hardly progresses. Therefore, according to the etching method according to the present embodiment, it is possible to selectively etch the etching target compared to the non-etching target (that is, high etching selectivity is obtained).
  • the etching method according to the present embodiment is a low-temperature etching method in which etching is performed at a temperature of 0° C. or less, etching can be performed with a low side etch rate.
  • the etching gas does not contain metal impurities, or if it does, the amount is extremely small, so particles are less likely to be generated during etching. Therefore, the etching method according to the present embodiment can be used for manufacturing semiconductor devices.
  • a semiconductor device can be manufactured by applying the etching method according to the present embodiment to a semiconductor substrate having a thin film made of a silicon compound to etch the thin film made of the silicon compound. In the etching method according to the present embodiment, particles that cause a decrease in yield are less likely to occur, so the productivity of semiconductor devices is high.
  • the number of particles present on the surface of the member to be etched after etching can be measured with a commercially available device. For example, if Surfscan SP1 manufactured by KLA-Tencor Corporation is used, particles with a diameter of 50 nm or more can be detected.
  • the number of particles present on the surface of the member to be etched after etching is preferably 0.5/cm 2 or less, more preferably 0.1/cm 2 or less, and more preferably 0.05. /cm 2 or less.
  • etching refers to processing the member to be etched into a predetermined shape (for example, a three-dimensional shape) by removing part or all of the object to be etched of the member to be etched (for example, the member to be etched is processing a film-like etching object made of a silicon compound to have a predetermined film thickness).
  • concentration of metal in the present invention is not the concentration of metal impurities, but the concentration of metal contained in metal impurities.
  • the "metal” in the “metal concentration” in the present invention includes metal atoms and metal ions.
  • etching method For the etching method according to this embodiment, both plasma etching using plasma and plasmaless etching not using plasma can be used.
  • plasma etching include reactive ion etching (RIE: Reactive Ion Etching), inductively coupled plasma (ICP: Inductively Coupled Plasma) etching, capacitively coupled plasma (CCP: Capacitively Coupled Plasma) etching, electron cyclotron resonance (ECR : Electron Cyclotron Resonance) plasma etching and microwave plasma etching.
  • RIE reactive ion etching
  • ICP Inductively Coupled Plasma
  • CCP Capacitively Coupled Plasma
  • ECR Electron Cyclotron Resonance
  • plasma may be generated in a chamber in which the member to be etched is placed, or the plasma generation chamber and the chamber in which the member to be etched is placed may be separated (that is, remote plasma may be used). may be used). Etching using a remote plasma may etch silicon-containing etch targets with higher selectivity.
  • the etching compound contained in the etching gas is a compound that reacts with the etching object containing silicon to advance the etching of the etching object.
  • the type of etching compound is not particularly limited as long as it is a compound having at least one atom selected from a fluorine atom, a hydrogen atom, and an oxygen atom in the molecule. Examples include the following compounds. . That is, examples of the etching compound include a compound having a fluorine atom in the molecule and not having a hydrogen atom and an oxygen atom in the molecule, a compound having a hydrogen atom in the molecule and not having a fluorine atom and an oxygen atom in the molecule.
  • a compound having an oxygen atom in the molecule and not having a fluorine atom and a hydrogen atom in the molecule a compound having a fluorine atom and a hydrogen atom in the molecule and not having an oxygen atom in the molecule, a molecule having a fluorine atom and an oxygen atom
  • a compound having no hydrogen atom in the molecule, a compound having a hydrogen atom and an oxygen atom in the molecule and having no fluorine atom in the molecule, a compound having a fluorine atom, a hydrogen atom, and an oxygen atom in the molecule is mentioned.
  • Specific examples of compounds having a fluorine atom in the molecule and not having a hydrogen atom and an oxygen atom in the molecule include sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), chlorine trifluoride (ClF 3 ), iodine heptafluoride ( IF7 ), bromine pentafluoride ( BrF5 ), phosphorus trifluoride ( PF3 ), trifluoroiodomethane ( CF3I ), fluorine gas ( F2 ), number of carbon atoms chain saturated perfluorocarbons having 1 to 3 carbon atoms, unsaturated perfluorocarbons having 2 to 6 carbon atoms, cyclic perfluorocarbons having 3 to 6 carbon atoms, and halons having 1 to 3 carbon atoms.
  • SF 6 sulfur hexafluoride
  • NF 3 nitrogen trifluoride
  • ClF 3 chlorine trifluoride
  • IF7 iodine
  • chain saturated perfluorocarbons having 1 to 3 carbon atoms include tetrafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), and octafluoropropane (C 3 F 8 ).
  • unsaturated perfluorocarbons having 2 to 6 carbon atoms include tetrafluoroethylene (C 2 F 4 ), hexafluoropropylene (C 3 F 6 ) and octafluoro-1-butene (C 4 F 8 ).
  • octafluoro-2-butene C 4 F 8
  • perfluoroisobutene C 4 F 8
  • hexafluorobutadiene C 4 F 6
  • hexafluoro-1-butyne C 4 F 6
  • hexafluoro- 2-butyne C 4 F 6
  • decafluoro-1-pentene C 5 F 10
  • decafluoro-2-pentene C 5 F 10
  • perfluoro-2-methyl-2-butene C 5 F 10
  • octafluoro-1,4-pentadiene C 5 F 8
  • octafluoro-2,3-pentadiene C 5 F 8
  • octafluoro-1,3-pentadiene C 5 F 8
  • octafluoro-1,3-pentadiene C 5 F 8
  • octafluoro-2-pentyne C 5 F 8
  • cyclic perfluorocarbons having 3 to 6 carbon atoms include hexafluorocyclopropane (C 3 F 6 ), octafluorocyclobutane (C 4 F 8 ), perfluorocyclobutene (C 4 F 6 ), perfluorocyclobutene (C 4 F 6 ), fluorocyclopentene ( C5F8 ), perfluorocyclopentane ( C5F10 ) , perfluoromethylcyclobutane ( C5F10 ) , hexafluorobenzene ( C6F6 ), perfluorocyclohexane (C6F12 ) , perfluoromethylcyclopentane (C 6 F 12 ), perfluoro-1,2-dimethylcyclobutane (C 6 F 12 ), perfluoro-2,4-dimethylcyclobutane (C 6 F 12 ), perfluoro-3, 4-dimethylcyclobutan
  • halon having 1 to 3 carbon atoms include bromotrifluoromethane (CBrF 3 ), dibromodifluoromethane (CBr 2 F 2 ), tribromofluoromethane (CBr 3 F), bromopentafluoroethane (C 2 BrF5 ) , dibromotetrafluoroethane ( C2Br2F4 ) , tribromotrifluoroethane ( C2Br3F3 ) , tetrabromodifluoroethane ( C2Br4F2 ) , pentabromofluoroethane ( C2 Br5F ), bromotrifluoroethylene ( C2BrF3 ) , dibromodifluoroethylene ( C2Br2F2 ) , tribromofluoroethylene (C2Br3F ) , bromoheptafluoropropane ( C3BrF7 )
  • halon means a halogenated hydrocarbon in which some or all of the hydrogen atoms of a hydrocarbon have been replaced with halogen atoms and which has a bromine atom.
  • halogenated hydrocarbons in which all hydrogen atoms are substituted with halogen atoms those having bromine atoms and fluorine atoms are meant.
  • Specific examples of compounds having a hydrogen atom in the molecule and not having a fluorine atom and an oxygen atom in the molecule include bromomethane (CH 3 Br), dibromomethane (CH 2 Br 2 ), hydrogen gas (H 2 ), sulfide hydrogen (H 2 S), hydrogen chloride (HCl), hydrogen bromide (HBr), ammonia (NH 3 ), alkanes having 1 to 3 carbon atoms, alkenes having 2 to 4 carbon atoms, and the number of carbon atoms 3 or more and 6 or less cyclic alkanes are mentioned.
  • Specific examples of alkanes having 1 to 3 carbon atoms include methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ).
  • alkenes having 2 to 4 carbon atoms include ethylene (C 2 H 4 ), propylene (C 3 H 6 ), 1-butene (C 4 H 8 ) and 2-butene (C 4 H 8 ). , and isobutene (C 4 H 8 ).
  • cyclic alkanes having 3 to 6 carbon atoms include cyclopropane (C 3 H 6 ), cyclobutane (C 4 H 8 ), cyclopentane (C 5 H 10 ), and cyclohexane (C 6 H 12 ). mentioned.
  • the alkanes, alkenes, and cyclic alkanes mentioned above mean those having no fluorine atom or oxygen atom in the molecule.
  • Specific examples of compounds having an oxygen atom in the molecule and not having a fluorine atom and a hydrogen atom in the molecule include oxygen gas (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ), carbonyl sulfide (COS), and sulfur dioxide ( SO2 ).
  • Specific examples of the compound having a fluorine atom and a hydrogen atom in the molecule and not having an oxygen atom in the molecule include chain saturated hydrofluorocarbons having 1 to 4 carbon atoms and unsaturated hydrocarbons having 2 to 6 carbon atoms. Examples include hydrofluorocarbons, cyclic hydrofluorocarbons having 3 to 6 carbon atoms, and hydrogen fluoride (HF).
  • chain saturated hydrofluorocarbons having 1 to 4 carbon atoms include fluoromethane (CH 3 F), difluoromethane (CH 2 F 2 ), trifluoromethane (CHF 3 ), fluoroethane (C 2 H 5 F), difluoroethane ( C2H4F2 ) , trifluoroethane ( C2H3F3 ) , tetrafluoroethane ( C2H2F4 ) , pentafluoroethane ( C2HF5 ) , fluoropropane ( C3H7F ) , difluoropropane ( C3H6F2 ) , trifluoropropane (C3H5F3 ) , tetrafluoropropane ( C3H4F4 ) , pentafluoropropane ( C3H3 F5 ), hexafluoropropane ( C3H2F6 ) ,
  • unsaturated hydrofluorocarbons having 2 to 6 carbon atoms include 2,3,3,3-tetrafluoropropene (C 3 H 2 F 4 ), 1,3,3,3-tetrafluoropropene ( C 3 H 2 F 4 ), cis-1,1,1,4,4,4-hexafluoro-2-butene (C 4 H 2 F 6 ), trans-1,1,1,4,4,4 -hexafluoro-2-butene (C 4 H 2 F 6 ).
  • cyclic hydrofluorocarbons having 3 to 6 carbon atoms include fluorocyclopropane (C 3 H 5 F), difluorocyclopropane (C 3 H 4 F 2 ), trifluorocyclopropane (C 3 H 3 F 3 ) , tetrafluorocyclopropane ( C3H2F4 ) , pentafluorocyclopropane ( C3HF5 ) , fluorocyclobutane ( C4H7F ), difluorocyclobutane ( C4H6F2 ) , trifluoro Cyclobutane ( C4H5F3 ) , tetrafluorocyclobutane ( C4H4F4 ) , pentafluorocyclobutane ( C4H3F5 ) , hexafluorocyclobutane ( C4H2F6 ), heptafluorocyclobutane ( C4HF
  • Specific examples of compounds having a fluorine atom and an oxygen atom in the molecule and not having a hydrogen atom in the molecule include carbonyl fluoride (COF 2 ), oxygen difluoride (OF 2 ), trifluoromethyl hypofluoride (CF 3 OF), perfluoroethers having 2 to 4 carbon atoms, and perfluoroketones having 3 to 5 carbon atoms.
  • COF 2 carbonyl fluoride
  • OF 2 oxygen difluoride
  • CF 3 OF trifluoromethyl hypofluoride
  • perfluoroethers having 2 to 4 carbon atoms
  • perfluoroketones having 3 to 5 carbon atoms.
  • perfluoroethers having 2 to 4 carbon atoms include perfluorodimethyl ether (CF 3 OCF 3 ), perfluoromethyl ethyl ether (CF 3 OC 2 F 5 ), perfluorodiethyl ether (C 2 F 5 OC 2 F 5 ), and perfluoromethyl propyl ether (CF 3 OC 3 F 7 ).
  • perfluoroketones having 3 to 5 carbon atoms include perfluoroacetone (CF 3 COCF 3 ), perfluorobutanone (CF 3 COC 2 F 5 ), perfluoropentanone (CF 3 COC 3 F 7 , C2F5COC2F5 ) .
  • perfluoroether means a compound in which all hydrogen atoms of the hydrocarbon group of ether are substituted with fluorine atoms
  • perfluoroketone is hydrogen of the hydrocarbon group of ketone. It means a compound in which all atoms are substituted with fluorine atoms.
  • the compound having a hydrogen atom and an oxygen atom in the molecule and not having a fluorine atom in the molecule include water (H 2 O), alcohol having 1 to 3 carbon atoms, and 2 to 4 carbon atoms. and ketones having 3 to 5 carbon atoms.
  • alcohols having 1 to 3 carbon atoms include methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), and isopropanol (C 3 H 7 OH). be done.
  • ethers having 2 to 4 carbon atoms include dimethyl ether (CH 3 OCH 3 ), diethyl ether (C 2 H 5 OC 2 H 5 ), methyl ethyl ether (CH 3 OC 2 H 5 ), methyl propyl Ethers (CH 3 OC 3 H 7 ) may be mentioned.
  • ketones having 3 to 5 carbon atoms include acetone (CH 3 COCH 3 ), butanone (CH 3 COC 2 H 5 ), pentanone (CH 3 COC 3 H 7 , C 2 H 5 COC 2 H 5 ).
  • hydrofluoroethers having 2 to 4 carbon atoms
  • fluoroalcohols having 2 to 4 carbon atoms
  • 3 to 5 carbon atoms The following hydrofluoroketones may be mentioned.
  • hydrofluoroethers having 2 to 4 carbon atoms include pentafluorodimethyl ether (CHF 2 OCF 3 ), tetrafluorodimethyl ether (CHF 2 OCHF 2 , CH 2 FOCF 3 ), trifluorodimethyl ether (CH 3 OCF 3 , CH 2 FOCHF 2 ), difluorodimethyl ether (CH 3 OCHF 2 , CH 2 FOCH 2 F), fluorodimethyl ether (CH 3 OCH 2 F), difluoromethyl pentafluoroethyl ether (CHF 2 OC 2 F 5 ), trifluoromethyl tetrafluoroethyl ether ( CF3OC2HF4 ), fluoromethyl pentafluoroethyl ether (CH2FOC2F5 ) , difluoromethyltetrafluoroethyl ether ( CHF2OC2HF4 ) , trifluoromethyltrifluoroethyl
  • pentafluoroethyltrifluoroethyl ether C 2 F 5 OC 2 H 2 F 3
  • pentafluoroethyl difluoroethyl ether C 2 F 5 OC 2 H 3 F 2
  • tetrafluoroethyltrifluoroethyl ether C 2 HF4OC2H2F3
  • pentafluoroethylfluoroethyl ether C2F5OC2H4F
  • tetrafluoroethyldifluoroethyl ether C2HF4OC2H3F2
  • bistrifluoroethyl ether C2H2F3OC2H2F3
  • ethyl pentafluoroethyl ether C2H5OC2F5
  • fluoroethyltetrafluoroethyl ether C2H5OC2F5
  • fluoroalcohols having 2 to 4 carbon atoms include trifluoroethanol (CF 3 CH 2 OH), hexafluoro-2-propanol (CF 3 CH(OH)CF 3 ), pentafluoropropanol (C 2 F 5 CH 2 OH), pentafluoro-2-propanol (CF 3 CH(OH)CHF 2 ), tetrafluoropropanol (C 2 HF 4 CH 2 OH), tetrafluoro-2-propanol (CF 3 CH(OH) CH2F , CHF2CH (OH) CHF2 ), trifluoropropanol (C2H2F3CH2OH), trifluoro - 2 - propanol ( CF3CH (OH) CH3 , CHF2CH (OH )CH 2 F), difluoropropanol (C 2 H 3 F 2 CH 2 OH), difluoro-2-propanol (CHF 2 CH(OH)CH 3
  • hydrofluoroketones having 3 to 5 carbon atoms include pentafluoroacetone (CF 3 COCHF 2 ), tetrafluoroacetone (CF 3 COCH 2 F, CHF 2 COCHF 2 ), trifluoroacetone (CF 3 COCH 3 , CHF2COCH2F ), difluoroacetone ( CHF2COCH3 , CH2FCOCH2F ) , heptafluorobutanone ( C2F5COCHF2 , C2HF4COCF3 ) , hexafluorobutanone ( C2F 5COCH2F , C2HF4COCHF2 , C2H2F3COCH3 ) , pentafluorobutanone ( C2F5COCH3 , C2HF4COCH2F , C2H2F3COCHF2 , _ _ _ _ C2H3F2COCF3 ) , tetrafluor
  • An etching gas is a gas containing the etching compounds described above.
  • the etching gas may be a gas consisting only of the above etching compound, or may be a mixed gas containing the above etching compound and a diluent gas.
  • a mixed gas containing the above etching compound, diluent gas and additive gas may be used.
  • At least one selected from nitrogen gas (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) can be used as the diluent gas.
  • the content of the diluent gas is preferably 90% by volume or less, more preferably 50% by volume or less, with respect to the total amount of the etching gas. Also, the content of the diluent gas is preferably 10% by volume or more with respect to the total amount of the etching gas. From the viewpoint of improving the etching rate, the content of the etching compound in the etching gas is preferably 5% by volume or more, more preferably 10% by volume or more, relative to the total amount of the etching gas. From the viewpoint of suppressing the amount of the etching compound used, it is preferably 90% by volume or less, more preferably 80% by volume or less, relative to the total amount of the etching gas.
  • the etching gas can be obtained by mixing a plurality of components (etching compound, diluent gas, etc.) that constitute the etching gas, but the mixing of the plurality of components may be performed either inside or outside the chamber. That is, a plurality of components constituting the etching gas may be independently introduced into the chamber and mixed in the chamber, or a plurality of components constituting the etching gas may be mixed to obtain the etching gas. etchant gas may be introduced into the chamber.
  • the etching gas contains or does not contain metallic impurities having at least one metal.
  • metal impurities since the total concentration of all kinds of metals contained in the etching gas is as low as 4000 mass ppb or less, particles are less likely to be generated during etching as described above.
  • the total concentration of all kinds of metals contained is preferably 1000 mass ppb or less, more preferably 100 mass ppb or less.
  • hydrofluoric acid is produced when hydrogen fluoride radicals generated during etching come into contact with water on the surface of the member to be etched, resulting in a chemical reaction. Etching by is accelerated and the etching rate is improved.
  • the etching gas contains metal impurities, particles may be generated due to the metal fluorides generated by the reaction between the metal impurities and hydrofluoric acid.
  • metal fluorides are chemically stable and have low volatility, they are difficult to remove in a dry process. Therefore, it may become an obstacle for subsequent etching and deposition processes. Therefore, the amount of metal impurities contained in the etching gas is preferably as small as possible, and the total concentration of all kinds of metals contained in the etching gas must be 4000 mass ppb or less.
  • the total concentration of all kinds of metals contained in the etching gas may be 10 mass ppb or more. Further, each concentration of all kinds of metals contained in the etching gas may be 1 mass ppb or more.
  • the metal concentration in the etching gas can be quantified with an inductively coupled plasma mass spectrometer (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometer
  • does not contain metal impurities means that it cannot be quantified by an inductively coupled plasma mass spectrometer.
  • Examples of metals contained in metal impurities include alkali metals, alkaline earth metals, and metals belonging to Groups 3 to 14 of the periodic table (eg, transition metals).
  • alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr)
  • alkaline earth metals include beryllium (Be ), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • metals belonging to groups 3-14 of the periodic table include chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), Aluminum (Al) and tin (Sn) are included.
  • the metal contained in the metal impurity may be one of these metals, or may be two or more.
  • the metal impurities described above may be contained in the etching gas as simple metals, metal compounds, metal halides, and metal complexes.
  • the forms of metal impurities in the etching gas include fine particles, droplets, gas, and the like. It is believed that the metal impurities described above are mixed in the etching gas from the raw materials, reactors, refiners, filling vessels, etc. used when synthesizing the etching compounds.
  • Examples of methods for removing the metal impurities from the etching compound include a method of passing the etching compound through a filter, a method of contacting the etching compound with an adsorbent, and a method of separating by distillation.
  • the above etching compound is enclosed in a stainless steel cylinder, and is kept below the boiling point of the etching compound under the internal pressure of the cylinder.
  • An etching gas with a reduced metal concentration can be obtained by withdrawing the gas phase portion by the method described in Examples below while maintaining the temperature at ⁇ 125° C. under a relatively high internal pressure of the cylinder. It is preferable to subject the etching gas to etching after the total concentration of metals contained in the etching gas is reduced to 4000 mass ppb or less by the step of removing metal impurities.
  • the etching is performed with the temperature of the member to be etched set to 0° C. or lower. More preferably: If etching is performed with the temperature of the member to be etched within the above range, etching can be performed with a lower side etch rate.
  • the temperature of the temperature condition is the temperature of the member to be etched, but the temperature of the stage supporting the member to be etched, which is installed in the chamber of the etching apparatus, can also be used.
  • the bias power that constitutes the potential difference between the plasma generated during etching and the member to be etched may be selected from 0 to 10000 W depending on the desired etching shape, and 0 to 1000 W when selective etching is performed. degree is preferred.
  • the pressure condition of the etching step in the etching method according to the present embodiment is not particularly limited, but is preferably 10 Pa or less, more preferably 5 Pa or less. If the pressure conditions are within the above range, it is easy to stably generate plasma. On the other hand, the pressure condition of the etching process is preferably 0.05 Pa or higher. If the pressure conditions are within the above range, a large number of ionized ions are generated and a sufficient plasma density can be easily obtained.
  • the flow rate of the etching gas may be appropriately set according to the volume of the chamber and the ability of the exhaust equipment to reduce the pressure in the chamber so that the pressure in the chamber is kept constant.
  • a member to be etched to be etched by the etching method according to the present embodiment has an etching target that is an etching target, but may further have a non-etching target that is not an etching target.
  • the member to be etched may be a member having a portion formed by the object to be etched and a portion formed by the object not to be etched, A member formed of a mixture of an etching target and a non-etching target may also be used.
  • the member to be etched may have an object other than the object to be etched and the object not to be etched.
  • the shape of the member to be etched is not particularly limited, and may be, for example, plate-like, foil-like, film-like, powder-like, or block-like. Examples of the member to be etched include the semiconductor substrate described above.
  • the object to be etched may be made of only a silicon-containing material, or may have a portion made only of a silicon-containing material and a portion made of another material. or a mixture of a silicon-containing material and other materials.
  • Materials containing silicon include, for example, silicon oxide, silicon nitride, polysilicon, and silicon germanium (SiGe). These silicon-containing materials may be used singly or in combination of two or more.
  • silicon oxides include silicon dioxide ( SiO2 ).
  • silicon nitride refers to a compound containing silicon and nitrogen in an arbitrary ratio, and an example thereof is Si 3 N 4 .
  • the purity of silicon nitride is not particularly limited, but is preferably 30% by mass or more, more preferably 60% by mass or more, and still more preferably 90% by mass or more.
  • the shape of the etching object is not particularly limited, and may be, for example, plate-like, foil-like, film-like, powder-like, or block-like.
  • the object to be etched may or may not have a shape such as a pattern or a hole.
  • Non-etching object Since the non-etching object does not substantially react with the above etching compound or reacts very slowly with the above etching compound, even if etching is performed by the etching method according to the present embodiment, the etching progresses almost. It does not.
  • the non-etching target is not particularly limited as long as it has the above properties, but for example, photoresist, amorphous carbon, titanium nitride, metals such as copper, nickel, cobalt, and oxidation of these metals materials and nitrides. Among these, photoresist and amorphous carbon are more preferable from the viewpoint of handling and availability.
  • the non-etching target can be used as a resist or mask for suppressing etching of the etching target by the etching gas. Therefore, in the etching method according to the present embodiment, the patterned non-etching object is used as a resist or mask to process the etching object into a predetermined shape (for example, a film-like etching object possessed by the member to be etched). processing an object to have a predetermined film thickness), it can be suitably used for the manufacture of semiconductor devices. In addition, since the non-etching target is hardly etched, it is possible to suppress the etching of the portion of the semiconductor element that should not be etched, thereby preventing the loss of the characteristics of the semiconductor element due to the etching. can.
  • the etching apparatus of FIG. 1 is a plasma etching apparatus that performs etching using plasma. First, the etching apparatus shown in FIG. 1 will be described.
  • the etching apparatus of FIG. 1 supports a chamber 3 in which etching is performed, a plasma generator (not shown) that generates plasma inside the chamber 3, and a member 4 to be etched to be etched.
  • a stage 5 a cooling unit 6 for cooling the member 4 to be etched via the stage 5, a thermometer (not shown) for measuring the temperature of the member 4 to be etched, and a vacuum pump 8 for reducing the pressure inside the chamber 3. , and a pressure gauge 7 for measuring the pressure inside the chamber 3 .
  • the type of plasma generation mechanism of the plasma generator is not particularly limited, and may be one in which a high frequency voltage is applied to parallel plates, or one in which a high frequency current is passed through a coil.
  • a high-frequency voltage is applied to the member 4 to be etched in the plasma
  • a negative voltage is applied to the member 4 to be etched
  • positive ions are incident on the member 4 to be etched at high speed and perpendicularly, making anisotropic etching possible.
  • the stage 5 is connected to the high frequency power source of the plasma generator so that the stage 5 can be applied with a high frequency voltage.
  • the etching apparatus of FIG. 1 also includes an etching gas supply section that supplies an etching gas to the inside of the chamber 3 .
  • the etching gas supply unit includes an etching compound gas supply unit 1 that supplies an etching compound gas, a diluent gas supply unit 2 that supplies a diluent gas, a pipe connecting the etching compound gas supply unit 1 and the chamber 3, and a diluent. and a pipe connecting the gas supply unit 2 and the chamber 3 .
  • a facility for supplying an additive gas may be installed (not shown).
  • the gas such as the etching gas supplied into the chamber 3 can be discharged outside the chamber 3 through an exhaust pipe (not shown).
  • the inside of the chamber 3 is decompressed by the vacuum pump 8, and then the etching compound gas is sent out from the etching compound gas supply unit 1 to supply the etching compound through the pipe.
  • Gas may be supplied to the chamber 3 .
  • a mixed gas of an etching compound gas and a diluent gas such as an inert gas
  • the pressure inside the chamber 3 is reduced by the vacuum pump 8, and then the etching compound is supplied from the etching compound gas supply unit 1.
  • the diluent gas may be sent out from the diluent gas supply unit 2 while the gas is sent out.
  • the etching compound gas and the diluent gas are mixed in the chamber 3 to form an etching gas.
  • the etching method according to the present embodiment can be performed using a general plasma etching apparatus used in the semiconductor device manufacturing process, such as the etching apparatus shown in FIG. not.
  • a general plasma etching apparatus used in the semiconductor device manufacturing process
  • the structure of the temperature control mechanism of the chamber 3 should be able to control the temperature of the member 4 to be etched to an arbitrary temperature. or a configuration in which a cooling unit for cooling the stage 5 is provided directly on the stage 5 .
  • Cylinder A Three cylinders (sealable cylindrical containers) made of manganese steel and having a capacity of 1 L were prepared. These cylinders are called Cylinder A, Cylinder B and Cylinder C in order. Cylinder A is filled with 300 g of tetrafluoromethane (boiling point at normal pressure: ⁇ 128° C.) and cooled to ⁇ 125° C. to liquefy, forming a liquid phase portion and a gas phase portion at approximately 100 kPa. Ta. Cylinders B and C were cooled to -196°C after reducing the pressure inside to 1 kPa or less with a vacuum pump.
  • tetrafluoromethane gas 200 g was extracted from the upper outlet of cylinder A where the gas phase portion was present, and transferred to cylinder B in a decompressed state. 100 g of tetrafluoromethane remaining in cylinder A is designated as sample 1-1. Thereafter, the tetrafluoromethane gas remaining in the cylinder A was extracted from the upper outlet, and the concentrations of various metals were measured with an inductively coupled plasma mass spectrometer by the following method.
  • the tetrafluoromethane gas is extracted from the gas-phase portion, and circulated and contacted ( bubbling) to absorb metal impurities.
  • the mass of the nitric acid aqueous solution with a concentration of 1 mol/L after circulating tetrafluoromethane gas was 80 g (M1).
  • the difference in mass of the cylinder A before and after the tetrafluoromethane gas flowed was 50 g (M2).
  • the temperature of cylinder B is raised to ⁇ 125° C. to form a liquid phase portion and a gas phase portion, and 100 g of tetrafluoromethane gas is extracted from the upper outlet where the gas phase portion of cylinder B exists. , was transferred to cylinder C under vacuum.
  • 100 g of tetrafluoromethane remaining in cylinder B is used as sample 1-2.
  • the tetrafluoromethane gas remaining in the cylinder B was extracted from the upper outlet, and the concentrations of various metals were measured with an inductively coupled plasma mass spectrometer. Table 1 shows the results.
  • 100 g of tetrafluoromethane in cylinder C is used as sample 1-3.
  • a tetrafluoromethane gas was extracted from the upper outlet of the cylinder C where the gas phase portion exists, and the concentrations of various metals were measured with an inductively coupled plasma mass spectrometer. Table 1 shows the results.
  • Preparation Example 2 Samples 2-1 and 2 were prepared in the same manner as in Preparation Example 1, except that methane (boiling point at normal pressure: ⁇ 162° C.) was used as the etching compound and the liquefaction temperature was ⁇ 153° C. -2, 2-3 were prepared. Then, the concentrations of various metals in each sample were measured with an inductively coupled plasma mass spectrometer in the same manner as in Preparation Example 1 described above. Table 2 shows the results.
  • Preparation Example 4 The same procedure as in Preparation Example 1 was performed except that difluoromethane (boiling point at normal pressure: -52°C) was used as the etching compound and the liquefaction temperature was -50°C. 4-2, 4-3 were prepared. Then, the concentrations of various metals in each sample were measured with an inductively coupled plasma mass spectrometer in the same manner as in Preparation Example 1 described above. Table 4 shows the results.
  • Preparation Example 5 Sample 5-1 was prepared in the same manner as in Preparation Example 1, except that carbonyl fluoride (boiling point at normal pressure: ⁇ 85° C.) was used as the etching compound and the liquefaction temperature was ⁇ 78° C. , 5-2, 5-3 were prepared. Then, the concentrations of various metals in each sample were measured with an inductively coupled plasma mass spectrometer in the same manner as in Preparation Example 1 described above. Table 5 shows the results.
  • Preparation Example 6 Samples 6-1 and 6 were prepared in the same manner as in Preparation Example 1 except that dimethyl ether (boiling point at normal pressure: ⁇ 24° C.) was used as the etching compound and the liquefaction temperature was ⁇ 20° C. -2, 6-3 were prepared. Then, the concentrations of various metals in each sample were measured with an inductively coupled plasma mass spectrometer in the same manner as in Preparation Example 1 described above. Table 6 shows the results.
  • Example 1 A silicon oxide film with a thickness of 1000 nm and a silicon nitride film with a thickness of 1000 nm were formed on the surface of a semiconductor wafer without lamination so as to be exposed to the surface, and this was used as a test piece. Then, the specimen was etched using an etching gas. As an etching device, an ICP etching device RIE-230iP manufactured by Samco Corporation was used. Specifically, sample 1-3 tetrafluoromethane at a flow rate of 10 mL/min, sample 2-3 methane at a flow rate of 5 mL/min, sample 3-3 oxygen gas at a flow rate of 5 mL/min, and argon at a flow rate.
  • an ICP etching device RIE-230iP manufactured by Samco Corporation was used. Specifically, sample 1-3 tetrafluoromethane at a flow rate of 10 mL/min, sample 2-3 methane at a flow rate of 5 mL/min, sample
  • a high frequency voltage of 500 W was applied to convert the etching gas into plasma in the chamber.
  • the test piece in the chamber was etched under etching conditions of a pressure of 3 Pa, a test piece temperature of ⁇ 50° C., and a bias power of 100 W.
  • the temperature of the specimen was set to 20° C., and argon was introduced into the chamber at a flow rate of 30 mL/min to purge the surface of the specimen.
  • the specimen was taken out from the chamber, and the number of particles existing on the surfaces of the silicon oxide film and the silicon nitride film was measured.
  • the number of particles was measured using Surfscan SP1 manufactured by KLA-Tencor Corporation. Table 7 shows the results. As shown in Table 7, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 2 Etching of the specimen was performed in the same manner as in Example 1, except that the tetrafluoromethane of sample 1-2 was used instead of the tetrafluoromethane of sample 1-3.
  • Table 7 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 7, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 3 Sample 2-3 methane at a flow rate of 10 mL/min, sample 1-3 tetrafluoromethane at a flow rate of 5 mL/min, sample 3-3 oxygen gas at a flow rate of 5 mL/min, and argon at a flow rate of 30 mL/min.
  • the specimen was etched by the same operation as in Example 1, except that they were introduced into the chamber independently and mixed in the chamber to prepare the etching gas. After the etching was completed, the temperature of the specimen was set to 20° C., and argon was introduced into the chamber at a flow rate of 30 mL/min to purge the surface of the specimen.
  • Example 8 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 8, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 4 Etching and purging of the specimen were performed in the same manner as in Example 3, except that the methane of Sample 2-2 was used instead of the methane of Sample 2-3.
  • Table 8 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 8, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 5 Oxygen gas of sample 3-3 at a flow rate of 10 mL / min, difluoromethane of sample 4-3 at a flow rate of 10 mL / min, and argon at a flow rate of 30 mL / min were each independently introduced into the chamber and mixed in the chamber. Etching and purging of the specimen were performed in the same manner as in Example 3, except that the etching gas was prepared.
  • Table 9 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 9, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 6 Except for using the oxygen gas of Sample 3-2 instead of the oxygen gas of Sample 3-3, the same operation as in Example 5 was performed to etch and purge the specimen.
  • Table 9 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 9, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 7 Etching and purging of the specimen were performed in the same manner as in Example 5, except that the difluoromethane of Sample 4-2 was used instead of the difluoromethane of Sample 4-3.
  • Table 9 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 9, the number of particles is 0.1/cm 2 or less, indicating that the generation of particles due to etching is suppressed.
  • Example 3 Except for using the oxygen gas of Sample 3-1 instead of the oxygen gas of Sample 3-3, the same operation as in Example 5 was performed to etch and purge the specimen.
  • Table 9 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 9, since the number of particles exceeds 0.5/cm 2 , it can be seen that the generation of particles due to etching is not suppressed.
  • Example 8 Carbonyl fluoride of sample 5-3 at a flow rate of 10 mL / min, methane of sample 2-3 at a flow rate of 10 mL / min, and argon at a flow rate of 30 mL / min were each independently introduced into the chamber and mixed in the chamber. Etching and purging of the specimen were performed in the same manner as in Example 3, except that the etching gas was prepared.
  • Table 10 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 10, since the number of particles is 0.1/cm 2 or less, it can be seen that the generation of particles due to etching is suppressed.
  • Example 9 Etching and purging of the specimen were performed in the same manner as in Example 8, except that the carbonyl fluoride of sample 5-2 was used instead of the carbonyl fluoride of sample 5-3.
  • Table 10 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 10, since the number of particles is 0.1/cm 2 or less, it can be seen that the generation of particles due to etching is suppressed.
  • Example 10 Dimethyl ether of sample 6-3 at a flow rate of 10 mL / min, tetrafluoromethane of sample 1-3 at a flow rate of 10 mL / min, and argon at a flow rate of 30 mL / min were each independently introduced into the chamber and mixed in the chamber. Etching and purging of the specimen were performed in the same manner as in Example 3, except that the etching gas was prepared.
  • Table 11 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 11, since the number of particles is 0.1/cm 2 or less, it can be seen that the generation of particles due to etching is suppressed.
  • Example 11 Etching and purging of the specimen were performed in the same manner as in Example 10, except that the dimethyl ether of sample 6-2 was used instead of the dimethyl ether of sample 6-3.
  • Table 11 shows the measurement results of the metal concentration and the measurement results of the number of particles. As shown in Table 11, since the number of particles is 0.1/cm 2 or less, it can be seen that the generation of particles due to etching is suppressed.
  • Example 12 Etching of the specimen was carried out in the same manner as in Example 1, except that the temperature of the specimen was -5°C.
  • the number of particles existing on the surface of the silicon oxide film was 0.04/cm 2
  • the number of particles existing on the surface of the silicon nitride film was 0.03/cm 2 . had been suppressed.
  • Comparative Example 7 Etching of the specimen was performed in the same manner as in Comparative Example 1, except that the temperature of the specimen was -5°C. The number of particles existing on the surface of the silicon oxide film was 1.4/cm 2 , and the number of particles existing on the surface of the silicon nitride film was 1.1/cm 2 . was not suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

サイドエッチ率を低く抑えることができるとされる低温エッチング法であっても、パーティクルが発生しにくいエッチング方法を提供する。エッチング方法は、ケイ素を含有するエッチング対象物を有する被エッチング部材(4)の温度を0℃以下にし、フッ素原子、水素原子、及び酸素原子のうち少なくとも1種の原子を分子内に有する化合物であるエッチング化合物を含有するエッチングガスを、被エッチング部材(4)に接触させて、エッチング対象物をエッチングするエッチング工程を備える。エッチングガスは、少なくとも1種の金属を有する金属不純物を含有するか又は含有せず、金属不純物を含有する場合は、含有する全種の金属の濃度の総和が4000質量ppb以下である。

Description

エッチング方法
 本発明はエッチング方法に関する。
 半導体素子を製造する際にはプラズマエッチングによってウエハ上に配線が形成されるが、配線の微細化が進んでおり、線幅20nm以下の配線が要求されるようになってきている。そのため、プラズマエッチングにおいて直径100nm以下の微小なパーティクルがウエハ上に発生、残存すると、配線がショートしたり、その後のエッチングや堆積工程等の障害になり、配線を形成できなくなったりするおそれがある。その結果、設計通りの電気的特性が得られない領域がウエハ内に生じるため、半導体素子の生産性が低下する。よって、プラズマエッチングにおいてはパーティクルが発生しにくいことが好ましい。パーティクルが発生しにくいプラズマエッチング法としては、常温以上の温度でエッチングを行う高温エッチング法が知られている。
 一方、半導体素子を製造する際に用いられるプラズマエッチングには、サイドエッチ率が低いことが求められている。すなわち、高アスペクト比の開口部のエッチングにおいて、マスクの直下のエッチング対象物層(例えばシリコン含有層)の横方向のエッチングは生じにくいことが好ましい。高温エッチング法は、パーティクルは発生しにくいものの、サイドエッチ率が十分に低いとは言えなかった。サイドエッチ率が低いプラズマエッチング法としては、0℃以下の温度でエッチングを行う低温エッチング法が知られている(例えば特許文献1を参照)。
日本国特許公開公報 2019年第153771号
 しかしながら、低温エッチング法は、サイドエッチ率は低いものの、パーティクルが発生しやすかった。
 本発明は、サイドエッチ率を低く抑えることができるとされる低温エッチング法であっても、パーティクルが発生しにくいエッチング方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[12]の通りである。
[1] ケイ素を含有するエッチング対象物を有する被エッチング部材の温度を0℃以下にし、フッ素原子、水素原子、及び酸素原子のうち少なくとも1種の原子を分子内に有する化合物であるエッチング化合物を含有するエッチングガスを、前記被エッチング部材に接触させて、前記エッチング対象物をエッチングするエッチング工程を備え、
 前記エッチングガスは、少なくとも1種の金属を有する金属不純物を含有するか又は含有せず、前記金属不純物を含有する場合は、含有する全種の前記金属の濃度の総和が4000質量ppb以下であるエッチング方法。
[2] 含有する全種の前記金属の濃度の総和が10質量ppb以上4000質量ppb以下である[1]に記載のエッチング方法。
[3] 前記金属不純物が、アルカリ金属、アルカリ土類金属、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、及び錫のうち少なくとも1種を有する[1]又は[2]に記載のエッチング方法。
[4] 前記アルカリ金属がリチウム、ナトリウム、及びカリウムのうち少なくとも1種であり、前記アルカリ土類金属がマグネシウム及びカルシウムの少なくとも1種である[3]に記載のエッチング方法。
[5] 含有する全種の前記金属の各濃度がいずれも1質量ppb以上である[1]~[4]のいずれか一項に記載のエッチング方法。
[6] 前記エッチング化合物が、フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物、水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物、酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物、フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物、フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物、水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物のうち少なくとも1種である[1]~[5]のいずれか一項に記載のエッチング方法。
[7] 前記フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物が、六フッ化硫黄、三フッ化窒素、三フッ化塩素、七フッ化ヨウ素、五フッ化臭素、三フッ化リン、トリフルオロヨードメタン、フッ素ガス、炭素原子数1以上3以下の鎖状飽和パーフルオロカーボン、炭素原子数2以上6以下の不飽和パーフルオロカーボン、炭素原子数3以上6以下の環状パーフルオロカーボン、及び炭素原子数1以上3以下のハロンのうち少なくとも1種である[6]に記載のエッチング方法。
[8] 前記水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物が、ブロモメタン、ジブロモメタン、水素ガス、硫化水素、塩化水素、臭化水素、アンモニア、炭素原子数1以上3以下のアルカン、炭素原子数2以上4以下のアルケン、及び炭素原子数3以上6以下の環状アルカンのうち少なくとも1種である[6]に記載のエッチング方法。
[9] 前記酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物が、酸素ガス、一酸化炭素、二酸化炭素、硫化カルボニル、及び二酸化硫黄のうち少なくとも1種である[6]に記載のエッチング方法。
[10] 前記フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物が、炭素原子数1以上4以下の鎖状飽和ハイドロフルオロカーボン、炭素原子数2以上6以下の不飽和ハイドロフルオロカーボン、炭素原子数3以上6以下の環状ハイドロフルオロカーボン、及びフッ化水素のうち少なくとも1種である[6]に記載のエッチング方法。
[11] 前記フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物が、フッ化カルボニル、二フッ化酸素、トリフルオロメチルハイポフルオリド、炭素原子数2以上4以下のパーフルオロエーテル、及び炭素原子数3以上5以下のパーフルオロケトンのうち少なくとも1種である[6]に記載のエッチング方法。
[12] 前記水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物が、水、炭素原子数1以上3以下のアルコール、炭素原子数2以上4以下のエーテル、及び炭素原子数3以上5以下のケトンのうち少なくとも1種である[6]に記載のエッチング方法。
 本発明によれば、サイドエッチ率を低く抑えることができるとされる低温エッチング法であっても、パーティクルが発生しにくい。
本発明に係るエッチング方法の一実施形態を説明するエッチング装置の一例の概略図である。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係るエッチング方法は、ケイ素を含有するエッチング対象物を有する被エッチング部材の温度を0℃以下にし、フッ素原子、水素原子、及び酸素原子のうち少なくとも1種の原子を分子内に有する化合物であるエッチング化合物を含有するエッチングガスを、被エッチング部材に接触させて、エッチング対象物をエッチングするエッチング工程を備える。そして、エッチングガスは、少なくとも1種の金属を有する金属不純物を含有するか又は含有せず、金属不純物を含有する場合は、含有する全種の金属の濃度の総和が4000質量ppb以下である。
 上記エッチング化合物を含有するエッチングガスを被エッチング部材に接触させると、ケイ素を含有するエッチング対象物とエッチングガス中の上記エッチング化合物とが反応するため、エッチング対象物のエッチングが進行する。これに対して、マスク等の非エッチング対象物は上記エッチング化合物とほとんど反応しないので、非エッチング対象物のエッチングはほとんど進行しない。よって、本実施形態に係るエッチング方法によれば、非エッチング対象物に比べてエッチング対象物を選択的にエッチングすることができる(すなわち、高いエッチング選択性が得られる)。
 また、本実施形態に係るエッチング方法は、0℃以下の温度でエッチングを行う低温エッチング法であるので、低いサイドエッチ率でエッチングを行うことができる。さらに、本実施形態に係るエッチング方法によれば、エッチングガスが金属不純物を含有していないか、又は、含有していても極微量であるため、エッチングにおいてパーティクルが発生しにくい。
 よって、本実施形態に係るエッチング方法は、半導体素子の製造に利用することができる。例えば、ケイ素化合物からなる薄膜を有する半導体基板に対して、本実施形態に係るエッチング方法を適用し、ケイ素化合物からなる薄膜のエッチングを行えば、半導体素子を製造することができる。本実施形態に係るエッチング方法は、歩留まり低下の要因となるパーティクルが発生しにくいので、半導体素子の生産性が高い。
 エッチング後の被エッチング部材の表面上に存在するパーティクルの数は、市販の装置で測定することができる。例えば、ケーエルエー・テンコール株式会社製のSurfscan SP1を用いれば、直径50nm以上のパーティクルを検出することができる。エッチング後の被エッチング部材の表面上に存在するパーティクルの数は、0.5個/cm2以下であることが好ましく、0.1個/cm2以下であることがより好ましく、0.05個/cm2以下であることさらに好ましい。
 なお、本発明におけるエッチングとは、被エッチング部材が有するエッチング対象物の一部又は全部を除去して被エッチング部材を所定の形状(例えば三次元形状)に加工すること(例えば、被エッチング部材が有する、ケイ素化合物からなる膜状のエッチング対象物を、所定の膜厚に加工すること)を意味する。また、本発明における「金属の濃度」とは、金属不純物の濃度ではなく、金属不純物が有する金属の濃度である。さらに、本発明における「金属の濃度」の「金属」には、金属原子と金属イオンが包含される。
 以下、本実施形態に係るエッチング方法について、さらに詳細に説明する。
〔エッチング方法〕
 本実施形態に係るエッチング方法には、プラズマを使用するプラズマエッチング、プラズマを使用しないプラズマレスエッチングのいずれも用いることができる。プラズマエッチングとしては、例えば、反応性イオンエッチング(RIE:Reactive Ion Etching)、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマエッチング、マイクロ波プラズマエッチングが挙げられる。
 また、プラズマエッチングにおいては、プラズマは被エッチング部材が設置されたチャンバー内で発生させてもよいし、プラズマ発生室と被エッチング部材を設置するチャンバーとを分けてもよい(すなわち、遠隔プラズマを用いてもよい)。遠隔プラズマを用いたエッチングにより、ケイ素を含有するエッチング対象物をより高い選択性でエッチングできる場合がある。
〔エッチング化合物〕
 エッチングガスに含有されるエッチング化合物は、ケイ素を含有するエッチング対象物と反応して、エッチング対象物のエッチングを進行させる化合物である。エッチング化合物の種類は、フッ素原子、水素原子、及び酸素原子のうち少なくとも1種の原子を分子内に有する化合物であるならば、特に限定されるものではないが、例えば、下記の化合物が挙げられる。
 すなわち、エッチング化合物の例としては、フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物、水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物、酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物、フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物、フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物、水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物、フッ素原子、水素原子、及び酸素原子を分子内に有する化合物が挙げられる。
 フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物の具体例としては、六フッ化硫黄(SF6)、三フッ化窒素(NF3)、三フッ化塩素(ClF3)、七フッ化ヨウ素(IF7)、五フッ化臭素(BrF5)、三フッ化リン(PF3)、トリフルオロヨードメタン(CF3I)、フッ素ガス(F2)、炭素原子数1以上3以下の鎖状飽和パーフルオロカーボン、炭素原子数2以上6以下の不飽和パーフルオロカーボン、炭素原子数3以上6以下の環状パーフルオロカーボン、及び炭素原子数1以上3以下のハロンが挙げられる。
 炭素原子数1以上3以下の鎖状飽和パーフルオロカーボンの具体例としては、テトラフルオロメタン(CF4)、ヘキサフルオロエタン(C26)、オクタフルオロプロパン(C38)が挙げられる。
 炭素原子数2以上6以下の不飽和パーフルオロカーボンの具体例としては、テトラフルオロエチレン(C24)、ヘキサフルオロプロピレン(C36)、オクタフルオロ-1-ブテン(C48)、オクタフルオロ-2-ブテン(C48)、パーフルオロイソブテン(C48)、ヘキサフルオロブタジエン(C46)、ヘキサフルオロ-1-ブチン(C46)、ヘキサフルオロ-2-ブチン(C46)、デカフルオロ-1-ペンテン(C510)、デカフルオロ-2-ペンテン(C510)、パーフルオロ-2-メチル-2-ブテン(C510)、オクタフルオロ-1,4-ペンタジエン(C58)、オクタフルオロ-2,3-ペンタジエン(C58)、オクタフルオロ-1,3-ペンタジエン(C58)、オクタフルオロ-2-ペンチン(C58)、ペンタフルオロ-3-トリフルオロメチル-1-ブチン(C58)、ドデカフルオロ-1-ヘキセン(C612)、ドデカフルオロ-2-ヘキセン(C612)、ドデカフルオロ-3-ヘキセン(C612)、パーフルオロ-4-メチル-2-ペンテン(C612)、パーフルオロ(2-メチル-2-ペンテン)(C612)、パーフルオロ(2,3-ジメチル-2-ブテン)(C612)、デカフルオロ-1,5-ヘキサジエン(C610)、デカフルオロ-2,4-ヘキサジエン(C610)、デカフルオロ-1,3-ヘキサジエン(C610)、デカフルオロ-1,4-ヘキサジエン(C610)、デカフルオロ-1-ヘキシン(C610)、デカフルオロ-2-ヘキシン(C610)、デカフルオロ-3-ヘキシン(C610)が挙げられる。
 炭素原子数3以上6以下の環状パーフルオロカーボンの具体例としては、ヘキサフルオロシクロプロパン(C36)、オクタフルオロシクロブタン(C48)、パーフルオロシクロブテン(C46)、パーフルオロシクロペンテン(C58)、パーフルオロシクロペンタン(C510)、パーフルオロメチルシクロブタン(C510)、ヘキサフルオロベンゼン(C66)、パーフルオロシクロヘキサン(C612)、パーフルオロメチルシクロペンタン(C612)、パーフルオロ-1,2-ジメチルシクロブタン(C612)、パーフルオロ-2,4-ジメチルシクロブタン(C612)、パーフルオロ-3,4-ジメチルシクロブタン(C612)、パーフルオロ-4,4-ジメチルシクロブタン(C612)が挙げられる。
 炭素原子数1以上3以下のハロンの具体例としては、ブロモトリフルオロメタン(CBrF3)、ジブロモジフルオロメタン(CBr22)、トリブロモフルオロメタン(CBr3F)、ブロモペンタフルオロエタン(C2BrF5)、ジブロモテトラフルオロエタン(C2Br24)、トリブロモトリフルオロエタン(C2Br33)、テトラブロモジフルオロエタン(C2Br42)、ペンタブロモフルオロエタン(C2Br5F)、ブロモトリフルオロエチレン(C2BrF3)、ジブロモジフルオロエチレン(C2Br22)、トリブロモフルオロエチレン(C2Br3F)、ブロモヘプタフルオロプロパン(C3BrF7)、ジブロモヘキサフルオロプロパン(C3Br26)、トリブロモペンタフルオロプロパン(C3Br35)、テトラブロモテトラフルオロプロパン(C3Br44)、ペンタブロモトリフルオロプロパン(C3Br53)、ヘキサブロモジフルオロプロパン(C3Br62)、ヘプタブロモフルオロプロパン(C3Br7F)、ブロモペンタフルオロプロペン(C3BrF5)、ジブロモテトラフルオロプロペン(C3Br24)、トリブロモトリフルオロプロペン(C3Br33)、テトラブロモジフルオロプロペン(C3Br42)、ペンタブロモフルオロプロペン(C3Br5F)、ブロモペンタフルオロシクロプロパン(C3BrF5)、ジブロモテトラフルオロシクロプロパン(C3Br24)、トリブロモトリフルオロシクロプロパン(C3Br33)、テトラブロモジフルオロシクロプロパン(C3Br42)、ペンタブロモフルオロシクロプロパン(C3Br5F)、ブロモトリフルオロシクロプロペン(C3BrF3)、ジブロモジフルオロシクロプロペン(C3Br22)、トリブロモフルオロシクロプロペン(C3Br3F)が挙げられる。
 なお、一般にハロンとは、炭化水素が有する水素原子の一部又は全部がハロゲン原子で置換されたハロゲン化炭化水素のうち臭素原子を有するものを意味するが、本発明においては、炭化水素が有する水素原子の全部がハロゲン原子で置換されたハロゲン化炭化水素のうち臭素原子及びフッ素原子を有するものを意味する。
 水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物の具体例としては、ブロモメタン(CH3Br)、ジブロモメタン(CH2Br2)、水素ガス(H2)、硫化水素(H2S)、塩化水素(HCl)、臭化水素(HBr)、アンモニア(NH3)、炭素原子数1以上3以下のアルカン、炭素原子数2以上4以下のアルケン、及び炭素原子数3以上6以下の環状アルカンが挙げられる。
 炭素原子数1以上3以下のアルカンの具体例としては、メタン(CH4)、エタン(C26)、プロパン(C38)が挙げられる。
 炭素原子数2以上4以下のアルケンの具体例としては、エチレン(C24)、プロピレン(C36)、1-ブテン(C48)、2-ブテン(C48)、イソブテン(C48)が挙げられる。
 炭素原子数3以上6以下の環状アルカンの具体例としては、シクロプロパン(C36)、シクロブタン(C48)、シクロペンタン(C510)、シクロヘキサン(C612)が挙げられる。
 なお、上記のアルカン、アルケン、及び環状アルカンは、本発明においては、フッ素原子及び酸素原子を分子内に有しないものを意味する。
 酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物の具体例としては、酸素ガス(O2)、オゾン(O3)、一酸化炭素(CO)、二酸化炭素(CO2)、硫化カルボニル(COS)、及び二酸化硫黄(SO2)が挙げられる。
 フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物の具体例としては、炭素原子数1以上4以下の鎖状飽和ハイドロフルオロカーボン、炭素原子数2以上6以下の不飽和ハイドロフルオロカーボン、炭素原子数3以上6以下の環状ハイドロフルオロカーボン、及びフッ化水素(HF)が挙げられる。
 炭素原子数1以上4以下の鎖状飽和ハイドロフルオロカーボンの具体例としては、フルオロメタン(CH3F)、ジフルオロメタン(CH22)、トリフルオロメタン(CHF3)、フルオロエタン(C25F)、ジフルオロエタン(C242)、トリフルオロエタン(C233)、テトラフルオロエタン(C224)、ペンタフルオロエタン(C2HF5)、フルオロプロパン(C37F)、ジフルオロプロパン(C362)、トリフルオロプロパン(C353)、テトラフルオロプロパン(C344)、ペンタフルオロプロパン(C335)、ヘキサフルオロプロパン(C326)、ヘプタフルオロプロパン(C3HF7)、フルオロブタン(C49F)、ジフルオロブタン(C482)、トリフルオロブタン(C473)、テトラフルオロブタン(C464)、ペンタフルオロブタン(C455)、ヘキサフルオロブタン(C446)、ヘプタフルオロブタン(C437)、オクタフルオロブタン(C428)、ナノフルオロブタン(C4HF9)、フルオロメチルプロパン(C49F)、ジフルオロメチルプロパン(C482)、トリフルオロメチルプロパン(C473)、テトラフルオロメチルプロパン(C464)、ペンタフルオロメチルプロパン(C455)、ヘキサフルオロメチルプロパン(C446)、ヘプタフルオロメチルプロパン(C437)、オクタフルオロメチルプロパン(C428)、ナノフルオロメチルプロパン(C4HF9)が挙げられる。
 炭素原子数2以上6以下の不飽和ハイドロフルオロカーボンの具体例としては、2,3,3,3-テトラフルオロプロペン(C324)、1,3,3,3-テトラフルオロプロペン(C324)、シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(C426)、トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(C426)が挙げられる。
 炭素原子数3以上6以下の環状ハイドロフルオロカーボンの具体例としては、フルオロシクロプロパン(C35F)、ジフルオロシクロプロパン(C342)、トリフルオロシクロプロパン(C333)、テトラフルオロシクロプロパン(C324)、ペンタフルオロシクロプロパン(C3HF5)、フルオロシクロブタン(C47F)、ジフルオロシクロブタン(C462)、トリフルオロシクロブタン(C453)、テトラフルオロシクロブタン(C444)、ペンタフルオロシクロブタン(C435)、ヘキサフルオロシクロブタン(C426)、ヘプタフルオロシクロブタン(C4HF7)、フルオロメチルシクロプロパン(C47F)、ジフルオロメチルシクロプロパン(C462)、トリフルオロメチルシクロプロパン(C453)、テトラフルオロメチルシクロプロパン(C444)、ペンタフルオロメチルシクロプロパン(C435)、ヘキサフルオロメチルシクロプロパン(C426)、ヘプタフルオロメチルシクロプロパン(C4HF7)、フルオロシクロペンタン(C59F)、ジフルオロシクロペンタン(C582)、トリフルオロシクロペンタン(C573)、テトラフルオロシクロペンタン(C564)、ペンタフルオロシクロペンタン(C555)、ヘキサフルオロシクロペンタン(C546)、ヘプタフルオロシクロペンタン(C537)、オクタフルオロシクロペンタン(C528)、ナノフルオロシクロペンタン(C5HF9)、フルオロメチルシクロブタン(C59F)、ジフルオロメチルシクロブタン(C582)、トリフルオロメチルシクロブタン(C573)、テトラフルオロメチルシクロブタン(C564)、ペンタフルオロメチルシクロブタン(C555)、ヘキサフルオロメチルシクロブタン(C546)、ヘプタフルオロメチルシクロブタン(C537)、オクタフルオロメチルシクロブタン(C528)、ナノフルオロメチルシクロブタン(C5HF9)、フルオロジメチルシクロプロパン(C59F)、ジフルオロジメチルシクロプロパン(C582)、トリフルオロジメチルシクロプロパン(C573)、テトラフルオロジメチルシクロプロパン(C564)、ペンタフルオロジメチルシクロプロパン(C555)、ヘキサフルオロジメチルシクロプロパン(C546)、ヘプタフルオロジメチルシクロプロパン(C537)、オクタフルオロジメチルシクロプロパン(C528)、ナノフルオロジメチルシクロプロパン(C5HF9)、フルオロエチルシクロプロパン(C59F)、ジフルオロエチルシクロプロパン(C582)、トリフルオロエチルシクロプロパン(C573)、テトラフルオロエチルシクロプロパン(C564)、ペンタフルオロエチルシクロプロパン(C555)、ヘキサフルオロエチルシクロプロパン(C546)、ヘプタフルオロエチルシクロプロパン(C537)、オクタフルオロエチルシクロプロパン(C528)、ナノフルオロエチルシクロプロパン(C5HF9)、フルオロシクロヘキサン(C611F)、ジフルオロシクロヘキサン(C6102)、トリフルオロシクロヘキサン(C693)、テトラフルオロシクロヘキサン(C684)、ペンタフルオロシクロヘキサン(C675)、ヘキサフルオロシクロヘキサン(C666)、ヘプタフルオロシクロヘキサン(C657)、オクタフルオロシクロヘキサン(C648)、ナノフルオロシクロヘキサン(C639)、デカフルオロシクロヘキサン(C6210)、ウンデカフルオロシクロヘキサン(C6HF11)が挙げられる。
 なお、本発明においては、ハイドロフルオロカーボンとは、炭化水素が有する水素原子の一部がフッ素原子で置換された化合物を意味する。
 フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物の具体例としては、フッ化カルボニル(COF2)、二フッ化酸素(OF2)、トリフルオロメチルハイポフルオリド(CF3OF)、炭素原子数2以上4以下のパーフルオロエーテル、及び炭素原子数3以上5以下のパーフルオロケトンが挙げられる。
 炭素原子数2以上4以下のパーフルオロエーテルの具体例としては、パーフルオロジメチルエーテル(CF3OCF3)、パーフルオロメチルエチルエーテル(CF3OC25)、パーフルオロジエチルエーテル(C25OC25)、パーフルオロメチルプロピルエーテル(CF3OC37)が挙げられる。
 炭素原子数3以上5以下のパーフルオロケトンの具体例としては、パーフルオロアセトン(CF3COCF3)、パーフルオロブタノン(CF3COC25)、パーフルオロペンタノン(CF3COC37、C25COC25)が挙げられる。
 なお、本発明においては、パーフルオロエーテルとは、エーテルが有する炭化水素基の水素原子の全部がフッ素原子で置換された化合物を意味し、パーフルオロケトンとは、ケトンが有する炭化水素基の水素原子の全部がフッ素原子で置換された化合物を意味する。
 水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物の具体例としては、水(H2O)、炭素原子数1以上3以下のアルコール、炭素原子数2以上4以下のエーテル、及び炭素原子数3以上5以下のケトンが挙げられる。
 炭素原子数1以上3以下のアルコールの具体例としては、メタノール(CH3OH)、エタノール(C25OH)、プロパノール(C37OH)、イソプロパノール(C37OH)が挙げられる。
 炭素原子数2以上4以下のエーテルの具体例としては、ジメチルエーテル(CH3OCH3)、ジエチルエーテル(C25OC25)、メチルエチルエーテル(CH3OC25)、メチルプロピルエーテル(CH3OC37)が挙げられる。
 炭素原子数3以上5以下のケトンの具体例としては、アセトン(CH3COCH3)、ブタノン(CH3COC25)、ペンタノン(CH3COC37、C25COC25)が挙げられる。
 フッ素原子、水素原子、及び酸素原子を分子内に有する化合物の具体例としては、炭素原子数2以上4以下のハイドロフルオロエーテル、炭素原子数2以上4以下のフルオロアルコール、炭素原子数3以上5以下のハイドロフルオロケトンが挙げられる。
 炭素原子数2以上4以下のハイドロフルオロエーテルの具体例としては、ペンタフルオロジメチルエーテル(CHF2OCF3)、テトラフルオロジメチルエーテル(CHF2OCHF2、CH2FOCF3)、トリフルオロジメチルエーテル(CH3OCF3、CH2FOCHF2)、ジフルオロジメチルエーテル(CH3OCHF2、CH2FOCH2F)、フルオロジメチルエーテル(CH3OCH2F)、ジフルオロメチルペンタフルオロエチルエーテル(CHF2OC25)、トリフルオロメチルテトラフルオロエチルエーテル(CF3OC2HF4)、フルオロメチルペンタフルオロエチルエーテル(CH2FOC25)、ジフルオロメチルテトラフルオロエチルエーテル(CHF2OC2HF4)、トリフルオロメチルトリフルオロエチルエーテル(CF3OC223)、メチルペンタフルオロエチルエーテル(CH3OC25)、フルオロメチルテトラフルオロエチルエーテル(CH2FOC2HF4)、ジフルオロメチルトリフルオロエチルエーテル(CHF2OC223)、トリフルオロメチルジフルオロエチルエーテル(CF3OC232)、メチルテトラフルオロエチルエーテル(CH3OC2HF4)、フルオロメチルトリフルオロエチルエーテル(CH2FOC223)、ジフルオロメチルジフルオロエチルエーテル(CHF2OC232)、トリフルオロメチルフルオロエチルエーテル(CF3OC24F)、メチルトリフルオロエチルエーテル(CH3OC223)、フルオロメチルジフルオロエチルエーテル(CH2FOC232)、ジフルオロメチルフルオロエチルエーテル(CHF2OC24F)、トリフルオロメチルエチルエーテル(CF3OC25)、メチルジフルオロエチルエーテル(CH3OC232)、フルオロメチルフルオロエチルエーテル(CH2FOC24F)、ジフルオロエチルエーテル(CHF2OC25)、メチルフルオロエチルエーテル(CH3OC24F)、フルオロメチルエチルエーテル(CH2FOC25)、テトラフルオロエチルペンタフルオロエチルエーテル(C2HF4OC25)、ビステトラフルオロエチルエーテル(C2HF4OC2HF4)、ペンタフルオロエチルトリフルオロエチルエーテル(C25OC223)、ペンタフルオロエチルジフルオロエチルエーテル(C25OC232)、テトラフルオロエチルトリフルオロエチルエーテル(C2HF4OC223)、ペンタフルオロエチルフルオロエチルエーテル(C25OC24F)、テトラフルオロエチルジフルオロエチルエーテル(C2HF4OC232)、ビストリフルオロエチルエーテル(C223OC223)、エチルペンタフルオロエチルエーテル(C25OC25)、フルオロエチルテトラフルオロエチルエーテル(C24FOC2HF4)、ジフルオロエチルトリフルオロエチルエーテル(C232OC223)、エチルテトラフルオロエチルエーテル(C25OC2HF4)、フルオロエチルトリフルオロエチルエーテル(C24FOC223)、ビスジフルオロエチルエーテル(C232OC232)、エチルジフルオロエチルエーテル(C25OC232)、ビスフルオロエチルエーテル(C24FOC24F)、エチルフルオロエチルエーテル(C25OC24F)、ジフルオロメチルヘプタフルオロプロピルエーテル(CHF2OC37)、トリフルオロメチルヘキサフルオロプロピルエーテル(CF3OC3HF6)、フルオロメチルヘプタフルオロプロピルエーテル(CH2FOC37)、ジフルオロメチルヘキサフルオロプロピルエーテル(CHF2OC3HF6)、トリフルオロメチルペンタフルオロプロピルエーテル(CF3OC325)、メチルヘプタフルオロプロピルエーテル(CH3OC37)、フルオロメチルヘキサフルオロプロピルエーテル(CH2FOC3HF6)、ジフルオロメチルペンタフルオロプロピルエーテル(CHF2OC325)、トリフルオロメチルテトラフルオロプロピルエーテル(CF3OC334)、メチルヘキサフルオロプロピルエーテル(CH3OC3HF6)、フルオロメチルペンタフルオロプロピルエーテル(CH2FOC325)、ジフルオロメチルテトラフルオロプロピルエーテル(CHF2OC334)、トリフルオロメチルトリフルオロプロピルエーテル(CF3OC343)、メチルペンタフルオロプロピルエーテル(CH3OC325)、フルオロメチルテトラフルオロプロピルエーテル(CH2FOC334)、ジフルオロメチルトリフルオロプロピルエーテル(CHF2OC343)、トリフルオロメチルジフルオロプロピルエーテル(CF3OC352)、メチルテトラフルオロプロピルエーテル(CH3OC334)、フルオロメチルトリフルオロプロピルエーテル(CH2FOC343)、ジフルオロメチルジフルオロプロピルエーテル(CHF2OC352)、トリフルオロメチルフルオロプロピルエーテル(CF3OC36F)、メチルトリフルオロプロピルエーテル(CH3OC343)、フルオロメチルジフルオロプロピルエーテル(CH2FOC325)、ジフルオロメチルフルオロプロピルエーテル(CHF2OC36F)、トリフルオロメチルプロピルエーテル(CF3OC37)、メチルジフルオロプロピルエーテル(CH3OC352)、フルオロメチルフルオロプロピルエーテル(CH2FOC36F)、ジフルオロメチルプロピルエーテル(CHF2OC37)、メチルフルオロプロピルエーテル(CH3OC36F)、フルオロメチルプロピルエーテル(CH2FOC37)が挙げられる。
 炭素原子数2以上4以下のフルオロアルコールの具体例としては、トリフルオロエタノール(CF3CH2OH)、ヘキサフルオロ-2-プロパノール(CF3CH(OH)CF3)、ペンタフルオロプロパノール(C25CH2OH)、ペンタフルオロ-2-プロパノール(CF3CH(OH)CHF2)、テトラフルオロプロパノール(C2HF4CH2OH)、テトラフルオロ-2-プロパノール(CF3CH(OH)CH2F、CHF2CH(OH)CHF2)、トリフルオロプロパノール(C223CH2OH)、トリフルオロ-2-プロパノール(CF3CH(OH)CH3、CHF2CH(OH)CH2F)、ジフルオロプロパノール(C232CH2OH)、ジフルオロ-2-プロパノール(CHF2CH(OH)CH3、CH2FCH(OH)CH2F)、フルオロプロパノール(C24FCH2OH)、フルオロ-2-プロパノール(CH2FCH(OH)CH3)、パーフルオロ-t-ブタノール(CF3C(CF3)(OH)CF3)が挙げられる。
 炭素原子数3以上5以下のハイドロフルオロケトンの具体例としては、ペンタフルオロアセトン(CF3COCHF2)、テトラフルオロアセトン(CF3COCH2F、CHF2COCHF2)、トリフルオロアセトン(CF3COCH3、CHF2COCH2F)、ジフルオロアセトン(CHF2COCH3、CH2FCOCH2F)、ヘプタフルオロブタノン(C25COCHF2、C2HF4COCF3)、ヘキサフルオロブタノン(C25COCH2F、C2HF4COCHF2、C223COCH3)、ペンタフルオロブタノン(C25COCH3、C2HF4COCH2F、C223COCHF2、C232COCF3)、テトラフルオロブタノン(C2HF4COCH3、C223COCH2F、C232COCHF2、C24FCOCF3)、トリフルオロブタノン(C223COCH3、C232COCH2F、C24FCOCHF2、C25COCF3)、ジフルオロブタノン(C232COCH3、C24FCOCH2F、C25COCHF2)、フルオロブタノン(C24FCOCH3、C25COCH2F)、ノナフルオロ-3-ペンタノン(C25COC2HF4)、オクタフルオロ-3-ペンタノン(C25COC223、C2HF4COC2HF4)、ヘプタフルオロ-3-ペンタノン(C25COC232、C2HF4COC223)、ヘキサフルオロ-3-ペンタノン(C25COC24F、C2HF4COC232、C223COC223)、ペンタフルオロ-3-ペンタノン(C25COC25、C2HF4COC24F、C223COC232)、テトラフルオロ-3-ペンタノン(C2HF4COC25、C223COC24F、C232COC232)、トリフルオロ-3-ペンタノン(C223COC25、C232COC24F)、ジフルオロ-3-ペンタノン(C232COC25、C24FCOC24F)、フルオロ-3-ペンタノン(C24FCOC25)、ナノフルオロ-2-ペンタノン(CHF2COC37、CF3COC3HF6)、オクタフルオロ-2-ペンタノン(CH2FCOC37、CHF2COC3HF6、CF3COC325)、ヘプタフルオロ-2-ペンタノン(CH3COC37、CH2FCOC3HF6、CHF2COC325、CF3COC334)、ヘキサフルオロ-2-ペンタノン(CH3COC3HF6、CH2FCOC325、CHF2COC334、CF3COC343)、ペンタフルオロ-2-ペンタノン(CH3COC325、CH2FCOC334、CHF2COC343、CF3COC352)、テトラフルオロ-2-ペンタノン(CH3COC334、CH2FCOC343、CHF2COC352、CF3COC36F)、トリフルオロ-2-ペンタノン(CH3COC343、CH2FCOC352、CHF2COC36F、CF3COC37)、ジフルオロ-2-ペンタノン(CH3COC352、CH2FCOC36F、CHF2COC37)、フルオロ-2-ペンタノン(CH3COC36F、CH2FCOC37)が挙げられる。
 これらのエッチング化合物は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
〔エッチングガス〕
 エッチングガスは、上記のエッチング化合物を含有するガスである。エッチングガスは、上記のエッチング化合物のみからなるガスであってもよいし、上記のエッチング化合物と希釈ガスを含有する混合ガスであってもよい。また、上記のエッチング化合物と希釈ガスと添加ガスを含有する混合ガスであってもよい。
 希釈ガスとしては、窒素ガス(N2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)から選ばれる少なくとも1種を用いることができる。
 希釈ガスの含有量は、エッチングガスの総量に対して90体積%以下であることが好ましく、50体積%以下であることがより好ましい。また、希釈ガスの含有量は、エッチングガスの総量に対して10体積%以上であることが好ましい。
 エッチングガス中のエッチング化合物の含有量は、エッチング速度を向上させる観点から、エッチングガスの総量に対して5体積%以上が好ましく、10体積%以上がさらに好ましい。また、エッチング化合物の使用量を抑制する観点から、エッチングガスの総量に対して90体積%以下が好ましく、80体積%以下がさらに好ましい。
 エッチングガスは、エッチングガスを構成する複数の成分(エッチング化合物、希釈ガス等)を混合することにより得ることができるが、複数の成分の混合はチャンバー内外いずれで行ってもよい。すなわち、エッチングガスを構成する複数の成分をそれぞれ独立してチャンバー内に導入し、チャンバー内で混合してもよいし、エッチングガスを構成する複数の成分を混合してエッチングガスを得て、得られたエッチングガスをチャンバー内に導入してもよい。
〔金属不純物〕
 エッチングガスは、少なくとも1種の金属を有する金属不純物を含有するか又は含有しない。金属不純物を含有する場合は、エッチングガスが含有する全種の金属の濃度の総和が4000質量ppb以下と低濃度であるため、前述したようにエッチングにおいてパーティクルが発生しにくい。含有する全種の金属の濃度の総和は、1000質量ppb以下であることが好ましく、100質量ppb以下であることがより好ましい。
 エッチング中に水が発生すると、0℃以下となっている被エッチング部材の表面に水が凝縮する。フッ素原子を分子内に有する化合物をエッチング化合物として用いている場合は、エッチング中に発生したフッ化水素ラジカルが被エッチング部材の表面の水に接触すると、フッ化水素酸が生成するため、化学反応によるエッチングが促進されてエッチング速度が向上する。
 しかしながら、エッチングガス中に金属不純物が含有されていると、金属不純物とフッ化水素酸との反応により生成した金属フッ化物が要因となって、パーティクルが生成するおそれがある。また、金属フッ化物は化学的に安定で揮発性が低いため、ドライプロセスでの除去が困難である。そのため、その後のエッチングや堆積工程等の障害になり得る。したがって、エッチングガス中に含有されている金属不純物の量は、より少ない方が好ましく、エッチングガスが含有する全種の金属の濃度の総和は4000質量ppb以下である必要がある。
 なお、エッチングガスが含有する全種の金属の濃度の総和は、10質量ppb以上であってもよい。また、エッチングガスが含有する全種の金属の各濃度は、いずれも1質量ppb以上であってもよい。
 エッチングガス中の金属の濃度は、誘導結合プラズマ質量分析計(ICP-MS)で定量することができる。ここで、金属不純物を含有しないとは、誘導結合プラズマ質量分析計で定量することができない場合を意味する。
 金属不純物が有する金属としては、アルカリ金属、アルカリ土類金属や、周期表の3~14族に属する金属(例えば遷移金属)が挙げられる。
 アルカリ金属の例としてはリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられ、アルカリ土類金属の例としてはベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
 周期表の3~14族に属する金属の例としては、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、アルミニウム(Al)、及び錫(Sn)が挙げられる。
 金属不純物が有する金属は、これらの金属のうち1種であってもよいし、2種以上であってもよい。
 上記した金属不純物は、金属単体、金属化合物、金属ハロゲン化物、金属錯体としてエッチングガス中に含有されている場合がある。エッチングガス中における金属不純物の形態としては、微粒子、液滴、気体等が挙げられる。なお、上記の金属不純物は、上記エッチング化合物を合成する際に使用する原料、反応器、精製装置、充填容器等に由来してエッチングガスに混入すると考えられる。
 上記エッチング化合物から上記金属不純物を除去する方法としては、例えば、上記エッチング化合物をフィルターに通過させる方法、吸着剤に接触させる方法、蒸留で分離する方法等がある。そして、具体的には、例えば、ステンレス製シリンダーに上記エッチング化合物を封入し、シリンダー内圧下でのエッチング化合物の沸点以下に保持した状態で、例えばテトラフルオロメタンの場合であれば、1気圧よりやや高めのシリンダー内圧下で-125℃に保持した状態で、後述の実施例に記載する方法等によって気相部を抜き出すことで、金属の濃度が低下したエッチングガスを得ることができる。このような金属不純物を除去する工程によって、エッチングガスが含有する金属の濃度の総和を4000質量ppb以下とした後に、エッチングガスをエッチングに供することが好ましい。
〔エッチング工程の温度条件〕
 本実施形態に係るエッチング方法は低温エッチング法であるので、被エッチング部材の温度を0℃以下にしてエッチングを行うが、被エッチング部材の温度は-20℃以下とすることが好ましく、-40℃以下とすることがより好ましい。被エッチング部材の温度を上記範囲内としてエッチングを行えば、より低いサイドエッチ率でエッチングを行うことができる。
 ここで、温度条件の温度とは、被エッチング部材の温度であるが、エッチング装置のチャンバー内に設置された、被エッチング部材を支持するステージの温度を使用することもできる。
 エッチングを行う際に発生させるプラズマと被エッチング部材との間の電位差を構成するバイアスパワーについては、所望するエッチング形状により0~10000Wから選択すればよく、選択的にエッチングを行う場合は0~1000W程度が好ましい。
〔エッチング工程の圧力条件〕
 本実施形態に係るエッチング方法におけるエッチング工程の圧力条件は特に限定されるものではないが、10Pa以下とすることが好ましく、5Pa以下とすることがより好ましい。圧力条件が上記の範囲内であれば、プラズマを安定して発生させやすい。一方、エッチング工程の圧力条件は0.05Pa以上であることが好ましい。圧力条件が上記の範囲内であれば、電離イオンが多く発生し十分なプラズマ密度が得られやすい。
 エッチングガスの流量は、チャンバーの容積やチャンバー内を減圧する排気設備の能力に応じて、チャンバー内の圧力が一定に保たれるように適宜設定すればよい。
〔被エッチング部材〕
 本実施形態に係るエッチング方法によりエッチングする被エッチング部材は、エッチングの対象であるエッチング対象物を有するが、エッチングの対象ではない非エッチング対象物をさらに有していてもよい。
 被エッチング部材がエッチング対象物と非エッチング対象物を有する場合は、被エッチング部材は、エッチング対象物で形成されている部分と非エッチング対象物で形成されている部分とを有する部材でもよいし、エッチング対象物と非エッチング対象物の混合物で形成されている部材でもよい。また、被エッチング部材は、エッチング対象物、非エッチング対象物以外のものを有していてもよい。
 また、被エッチング部材の形状は特に限定されるものではなく、例えば、板状、箔状、膜状、粉末状、塊状であってもよい。被エッチング部材の例としては、前述した半導体基板が挙げられる。
〔エッチング対象物〕
 エッチング対象物は、ケイ素を含有する材料のみで形成されているものであってもよいし、ケイ素を含有する材料のみで形成されている部分と他の材質で形成されている部分とを有するものであってもよいし、ケイ素を含有する材料と他の材質の混合物で形成されているものであってもよい。ケイ素を含有する材料としては、例えば、酸化ケイ素、窒化ケイ素、ポリシリコン、シリコンゲルマニウム(SiGe)が挙げられる。これらのケイ素を含有する材料は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 酸化ケイ素の例としては、二酸化ケイ素(SiO2)が挙げられる。また、窒化ケイ素とは、ケイ素及び窒素を任意の割合で有する化合物を指し、例としてはSi34を挙げることができる。窒化ケイ素の純度は特に限定されないが、好ましくは30質量%以上、より好ましくは60質量%以上、さらに好ましくは90質量%以上である。
 また、エッチング対象物の形状は、特に限定されるものではなく、例えば、板状、箔状、膜状、粉末状、塊状であってもよい。さらに、エッチング対象物には、パターンやホール等の形状が形成されていてもよいし、形成されていなくてもよい。
〔非エッチング対象物〕
 非エッチング対象物は、上記のエッチング化合物と実質的に反応しないか、又は、上記のエッチング化合物との反応が極めて遅いため、本実施形態に係るエッチング方法によりエッチングを行っても、エッチングがほとんど進行しないものである。非エッチング対象物は、上記のような性質を有するならば特に限定されるものではないが、例えば、フォトレジスト、アモルファスカーボン、窒化チタンや、銅、ニッケル、コバルト等の金属や、これら金属の酸化物、窒化物が挙げられる。これらの中でも、取扱性及び入手容易性の観点から、フォトレジスト、アモルファスカーボンがより好ましい。
 また、非エッチング対象物は、エッチングガスによるエッチング対象物のエッチングを抑制するためのレジスト又はマスクとして使用することができる。よって、本実施形態に係るエッチング方法は、パターニングされた非エッチング対象物をレジスト又はマスクとして利用して、エッチング対象物を所定の形状に加工する(例えば、被エッチング部材が有する膜状のエッチング対象物を所定の膜厚に加工する)などの方法に利用することができるので、半導体素子の製造に対して好適に使用可能である。また、非エッチング対象物がほとんどエッチングされないので、半導体素子のうち本来エッチングされるべきでない部分がエッチングされることを抑制することができ、エッチングにより半導体素子の特性が失われることを防止することができる。
 次に、図1を参照しながら、本実施形態に係るエッチング方法を実施可能なエッチング装置の構成の一例と、該エッチング装置を用いたエッチング方法の一例を説明する。図1のエッチング装置は、プラズマを用いてエッチングを行うプラズマエッチング装置である。まず、図1のエッチング装置について説明する。
 図1のエッチング装置は、内部でエッチングが行われるチャンバー3と、チャンバー3の内部にプラズマを生成するプラズマ発生装置(図示せず)と、エッチングする被エッチング部材4をチャンバー3の内部に支持するステージ5と、ステージ5を介して被エッチング部材4を冷却する冷却部6と、被エッチング部材4の温度を測定する温度計(図示せず)と、チャンバー3の内部を減圧する真空ポンプ8と、チャンバー3の内部の圧力を測定する圧力計7と、を備えている。
 プラズマ発生装置のプラズマ生成機構の種類は特に限定されるものではなく、平行板に高周波電圧をかけるものであってもよいし、コイルに高周波電流を流すものであってもよい。プラズマ中で被エッチング部材4に高周波電圧をかけると被エッチング部材4に負の電圧がかかり、プラスイオンが被エッチング部材4に高速且つ垂直に入射するので、異方性エッチングが可能となる。図1のエッチング装置においては、ステージ5とプラズマ発生装置の高周波電源とが接続されていて、ステージ5に高周波電圧を印加することができるようになっている。
 また、図1のエッチング装置は、チャンバー3の内部にエッチングガスを供給するエッチングガス供給部を備えている。このエッチングガス供給部は、エッチング化合物のガスを供給するエッチング化合物ガス供給部1と、希釈ガスを供給する希釈ガス供給部2と、エッチング化合物ガス供給部1とチャンバー3を接続する配管と、希釈ガス供給部2とチャンバー3を接続する配管と、を有している。なお、希釈ガス供給部2と同様の形態で、添加ガスを供給する設備を併設してもよい(図示せず)。また、チャンバー3内に供給されたエッチングガス等のガスは、図示しない排気用配管を介してチャンバー3外に排出可能となっている。
 そして、エッチングガスとしてエッチング化合物ガスを使用する場合には、チャンバー3の内部を真空ポンプ8で減圧した上で、エッチング化合物ガス供給部1からエッチング化合物ガスを送り出すことにより、配管を介してエッチング化合物ガスをチャンバー3に供給すればよい。
 また、エッチングガスとしてエッチング化合物ガスと不活性ガス等の希釈ガスとの混合ガスを使用する場合には、チャンバー3の内部を真空ポンプ8で減圧した上で、エッチング化合物ガス供給部1からエッチング化合物ガスを送り出すとともに、希釈ガス供給部2から希釈ガスを送り出せばよい。これにより、チャンバー3内においてエッチング化合物ガスと希釈ガスが混合されてエッチングガスとなる。
 本実施形態に係るエッチング方法は、図1のエッチング装置のような、半導体素子製造工程に使用される一般的なプラズマエッチング装置を用いて行うことができ、使用可能なエッチング装置の構成は特に限定されない。
 例えば、チャンバー3の温度調節機構の構成は、被エッチング部材4の温度を任意の温度に調節できればよいので、図1のエッチング装置のように外付けの冷却部6でチャンバー3の外側からステージ5を冷却する構成でもよいし、ステージ5を冷却する冷却部をステージ5上に直接備える構成でもよい。
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。金属不純物を種々の濃度で含有するエッチング化合物のガスを調製した。エッチング化合物のガスの調製例を以下に説明する。
(調製例1)
 マンガン鋼製の容量1Lのシリンダー(密閉可能な円筒型容器)を3個用意した。それらシリンダーを順に、シリンダーA、シリンダーB、シリンダーCと呼ぶ。シリンダーAにはテトラフルオロメタン(常圧での沸点:-128℃)300gを充填し、-125℃に冷却することにより液化させ、ほぼ100kPaの状態で液相部と気相部とを形成させた。シリンダーB、Cは、真空ポンプで内部を1kPa以下に減圧した後に-196℃に冷却した。
 シリンダーAの気相部が存在している上側出口からテトラフルオロメタンのガス200gを抜き出し、減圧状態のシリンダーBへ移送した。シリンダーAに残ったテトラフルオロメタン100gを、サンプル1-1とする。その後、シリンダーAに残存しているテトラフルオロメタンのガスを上側出口から抜き出し、次のような方法によって誘導結合プラズマ質量分析計で各種金属の濃度を測定した。
 すなわち、シリンダーA内の液相のテトラフルオロメタンを20℃で気化させながら、その気相部からテトラフルオロメタンガスを抜き出し、濃度1mol/Lの硝酸水溶液100gに100mL/minの流量で流通、接触(バブリング)させて金属不純物を吸収させた。テトラフルオロメタンガスを流通させた後の濃度1mol/Lの硝酸水溶液の質量は80g(M1)であった。また、テトラフルオロメタンガスの流通前後のシリンダーAの質量差は50g(M2)であった。
 濃度1mol/Lの硝酸水溶液10g(M3)を採取して、メスフラスコを用いて超純水で100mL(V)に希釈した。このようにして調製した水溶液中の各種金属の濃度を誘導結合プラズマ質量分析計で測定し、その測定値(c1)と下記式によってテトラフルオロメタン中の金属濃度(C)を算出した。結果を表1に示す。
       C={(c1 × V)×(M1/M3)}/M2
Figure JPOXMLDOC01-appb-T000001
 次に、シリンダーBの温度を-125℃に昇温して液相部と気相部とを形成させ、シリンダーBの気相部が存在している上側出口からテトラフルオロメタンのガス100gを抜き出し、減圧状態のシリンダーCへ移送した。シリンダーBに残ったテトラフルオロメタン100gを、サンプル1-2とする。その後、シリンダーBに残存しているテトラフルオロメタンのガスを上側出口から抜き出し、誘導結合プラズマ質量分析計で各種金属の濃度を測定した。結果を表1に示す。
 また、シリンダーC内のテトラフルオロメタン100gを、サンプル1-3とする。シリンダーCの気相部が存在している上側出口からテトラフルオロメタンのガスを抜き出し、誘導結合プラズマ質量分析計で各種金属の濃度を測定した。結果を表1に示す。
(調製例2)
 エッチング化合物としてメタン(常圧での沸点:-162℃)を使用した点と、液化温度を-153℃とした点以外は、調製例1と同様の操作を行って、サンプル2-1、2-2、2-3を調製した。そして、それぞれのサンプルの各種金属の濃度を、前述の調製例1の場合と同様にして、誘導結合プラズマ質量分析計で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(調製例3)
 エッチング化合物として酸素ガス(常圧での沸点:-183℃)を使用した点と、液化温度を-153℃とした点以外は、調製例1と同様の操作を行って、サンプル3-1、3-2、3-3を調製した。そして、それぞれのサンプルの各種金属の濃度を、前述の調製例1の場合と同様にして、誘導結合プラズマ質量分析計で測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(調製例4)
 エッチング化合物としてジフルオロメタン(常圧での沸点:-52℃)を使用した点と、液化温度を-50℃とした点以外は、調製例1と同様の操作を行って、サンプル4-1、4-2、4-3を調製した。そして、それぞれのサンプルの各種金属の濃度を、前述の調製例1の場合と同様にして、誘導結合プラズマ質量分析計で測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(調製例5)
 エッチング化合物としてフッ化カルボニル(常圧での沸点:-85℃)を使用した点と、液化温度を-78℃とした点以外は、調製例1と同様の操作を行って、サンプル5-1、5-2、5-3を調製した。そして、それぞれのサンプルの各種金属の濃度を、前述の調製例1の場合と同様にして、誘導結合プラズマ質量分析計で測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(調製例6)
 エッチング化合物としてジメチルエーテル(常圧での沸点:-24℃)を使用した点と、液化温度を-20℃とした点以外は、調製例1と同様の操作を行って、サンプル6-1、6-2、6-3を調製した。そして、それぞれのサンプルの各種金属の濃度を、前述の調製例1の場合と同様にして、誘導結合プラズマ質量分析計で測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
(実施例1)
 半導体ウエハの表面上に、厚さ1000nmのシリコン酸化膜と、厚さ1000nmのシリコン窒化膜とを、積層せず、それぞれ表面に露出するように形成して、これを試験体とした。そして、エッチングガスを用いて試験体のエッチングを行った。
 エッチング装置としては、サムコ株式会社製のICPエッチング装置RIE-230iPを使用した。具体的には、サンプル1-3のテトラフルオロメタンを流量10mL/minで、サンプル2-3のメタンを流量5mL/minで、サンプル3-3の酸素ガスを流量5mL/minで、アルゴンを流量30mL/minでそれぞれ独立してチャンバー内に導入して、チャンバー内で混合しエッチングガスを調製した。そして、チャンバー内のエッチングガスの一部を取り出して、エッチングガスの各種金属の濃度を誘導結合プラズマ質量分析計で測定した。結果を表7に示す。
 次に、高周波電圧を500Wで印加して、チャンバー内でエッチングガスをプラズマ化した。そして、圧力3Pa、試験体の温度-50℃、バイアスパワー100Wのエッチング条件で、チャンバー内の試験体のエッチングを行った。
 エッチングが終了したら、試験体の温度を20℃にするとともに、アルゴンを流量30mL/minでチャンバー内に導入して、試験体の表面をパージした。その後、チャンバー内から試験体を取り出して、シリコン酸化膜及びシリコン窒化膜の表面上に存在するパーティクルの数をそれぞれ測定した。パーティクルの数の測定は、ケーエルエー・テンコール株式会社製のSurfscan SP1を用いて行った。結果を表7に示す。表7に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
Figure JPOXMLDOC01-appb-T000007
(実施例2)
 サンプル1-3のテトラフルオロメタンの代わりにサンプル1-2のテトラフルオロメタンを使用した点以外は、実施例1と同様の操作を行って、試験体のエッチングを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表7に示す。表7に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(比較例1)
 サンプル1-3のテトラフルオロメタンの代わりにサンプル1-1のテトラフルオロメタンを使用した点以外は、実施例1と同様の操作を行って、試験体のエッチングを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表7に示す。表7に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(実施例3)
 サンプル2-3のメタンを流量10mL/minで、サンプル1-3のテトラフルオロメタンを流量5mL/minで、サンプル3-3の酸素ガスを流量5mL/minで、アルゴンを流量30mL/minでそれぞれ独立してチャンバー内に導入して、チャンバー内で混合しエッチングガスを調製した点以外は、実施例1と同様の操作を行って、試験体のエッチングを行った。
 エッチングが終了したら、試験体の温度を20℃にするとともに、アルゴンを流量30mL/minでチャンバー内に導入して、試験体の表面をパージした。パージが終了したら、チャンバー内から試験体を取り出して、実施例1と同様にしてパーティクルの数を測定した。金属の濃度の測定結果とパーティクルの数の測定結果を表8に示す。
 表8に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
Figure JPOXMLDOC01-appb-T000008
(実施例4)
 サンプル2-3のメタンの代わりにサンプル2-2のメタンを使用した点以外は、実施例3と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表8に示す。表8に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(比較例2)
 サンプル2-3のメタンの代わりにサンプル2-1のメタンを使用した点以外は、実施例3と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表8に示す。表8に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(実施例5)
 サンプル3-3の酸素ガスを流量10mL/minで、サンプル4-3のジフルオロメタンを流量10mL/minで、アルゴンを流量30mL/minでそれぞれ独立してチャンバー内に導入して、チャンバー内で混合しエッチングガスを調製した点以外は、実施例3と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表9に示す。表9に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
Figure JPOXMLDOC01-appb-T000009
(実施例6)
 サンプル3-3の酸素ガスの代わりにサンプル3-2の酸素ガスを使用した点以外は、実施例5と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表9に示す。表9に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(実施例7)
 サンプル4-3のジフルオロメタンの代わりにサンプル4-2のジフルオロメタンを使用した点以外は、実施例5と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表9に示す。表9に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(比較例3)
 サンプル3-3の酸素ガスの代わりにサンプル3-1の酸素ガスを使用した点以外は、実施例5と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表9に示す。表9に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(比較例4)
 サンプル4-3のジフルオロメタンの代わりにサンプル4-1のジフルオロメタンを使用した点以外は、実施例5と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表9に示す。表9に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(実施例8)
 サンプル5-3のフッ化カルボニルを流量10mL/minで、サンプル2-3のメタンを流量10mL/minで、アルゴンを流量30mL/minでそれぞれ独立してチャンバー内に導入して、チャンバー内で混合しエッチングガスを調製した点以外は、実施例3と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表10に示す。表10に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
Figure JPOXMLDOC01-appb-T000010
(実施例9)
 サンプル5-3のフッ化カルボニルの代わりにサンプル5-2のフッ化カルボニルを使用した点以外は、実施例8と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表10に示す。表10に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(比較例5)
 サンプル5-3のフッ化カルボニルの代わりにサンプル5-1のフッ化カルボニルを使用した点以外は、実施例8と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表10に示す。表10に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(実施例10)
 サンプル6-3のジメチルエーテルを流量10mL/minで、サンプル1-3のテトラフルオロメタンを流量10mL/minで、アルゴンを流量30mL/minでそれぞれ独立してチャンバー内に導入して、チャンバー内で混合しエッチングガスを調製した点以外は、実施例3と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表11に示す。表11に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
Figure JPOXMLDOC01-appb-T000011
(実施例11)
 サンプル6-3のジメチルエーテルの代わりにサンプル6-2のジメチルエーテルを使用した点以外は、実施例10と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表11に示す。表11に示すように、パーティクルの数は0.1個/cm2以下であるので、エッチングによるパーティクルの発生が抑制されていることが分かる。
(比較例6)
 サンプル6-3のジメチルエーテルの代わりにサンプル6-1のジメチルエーテルを使用した点以外は、実施例10と同様の操作を行って、試験体のエッチング及びパージを行った。金属の濃度の測定結果とパーティクルの数の測定結果を表11に示す。表11に示すように、パーティクルの数は0.5個/cm2超過であるので、エッチングによるパーティクルの発生が抑制されていないことが分かる。
(実施例12)
 試験体の温度を-5℃とした点以外は、実施例1と同様の操作を行って、試験体のエッチングを行った。シリコン酸化膜の表面上に存在するパーティクルの数は0.04個/cm2、シリコン窒化膜の表面上に存在するパーティクルの数は0.03個/cm2であり、エッチングによるパーティクルの発生が抑制されていた。
(比較例7)
 試験体の温度を-5℃とした点以外は、比較例1と同様の操作を行って、試験体のエッチングを行った。シリコン酸化膜の表面上に存在するパーティクルの数は1.4個/cm2、シリコン窒化膜の表面上に存在するパーティクルの数は1.1個/cm2であり、エッチングによるパーティクルの発生は抑制されなかった。
(参考例1)
 試験体の温度を25℃とした点以外は、実施例1と同様の操作を行って、試験体のエッチングを行った。シリコン酸化膜の表面上に存在するパーティクルの数は0.02個/cm2、シリコン窒化膜の表面上に存在するパーティクルの数は0.03個/cm2であり、エッチングによるパーティクルの発生が抑制されていた。
(参考例2)
 試験体の温度を25℃とした点以外は、比較例1と同様の操作を行って、試験体のエッチングを行った。シリコン酸化膜の表面上に存在するパーティクルの数は0.07個/cm2、シリコン窒化膜の表面上に存在するパーティクルの数は0.05個/cm2であり、エッチングによるパーティクルの発生が抑制されていた。
   1・・・エッチング化合物ガス供給部
   2・・・希釈ガス供給部
   3・・・チャンバー
   4・・・被エッチング部材
   5・・・ステージ
   6・・・冷却部
   7・・・圧力計
   8・・・真空ポンプ

Claims (12)

  1.  ケイ素を含有するエッチング対象物を有する被エッチング部材の温度を0℃以下にし、フッ素原子、水素原子、及び酸素原子のうち少なくとも1種の原子を分子内に有する化合物であるエッチング化合物を含有するエッチングガスを、前記被エッチング部材に接触させて、前記エッチング対象物をエッチングするエッチング工程を備え、
     前記エッチングガスは、少なくとも1種の金属を有する金属不純物を含有するか又は含有せず、前記金属不純物を含有する場合は、含有する全種の前記金属の濃度の総和が4000質量ppb以下であるエッチング方法。
  2.  含有する全種の前記金属の濃度の総和が10質量ppb以上4000質量ppb以下である請求項1に記載のエッチング方法。
  3.  前記金属不純物が、アルカリ金属、アルカリ土類金属、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、及び錫のうち少なくとも1種を有する請求項1又は請求項2に記載のエッチング方法。
  4.  前記アルカリ金属がリチウム、ナトリウム、及びカリウムのうち少なくとも1種であり、前記アルカリ土類金属がマグネシウム及びカルシウムの少なくとも1種である請求項3に記載のエッチング方法。
  5.  含有する全種の前記金属の各濃度がいずれも1質量ppb以上である請求項1~4のいずれか一項に記載のエッチング方法。
  6.  前記エッチング化合物が、フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物、水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物、酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物、フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物、フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物、水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物のうち少なくとも1種である請求項1~5のいずれか一項に記載のエッチング方法。
  7.  前記フッ素原子を分子内に有し水素原子及び酸素原子を分子内に有しない化合物が、六フッ化硫黄、三フッ化窒素、三フッ化塩素、七フッ化ヨウ素、五フッ化臭素、三フッ化リン、トリフルオロヨードメタン、フッ素ガス、炭素原子数1以上3以下の鎖状飽和パーフルオロカーボン、炭素原子数2以上6以下の不飽和パーフルオロカーボン、炭素原子数3以上6以下の環状パーフルオロカーボン、及び炭素原子数1以上3以下のハロンのうち少なくとも1種である請求項6に記載のエッチング方法。
  8.  前記水素原子を分子内に有しフッ素原子及び酸素原子を分子内に有しない化合物が、ブロモメタン、ジブロモメタン、水素ガス、硫化水素、塩化水素、臭化水素、アンモニア、炭素原子数1以上3以下のアルカン、炭素原子数2以上4以下のアルケン、及び炭素原子数3以上6以下の環状アルカンのうち少なくとも1種である請求項6に記載のエッチング方法。
  9.  前記酸素原子を分子内に有しフッ素原子及び水素原子を分子内に有しない化合物が、酸素ガス、一酸化炭素、二酸化炭素、硫化カルボニル、及び二酸化硫黄のうち少なくとも1種である請求項6に記載のエッチング方法。
  10.  前記フッ素原子及び水素原子を分子内に有し酸素原子を分子内に有しない化合物が、炭素原子数1以上4以下の鎖状飽和ハイドロフルオロカーボン、炭素原子数2以上6以下の不飽和ハイドロフルオロカーボン、炭素原子数3以上6以下の環状ハイドロフルオロカーボン、及びフッ化水素のうち少なくとも1種である請求項6に記載のエッチング方法。
  11.  前記フッ素原子及び酸素原子を分子内に有し水素原子を分子内に有しない化合物が、フッ化カルボニル、二フッ化酸素、トリフルオロメチルハイポフルオリド、炭素原子数2以上4以下のパーフルオロエーテル、及び炭素原子数3以上5以下のパーフルオロケトンのうち少なくとも1種である請求項6に記載のエッチング方法。
  12.  前記水素原子及び酸素原子を分子内に有しフッ素原子を分子内に有しない化合物が、水、炭素原子数1以上3以下のアルコール、炭素原子数2以上4以下のエーテル、及び炭素原子数3以上5以下のケトンのうち少なくとも1種である請求項6に記載のエッチング方法。
PCT/JP2022/045918 2022-02-16 2022-12-13 エッチング方法 WO2023157441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022022023 2022-02-16
JP2022-022023 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023157441A1 true WO2023157441A1 (ja) 2023-08-24

Family

ID=87577943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045918 WO2023157441A1 (ja) 2022-02-16 2022-12-13 エッチング方法

Country Status (1)

Country Link
WO (1) WO2023157441A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302663A (ja) * 2006-05-09 2007-11-22 Ulsan Chemical Co Ltd 半導体製造用ドライエッチングガスおよびその製造方法
JP2016197713A (ja) * 2015-04-06 2016-11-24 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
JP2017092357A (ja) * 2015-11-16 2017-05-25 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
JP2017141149A (ja) * 2016-02-09 2017-08-17 セントラル硝子株式会社 フッ素ガスの精製方法
JP2019502253A (ja) * 2015-11-10 2019-01-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード エッチング反応物質、およびそれを使用するプラズマフリーの酸化物エッチング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302663A (ja) * 2006-05-09 2007-11-22 Ulsan Chemical Co Ltd 半導体製造用ドライエッチングガスおよびその製造方法
JP2016197713A (ja) * 2015-04-06 2016-11-24 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
JP2019502253A (ja) * 2015-11-10 2019-01-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード エッチング反応物質、およびそれを使用するプラズマフリーの酸化物エッチング方法
JP2017092357A (ja) * 2015-11-16 2017-05-25 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
JP2017141149A (ja) * 2016-02-09 2017-08-17 セントラル硝子株式会社 フッ素ガスの精製方法

Also Published As

Publication number Publication date
TW202336857A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
TW201912619A (zh) 用於蝕刻多個堆疊層之化學過程
US9230821B2 (en) Dry etching agent and dry etching method using the same
JP4978512B2 (ja) プラズマエッチング方法
TWI525699B (zh) Silicon dry etching method
WO2016181723A1 (ja) ドライエッチング方法、ドライエッチング剤及び半導体装置の製造方法
JP6544215B2 (ja) ドライエッチング方法
TWI532097B (zh) 蝕刻氣體及蝕刻方法
TWI664317B (zh) 乾式蝕刻劑、乾式蝕刻方法及半導體裝置之製造方法
WO2023157441A1 (ja) エッチング方法
JP7445150B2 (ja) ドライエッチング方法及び半導体デバイスの製造方法
TWI839042B (zh) 蝕刻方法
TWI824098B (zh) 乾式蝕刻方法、乾式蝕刻劑、及其保存容器
WO2023157442A1 (ja) エッチング方法
WO2020129725A1 (ja) ハロゲンフッ化物によるエッチング方法、半導体の製造方法
TWI796803B (zh) 蝕刻氣體及其製造方法、以及、蝕刻方法、半導體元件之製造方法
TWI798870B (zh) 蝕刻氣體、蝕刻方法,及半導體元件之製造方法
TWI788052B (zh) 蝕刻氣體、蝕刻方法,及半導體元件之製造方法
WO2023234305A1 (ja) エッチング方法
TW202407760A (zh) 蝕刻方法
KR20230066074A (ko) 에칭 가스 및 그 제조 방법, 및 에칭 방법, 반도체 소자의 제조 방법
TW202300702A (zh) 蝕刻氣體及蝕刻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927327

Country of ref document: EP

Kind code of ref document: A1