TWI829658B - 雙特異性2+1康特斯體(Contorsbody) - Google Patents

雙特異性2+1康特斯體(Contorsbody) Download PDF

Info

Publication number
TWI829658B
TWI829658B TW107138691A TW107138691A TWI829658B TW I829658 B TWI829658 B TW I829658B TW 107138691 A TW107138691 A TW 107138691A TW 107138691 A TW107138691 A TW 107138691A TW I829658 B TWI829658 B TW I829658B
Authority
TW
Taiwan
Prior art keywords
amino acid
acid sequence
sequence seq
antigen
cdr
Prior art date
Application number
TW107138691A
Other languages
English (en)
Other versions
TW201922791A (zh
Inventor
瑪麗亞 阿曼
寇勒 克勞蒂亞 伏拉拉
里圖 福祿瑞
蓋 喬治絲
瑞秋 珊卓 葛洛
亞歷山大 哈斯
費德瑞克 荷西
俊 沙賓 因霍夫
克里斯俊 克雷恩
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW201922791A publication Critical patent/TW201922791A/zh
Application granted granted Critical
Publication of TWI829658B publication Critical patent/TWI829658B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明係關於新穎的雙特異性抗體,其由兩種融合多肽組成,包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域;以及關於製造此等分子之方法及其使用方法。

Description

雙特異性2+1康特斯體(Contorsbody)
本發明係關於新穎的雙特異性抗體,其由兩種融合多肽組成,包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域;以及關於製造此等分子之方法及其使用方法。本發明之抗體與呈IgG型式之典型抗體的不同之處在於抗原結合結構域之空間定向。
自從1974年Koehler及Milstein研發第一單株抗體以來,已做出大量努力來研發適合於人類中療法之抗體。已在小鼠及大鼠中研發出第一種可用的單株抗體。此等抗體在用於人類療法時由於係抗嚙齒動物抗體而引起非所需副作用。已進行大量研究來減少或甚至消除該等副作用。在過去幾年,日益增加之人類單株抗體或人類化單株抗體已進入市場。
對雙特異性抗體用於診斷及治療應用之關注逐漸提高。儘管天然抗體係單特異性的,但雙特異性抗體識別相同或不同抗原上之兩種不同的抗原決定基。在過去幾年,已研發出多種新的抗體型式。應用複雜的分子設計及基因工程改造已解決許多與雙特異性抗體形成相關之技術問題,諸如穩定性、溶解度及賦予藥物特性且概括在術語「可發展性」下之其他參數。另外,待生成之雙特異性抗體之所需不同特徵(亦即標靶產物概況)使得有必要獲取一組不同的抗體型式。此等型式在尺寸、其結合模組之幾何形狀、價數、可撓性以及其藥物動力學特性方面可不同(Brinkmann U.及Kontermann R.E., MABS 2017, 9(2), 182-212)。
然而,似乎不存在一種滿足所有需求之最佳型式且仍可能優化衍生自野生型四鏈Y形抗體型式之抗體型式。為用作醫藥產品,需要以可重複方式,較佳地以高產率大量製備雙特異性抗體。組成愈複雜(例如3-4鏈相比於2-鏈IgG),常常需要更加廣泛之表現系統之優化。此外,存在或不存在非所需副產物可能極其重要。本發明係指雙特異性抗體,其基本上由兩個鏈組成但其包含三個抗原結合結構域。
本發明提供一種雙特異性抗體,其由兩種融合多肽組成且包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域,其中 (a)第一融合多肽包含能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第一部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 -能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端,且 (b)第二融合多肽包含能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第二部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 -能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端, 其中能夠特異性結合於第二標靶之抗原結合結構域之第一部分及第二部分彼此締合以形成能夠特異性結合於第二標靶之抗原結合結構域且其中能夠特異性結合於第一標靶之第一及第二抗原結合結構域之第一部分及第二部分彼此締合以形成環形融合多肽,且 其中第一融合多肽之間隔結構域及第二融合多肽之間隔結構域藉由二硫鍵彼此共價締合且包含促進第一及第二融合多肽之締合的修飾。
在一個態樣中,提供如前文所定義之雙特異性抗體,其中在第一融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端且其中在第二融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端。
在另一態樣中,提供如前文所定義之雙特異性抗體,其中在第一融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端且其中在第二融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端。
在一個態樣中,提供如前文所定義之雙特異性抗體,其中連接能夠特異性結合於第二標靶之抗原結合結構域之第一部分或第二部分的第三肽連接子包含至少15個胺基酸。在一個態樣中,連接能夠特異性結合於第二標靶之抗原結合結構域之第一部分的第三肽連接子與連接能夠特異性結合於第二標靶之抗原結合結構域之第二部分的第三肽連接子相同。在一個態樣中,第三肽連接子包含15至25個胺基酸。在一個特定態樣中,第三肽連接子包含胺基酸序列SEQ ID NO: 84。
在一個態樣中,本發明提供如前文所定義之雙特異性抗體,其中第一融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之重鏈可變結構域且第二融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之抗體輕鏈可變結構域或反之亦然。在一個特定態樣中,抗原結合結構域之第一部分係抗體重鏈Fab片段且抗原結合結構域之第二部分係抗體輕鏈Fab片段或反之亦然。在一個態樣中,抗原結合結構域之第一部分與抗原結合結構域之第二部分藉由二硫鍵彼此共價締合。
因此,在一個態樣中,抗原結合結構域之第一部分係抗體重鏈Fab片段(VH-CH1)且抗原結合結構域之第二部分係抗體輕鏈Fab片段(VL-Ckappa)。在另一態樣中,抗原結合結構域之第一部分係抗體輕鏈Fab片段且抗原結合結構域之第二部分係抗體重鏈Fab片段。在另一態樣中,抗原結合結構域之第一部分係包含VH-Ckappa之抗體交叉Fab片段且抗原結合結構域之第二部分係包含VL-CH1之抗體交叉Fab片段。在另一態樣中,抗原結合結構域之第一部分係包含VL-CH1之抗體交叉Fab片段且抗原結合結構域之第二部分係包含VH-Ckappa之抗體交叉Fab片段。
如上文所述,雙特異性抗體由第一及第二融合多肽組成,兩種多肽均包含間隔結構域,第一融合多肽之間隔結構域與第二融合多肽之間隔結構域藉由二硫鍵彼此共價締合且包含促進第一及第二融合多肽之締合之修飾。間隔結構域包含至少25個胺基酸。
在本發明之一個態樣中,間隔結構域包含抗體鉸鏈區或其(C端)片段及抗體CH2結構域或其(N端)片段。在另一態樣中,間隔結構域包含抗體鉸鏈區或其片段、抗體CH2結構域,及抗體CH3結構域或其片段。此外,第一融合多肽之間隔結構域及第二融合多肽之間隔結構域包含促進第一及第二融合多肽之締合之修飾。在一特定態樣中,根據杵-臼(knobs into hole)方法,第一融合多肽之間隔結構域包含臼且第二融合多肽之間隔結構域包含杵。在另一態樣中,本發明包含雙特異性抗體,其中間隔結構域包含抗體鉸鏈區或其片段及IgG1 Fc結構域。特定而言,IgG1 Fc結構域包含一或多個減少與Fc受體結合(尤其朝向Fc 受體)之胺基酸取代。更具體而言,IgG1 Fc結構域包含胺基酸取代L234A、L235A及P329G (根據Kabat EU索引編號)。
在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之一個抗原結合結構域係能夠特異性結合於腫瘤相關抗原(TAA)之抗原結合結構域。特定言之,腫瘤相關抗原係纖維母細胞活化蛋白(Fibroblast Activation Protein;FAP)。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之抗原結合結構域係能夠特異性結合於纖維母細胞活化蛋白(FAP)之抗原結合結構域。
在一些態樣中,能夠特異性結合於FAP之抗原結合結構域包含 (a)重鏈可變區(VHFAP),其包含(i)包含胺基酸序列SEQ ID NO: 1之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 2之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 3之CDR-H3;及輕鏈可變區(VLFAP),其包含(iv)包含胺基酸序列SEQ ID NO: 4之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 5之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 6之CDR-L3,或 (b)重鏈可變區(VHFAP),其包含(i)包含胺基酸序列SEQ ID NO: 9之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 10之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 11之CDR-H3;及輕鏈可變區(VLFAP),其包含(iv)包含胺基酸序列SEQ ID NO: 12之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 13之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 14之CDR-L3。
更具體而言,能夠特異性結合於FAP之抗原結合結構域包含 (a)重鏈可變區(VHFAP),其包含與胺基酸序列SEQ ID NO: 7至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及輕鏈可變區(VLFAP),其包含與胺基酸序列SEQ ID NO: 8至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列,或 (b)重鏈可變區(VHFAP),其包含與胺基酸序列SEQ ID NO: 15至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及輕鏈可變區(VLFAP),其包含與胺基酸序列SEQ ID NO: 16至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列。
在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於TNF受體,尤其共刺激TNF受體之抗原結合結構域。特定而言,共刺激TNF受體係OX40。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於OX40之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於OX40之抗原結合結構域。
在一些態樣中,能夠特異性結合於OX40之抗原結合結構域包含 (a)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 22之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 35之CDR-L3,或 (b)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 21之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 34之CDR-L3,或 (c)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 23之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 36之CDR-L3,或 (d)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 24之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 37之CDR-L3,或 (e)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 25之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 29之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 38之CDR-L3,或 (f)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 26之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 29之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 38之CDR-L3,或 (g)重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 27之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 30之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 33之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 39之CDR-L3。
特定言之,能夠特異性結合於OX40之抗原結合結構域包含:重鏈可變區(VHOX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 22之CDR-H3;及輕鏈可變區(VLOX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 35之CDR-L3。
在一些態樣中,能夠特異性結合於OX40之抗原結合結構域包含 (a)包含胺基酸序列SEQ ID NO: 40之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 41之輕鏈可變區(VLOX40),或 (b)包含胺基酸序列SEQ ID NO: 42之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 43之輕鏈可變區(VLOX40),或 (c)包含胺基酸序列SEQ ID NO: 44之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 45之輕鏈可變區(VLOX40),或 (d)包含胺基酸序列SEQ ID NO: 46之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 47之輕鏈可變區(VLOX40),或 (a)包含胺基酸序列SEQ ID NO: 48之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 49之輕鏈可變區(VLOX40),或 (a)包含胺基酸序列SEQ ID NO: 50之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 51之輕鏈可變區(VLOX40),或 (a)包含胺基酸序列SEQ ID NO: 52之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO: 53之輕鏈可變區(VLOX40)。
在一個特定態樣中,能夠特異性結合於OX40之抗原結合結構域包含(a)重鏈可變區(VHOX40),其包含與胺基酸序列SEQ ID NO: 40至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及輕鏈可變區(VLOX40),其包含與胺基酸序列SEQ ID NO: 41至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。
特定而言,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 54至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 55至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (b)包含與胺基酸序列SEQ ID NO: 56至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 57至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (c)包含與胺基酸序列SEQ ID NO: 58至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 59至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (d)包含與胺基酸序列SEQ ID NO: 60至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 61至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (e)包含與胺基酸序列SEQ ID NO: 62至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 63至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (f)包含與胺基酸序列SEQ ID NO: 64至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 65至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,或 (g)包含與胺基酸序列SEQ ID NO: 66至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 67至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽。
此外,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 116至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 117至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (b)包含與胺基酸序列SEQ ID NO: 118至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 119至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (c)包含與胺基酸序列SEQ ID NO: 120至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 121至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (d)包含與胺基酸序列SEQ ID NO: 122至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 123至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (e)包含與胺基酸序列SEQ ID NO: 124至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 125至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (f)包含與胺基酸序列SEQ ID NO: 126至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,包含與胺基酸序列SEQ ID NO: 127至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及與胺基酸序列SEQ ID NO: 128至少約95%、96%、97%、98%、99%或100%一致之輕鏈, (g)包含與胺基酸序列SEQ ID NO: 129至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 130至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (h)包含與胺基酸序列SEQ ID NO: 131至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 132至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,或 (i)包含與胺基酸序列SEQ ID NO: 133至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 134至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽。
在一些態樣中,提供雙特異性抗體,其中共刺激TNF受體係4-1BB。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於4-1BB之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於4-1BB之抗原結合結構域。
在一些態樣中,能夠特異性結合於4-1BB之抗原結合結構域包含:重鏈可變區(VH4-1BB),其包含(i)包含胺基酸序列SEQ ID NO: 135之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 136之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 137之CDR-H3;及輕鏈可變區(VL4-1BB),其包含(iv)包含胺基酸序列SEQ ID NO: 138之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 139之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 140之CDR-L3。在一個態樣中,能夠特異性結合於4-1BB之抗原結合結構域包含:包含與胺基酸序列SEQ ID NO: 141至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的重鏈可變區(VH4-1BB);及包含與胺基酸序列SEQ ID NO: 142至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的輕鏈可變區(VL4-1BB)。
特定而言,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 143至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 144至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,或 (b)包含與胺基酸序列SEQ ID NO: 145至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 146至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽。
在一些態樣中,提供雙特異性抗體,其中共刺激TNF受體係CD40。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於CD40之抗原結合結構域。
在一些態樣中,能夠特異性結合於CD40之抗原結合結構域包含:重鏈可變區(VHCD40),其包含(i)包含胺基酸序列SEQ ID NO: 147之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 148之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 149之CDR-H3;及輕鏈可變區(VLCD40),其包含(iv)包含胺基酸序列SEQ ID NO: 150之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 151之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 152之CDR-L3。在一個態樣中,能夠特異性結合於CD40之抗原結合結構域包含:重鏈可變區(VHCD40),其包含與胺基酸序列SEQ ID NO: 153至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及輕鏈可變區(VLCD40),其包含與胺基酸序列SEQ ID NO: 154至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。
在另一態樣中,能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域,其包含 (i)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 167、SEQ ID NO: 168、SEQ ID NO: 169及SEQ ID NO: 170;及輕鏈可變區(VLCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 171、SEQ ID NO: 172、SEQ ID NO: 173及SEQ ID NO: 174,或 (ii)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 175、SEQ ID NO: 176、SEQ ID NO: 177、SEQ ID NO: 178、SEQ ID NO: 179及SEQ ID NO: 180;及輕鏈可變區(VLCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 181、SEQ ID NO: 182、SEQ ID NO: 183及SEQ ID NO: 184。
特定而言,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 155至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 156至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (b)包含與胺基酸序列SEQ ID NO: 157至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 158至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (c)包含與胺基酸序列SEQ ID NO: 159至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 160至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (d)包含與胺基酸序列SEQ ID NO: 161至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 162至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽, (e)包含與胺基酸序列SEQ ID NO: 163至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 164至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,或 (f)包含與胺基酸序列SEQ ID NO: 165至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽,及包含與胺基酸序列SEQ ID NO: 166至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的融合多肽。
本發明亦提供編碼本發明之雙特異性抗體之經分離核酸。亦提供包含本發明之核酸之表現載體且另外提供包含本發明之經分離核酸或表現載體之宿主細胞。亦包括製備雙特異性抗體之方法,其包含在適用於表現雙特異性抗體之條件下培養本發明之宿主細胞。該方法亦可包括分離雙特異性抗體之步驟。
本發明亦提供醫藥組合物,其包含本發明之雙特異性抗體及至少一種醫藥學上可接受之賦形劑。
本發明亦提供本發明之雙特異性抗體,或本發明之醫藥組合物,其用作藥劑。更具體而言,亦提供本發明之雙特異性抗體,其用於治療癌症或感染病。特定言之,提供用於治療癌症之本發明之雙特異性抗體。
在另一態樣中,提供本發明之雙特異性抗體,或本發明之醫藥組合物在製造用於以下各者之藥劑中之用途: (i)刺激T細胞反應, (ii)支持活化T細胞之存活, (iii)治療感染, (iv)治療癌症, (v)延遲癌症進展,或 (vi)延長罹患癌症之患者的存活期。
本發明亦提供治療患有癌症或感染病之個體之方法,其包含向個體投與有效量之本發明之雙特異性抗體,或本發明之醫藥組合物。
本發明亦提供本發明之雙特異性抗體,或本發明之醫藥組合物在製造用於上調或延長細胞毒性T細胞活性之藥劑中之用途。亦提供上調或延長患有癌症之個體中之細胞毒性T細胞活性的方法,其包含向個體投與有效量之本發明之雙特異性抗體,或本發明之醫藥組合物。在一些實施例中,根據本發明之各種態樣,個體係哺乳動物,尤其人類。
定義 除非以其他方式定義,否則本文所使用之技術及科學術語具有與本發明所屬領域中通常所使用相同之含義。出於解釋本說明書之目的,將應用以下定義且只要合適,以單數形式使用之術語亦將包括複數且反之亦然。
如本文所用,術語「抗原結合分子 」在其最廣泛的意義上係指特異性結合抗原決定子的分子。抗原結合分子之實例係抗體、抗體片段及骨架抗原結合蛋白。
術語「抗原結合結構域 」係指特異性結合於抗原決定子之抗原結合分子之部分。在一個態樣中,抗原結合結構域能夠經由其靶細胞抗原活化信號傳導。抗原結合結構域包括與抗原之一部分或所有特異性結合及與其互補之抗體的區域或片段。另外,抗原結合結構域包括如在本文中進一步定義之骨架抗原結合蛋白,例如係基於經設計重複蛋白或經設計重複結構域之結合結構域(參見例如WO 2002/020565)。特定言之,抗原結合結構域由第一部分及第二部分構成,其中該第一部分包含抗體輕鏈可變區(VL)且第二部分包含抗體重鏈可變區(VH)或反之亦然。
術語「抗體 」在本文中以最廣泛意義使用且涵蓋各種抗體結構,包括但不限於單株抗體、多株抗體、單特異性及多特異性抗體(例如雙特異性抗體)及抗體片段,只要其呈現所需抗原結合活性即可。
如本文所用之術語「單株抗體 」係指自基本上均質之抗體群體獲得之抗體,亦即包含群體之單獨抗體相同及/或結合同一抗原決定基,可能的變異體抗體除外,例如含有天然存在之突變或在單株抗體製劑生產期間產生之變異體抗體,該等變異體一般以少量存在。相比於典型地包括針對不同決定子(抗原決定基)之不同抗體的多株抗體製劑,單株抗體製劑中之各單株抗體係針對抗原上之單一決定子。
如本文所使用之術語「單特異性 」抗體表示具有一或多個結合位點之抗體,該一或多個結合位點中之每一者結合於相同抗原之相同抗原決定基。術語「雙特異性 」意謂抗原結合分子能夠特異性結合於至少兩個不同的抗原決定子。雙特異性抗原結合分子包含至少兩個抗原結合位點,其中之每一者對不同抗原決定子具有特異性。在某些實施例中,雙特異性抗原結合分子能夠同時結合兩個抗原決定子,詳言之兩個不同細胞上所表現的兩個抗原決定子。舉例而言,本發明之抗原結合分子係雙特異性的,包含能夠特異性結合於第一標靶之抗原結合結構域,及能夠特異性結合於第二標靶之抗原結合結構域。在一個特定態樣中,本發明之抗體包含能夠特異性結合於OX40之抗原結合結構域及能夠特異性結合於FAP之抗原結合結構域。在另一特定態樣中,本發明之抗體包含能夠特異性結合於4-1BB之抗原結合結構域及能夠特異性結合於FAP之抗原結合結構域。在另一態樣中,本發明之抗體包含能夠特異性結合於CD40之抗原結合結構域及能夠特異性結合於FAP之抗原結合結構域。
如本申請案中所使用之術語「 」表示抗原結合分子中存在指定數目之結合位點。因而,術語「二價」、「四價」及「六價」分別表示抗原結合分子中存在兩個結合位點、四個結合位點及六個結合位點。抗原結合分子之價數亦可相對於對指定抗原決定子之結合位點之數目表述。舉例而言,本發明之雙特異性抗體相對於第一標靶係二價,且相對於第二標靶係單價。
術語「全長抗體」、「完整抗體」及「完全抗體」在本文中可互換使用,其係指具有與天然抗體結構大體上類似之結構的抗體。「天然抗體 」係指具有不同結構的天然存在之免疫球蛋白分子。舉例而言,原生IgG類抗體係約150,000道爾頓(dalton)之雜四聚體糖蛋白,其由二硫鍵鍵結之兩個輕鏈及兩個重鏈構成。自N端至C端,各重鏈具有可變區(VH),亦稱為可變重鏈結構域或重鏈可變結構域,接著為三個恆定結構域(CH1、CH2及CH3),亦稱為重鏈恆定區。類似地,自N端至C端,各輕鏈具有可變區(VL),亦稱為可變輕鏈結構域或輕鏈可變結構域,繼之為輕鏈恆定結構域(CL),亦稱為輕鏈恆定區。抗體之重鏈可以指定為五種類型之一,該五種類型稱為α (IgA)、δ (IgD)、ε (IgE)、γ (IgG)或μ (IgM),其中一些可以進一步分成亞型,例如γ1 (IgG1)、γ2 (IgG2)、γ3 (IgG3)、γ4 (IgG4)、α1 (IgA1)及α2 (IgA2)。抗體之輕鏈可基於其恆定結構域之胺基酸序列歸為兩種類型中之一種,稱為κ及λ。
抗體片段 」係指不同於完整抗體,包含完整抗體之一部分,結合完整抗體所結合之抗原的分子。抗體片段之實例包括但不限於Fv、Fab、Fab'、Fab'-SH、F(ab')2 ;雙功能抗體、三功能抗體、四功能抗體、交叉Fab片段;線性抗體;單鏈抗體分子(例如scFv);及單結構域抗體。欲回顧某些抗體片段,參見Hudson等人, Nat Med 9, 129-134 (2003)。關於scFv片段之綜述,參看例如Plückthun, The Pharmacology of Monoclonal Antibodies, 第113卷, Rosenburg及Moore編, Springer-Verlag, New York, 第269-315頁 (1994);亦參看WO93/16185;及美國專利第5,571,894號及第5,587,458號。關於包含救助受體結合抗原決定基殘基及具有延長之活體內半衰期之Fab及F(ab')2 片段的論述,參見美國專利第5,869,046號。雙功能抗體為具有兩個抗原結合位點之抗體片段,其可為二價或雙特異性,參見例如EP 404,097;WO 1993/01161;Hudson等人, Nat Med 9, 129-134 (2003);及Hollinger等人, Proc Natl Acad Sci USA 90, 6444-6448 (1993)。三功能抗體及四功能抗體亦描述於Hudson等人, Nat Med 9, 129-134 (2003)中。單結構域抗體為包含抗體重鏈可變結構域之全部或一部分或輕鏈可變結構域之全部或一部分的抗體片段。在某些實施例中,單結構域抗體係人類單結構域抗體(Domantis, Inc., Waltham, MA;參見例如美國專利第6,248,516 B1號)。抗體片段可藉由各種技術製得,包括但不限於如本文所述之完整抗體之蛋白水解消化以及藉由重組宿主細胞(例如大腸桿菌或噬菌體)生產。
完整抗體之番木瓜蛋白酶消化產生兩個相同的抗原結合片段,稱為「Fab」片段,其各自含有重鏈及輕鏈可變結構域以及輕鏈之恆定結構域及重鏈之第一恆定結構域(CH1)。如本文中所使用,因此,術語「Fab 片段 」係指包含有包含輕鏈之VL結構域及恆定結構域(CL)之輕鏈片段,及重鏈之VH結構域及第一恆定結構域(CH1)的抗體片段。Fab'片段與Fab片段之不同之處在於,在包括一或多個來自抗體鉸鏈區之半胱胺酸之重鏈CH1結構域的羧基端處添加幾個殘基。Fab'-SH為其中恆定結構域之半胱胺酸殘基具有游離硫醇基之Fab'片段。胃蛋白酶處理產生F(ab')2 片段,其具有兩個抗原結合位點(兩個Fab片段)及Fc區之一部分。根據本發明,術語「Fab片段」亦包括如下文所定義之「互換Fab片段」或「互換型Fab片段」。
術語「互換 Fab 片段 」或「xFab片段」或「互換型Fab片段」係指其中重鏈及輕鏈之可變區或恆定區互換之Fab片段。交叉Fab分子之兩種不同鏈組成是可能的且包含於本發明之雙特異性抗體中:一方面,Fab重鏈及輕鏈之可變區經互換,亦即互換型Fab分子包含由輕鏈可變區(VL)及重鏈恆定區(CH1)構成之肽鏈,及由重鏈可變區(VH)及輕鏈恆定區(CL)構成之肽鏈。此互換型Fab分子亦稱為互換Fab (VLVH)。另一方面,當Fab重鏈及輕鏈之恆定區互換時,互換型Fab分子包含由重鏈可變區(VH)及輕鏈恆定區(CL)構成之肽鏈,及由輕鏈可變區(VL)及重鏈恆定區(CH1)組成之肽鏈。此互換型Fab分子亦稱為互換Fab (CLCH1)。
「單鏈Fab片段」或「scFab 」係由抗體重鏈可變結構域(VH)、抗體恆定結構域1 (CH1)、抗體輕鏈可變結構域(VL)、抗體輕鏈恆定結構域(CL)及連接子組成之多肽,其中該抗體結構域及該連接子按N端至C端方向之次序具有以下中之一者:a) VH-CH1-連接子-VL-CL,b) VL-CL-連接子-VH-CH1,c) VH-CL-連接子-VL-CH1,或d) VL-CH1-連接子-VH-CL;且其中該連接子為至少30個胺基酸、較佳32與50個胺基酸之間的多肽。該等單鏈Fab片段經由CL結構域與CH1結構域之間的天然二硫鍵穩定化。此外,此等單鏈Fab分子可經由插入半胱胺酸殘基(例如根據Kabat編號,可變重鏈中之位置44及可變輕鏈中之位置100)以產生鏈間二硫鍵來進一步穩定化。
「互換型單鏈Fab片段」或「x-scFab 」係由抗體重鏈可變結構域(VH)、抗體恆定結構域1 (CH1)、抗體輕鏈可變結構域(VL)、抗體輕鏈恆定結構域(CL)及連接子組成之多肽,其中該抗體結構域及該連接子按N端至C端方向之次序具有以下中之一者:a) VH-CL-連接子-VL-CH1,及b) VL-CH1-連接子-VH-CL;其中VH及VL一起形成特異性結合於抗原之抗原結合位點,且其中該連接子為至少30個胺基酸之多肽。此外,此等x-scFab分子可經由插入半胱胺酸殘基(例如可變重鏈中之位置44及可變輕鏈中之位置100,根據Kabat編號)而產生鏈間二硫鍵來進一步穩定化。
單鏈可變片段 (scFv) 」係用具有十至約25個胺基酸之短連接肽連接的抗體之重鏈(VH )及輕鏈(VL )可變區之融合蛋白。連接子通常富含甘胺酸以具有可撓性,以及絲胺酸或蘇胺酸以具有可溶性,且可使VH 之N端與VL 之C端連接,或反之亦然。儘管移除恆定區且引入連接子,但此蛋白質保留初始抗體之特異性。scFv抗體例如描述於Houston, J.S., Methods in Enzymol. 203 (1991) 46-96)中。另外,抗體片段包含單鏈多肽,其具有VH之特徵,亦即能夠與VL一起組裝至功能性抗原結合位點,或VL之特徵,亦即能夠與VH一起組裝至功能性抗原結合位點且藉此提供全長抗體之抗原結合特性。
骨架抗原結合蛋白 」為此項技術中已知,例如纖維結合蛋白及經設計之錨蛋白重複蛋白質(DARPins)已用作抗原結合結構域之替代性骨架,參見例如Gebauer及Skerra, Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245-255 (2009)及Stumpp等人, Darpins: A new generation of protein therapeutics. Drug Discovery Today 13: 695-701 (2008)。在本發明之一個態樣中,骨架抗原結合蛋白係選自由以下組成之群:CTLA-4 (艾維伯迪(Evibody));脂質運載蛋白(抗運載蛋白);蛋白質A衍生之分子,諸如蛋白質A之Z結構域(親和抗體);A結構域(高親和性多聚體/最大抗體);血清運鐵蛋白(反式體);經設計之錨蛋白重複蛋白質(DARPin);抗體輕鏈或重鏈之可變結構域(單結構域抗體,sdAb);抗體重鏈之可變結構域(奈米抗體,aVH);VNAR 片段;纖維結合蛋白(阿耐克汀(AdNectin));C型凝集素結構域(四連接素);新型抗原受體β-內醯胺酶之可變結構域(VNAR 片段);人類γ-晶狀體球蛋白或泛素(阿菲林(Affilin)分子);人類蛋白酶抑制劑之kunitz型結構域,微體,諸如來自knottin家族之蛋白質、肽適體及纖維結合蛋白(阿耐克汀)。CTLA-4 (細胞毒性T淋巴細胞相關抗原4)係表現於大部分CD4+ T細胞上之CD28家族受體。其細胞外結構域具有可變結構域類Ig摺疊。對應於抗體之CDR之環可經異源序列取代以賦予不同結合特性。經工程改造以具有不同結合特異性之CTLA-4分子亦稱為艾維伯迪(Evibodies)(例如US7166697B1)。艾維伯迪與抗體(例如結構域抗體)之經分離之可變區的尺寸大致相同。關於其他細節,參見Journal of Immunological Methods 248 (1-2), 31-45 (2001)。脂質運載蛋白係細胞外蛋白質之家族,其傳遞小型疏水性分子,諸如類固醇、後色膽素、類視黃素及脂質。其具有剛性β-片二級結構,其在圓錐結構之開放端具有許多環,其可經工程改造以結合於不同目標抗原。抗運載蛋白之尺寸在160-180個胺基酸之間,且來源於脂質運載蛋白。關於其他細節,參見Biochim Biophys Acta 1482: 337-350 (2000)、US7250297B1及US20070224633。親和抗體係來源於金黃色葡萄球菌(Staphylococcus aureus)之蛋白質A之骨架,其可經工程改造以結合於抗原。結構域由具有約58個胺基酸之三螺旋束組成。已藉由表面殘基之隨機化產生文庫。關於其他細節,參見Protein Eng. Des. Sel. 2004, 17, 455-462及EP 1641818A1。高親合性多聚體為來源於A-結構域骨架家族之多結構域蛋白質。約35個胺基酸之天然結構域採用既定二硫鍵鍵結之結構。藉由改組由A-結構域之家族呈現之天然變化來產生多樣性。關於其他細節,參見Nature Biotechnology 23(12), 1556 - 1561 (2005)及Expert Opinion on Investigational Drugs 16(6), 909-917 (2007年6月)。運鐵蛋白係單體血清傳遞糖蛋白。運鐵蛋白可藉由在允許的表面環中插入肽序列而經工程改造,以結合不同目標抗原。經工程改造之運鐵蛋白骨架之實例包括反式體。關於其他細節,參見J. Biol. Chem 274, 24066-24073 (1999)。經設計之錨蛋白重複蛋白質(DARPins)來源於錨蛋白,其為介導整合膜蛋白質與細胞骨架之連接的蛋白質之家族。單一錨蛋白重複為由兩個α螺旋及β回旋(beta-turn)組成之33殘基主結構。其可藉由隨機化各重複之第一個α螺旋及β回旋中之殘基而經工程改造以結合不同目標抗原。可藉由增加模組數目來增加其結合界面(親和力成熟方法)。關於其他細節,參見J. Mol. Biol. 332, 489-503 (2003), PNAS 100(4), 1700-1705 (2003)及J. Mol. Biol. 369, 1015-1028 (2007)以及US20040132028A1。單結構域抗體為由單一單體可變抗體結構域組成之抗體片段。第一個單結構域來源於來自駱駝之抗體重鏈之可變結構域(奈米抗體或VH H片段)。此外,術語單結構域抗體包括自主人類重鏈可變結構域(aVH)或來源於鯊魚之VNAR 片段。纖維結合蛋白為可經工程改造以結合於抗原之骨架。纖連蛋白由III型人類纖維結合蛋白(FN3)之15個重複單元之第10個結構域之天然胺基酸序列之主鏈組成。β-夾層結構之一端處的三個環可經工程改造以使纖連蛋白能夠特異性識別相關治療目標。關於其他細節,參見Protein Eng. Des. Sel. 18, 435- 444 (2005)、US20080139791、WO2005056764及US6818418B1。肽適體為組合性識別分子,其由恆定骨架蛋白質(通常為硫氧還蛋白(TrxA))組成,該恆定骨架蛋白質含有在活性位點處插入之限制性可變肽環。關於其他細節,參見Expert Opin. Biol. Ther. 5, 783-797 (2005)。微體來源於天然存在之長度為25-50個胺基酸之微型蛋白質,其含有3-4個半胱胺酸橋,微型蛋白質之實例包括KalataBI及芋螺毒素(conotoxin)及打結素。微型蛋白質具有環,其可經工程改造以包括至多25個胺基酸而不影響微型蛋白質之整體摺疊。關於經工程改造之打結素結構域之其他細節,參見WO2008098796。
與參考分子「結合於相同抗原決定基之抗原結合分子 」係指一種抗原結合分子,其在競爭分析中阻斷參考分子與其抗原之結合達50%或更大,且相反,參考分子在競爭分析中阻斷抗原結合分子與其抗原之結合達50%或更大。
如本文所用,術語「抗原決定子 」與「抗原」及「抗原決定基」同義且係指多肽大分子上與抗原結合部分結合、形成抗原結合部分-抗原複合物的位點(例如鄰近胺基酸區段或由非鄰近胺基酸之不同區域組成的構形組態)。適用的抗原決定子可發現於例如腫瘤細胞表面上、病毒所感染細胞之表面上、其他病變細胞表面上、免疫細胞表面上、游離於血清中及/或細胞外基質(ECM)中。除非另外指示,否則在本文中可用作抗原之蛋白質可以為來自任何脊椎動物來源,包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠)的任何天然形式之蛋白質。在特定實施例中,抗原係人類蛋白質。在本文中提及特定蛋白質的情況下,該術語涵蓋「全長」的未經處理之蛋白質,以及由細胞中之處理所產生的任何形式之蛋白質。該術語亦涵蓋天然存在之蛋白質變異體,例如剪接變異體或對偶基因變異體。
術語「互補位 」係指標靶與結合位點之間特異性結合所需之指定抗體分子之部分。互補位可為連續的,亦即由存在於結合位點中之相鄰胺基酸殘基形成,或非連續的,亦即由結合位點所採用之處於胺基酸殘基之一級序列(諸如胺基酸殘基之CDR之胺基酸序列)中的不同位置處,但三維結構極其接近之胺基酸殘基形成。
特異性結合 」意謂結合對抗原具選擇性且可與非所需或非特異性相互作用區分。抗原結合分子結合於特定抗原之能力可經由酶聯結免疫吸附分析(ELISA)或熟習此項技術者熟悉之其他技術(例如表面電漿子共振(SPR)技術(在BIAcore儀器上分析) (Liljeblad等人, Glyco J 17, 323-329 (2000))及傳統結合分析(Heeley, Endocr Res 28, 217-229 (2002))量測。在一個實施例中,抗原結合分子與不相關蛋白質之結合程度少於抗原結合分子與抗原之結合的約10%,如(例如)藉由SPR所量測。在某些實施例中,與抗原結合之分子的解離常數(Kd)為≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M)。
親和力 」或「結合親和力」係指分子(例如抗體)之單一結合位點與其結合搭配物(例如抗原)之間的非共價相互作用之總強度。除非另外指明,否則如本文所使用之「結合親和力」係指反映結合對(例如抗體與抗原)成員之間的1:1相互作用之固有結合親和力。分子X對其搭配物Y的親和力一般可由解離常數(Kd)表示,解離常數係解離速率常數與締合速率常數(分別係koff 及kon )之比率。因此,等效親和力可包含不同速率常數,只要速率常數之比率保持相同即可。可藉由此項技術中已知之常見方法(包括本文所述之方法)量測親和力。一種用於量測親和力的特定方法為表面電漿子共振(SPR)。
親和力成熟 」抗體係指相較於在一或多個高變區(HVR)中不具有一或多個改變之親本抗體,在一或多個高變區中具有一或多個改變之抗體,此等變化使抗體對抗原之親和力得到改良。
如本文所用之「腫瘤相關抗原 」係指存在於靶細胞表面上之抗原決定子,該靶細胞係腫瘤中之細胞,諸如癌細胞、腫瘤基質細胞或B細胞。在某些態樣中,腫瘤相關抗原係纖維母細胞活化蛋白(FAP)。
術語「能夠特異性結合於纖維母細胞活化蛋白 (FAP) 」係指抗原結合分子能夠以足夠親和力結合FAP,使得抗原結合分子在靶向FAP時適用作診斷及/或治療劑。抗原結合分子包括但不限於抗體、Fab分子、交換型Fab分子、單鏈Fab分子、Fv分子、scFv分子、單結構域抗體以及VH及骨架抗原結合蛋白。在一個態樣中,抗FAP抗原結合分子與不相關非FAP蛋白質之結合程度小於抗原結合分子與FAP之結合之約10%,如(例如)藉由表面電漿子共振(SPR)所量測。特定言之,能夠特異性結合於FAP之抗原結合分子的解離常數(Kd )為≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M)。在某些實施例中,抗FAP抗原結合分子與來自不同物種之FAP結合。特定言之,抗FAP抗原結合分子與人類、獼猴及小鼠FAP結合。
除非另有指示,否則術語「纖維母細胞活化蛋白質 (FAP) 」,亦稱為脯胺醯基內肽酶FAP或Seprase (EC 3.4.21),係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)、非人類靈長類動物(例如食蟹獼猴)及嚙齒動物(例如小鼠及大鼠))之任何原生FAP。該術語涵蓋「全長」的未經處理之FAP以及由細胞中之處理產生的FAP之任何形式。該術語亦涵蓋FAP之天然存在之變異體,例如剪接變異體或對偶基因變異體。在一個實施例中,本發明之抗原結合分子能夠特異性結合於人類、小鼠及/或食蟹獼猴FAP。人類FAP之胺基酸序列展示於UniProt (www.uniprot.org)寄存編號Q12884 (版本149,SEQIDNO:97)或NCBI (www.ncbi.nlm.nih.gov/)RefSeq NP_004451.2中。人類FAP之細胞外結構域(ECD)自胺基酸位置26延伸至胺基酸位置760。小鼠FAP之胺基酸序列展示於UniProt寄存編號P97321 (版本126,SEQ ID NO: 98)或NCBI RefSeq NP_032012.1中。小鼠FAP之細胞外結構域(ECD)自胺基酸位置26延伸至胺基酸位置761。本發明之抗FAP結合分子較佳結合於FAP之細胞外結構域。例示性抗FAP結合分子描述於國際專利申請案第WO 2012/020006 A2號中。
術語「可變區 」或「可變結構域」係指抗體重鏈或輕鏈中涉及抗原結合分子與抗原之結合的結構域。天然抗體之重鏈及輕鏈(分別為VH及VL)可變結構域通常具有類似的結構,其中各結構域包含四個保守性構架區(FR)及三個高變區(HVR)。參見例如Kindt等人, Kuby Immunology, 第6版, W.H. Freeman and Co., 第91頁 (2007)。單一VH或VL可足以賦予抗原結合特異性。
如本文所用,術語「高變區 」或「HVR 」係指抗體可變結構域中序列高變(「互補決定區」或「CDR 」)及/或形成結構上定義環(「高變環」)及/或含有抗原接觸殘基(「抗原觸點」)之各個區域。一般而言,抗體包含六個HVR:三個在VH (H1、H2、H3)中,且三個在VL (L1、L2、L3)中。本文中例示性HVR包括: (a)出現在胺基酸殘基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)及96-101 (H3)處之高變環(Chothia及Lesk,J. Mol. Biol. 196:901-917 (1987)); (b)出現在胺基酸殘基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)及95-102 (H3)處之CDR (Kabat等人,Sequences of Proteins of Immunological Interest , 第5版. Public Health Service, National Institutes of Health, Bethesda, MD (1991)); (c)出現在胺基酸殘基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)及93-101 (H3)處之抗原觸點(MacCallum等人 J. Mol. Biol. 262: 732-745 (1996));及 (d) (a)、(b)及/或(c)之組合,包括HVR胺基酸殘基46-56 (L2)、47-56 (L2)、48-56 (L2)、49-56 (L2)、26-35 (H1)、26-35b (H1)、49-65 (H2)、93-102 (H3)及94-102 (H3)。
除非另外指示,否則HVR (例如CDR)殘基及可變結構域中之其他殘基(例如FR殘基)係在本文中根據Kabat等人,見上文編號。
Kabat等人亦定義適用於任何抗體的可變區序列編號系統。一般熟習此項技術者可將此「Kabat編號」系統明確地分配給任何可變區序列,而不依賴於除序列本身以外的任何實驗資料。如本文所使用,「Kabat編號」係指Kabat等人, U.S. Dept. of Health and Human Services, 「Sequence of Proteins of Immunological Interest」 (1983)所闡述之編號系統。除非另外說明,否則提及抗體可變區中之特定胺基酸殘基位置的編號係根據Kabat編號系統。
如本文所使用,在抗原結合分子(例如抗體)之情形下,術語「親和力成熟 」係指來源於參考抗原結合分子(例如藉由突變)之抗原結合分子,其結合於與參考抗體相同的抗原,較佳結合於相同的抗原決定基;且與參考抗原結合分子相比對抗原具有較高親和力。親和力成熟通常涉及抗原結合分子之一或多個CDR中一或多個胺基酸殘基之修飾。通常,親和力成熟抗原結合分子與初始參考抗原結合分子結合於相同抗原決定基。
構架 」或「FR」係指除高變區(HVR)殘基以外的可變結構域殘基。可變結構域之FR通常由四個結構域組成:FR1、FR2、FR3及FR4。因此,在VH (或VL)中,HVR及FR序列一般依以下序列呈現:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
出於本文之目的,「接受體人類構架 」為包含來源於如下文所定義之人類免疫球蛋白構架或人類共同構架之輕鏈可變結構域(VL)構架或重鏈可變結構域(VH)構架之胺基酸序列的構架。「來源於」人類免疫球蛋白構架或人類共同構架之接受體人類構架可包含與人類免疫球蛋白構架或人類共同構架相同之胺基酸序列,或其可含有胺基酸序列變化。在一些實施例中,胺基酸變化之數目為10個或更少、9個或更少、8個或更少、7個或更少、6個或更少、5個或更少、4個或更少、3個或更少或2個或更少。在一些實施例中,VL接受體人類構架與VL人類免疫球蛋白構架序列或人類共同構架序列在序列上一致。
術語「嵌合 」抗體係指重鏈及/或輕鏈之一部分來源於特定來源或物種,同時重鏈及/或輕鏈之其餘部分來源於不同來源或物種之抗體。
抗體之「類別 」係指其重鏈所具有之恆定結構域或恆定區的類型。存在五種主要類別之抗體:IgA、IgD、IgE、IgG及IgM,且此等類別中之若干者可進一步分成子類(同型),例如IgG1 、IgG2 、IgG3 、IgG4 、IgA1 及IgA2 。對應於不同類別免疫球蛋白之重鏈恆定結構域分別稱作α、δ、ε、γ及μ。
人類化 」抗體係指包含來自非人類HVR之胺基酸殘基及來自人類FR之胺基酸殘基之嵌合抗體。在某些實施例中,人類化抗體將包含至少一個且典型地兩個可變結構域之實質上所有者,其中所有或實質上所有HVR (例如CDR)皆對應於非人類抗體之HVR,且所有或實質上所有FR皆對應於人類抗體之FR。人類化抗體視情況可包含源自人類抗體之抗體恆定區的至少一部分。抗體(例如非人類抗體)之「人類化形式 」係指已經歷人類化之抗體。本發明涵蓋之「人類化抗體」之其他形式為其中恆定區已經額外修飾或自原始抗體發生變化以產生根據本發明之特性(尤其在C1q結合及/或Fc受體(FcR)結合方面)之抗體。
人類 」抗體係胺基酸序列對應於由人類或人類細胞產生或來源於利用人類抗體譜系或其他人類抗體編碼序列之非人類來源之抗體之胺基酸序列的抗體。人類抗體之此定義特別排除包含非人類抗原結合殘基之人類化抗體。
術語「CH1 結構域 」表示大約自EU位置118延伸至EU位置215 (根據Kabat之EU編號系統)之抗體重鏈多肽之部分。在一個態樣中,CH1結構域具有胺基酸序列ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKV (SEQ ID NO: 94)。通常,接著為具有胺基酸序列EPKSC (SEQ ID NO: 99)之鏈段以將CH1結構域連接至鉸鏈區。
術語「鉸鏈區 」表示抗體重鏈多肽的一部分,其使CH1結構域與CH2結構域在野生型抗體重鏈中連接,例如約位置216至約位置230 (根據Kabat EU編號系統),或約位置226至約位置230 (根據Kabat EU編號系統)。其他IgG亞類的鉸鏈區可藉由與IgG1亞類序列之鉸鏈區半胱胺酸殘基比對來確定。鉸鏈區通常為由具有一致胺基酸序列之兩個多肽組成的二聚合分子。鉸鏈區一般包含至多25個胺基酸殘基且具可撓性,允許締合之標靶結合位點獨立移動。可將鉸鏈區細分為三個結構域:上部、中部及下部鉸鏈結構域(參見例如Roux等人, J. Immunol. 161 (1998) 4083)。
在一個態樣中,鉸鏈區具有胺基酸序列DKTHTCPXCP (SEQ ID NO: 100),其中X為S或P。在一個態樣中,鉸鏈區具有胺基酸序列HTCPXCP (SEQ ID NO: 101),其中X為S或P。在一個態樣中,鉸鏈區具有胺基酸序列CPXCP (SEQ ID NO: 102),其中X為S或P。
術語「Fc 結構域 」或「Fc 」在本文中用於定義抗體重鏈中含有恆定區之至少一部分的C端區。該術語包括天然序列Fc區及變異Fc區。在一個態樣中,人類IgG重鏈Fc結構域自Cys226、或自Pro230、或自Ala231延伸至重鏈之羧基端。然而,Fc區之C端離胺酸(Lys447)可存在或可不存在。IgG Fc區包含IgG CH2及IgG CH3結構域。
人類IgG Fc區之「CH2結構域」通常自大約EU位置231處之胺基酸殘基延伸至大約EU位置340處之胺基酸殘基(根據Kabat之EU編號系統)。在一個態樣中,CH2結構域具有胺基酸序列APELLGGPSV FLFPPKPKDT LMISRTPEVT CVWDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQESTYRW SVLTVLHQDW LNGKEYKCKV SNKALPAPIE KTISKAK (SEQ ID NO: 95)。CH2結構域的獨特之處在於其不與另一結構域緊密配對。實際上,兩個N連接分支鏈碳水化合物鏈插入完整原生Fc區之兩個CH2結構域之間。已推測碳水化合物可為結構域-結構域配對提供替代物且有助於CH2結構域穩定化。Burton, Mol. Immunol. 22 (1985) 161-206。在一個實施例中,碳水化合物鏈連接至CH2結構域。本文中,CH2結構域可為原生序列CH2結構域或變異型CH2結構域。
「CH3結構域」包含Fc區中C端殘基至CH2結構域之區段,表示抗體重鏈多肽中大約自EU位置341延伸至EU位置446 (根據Kabat之EU編號系統)之部分。在一個態樣中,CH3結構域具有胺基酸序列GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG (SEQ ID NO: 96)。本文中之CH3區可為天然序列CH3結構域或變異體CH3結構域(例如在其一個鏈中具有引入之「隆突」(「杵」)及在其另一鏈中具有對應之引入的「空腔」(「臼」)之CH3結構域;參見美國專利第5,821,333號,明確地以引用之方式併入本文中)。此類變異CH3結構域可用於促進如本文中所描述之兩個非一致抗體重鏈之雜二聚化。在一個實施例中,人類IgG重鏈Fc區自Cys226、或自Pro230延伸至重鏈之羧基端。然而,Fc區之C端離胺酸(Lys447)可存在或可不存在。除非本文另外說明,否則Fc區或恆定區中胺基酸殘基之編號係根據EU編號系統,亦稱為EU索引,如Kabat等人, Sequences of Proteins of Immunological Interest, 第5版. Public Health Service, National Institutes of Health, Bethesda, MD, 1991中所述。
- 」技術描述於例如US 5,731,168;US 7,695,936;Ridgway等人, Prot Eng 9, 617-621 (1996)及Carter, J Immunol Meth 248, 7-15 (2001)中。一般而言,方法包括在第一多肽之界面處引入隆凸(「杵」)及在第二多肽之界面處引入相應空腔(「臼」),使得隆凸可定位於空腔中以便促進雜二聚體形成且阻礙均二聚體形成。藉由用較大側鏈(例如酪胺酸或色胺酸)置換第一多肽界面中之小胺基酸側鏈來構建隆凸。大小與隆凸相同或類似之補償性空腔藉由用較小胺基酸側鏈(例如丙胺酸或蘇胺酸)置換大胺基酸側鏈而形成於第二多肽之界面中。隆凸及空腔可藉由改變編碼多肽之核酸,例如藉由位點突變誘發或藉由肽合成產生。在一特定實施例中,杵修飾包含Fc結構域之兩個子單元中之一者中之胺基酸取代T366W,且臼修飾包含Fc結構域之兩個子單元中之另一者中的胺基酸取代T366S、L368A及Y407V。在另一特定實施例中,包含杵修飾之Fc結構域之子單元另外包含胺基酸取代S354C,且包含臼修飾之Fc結構域之子單元另外包含胺基酸取代Y349C。引入此等兩個半胱胺酸殘基使得Fc區之兩個子單元之間形成雙硫橋鍵,由此進一步穩定二聚體(Carter, J Immunol Methods 248, 7-15 (2001))。編號係根據Kabat等人, Sequences of Proteins of Immunological Interest, 第5版. 美國公共衛生署, 美國國家衛生研究院, Bethesda, MD, 1991之EU索引。
「與免疫球蛋白之Fc區等效之區」意欲包括免疫球蛋白之Fc區之天然存在的對偶基因變異體以及具有變化之變異體,該等變化產生取代、添加或缺失,但不實質上降低免疫球蛋白介導效應功能(諸如抗體依賴性細胞毒性)之能力。舉例而言,免疫球蛋白之Fc區之N端或C端可缺失一或多個胺基酸而不實質性損失生物功能。此類變異體可根據此項技術中已知的一般法則選擇以對活性具有最小影響(參見例如Bowie, J. U.等人, Science 247:1306-10 (1990))。
術語「野生型 Fc 結構域 」表示與自然界中發現之Fc結構域之胺基酸序列一致的胺基酸序列。野生型人類Fc結構域包括天然人類IgG1 Fc區(非A及A異型)、天然人類IgG2 Fc區、天然人類IgG3 Fc區,及天然人類IgG4 Fc區以及其天然存在之變異體。野生型Fc區表示於SEQ ID NO: 102 (IgG1,高加索人異型)、SEQ ID NO: 103 (IgG1,美國黑人異型)、SEQ ID NO: 104 (IgG2)、SEQ ID NO: 105 (IgG3)及SEQ ID NO: 106 (IgG4)。
術語「變異 ( 人類 )Fc 結構域 」表示與「野生型」(人類)Fc結構域胺基酸序列之不同之處在於至少一個「胺基酸突變」的胺基酸序列。在一個態樣中,變異Fc區相比於天然Fc區具有至少一個胺基酸突變,例如約一個至約十個胺基酸突變,及在一個態樣中天然Fc區中之約一個至約五個胺基酸突變。在一個態樣中,(變異)Fc區具有與野生型Fc區之至少約95%同源性。
術語「效應功能 」係指可歸因於抗體之Fc區之彼等生物活性,其因抗體同型而異。抗體效應功能之實例包括:C1q結合及補體依賴性細胞毒性(CDC)、Fc受體結合、抗體依賴性細胞介導之細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、細胞介素分泌、免疫複合體介導之抗原呈現細胞攝取抗原、細胞表面受體(例如B細胞受體)之下調,及B細胞活化。
抗體Fc區與Fc受體(FcR)(其為造血細胞上的專門化細胞表面受體)的相互作用可以介導Fc受體結合依賴性效應功能。Fc受體屬於免疫球蛋白超家族,且已展示經由抗體依賴性細胞毒性(ADCC)其調節包被抗體之病原體之移除(藉由免疫複合體吞噬作用),及紅血球及包被相對應抗體的不同其他細胞靶(例如腫瘤細胞)之裂解兩者 (參見例如,Van de Winkel, J.G.及anderson, C.L., J. Leukoc. Biol. 49 (1991) 511-524)。FcR由其對免疫球蛋白同型之特異性定義:針對IgG抗體之Fc受體稱為FcγR。例如Ravetch, J.V.及Kinet, J.P., Annu. Rev. Immunol. 9 (1991) 457-492;Capel, P.J.等人, Immunomethods 4 (1994) 25-34;de Haas, M.等人., J. Lab. Clin. Med. 126 (1995) 330-341;及Gessner, J.E.等人, Ann. Hematol. 76 (1998) 231-248描述Fc受體結合。
IgG抗體之Fc區(FcγR)的受體交聯觸發多種效應功能,包括噬菌作用、抗體依賴性細胞毒性及炎性介質釋放,以及免疫複合物清除及抗體產量之調節。在人類中,已表徵三種類別之FcγR,其為: -FcγRI (CD64)以高親和力結合單體IgG且在巨噬細胞、單核球、嗜中性球及嗜酸性球上表現。在Fc區IgG內至少在胺基酸殘基E233-G236、P238、D265、N297、A327及P329 (根據Kabat之EU索引編號)中之一者修飾,減小FcγRI結合。位置233-236處之IgG2殘基(經取代至IgG1及IgG4)減少10³倍FcγRI結合,且消除人單核細胞與抗體敏化紅細胞之響應(Armour, K.L.等人, Eur. J. Immunol. 29 (1999) 2613-2624)。 -FcγRII (CD32)以中至低親和力結合複合的IgG且受到廣泛表現。此受體可分為兩種子類型:FcγRIIA及FcγRIIB。在許多涉及殺滅之細胞(例如,巨噬細胞、單核球、嗜中性球)上發現FcγRIIA,且其似乎能夠激活殺滅程序。FcγRIIB似乎在抑制過程中起作用且發現於B細胞、巨噬細胞上及肥大細胞及嗜酸性球上。在B細胞上,其似乎起到遏制進一步產生免疫球蛋白及同型轉換至例如IgE類別之功能。在巨噬細胞上,FcγRIIB用以抑制如經由FcγRIIA介導的吞噬。在嗜酸性球及肥大細胞上,B形式可以經由IgE結合至其各別受體而有助於活化此等細胞。發現FcγRIIA結合減小,例如對於包含至少在胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、R292及K414中之一者處具有突變之IgG Fc-區的抗體(根據Kabat之EU索引編號)。 -FcγRIII (CD16)以中至低低親和力結合IgG,且以兩種類型存在。在NK細胞、巨噬細胞、嗜酸性球及一些單核球及T細胞上發現FcγRIIIA,且FcγRIIIA調節ADCC。FcγRIIIB高度表現於嗜中性球上。發現FcγRIIIA結合減小,例如包含至少在胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、S239、E269、E293、Y296、V303、A327、K338及D376中之一者處具有突變之IgG Fc-區的抗體(根據Kabat之EU索引編號)。
人類IgG1上結合位點對Fc受體之定位、上述突變位點及用於量測與FcγRI及FcγRIIA結合之方法描述於Shields, R.L., 等人 J. Biol. Chem. 276 (2001) 6591-6604中。
術語「ADCC 」或「抗體依賴性細胞毒性」為藉由Fc受體結合調節之功能,且係指在效應細胞存在下藉由如本文所報導之抗體裂解靶細胞。藉由量測該等結合Fcγ受體表現細胞,諸如以重組方式表現FcγRI及/或FcγRIIA或NK細胞(基本上表現FcγRIIIA)之細胞,來研究誘導調節ADCC之最初步驟的抗體含量。特定言之,量測NK細胞上與FcγR之結合。
活化 Fc 受體 」為一種Fc受體,其與抗體之Fc區接合之後,引發信號傳導事件,其刺激攜帶受體之細胞執行效應功能。活化Fc受體包括FcγRIIIa (CD16a)、FcγRI (CD64)、FcγRIIa (CD32)及FcαRI (CD89)。特定活化Fc受體係人類FcγRIIIa (參見UniProt寄存編號P08637,141版)。
「腫瘤壞死因子受體超家族」或「TNF 受體超家族 」目前由27種受體組成。其為一群特徵為經富含半胱胺酸之胞外結構域(CRD)結合腫瘤壞死因子(TNF)之能力的細胞激素受體。此等偽重複由受體鏈內高度保守半胱胺酸殘基產生之鏈內二硫化物界定。除神經生長因子(NGF)以外,全部TNF與原型TNF-α同源。大部分TNF受體以其活性形式在漿膜中形成三聚複合物。因此,大部分TNF受體含有跨膜結構域(TMD)。若干此等受體亦含有胞內死亡結構域(DD),其在配位體結合之後募集卡斯蛋白酶相互作用蛋白以起始卡斯蛋白酶活化之外源路徑。缺乏死亡結構域之其他TNF超家族受體結合TNF受體相關因子且活化可導致增殖或分化之胞內信號傳導路徑。此等受體亦可起始細胞凋亡,但其經間接機制進行。除了調節細胞凋亡之外,若干TNF超家族受體涉及調節免疫細胞功能(諸如B細胞穩定及活化)、自然殺手細胞活化及T細胞共刺激。若干其他受體調節細胞類型特異性反應,諸如毛囊發育及蝕骨細胞發育。TNF受體超家族之成員包括以下:腫瘤壞死因子受體1 (1A) (TNFRSF1A、CD120a)、腫瘤壞死因子受體2 (1B) (TNFRSF1B、CD120b)、淋巴毒素β受體(LTBR、CD18)、OX40 (TNFRSF4、CD134)、CD40 (Bp50)、Fas受體(Apo-1、CD95、FAS)、誘餌受體3 (TR6、M68、TNFRSF6B)、CD27 (S152、Tp55)、CD30 (Ki-1、TNFRSF8)、4-1BB (CD137、TNFRSF9)、DR4 (TRAILR1、Apo-2、CD261、TNFRSF10A)、DR5 (TRAILR2、CD262、TNFRSF10B)、誘餌受體1 (TRAILR3、CD263、TNFRSF10C)、誘餌受體2 (TRAILR4、CD264、TNFRSF10D)、RANK (CD265、TNFRSF11A)、骨保護素(OCIF、TR1、TNFRSF11B)、TWEAK受體(Fn14、CD266、TNFRSF12A)、TACI (CD267、TNFRSF13B)、BAFF受體(CD268、TNFRSF13C)、疱疹病毒侵入介體(HVEM、TR2、CD270、TNFRSF14)、神經生長因子受體(p75NTR、CD271、NGFR)、B細胞成熟抗原(CD269、TNFRSF17)、糖皮質激素誘導之TNFR相關(GITR、AITR、CD357、TNFRSF18)、TROY (TNFRSF19)、DR6 (CD358、TNFRSF21)、DR3 (Apo-3、TRAMP、WS-1、TNFRSF25)以及外異蛋白A2受體(XEDAR、EDA2R)。
腫瘤壞死因子受體(TNFR)家族之若干成員在初始T細胞活化之後用於維持T細胞反應。術語「共刺激 TNF 受體 家族成員 」或「共刺激TNF家族受體」係指能夠共刺激T細胞之增殖及細胞激素產生的TNF受體家族成員之子群。除非另外指示,否則該術語係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)、非人類靈長類動物(例如食蟹獼猴)及嚙齒動物(例如小鼠及大鼠))之任何原生TNF家族受體。在本發明之具體實施例中,共刺激TNF受體家族成員係選自由以下組成之群:OX40 (CD134)、4-1BB (CD137)、CD40、CD27、HVEM (CD270)、CD30及GITR,其均可對T細胞具有共刺激作用。更具體而言,本發明之抗原結合分子至少包含能夠特異性結合於共刺激TNF受體家族成員OX40之部分。
TNF受體家族成員之其他資訊(特定言之,序列)可自公開可用資料庫(諸如Uniprot(www.uniprot.org))獲得。舉例而言,人類共刺激TNF受體具有以下胺基酸序列:人類OX40 (UniProt寄存編號P43489,SEQ ID NO: 108)、人類4-1BB (UniProt寄存編號Q07011,SEQ ID NO: 109)、人類CD27 (UniProt寄存編號P26842,SEQ ID NO: 110)、人類HVEM (UniProt寄存編號Q92956,SEQ ID NO: 111)、人類CD30 (UniProt寄存編號P28908,SEQ ID NO: 112)、人類GITR (UniProt寄存編號Q9Y5U5,SEQ ID NO: 113)及人類CD40 (UniProt寄存編號P25942,SEQ ID NO. 115)。
除非另外指示,否則如本文所用之術語「OX40 」係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠))之任何原生OX40。該術語涵蓋「全長」的未經處理之OX40以及由細胞中之處理產生的OX40之任何形式。該術語亦涵蓋天然存在之OX40變異體,例如剪接變異體或對偶基因變異體。例示性人類OX40之胺基酸序列顯示於SEQIDNO: 107 (Uniprot P43489,型式112)且例示性小鼠OX40之胺基酸序列顯示於SEQIDNO: 113 (Uniprot P47741,型式101)中。
在若干共刺激分子中,腫瘤壞死因子(TNF)受體家族成員OX40 (CD134)在效應子及記憶T細胞之存活及恆定方面起關鍵作用(CroftM.等人. (2009), Immunological Reviews 229, 173-191)。OX40 (CD134)在若干細胞類型中表現且針對感染、腫瘤及自身抗原調節免疫反應,且已證實其在T細胞、NKT-細胞及NK細胞以及嗜中性球表面上表現(Baumann R.等人. (2004), Eur. J. Immunol. 34, 2268-2275)且顯示回應於多種刺激信號精確誘導或強烈上調。已在每一種OX40表現細胞類型中證實分子之功能活性,表明活體內OX40介導活性之複雜調節。與T細胞受體觸發相組合,T細胞上OX40經其天然配位體或促效抗體嚙合導致PI3K及NFκB信號傳導路徑的協同活化(Song J.等人. (2008) J. Immunology 180(11), 7240-7248)。繼而,此導致加強之增殖、增加之細胞介素受體及細胞激素產生以及更佳之活化T細胞存活。除了其在效應CD4+ 或CD8+ T細胞中之共刺激活性之外,最近已證實OX40觸發抑制T調節細胞之產生及免疫抑制功能。此作用可能至少部分負責提高OX40對抗腫瘤或抗微生物免疫反應之活性。由於OX40嚙合可擴大T細胞群體,促進細胞介素分泌以及支持T細胞記憶,因此包括配位體OX40L之抗體及可溶性形式的促效劑已成功地用於多種臨床前腫瘤模型(Weinberg等人. (2000), J. Immunol. 164, 2160-2169)。
術語「 OX40 抗體 」、「抗OX40」、「OX40抗體」及「特異性結合於OX40之抗體」係指能夠以足夠親和力結合OX40以使得抗體在靶向OX40時適用作診斷劑及/或治療劑之抗體。在一個實施例中,抗OX40抗體與不相關非OX40蛋白質之結合程度小於抗體與OX40之結合之約10%,如(例如)藉由流式細胞量測術(FACS)所量測。在某些實施例中,與OX40結合之抗體的解離常數(KD )為≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-6 M或更小,例如10-68 M至10-13 M,例如10-8 M至10-10 M)。
除非另有指示,否則如本文所用之術語「4-1BB 」或「CD137 」係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠)的任何原生4-1BB。該術語涵蓋「全長」未經處理之4-1BB以及由細胞中之處理產生的4-1BB之任何形式。該術語亦涵蓋天然存在之4-1BB變異體,例如剪接變異體或對偶基因變異體。例示性人類4-1BB之胺基酸序列顯示於SEQ ID NO: 109 (Uniprot寄存編號Q07011)中。
術語「 4-1BB 抗體 」、「抗4-1BB」、「4-1BB抗體」及「特異性結合於4-1BB之抗體」係指能夠以足夠親和力結合4-1BB以使得抗體在靶向4-1BB時適用作診斷劑及/或治療劑之抗體。在一個實施例中,抗4-1BB抗體與不相關非4-1BB蛋白質之結合程度小於抗體與4-1BB之結合之約10%,如(例如)藉由放射免疫分析(RIA)或流式細胞量測術(FACS)所量測。在某些實施例中,與4-1BB結合之抗體的解離常數(KD )為≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-6 M或更小,例如10-68 M至10-13 M,例如10-8 M至10-10 M)。特定言之,抗4-1BB抗體係如揭示於美國專利第7,288,638中之純系20H4.9。
除非另外指示,否則如本文所用之術語「CD40 」係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠))之任何原生CD40。該術語涵蓋「全長」的未經處理之CD40以及由細胞中之處理產生的CD40之任何形式。該術語亦涵蓋天然存在之CD40變異體,例如剪接變異體或對偶基因變異體。例示性人類CD40之胺基酸序列顯示於SEQ ID NO: 115 (UniProt no. P25942,版本200)中。CD40抗原係屬於腫瘤壞死因子受體(Tumor Necrosis Factor Receptor;TNF-R)家族之50 kDa細胞表面糖蛋白。(Stamenkovic等人 (1989), EMBO J. 8: 1403-10)。CD40在許多正常細胞類型及腫瘤細胞類型中表現,包括B淋巴細胞、樹突狀細胞、單核球、巨噬細胞、胸腺上皮、內皮細胞、纖維母細胞及平滑肌細胞。CD40表現於所有B淋巴瘤及70%之所有固態腫瘤中且藉由成熟信號(諸如IFN-γ及GM-CSF)在抗原呈現細胞(APC)中上調。CD40活化亦誘導單核球分化為功能性樹突狀細胞(DC)且經由APC-CD40誘導之細胞介素促進NK細胞之溶胞活性。因此,CD40在藉由誘導APC成熟來起始及促進免疫反應、分泌輔助細胞介素、上調共刺激分子及增強效應功能方面起至關重要之作用。
如本文所用,術語「CD40 促效劑 」包括促效CD40/CD40L相互作用之任何部分。如在此上下文中所使用之CD40較佳指人類CD40,因此CD40促效劑較佳為人類CD40之促效劑。通常,該部分將係促效CD40抗體或抗體片段。
術語「 CD40 抗體 」、「抗CD40」、「CD40抗體」及「特異性結合於CD40之抗體」係指能夠以足夠親和力結合CD40以使得抗體在靶向CD40時適用作診斷劑及/或治療劑之抗體。在一個態樣中,抗CD40抗體與不相關非CD40蛋白質之結合程度小於抗體與CD40之結合之約10%,如(例如)藉由放射免疫分析(RIA)或流式細胞量測術(FACS)所量測。在某些實施例中,與CD40結合之抗體的解離常數(KD )為≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-6 M或更小,例如10-68 M至10-13 M,例如10-8 M至10-10 M)。
術語「肽連接子 」係指包含一或多個胺基酸(通常約2至20個胺基酸)的肽。肽連接子在此項技術中已知或描述於本文中。適合之非免疫原性連接肽係例如(G4 S)n 、(SG4 )n 或G4 (SG4 )n 肽連接子,其中「n」一般係1與10之間、通常1與4之間、尤其2的數目,亦即肽選自由以下組成之群:GGGGS (SEQ ID NO:77)、GGGGSGGGGS (SEQ ID NO:78)、SGGGGSGGGG (SEQ ID NO:79)、GGGGGSGGGGSSGGGGS (SEQ ID NO:80)、(G4 S)3 或GGGGSGGGGSGGGGS (SEQ ID NO:81)、GGGGSGGGGSGGGG或G4(SG4)2 (SEQ ID NO:82)、(G4 S)4 或GGGGSGGGGSGGGGSGGGGS (SEQ ID NO:83),及GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84),且亦包括序列GSPGSSSSGS (SEQ ID NO:85)、GSGSGSGS (SEQ ID NO:86)、GSGSGNGS (SEQ ID NO:87)、GGSGSGSG (SEQ ID NO:88)、GGSGSG (SEQ ID NO:89)、GGSG (SEQ ID NO:90)、GGSGNGSG (SEQ ID NO:91)、GGNGSGSG (SEQ ID NO:92)及GGNGSG (SEQ ID NO:93)。備受關注之肽連接子係((G4 S)2 或GGGGSGGGGS (SEQ ID NO:78)及GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)。
根據本發明之「間隔結構域 」係在摺疊之後形成結構域之多肽。因此,間隔結構域可小於100個胺基酸殘基,但需要結構上受限以固定結合基元。例示性間隔結構域係五聚體螺旋-螺旋、抗體鉸鏈區或抗體Fc區或其片段。間隔結構域係二聚結構域,亦即間隔結構域包含能夠提供二聚功能性之胺基酸。
如本申請案內所用之術語「胺基酸 」表示天然存在之羧基α-胺基酸之群,其包含丙胺酸(三字母代碼:ala,一字母代碼:A)、精胺酸(arg,R)、天冬醯胺(asn,N)、天冬胺酸(asp,D)、半胱胺酸(cys,C)、麩醯胺酸(gln,Q)、麩胺酸(glu,E)、甘胺酸(gly,G)、組胺酸(his,H)、異白胺酸(ile,I)、白胺酸(leu,L)、離胺酸(lys,K)、甲硫胺酸(met,M)、苯丙胺酸(phe,F)、脯胺酸(pro,P)、絲胺酸(ser,S)、蘇胺酸(thr,T)、色胺酸(trp,W)、酪胺酸(tyr,Y)及纈胺酸(val,V)。
融合 」或「連接 」意謂組分(例如抗體及Fab片段之重鏈)直接或經由一或多個肽連接子藉由肽鍵連接。
如本文所用之「融合多肽 」或「單一融合多肽」係指由不同組分構成之單鏈多肽,該等組分諸如直接或經由肽連接子與各者融合之TNF配位體家族成員之胞外域。「融合」或「連接」意謂組分(例如多肽及該TNF配位體家族成員之胞外域)直接或經由一或多個肽連接子藉由肽鍵連接。
相對於參考多肽(蛋白質)序列之「胺基酸序列一致性 百分比 (%) 」定義為在比對序列且視需要引入間隙以達成最大序列一致性百分比之後,且在不將任何保守性取代視為序列一致性之一部分的情況下,候選序列中與參考多肽序列中之胺基酸殘基一致的胺基酸殘基的百分比。出於測定胺基酸序列一致性百分比之目的之比對可以此項技術內之各種方式實現,例如使用公開可用之電腦軟體,如BLAST、BLAST-2、ALIGN.SAWI或Megalign (DNASTAR)軟體。熟習此項技術者可確定適用於比對序列之參數,包括在所比較序列之全長內達成最大比對所需的任何算法。然而,出於本文之目的,使用序列比較電腦程式ALIGN-2胺基酸序列產生一致性%值。ALIGN-2序列比較電腦程式由Genentech, Inc.設計,且原始程式碼已在U.S. Copyright Office, Washington D.C., 20559申請用戶文檔,其在此註冊在美國版權註冊第TXU510087號下。ALIGN-2程式公開可獲自Genentech, Inc., South San Francisco, California或可自原始程式碼編輯。ALIGN-2程式經編譯可用於UNIX操作系統,包括數位UNIX V4.0D。所有序列比較參數均由ALIGN-2程序設定且不變化。在使用ALIGN-2進行胺基酸序列比較之情形下,既定胺基酸序列A與既定胺基酸序列B (可替代地,其可表述為與既定胺基酸序列B具有或包含一定胺基酸序列一致性%的既定胺基酸序列A)之胺基酸序列一致性%如下計算: 100×分數X/Y 其中X為在A與B之程式比對中藉由序列比對程式ALIGN-2評為一致匹配之胺基酸殘基之數目,且其中Y為B中之胺基酸殘基之總數目。應瞭解,在胺基酸序列A之長度與胺基酸序列B之長度不相等之情況下,A相對於B之胺基酸序列一致性%與B相對於A之胺基酸序列一致性%將不相等。除非另外特定陳述,否則本文所用之所有胺基酸序列一致性%值係如前一段落中剛剛所述使用ALIGN-2電腦程式獲得。
在某些實施例中,涵蓋本文提供之抗原結合分子之胺基酸序列變異體 。舉例而言,可能需要改良抗原結合分子之結合親和力及/或其他生物特性。抗原結合分子之胺基酸序列變異體可藉由將適當修飾引入至編碼分子之核苷酸序列中或藉由肽合成來製備。此類修飾包括例如抗體胺基酸序列內的殘基缺失及/或插入及/或取代。可進行刪除、插入及取代之任何組合以獲得最終構築體,其限制條件為最終構築體具有所需特徵,例如抗原結合。用於取代性突變誘發之相關位點包括HVR及構架(FR)。保守性取代以標題「較佳取代」提供於表B中且在下文中參考胺基酸側鏈分類(1)至(6)進一步描述。胺基酸取代可經引入至所關注之分子中,且針對所需活性進行篩選之產物,該所需活性例如保持/改良抗原結合或減少免疫原性、或改良之ADCC或CDC。 表A
胺基酸可根據共有側鏈特性進行分組: (1)疏水性:正白胺酸、Met、Ala、Val、Leu、Ile; (2)中性親水性:Cys、Ser、Thr、Asn、Gln; (3)酸性:Asp、Glu; (4)鹼性:His、Lys、Arg; (5)影響鏈取向之殘基:Gly、Pro; (6)芳族:Trp、Tyr、Phe。
非保守取代將必然伴有將此等類別中之一者之成員換成另一個類別。
術語「胺基酸序列變異體 」包括大量變異體,其中在親本抗原結合分子(例如人類化或人類抗體)之一或多個高變區殘基中存在胺基酸取代。通常,所選擇之用於進一步研究之所得變異體與親本抗原結合分子相比將具有某些生物特性之修飾(例如改良) (例如提高之親和力、降低之免疫原性)及/或將實質上保持親本抗原結合分子之某些生物特性。一種示例性取代型變異體為親和力成熟抗體,其可例如使用基於噬菌體呈現之親和力成熟技術(諸如本文所描述之技術)便利地產生。簡言之,一或多個HVR殘基發生突變且變異型抗原結合分子呈現於噬菌體上且針對特定生物活性(例如結合親和力)進行篩檢。在某些實施例中,一或多個HVR內可存在取代、插入或缺失,只要此類變化不實質上降低抗原結合分子結合抗原之能力即可。舉例而言,可在HVR中進行不實質上降低結合親和力之保守改變(例如如本文所提供之保守取代)。一種適用於鑑別突變誘發可靶向之抗體殘基或區域的方法稱為「丙胺酸掃描突變誘發」,如Cunningham及Wells (1989) Science, 244:1081-1085所述。在此方法中,鑑別殘基或一組靶殘基(例如帶電殘基,諸如Arg、Asp、His、Lys及Glu)且經中性或帶負電胺基酸(例如丙胺酸或聚丙胺酸)置換以判定抗體與抗原之相互作用是否受到影響。可在對初始取代展現功能敏感性之胺基酸位置處引入其他取代。可替代地或另外,抗原-抗原結合分子之晶體結構複合以鑑別抗體與抗原之間的接觸點。此類接觸殘基及鄰近殘基可作為取代候選物之標靶或排除在取代候選物之外。可篩選變異體以判定其是否含有所需特性。
胺基酸序列插入包括長度在一個殘基至含有一百個或多於一百個殘基之多肽範圍內的胺基端及/或羧基端融合,以及單個或多個胺基酸殘基之序列內插入。末端插入之實例包括具有N端甲硫胺醯基殘基之本發明之雙特異性抗原結合分子。分子之其他插入型變異體包括N或C端與多肽之融合,此延長雙特異性抗原結合分子之血清半衰期。
在某些實施例中,本文提供之雙特異性抗原結合分子經改變以提高或降低抗體經糖基化之程度。可藉由改變胺基酸序列使得產生或移除之一或多個糖基化位點來便利地獲得分子之糖基化變異體 。在抗原結合分子包含Fc區之情況下,可改變連接於其上之碳水化合物。由哺乳動物細胞產生之天然抗體通常包含分支鏈、雙觸角寡醣,其通常藉由N鍵連接至Fc區之CH2結構域之Asn297。參見例如Wright等人,TIBTECH 15:26-32 (1997)。寡醣可包括各種碳水化合物,例如甘露糖、N-乙醯基葡糖胺(GlcNAc)、半乳糖及唾液酸,以及連接至雙觸寡醣結構之「主幹」中之GlcNAc的海藻糖。在一些實施例中,可對抗原結合分子中之寡醣進行修飾以便產生具有某些改良特性之變異體。在一個態樣中,提供本發明之雙特異性抗原結合分子或抗體的變異體,其具有碳水化合物結構且不具有連接(直接或間接)至Fc區的海藻糖。此類海藻糖基化變異體可具有改良之ADCC功能,參見例如美國專利公開案第US 2003/0157108號(Presta, L.)或US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd)。在另一態樣中,本發明之雙特異性抗原結合分子或抗體的變異體具有對分寡醣,例如其中連接至Fc區的二觸角寡醣經GlcNAc對分。此類變異體可具有降低之海藻糖基化及/或改良之ADCC功能,參見例如WO 2003/011878 (Jean-Mairet等人);美國專利第6,602,684號(Umana等人);及US 2005/0123546 (Umana等人)。亦提供寡醣中之至少一個半乳糖殘基與Fc區連接之抗體變異體。此類抗體變異體可具有改良之CDC功能且描述於例如WO 1997/30087 (Patel等人);WO 1998/58964 (Raju, S.);及WO 1999/22764 (Raju, S.)中。
在某些態樣中,可能需要產生本發明之雙特異性抗原結合分子之經半胱胺酸工程改造的變異體 ,例如「thioMAbs」,其中分子之一或多個殘基經半胱胺酸殘基取代。在特定態樣中,經取代之殘基存在於分子之可達位點處。藉由用半胱胺酸取代彼等殘基,藉此將反應性硫醇基安置於抗體之可達位點處且可用於使抗體與其他部分(諸如藥物部分或連接子-藥物部分)結合以產生免疫結合物。在某些態樣中,以下殘基中之任一者或多者可經半胱胺酸取代:輕鏈之V205 (Kabat編號);重鏈之A118 (EU編號);及重鏈Fc區之S400 (EU編號)。半胱胺酸工程改造之抗原結合分子可例如美國專利第7,521,541號中所述產生。
在某些態樣中,本文所提供之雙特異性抗體可進一步經修飾以含有此項技術中已知且可容易獲得的額外非蛋白質部分。適用於抗體之衍生作用之部分包括但不限於水溶性聚合物。水溶性聚合物之非限制性實例包括但不限於聚乙二醇(PEG)、乙二醇/丙二醇之共聚物、羧甲基纖維素、聚葡萄糖、聚乙烯醇、聚乙烯吡咯啶酮、聚-1,3-二氧雜環戊烷、聚-1,3,6-三噁烷、乙烯/順丁烯二酸酐共聚物、聚胺基酸(均聚物或無規共聚物)及聚葡萄糖或聚(n-乙烯吡咯啶酮)聚乙二醇、丙二醇均聚物、聚氧化丙烯/氧化乙烯共聚物、聚氧乙烯多元醇(例如丙三醇)、聚乙烯醇及其混合物。聚乙二醇丙醛因其在水中之穩定性而可能在製造中具有優勢。聚合物可具有任何分子量,且可為分支鏈或非分支鏈的。連接至抗體之聚合物的數目可變化,且若連接超過一種聚合物,則聚合物可為相同或不同分子。一般而言,用於衍生作用之聚合物之數目及/或類型可基於包括但不限於待改良抗體之特定特性或功能、雙特異性抗體衍生物係否將用於限定條件下之療法等考慮因素來確定。在另一態樣中,提供抗體與可藉由暴露於輻射來選擇性地加熱之非蛋白質部分之結合物。在一個實施例中,在一個實施例中,非蛋白質部分為碳奈米管(Kam, N.W.等人, Proc. Natl. Acad. Sci. USA 102 (2005) 11600-11605)。輻射可具有任何波長,且包括但不限於不損害普通細胞但將非蛋白質部分加熱至殺死抗體-非蛋白質部分近側之細胞之溫度的波長。
在另一態樣中,可獲得本文所提供之雙特異性抗體之免疫結合物。「免疫結合物 」為結合於一或多個異源分子,包括但不限於細胞毒性劑之抗體。
術語「核酸 」係指經分離核酸分子或構築體,例如信使RNA (mRNA)、病毒源性RNA或質體DNA (pDNA)。聚核苷酸可包含習知磷酸二酯鍵或非習知鍵(例如醯胺鍵,諸如肽核酸(PNA)中所發現)。術語「核酸分子」係指聚核苷酸中存在之任何一或多個核酸區段,例如DNA或RNA片段。
分離 」之核酸分子或多核苷酸意指已自原生環境中移除的核酸分子、DNA或RNA。舉例而言,出於本發明之目的,編碼載體中所含之多肽的重組聚核苷酸視為經分離。分離之聚核苷酸之其他實例包括異源宿主細胞中所維持的重組聚核苷酸或溶液中經純化(部分或實質上)之聚核苷酸。經分離之聚核苷酸包括通常含有聚核苷酸分子之細胞中所含的聚核苷酸分子,但聚核苷酸分子存在於染色體外或與其天然染色體位置不同之染色體位置處。經分離之RNA分子包括本發明之活體內或活體外RNA轉錄物,以及正股及負股形式,及雙股形式。根據本發明之經分離聚核苷酸或核酸進一步包括以合成方式產生的此類分子。另外,聚核苷酸或核酸可為或可包括調節元件,諸如啟動子、核糖體結合位點或轉錄終止子。
一種核酸或聚核苷酸的核苷酸序列與本發明之參考核苷酸序列至少例如95%「一致」意指該聚核苷酸之核苷酸序列與參考序列一致,但該聚核苷酸序列相對於參考核苷酸序列可每100個核苷酸中包括至多五個點突變。換言之,為了獲得核苷酸序列與參考核苷酸序列至少95%一致的聚核苷酸,參考序列中至多5%的核苷酸可缺失或經另一核苷酸取代,或參考序列中可插入佔參考序列核苷酸總數至多5%的多個核苷酸。參考序列之此等變化可發生於參考核苷酸序列之5'或3'末端位置或彼等末端位置之間的任何位置,此等位置個別地散佈於參考序列中之殘基中或參考序列內之一或多個相鄰基團中。實際上,任何特定聚核苷酸序列係否與本發明之核苷酸序列至少80%、85%、90%、95%、96%、97%、98%或99%一致可常規上使用已知電腦程式,諸如上文針對多肽(例如ALIGN-2)所述之電腦程式測定。
術語「表現卡匣 」係指以重組或合成方式產生之聚核苷酸,其具有允許靶細胞中之特定核酸發生轉錄的一系列特定核酸元件。重組表現卡匣可併入質體、染色體、粒線體DNA、質體DNA、病毒或核酸片段中。通常,表現載體之重組表現卡匣部分包括待轉錄的核酸序列及啟動子,以及其他序列。在某些實施例中,本發明之表現卡匣包含編碼本發明之雙特異性抗原結合分子或其片段的聚核苷酸序列。
術語「載體 」或「表現載體」與「表現構築體」同義且係指用於引入特定基因且引導該基因表現的DNA分子,該DNA分子與該基因在目標細胞中可操作地締合。該術語包括作為自我複製核酸結構之載體以及併入其已引入之宿主細胞之基因組中的載體。本發明之表現載體包含表現卡匣。表現載體允許大量的穩定mRNA之轉錄。一旦表現載體進入靶細胞內,則藉由細胞轉錄及/或轉譯機構產生由該基因編碼的核糖核酸分子或蛋白質。在一個實施例中,本發明之表現載體包含表現卡匣,該表現卡匣包含編碼本發明之雙特異性抗原結合分子或其片段的聚核苷酸序列。
術語「宿主細胞 」、「宿主細胞株」及「宿主細胞培養物」可互換使用且係指已引入外源核酸之細胞,包括此類細胞之子代。宿主細胞包括「轉型體」及「轉型細胞」,其包括初級轉型細胞及自其衍生之子代(不考慮繼代次數)。子代之核酸含量與母細胞可能不完全相同,但可能含有突變。本文包括針對原始轉型細胞篩選或選擇具有相同功能或生物活性之突變型子代。宿主細胞為可用於產生本發明之雙特異性抗原結合分子之任何類型的細胞系統。宿主細胞包括培養細胞,例如哺乳動物培養細胞,諸如CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髓瘤細胞、P3X63小鼠骨髓瘤細胞、PER細胞、PER.C6細胞或融合瘤細胞、酵母細胞、昆蟲細胞及植物細胞(僅舉數例),而且包括轉殖基因動物、轉殖基因植物或培養植物或動物組織內所含的細胞。
藥劑之「有效量 」係指在所投與之細胞或組織中產生生理變化所需的量。
藥劑(例如醫藥組合物)之「治療有效量 」係指呈一定劑量及持續所需時段,實現治療或防治結果之有效量。舉例而言,治療有效量之藥劑可消除、減少、延遲、最小化或預防疾病之副作用。
個體 (individual /subject)」係哺乳動物。哺乳動物包括但不限於馴養動物(例如牛、綿羊、貓、狗及馬)、靈長類動物(例如人類及非人類靈長類動物,諸如猴)、兔及嚙齒動物(例如小鼠及大鼠)。特定言之,個體係人類。
術語「醫藥組合物 」係指所呈形式允許其中所含活性成分之生物活性有效發揮的製劑,且其不含對調配物將投與之個體具有不可接受毒性之其他組分。
醫藥學上可接受之賦形劑 」係指醫藥組合物中除活性成分以外對個體無毒的成分。醫藥學上可接受之賦形劑包括但不限於緩衝劑、穩定劑或防腐劑。
術語「藥品說明書 」用以指通常包括於治療性產品之商業包裝中的說明書,其含有關於與使用此類治療性產品有關之適應症、用法、劑量、投藥、組合療法、禁忌症及/或警告的資訊。
如本文所用,「治療 (treatment) 」(及其語法變化形式,諸如「治療(treat)」或「治療(treating)」)係指試圖改變所治療個體之自然病程的臨床介入且可出於防治目的或在臨床病理學之病程期間進行。所需治療作用包括但不限於預防疾病發生或復發,緩解症狀,減輕疾病之任何直接或間接病理性結果,預防癌轉移,減緩疾病進展速率,改善或緩和疾病病況及緩解或改良預後。在一些實施例中,本發明之分子用於延遲疾病發展或減慢疾病之進程。
如本文所使用,術語「癌症 」係指增生性疾病,諸如淋巴瘤、癌瘤、淋巴瘤、母細胞瘤、肉瘤、白血病、淋巴細胞性白血病、肺癌、非小細胞肺(NSCL)癌、細支氣管肺泡細胞肺癌、骨癌、胰臟癌、皮膚癌、頭頸癌、皮膚或眼內黑素瘤、子宮癌、卵巢癌、直腸癌、肛門區癌、胃癌(stomach cancer)、胃癌(gastric cancer)、結腸直腸癌(CRC)、胰臟癌、乳癌、三陰性乳癌、子宮癌、輸卵管癌、子宮內膜癌、子宮頸癌、陰道癌、外陰癌、霍奇金氏病(Hodgkin's Disease)、食道癌、小腸癌、內分泌系統癌症、甲狀腺癌、副甲狀腺癌、腎上腺癌、軟組織肉瘤、尿道癌、陰莖癌、前列腺癌、膀胱癌、腎臟或尿管之癌症、腎細胞癌、腎盂癌、間皮瘤、肝細胞癌、膽癌、中樞神經系統(CNS)之贅瘤、脊柱軸腫瘤、腦幹神經膠質瘤、多形性膠質母細胞瘤、星形細胞瘤、神經鞘瘤、室管膜瘤、神經管胚細胞瘤、脊膜瘤、鱗狀細胞癌、垂體腺瘤及尤文氏肉瘤(Ewings sarcoma)、黑素瘤、多發性骨髓瘤、B細胞癌(淋巴瘤)、慢性淋巴細胞性白血病(CLL)、急性淋巴母細胞白血病(ALL)、毛細胞白血病、慢性骨髓母細胞白血病,包括以上癌症中之任一者之頑抗性版本,或以上癌症中之一或多者之組合。
本發明之雙特異性抗原結合分子 本發明提供具有尤其有利特性之新穎雙特異性抗體,該等有利特性諸如生產能力、穩定性、結合親和力、生物活性、靶向效率及降低之毒性。新穎的雙特異性抗體由兩種融合多肽組成,包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域。意外地,以三個抗原結合結構域可正確組裝且雙特異性結合係完全功能性之方式工程改造此等兩種融合多肽。
對於意欲向臨床應用開發之分子,必須避免功能活性分子之聚集體,意謂形成抗原結合分子之不同融合多肽之組件的純度及穩定性極其重要。重要地,在本發明之雙特異性抗體中,全部三個抗原結合結構域以能夠實現三個抗原結合結構域之正確組裝之方式融合。且全部三個抗原結合結構域以每個抗原結合結構域可與其各別標靶結合之方式定位。本發明之新穎的雙特異性抗原結合分子此外僅由兩種融合多肽構成且不包含任何輕鏈。因此可避免重鏈與輕鏈之間正確配對之問題。亦重要的係構築體可以合理良好之效價表現且產生所需產物之良好比值。包含用於二聚之間隔結構域之抗體樣架構相比於其他蛋白質係穩定的;其表現使用不同細胞株亦極其穩定。
本發明之新穎的雙特異性抗原結合分子稱為2+1 康特斯體。
因此,2+1康特斯體係雙特異性抗體,其由兩種融合多肽組成且包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域,其中 (a)第一融合多肽包含能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第一部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 -能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端,且 (b)第二融合多肽包含能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第二部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 -能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端, 其中能夠特異性結合於第二標靶之抗原結合結構域之第一部分及第二部分彼此締合以形成能夠特異性結合於第二標靶之抗原結合結構域且其中能夠特異性結合於第一標靶之第一及第二抗原結合結構域之第一部分及第二部分彼此締合以形成環形融合多肽,且 其中第一融合多肽之間隔結構域及第二融合多肽之間隔結構域藉由二硫鍵彼此共價締合且包含促進第一及第二融合多肽之締合的修飾。
在一個態樣中,提供如前文所定義之雙特異性抗體,其中在第一融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端且其中在第二融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端。
在另一態樣中,提供如前文所定義之雙特異性抗體,其中在第一融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端且其中在第二融合多肽中,能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端。
因此,在如前文所定義之雙特異性抗體中,原始抗體結構域係藉由可撓性肽連接子融合。此等連接子能夠在康特斯體分子內實現正確結構域締合,以及實現抗體之適當摺疊。此新的鏈拓樸產生不同於典型IgG1型式之Fab臂及Fc部分之空間定向。歸因於其抗原結合位點之平行定向,康特斯體係用於促效機制之極其適合之抗體型式。
在一個態樣中,提供如前文所定義之雙特異性抗體,其中連接能夠特異性結合於第二標靶之抗原結合結構域之第一部分或第二部分的第三肽連接子包含至少15個胺基酸。在一個態樣中,連接能夠特異性結合於第二標靶之抗原結合結構域之第一部分的第三肽連接子與連接能夠特異性結合於第二標靶之抗原結合結構域之第二部分的第三肽連接子相同。在一個態樣中,第三肽連接子包含15至25個胺基酸。在一個特定態樣中,第三肽連接子包含胺基酸序列SEQ ID NO: 83或SEQ ID NO: 84。更具體而言,第三肽連接子包含胺基酸序列SEQ ID NO: 84。在另一態樣中,第三肽連接子(在兩種融合多肽中)包含胺基酸序列SEQ ID NO: 83或SEQ ID NO: 84且第一及第二肽連接子包含胺基酸序列SEQ ID NO: 78。
在一個態樣中,本發明提供如前文所定義之雙特異性抗體,其中第一融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之重鏈可變結構域且第二融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之抗體輕鏈可變結構域或反之亦然。
在一個態樣中,本發明提供如前文所定義之雙特異性抗體,其中第一融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之重鏈可變結構域且第二融合多肽包含能夠特異性結合於第二標靶之抗原結合結構域之抗體輕鏈可變結構域或反之亦然。在一個特定態樣中,抗原結合結構域之第一部分係抗體重鏈Fab片段且抗原結合結構域之第二部分係抗體輕鏈Fab片段或反之亦然。在一個態樣中,抗原結合結構域之第一部分與抗原結合結構域之第二部分藉由二硫鍵彼此共價締合。
在一替代態樣中,雙特異性抗體由兩種融合多肽組成且包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域,其中 (a)第一融合多肽包含能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第一部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 -能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至能夠特異性結合於第一標靶之第一抗原結合結構域之第一部分的N端,且 (b)第二融合多肽包含能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分及能夠特異性結合於第二標靶之抗原結合結構域之第二部分,其中 -該間隔結構域係多肽且包含至少25個胺基酸殘基, -能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端, -能夠特異性結合於第一標靶之第二抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且 (c)輕鏈包含能夠特異性結合於第二標靶之抗原結合結構域之第二部分, 其中能夠特異性結合於第二標靶之抗原結合結構域之第一部分及第二部分彼此締合以形成能夠特異性結合於第二標靶之抗原結合結構域且其中能夠特異性結合於第一標靶之第一及第二抗原結合結構域之第一部分及第二部分彼此締合以形成環形融合多肽,且 其中第一融合多肽之間隔結構域及第二融合多肽之間隔結構域藉由二硫鍵彼此共價締合且包含促進第一及第二融合多肽之締合的修飾。
在一些態樣中,抗原結合結構域之第一部分係抗體重鏈Fab片段且抗原結合結構域之第二部分係抗體輕鏈Fab片段或反之亦然。在一個態樣中,抗原結合結構域之第一部分與抗原結合結構域之第二部分藉由二硫鍵彼此共價締合。
在一個態樣中,提供如前文所定義之雙特異性抗體,其中在第一融合多肽及第二融合多肽兩者中,能夠特異性結合於第一標靶之抗原結合結構域之第一部分係抗體重鏈Fab片段且能夠特異性結合於第一標靶之抗原結合結構域之第二部分係抗體輕鏈Fab片段。
若抗原結合結構域係Fab片段,則Fab可為習知Fab、交叉Fab或DutaFab。
就習知Fab而言,抗原結合結構域之第一部分包含抗體重鏈可變結構域(VH)及至少(或完整)第一抗體重鏈恆定結構域(CH1)之N端片段且抗原結合結構域之各別第二部分包含抗體輕鏈可變結構域(VL)及至少(或完整)抗體輕鏈恆定結構域(CL或Ckappa)之N端片段。此等結構域之順序可為任何順序,只要其締合及(功能性)抗原結合結構域之形成為可能的(亦即未防止其結合及(功能性)抗原結合結構域之形成)即可。在一個態樣中,抗原結合結構域之一個部分在N端至C端方向上包含VH-CH1且抗原結合結構域之另一部分在N端至C端方向上包含VL-CL (Ckappa)。
就交叉Fab而言,抗原結合結構域之兩個部分各自包含抗體可變結構域及至少(或完整)抗體恆定結構域之N端片段,其中可變結構域及恆定結構域對彼此未天然締合且藉由重鏈結構域及輕鏈結構域之結構域交叉/交換來獲得。此可為VH與VL或CH1與CL之交換。此等結構域之順序可為任何順序,只要其締合及(功能性)結合位點之形成為可能的(亦即未防止其結合及(功能性)結合位點之形成)即可。在一個態樣中,抗原結合結構域之第一部分在N端至C端方向上包含VL-CH1且結合結構域之第二部分在N端至C端方向上包含VH-CL (Ckappa)。在另一態樣中,抗原結合結構域之第一部分在N端至C端方向上包含VH-CL且結合結構域之第二部分在N端至C端方向上包含VL-CH1。
就DutaFab而言,抗原結合結構域之第一部分包含抗體重鏈可變結構域(VH)及至少(或完整)第一抗體重鏈恆定結構域(CH1)之N端片段且各別第二抗原結合結構域包含抗體輕鏈可變結構域(VL)及至少(或完整)抗體輕鏈恆定結構域(CL)之N端片段,其中該抗原結合結構域在重鏈可變結構域(VH)及輕鏈可變結構域(VL)之互補對中包含兩個不重疊互補位,其中第一互補位包含來自VL結構域之CDR1及CDR3以及VH結構域之CDR2之殘基,且第二互補位包含來自VH結構域之CDR1及CDR3及VL結構域之CDR2之殘基。
因此,在一個態樣中,抗原結合結構域之第一部分係抗體重鏈Fab片段(VH-CH1)且抗原結合結構域之第二部分係抗體輕鏈Fab片段(VL-Ckappa)。在另一態樣中,抗原結合結構域之第一部分係抗體輕鏈Fab片段且抗原結合結構域之第二部分係抗體重鏈Fab片段。在另一態樣中,抗原結合結構域之第一部分係包含VH-Ckappa之抗體交叉Fab片段且抗原結合結構域之第二部分係包含VL-CH1之抗體交叉Fab片段。在另一態樣中,抗原結合結構域之第一部分係包含VL-CH1之抗體交叉Fab片段且抗原結合結構域之第二部分係包含VH-Ckappa之抗體交叉Fab片段。
在一特定態樣中,本發明提供雙特異性抗體,其中能夠特異性結合於第二標靶之抗原結合結構域係交叉Fab且其中能夠特異性結合於第一標靶之兩個抗原結合結構域係習知Fab。
在另一態樣中,本發明提供雙特異性抗體,其中能夠特異性結合於第二標靶之抗原結合結構域係習知Fab且其中能夠特異性結合於第一標靶之兩個抗原結合結構域係交叉Fab。
如上文所述,雙特異性抗體由第一及第二融合多肽組成,兩種多肽均包含間隔結構域,第一融合多肽之間隔結構域與第二融合多肽之間隔結構域藉由二硫鍵彼此共價締合且包含促進第一及第二融合多肽之締合之修飾。間隔結構域包含至少25個胺基酸。
在本發明之一個態樣中,間隔結構域包含抗體鉸鏈區或其(C端)片段及抗體CH2結構域或其(N端)片段。在另一態樣中,間隔結構域包含抗體鉸鏈區或其片段、抗體CH2結構域,及抗體CH3結構域或其片段。在一個態樣中,如本文所述之融合多肽之間隔結構域係抗體Fc結構域,尤其IgG1、IgG2或IgG4亞類之抗體Fc結構域,更尤其IgG1亞類之抗體Fc結構域。
在一個態樣中,間隔結構域包含具有選自由以下組成之群之胺基酸序列的Fc結構域:SEQ ID NO: 103、Seq ID NO: 104、SEQ ID NO: 105、SEQ ID NO: 106及SEQ ID NO: 107,或其95%同源性之變異體。
此外,第一融合多肽之間隔結構域及第二融合多肽之間隔結構域包含促進第一及第二融合多肽之締合之修飾。在一特定態樣中,根據杵-臼方法,第一融合多肽之間隔結構域包含臼且第二融合多肽之間隔結構域包含杵。在另一態樣中,本發明包含雙特異性抗體,其中間隔結構域包含抗體鉸鏈區或其片段及IgG1 Fc結構域。特定而言,IgG1 Fc結構域包含一或多個減少與Fc受體結合(尤其朝向Fc 受體)之胺基酸取代。在一特定態樣中,IgG1 Fc結構域包含胺基酸取代L234A及L235A。在另一態樣中,IgG1 Fc結構域包含突變P329G。更具體而言,IgG1 Fc結構域包含胺基酸取代L234A、L235A及P329G (根據Kabat EU索引編號)。
在另一態樣中,如本文所報導之Fc結構域具有IgG1或IgG2亞類且包含突變PVA236、GLPSS331及/或L234A/L235A/P329G (根據Kabat EU索引編號)。在另一態樣中,本文所報導之Fc結構域具有IgG4亞類且包含突變L235E。在一個態樣中,Fc結構域進一步包含突變S228P。在一個態樣中,IgG4亞類之Fc結構域包含突變P329G。在一個態樣中,如本文所報導之Fc結構域具有IgG4亞類且包含突變S228P/L235E/P329G (所有均根據Kabat EU索引編號)。
在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之一個抗原結合結構域係能夠特異性結合於腫瘤相關抗原(TAA)之抗原結合結構域。特定言之,腫瘤相關抗原係纖維母細胞活化蛋白(FAP)。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之抗原結合結構域係能夠特異性結合於纖維母細胞活化蛋白(FAP)之抗原結合結構域。
促進雜二聚之Fc結構域修飾 在一個態樣中,本發明之雙特異性抗體可包含(a)如前文所定義之第一融合多肽及如前文所定義之第二融合多肽,其中第一及第二融合多肽包含促進第一及第二融合多肽之締合之修飾。通常,將此等修飾引入Fc結構域中。兩種結構上不同之融合多肽與後續二聚之重組共表現將產生兩種多肽之數種可能組合。為提高重組生產中雙特異性抗體之產率及純度,因此有利的係在本發明之雙特異性抗原結合之Fc結構域中引入促進所需多肽之締合之修飾。
人類IgG Fc結構域中之兩個子單元之間最廣泛蛋白質-蛋白質相互作用的位點位於Fc結構域之CH3結構域中。因此,該修飾尤其存在於Fc結構域之CH3結構域中。
在特定態樣中,該修飾為所謂的「杵臼結構」修飾,其包含Fc結構域之兩個子單元中之一者中的「杵」修飾及Fc結構域之兩個子單元之另一者中的「臼」修飾。因此,在一個特定態樣中,本發明係關於如上文中所描述之包含IgG分子之雙特異性抗原結合分子,其中第一重鏈之Fc部分包含第一二聚模組且第二重鏈之Fc部分包含第二二聚模組,從而實現IgG分子之兩個重鏈之雜二聚化,且根據杵臼結構技術,第一二聚模組包含杵且第二二聚模組包含臼。
杵-臼技術描述於例如US5,731,168;US7,695,936;Ridgway等人, Prot Eng 9, 617-621 (1996)及Carter, J Immunol Meth 248, 7-15 (2001)中。一般而言,方法包括在第一多肽之界面處引入隆凸(「杵」)及在第二多肽之界面處引入相應空腔(「臼」),使得隆凸可定位於空腔中以便促進雜二聚體形成且阻礙均二聚體形成。藉由用較大側鏈(例如酪胺酸或色胺酸)置換第一多肽界面中之小胺基酸側鏈來構建隆凸。大小與隆凸相同或類似之補償性空腔藉由用較小胺基酸側鏈(例如丙胺酸或蘇胺酸)置換大胺基酸側鏈而形成於第二多肽之界面中。
如本文所報導之第一及第二融合多肽中之CH3結構域可藉由「杵-臼」技術改變,該「杵-臼」技術在例如WO 96/027011, Ridgway, J.B.等人, Protein Eng. 9 (1996) 617-621;及Merchant, A.M.等人, Nat. Biotechnol. 16 (1998) 677-681中以若干實例詳細描述。在此方法中,改變兩個CH3結構域之相互作用表面以增加含有此兩個CH3結構域之兩個重鏈的雜二聚。(兩個重鏈之)兩個CH3結構域中之每一者可為「杵」,而另一者為「臼」。引入二硫橋鍵進一步使雜二聚體穩定(Merchant, A.M.等人, Nature Biotech 16 (1998) 677-681;Atwell, S.等人, J. Mol. Biol. 270 (1997) 26-35)且提高產量。
因此,在一個特定態樣中,在本發明之雙特異性抗原結合分子之Fc結構域的第一子單元之CH3結構域中,胺基酸殘基經具有較大側鏈體積的胺基酸殘基置換,藉此在第一子單元之CH3結構域內產生可定位於第二子單元之CH3結構域內之空腔中的隆凸,且在Fc結構域之第二子單元之CH3結構域中,胺基酸殘基經具有較小側鏈體積的胺基酸殘基置換,藉此在第二子單元之CH3結構域內產生供第一子單元之CH3結構域內之隆凸可定位於其中的空腔。
在一個特定態樣中,在Fc結構域之第一子單元之CH3結構域(「杵鏈」)中,位置366處之蘇胺酸殘基經色胺酸殘基(T366W)置換,且在Fc結構域之第二子單元之CH3結構域中,位置407處之酪胺酸殘基經纈胺酸殘基(Y407V)置換。更特定言之,另外在Fc結構域之第二子單元(「臼鏈」)中,位置366處之蘇胺酸殘基經絲胺酸殘基(T366S)置換且位置368處之白胺酸殘基經丙胺酸殘基(L368A)置換。更特定言之,另外在Fc結構域之第一子單元中,位置354處之絲胺酸殘基經半胱胺酸殘基(S354C)置換,且另外在Fc結構域之第二子單元中,位置349處之酪胺酸殘基經半胱胺酸殘基(Y349C)置換。引入此等兩個半胱胺酸殘基可引起在Fc結構域之兩個子單元之間形成二硫橋鍵。二硫橋鍵進一步使二聚體穩定(Carter, J Immunol Methods 248, 7-15 (2001))。
可替代地或另外,且亦可使用如EP 1870459 A1描述之其他杵-臼技術。在一個實施例中,如本文所報導之多環融合多肽在「杵鏈」之CH3結構域中包含R409D及K370E突變且在「臼-鏈」之CH3結構域中包含D399K及E357K突變(根據Kabat EU索引編號)。
在另一態樣中,雙特異性抗原結合分子在兩個CH3結構域中之一者中包含Y349C及T366W突變且在兩個CH3結構域中之另一者中包含S354C、T366S、L368A及Y407V突變,或如本文所報導之雙特異性抗原結合分子在兩個CH3結構域中之一者中包含Y349C及T366W突變且在兩個CH3結構域中之另一者中包含S354C、T366S、L368A及Y407V突變,且另外,在「杵鏈」之CH3結構域中包含R409D及K370E突變且在「臼鏈」之CH3結構域中包含D399K及E357K突變(根據Kabat EU索引編號)。
在一個替代性態樣中,促進Fc結構域之第一與第二子單元締合的修飾包含介導靜電轉向作用之修飾,例如PCT公開案WO 2009/089004中所描述。一般而言,此方法涉及用帶電胺基酸殘基置換兩個Fc結構域子單元之界面處之一或多個胺基酸殘基,使得均二聚體形成在靜電上不利,但雜二聚在靜電上係有利的。
除「杵-臼技術」之外,此項技術中已知用於修飾重鏈CH3結構域以加強雜二聚化的其他技術。本文涵蓋此等技術,尤其WO 96/27011、WO 98/050431、EP 1870459、WO 2007/110205、WO 2007/147901、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012/058768、WO 2013/157954及WO 2013/096291中所描述之技術作為與如本文所述之雙特異性抗原結合分子組合的「杵-臼技術」之替代方案。
在一個態樣中,引入在第一重鏈與第二重鏈之間的CH3/CH3結構域界面中之特定胺基酸位置處具有相反電荷之帶電荷胺基酸以進一步促進所需多肽之締合。因此,此態樣係關於一種如本文所揭示之雙特異性抗原結合分子,其中在抗體之三級結構中第一重鏈之CH3結構域與第二重鏈之CH3結構域形成位於各別抗體CH3結構域之間的界面,其中第一重鏈之CH3結構域及第二重鏈之CH3結構域之各別胺基酸序列各自包含位於環形融合多肽之三級結構中的該界面內之一組胺基酸,其中來自位於一個重鏈之CH3結構域中的界面中之胺基酸組的第一胺基酸經帶正電胺基酸取代,且來自位於另一重鏈之CH3結構域中的界面中之胺基酸組的第二胺基酸經帶負電胺基酸取代。根據此態樣之雙特異性抗原結合分子在本文中亦稱作「經CH3(+/-)工程改造之含TNF家族配位三聚體之抗原結合分子」 (其中縮寫「+/-表示引入各別CH3結構域中之帶相反電荷胺基酸」)。在該如本文所報導之經CH3(+/-)工程改造之雙特異性抗原結合分子的一個態樣中,帶正電胺基酸係選自K、R及H,且帶負電胺基酸係選自E或D。在另一態樣中,在該如本文所報導之經CH3(+/-)工程改造之雙特異性抗原結合分子中,帶正電胺基酸係選自K及R,且帶負電胺基酸係選自E或D。在另一態樣中,在該如本文所報導之經CH3(+/-)工程改造之雙特異性抗原結合分子中,帶正電胺基酸係K,且帶負電胺基酸係E。在一個態樣中,在該如本文所報導之經CH3(+/-)工程改造之雙特異性抗原結合分子中,在一個重鏈之CH3結構域中,位置409處之胺基酸R經D取代且位置處之胺基酸K經E取代,且在另一重鏈之CH3結構域中,位置399處之胺基酸D經K取代且位置357處之胺基酸E經K取代(根據Kabat EU索引編號)。
在本發明之另一態樣中,IgG1 Fc結構域包含一或多個減少與Fc受體(尤其朝向Fc 受體)結合之胺基酸取代。
降低Fc受體結合及/或效應功能之Fc結構域修飾 本發明之雙特異性抗體可包含免疫球蛋白分子之重鏈結構域作為間隔結構域。舉例而言,免疫球蛋白G (IgG)分子之Fc結構域為二聚體,其中各子單元包含CH2及CH3 IgG重鏈恆定結構域。Fc結構域之兩個子單元彼此間能夠穩定締合。Fc區賦予本發明之雙特異性抗體有利的藥物動力學特性,包括長血清半衰期,其促進目標組織中之良好累積及有利的組織-血液分佈率。然而,其同時可引起本發明之雙特異性抗體不合需要地靶向表現Fc受體之細胞並非較佳的攜有抗原之細胞。因此,在特定實施例中,相比於天然IgG Fc區,尤其IgG1 Fc區或IgG4 Fc區,本發明之雙特異性抗體之Fc區展現對Fc受體降低之結合親和力及/或降低之效應功能。更特定言之,Fc區係IgG1 Fc區。
在一個此類態樣中,Fc區(或包含該Fc區之本發明之雙特異性抗原結合分子)與原生IgG1 Fc區(或包含原生IgG1 Fc區之本發明之雙特異性抗原結合分子)相比展現低於50%,較佳低於20%,更佳低於10%且最佳低於5%的與Fc受體之結合親和力,及/或與原生IgG1 Fc區(或包含原生IgG1 Fc區之本發明之雙特異性抗原結合分子)相比低於50%、較佳低於20%、更佳低於10%且最佳低於5%效應功能。在一個態樣中,Fc區(或包含該Fc區之本發明之雙特異性抗原結合分子)實質上不與Fc受體結合及/或誘導效應功能。在一特定態樣中,Fc受體係Fcγ受體。在一個態樣中,Fc受體係人類Fc受體。在一個態樣中,Fc受體係活化Fc受體。在一個特定態樣中,Fc受體係活化人類Fcγ受體,更特定言之,人類FcγRIIIa、FcγRI或FcγRIIa,最特定言之,人類FcγRIIIa。在一個態樣中,Fc受體係抑制Fc受體。在一特定態樣中,Fc受體係抑制人類Fcγ受體,更具體言之人類FcγRIIB。在一個態樣中,效應功能係CDC、ADCC、ADCP及細胞激素分泌中之一或多者。在一個特定態樣中,效應功能係ADCC。在一個態樣中,Fc區結構域對新生兒Fc受體(FcRn)展現的結合親和力與原生IgG1 Fc區相比實質上類似。當Fc區(或包含Fc區之本發明之雙特異性抗原結合分子)展現天然IgG1 Fc區(或包含天然IgG1 Fc區之本發明之雙特異性抗原結合分子)與FcRn之結合親和力之大於約70%、尤其大於約80%、更尤其大於約90%時,實現實質上類似之與FcRn的結合。
在一特定態樣中,相比於未經工程改造之Fc區,Fc區經工程改造以具有對Fc受體降低之結合親和力及/或降低之效應功能。在一特定態樣中,本發明之雙特異性抗原結合分子之Fc區包含一或多個降低Fc區對Fc受體及/或效應功能之結合親和力之胺基酸突變。通常,Fc區之兩個子單元中之每一者中存在相同的一或多個胺基酸突變。在一個態樣中,胺基酸突變使Fc區對Fc受體之結合親和力降低。在另一態樣中,胺基酸突變將Fc區對Fc受體之結合親和力降低至少2倍、至少5倍、或至少10倍。在一個態樣中,包含經工程改造之Fc區之本發明的雙特異性抗原結合分子與包含未經工程改造之Fc區之本發明的雙特異性抗體相比展現小20%,尤其小10%,更尤其小5%的對Fc受體的結合親和力。在一特定態樣中,Fc受體係Fcγ受體。在其他態樣中,Fc受體係人類Fc受體。在一個態樣中,Fc受體係抑制Fc受體。在一特定態樣中,Fc受體係抑制人類Fcγ受體,更具體言之人類FcγRIIB。在一些態樣中,Fc受體係活化Fc受體。在一個特定態樣中,Fc受體係活化人類Fcγ受體,更特定言之,人類FcγRIIIa、FcγRI或FcγRIIa,最特定言之,人類FcγRIIIa。較佳地,與此等受體中之每一者的結合減少。在一些態樣中,對補體組分之結合親和力,即對C1q之特異性結合親和力,亦減小。在一個態樣中,對新生兒Fc受體(FcRn)之結合親和力未減小。當Fc區(或包含該Fc區之本發明之雙特異性抗原結合分子)展現Fc區之未經工程改造之形式(或包含該Fc區之未經工程改造之形式的本發明之雙特異性抗原結合分子)與FcRn之結合親和力之大於約70%時,實現實質上類似之與FcRn的結合,亦即保留Fc區對該受體的結合親和力。Fc區,或包含該Fc區之本發明之雙特異性抗原結合分子可展現大於約80%及甚至大於約90%之此親和力。在某些實施例中,本發明之雙特異性抗原結合分子之Fc區經工程改造以具有與未經工程改造之Fc區相比降低之效應功能。降低之效應功能可包括但不限於以下中之一或多者:降低之補體依賴性細胞毒性(CDC)、降低之抗體依賴性細胞介導之細胞毒性(ADCC)、降低之抗體依賴性細胞吞噬(ADCP)、降低之細胞介素分泌、降低之免疫複合物介導之抗原呈現細胞攝入抗原、降低之與NK細胞之結合、降低之與巨噬細胞之結合、降低之與單核球之結合、降低之與多形核細胞之結合、降低之誘導細胞凋亡之直接信號傳導、降低之樹突狀細胞成熟或降低之T細胞活化。
在某些態樣中,提供雙特異性抗體,其具有一些但非所有效應功能,使得其成為其中活體內抗體半衰期重要、而某些效應功能(諸如補體及ADCC)不必要或有害之應用的所需候選物。可進行活體外及/或活體內細胞毒性分析以證實CDC及/或ADCC活性之減小/耗乏。舉例而言,可進行Fc受體(FcR)結合分析以確保環形融合多肽缺乏FcγR結合(因此可能缺乏ADCC活性),但保留FcRn結合能力。
因此,在特定態樣中,本發明之雙特異性抗體之Fc結構域相比於天然IgG1 Fc結構域展現對Fc受體降低之結合親和力及/或降低之效應功能。在一個態樣中,Fc不實質上結合於Fc受體及/或不誘導效應功能。在一特定態樣中,Fc受體係Fcγ受體。在一個態樣中,Fc受體係人類Fc受體。在一個特定態樣中,Fc受體係活化人類Fcγ受體,更特定言之,人類FcγRIIIa、FcγRI或FcγRIIa,最特定言之,人類FcγRIIIa。在一個態樣中,Fc結構域不誘導效應功能。降低之效應功能可包括但不限於以下中之一或多者:降低之補體依賴性細胞毒性(CDC)、降低之抗體依賴性細胞介導之細胞毒性(ADCC)、降低之抗體依賴性細胞吞噬(ADCP)、降低之細胞介素分泌、降低之免疫複合物介導之抗原呈現細胞攝入抗原、降低之與NK細胞之結合、降低之與巨噬細胞之結合、降低之與單核球之結合、降低之與多形核細胞之結合、降低之誘導細胞凋亡之直接信號傳導、降低之樹突狀細胞成熟或降低之T細胞活化。
在某些態樣中,可將一或多個胺基酸修飾引入本文所提供之雙特異性抗原結合分子之Fc區中,進而產生Fc區變異體。Fc區變異體可包含人類Fc區序列(例如人類IgG1、IgG2、IgG3或IgG4 Fc區),其在一或多個胺基酸位置處包含胺基酸修飾(例如取代)。
在一特定態樣中,本發明提供雙特異性抗原結合分子,其中間隔結構域包含Fc結構域,該Fc結構域包含一或多個降低與Fc受體(尤其朝向Fc 受體)結合之胺基酸取代。
在一個態樣中,本發明之雙特異性抗原結合分子之Fc結構域包含一或多個降低Fc結構域對Fc受體之結合親和力及/或效應功能之胺基酸突變。典型地,Fc結構域之兩個子單元中之每一者中存在相同的一或多個胺基酸突變。特定言之,Fc結構域在位置E233、L234、L235、N297、P331及P329 (EU編號)處包含胺基酸取代。特定言之,Fc結構域包含IgG重鏈之位置234及235 (EU編號)及/或329 (EU編號)處的胺基酸取代。更特定言之,提供根據本發明之雙特異性抗原結合分子,其包含在IgG重鏈中具有胺基酸取代L234A、L235A及P329G (「P329G LALA」)之Fc結構域。胺基酸取代L234A及L235A係指所謂的LALA突變。胺基酸取代之「P329G LALA」組合幾乎完全消除人類IgG1 Fc結構域之Fcγ受體結合且描述於國際專利申請公開案第WO 2012/130831 A1號中,其亦描述製備此類突變型Fc結構域之方法及測定其特性(諸如Fc受體結合或效應功能)之方法。「EU編號」係指根據Kabat等人, Sequences of Proteins of Immunological Interest, 第5版 美國公共衛生署, 美國國家衛生研究院, Bethesda, MD, 1991之EU索引之編號。
具有降低之Fc受體結合及/或效應功能之Fc結構域亦包括具有Fc結構域殘基238、265、269、270、297、327及329中之一或多者之取代的彼等(美國專利第6,737,056號)。此類Fc突變體包括具有胺基酸位置265、269、270、297及327中之兩者或多於兩者之取代的Fc突變體,包括殘基265及297取代為丙胺酸的所謂「DANA」 Fc突變體(美國專利第7,332,581號)。
在另一態樣中,Fc結構域係IgG4 Fc結構域。相較於IgG1抗體,IgG4抗體展現減小之對Fc受體的結合親和力及減少之效應功能。在更特定態樣中,Fc結構域係包含位置S228 (Kabat編號)處之胺基酸取代(特定言之,胺基酸取代S228P)的IgG4Fc結構域。在更特定態樣中,Fc結構域係IgG4 Fc結構域,其包含胺基酸取代L235E及S228P及P329G (EU編號)。此類IgG4 Fc結構域突變體及其Fcγ受體結合特性亦描述於WO 2012/130831中。
突變型Fc結構域可使用此項技術中熟知之遺傳學或化學方法,藉由胺基酸缺失、取代、插入或修飾來製備。遺傳學方法可包括DNA編碼序列之位點特異性突變誘發、PCR、基因合成及類似方法。恰當的核苷酸變化可藉由例如定序來檢驗。
與Fc受體的結合可容易測定,例如藉由ELISA,或藉由表面電漿子共振(SPR),使用標準儀器,諸如BIAcore儀器(GE Healthcare),且可藉由重組表現來獲得諸如Fc受體。適合的此類結合分析法描述於本文中。可替代地,Fc結構域或包含Fc結構域之細胞活化雙特異性抗原結合分子對Fc受體的結合親和力可使用已知表現特定Fc受體的細胞株(諸如表現FcγIIIa受體的人類NK細胞)評價。
Fc結構域或包含Fc結構域之本發明之雙特異性抗體的效應功能可藉由此項技術中已知之方法量測。適用於量測ADCC之分析描述於本文中。用於評定所關注之分子之ADCC活性的活體外分析之其他實例描述於美國專利第5,500,362號;Hellstrom等人, Proc Natl Acad Sci USA 83, 7059-7063 (1986)及Hellstrom等人, Proc Natl Acad Sci USA 82, 1499-1502 (1985);美國專利第5,821,337號;Bruggemann等人, J Exp Med 166, 1351-1361 (1987)中。可替代地,可採用非放射性分析方法(參見例如用於流動式細胞測量術之ACTI™非放射性細胞毒性分析(CellTechnology, Inc. Mountain View, CA);及CytoTox 96®非放射性細胞毒性分析(Promega, Madison, WI))。適用於此類分析之效應細胞包括周邊血液單核細胞(PBMC)及天然殺手(NK)細胞。替代地或另外,可以在活體內,例如在動物模型中,諸如Clynes等人, Proc Natl Acad Sci USA 95, 652-656 (1998)中所揭示之動物模型中評估所關注分子之ADCC活性。
在一些實施例中,Fc結構域與補體組分(具體言之C1q)的結合減少。因此,在其中Fc結構域經工程改造而具有減少之效應功能的一些實施例中,該減少之效應功能包括降低之CDC。可進行C1q結合分析以測定本發明之雙特異性抗體係否能夠結合C1q且因此具有CDC活性。參見例如WO 2006/029879及WO 2005/100402中之C1q及C3c結合ELISA。為了評估補體活化,可執行CDC分析(參見例如Gazzano-Santoro等人, J Immunol Methods 202, 163 (1996);Cragg等人, Blood 101, 1045-1052 (2003);及Cragg及Glennie, Blood 103, 2738-2743 (2004))。
在特定態樣中,雙特異性抗原結合分子包含所有位置(根據Kabat之EU索引) i) 視情況具有突變P329G、L234A及L235A之人類IgG1亞類之均二聚Fc區,或 ii) 視情況具有突變P329G、S228P及L235E之人類IgG4亞類之均二聚Fc區,或 iii) 視情況具有突變P329G、L234A、L235A、I253A、H310A及H435A,或視情況具有突變P329G、L234A、L235A、H310A、H433A及Y436A之人類IgG1亞類之均二聚Fc區,或 iv) 雜二聚Fc區,其中 a) 一種Fc區多肽包含突變T366W,且另一種Fc區多肽包含突變T366S、L368A及Y407V,或 b) 一種Fc區多肽包含突變T366W及Y349C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及S354C,或 c) 一種Fc區多肽包含突變T366W及S354C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及Y349C, 或 v) 人類IgG1亞類之雜二聚Fc區,其中兩種Fc區多肽均包含突變P3f29G、L234A及L235A,及 a) 一種Fc區多肽包含突變T366W,且另一種Fc區多肽包含突變T366S、L368A及Y407V,或 b) 一種Fc區多肽包含突變T366W及Y349C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及S354C,或 c) 一種Fc區多肽包含突變T366W及S354C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及Y349C, 或 vi) 人類IgG4亞類之雜二聚Fc區,其中兩種Fc區多肽均包含突變P329G、S228P及L235A,及 a) 一種Fc區多肽包含突變T366W,且另一種Fc區多肽包含突變T366S、L368A及Y407V,或 b) 一種Fc區多肽包含突變T366W及Y349C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及S354C,或 c) 一種Fc區多肽包含突變T366W及S354C,且另一種Fc區多肽包含突變T366S、L368A、Y407V及Y349C, 或 vii) i)、ii)及iii)中之一者與vi)、v)及vi)中之一者的組合。
如本文所報導之雙特異性抗體中所包含之融合多肽的C端可為終止於胺基酸殘基PGK的完整C端。C端可為縮短的C端,其中C端胺基酸殘基中之一或兩個已移除。在一個較佳實施例中,C端為終止於胺基酸殘基PG的縮短C端。
在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之一個抗原結合結構域係能夠特異性結合於腫瘤相關抗原(TAA)之抗原結合結構域。特定言之,腫瘤相關抗原係纖維母細胞活化蛋白(FAP)。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第二標靶之抗原結合結構域係能夠特異性結合於纖維母細胞活化蛋白(FAP)之抗原結合結構域。
TNF 受體及 FAP 結合之雙特異性抗體 在一些態樣中,能夠特異性結合於FAP之抗原結合結構域包含 (a)重鏈可變區(VH FAP),其包含(i)包含胺基酸序列SEQ ID NO: 1之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 2之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 3之CDR-H3;及輕鏈可變區(VL FAP),其包含(iv)包含胺基酸序列SEQ ID NO: 4之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 5之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 6之CDR-L3,或 (b)重鏈可變區(VH FAP),其包含(i)包含胺基酸序列SEQ ID NO: 9之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 10之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 11之CDR-H3;及輕鏈可變區(VL FAP),其包含(iv)包含胺基酸序列SEQ ID NO: 12之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 13之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 14之CDR-L3。
更具體而言,能夠特異性結合於FAP之抗原結合結構域包含 (a)重鏈可變區(VH FAP),其包含與胺基酸序列SEQ ID NO: 7至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及輕鏈可變區(VL FAP),其包含與胺基酸序列SEQ ID NO: 8至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列,或 (b)重鏈可變區(VH FAP),其包含與胺基酸序列SEQ ID NO: 15至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及輕鏈可變區(VL FAP),其包含與胺基酸序列SEQ ID NO: 16至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列。
在一個特定態樣中,能夠特異性結合於FAP之抗原結合結構域包含:包含胺基酸序列SEQ ID NO: 7之重鏈可變區(VH FAP)及包含胺基酸序列SEQ ID NO: 8之輕鏈可變區(VL FAP)。在一個態樣中,能夠特異性結合於FAP之抗原結合結構域由包含胺基酸序列SEQ ID NO: 7之重鏈可變區(VH FAP)及包含胺基酸序列SEQ ID NO: 8之輕鏈可變區(VL FAP)組成。
在另一態樣中,能夠特異性結合於FAP之抗原結合結構域包含:包含胺基酸序列SEQ ID NO: 15之重鏈可變區(VH FAP)及包含胺基酸序列SEQ ID NO: 16之輕鏈可變區(VL FAP)。在一個態樣中,能夠特異性結合於FAP之抗原結合結構域由包含胺基酸序列SEQ ID NO: 15之重鏈可變區(VH FAP)及包含胺基酸序列SEQ ID NO: 16之輕鏈可變區(VL FAP)組成。
在一個態樣中,本文所提供之雙特異性抗體與FAP單價結合。
OX40 FAP 結合之雙特異性抗體 在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於TNF受體,尤其共刺激TNF受體之抗原結合結構域。特定而言,共刺激TNF受體係OX40。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於OX40之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於OX40之抗原結合結構域。
在一些態樣中,能夠特異性結合於OX40之抗原結合結構域包含 (a)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 22之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 35之CDR-L3,或 (b)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 21之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 34之CDR-L3,或 (c)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 23之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 36之CDR-L3,或 (d)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 24之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 37之CDR-L3,或 (e)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 25之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 29之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 38之CDR-L3,或 (f)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 26之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 29之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 38之CDR-L3,或 (g)重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 27之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 30之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 33之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 39之CDR-L3。
特定言之,能夠特異性結合於OX40之抗原結合結構域包含:重鏈可變區(VH OX40),其包含(i)包含胺基酸序列SEQ ID NO: 17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 22之CDR-H3;及輕鏈可變區(VL OX40),其包含(iv)包含胺基酸序列SEQ ID NO: 28之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 35之CDR-L3。
在一些態樣中,能夠特異性結合於OX40之抗原結合結構域包含 (a)包含胺基酸序列SEQ ID NO: 40之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 41之輕鏈可變區(VL OX40),或 (b)包含胺基酸序列SEQ ID NO: 42之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 43之輕鏈可變區(VL OX40),或 (c)包含胺基酸序列SEQ ID NO: 44之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 45之輕鏈可變區(VL OX40),或 (d)包含胺基酸序列SEQ ID NO: 46之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 47之輕鏈可變區(VL OX40),或 (a)包含胺基酸序列SEQ ID NO: 48之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 49之輕鏈可變區(VL OX40),或 (a)包含胺基酸序列SEQ ID NO: 50之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 51之輕鏈可變區(VL OX40),或 (a)包含胺基酸序列SEQ ID NO: 52之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 53之輕鏈可變區(VL OX40)。
在一特定態樣中,能夠特異性結合於OX40之抗原結合結構域包含(a)重鏈可變區(VH OX40),其包含與胺基酸序列SEQ ID NO: 40至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及輕鏈可變區(VL OX40),其包含與胺基酸序列SEQ ID NO: 41至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。
在一個特定態樣中,能夠特異性結合於OX40之抗原結合結構域包含:包含胺基酸序列SEQ ID NO: 40之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 41之輕鏈可變區(VL OX40)。在一個態樣中,能夠特異性結合於OX40之抗原結合結構域由包含胺基酸序列SEQ ID NO: 40之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 41之輕鏈可變區(VL OX40)組成。
在一個態樣中,提供包含兩個能夠特異性結合於OX40之抗原結合結構域之雙特異性抗體,其包含:包含胺基酸序列SEQ ID NO: 40之重鏈可變區(VH OX40)及包含胺基酸序列SEQ ID NO: 41之輕鏈可變區(VL OX40)。
更特定言之,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 54至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 55至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (b)包含與胺基酸序列SEQ ID NO: 56至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 57至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (c)包含與胺基酸序列SEQ ID NO: 58至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 59至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (d)包含與胺基酸序列SEQ ID NO: 60至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 61至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (e)包含與胺基酸序列SEQ ID NO: 62至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 63至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (f)包含與胺基酸序列SEQ ID NO: 64至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 65至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽,或 (g)包含與胺基酸序列SEQ ID NO: 66至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 67至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽。
在一個態樣中,雙特異性抗體包含 (a)包含胺基酸序列SEQ ID NO: 54之第一融合多肽,及包含胺基酸序列SEQ ID NO: 55之第二融合多肽, (b)包含胺基酸序列SEQ ID NO: 56之第一融合多肽,及包含胺基酸序列SEQ ID NO: 57之第二融合多肽, (c)包含胺基酸序列SEQ ID NO: 58之第一融合多肽,及包含胺基酸序列SEQ ID NO: 59之第二融合多肽, (d)包含胺基酸序列SEQ ID NO: 60之第一融合多肽,及包含胺基酸序列SEQ ID NO: 61之第二融合多肽, (e)包含胺基酸序列SEQ ID NO: 62之第一融合多肽,及包含胺基酸序列SEQ ID NO: 63之第二融合多肽, (f)包含胺基酸序列SEQ ID NO: 64之第一融合多肽,及包含胺基酸序列SEQ ID NO: 65之第二融合多肽,或 (g)包含胺基酸序列SEQ ID NO: 66之第一融合多肽,及包含胺基酸序列SEQ ID NO: 67之第二融合多肽。
此外,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 116至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 117至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (b)包含與胺基酸序列SEQ ID NO: 118至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 119至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (c)包含與胺基酸序列SEQ ID NO: 120至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 121至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (d)包含與胺基酸序列SEQ ID NO: 122至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 123至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (e)包含與胺基酸序列SEQ ID NO: 124至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 125至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (f)包含與胺基酸序列SEQ ID NO: 126至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,包含與胺基酸序列SEQ ID NO: 127至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽,及包含與胺基酸序列SEQ ID NO: 128至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之輕鏈, (g)包含與胺基酸序列SEQ ID NO: 129至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 130至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (h)包含與胺基酸序列SEQ ID NO: 131至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 132至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽,或 (i)包含與胺基酸序列SEQ ID NO: 133至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 134至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽。
在一個態樣中,雙特異性抗體包含 (a)包含胺基酸序列SEQ ID NO: 116之第一融合多肽,及包含胺基酸序列SEQ ID NO: 117之第二融合多肽, (b)包含胺基酸序列SEQ ID NO: 118之第一融合多肽,及包含胺基酸序列SEQ ID NO: 119之第二融合多肽, (c)包含胺基酸序列SEQ ID NO: 120之第一融合多肽,及包含胺基酸序列SEQ ID NO: 121之第二融合多肽, (d)包含胺基酸序列SEQ ID NO: 122之第一融合多肽,及包含胺基酸序列SEQ ID NO: 123之第二融合多肽, (e)包含胺基酸序列SEQ ID NO: 124之第一融合多肽,及包含胺基酸序列SEQ ID NO: 125之第二融合多肽, (f)包含胺基酸序列SEQ ID NO: 126之第一融合多肽,包含胺基酸序列SEQ ID NO: 127之第二融合多肽,及包含胺基酸序列SEQ ID NO: 128之輕鏈, (g)包含胺基酸序列SEQ ID NO: 129之第一融合多肽,及包含胺基酸序列SEQ ID NO: 130之第二融合多肽, (h)包含胺基酸序列SEQ ID NO: 131之第一融合多肽,及包含胺基酸序列SEQ ID NO: 132之第二融合多肽,或 (i)包含胺基酸序列SEQ ID NO: 133之第一融合多肽,及包含胺基酸序列SEQ ID NO: 134之第二融合多肽。
4-1BB FAP 結合之雙特異性抗體 在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於TNF受體之抗原結合結構域,其中共刺激TNF受體係4-1BB。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於4-1BB之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於4-1BB之抗原結合結構域。
在一些態樣中,能夠特異性結合於4-1BB之抗原結合結構域包含:重鏈可變區(VH 4-1BB),其包含(i)包含胺基酸序列SEQ ID NO: 135之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 136之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 137之CDR-H3;及輕鏈可變區(VL 4-1BB),其包含(iv)包含胺基酸序列SEQ ID NO: 138之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 139之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 140之CDR-L3。在一個態樣中,能夠特異性結合於4-1BB之抗原結合結構域包含:包含與胺基酸序列SEQ ID NO: 141至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的重鏈可變區(VH 4-1BB);及包含與胺基酸序列SEQ ID NO: 142至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的輕鏈可變區(VL 4-1BB)。
在一個特定態樣中,能夠特異性結合於4-1BB之抗原結合結構域包含:包含胺基酸序列SEQ ID NO: 141之重鏈可變區(VH 4-1BB)及包含胺基酸序列SEQ ID NO: 142之輕鏈可變區(VL 4-1BB)。在一個態樣中,能夠特異性結合於4-1BB之抗原結合結構域由包含胺基酸序列SEQ ID NO: 141之重鏈可變區(VH 4-1BB)及包含胺基酸序列SEQ ID NO: 142之輕鏈可變區(VL 4-1BB)組成。
特定而言,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 143至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 144至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽,或 (b)包含與胺基酸序列SEQ ID NO: 145至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 146至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽。
在一個態樣中,雙特異性抗體包含 (a)包含胺基酸序列SEQ ID NO: 143之第一融合多肽,及包含胺基酸序列SEQ ID NO: 144之第二融合多肽,或 (b)包含胺基酸序列SEQ ID NO: 145之第一融合多肽,及包含胺基酸序列SEQ ID NO: 146之第二融合多肽。
CD40 FAP 結合之雙特異性抗體 在一些態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於TNF受體之抗原結合結構域,其中共刺激TNF受體係CD40。在一個態樣中,提供雙特異性抗體,其中能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域。特定而言,本發明之雙特異性抗體包含兩個能夠特異性結合於CD40之抗原結合結構域。
在一些態樣中,能夠特異性結合於CD40之抗原結合結構域包含:重鏈可變區(VHCD40),其包含(i)包含胺基酸序列SEQ ID NO: 147之CDR-H1,(ii)包含胺基酸序列SEQ ID NO: 148之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO: 149之CDR-H3;及輕鏈可變區(VLCD40),其包含(iv)包含胺基酸序列SEQ ID NO: 150之CDR-L1,(v)包含胺基酸序列SEQ ID NO: 151之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO: 152之CDR-L3。在一個態樣中,能夠特異性結合於CD40之抗原結合結構域包含:重鏈可變區(VHCD40),其包含與胺基酸序列SEQ ID NO: 153至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及輕鏈可變區(VLCD40),其包含與胺基酸序列SEQ ID NO: 154至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。
在另一態樣中,能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域,包含 (i)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 167、SEQ ID NO: 168、SEQ ID NO: 169及SEQ ID NO: 170;及輕鏈可變區(VL CD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 171、SEQ ID NO: 172、SEQ ID NO: 173及SEQ ID NO: 174,或 (ii)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 175、SEQ ID NO: 176、SEQ ID NO: 177、SEQ ID NO: 178、SEQ ID NO: 179及SEQ ID NO: 180;及輕鏈可變區(VLCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO: 181、SEQ ID NO: 182、SEQ ID NO: 183及SEQ ID NO: 184。
在一個態樣中,能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域,包含 (a)包含胺基酸序列SEQ ID NO: 153之重鏈可變區(VHCD40),及包含胺基酸序列SEQ ID NO: 154之輕鏈可變區(VLCD40),或 (b)包含胺基酸序列SEQ ID NO: 167之重鏈可變區(VHCD40),及包含胺基酸序列SEQ ID NO: 171之輕鏈可變區(VLCD40)。
特定而言,本發明提供雙特異性抗體,其中該雙特異性抗體包含 (a)包含與胺基酸序列SEQ ID NO: 155至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 156至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (b)包含與胺基酸序列SEQ ID NO: 157至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 158至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (c)包含與胺基酸序列SEQ ID NO: 159至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 160至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (d)包含與胺基酸序列SEQ ID NO: 161至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 162至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽, (e)包含與胺基酸序列SEQ ID NO: 163至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 164至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽,或 (f)包含與胺基酸序列SEQ ID NO: 165至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第一融合多肽,及包含與胺基酸序列SEQ ID NO: 166至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列之第二融合多肽。
在一個態樣中,雙特異性抗體包含 (a)包含胺基酸序列SEQ ID NO: 155之第一融合多肽,及包含胺基酸序列SEQ ID NO: 156之第二融合多肽, (b)包含胺基酸序列SEQ ID NO: 157之第一融合多肽,及包含胺基酸序列SEQ ID NO: 158之第二融合多肽, (c)包含胺基酸序列SEQ ID NO: 159之第一融合多肽,及包含胺基酸序列SEQ ID NO: 160之第二融合多肽, (d)包含胺基酸序列SEQ ID NO: 161之第一融合多肽,及包含胺基酸序列SEQ ID NO: 162之第二融合多肽, (e)包含胺基酸序列SEQ ID NO: 163之第一融合多肽,及包含胺基酸序列SEQ ID NO: 164之第二融合多肽,或 (f)包含胺基酸序列SEQ ID NO: 165之第一融合多肽,及包含胺基酸序列SEQ ID NO: 166之第二融合多肽。
Fab 結構域之修飾 在一個態樣中,本發明係關於雙特異性抗體,其包含(a)兩個能夠特異性結合於OX40之Fab片段及(b)一個能夠特異性結合於FAP之Fab片段,其中在Fab片段中之(a)及(b)中之一者中,可變結構域VH及VL或恆定結構域CH1與CL互換。根據互換單抗技術製備雙特異性抗體。
在一個結合臂中具有結構域置換/交換的多特異性抗體(CrossMabVH-VL或CrossMabCH-CL)詳細描述於WO2009/080252及Schaefer, W.等人, PNAS, 108 (2011) 11187-1191中。其明顯地減少由針對第一抗原之輕鏈與針對第二抗原之錯誤重鏈失配(與沒有此類結構域交換之方法相比較)而造成的副產物。
在一個態樣中,本發明係關於雙特異性抗體,其包含(a)兩個能夠特異性結合於OX40之Fab片段及(b)能夠特異性結合於FAP之交叉Fab片段,其中恆定結構域CL (Ckappa)及CH1相互置換,使得CH1結構域與VL結構域融合且CL結構域與VH結構域融合。
在另一態樣中,本發明係關於雙特異性抗體,其包含(a)兩個能夠特異性結合於OX40之交叉Fab片段,其中VH結構域與CL (Ckappa)結構域融合且VL結構域與CH1結構域融合及(b)能夠特異性結合於FAP之Fab片段。
在另一態樣中,及為了進一步改良正確配對,雙特異性抗體可含有不同的帶電荷胺基酸取代(所謂的「帶電荷殘基」)。將此等修飾引入交叉或非交叉CH1及CL結構域中。在一特定態樣中,本發明係關於一種雙特異性抗體,其中在CL結構域中之一者中,位置123 (EU編號)處之胺基酸經精胺酸(R)置換且位置124 (EU編號)處之胺基酸經離胺酸(K)取代,且其中在CH1結構域中之一者中,位置147 (EU編號)及位置213 (EU編號)處之胺基酸經麩胺酸(E) (負電荷)取代。
更特定言之,本發明係關於一種包含Fab之雙特異性抗原結合分子,其中在CL結構域中,位置123 (EU編號)處之胺基酸經精胺酸(R)置換且位置124 (EU編號)處之胺基酸經離胺酸(K)取代,且其中在CH1結構域中,位置147 (EU編號)及位置213 (EU編號)處之胺基酸經麩胺酸(E)取代。
因此,在一些實施例中,本發明之雙特異性抗原結合分子之Fab片段(例如能夠特異性結合於OX40之Fab片段)中之一或多者包含:CL結構域,其包含位置123 (EU編號)處之胺基酸處之精胺酸(R)及位置124 (EU編號)處之胺基酸處之離胺酸(K),及CH1結構域,其包含位置147 (EU編號)處之胺基酸處之麩胺酸(E)及位置213 (EU編號)處之胺基酸處之麩胺酸(E)。
聚核苷酸 本發明進一步提供編碼如本文所述之本發明之雙特異性抗體的經分離核酸或其片段。
編碼本發明之雙特異性抗體之經分離核酸可表示為編碼整個抗原結合分子之單一聚核苷酸或共表現之多個(兩個或更多個)聚核苷酸。由共表現之聚核苷酸編碼之多肽可經由例如雙硫鍵或其他手段締合,以形成功能性抗原結合分子。當共表現時,融合多肽將締合以形成能夠特異性結合於第二標靶(例如FAP)之抗原結合結構域。能夠特異性結合於第一標靶(例如OX40)之抗原結合結構域可由一個聚核苷酸編碼。當共表現時,融合多肽將締合以形成雙特異性抗體。
在某些實施例中,聚核苷酸或核酸係DNA。在其他實施例中,本發明之聚核苷酸係RNA,例如呈信使RNA (mRNA)形式。本發明之RNA可為單股或雙股RNA。
根據本發明之另一態樣,提供編碼如上文所述之融合多肽之經分離聚核苷酸。本發明進一步提供載體,尤其表現載體,其包含本發明之經分離聚核苷酸,及宿主細胞,其包含本發明之經分離聚核苷酸或載體。在一些實施例中,宿主細胞係真核生物細胞,尤其哺乳動物細胞。
在另一態樣中,提供一種用於製造本發明之雙特異性抗體之方法,其包含以下步驟:(i)在適用於表現該抗體之條件下培養本發明之宿主細胞,及(ii)分離該雙特異性抗體。本發明亦涵蓋由本發明之方法製造的雙特異性抗體。
重組方法 本發明之雙特異性抗原結合分子可例如藉由固態肽合成(例如梅里菲爾德固相合成(Merrifield solid phase synthesis))或重組製造獲得。對於重組生產,(例如如上文所述之)編碼抗原結合分子之一或多個聚核苷酸或其多肽片段經分離且插入至一或多個載體中以在宿主細胞中進一步選殖及/或表現。此類聚核苷酸可使用習知程序容易地分離及測序。在本發明之一個態樣中,提供包含本發明之聚核苷酸中之一或多者的載體,較佳表現載體。可使用熟習此項技術者熟知的方法構築雙特異性抗原結合分子(片段)之編碼序列與適當轉錄/轉譯控制信號的表現載體。此等方法包括活體外重組DNA技術、合成技術及活體內重組/基因重組。參見例如Maniatis等人, MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, N.Y. (1989);及Ausubel等人, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, N.Y. (1989)中所描述之技術。表現載體可為質體、病毒之一部分,或可為核酸片段。表現載體包括表現卡匣,編碼雙特異性抗原結合分子或其多肽片段之聚核苷酸(亦即編碼區)以與啟動子及/或其他轉錄或轉譯控制元件之可操作結合方式選殖於該表現卡匣中。如本文所用,「編碼區」為由轉譯成胺基酸之密碼子組成的核酸之一部分。雖然「終止密碼子」(TAG、TGA或TAA)未轉譯成胺基酸,但其可視為編碼區(若存在)之一部分,但任何側接序列(例如啟動子、核糖體結合位點、轉錄終止子、內含子、5'及3'非轉譯區及類似序列)不為編碼區之一部分。兩個或更多個編碼區可存在於單一聚核苷酸構築體中,例如單一載體上,或單獨的聚核苷酸構築體中,例如單獨(不同)載體上。此外,任何載體可含有單一編碼區,或可包含兩個或更多個編碼區,例如本發明之載體可編碼一或多個多肽,其經由蛋白水解分裂而轉譯後或共轉譯分離成最終蛋白質。另外,本發明之載體、聚核苷酸或核酸可編碼異源編碼區,其融合或未融合至編碼本發明之雙特異性抗原結合分子或其多肽片段的聚核苷酸,或其變異體或衍生物。異源編碼區包括但不限於專用元件或基元,諸如分泌性信號肽或異源功能結構域。可操作締合係用於基因產物(例如多肽)之編碼區以此方式與一或多個調節序列締合以便在調節序列之影響或控制下置放基因產物之表現。若誘導啟動子功能導致編碼所要基因產物之mRNA轉錄且若兩個DNA片段之間連接的性質不干擾表現調節序列導引基因產物表現的能力或不干擾DNA模板轉錄的能力,則兩個DNA片段(諸如多肽編碼區及與其相關聯的啟動子)為「可操作地相關聯」。因此,若啟動子能夠實現核酸轉錄,則啟動子區域與編碼多肽之核酸可操作地締合。啟動子可為僅導引預定細胞中之DNA實質性轉錄的細胞特異性啟動子。除啟動子以外的其他轉錄控制元件(例如強化子、操縱子、抑制子及轉錄終止信號)可與引導細胞特異性轉錄之聚核苷酸可操作地締合。
適合的啟動子及其他轉錄控制區揭示於本文中。多個轉錄控制區已為熟習此項技術者所知。此等區域包括但不限於在脊椎動物細胞中起作用的轉錄控制區,諸如但不限於啟動子及強化子區段,其來自巨細胞病毒(例如即刻早期啟動子,連同內含子-A)、猴病毒40 (例如早期啟動子)及逆轉錄病毒(諸如勞斯肉瘤病毒(Rous sarcoma virus))。其他轉錄控制區包括來源於脊椎動物基因(諸如肌動蛋白、熱休克蛋白、牛生長激素及兔α-血球蛋白)之區域,以及能夠控制真核細胞中之基因表現的其他序列。其他適合轉錄控制區包括組織特異性啟動子及強化子以及誘導性啟動子(例如啟動子誘導性四環素(tetracyclins))。類似地,多種轉譯控制元件已為一般熟習此項技術者所知。此等元件包括但不限於核糖體結合位點、轉譯起始及終止密碼子,以及來源於病毒系統的元件(特定言之,內部核糖體入口位點或IRES,亦稱為CITE序列)。表現卡匣亦可包括其他特徵,諸如複製起點,及/或染色體整合元件,諸如逆轉錄病毒長末端重複序列(LTR),或腺相關聯病毒(AAV)反向末端重複序列(ITR)。
本發明之聚核苷酸及核酸編碼區可與編碼分泌肽或信號肽的其他編碼區結合,從而導引由本發明之聚核苷酸編碼的多肽之分泌。舉例而言,若需要分泌雙特異性抗原結合分子或其多肽片段,則編碼信號序列之DNA可置於編碼本發明之雙特異性抗原結合分子的核酸或其多肽片段上游。根據信號假設,哺乳動物細胞所分泌之蛋白質具有自成熟蛋白質裂解(一旦生長蛋白質鏈跨越粗糙內質網輸出已起始)之信號肽或分泌性前導序列。一般熟習此項技術者認識到,脊椎動物細胞分泌之多肽通常具有與多肽之N端融合的信號肽,該信號肽自所轉譯之多肽裂解而產生呈分泌或「成熟」形式的多肽。在某些實施例中,使用天然信號肽,例如免疫球蛋白重鏈或輕鏈信號肽,或保留導引可操作地與其締合之多肽之分泌的能力之彼序列之功能衍生物。可替代地,可使用異源哺乳動物信號肽或其功能衍生物。舉例而言,野生型前導序列可經人類組織纖維蛋白溶酶原活化因子(TPA)或小鼠β-葡糖醛酸酶之前導序列取代。
可用於促進後續純化(例如組胺酸標記物)或有助於標記融合蛋白之編碼短蛋白質序列的DNA可包括在編碼本發明之雙特異性抗原結合分子之聚核苷酸或其多肽片段之末端內或處於編碼本發明之雙特異性抗原結合分子之聚核苷酸或其多肽片段之末端處。
在本發明之另一態樣中,提供包含一或多種本發明之聚核苷酸的宿主細胞。在某些實施例中,提供包含一或多種本發明之載體之宿主細胞。聚核苷酸及載體可合併本文分別關於聚核苷酸及載體所述之任一特徵(單個或組合)。在一個態樣中,宿主細胞包含(例如已用載體轉型或轉染)載體,該載體包含編碼本發明之雙特異性抗原結合分子(之部分)的聚核苷酸。如本文所用,術語「宿主細胞」係指任何類型之可經工程改造以產生本發明之融合蛋白或其片段的細胞系統。適用於複製及支持抗原結合分子之表現的宿主細胞為此項技術中熟知。此類細胞可視需要經特定表現載體轉染或轉導,且可生長含有大量載體之細胞以用於接種大型醱酵槽,以獲得足量的抗原結合分子以用於臨床應用。適合之宿主細胞包括原核微生物,諸如大腸桿菌,或各種真核生物細胞,諸如中國倉鼠卵巢細胞(CHO)、人類胚胎腎(HEK)細胞、昆蟲細胞或類似細胞。舉例而言,可在細菌中產生多肽,尤其在不需要糖基化時。在表現之後,可自可溶性部分之細菌細胞糊狀物分離出多肽且可將該多肽進一步純化。除原核生物外,諸如絲狀真菌或酵母之真核微生物為適用於編碼多肽之載體的選殖或表現宿主,包括糖基化路徑已經「人類化」,從而產生具有部分或完全人類糖基化型態之多肽的真菌及酵母菌株。參見Gerngross, Nat Biotech 22, 1409-1414 (2004),及Li等人, Nat Biotech 24, 210-215 (2006)。
適用於表現(糖基化)多肽的宿主細胞亦來源於多細胞生物體(無脊椎動物及脊椎動物)。無脊椎動物細胞的實例包括植物及昆蟲細胞。已鑑別出眾多可與昆蟲細胞聯合使用,尤其用於轉染草地黏蟲(Spodoptera frugiperda)細胞之桿狀病毒株。植物細胞培養物亦可用作宿主。參見例如美國專利第5,959,177號、第6,040,498號、第6,420,548號、第7,125,978號及第6,417,429號(描述在轉殖基因植物中產生抗體的PLANTIBODIESTM 技術)。脊椎動物細胞亦可用作宿主。舉例而言,適於在懸浮液中生長之哺乳動物細胞株可為適用的。適用哺乳動物宿主細胞株之其他實例為經SV40轉型的猴腎CV1株(COS-7);人類胚腎細胞株(293或293T細胞,如例如Graham等人, J Gen Virol 36, 59 (1977)中所述);幼倉鼠腎細胞(BHK);小鼠塞特利氏細胞(mouse sertoli cells)(TM4細胞,如例如Mather, Biol Reprod 23, 243-251 (1980)中所述);猴腎細胞(CV1);非洲綠猴腎細胞(VERO-76);人類子宮頸癌細胞(海拉細胞(HELA));犬腎細胞(MDCK);水牛鼠肝細胞(buffalo rat liver cells)(BRL 3A);人類肺細胞(W138);人類肝細胞(Hep G2);小鼠乳腺腫瘤細胞(MMT 060562);TRI細胞(如例如Mather等人, Annals N. Y. Acad Sci 383, 44-68 (1982)中所述);MRC 5細胞及FS4細胞。其他適用的哺乳動物宿主細胞株包括中國倉鼠卵巢(CHO)細胞,包括dhfr-CHO細胞(Urlaub等人, Proc Natl Acad Sci USA 77, 4216 (1980));及骨髓瘤細胞株,諸如YO、NS0、P3X63及Sp2/0。關於適用於蛋白質製備之某些哺乳動物宿主細胞株之綜述,參見例如Yazaki及Wu, Methods in Molecular Biology, 第248卷(B.K.C. Lo編, Humana Press, Totowa, NJ), 第255-268頁 (2003)。宿主細胞包括經培養細胞,例如經培養之哺乳動物細胞、酵母細胞、昆蟲細胞、細菌細胞及植物細胞(僅舉數例),而且包括轉殖基因動物、轉殖基因植物或經培養之植物或動物組織中所包含的細胞。在一個實施例中,宿主細胞為真核細胞,較佳為哺乳動物細胞,諸如中國倉鼠卵巢(CHO)細胞、人類胚腎(HEK)細胞或淋巴細胞(例如Y0、NS0、Sp20細胞)。此項技術中已知在此等系統中表現外源基因的標準技術。包含抗原結合結構域之重鏈或輕鏈之表現多肽的細胞可經工程改造以便另外表現免疫球蛋白鏈之另一者,使得表現產物係具有重鏈及輕鏈兩者之抗原結合結構域。
在另一態樣中,提供一種用於製造本發明之雙特異性抗體之方法,其包含以下步驟:(i)在適用於該雙特異性抗體之表現之條件下培養本發明之宿主細胞,及(ii)自宿主細胞或宿主細胞培養基分離該雙特異性抗體。
雙特異性抗體之組分彼此間基因融合。可設計雙特異性抗原結合分子,使得其組分彼此直接融合或經由連接序列間接融合。連接子之組成及長度可根據此項技術中熟知之方法確定且可測試其功效。在本文所提供之序列中發現雙特異性抗原結合分子之不同組分之間的連接序列之實例。亦可包括額外序列以併入裂解位點,從而在必要時分離融合體之個別組分,該等額外序列例如肽鏈內切酶識別序列。
在某些態樣中,形成抗體部分之能夠特異性結合於FAP (例如Fab片段或scFv)之抗原結合結構域包含至少能夠結合至FAP之免疫球蛋白可變區。類似地,在某些態樣中,形成雙特異性抗體部分之能夠特異性結合於OX40 (例如Fab片段或scFv)之部分包含至少能夠結合至OX40之免疫球蛋白可變區。可變區可形成天然或非天然存在之抗體及其片段之一部分且來源於天然或非天然存在之抗體及其片段。產生多株抗體及單株抗體之方法為此項技術中熟知(參見例如Harlow及Lane, 「Antibodies, a laboratory manual」, Cold Spring Harbor Laboratory, 1988)。非天然存在之抗體可使用固相肽合成法構建,可以重組方式產生(例如如美國專利第4,186,567號中所述)或可藉由例如篩選包含可變重鏈及可變輕鏈的組合文庫來獲得(參見例如McCafferty之美國專利第5,969,108號)。
在某些態樣中,根據例如揭示於PCT公開案WO 2012/020006 (參見涉及親和力成熟之實例)或美國專利申請公開案第2004/0132066號中之方法,工程改造包含於本發明之抗原結合分子中之能夠特異性結合於相關標靶(例如Fab片段或scFv)的抗原結合結構域以具有增強之結合親和力。本發明之抗原結合分子結合於特異性抗原決定子之能力可經由酶聯結免疫吸附分析(ELISA)或熟習此項技術者熟悉之其他技術(例如表面電漿子共振(SPR)技術(Liljeblad等人, Glyco J 17, 323-329 (2000))及傳統結合分析(Heeley, Endocr Res 28, 217-229 (2002))量測。可使用競爭分析鑑別與參考抗體競爭結合於特定抗原之抗原結合分子。在某些實施例中,此類競爭抗原結合分子與同一抗原決定基(例如線性或構形抗原決定基)結合,該抗原決定基與參考抗原結合分子結合。抗原結合分子所結合之抗原決定基之定位的詳細例示性方法提供於Morris (1996) 「Epitope Mapping Protocols」, Methods in Molecular Biology第66卷(Humana Press, Totowa, NJ)中。在例示性競爭分析法中,在包含結合於抗原之第一標記抗原結合分子及測試與第一抗原結合分子競爭結合於抗原之能力的第二未標記抗原結合分子之溶液中培育固定抗原。第二抗原結合分子可存在於融合瘤上清液中。作為對照,在包含第一標記抗原結合分子但不包含第二未標記抗原結合分子之溶液中培育固定抗原。在允許第一抗體結合於抗原之條件下培育之後,移除過量的未結合之抗體,且量測固定抗原締合之標記之量。若與對照樣品相比,測試樣品中與固定抗原相關之標記之量實質上降低,則表明第二抗原結合分子與第一抗原結合分子競爭結合於抗原。參見Harlow及Lane (1988) Antibodies: A Laboratory Manual 第14章 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY)。
如本文中所描述製備的雙特異性抗體可藉由此項技術已知的技術(諸如高效液相層析法、離子交換層析法、凝膠電泳、親和力層析法、尺寸排阻層析法等)純化。用於純化特定蛋白質之實際條件部分地視諸如淨電荷、疏水性、親水性等因素而定,且對於熟習此項技術者而言為顯而易見的。對於親和力層析純化,可使用雙特異性抗原結合分子結合之抗體、配位體、受體或抗原。舉例而言,關於本發明之融合蛋白之親和層析純化,可使用具有蛋白質A或蛋白質G之基質。可使用序列蛋白質A或G親和層析及尺寸排阻層析來分離實質上如實例中所描述之抗原結合分子。雙特異性抗原結合分子或其片段之純度可藉由多種眾所周知的分析方法中之任一者測定,包括凝膠電泳、高壓液相層析法等。舉例而言,如實例中所述表現之雙特異性抗原結合分子顯示為完整的且如還原及非還原SDS-PAGE所證實適當地裝配。
本發明亦涵蓋由本發明之方法製造的雙特異性抗體。
分析 本文所提供之雙特異性抗原結合分子可藉由此項技術中已知的各種分析,針對其物理/化學性質及/或生物學活性加以鑑別、篩選或表徵。
1. 親和力分析 本文所提供之雙特異性抗原結合分子對OX40或FAP之親和力可根據實例中所闡述之方法藉由表面電漿子共振(SPR),使用諸如BIAcore儀器(GE Healthcare)之標準儀器測定,且諸如受體或靶蛋白可藉由重組表現獲得。用於量測結合親和力之特定說明性及例示性實施例描述於實例 3 中。根據一個態樣,藉由表面電漿子共振使用BIACORE® T200機器(GE Healthcare)在25℃量測KD
2. 結合分析及其他分析 本文所提供之雙特異性抗原結合分子與對應的表現OX40及/或FAP之細胞的結合可使用表現特定受體或標靶抗原之細胞株,例如藉由流式細胞量測術(FACS)評估。在一個態樣中,結合分析中使用表現OX40之新鮮的周邊血液單核細胞(PBMC)。此等細胞在分離後(未處理PMBC)或在刺激後(經活化之PMBC)直接使用。用於量測與OX40結合之特定說明性及例示性實施例描述於實例4.1 中。
在另一態樣中,使用表現FAP之癌細胞株展現雙特異性抗體與FAP之結合(參見實例 4.2 )。
在另一態樣中,可使用競爭分析鑑別抗原結合分子,該抗原結合分子與特異性抗體或抗原結合分子競爭分別結合於FAP或OX40。在某些實施例中,此類競爭抗體結合於與特異性抗FAP抗體或特異性抗OX40抗體所結合相同之抗原決定基(例如線性或構形抗原決定基)。用於對抗體所結合之抗原決定基進行定位的詳細例示性方法提供於Morris (1996) 「Epitope Mapping Protocols,」, 於Methods in Molecular Biology 第66卷(Humana Press, Totowa, NJ)中。
3. 活性分析 在一個態樣中,提供用於鑑別與具有生物活性之FAP及OX40結合之雙特異性抗原結合分子的分析。生物活性可包括例如表現OX40之細胞上之經由OX40的促效信號傳導。亦提供由該等分析鑑別為在活體外具有此類生物活性的雙特異性抗原結合分子。特定言之,提供報導體細胞分析,其偵測表現人類OX40之HeLa細胞中之NFκB活化且與表現FAP之腫瘤細胞共同培養(參見例如實例 5.1 )。
在另一態樣中,提供用於鑑別與具有生物活性之FAP及4-1BB結合之雙特異性抗原結合分子的分析。特定言之,提供報導體細胞分析,其偵測表現人類4-1BB及NF-κB-螢光素酶報導基因之報導體細胞株Jurkat-hu4-1BB-NFκB-luc2中之NF-κB活化(參見例如實例 7.2 )。
在另一態樣中,提供用於鑑別與具有生物活性之FAP及CD40結合之雙特異性抗原結合分子的分析。特定言之,提供使用塗佈FAP之Dynabeads® 作為抗原來源藉由FAP靶向抗人類CD40結合分子量測人類B細胞之活化之方法(參見例如實例 10.1 )。
在某些態樣中,測試本發明之雙特異性抗原結合分子的此類生物活性。用於偵測本發明之分子之生物活性的分析法為實例 5 中所描述之分析。此外,用於偵測細胞溶解(例如藉由量測LDH釋放)、誘導之細胞凋亡動力學(例如藉由量測卡斯蛋白酶3/7活性)或細胞凋亡(例如使用TUNEL分析)之分析為此項技術中熟知的。此外,此類複合物之生物活性可藉由評估其對多種淋巴細胞子集(諸如NK細胞、NKT細胞或γδ T細胞)之存活、增殖及淋巴激素分泌之作用或評估其調節抗原呈現細胞(諸如樹突狀細胞、單核細胞/巨噬細胞或B細胞)之表現型及功能的能力來評估。
醫藥組合物、調配物及投與途徑 在另一態樣中,本發明提供包含本文所提供之任一雙特異性抗體的醫藥組合物,例如以用於以下治療方法中之任一者。在一個實施例中,醫藥組合物包含本文提供之任一雙特異性抗體及至少一種醫藥學上可接受之賦形劑。在另一實施例中,醫藥組合物包含本文所提供之任一雙特異性抗體及至少一種額外治療劑,例如如下所述之治療劑。
本發明之醫藥組合物包含溶解或分散於醫藥學上可接受之賦形劑中的治療有效量之一或多種雙特異性抗體。片語「醫藥學上或藥理學上可接受」係指分子實體及組合物在所用劑量及濃度下對於接受者而言一般為無毒性的,亦即當適當時投與至動物(諸如人類)時,不會產生有害的過敏反應或其他不良反應。鑒於本發明製備含有至少一種雙特異性抗體及視情況額外活性成分之醫藥組合物將為熟習此項技術者已知,如以引用之方式併入本文中之Remington's Pharmaceutical Sciences, 第18版 Mack Printing Company, 1990所例示。特定言之,組合物為凍乾調配物或水溶液。如本文中所使用,「醫藥學上可接受之賦形劑」包括任何及所有溶劑、緩衝液、分散介質、包衣、界面活性劑、抗氧化劑、防腐劑(例如抗菌劑、抗真菌劑)、等滲劑、鹽、穩定劑及其組合,如一般熟習此項技術者已知。
非經腸組合物包括為藉由注射(例如皮下、皮內、病灶內、靜脈內、動脈內、肌肉內、鞘內或腹膜內注射)投藥所設計的該等組合物。為進行注射,本發明之雙特異性抗體可於水溶液,較佳於生理學上相容之緩衝液(諸如漢克氏溶液(Hank's solution)、林格氏溶液(Ringer's solution)或生理食鹽水緩衝液)中調配。溶液可含有調配劑,諸如懸浮劑、穩定劑及/或分散劑。可替代地,融合蛋白質可呈粉末形式以用於在使用之前用適合的媒劑(例如無菌無熱原質水)復原。藉由將所需量之本發明之融合蛋白併入視需要具有多種下文列舉之其他成分之適當溶劑中來製備無菌可注射溶液。無菌性可容易地藉由例如用無菌過濾膜過濾來實現。一般而言,分散液係藉由將各種滅菌活性成分併入含有基本分散介質及/或其他成分的無菌媒劑中來製備。在用於製備無菌可注射溶液、懸浮液或乳液之無菌粉末情況下,較佳製備方法為真空乾燥及冷凍乾燥技術,其利用預先無菌過濾之液體介質產生活性成分加任何其他所需成分之粉末。視需要,液體介質宜經緩衝,且在與足量生理食鹽水或葡萄糖一起注射之前,首先使液體稀釋劑呈等張性。該組合物在製造及儲存條件下必須為穩定的,且必須避免諸如細菌及真菌之微生物的污染作用。應瞭解,內毒素污染應最低限度地保持在安全水準,例如低於0.5 ng/mg蛋白質。適合之醫藥學上可接受之賦形劑包括但不限於:緩衝液,諸如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如十八烷基二甲基苯甲基氯化銨;氯化六羥季銨;苯紮氯銨;苄索氯銨;苯酚、丁醇或苄醇;對羥基苯甲酸烷基酯,諸如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇;及間甲酚);低分子量(小於約10個殘基)多肽;蛋白質,諸如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,諸如聚乙烯吡咯啶酮;胺基酸,諸如甘胺酸、麩醯胺、天冬醯胺、組胺酸、精胺酸或離胺酸;單醣、雙醣,及其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,諸如EDTA;糖,諸如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成鹽抗衡離子,諸如鈉;金屬錯合物(例如Zn-蛋白質錯合物);及/或非離子界面活性劑,諸如聚乙二醇(PEG)。水性注射懸浮液可含有增加懸浮液黏度之化合物,諸如羧甲基纖維素鈉、山梨糖醇、聚葡萄糖或其類似物。視情況,懸浮液亦可含有適合穩定劑或增加化合物溶解性以允許製備高度濃溶液之藥劑。另外,活性化合物之懸浮液可視需要製備成油性注射懸浮液。適合親脂性溶劑或媒劑包括脂肪油,諸如芝麻油;或合成脂肪酸酯,諸如油酸乙酯或三酸甘油酯;或脂質體。
活性成分可截留於微膠囊中,例如藉由凝聚技術或藉由界面聚合法所製備之微膠囊,例如分別為羥基甲基纖維素或明膠微膠囊及聚(甲基丙烯酸甲酯)微膠囊;截留於膠態藥物遞送系統(例如脂質體、白蛋白微球體、微乳液、奈米顆粒及奈米膠囊)中或巨乳液中。此類技術揭示於Remington's Pharmaceutical Sciences (第18版, Mack Printing Company, 1990)中。可製備持續釋放製劑。持續釋放型製劑之適合實例包括含有多肽之固體疏水性聚合物之半滲透基質,該等基質呈成形物品形式,例如膜或微膠囊。在特定實施例中,可注射組合物之延長吸收可藉由在組合物中使用延遲吸收劑(諸如單硬脂酸鋁、明膠或其組合)來達成。
本文中之例示性醫藥學上可接受之賦形劑進一步包括間質藥物分散劑,諸如可溶性中性活性玻尿酸酶糖蛋白(sHASEGP),例如人類可溶性PH-20玻尿酸酶糖蛋白,諸如rHuPH20 (HYLENEX®, Baxter International, Inc.)。某些例示性sHASEGP (包括rHuPH20)及使用方法描述於美國專利公開案第2005/0260186號及第2006/0104968號中。在一個態樣中,sHASEGP與一或多種其他葡萄糖胺聚糖酶,諸如軟骨素酶組合。
例示性凍乾抗體調配物描述於美國專利第6,267,958號中。水性抗體調配物包括美國專利第6,171,586號及WO2006/044908中所描述之彼等調配物,後者之調配物包括組胺酸-乙酸鹽緩衝液。
除先前描述之組合物以外,融合蛋白亦可調配成儲存製劑。此類長效調配物可藉由植入(例如皮下或肌肉內植入)或藉由肌肉內注射來投與。因此,舉例而言,融合蛋白可用適合的聚合或疏水性材料(例如呈可接受之油中的乳液形式)或離子交換樹脂調配,或調配成微溶性衍生物,例如微溶性鹽。
包含本發明之融合蛋白之醫藥組合物可借助於習知混合、溶解、乳化、封裝、包覆或凍乾方法製造。醫藥組合物可使用生理學上可接受之有利於將蛋白質處理成可在醫藥學上使用之製劑的一或多種載劑、稀釋劑、賦形劑或助劑,以習知方式調配。適當調配物視所選擇之投與途徑而定。
雙特異性抗體可調配成游離酸或鹼、中性或鹽形式之組合物。醫藥學上可接受之鹽為實質上保持游離酸或鹼之生物活性的鹽。此等鹽包括酸加成鹽,例如與蛋白質組合物之游離胺基形成的鹽,或與無機酸(諸如鹽酸或磷酸)或有機酸(諸如乙酸、乙二酸、酒石酸或杏仁酸)形成的鹽。與自由羧基形成的鹽亦可衍生自無機鹼,諸如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣或氫氧化鐵;或有機鹼,諸如異丙胺、三甲胺、組胺酸或普魯卡因(procaine)。相較於相應的游離鹼形式,醫藥鹽傾向於更可溶於水性及其他質子溶劑中。
本文中之組合物亦可含有超過一種為所治療之特定適應症所必需之活性成分,較佳為具有不會對彼此產生不利影響之互補活性的活性成分。此類活性成分宜以有效達成預期目的之量的組合存在。
用於活體內投與之調配物通常為無菌的。無菌性可容易地藉由例如用無菌過濾膜過濾來實現。
治療方法及組合物 本文所提供之雙特異性抗體中之任一者可用於治療方法。為了用於治療方法中,本發明之抗原結合分子可以符合良好醫學實踐的方式調配、給藥及投與。在此情形中考慮之因素包括所治療之特定病症、所治療之特定哺乳動物、個別患者之臨床病狀、病症起因、藥劑傳遞位點、投藥方法、投藥時程及醫學從業者已知之其他因素。
在一個態樣中,提供本發明之雙特異性抗體以用作藥劑。在其他態樣中,提供本發明之雙特異性抗原結合分子以用於治療疾病,尤其用於治療癌症。在某些實施例中,提供本發明之雙特異性抗體以用於治療方法。在一個實施例中,本發明提供如本文所述之雙特異性抗體以用於治療有需要之個體中之疾病。在某些實施例中,本發明提供雙特異性抗體以用於治療患有疾病之個體之方法,該方法包含向個體投與治療有效量之雙特異性抗原結合分子。在某些實施例中,待治療之疾病為癌症。在某些實施例中,所治療之疾病為增生性病症,尤其癌症。癌症之實例包括膀胱癌、腦癌、頭頸癌、胰臟癌、肺癌、乳癌、卵巢癌、子宮癌、子宮頸癌、子宮內膜癌、食道癌、結腸癌、結腸直腸癌、直腸癌、胃癌、前列腺癌、血液癌、皮膚癌、鱗狀細胞癌、骨癌及腎臟癌。可使用本發明之雙特異性抗原結合分子治療的其他細胞增殖病症包括但不限於位於以下中之贅瘤:腹部、骨、乳房、消化系統、肝臟、胰臟、腹膜、內分泌腺體(腎上腺、副甲狀腺、垂體、睾丸、卵巢、胸腺、甲狀腺)、眼、頭頸部、神經系統(中樞及周邊)、淋巴系統、骨盆、皮膚、軟組織、脾臟、胸區域及泌尿生殖系統。亦包括癌前病狀或病灶及癌症轉移。在某些實施例中,癌症係選自由以下組成之群:腎細胞癌、皮膚癌、肺癌、結腸直腸癌、乳癌、腦癌、頭頸癌。需要治療之個體、患者或「個體」通常係哺乳動物,更特定言之係人類。
本發明亦涵蓋用於上調或延長細胞毒性T細胞活性之本發明之雙特異性抗體,或本發明之醫藥組合物。
在另一態樣中,本發明提供本發明之雙特異性抗體在製造或製備用於治療有需要之個體中之疾病的藥劑中之用途。在一個態樣中,藥劑用於治療疾病之方法,其包含投與患有疾病之個體治療有效量之藥劑。在某些實施例中,所治療之疾病為增生性病症,尤其癌症。癌症之實例包括膀胱癌、腦癌、頭頸癌、胰臟癌、肺癌、乳癌、卵巢癌、子宮癌、子宮頸癌、子宮內膜癌、食道癌、結腸癌、結腸直腸癌、直腸癌、胃癌、前列腺癌、血液癌、皮膚癌、鱗狀細胞癌、骨癌及腎臟癌。可使用本發明之雙特異性抗原結合分子治療的其他細胞增殖病症包括但不限於位於以下中之贅瘤:腹部、骨、乳房、消化系統、肝臟、胰臟、腹膜、內分泌腺體(腎上腺、副甲狀腺、垂體、睾丸、卵巢、胸腺、甲狀腺)、眼、頭頸部、神經系統(中樞及周邊)、淋巴系統、骨盆、皮膚、軟組織、脾臟、胸區域及泌尿生殖系統。亦包括癌前病狀或病灶及癌症轉移。在某些實施例中,癌症係選自由以下組成之群:腎細胞癌、皮膚癌、肺癌、結腸直腸癌、乳癌、腦癌、頭頸癌。熟練技術人員容易認識到,在許多情況下,雙特異性抗原結合分子可能不會提供治癒但可僅提供部分益處。在一些實施例中,具有一些益處之生理學變化亦視為治療上有益的。因此,在一些實施例中,雙特異性抗體提供生理改變之量視為「有效量」或「治療有效量」。在任一個上述實施例中,個體較佳為哺乳動物,特定言之,人類。
在另一態樣中,本發明係關於如本文所述之雙特異性抗體在製造或製備用於治療感染病,尤其用於治療病毒感染或用於治療自身免疫疾病(例如狼瘡病)之藥劑中之用途。
在另一態樣中,本發明提供一種用於治療個體中之疾病之方法,其包含向該個體投與治療有效量之本發明之雙特異性抗原結合分子。在一個實施例中,向該個體投與組合物,該組合物包含呈醫藥學上可接受之形式的本發明之融合蛋白。在某些實施例中,所治療之疾病為增生性病症。在一個特定實施例中,該疾病係癌症。在某些實施例中,若所治療之疾病係癌症,則該方法進一步包含向個體投與治療有效量之至少一種額外治療劑,例如抗癌劑。根據任一上述實施例之「個體」可為哺乳動物,較佳為人類。
為預防或治療疾病,本發明之雙特異性抗體(當單獨使用或與一或多種其他額外治療劑組合使用時)之合適劑量將視以下各者而定:待治療之疾病類型、投藥途徑、患者體重、融合蛋白類型、疾病之嚴重程度及時程、係否出於預防或治療目的投與融合蛋白、先前或同時發生的治療干涉、患者之臨床病史及對融合蛋白之反應及主治醫師之判斷。負責投藥的從業者將在任何情況下確定組合物中活性成分之濃度及適用於單獨個體的劑量。本文涵蓋各種給藥時程,包括但不限於單次投藥或經各個時間點多次投藥、快速投藥及脈衝式輸注。
一次性或歷經一系列治療向患者適當地投與抗體。視疾病類型及嚴重程度而定,約1 µg/kg至15 mg/kg (例如0.1 mg/kg -10 mg/kg)之抗原結合分子可為用於向患者投與之初始候選劑量,例如藉由一或多次獨立投與,或藉由連續輸液。視上文所提及之因素而定,一個典型的日劑量可在約1 μg/kg至100 mg/kg之範圍內或大於100 mg/kg。對於歷經數日或更長時間之重複投與,治療一般將視病況而定持續至發生疾病症狀之所需抑制為止。融合蛋白質之一種例示性劑量將在約0.005 mg/kg至約10 mg/kg範圍內。在其他實例中,劑量亦可包含每次投藥約1 μg/kg體重、約5 μg/kg體重、約10 μg/kg體重、約50 μg/kg體重、約100 μg/kg體重、約200 μg/kg體重、約350 μg/kg體重、約500 μg/kg體重、約1 mg/kg體重、約5 mg/kg體重、約10 mg/kg體重、約50 mg/kg體重、約100 mg/kg體重、約200 mg/kg體重、約350 mg/kg體重、約500 mg/kg體重至約1000 mg/kg體重或大於1000 mg/kg體重,及其中可衍生之任何範圍。在來自本文中列舉之數值之可衍生範圍之實例中,基於上述數值,可投與約5 mg/kg體重至約100 mg/kg體重、約5 μg/kg體重至約500 mg/kg體重等之範圍。因此,可向患者投與約0.5 mg/kg、2.0 mg/kg、5.0 mg/kg或10 mg/kg (或其任何組合)之一或多種劑量。此類劑量可間歇性地投與,例如每週或每三週投與(例如使得患者接受約兩次至約二十次,或例如約六次雙特異性抗原結合分子之給藥)。可投與初始較高起始劑量,接著可投與一或多種較低劑量。然而,其他給藥方案可為適用的。此療法之進程易於藉由習知技術及分析法來監測。
本發明之雙特異性抗體通常將以有效達成預定目的的量使用。用於治療或預防疾病病況時,本發明之雙特異性抗原結合分子或其醫藥組合物係以治療有效量投與或施用。治療有效量之判定完全在熟習此項技術者之能力範圍內,尤其根據本文所提供之詳細揭示內容。
全身性投藥時,可首先利用活體外分析(諸如細胞培養分析)估算治療有效劑量。接著可在動物模型中調配劑量以實現循環濃度範圍,包括如在細胞培養物中測定的IC50 。此類資訊可用於更準確地判定適用於人類之劑量。亦可使用此項技術中熟知的技術由活體內資料(例如動物模型)評估初始劑量。一般熟習此項技術者可基於動物資料容易地最佳化人類投藥。可單獨調節劑量及時間間隔以提供足以維持治療效果在雙特異性抗原結合分子之血漿含量。常見的患者注射投藥劑量在約0.1至50毫克/公斤/天,通常約0.5至1毫克/公斤/天範圍內。治療有效血漿含量可藉由每天投與多次劑量來達成。血漿含量可藉由例如HPLC量測。
在局部投藥或選擇性攝取之情況下,雙特異性抗原結合分子之有效局部濃度可能不與血漿濃度相關。熟習此項技術者能夠最佳化治療有效局部劑量而無需不當實驗。
本文所述之雙特異性抗體的治療有效劑量一般將提供治療效益而不引起實質毒性。可在細胞培養物或實驗動物中藉由標準醫藥學程序測定融合蛋白質之毒性及治療功效。可使用細胞培養分析法及動物研究來測定LD50 (50%群體致死劑量)及ED50 (50%群體治療有效劑量)。毒性作用與治療作用之間的劑量比為治療指數,其可表示為比率LD50 /ED50 。較佳為呈現較大治療指數之雙特異性抗原結合分子。在一個實施例中,根據本發明之雙特異性抗原結合分子展現高治療指數。自細胞培養分析法及動物研究獲得之資料可用於調配適用於人類的劑量範圍。劑量較佳在循環濃度範圍內,其包括毒性極小或無毒性的ED50 。劑量可以取決於多種因素而在此範圍內變化,該等因素係例如所用劑型、所用投藥途徑、個體之病狀及其類似因素。確切調配物、投藥途徑及劑量可由個體醫師鑒於患者之病狀而選擇(參見例如Fingl等人, 1975, 見: The Pharmacological Basis of Therapeutics, 第1章, 第1頁,以全文引用的方式併入本文中)。
用本發明之雙特異性抗原結合分子治療之患者的主治醫師將知曉如何及何時由於毒性、器官功能障礙及類似者而終止、中斷或調節投藥。相反,主治醫師亦知曉若臨床反應不充足(排除毒性),則將治療調節至較高水準。管理所關注病症時所投與劑量之量值將因所治療之病狀之嚴重度及投藥途徑及其類似因素而不同。病狀之嚴重程度可例如部分地藉由標準預後評估方法來評估。此外,劑量及可能的給藥頻率亦將根據個別患者之年齡、體重及反應而變。
其他藥劑及治療 本發明之雙特異性抗體可與療法中之一或多種其他試劑組合投與。舉例而言,本發明之雙特異性抗體可以與至少一種額外治療劑共同投與。術語「治療劑」涵蓋可投與以用於治療需要此類治療之個體之症狀或疾病的任何藥劑。此類其他治療劑可包含適於治療特定適應症的任何活性成分,較佳為具有互補活性、彼此間無不利影響的彼等活性成分。在某些實施例中,額外治療劑為另一抗癌劑。
此類其他藥劑宜以有效達成所欲目的之量組合存在。此類其他藥劑之有效量視所使用之融合蛋白之量、病症或治療之類型及上文所論述之其他因素而定。雙特異性抗原結合分子通常以如本文所述之相同劑量及投藥途徑使用,或以本文所述劑量之約1%至99%,或以憑經驗/臨床上確定為適當的任何劑量及任何途徑使用。
上文提及之此類組合療法涵蓋組合投藥(其中相同或不同組合物中包括兩種或更多種治療劑)以及分別投藥,在此情況下,本發明之雙特異性抗原結合分子的投藥可在額外治療劑及/或佐劑投藥之前、與其同時及/或在其之後進行。
製品 在本發明之另一態樣中,提供一種含有適用於治療、預防及/或診斷上文所述之病症之材料的製品。製品包含容器及容器上或容器隨附之標籤或藥品說明書。適合之容器包括例如瓶子、小瓶、注射器、IV溶液袋等。容器可由各種材料形成,諸如玻璃或塑膠。容器容納單獨或與可有效治療、預防及/或診斷病狀之另一組合物組合之組合物,且可具有無菌接取口(例如容器可為具有可由皮下注射針刺穿之塞子的靜脈內溶液袋或小瓶)。組合物中之至少一種活性劑係如本文所述之雙特異性抗體。
標籤或藥品說明書表明組合物用於治療所選病狀。此外,製品可包含(a)其中含有組合物之第一容器,其中該組合物包含本發明之雙特異性抗體;及(b)其中含有組合物之第二容器,其中該組合物包含另一細胞毒性劑或另外的治療劑。本發明之此實施例中之製品可進一步包含指示組合物可用於治療特定病狀之藥品說明書。
可替代地或另外,製品可進一步包含第二(或第三)容器,其包含醫藥學上可接受之緩衝液,諸如抑菌性注射用水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液(Ringer's solution)及右旋糖溶液。其可進一步包括就商業及使用者觀點而言所需之其他物質,包括其他緩衝劑、稀釋劑、過濾器、針及注射器。 B. 序列
關於人類免疫球蛋白輕鏈及重鏈之核苷酸序列之一般資訊提供於Kabat, E.A.等人, Sequences of Proteins of Immunological Interest, 第5版, 美國公眾衛生服務署, 國家衛生研究院, Bethesda, MD (1991)中。抗體鏈之胺基酸根據如上文所定義之Kabat之EU編號系統編號及歸類(Kabat, E.A.等人, Sequences of Proteins of Immunological Interest, 第5版, 美國公眾衛生服務署, 國家衛生研究院, Bethesda, MD (1991))。 ***
實例 以下為本發明之方法及組合物之實例。應瞭解,考慮到上文提供之一般說明,可實施各種其他實施例。
重組 DNA 技術 使用標準方法以如Sambrook, J.等人, Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989中所描述操作DNA。分子生物試劑係根據製造商之說明書使用。關於人類免疫球蛋白輕鏈及重鏈之核苷酸序列之一般資訊提供於Kabat, E.A.等人, (1991) Sequences of Proteins of Immunological Interest, 第五版, NIH公開案第91-3242號中。
DNA 定序 藉由雙股定序法測定DNA序列。
基因合成 藉由自動基因合成,由Geneart AG (Regensburg, Germany)自合成寡核苷酸製備所需基因區段。將合成基因片段選殖成大腸桿菌質體以用於繁殖/擴增。藉由DNA定序檢驗次選殖基因片段之DNA序列。可替代地,藉由黏接化學合成之寡核苷酸或經由PCR組裝短合成DNA片段。藉由metabion GmbH (Planegg-Martinsried, Germany)製備各別寡核苷酸。
細胞培養技術 如Cell Biology (2000), Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J.及Yamada, K.M. (編), John Wiley & Sons, Inc.中之現有方案中所描述使用標準細胞培養技術。
藥劑 若未另外規定,則如根據製造商之方案所提供使用所有市售化學品、抗體及套組。
實例1 產生雙特異性康特斯體 1.1構建用於雙特異性康特斯體之表現質體 為表現如本文所報導之雙特異性康特斯體,使用包含以下功能元件之轉錄單元: - 包括內含子A之人類巨細胞病毒(P-CMV)之即刻早期強化子及啟動子, - 人類重鏈免疫球蛋白5'未轉譯區(5'UTR), - 小鼠免疫球蛋白重鏈信號序列, - 編碼各別環形融合多肽之核酸,及 - 牛生長激素聚腺苷酸化序列(BGH pA)。
除包括將表現之所需基因之表現單元/卡匣以外,基本/標準哺乳動物表現質體含有 - 允許在大腸桿菌中複製此質體之來自載體pUC18之複製起點,及 - 在大腸桿菌中賦予安比西林抗性之β-內醯胺酶基因。
1.2 雙特異性康特斯體之表現 在經懸浮液調適之HEK293F (FreeStyle 293-F細胞;Invitrogen)細胞中用轉染試劑293-free (Novagen)短暫表現雙特異性抗原結合分子。
細胞在解凍之後在125 ml搖瓶中藉由稀釋至少四次(體積30 ml)來繼代(在37℃、7% CO2 、85%濕度、135 rpm下培育/震盪)。將細胞擴增至250 ml體積中3 × 105 個細胞/毫升。三天後,細胞經分裂且以250 ml體積中7 × 105 個細胞/毫升之密度新接種在1公升搖瓶中。24小時後,將以大約1.4-2.0 × 106 個細胞/毫升之細胞密度進行轉染。
在轉染之前,用經預加熱(水浴;37℃)之Opti-MEM (Gibco)將250 µg質體-DNA稀釋至10 ml之最終體積。將溶液輕輕混合且在室溫下培育不超過5 min。隨後將333.3 µl 293-free轉染劑添加至DNA-OptiMEM溶液。其後將溶液輕輕混合且在室溫下培育15-20分鐘。混合物之總體積以250 ml HEK-細胞-培養物體積添加至1 L搖瓶中。
在37℃、7% CO2 、85%濕度、135 rpm下培育/震盪6或7天。
藉由在2,000 rpm、4℃下之第一離心步驟10分鐘來收集上清液。隨後將上清液轉移至新離心燒瓶中以便在4,000 rpm、4℃下持續20分鐘進行第二離心。在其之後,經由0.22 µm瓶頂過濾器過濾無細胞上清液且儲存於冷凍器(-20℃)中。
1.3純化雙特異性康特斯體 將含有抗原結合分子之培養上清液過濾且藉由兩個層析步驟純化。使用經PBS (1 mM KH2 PO4 、10 mM Na2 HPO4 、137 mM NaCl、2.7 mM KCl) (pH 7.4)平衡之HiTrap MabSelectSuRe (GE Healthcare)藉由親和性層析來捕捉抗體。藉由用平衡緩衝液洗滌來移出非結合蛋白質,且用50 mM檸檬酸鹽緩衝液(pH 2.8)回收抗原結合分子,且之後立即用1 M Tris-鹼,pH 9.0溶離中和至pH 6.0。Superdex 200TM (GE Healthcare)上之尺寸排阻層析用作第二純化步驟。在20 mM組胺酸緩衝劑,0.14 M NaCl (pH 6.0)中進行尺寸排阻層析。用配備有Biomax-SK膜(Millipore, Billerica, MA)之Ultrafree -CL離心過濾器單元濃縮含有雙特異性抗原結合分子之溶液且儲存於-80℃下。
1.4雙特異性康特斯體之質譜分析 自Roche Diagnostics GmbH獲得PNGase F (14.3 U / µl;磷酸鈉、EDTA及甘油於溶液中)。自凍乾物新鮮還原在IgG抗體之鉸鏈區中特異性裂解之蛋白酶,之後消化。
PNGase F 之酶促去糖基化 用10 mM磷酸鈉緩衝液,pH 7.1將50 µg抗原結合分子稀釋至0.6 mg/ml之最終濃度,且在37℃下用1 µl PNGase F去糖基化16小時。
酶促裂解 用200 mM Tris緩衝液,pH 8.0將去糖基化樣品稀釋至0.5 mg/ml之最終濃度,且接著在37℃下用IgG特異性蛋白酶消化1小時。
ESI-QTOF 質譜分析 藉由HPLC在Sephadex G25管柱(Kronlab, 5×250 mm, TAC05/250G0-SR)上使用40%乙腈以及2%甲酸(v/v)將樣品去鹽。在配備有TriVersa NanoMate來源(Advion)之maXis 4G UHR-QTOF MS系統(Bruker Daltonik)上經由ESI-QTOF MS測定總質量。用碘化鈉進行校準(Waters ToF G2-樣品套組2零件: 700008892-1)。對於經消化之抗原結合分子,在1000-4000 m/z (ISCID: 30 eV)下進行資料獲取。原始質譜經評估且轉化為個別相對莫耳質量。為使結果可視化,使用專有軟體產生去卷積質譜。
實例2 製備具有兩個結合於OX40之抗原結合結構域及一個結合於FAP之抗原結合結構域的雙特異性抗體(FAP-OX40康特斯體) FAP結合子之產生及製備描述於WO 2012/020006 A2中,其以引用之方式併入本文中。OX40結合子描述於WO 2017/055398 A2中。
2.1製備FAP (4B9)-OX40 (49B4)康特斯體CD134-0093 如 1A 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa、(G4S)2連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、(G4S)2連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表1展示雙特異性抗體CD134-0093之胺基酸序列。 表1:CD134-0093之序列
組裝結構之示意流程圖顯示於 1E 中。
2.2製備FAP (4B9)-OX40 (49B4)康特斯體CD134-0094 如 1B 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-CH1、(G4S)2連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、(G4S)2連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表2展示雙特異性抗體CD134-0094之胺基酸序列。 表2:CD134-0094之序列
組裝結構之示意流程圖顯示於圖1F 中。
2.3製備FAP (28H1)-OX40 (49B4)康特斯體P1AE0085 如 1A 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表3展示雙特異性抗體P1AE0085之胺基酸序列。 表3:P1AE0085之序列
組裝結構之示意流程圖顯示於 1G 中。
2.4製備FAP (4B9)-OX40 (49B4)康特斯體P1AE0086 如 1A 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表4展示雙特異性抗體P1AE0086 (康特斯體7)之胺基酸序列。 表4:P1AE0086之序列
組裝結構之示意流程圖顯示於 1G 中。
2.5製備FAP (28H1)-OX40 (49B4)康特斯體P1AE0087 如 1B 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表5展示雙特異性抗體P1AE0087之胺基酸序列。 表5:P1AE0087之序列
組裝結構之示意流程圖顯示於 1H 中。
2.6製備FAP (4B9)-OX40 (49B4)康特斯體P1AE0839 如 1B 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表6展示雙特異性抗體P1AE0839之胺基酸序列。 表6:P1AE0839之序列
組裝結構之示意流程圖顯示於 1H 中。
2.7製備FAP (4B9)-OX40 (49B4)康特斯體P1AE0821 如 1C 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VH(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表7展示雙特異性抗體P1AE0821 (康特斯體11)之胺基酸序列。 表7:P1AE0821之序列
組裝結構之示意流程圖顯示於 1I 中。
2.8製備FAP (4B9)-OX40 (49B4)康特斯體P1AE1122 (康特斯體1) 如 1D 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-CH1。 -第二融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-Ckappa。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表8展示雙特異性抗體P1AE1122之胺基酸序列。 表8:P1AE1122之序列:
組裝結構之示意流程圖顯示於 1J 中。
2.9製備FAP (4B9)-OX40 (49B4)康特斯體P1AE1942 (康特斯體2) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-CH1。 -第二融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VH(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表9展示雙特異性抗體P1AE1942之胺基酸序列。 表9:P1AE1942之序列:
2.10 製備 FAP (4B9)-OX40 (49B4) 康特斯體 P1AE1887 ( 康特斯體 3) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表10展示雙特異性抗體P1AE1887之胺基酸序列。 表10:P1AE1887之序列:
組裝結構之示意流程圖顯示於 1K 中。
2.11製備FAP (4B9)-OX40 (49B4)康特斯體P1AE1888 (康特斯體4) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VL (OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表11展示雙特異性抗體P1AE1888之胺基酸序列。 表11:P1AE1888之序列:
2.12製備FAP (4B9)-OX40 (49B4)康特斯體P1AE2254 (康特斯體5) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH(OX40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH(OX40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。此外,在分別與OX40之VL及VH融合之CH及Ckappa中,引入胺基酸突變(所謂的帶電荷殘基)以防止產生本斯瓊司蛋白質且進一步促進正確配對,亦即CH1結構域中之負電荷(K147E,K213E,根據Kabat EU索引編號)及抗OX40結合子49B4之CL結構域中的正電荷(E123R及Q124K,根據Kabat EU索引編號)。
表12展示雙特異性抗體P1AE2254之胺基酸序列。 表12:P1AE2254之序列:
組裝結構之示意流程圖顯示於 1L 中。
2.13製備FAP (4B9)-OX40 (49B4)康特斯體P1AE2340 (康特斯體6) 包含兩種融合多肽及輕鏈之雙特異性抗體如下選殖: -第一融合多肽(N端至C端):VH(OX40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(OX40)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH(OX40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa_RK (E123R、Q124K)。 -輕鏈:VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。此外,分別與OX40之VL及VH融合之CH及Ckappa,引入胺基酸突變(所謂的帶電荷殘基)以防止產生本斯瓊司蛋白質且進一步促進正確配對,亦即CH1結構域中之負電荷(K147E,K213E,根據Kabat EU索引編號)及抗OX40結合子49B4之CL結構域中的正電荷(E123R及Q124K,根據Kabat EU索引編號)。
表13展示雙特異性抗體P1AE2340之胺基酸序列。 表13:P1AE2340之序列:
組裝結構之示意流程圖顯示於圖1M中。
2.14製備FAP (4B9)-OX40 (49B4)康特斯體P1AE2735 (康特斯體8) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (FAP)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-Ckappa。 -第二融合多肽(N端至C端):VL(FAP)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(OX40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表14展示雙特異性抗體P1AE2735之胺基酸序列。 表14:P1AE2735之序列:
組裝結構之示意流程圖顯示於 1N 中。
2.15製備FAP (4B9)-OX40 (49B4)康特斯體P1AE2743 (康特斯體9) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH (FAP)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-CH1。 -第二融合多肽(N端至C端):VL (FAP)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VH(OX40)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表15展示雙特異性抗體P1AE2743之胺基酸序列。 表15:P1AE2743之序列:
2.16製備FAP (4B9)-OX40 (49B4)康特斯體P1AE2762 (康特斯體10) 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH (FAP)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(OX40)-CH1。 -第二融合多肽(N端至C端):VH (FAP)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(OX40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表16展示雙特異性抗體P1AE2762之胺基酸序列。 表16:P1AE2762之序列:
2.17純化後分子之生物化學分析 表17概括FAP OX40康特斯體之產率及最終單體含量。 表17 FAP OX40康特斯體之生物化學分析
2.18製備作為對照分子之雙特異性OX40抗體 作為對照,製備以下雙特異性抗OX40抗體: a)對OX40二價結合及對FAP單價結合的雙特異性抗體係與WO 2017/055398 A2之實例4.4 (2+1型式)類似地製備。在此分子中,第一重鏈(HC1)包含抗OX40結合子49B4之一個Fab單元(VHCH1),隨後為經(G4 S)連接子融合至抗FAP結合子28H1或4B9之VH結構域的Fc杵鏈。構築體之第二重鏈(HC2)包含抗OX40結合子49B4之一個Fab單元(VHCH1),隨後為經(G4 S)連接子融合至抗FAP結合子28H1或4B9之VH結構域的Fc臼鏈。分子之示意流程圖顯示於 1O 中。 b)如上對OX40二價結合之抗體,其中抗FAP結合子之VH及VL結構域經稱為DP47之生殖系對照置換,未與抗原結合。此分子用作陰性「非靶向」對照。 c)對OX40二價結合及對FAP單價結合的雙特異性抗體係與WO 2017/060144 A1之實例4.4 (4+1型式)類似地製備。在此分子,第一重鏈(HC 1)包含抗OX40結合子49B4的兩個Fab單元(VHCH1_VHCH1),隨後為經(G4 S)連接子融合至抗FAP結合子4B9之VH結構域的Fc杵鏈。構築體之第二重鏈(HC 2)包含抗OX40結合子49B4之兩個Fab單元(VHCH1_VHCH1),隨後為經(G4 S)連接子融合至抗FAP結合子4B9之VL結構域的Fc臼鏈。分子之示意流程圖顯示於 1P 中。
藉由應用允許裝配兩種不同重鏈之杵-臼技術來製備對Ox40四價結合且對FAP單價結合之雙特異性促效Ox40抗體。根據國際專利申請公開案第WO2012/130831A1號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入重鏈之恆定區以消除與Fcγ受體之結合。 18 :用於實驗之對照分子
實例3 表徵FAP OX抗體 3.1結合人類OX40 (動力學親和力) 使用BIACORE T100儀器(GE Healthcare)藉由表面電漿子共振來研究雙特異性抗FAP-OX40抗體與人類OX40之結合。藉由使用GE Healthcare所供應之胺偶合套組在pH 5.0下於CM5晶片(GE Healthcare BR-1005-30)上偶合捕獲系統(20 µg/ml抗人類IgG (Fc);命令碼:BR100839;GE Healthcare Bio-Sciences AB, Sweden)之約8000個共振單位(RU)。操作緩衝液係PBS-P pH 7.4 (20 mM磷酸鹽緩衝液,2.7 mM KCl,137 mM NaCl,0.05%界面活性劑P20)。將流動槽設置為25℃,且將樣品區塊設置為12℃,且用操作緩衝液預塗佈兩次。藉由以5 µl/min之流動速率注射2 µg/ml溶液持續60秒,捕捉雙特異性抗體。藉由以1:3稀釋液中之600 nM起始,以30 µl/min之流動速率持續120秒注射人類OX40來量測締合。解離階段經監測長達720秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。藉由以10 µl/min之流動速率用3 M MgCl2 洗滌60秒來重新產生表面。藉由減去自抗人類IgG (Fc)表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。 表19: FAP/ OX40 抗體與重組人類 OX40 之結合
相比於四價抗OX40抗體之「4+1」IgG樣型式,兩種康特斯體均具有類似的KD 值;分子之間的親和力相當且Rmax指示各種測試分子之價數。
測試其他FAP-OX40康特斯體且展示如下表20所列出之KD 值。 表20: FAP/ OX40 抗體與重組人類 OX40 之結合
3.2結合人類FAP (動力學親和力) 使用BIACORE T100儀器(GE Healthcare)藉由表面電漿子共振來研究雙特異性抗FAP-OX40抗體與人類人類之結合。藉由使用GE Healthcare所供應之胺偶合套組在pH 4.5下於CM5晶片(GE Healthcare BR-1005-30)上偶合捕獲系統(15 µg/ml抗組胺酸抗體;命令碼:28995056;GE Healthcare Bio-Sciences AB, Sweden)之約12000個共振單位(RU)。用於固定之操作緩衝液為HBS-N pH 7.4 (10 mM HEPES、150 mM NaCl (pH 7.4),GE Healthcare)。為了以下動力學表徵,操作緩衝液係PBS-P pH 7.4 (20 mM磷酸鹽緩衝液,2.7 mM KCl,137 mM NaCl,0.05%界面活性劑P20)。將流動槽設置為25℃,且將樣品區塊設置為12℃,且用操作緩衝液預塗佈兩次。藉由以5 µl/min之流動速率注射25 µg/ml溶液持續60秒,捕捉重組人類FAP。藉由以1:2稀釋液中之300 nM起始,以30 µl/min之流動速率持續120秒注射雙特異性抗體來量測締合。解離階段經監測長達720秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。藉由以30 µl/min之流動速率用10 mM甘胺酸pH 1.5洗滌60秒來重新產生表面。藉由減去自抗組胺酸表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。 表21: FAP/ OX40 抗體與重組人類 FAP 之結合
兩種分子具有類似的KD值。相比於標準對照分子,與FAP ECD之締合在康特斯體型式中次最佳。然而,在對照分子中,使用兩種4xG4 S肽連接子將抗FAP部分以C端連接於Fc部分,而在康特斯體中,使用兩種2xG4S肽連接子將抗FAP部分連接於康特斯體。測試其他FAP-OX40康特斯體且展示如下表22所列出之KD 值。 表22: FAP/ OX40 抗體與重組人類 FAP 之結合
3.3同時結合人類OX40及人類FAP (動力學親和力) 亦使用BIACORE T100儀器(GE Healthcare)藉由表面電漿子共振(SPR)評估同時結合人類OX40及人類FAP之能力。藉由使用GE Healthcare所供應之胺偶合套組在pH 5.0下於CM5晶片(GE Healthcare BR-1005-30)上偶合捕獲系統(20 µg/ml抗人類IgG (Fc);命令碼:BR100839;GE Healthcare Bio-Sciences AB, Sweden)之約8000個共振單位(RU)。操作緩衝液係PBS-P pH 7.4 (20 mM磷酸鹽緩衝液,2.7 mM KCl,137 mM NaCl,0.05%界面活性劑P20)。將流動槽設置為25℃,且將樣品區塊設置為12℃,且用操作緩衝液預塗佈兩次。藉由以5 µl/min之流動速率注射2 µg/ml溶液持續60秒,捕捉雙特異性抗體。藉由以30 µl/min之流動速率持續120秒注射第一分析物(分別為人類OX40或人類FAP)來量測締合。隨後以30 µl/min之流動速率持續120秒注射第二分析物(分別為人類FAP或人類OX40)。解離階段經監測長達720秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。藉由以10 µl/min之流動速率用3 M MgCl2 洗滌60秒來重新產生表面。藉由減去自抗人類IgG (Fc)表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。所有FAP-OX40康特斯體君能夠同時且獨立地與兩種抗原結合。
實例4 結合細胞 4.1與未處理與經活化人類PBMC之結合 自Zürich血液供給中心獲得白血球層。藉由菲科爾(ficoll)密度梯度離心分離人類PBMC。為了分離新鮮的外周血液單核細胞(PBMC),白血球層用相同體積之DPBS (Gibco,Life Technologies,目錄號14190 326)稀釋。提供50 mL聚丙烯離心管(TPP,目錄號91050)及15 mL Histopaque 1077 (SIGMA Life Science,目錄號10771,聚蔗糖及泛影酸鈉,調節至1.077 g/mL之密度)且白血球層溶液在Histopaque 1077上分層。試管在400×g下,在室溫下且在低加速度及不破裂情況下離心30分鐘。隨後,自界面收集PBMC,用DPBS洗滌三次且再懸浮於由以下組成之T細胞培養基中:供應有10%胎牛血清(FBS,Gibco,Life Technology,目錄號16000-044,批號941273,經γ輻射、不含微漿菌且在56℃下熱滅活35 min)、1% (v/v)GlutaMAXI (GIBCO,Life Technologies,目錄號35050038)、1 mM丙酮酸鈉(SIGMA,目錄號S8636)、1% (v/v) MEM非必需胺基酸(SIGMA,目錄號M7145)及50 µM β-巰基乙醇(SIGMA,M3148)之RPMI 1640培養基(Gibco,Life Technology,目錄號42401-042)。在含有10% (v/v)二甲亞碸之FBS中冷凍PBMC。
冷凍的PBMC在T細胞培養基中解凍且在分離之後直接使用PBMC (結合休眠人類PBMC)或其經刺激以在T細胞之細胞表面上接受強烈人類OX40表現(結合經活化人類PBMC)。因此,未經處理之PBMC在供應有200 U/mL Proleukin及2 mg/mL PHA-L之T細胞培養基中於6孔組織培養板中培養兩天且隨後在T細胞培養基中於預塗佈之6孔組織培養板[4 mg/mL抗人類CD3 (純系OKT3)及2 mg/mL抗人類CD28 (純系CD28.2)]中培養1天。
關於OX40之偵測,混合原生人類PBMC與經活化之人類PBMC。為了能夠區分原生PBMC與經活化之人類PBMC,在使用eFluor670細胞增殖染料(eBioscience,目錄號65-0840-85)之結合分析之前標記原生細胞。接著將1×105 個原生eFluor670標記之人類PBMC與未標記之經活化之人類PBMC的1:1混合物添加至圓底懸浮單元96孔板(greiner bio-one,cellstar,目錄號650185)之各孔中。
細胞在4℃下,在黑暗中,在50微升/孔含有經滴定之抗Ox40抗體構築體之4℃冷FACS緩衝液中染色120分鐘。在用過量FACS緩衝液洗滌三次之後,細胞在4℃下,在黑暗中,在25微升/孔含有螢光標記之抗人類CD4 (純系RPA-T4,小鼠IgG1 k,BioLegend,目錄號300532)、抗人類CD8 (純系RPA-T8,小鼠IgG1k,BioLegend,目錄號3010441)及異硫氰酸螢光素(FITC)結合之AffiniPure抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2 片段(Jackson ImmunoResearch,目錄號109-096-098)之混合物的4℃冷FACS緩衝液中染色45分鐘。最終,培養板再懸浮於85微升/孔含有0.2 μg/mL DAPI (Santa Cruz Biotec,目錄號Sc-3598)之FACS緩衝液中且在同一天使用5-雷射LSR-Fortessa (BD Bioscience with DIVA software)獲取。
2B 及圖 2D 中所示,無對OX40具有特異性之抗原結合分子結合於休眠人類CD4 T細胞或CD8 T細胞。相比之下,所有抗原結合分子(OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) DP47 2+1雙特異性抗體、OX40 (49B4) FAP (4B9) 4+1雙特異性抗體、康特斯體CD134-0093及CD134-0094)均結合於經活化之CD8+ 或CD4+ T細胞( 2A 及圖 2C )。與CD4+ T細胞之結合比與CD8+ T細胞之結合牢固得多。全部型式之2+1設計獨立於第二特異性之結合部分以類似強度結合於OX40表現(陽性)細胞。另外,4+1構築體展示最牢固之結合。康特斯體CD134-0093展示2+1與4+1型式之間中等強度之結合,第二康特斯體CD134-0094與CD4+ 及CD8+ T細胞之結合弱於2+1型式。陰性對照DP47 hu IgG1抗體(P329G LALA)未與經活化或休眠T細胞結合。因為OX40未對休眠CD4或CD8 T細胞上調,所以所測試分子中無一者結合於休眠細胞。此外,所有構築體(陰性對照除外)對CD4 T細胞之結合均較強,因為此等細胞上之OX40表現高於CD8 T細胞。
第二實驗之結果顯示於 2E 2H 中。如此等圖中所展示,所測試分子(OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) FAP (4B9) 2+1雙特異性抗體、OX40 (49B4) DP47 2+1雙特異性抗體、康特斯體P1AE0085、P1AE0086及P1AE0087)中無一者如所預期結合於休眠人類CD4+ T細胞或CD8+ T細胞,此歸因於OX40未在休眠細胞上表現(圖2F及圖2H)。相比之下,所有抗原結合分子均顯示與經活化CD8+ 及CD4+ T細胞結合(圖2E及圖2G)。CD8+ T細胞上之信號振幅低於CD4 T細胞上之信號振幅,該信號振幅與OX40表現水準(在CD4+ T細胞上較高)相關。然而,在CD4+ 與CD8+ T細胞之間各所測試分子之結合圖案相當。全部三種康特斯體分子確實與OX40表現細胞結合,然而,相比於2+1對照分子,其與OX40之結合力降低,與FAP結合純系無關。特定言之,康特斯體P1AE0087之結合的受損比康特斯體P1AE0085之結合的受損略多。
其他康特斯體(康特斯體1至11)與經活化CD4+ T細胞之結合展示於 8A 至圖 8D 中且與經活化CD8+ T細胞之結合展示於 10A 至圖 10D 中。分別在 9A 至圖 9D 11A 至圖 11D 中,展示如所預期,康特斯體1至11中無一者結合於休眠人類CD4 T細胞或CD8 T細胞。相比之下,全部抗原結合分子均結合於經活化之CD8+ 或CD4+ T細胞。與CD4+ T細胞之結合比與CD8+ T細胞之結合牢固得多。全部型式之2+1設計獨立於第二特異性之結合部分以類似強度結合於OX40陽性細胞。陰性對照(DP47 hu IgG1 P329G LALA)未結合經活化T細胞及休眠T細胞。因為OX40未對休眠CD4或CD8 T細胞上調,所以所測試分子中無一者結合於休眠細胞。此外,所有構築體(陰性對照除外)對CD4+ T細胞之結合均較強,因為此等細胞上之OX40表現高於CD8+ T細胞。
4.2與表現人類FAP之腫瘤細胞之結合 與細胞表面FAP之結合使用人類纖維母細胞活化蛋白(huFAP)表現WM266-4細胞(ATCCCRL-1676)測試。使用表現NucLight Red螢光蛋白質之A549 NucLight™ Red細胞(Essenbioscience,目錄號4491)測試與OX40陰性FAP陰性腫瘤細胞之結合之缺乏,該NucLight Red螢光蛋白質受限於細胞核以允許自未標記之人類FAP陽性WM266-4細胞分離。根據標準Essen方案,親本A549 (ATCCCCL-185)在8 µg/ml凝聚胺存在下,用Essen CellPlayer NucLight Red慢病毒(Essenbioscience,目錄號4476;EF1α、嘌呤黴素)在MOI為3(TU/細胞)之情況下轉導。此導致≥70%轉導效率。
將5 × 104 個未標記之WM266-4細胞及未標記之A549 NucLight™紅血球於FACS緩衝液中之混合物添加至圓底懸浮液細胞96孔培養板(greiner bio-one, cellstar, 目錄號650185)之各孔且進行結合分析。培養板用400×g且在4℃下離心4分鐘,且拂去清液層。細胞用200 µL DPBS洗滌一次且糰粒藉由短且平緩渦流再懸浮。全部樣品再懸浮於50微升/孔含有指定濃度範圍(經滴定)之雙特異性抗原結合分子(初級抗體)的4℃冷FACS緩衝液中且在4℃下培育120分鐘。隨後,細胞用200 µL 4℃ FACS緩衝液洗滌四次且藉由短渦流再懸浮。細胞用25微升/孔含有異硫氰酸螢光素(FITC)結合之親和純化抗人類IgG Fcγ-片段-特異性山羊IgGF(ab`)2 片段(JacksonImmunoResearch, 目錄號109-096-098)的4℃冷二次抗體溶液進一步染色且在4℃下在暗處培育60分鐘。最終,培養板再懸浮於90微升/孔含有0.2 μg/mL DAPI (Santa Cruz Biotec,目錄號Sc-3598)之FACS緩衝液中且在同一天使用5-雷射LSR-Fortessa (具有DIVA軟體之BD Bioscience)獲取。
3A 及圖 3B 中所展示,FAP靶向之抗OX40雙特異性抗體與人類FAP表現靶細胞有效結合。因此,僅FAP靶向之抗OX40抗原結合分子展示直接的腫瘤靶向特性。FAP 4B9具有對人類FAP之高親和力,而28H1具有對人類FAP之低親和力。FAP靶向(OX40 (49B4) FAP (4B9) 4+1雙特異性抗體指示最強的與FAP+ 細胞之結合,之後為2+1康特斯體CD134-0093、康特斯體CD134-0094及隨後OX40 (49B4) FAP (28H1) 2+1雙特異性抗體。應注意,FAP 4B9相比於28H1具有對人類FAP之較高親和力。兩種康特斯體與FAP+ 細胞之結合相比於含有VHVL之靶向2+1抗體構築體略微提高。非靶向OX40 (49B4) DP47 2+1雙特異性抗體及陰性對照(DP47 hu IgG1抗體(P329G LALA))未與任何FAP+ 細胞結合。與經活化之人類CD4 T細胞及FAP陽性腫瘤細胞結合的EC50 值概述於表23中。 23 呈不同型式之 FAP 靶向 OX40 (49B4) 雙特異性抗體與細胞表面人類 FAP 及人類 OX40 之結合 ( CD4+ T 細胞上 ) EC50
在另一實驗中,測試比較康特斯體P1AE0085、P1AE0086及P1AE0087與OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) FAP (4B9) 2+1雙特異性抗體及OX40 (49B4) DP47 2+1雙特異性抗體(陰性對照)。結果顯示於 3C 及圖 3D 中。所有FAP靶向抗OX40抗原結合分子均與人類FAP表現細胞結合。FAP 4B9純系對人類FAP (如28H1)具有較高親和力。因此,用OX40 (49B4) FAP (4B9) 2+1雙特異性抗體及OX40 (49B4) FAP (28H1) 2+1雙特異性抗體觀測到之最佳的結合特性如所預期展示減少之結合。全部三種康特斯體均展示與FAP之結合,但與FAP+ 細胞對兩種FAP純系(4B9及28H1)之結合相比於OX40 (49B4) FAP 2+1雙特異性抗體略微受損。連接子長度似乎未影響與huFAP之結合,因為康特斯體P1AE0085及P1AE0087顯示極其類似的結合特性。非靶向2 OX40 (49B4) DP47 2+1雙特異性抗體及陰性對照(DP47 hu IgG1抗體(P329G LALA))未與任何FAP+ 細胞結合。另外,分子中無一者展示與FAP-A549NLR細胞之結合,表明結合對人類FAP具有特異性。與經活化之人類CD4及CD8 T細胞及FAP陽性細胞結合的EC50 值概述於表24中。 24 呈不同型式之 FAP 靶向 OX40 (49B4) 雙特異性抗體與細胞表面人類 FAP 及人類 Ox40 之結合 ( CD4+ T 細胞上 ) EC50 n.c.無曲線擬合。不可能進行EC50 計算 n.a.不適用
康特斯體1至10與FAP+ 細胞(NIH/3T3-huFAP腫瘤細胞)之結合結果展示於 13A 至圖 13D 中。所有FAP靶向抗OX40抗原結合分子均與人類FAP表現細胞結合。如圖14A 至圖 14D 中所展示,FAP靶向抗OX40抗原結合分子中無一者能夠與A549NLR (FAP陰性)腫瘤細胞結合。康特斯體8與FAP+ 細胞結合最牢固,之後為康特斯體10及康特斯體6。兩種康特斯體與FAP+ 細胞之結合相比於含有VHVL之靶向2+1抗體構築體略微提高。非靶向2+1抗OX40構築體(7718)及陰性對照(8105)未與任何FAP+ 細胞結合。與經活化之人類CD4+ T細胞及FAP陽性腫瘤細胞結合的EC50 值概述於表25中。 25 呈不同型式之 FAP 靶向 OX40 (49B4) 雙特異性抗體與細胞表面人類 FAP 及人類 Ox40 之結合 ( CD4+ T 細胞上 ) EC50 n.c.無曲線擬合。不可能進行EC50 計算 n.a.不適用
實例5 雙特異性抗人類OX40結合分子之功能特性 5.1表現人類OX40及報導基因NFκB-螢光素酶之HeLa細胞 OX40與其配位體之促效結合經核因子κB (NFκB)之活化誘導下游信號傳導(A. D. Weinberg等人, J. Leukoc. Biol. 2004, 75(6), 962-972)。產生重組型報導子細胞株HeLa_hOx40_NFκB_Luc1以在其表面上表現人類Ox40。此外,其具有受NFκB敏感性強化子片段控制之含有螢光素酶基因之報導體質體。Ox40觸發誘導在細胞核中易位之NFκB之劑量依賴性活化,其中NFκB在報導子質體之NFκB敏感性強化子上結合以增加螢光素酶蛋白質之表現。螢光素酶催化螢光素氧化產生會發光的氧化螢光素。此可藉由光度計定量。
因此,以量測生物活性形式來分析多種抗OX40分子誘導HeLa_hOx40_NFκB_Luc1報導子細胞中之NFκB活化的能力。
測試所選擇雙特異性OX40(49B4)抗體(呈二價FAP靶向VH VL 或康特斯體型式)單獨及與藉由二次抗體或FAP+腫瘤細胞株進行之構築體之超交聯一起活化NFκB的能力。FAP結合抗體藉由細胞表面FAP之交聯係使用人類纖維母細胞活化蛋白(huFAP)表現NIH/3T3-huFAP純系19測試。藉由在1.5 μg/mL嘌呤黴素選擇下使用表現huFAP之表現載體pETR4921轉染小鼠胚胎纖維母細胞NIH/3T3細胞株(ATCC CRL-1658),產生此細胞株。
黏附HeLa_hOX40_NFkB_Luc1細胞以0.2×105 個細胞/孔之細胞密度隔夜培養且用含有滴定之雙特異性抗OX40 (49B4)抗體(OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) DP47 2+1雙特異性抗體、康特斯體CD134-0093及CD134-0094)之分析培養基刺激5小時。為測試藉由二次抗體進行之超交聯的效果,以1:2比率(初級抗體比二次抗體)添加25微升/孔含有二次抗體抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2 片段(Jackson ImmunoResearch, 109-006-098)之培養基。為了測試藉由細胞表面FAP結合進行之超交聯之作用,25微升/孔含有FAP+腫瘤細胞(NIH/3T3-huFAP純系19)之培養基以4:1比率(每個孔中FAP+腫瘤細胞比報導子細胞多四倍)共同培養。
在培育之後,抽吸分析上清液且培養板用DPBS洗滌兩次。根據製造商說明,使用螢光素酶100分析系統及報導子溶解緩衝液(皆來自Promega,目錄號E4550及目錄號E3971)進行發光之定量。簡言之,細胞藉由添加30微升/孔1×溶解緩衝液在-20℃下溶解10分鐘。細胞在37℃下解凍20分鐘,隨後添加90微升/孔提供之螢光素酶分析試劑。立即藉由SpectraMax M5/M5e微板讀取器(Molecular Devices, USA)使用500 ms積分時間定量發光,無任何過濾器收集所有波長。所發射之相對光單位(URL)藉由HeLa_hOx40_NFκB_Luc1細胞之基礎螢光校正且使用Prism4 (GraphPad Software, USA)針對對數初級抗體濃度繪製。使用內置S形劑量反應擬合曲線。
4A 至圖 4C 中所示,全部抗OX40構築體之存在均誘發NFκB活化。經由二次抗huIgG Fcγ特異性抗體進行之超交聯以與FAP無關之方式提高所有結合子之NFκB活化。兩種雙特異性抗體,亦即2+1構築體OX40 (49B4) FAP (28H1)及OX40 (49B4) DP47類似起作用,因為FAP靶向似乎未影響NFκB誘導。康特斯體CD134-0093及CD134-0094表現相當,但在交聯下展示略弱之NFκB活化(其作用似乎為固有的且與交聯無關)。當使用FAP靶向分子(實心三角形、半實心圓形、實心圓形)時,FAP表現腫瘤細胞以濃度依賴性方式大大提高NFκB介導之螢光素酶活化的誘導。利用OX40 (49B4) DP47 2+1雙特異性抗體(空心圓)未發現此類效果,因為構築體無法藉由FAP+ 腫瘤細胞進一步超交聯。另外,FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體誘導比康特斯體CD134-0093及康特斯體CD134-0094更強之NFκB活化,而CD134-0094展示比CD134-0093更強之活化(圖4A)。總而言之,康特斯體構築體能夠誘導OX40介導之NFκB活化,然而,其活性低於藉由二次抗體或細胞表面表現FAP交聯之FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體。然而,在無二次低聚下添加時亦存在較低活性。
第二實驗之結果顯示於 4D 4F 中。如此等圖中所展示,在無交聯存在下,所測試之所有抗OX40分子(OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) FAP (4B9) 2+1雙特異性抗體、OX40 (49B4) DP47 2+1雙特異性抗體、康特斯體P1AE0085、P1AE0086及P1AE0087)之存在均誘導極少NFκB活化。(圖4D)當藉由二次抗體提供超交聯時,全部三種2+1對照分子(OX40 (49B4) FAP (28H1) 2+1雙特異性抗體、OX40 (49B4) FAP (4B9) 2+1雙特異性抗體及OX40 (49B4) DP47 2+1雙特異性抗體)均展示極其類似之NFκB活化(圖4F)。該等三種康特斯體分子相比於對照物展示略微降低之活性。在FAP表現細胞存在下,未觀測到所測試康特斯體與對照分子之間的NFκB活化的差異。因為共用一個全局曲線擬合而利用GraphPad Prism軟體分析對應於康特斯體分子及其各別FAP靶向對照分子之曲線,結果表明效能不存在顯著差異。儘管所測試兩種純系(4B9及28H1)對FAP之結合親和力不同,但其在此分析中未翻譯成明顯的效能差異。DP47靶向2+1對照分子僅顯示極少活性,這歸因於其不具有FAP結合部分。陰性對照(DP47 hu IgG1抗體(P329G LALA))未展示活性,與交聯無關。
吾等進一步測試康特斯體1至11單獨及與藉由FAP+ 腫瘤細胞株進行之雙特異性抗體構築體之超交聯一起的NFκB活化能力。在 15A 15D 中,在FAP表現腫瘤細胞存在下係NFκB活化。無藉由FAP進行之交聯下的NFκB活化在 16A 16D 中可見。在存在及不存在與FAP+ 細胞之交聯下HeLa細胞中之NFκB活化之曲線下面積值的概述顯示於 17 中。所有抗OX40構築體之存在均誘導NFκB活化。對於所有測試雙特異性抗體而言,經由FAP+ 腫瘤細胞進行之超交聯均提高NFκB活化。使用FAP靶向分子時,FAP表現腫瘤細胞以濃度依賴性方式大大提高NFκB活化介導之螢光素酶活化的誘導。當2+1型式之FAP結合部分經非結合DP47單元(空心三角)置換時未發現此類作用,因為構築體不能經FAP+ 腫瘤細胞進一步超交聯。所有康特斯體均與OX40 (49B4) FAP (4B9) 2+1雙特異性抗體表現相當。
5.2 次最佳化TCR觸發之休眠人類PBMC及藉由細胞表面FAP進行之超交聯的Ox40介導之共刺激 在5.1部分中證實,添加FAP+ 腫瘤細胞藉由提供OX40受體之強力低聚可顯著提高人類OX40陽性報導體細胞株中FAP靶向二價抗OX40抗體所誘導之NFκB活性。類似地,吾等測試在NIH/3T3-huFAP純系19細胞存在下,FAP靶向二價抗OX40抗體救援休眠人類PBMC細胞之次最佳化TCR刺激的能力。
人類PBMC製劑含有(1)休眠OX40陰性CD4+及(2) CD8+ T細胞及在其細胞表面具有各種Fcγ受體分子之抗原呈現細胞(例如B細胞及單核球)。人類IgG1同型之抗人類CD3抗體可藉由其Fc部分結合於本發明之Fcγ受體分子且介導休眠OX40陰性CD4+ 及CD8+ T細胞上之延長TCR活化。接著,此等細胞開始在若干小時內表現OX40。針對OX40之功能性促效化合物可經由經活化之CD8+ 及CD4+ T細胞上呈現之OX40受體進行信號傳導及支持TCR介導之刺激。
休眠人類PBMC用次最佳濃度之抗CD3抗體在輻射FAP+ NIH/3T3-huFAP純系19細胞及經滴定之抗OX40構築體存在下刺激五天。經由監測總細胞計數及藉由流式細胞量測術利用針對T細胞活化及成熟標記物(CD25/CD127)之螢光標記之抗體進行共同染色分析對T細胞存活及增殖之影響。
在37℃下使用細胞解離緩衝液(Invitrogen,目錄號13151-014)持續10分鐘收集小鼠胚胎纖維母細胞NIH/3T3-huFAP純系19細胞。將細胞用DPBS洗滌一次。NIH/3T3-huFAP純系19細胞在培育箱(Hera Cell 150)中,在37℃及5% CO2 下,在無菌96孔圓底黏著組織培養板(TPP,目錄號92097)中之T細胞培養基中以0.2×105 個細胞/孔之密度培養隔夜。第二天,其在xRay輻射器中使用4500 RAD之劑量輻射以防止稍後由腫瘤細胞株引起之人類PBMC之過度生長。
藉由菲科爾(ficoll)密度離心分離人類PBMC。細胞以0.6×105 個細胞/孔之密度添加至各孔。以指示濃度添加最終濃度為[10 nM]之抗人類CD3抗體(純系V9,人類IgG1)及FAP靶向二價抗OX40抗原結合分子及康特斯體。細胞在培育箱(Hera Cell 150)中在37℃及5% CO2 下活化四天。
隨後,細胞用螢光染料結合之抗體抗人類CD4 (純系RPA-T4,BioLegend,目錄號300532)、CD8 (純系RPa-T8,BioLegend,目錄號3010441)、CD25 (純系M-A251,BioLegend,目錄號356112)及CD127 (純系A019D5,BioLegend,目錄號351324)在4℃下進行表面染色,持續20 min。細胞集結粒用FACS緩衝液洗滌一次。最終,培養板再懸浮於85微升/孔含有0.2 μg/mL DAPI (Santa Cruz Biotec,目錄號Sc-3598)之FACS緩衝液中且在同一天使用5-雷射LSR-Fortessa (BD Bioscience with DIVA software)獲取。
5A 至圖 5F 中所展示,與非靶向OX40 (49B4) DP47 2+1雙特異性抗體(空心三角形)之共刺激未救援次最佳TCR刺激CD4及CD8 T細胞。藉由NIH/3T3-huFAP純系19細胞之存在,FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體(實心三角)及2+1康特斯體CD134-0093及CD134-0094之超交聯顯著提高存活且誘導人類CD4及CD8 T細胞中之增強的活化表型。此外,就活化而言,尤其康特斯體CD134-0093(實心圓)相比於靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體似乎展示最相似之特性。此外,康特斯體CD134-0094 (半實心圓)展示對CD8 T細胞之活化強於對CD4 T細胞之活化(圖5D),而其展現對CD4 T細之活化與康特斯體CD134-0093及FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體相當。總而言之,生物活性及T細胞活化之結果經歸一化且概括於 6 中,其中各構築體之促效能力針對分析標記物經定量為曲線下面積且對彼此繪製。如圖6中所示,康特斯體CD134-0093關於FSC-A及CD25展示對兩種CD4及CD8 T細胞之最強活化。此分子似乎比FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體更加強效,其效力大致為CD134-0093之約75%。康特斯體CD134-0094之效力似乎略小,但因為僅CD25得以上調,但CD4及CD8 T細胞之尺寸(FSC-A)未增加。此外,非靶向2+1分子及陰性對照未展示任何活化(極低的歸一化AUC值)。
在另一實驗中,與非靶向OX40 (49B4) DP47 2+1雙特異性抗體之共刺激未救援次最佳化TCR刺激之CD4+ 及CD8+ T細胞。藉由NIH/3T3-huFAP純系19細胞之存在,FAP靶向二價抗OX40抗體OX40 (49B4) FAP (28H1) 2+1雙特異性抗體及OX40 (49B4) FAP (4B9)雙特異性抗體,及三種康特斯體分子(P1AE0085、P1AE0086及P1AE 0087)之超交聯顯著提高原代人類CD4及CD8 T細胞之增強的活化。P1AE0086相比對應的2+1 4B9對照抗體OX40 (49B4) FAP (4B9)雙特異性抗體觸發對T細胞極其類似的活化。與具有已知具有對人類FAP之較低親和力之28H1 FAP結合子相比,其導致更多活化之表型。相比於2+1對照分子OX40 (49B4) FAP (28H1) 2+1雙特異性抗體,康特斯體P1AE0085及P1AE0087展示對CD4及CD8 T細胞之類似CD25表現及略微較高的FSC-A MFI。此利用初代PBMC之分析證實,含有高親和力結合子之FAP靶向分子(4B9)之效能高於具有低親和力FAP結合子之分子(28H1)的效能。生物活性及T細胞活化之結果展示於 7A 7D 中。
亦測試康特斯體7、8、9及10救援次最佳化TCR刺激之CD4+ 及CD8+ T細胞的能力。 18A 18B 展示在次最佳CD3刺激之後,由表面標記物CD25所指示之對CD4 T細胞之活化。在 18C 18D 中,展示表面標記物CD25所指示之CD8 T細胞之活化。 19A 19B 展示CD4 T細胞之FSC-A MFI且 19C 19D 展示CD8T細胞之FSC-A MFI。eFluor 670係用於量測細胞分裂之增殖染料。eFluor 670水準,分別地CD4 T細胞之增殖展示於 20A 20B 中且CD8 T細胞之增殖展示於 20C 20D 中。CD4 T細胞之IL-7Ra (CD127)的下調展示於 21A 21B 中且CD8 T細胞之IL-7Ra (CD127)的下調展示於圖 21C 21D 中。所有結果均證實,在NIH/3T3-huFAP純系19細胞存在下,康特斯體及OX40 (49B4) FAP (4B9)雙特異性抗體(實心三角形)之超交聯顯著提高存活且誘導人類CD4及CD8 T細胞(較小程度)中之增強的活化表型。在 22A 22D 中,各種生物活性分析之結果概述為曲線下面積。
5.3結果概述 總而言之,2+1康特斯體CD134-0093比2+1康特斯體CD134-0094表現更佳。CD134-0093對經活化CD4 T細胞之結合強於FAP靶向OX40 (49B4) FAP (28H1) 2+1雙特異性抗體及CD134-0094中之一者,該等兩者均展示類似之結合特性(圖2A)。兩種康特斯體均展示與WM266-4細胞上之人類表面FAP的良好結合(圖3A),結合強度介於來自OX40 (49B4) FAP (4B9) 4+1雙特異性抗體(包含高親和力結合子4B9)及OX40 (49B4) FAP (28H1) 2+1雙特異性抗體(包含低親和力結合子28H1)之一者之間。即使康特斯體之型式不同於如實例2.9中所描述之OX40 (49B4) FAP (28H1) 2+1雙特異性抗體,但結合特性似乎同樣良好或比起更佳。然而,其未達到OX40 (49B4) FAP (4B9) 4+1雙特異性抗體之MFI (實例2.9)。觀察利用交聯NIH 3T3 huFAP細胞進行之NFκB活化,相比於(49B4) FAP (28H1) 2+1雙特異性抗體,康特斯體展示中等強度之NFκB活化,但仍強於非靶向OX40 (49B4) DP47 2+1雙特異性抗體(圖4A)。兩種康特斯體上之FAP結構域似乎能夠充當交聯劑且活化OX40信號傳導。使用二次Fcγ特異性抗體作為交聯劑,兩種康特斯體均展現類似的NFκB活化,但優良性弱於靶向對照分子(圖4B)。康特斯體之生物活性測試揭露,CD134-0093似乎誘導比CD134-0094更加明顯之CD4及CD8 T細胞上之活化表型(圖5A-圖5D)。康特斯體CD134-0093甚至展現比二價2+1型式更強之T細胞活化(圖6)。
相比於二價抗OX40對照分子,康特斯體P1AE0085、P1AE0086及P1AE 0087展示與在經活化之CD4+ 及CD8+ T細胞之表面上表現的OX40結合之能力略微降低(圖2E-圖2H)。與其各別對照物(2+1 4B9及28H1 FAP結合子)相比,P1AE0085、P1AE0086及P1AE0087亦顯示與於NIH-3T3 huFAP純系19細胞之表面上表現之人類FAP的結合部分受損(圖3C及圖3D)。含有高親和力FAP結合子4B9之分子展現優於具有較低親和力28H1結合子之分子之與人類FAP的結合力。NFκB活化分析揭露,當經由NIH-3T3 huFAP純系19細胞交聯時,與對照FAP靶向分子相比時,三種康特斯體分子P1AE0085、P1AE0086及P1AE 0087誘導類似的NFκB活化(圖4F)。在HeLa NFκB報導分析中,低親和力及高親和力FAP靶向抗OX40分子之效能無差別。亦在五天活化分析中,使用原代人類PBMC及NIH-3T3 huFAP純系19細胞作為交聯細胞測試康特斯體分子之生物活性。具有4B9 FAP結合子之分子相比於28H1結合子在CD4+ 及CD8+ T細胞中誘導更多之活化表型。康特斯體分子之表現與其各別對照分子一樣。綜合而言,此等資料指示康特斯體分子P1AE0085、P1AE0086及P1AE0087與對照分子之效能類似,但與OX40及huFAP之結合力略微降低。
總之,儘管具有不同型式,但康特斯體(及尤其CD134-0093)看來與實例2.18中所描述之FAP靶向2+1抗OX40抗體相當(若就結合及T細胞活化而言特性不比其更佳)。
實例6 製備具有兩個結合於4-1BB之抗原結合結構域及一個結合於FAP之抗原結合結構域的雙特異性抗體(FAP-4-1BB康特斯體) FAP結合子之產生及製備描述於WO 2012/020006 A2中,其以引用之方式併入本文中。對於4-1BB結合子,根據US 7,288,638 B2或US 7,659,384 B2獲得純系20H4.9之VH及VL序列。
6.1製備FAP (4B9)-4-1BB (20H4.9)康特斯體P1AE1899 如 1A 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (4-1BB)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(4-1BB)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (4-1BB)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(4-1BB)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表26展示雙特異性抗體P1AE1899之胺基酸序列。 表26:P1AE1899之序列
組裝結構之示意流程圖顯示於圖1E中(OX40經4-1BB置換)。
6.2製備FAP (4B9)-4-1BB (20H4.9)康特斯體P1AE2051 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH(4-1BB)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(4-1BB)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH(4-1BB)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(4-1BB)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。此外,在分別與OX40之VL及VH融合之CH及Ckappa中,引入胺基酸突變(所謂的帶電荷殘基)以防止產生本斯瓊司蛋白質且進一步促進正確配對,亦即CH1結構域中之負電荷(K147E,K213E,根據Kabat EU索引編號)及抗OX40結合子49B4之CL結構域中的正電荷(E123R及Q124K,根據Kabat EU索引編號)。
表27展示雙特異性抗體P1AE2051之胺基酸序列。 表27:P1AE2051之序列:
組裝結構之示意流程圖顯示於 1L 中(OX40經4-1BB置換)。 6.3純化後分子之生物化學分析 表28概括FAP-4-1BB康特斯體之產率及最終單體含量。 表28 FAP 4-1BB康特斯體之生物化學分析
實例7 表徵FAP-4-BB康特斯體 7.1結合人類FAP (動力學親和力) 藉由表面電漿子共振使用如實例3.2中所描述之BIACORE T100儀器(GE Healthcare)研究雙特異性FAP-4-1BB抗體與人類FAP之結合。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。 表29: FAP/ 4-1BB 抗體與重組人類 FAP 之結合
兩種分子具有類似的KD值。
7.2表現人類4-1BB及NFκB螢光素酶報導基因之報導體細胞株Jurkat-hu4-1BB-NFκB-luc2中的NF-kB活化 4-1BB (CD137)受體與其配位體(4-1BBL)之促效結合經由活化核因子κB (NFκB)誘導4-1BB下游信號傳導且促進CD8 T細胞之存活及活性(Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 4-1BB promotes the survival of CD8 (+) T lymphocytes by increasing expression of Bcl-x(L) and Bfl-1. J Immunol 2002; 169:4882-4888)。為監測此2+1 H2H 抗4-1BB、抗FAP huIgG1 PGLALA雙特異性抗體介導之NFκB活化,自Jurkat-hu4-1BB-NFκB-luc2報導體細胞株購得Promega (德國)。將該等細胞於RPMI 1640培養基(Life Technologies提供之GIBCO,目錄號42401-042)中作為懸浮液細胞培養,該培養基供應有10% (v/v)胎牛血清(FBS,Life Technologies提供之GIBCO,目錄號16000-044,批號941273,游離的γ輻射之黴漿菌屬,加熱不活化)、2 mM L-丙胺醯基-L-麩醯胺二肽(Glutqa-MAX-I,Life Technologies提供之GIBCO,目錄號35050-038)、1 mM丙酮酸鈉(SIGMA-Aldrich目錄號S8636)、1% (v/v) MEM-非必需胺基酸溶液100x (SIGMA-Aldrich,目錄號M7145)、600 μg/ml G-418 (Roche,目錄號04727894001)、400 μg/ml潮黴素B (Roche,目錄號:10843555001)及25 mM HEPES (Sigma Life Sience,目錄號:H0887-100 mL)。為進行分析,收集細胞且再懸浮於含有2 × 103 Jurkat-hu4-1BB-NFκB-luc2報導體細胞之供應有10 % (v/v) FBS及1 % (v/v) GlutaMAX-I. 10 ml之分析培養基RPMI 1640培養基中,轉移至具有蓋之無菌白色384孔平坦底部組織培養板(Corning,目錄號:3826)中。添加10 μL分析培養基,該培養基含有滴定濃度之康特斯體、2+1雙特異性促效抗4-1BB(20H4.9) x抗FAP (4B9) huIgG1 P329GLALA抗體、抗4-1BB (20H4.9) huIgG1 P329GLALA抗體、抗4-1BB(20H4.9) huIgG4及同型對照(DP47 hu IgG1 P329GLALA抗體)。最後,供應10 μL單獨或含有1 × 104 個細胞FAP表現細胞,NIH/3T3-huFAP純系19 (如上文所述)之分析培養基且於細胞培養箱中在37℃及5% CO2 下培育6小時。將6 µl新鮮解凍之One-Glo螢光素酶分析偵測溶液(Promega,目錄號:E6110)添加至各孔且立即使用Tecan微板讀取器(500 ms積分時間,無濾波器收集所有波長)量測Luminescence發光。
23A 中所示,在無FAP表現細胞存在下,分子中無一者能夠在Jurkat-hu4-1BB-NFkB-luc2報導體細胞株中誘導強烈的人類4-1BB受體活化,從而導致NFκB活化及因此螢光素酶表現。在FAP表現細胞存在下,如同NIH/3T3-huFAP純系19 (人類-FAP-基因轉殖小鼠纖維母細胞細胞株) (參見 23B ),雙特異性2+1 FAP 4-1BB康特斯體以及2+1雙特異性促效抗4-1BB (20H4.9) x 抗FAP (4B9) huIgG1 P329GLALA抗體(黑色實心星形)之交聯導致Jurkat-hu4-1BB-NFkB-luc2報導體細胞株中經NFkB活化之螢光素酶活性的顯著提高,其高於非靶向對照4-1BB抗體所介導之活化。活化曲線之EC50 值及曲線下面積(AUC)列於 30 31 中。 表30:顯示於圖23B中之活化曲線之EC50 表31:顯示於圖23B中之活化曲線之曲線下面積(AUC)的值
實例8 製備具有兩個結合於CD40之抗原結合結構域及一個結合於FAP之抗原結合結構域的雙特異性抗體(FAP-CD40康特斯體) FAP結合子之產生及製備描述於WO 2012/020006 A2中,其以引用之方式併入本文中。對於CD40結合子,根據WO 2006/128103之SEQ ID NO: 10及SEQ ID NO: 16獲得純系20H4.9之VH及VL序列。
8.1製備FAP (4B9)-CD40康特斯體P1AE1799 如 1A 中所描繪選殖包含兩種融合多肽之雙特異性抗體: -第一融合多肽(N端至C端):VH (CD40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(CD40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa -第二融合多肽(N端至C端):VH (CD40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表32展示雙特異性抗體P1AE1799之胺基酸序列。 表32:P1AE1799之序列
組裝結構之示意流程圖顯示於 1E 中(OX40經CD40置換)。
8.2製備FAP (4B9)-CD40康特斯體P1AE1902 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH (CD40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(CD40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-CH1 -第二融合多肽(N端至C端):VH (CD40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(CD40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-Ckappa。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表33展示雙特異性抗體P1AE1902之胺基酸序列。 表33:P1AE1902之序列:
8.3製備FAP (4B9)-CD40康特斯體P1AE1800 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (CD40)-CH1、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(CD40)-Ckappa、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH (CD40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表34展示雙特異性抗體P1AE1800之胺基酸序列。 表34:P1AE1800之序列
8.4製備FAP (4B9)-CD40康特斯體P1AE2052 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (CD40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(CD40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH (CD40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表35展示雙特異性抗體P1AE2052之胺基酸序列。 表35:P1AE2052之序列
8.5製備FAP (4B9)-CD40康特斯體P1AE1901 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VL (CD40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VH(CD40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-CH1。 -第二融合多肽(N端至C端):VH (CD40)-Ckappa、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(OX40)-CH1、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-Ckappa。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。
表36展示雙特異性抗體P1AE1901之胺基酸序列。 表36:P1AE1901之序列
8.6製備FAP (4B9)-CD40康特斯體P1AE2255 包含兩種融合多肽之雙特異性抗體選殖如下: -第一融合多肽(N端至C端):VH(CD40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc杵、(G4S)2連接體、VL(CD40)-Ckappa_RK (E123R, Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VH(FAP)-Ckappa。 -第二融合多肽(N端至C端):VH(CD40)-CH1_EE (K147E、K213E)、(G4S)2連接體、IgG1鉸鏈、Fc臼、(G4S)2連接體、VL(CD40)-Ckappa_RK (E123R、Q124K)、GGGGSGGGGSGGGSGGGGS (SEQ ID NO:84)連接體、VL(FAP)-CH1。
根據國際專利申請公開案第WO 2012/130831號中描述之方法,將Pro329Gly、Leu234Ala及Leu235Ala突變引入杵及臼重鏈之恆定區以消除與Fcγ受體之結合。杵-臼雜二聚技術用於杵鏈之CH3結構域中之S354C/T366W突變及臼鏈之CH3結構域中之對應的Y349C/T366S/L368A/Y407V突變(Carter, J Immunol Methods 248, 7-15 (2001))。此外,在分別與OX40之VL及VH融合之CH及Ckappa中,引入胺基酸突變(所謂的帶電荷殘基)以防止產生本斯瓊司蛋白質且進一步促進正確配對,亦即CH1結構域中之負電荷(K147E,K213E,根據Kabat EU索引編號)及抗OX40結合子49B4之CL結構域中的正電荷(E123R及Q124K,根據Kabat EU索引編號)。
表37展示雙特異性抗體P1AE2255之胺基酸序列。 表37:P1AE2255之序列:
組裝結構之示意流程圖顯示於圖1L中(OX40經CD40置換)。
8.7純化後分子之生物化學分析 表38概括FAP-4-1BB康特斯體之產率及最終單體含量。 表38 FAP 4-1BB康特斯體之生物化學分析
實例9 表徵FAP CD40抗體 9.1結合於人類CD40 藉由表面電漿子共振(SPR)評估雙特異性構築體結合人類CD40之能力。所有SPR實驗均在Biacore T200(Biacore)上在25℃下以HBS-EP作為操作緩衝液(0.01 M HEPES pH7.4、0.15 M NaCl、3 mM EDTA、0.005%界面活性劑P20 (Biacore)來進行。藉由以1:3稀釋液中之300 nM起始,以30 µl/min之流動速率持續300秒注射人類CD40細胞外結構域來量測締合。解離階段經監測長達1200秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。以30 µl/min之流動速率,用甘胺酸pH 2.1溶液洗滌60秒使表面再生。藉由減去自山羊抗人類F(ab')2 表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為計算表觀KD 及其他動力學參數,使用朗格繆爾1:1模型。使用BiacoreTM B4000評估軟體(版本1.1)計算表觀Kd。 39 雙特異性CD40 x FAP康特斯體與重組人類CD40_ECD (Biacore)之結合
9.2結合人類FAP (動力學親和力) 使用BIACORE T100儀器(GE Healthcare)藉由表面電漿子共振來研究雙特異性抗FAP-OX40抗體與人類人類之結合。藉由使用GE Healthcare所供應之胺偶合套組在pH 4.5下於CM5晶片(GE Healthcare BR-1005-30)上偶合捕獲系統(15 µg/ml抗組胺酸抗體;命令碼:28995056;GE Healthcare Bio-Sciences AB, Sweden)之約12000個共振單位(RU)。用於固定之操作緩衝液為HBS-N pH 7.4 (10 mM HEPES、150 mM NaCl (pH 7.4),GE Healthcare)。為了以下動力學表徵,操作緩衝液係PBS-P pH 7.4 (20 mM磷酸鹽緩衝液,2.7 mM KCl,137 mM NaCl,0.05%界面活性劑P20)。將流動槽設置為25℃,且將樣品區塊設置為12℃,且用操作緩衝液預塗佈兩次。藉由以5 µl/min之流動速率注射25 µg/ml溶液持續60秒,捕捉重組人類FAP。藉由以1:2稀釋液中之300 nM起始,以30 µl/min之流動速率持續120秒注射雙特異性抗體來量測締合。解離階段經監測長達720秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。藉由以30 µl/min之流動速率用10 mM甘胺酸pH 1.5洗滌60秒來重新產生表面。藉由減去自抗組胺酸表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。 表40: FAP/ CD40 抗體與重組人類 FAP 之結合
9.3同時結合人類CD40及人類FAP (動力學親和力) 亦使用BIACORE T100儀器(GE Healthcare)藉由表面電漿子共振(SPR)評估同時結合人類CD40及人類FAP之能力。藉由使用GE Healthcare所供應之胺偶合套組在pH 5.0下於CM5晶片(GE Healthcare BR-1005-30)上偶合捕獲系統(20 µg/ml抗人類IgG (Fc);命令碼:BR100839;GE Healthcare Bio-Sciences AB, Sweden)之約8000個共振單位(RU)。操作緩衝液係PBS-P pH 7.4 (20 mM磷酸鹽緩衝液,2.7 mM KCl,137 mM NaCl,0.05%界面活性劑P20)。將流動槽設置為25℃,且將樣品區塊設置為12℃,且用操作緩衝液預塗佈兩次。藉由以5 µl/min之流動速率注射2 µg/ml溶液持續60秒,捕捉雙特異性抗體。藉由以30 µl/min之流動速率持續120秒注射第一分析物(分別為人類CD40或人類FAP)來量測締合。隨後以30 µl/min之流動速率持續120秒注射第二分析物(分別為人類FAP或人類CD40)。解離階段經監測長達720秒且藉由自樣品溶液轉換為操作緩衝劑來觸發。藉由以10 µl/min之流動速率用3 M MgCl2 洗滌60秒來重新產生表面。藉由減去自抗人類IgG (Fc)表面獲得之反應來校正整體折射率差異。亦減去空白注射(=二次參考)。為了計算KD 及動力學參數,使用朗格繆爾1:1模型。所有FAP-CD40康特斯體君能夠同時且獨立地與兩種抗原結合。
實例 10 FAP靶向抗人類CD40結合分子之功能特性 10.1使用FAP塗佈之Dynabeads® 作為抗原來源藉由FAP靶向抗人類CD40結合分子對人類B細胞活化 自獲自Stiftung Zürcher Blutspendedienst SRK之白血球層分離B細胞。為了分離周邊血液單核細胞(PBMC),將50 mL白血球層稀釋於相同體積之PBS (gibco,目錄號10010023)中。50 mL聚丙烯離心管(TPP,目錄號91050)供應有15 mL LymphoprepTM (STEMCELL Technologies,目錄號07851)及25 mL白血球層溶液,每個試管小心層疊於LymphorepTM 上方。在低加速度及無斷裂情況下,使試管在室溫下在2000 rpm下離心24分鐘。隨後,自界面收集PBMC,用PBS洗滌三次,再懸浮於10 mL PBS中且用Beckman Coulter cell counter Ac·T™ 5diff OV (Beckman Coulter,目錄號6605580)分析細胞之細胞類型及數目。在自PBMC分離B細胞之前,藉由利用CD14微珠(Miltenyi,目錄號130-050-201)磁性標記CD14陽性細胞及利用autoMACS® Pro分離器(Miltenyi,目錄號130-092-545)進行後續分離來移出CD14陽性級分。CD14陰性級分用於利用MiltenyiB細胞分離套組II (目錄號130-091-151)及autoMACS® 分離進行之後續B細胞分離。向96孔平底培養板之每孔添加100 µl R10培養基中之1×105 個B細胞,該培養基由Roswell Park Memorial Institute (RPMI)培養基1640 (gibco,目錄號31870-025)組成,其供應有10 % (v/v)胎牛血清(FBS) (life technologies,目錄號16140,批號1797306A)、1% (v/v)青黴素/鏈黴素(gibco,目錄號15070-063)、1% (v/v) L-麩醯胺酸(gibco,目錄號25030-024)、1 % (v/v)丙酮酸鈉(gibco,目錄號11360-039)、1 % (v/v) MEM非必需胺基酸(gibco,目錄號11140-035)及50 µM  -巰基乙醇(gibco,目錄號31350-010))。根據製造商之方案,用生物素標記人類FAP (自製,6.5×104 個珠粒:0.01 µg蛋白質之結合力)塗佈抗生蛋白鏈菌素Dynabeads® (ThermoFisher Scientific,目錄號:11205D),且以2:1之珠粒與細胞比值添加至50 µl R10培養基中之B細胞。作為對照,將未經塗佈之珠粒添加至B細胞。
以6.7至0.003 nM (3×稀釋系列)範圍內之濃度將FAP靶向抗人類CD40康特斯體添加至50 µl R10培養基中之B細胞。作為與FAP無關之陽性對照,使用促效抗人類CD40抗體SGN40 (IgG1,INN:達西珠單抗(Dacetuzumab))。因為在文獻中描述SGN40抗體需要Fc受體交聯以獲得生物活性(C. Law等人, Cancer Res 2005, 65, 8331-8338),所以抗體與交聯山羊抗人類IgG Fcγ片段特異性F(ab')2 片段(Jackson ImmunoResearch, 目錄號109-006-008)一起培育30分鐘,之後添加至B細胞。在48小時之後,將細胞轉移至96孔圓底培養板中,用PBS洗滌一次且在PBS中與50 µl 3 µg/mL之Fc受體嵌斷小鼠IgG同型對照(ThermoFisher Scientific,目錄號10400C)一起培育。在4℃下培育15分鐘之後,細胞用PBS洗滌且將50 µl PBS中之經螢光標記之抗體的混合物添加至細胞。使用以下經螢光標記之抗體:抗人類CD80 BV605 (BD Biosciences,純系L307.4,目錄號563315)、抗人類CD69 Alexa Fluor® 488 (Biolegend,純系FN50,目錄號310916)、抗人類CD14 PerCP-Cy5.5 (Biolegend,純系HCD14,目錄號325622)、抗人類CD3 PerCP-Cy5.5 (Biolegend,純系UCHT1,目錄號300430)、抗人類CD86 PE-CF594 (BD Biosciences,純系FUN-1,目錄號562390),抗HLA-DR BUV395 (BD Biosciences,純系G46-6,目錄號564040)及抗人類CD19 APC-H7 (BD Biosciences,純系SJ25C1,目錄號560177)。為了區分活細胞與死亡細胞,將存活染料Zombie AquaTM (Biolegend,目錄號423102)添加至抗體混合物。在4℃下培育30分鐘後,用PBS洗滌兩次細胞且再懸浮於200 µl PBS中。同一天使用5-雷射LSR-Fortessa (BD Bioscience with DIVA軟體)分析細胞。使用FlowJo版本10軟體(FlowJo LLC)進行資料分析。分析對CD14及CD3陰性及對CD19陽性之活(aqua陰性)細胞之CD69、CD80、CD86及HLA-DR表現。
在與促效抗CD40康特斯體或交聯之SGN40抗體2天一起培育之後分析之B細胞展示對於所有所測試構築體而言,CD69、CD80、CD86及HLA-DR表現提高(參見 24A 24H )。就不同FAP靶向康特斯體而言,此等表現標記物之上調依賴於FAP,且此等FAP依賴性抗體所誘導之表現提高與交聯之SGN40抗體所誘導之提高相當或比其略微降低。
1A 、圖 1B 、圖 1C 及圖 1D 展示可組裝本發明之康特斯體(contorsbodies)之方式的實例。在 1A 中,康特斯體由以下組成:第一融合多肽,其包含能夠特異性結合於第一標靶之fab (重鏈fab)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之fab (輕鏈fab)之第二半,其進一步連接至能夠特異性結合於第二標靶之交叉fab (VH-Ckappa)之第一半(N至C);及第二融合多肽,其包含能夠特異性結合於第一標靶之fab (重鏈fab)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之fab (輕鏈fab)之第二半,其進一步連接於能夠特異性結合於第二標靶之交叉fab (VL-CH1)之第二半(N至C)。兩個間隔結構域彼此不同且包含促進第一及第二融合多肽之締合之修飾。此類型之康特斯體之實例係CD134-0093 (參見實例2.1)。在 1B 中,康特斯體由以下組成:第一融合多肽,其包含能夠特異性結合於第一標靶之交叉fab (VH-Ckappa)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VL-CH1)之第二半,其進一步連接至能夠特異性結合於第二標靶之fab (輕鏈fab)之第一半(N至C);及第二融合多肽,其包含能夠特異性結合於第一標靶之交叉fab (VH-Ckappa)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VL-CH1)之第二半,其進一步連接於能夠特異性結合於第二標靶之fab (重鏈fab)之第二半(N至C)。兩個間隔結構域彼此不同且包含促進第一及第二融合多肽之締合之修飾。此類型之康特斯體之實例係CD134-0094 (參見實例2.2)。在 1C 中,康特斯體由以下組成:第一融合多肽,其包含能夠特異性結合於第一標靶之fab (VL-Ckappa)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之fab (VH-CH1)之第二半,其進一步連接至能夠特異性結合於第二標靶之交叉fab (VH-Ckappa)之第一半(N至C);及第二融合多肽,其包含能夠特異性結合於第一標靶之fab (VL-Ckappa)之第一半,經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之fab (VH-CH1)之第二半,其進一步連接於能夠特異性結合於第二標靶之交叉fab (VL-CH1)之第二半(N至C)。兩個間隔結構域彼此不同且包含促進第一及第二融合多肽之締合之修飾。此類型之康特斯體之實例係P1AE0821 (參見實例2.7)。在 1D 中,康特斯體由以下組成:第一融合多肽,其包含能夠特異性結合於第二標靶之交叉fab (VH-Ckappa)之第一半,經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VH-Ckappa)之第一半,其進一步經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VL-CH1)之第二半(N至C);及第二融合多肽,其包含能夠特異性結合於第二標靶之交叉fab (VL-CH1)之第一半,經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VH-Ckappa)之第一半,其進一步經由肽連接子(黑線)連接至間隔結構域,該間隔結構域經由肽連接子(黑線)連接至能夠特異性結合於第一標靶之交叉fab (VH-CH1)之第二半(N至C)。兩個間隔結構域彼此不同且包含促進第一及第二融合多肽之締合之修飾。此類型之康特斯體之實例係P1AE2735 (參見實例2.14)。 1E 係康特斯體CD134-0093 (實例2.1)之組裝結構之草圖。在 1F 中,展示康特斯體CD134-0094 (實例2.2)之組裝結構之草圖。 1G 係康特斯體P1AE0085及P1AE0086 (實例2.3及2.4)之組裝結構之草圖。能夠特異性結合於第二標靶之抗原結合結構域(交叉fab)經由改變分子幾何形狀之較長肽連接子連接。 1H 係康特斯體P1AE0087 (實例2.5)及康特斯體P1AE0839 (實例2.6)之組裝結構之草圖。在此情況下,能夠特異性結合於第二標靶之抗原結合結構域係fab且兩個能夠特異性結合於第一標靶之抗原結合結構域均係交叉fab。在 1I 中,展示康特斯體P1AE0821 (康特斯體11,實例2.7)之組裝結構之草圖。 1J 係康特斯體P1AE1122 (康特斯體1,實例2.8)之組裝結構之草圖。在 1K 中,展示康特斯體P1AE1887 (康特斯體3,實例2.10)之組裝結構之草圖。在 1L 中,展示康特斯體P1AE2254 (康特斯體5,實例2.12)之組裝結構之草圖。在分別與OX40之VL及VH融合之CH及Ckappa中,引入胺基酸突變(所謂的帶電荷殘基)以防止本斯瓊司蛋白質(Bence Jones protein)產生及進一步促進正確配對。 1M 係康特斯體P1AE2340 (康特斯體6,實例2.13)之組裝結構之草圖。在此情況下,分子由兩種融合蛋白及輕鏈構成。 1N 係康特斯體P1AE2735 (康特斯體8,實例2.14)之組裝結構之草圖。 1O 係對OX40二價結合及對FAP單價結合之2+1 OX40 x FAP雙特異性抗體(陽性對照分子)的草圖。製得具有相同結構之陰性對照分子,其中FAP結合結構域經DP47生殖系(2+1 OX40 x DP47抗體)置換。 1P 係對OX40四價結合及對FAP單價結合之4+1 OX40 x FAP雙特異性抗體的草圖。此等對照分子更詳細地描述於實例2.18中。 在 2A 、圖 2B 、圖 2C 及圖 2D 中,展示OX40 x FAP雙特異性抗體與活化CD4+及CD8+ T細胞(分別為 2A 2C )及休眠CD4+及CD8+ T細胞(分別為 2B 2D )之結合。四價4+1 OX40 x FAP (4B9)雙特異性抗體展示與CD4+ 及CD8+ T細胞之最強結合。2+1型式2+1 OX40 (49B4) x FAP (28H1)及2+1 OX40 (49B4) x DP47展示中等結合。康特斯體CD134-0093表明比2+1型式更強之結合,而康特斯體CD134-0094結合較弱。與CD4+ T細胞之結合比與CD8+ T細胞之結合牢固得多。陰性對照DP47 hu IgG1 P329G LALA未與CD4+ 或CD8+ T細胞結合。該等分子中無一者與休眠CD4+ 或CD8+ T細胞結合( 2B 2D )。 2E 、圖 2F 、圖 2G 及圖 2H 展示如用康特斯體P1AE0085、P1AE0086及P1AE0087獲得之結果。所有2+1型式OX40 (49B4) x FAP (28H1)、OX40 (49B4) x FAP (4B9)及OX40 (49B4) x DP47展示類似的與活化CD4+ 及CD8+ T細胞之良好結合(分別 2E 2G ),而康特斯體分子與OX40之結合部分受損,康特斯體P1AE0087尤其如此。DP47 hu IgG1 P329G LALA未如所預期與CD4+ 或CD8+ T細胞結合。對於測試分子中之任一者未觀測到與休眠CD4+ 或CD8+ T細胞(分別 2F 2H )之結合。 與人類FAP表現腫瘤細胞之結合展示於 3A 、圖 3B 、圖 3C 及圖 3D 中。在第一實驗中,使康特斯體CD134-0093與CD134-0094對照分子比較。與WM266-4 (FAP+ 陽性)及A549NLR (FAP陰性)腫瘤細胞之結合分別展示於 3A 3B 中。所有OX40 x FAP雙特異性抗體均與人類FAP表現靶細胞有效結合。四價4+1 OX40 x FAP (4B9,對FAP高親和力)雙特異性抗體與FAP+ 細胞結合最牢固,之後為康特斯體CD134-0093、康特斯體CD1334-0094及2+1 OX40 (49B4) x FAP (28H1)雙特異性抗體。非靶向2+1 OX40 (49B4) x DP47及陰性對照(DP47 hu IgG1 P329G LALA)未與任何FAP+ 細胞結合。 3C 3D 展示康特斯體P1AE0085、P1AE0086及P1AE0087與NIH/3T3huFAP純系19 (FAP+ ) (圖3C)及A549NLR (FAP- )腫瘤細胞(圖3D)之結合。所有FAP靶向之抗OX40抗體均與人類FAP表現靶細胞有效結合。康特斯體分子之結合相比於其各別對照物略微受損。另外,非靶向2+1 OX40 (49B4) x DP47及陰性對照(DP47 hu IgG1 P329G LALA)未展示與FAP+ 細胞之結合。 在 4A 、圖 4B 、圖 4C 、圖 4D 、圖 4E 及圖 4F 中,展示利用不同類型之交聯進行之NFκB活化。使用FAP表現細胞(NIH/3T3 huFAP純系19)作為交聯劑,FAP靶向之2+1 OX40 (49B4) x FAP (28H1)構築體誘導最強之NFκB活化,之後為康特斯體CD134-0093及CD134-0094,而CD134-0094展示比CD134-0093略微較強之活化。非靶向及因此未交聯之2非靶向2+1 OX40 (49B4) x DP47誘導微弱的NFκB活化( 4A )。當使用二次抗hu IgG1 Fc 特異性抗體作為交聯劑時,兩種2+1構築體OX40 (49B4) x FAP (28H1)及OX40 (49B4) x DP47表現類似。康特斯體CD134-0093及CD134-0094亦類似起作用,但低於2+1構築體( 4B )。不使用交聯劑獲得最少之NFκB活化。2+1構築體OX40 (49B4) x FAP (28H1)及OX40 (49B4) x DP47展示中度之NFκB活化,之後為甚至效用較弱之康特斯體CD134-0093及CD134-0094。DP47 hu IgG1 P329G LALA未誘導任何NFκB活化( 4C )。康特斯體P1AE0085、P1AE0086及P1AE0087利用不同類型之交聯誘導NFκB活化之能力展示於 4D 4F 中。在無交聯存在下,在最高抗體濃度下僅可偵測到微弱信號( 4D )。當藉由人類FAP表現細胞交聯時,三種康特斯體分子誘導與FAP靶向之2+1型式OX40 (49B4) x FAP (28H1)及OX40 (49B4) x FAP (4B9)極其類似之NFκB活化( 4E )。在二次抗體交聯存在下,全部三種康特斯體分子顯示比2+1對照分子略低之NFκB活化( 4F )。DP47 hu IgG1 P329G LALA未誘導任何NFκB活化。 次最佳化TCR觸發之休眠人類PBMC與藉由細胞表面FAP進行之超交聯的Ox40介導之共刺激展示於 5A 、圖 5B 、圖 5C 、圖 5D 、圖 5E 及圖 5F 中。 5A 5B 分別展示如藉由FACS分析以小角度散射之光的強度所量測,在次最佳化CD3刺激之後的FSC-A (前向/側向散射(FSC)脈衝之「面積」),分別地CD4及CD8 T細胞之尺寸。FAP靶向之2+1構築體OX40 (49B4) x FAP (28H1)展示尺寸之中等增加,而康特斯體CD134-0093指示較強增加。非靶向之2+1 OX40 (49B4) x DP47、康特斯體CD134-0094及陰性對照(DP47 hu IgG1 P329G LALA)未改變CD4及CD8 T細胞。 5C 5D 展示使用表面標記物CD25活化CD4及CD8 T細胞。對於CD4 T細胞(圖5C),CD134-0093及CD134-0094展現最高活化,之後為效力略微較低之靶向2+1 OX40 (49B4) x FAP (28H1)。非靶向X40 (49B4) xO DP47及陰性對照在基線校正之後未展示任何活化。對於CD8 T細胞( 5D ),康特斯體CD134-0094相比於2+1 OX40 (49B4) x FAP (28H1)及CD134-0093展現較強活化。 5E 5F 展示在活化後下調之IL-7Rα (CD127)。康特斯體CD134-0093對CD4及CD8 T細胞展示最強的CD127下調,之後為靶向2+1 OX40 (49B4) x FAP (28H1)及康特斯體CD134-0094。 6 說明FSC-A及CD25對CD4及CD8 T細胞之歸一化曲線下面積(area under the curve;AUC)值。實心符號表示CD4 T細胞,空心符號表示CD8 T細胞。所有值均歸一化為康特斯體CD134-0093 (= 100%)之頂部AUC值。非靶向2+1構築體OX40 (49B4) x DP47僅展示對CD4及CD8 T細胞之極少活化,而FAP靶向之2+1構築體OX40 (49B4) x FAP (28H1)展現關於FSC-A及CD25對CD4及CD8 T細胞之較高效能(60與100之間的歸一化值),但相比於CD134-0093效能較小。對於康特斯體CD134-0094,僅CD4及CD8 T細胞之CD25 MFI AUC值展示與CD134-0093相比類似之活化。 康特斯體P1AE0085、P1AE0086及P1AE0087對次最佳化TCR觸發之PBMC與藉由細胞表面FAP進行之超交聯的OX40介導之共刺激之效果展示於 7A 、圖 7B 、圖 7C 及圖 7D 中。圖7A 及圖7B 分別展示在次最佳化CD3刺激之後的FSC-A,分別CD4及CD8 T細胞之尺寸。圖7C 及圖7D 展示使用表面標記物CD25之表現分別活化CD4及CD8 T細胞。所有FAP靶向之分子(對照物及全部三種康特斯體分子)均誘導前向/側向散射面積及CD4及CD8 T細胞上之CD25表現的劑量依賴型增加。非靶向2+1構築體OX40 (49B4) x DP47及陰性對照(DP47 hu IgG1 P329G LALA)在基線校正之後未展示任何活化。 在 8A 、圖 8B 、圖 8C 及圖 8D 中展示不同OX40 x FAP 康特斯體與經活化CD4+ T細胞之結合。非靶向2+1構築體OX40 (49B4) x DP47用作陽性對照且DP47 hu IgG1 P329G LALA用作陰性對照。 8A 展示康特斯體1 (P1AE1122)、康特斯體2 (P1AE1942)及康特斯體3 (P1AE1887)之結合且 8B 展示康特斯體4 (P1AE1888)、康特斯體5 (P1AE2254)及康特斯體6 (P1AE2340)之結合。康特斯體7 (P1AE0086)及康特斯體8 (P1AE2735)之結合展示於 8C 中且康特斯體9 (P1AE2743)及康特斯體10 (P1AE2762)之結合展示於 8D 中。分別在 9A 、圖 9B 、圖 9C 及圖 9D 中,展示所測試康特斯體中無一者與休眠CD4 T細胞結合。在 10A 、圖 10B 、圖 10C 及圖 10D 中展示相同OX40 x FAP 康特斯體與經活化CD8+ T細胞之結合。非靶向2+1構築體OX40 (49B4) x DP47用作陽性對照且DP47 hu IgG1 P329G LALA用作陰性對照。分別在 11A 、圖 11B 、圖 11C 及圖 11D 中,展示所測試康特斯體中無一者與休眠CD8 T細胞結合。用於與活化或休眠CD4+ T細胞結合之曲線下面積值之概述展示於 12A 中且用於與活化或休眠CD8+ T細胞結合之曲線下面積值之概述於 12B 中。 與康特斯體1至10之人類FAP表現腫瘤細胞之結合分別展示於 13A 、圖 13B 、圖 13C 及圖 13D 14A 、圖 14B 、圖 14C 及圖 14D 中。與NIH/3T3-huFAP純系19 (FAP+ )腫瘤細胞(FAP+ 陽性)之結合分別展示於 12A 12D 中。 13A 展示康特斯體1 (P1AE1122)、康特斯體2 (P1AE1942)及康特斯體3 (P1AE1887)之結合且 13B 展示康特斯體4 (P1AE1888)、康特斯體5 (P1AE2254)及康特斯體6 (P1AE2340)之結合。康特斯體7 (P1AE0086)及康特斯體8 (P1AE2735)之結合展示於 13C 中且康特斯體9 (P1AE2743)及康特斯體10 (P1AE2762)之結合展示於 13D 中。所有OX40 x FAP雙特異性康特斯體均與人類FAP表現靶細胞有效結合。康特斯體8 (圖12C)與FAP+ 細胞結合最牢固,之後為康特斯體10 (圖12D)及康特斯體6 (圖12B),比2+1雙特異性抗體OX40 (49B4) x FAP (4B9)牢固地多。非靶向2+1構築體OX40 (49B4) x DP47及陰性對照(DP47 hu IgG1 P329G LALA)未與任何FAP+ 細胞結合。康特斯體1至10與A549NLR (FAP- 陰性)腫瘤細胞之對應結合展示於 14A 至圖 14D 中。FAP靶向之分子(康特斯體1至10或2+1雙特異性抗體OX40 (49B4) x FAP- (4B9))中無一者能夠與FAP靶細胞結合。 在 15A 、圖 15B 、圖 15C 15D 中,展示康特斯體1至11與交聯之NFκB活化。使用FAP表現細胞(NIH/3T3 huFAP純系19)作為交聯劑,所有康特斯體之NFκB活化均相當,其中康特斯體11 (P1AE0821)效用最低。非靶向及因此未交聯2非靶向2+1 OX40 (49B4) x DP47抗體(7718)誘導微弱的NFκB活化,而雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)引起最高的NFκB活化。DP47 hu IgG1 P329G LALA (8105)未誘導任何NFκB活化。未藉由FAP交聯之NFκB活化展示於 16A 、圖 16B 、圖 16C 16D 中。在無交聯存在下,在較高抗體濃度下僅可偵測到微弱信號。非靶向2+1 OX40 (49B4) x DP47抗體(7718)展示中度NFκB活化,之後為康特斯體7 (圖16C)。其他康特斯體誘導少量或零水準。陰性對照(8105)未誘導任何NFκB活化。在存在及不存在與FAP+ 細胞之交聯下HeLa細胞中之NFκB活化之歸一化曲線下面積值概括於 17 中。陰性對照(8105)在兩種情況下均未誘導任何NFκB活化,而非靶向2+1 OX40 (49B4) x DP47抗體(7718)在兩種情況下僅展示極少活化。雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)展現高級水準之活化,之後為Contorbodies 8、9及10。觀測到康特斯體11 (P1AE0821)之較低水準。 藉由康特斯體7、8、9及10之細胞表面FAP進行之次最佳化TCR觸發的人類PBMC與超交聯的OX40介導之共刺激展示於 18A 、圖 18B 、圖 18C 18D 中。圖18A及圖18B展示對CD4 T細胞之活化且圖18C及圖18D展示在次最佳化CD3刺激之後使用表面標記物CD25對CD8 T細胞之活化。對於CD4 T細胞(圖18A及圖18B),雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)展現最高之活化,之後為效用僅次於其之康特斯體8。非靶向2+1 OX40 (49B4) x DP47抗體(7718)及陰性對照(8105)在基線校正之後未展示任何活化。對於CD8 T細胞(圖18C及圖18D),康特斯體7、8及9以及雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)相比於康特斯體10展現更強之活化。 19A 、圖 19B 、圖 19C 19D 展示在次最佳化CD3刺激之後的FSC-A,分別地CD4 (圖19A及圖19B)及CD8 T細胞(圖19C及圖19D)之尺寸。所有康特斯體均指示相當之中等增加。添加非靶向2+1抗OX40分子(7718)及陰性對照(8105)未改變CD4及CD8 T細胞之尺寸。 20A 、圖 20B 、圖 20C 20D 展示在次最佳化CD3刺激之後的eFluor 670水準,分別地CD4 (圖20A及圖20B)及CD8 T細胞(圖20C及圖20D)之增殖。在CD4亞群中,Contorbodies 8及10展示eFluor 670水準之顯著降低,指示較強增殖。在CD8亞群中,Contorbodies 7及9展示eFluor 670水準之更大程度降低。非靶向2+1抗OX40分子(7718)及陰性對照(8105)在所有亞群中僅展示少量降低。 21A 、圖 21B 、圖 21C 21D 展示在活化後下調之IL-7Rα (CD127)。雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)對CD4及CD8 T細胞展示最強之下調,之後為康特斯體10。在CD4細胞中觀測到比CD8亞群更大程度之CD127下調。CD25 (圖22A)、FSC-A(圖22B)、eFluor 670 (圖22C)及CD127 (圖22D)對CD4及CD8 T細胞之歸一化曲線下面積值概括於 22A 、圖 22B 、圖 22C 22D 中。非靶向2+1抗OX40分子(7718)僅展示對CD4及CD8 T細胞之極少活化,而雙特異性OX40 (49B4) x FAP (4B9)抗體(7719)相比於康特斯體展現關於eFluor 679及CD127對CD4及CD8 T細胞之更高效能。CD25及FSC-A指示在CD4及CD8亞群兩者中,7719分子及康特斯體兩者之類似的活化水準。 23A 23B 展示在4-1BB表現報道體細胞株Jurkat-hu4-1BB-NFκB-luc2中NFκB介導之螢光素酶表現活性。為測試2+1 抗4-1BB (20H4.9) x抗FAP(4B9) 康特斯體相對於2+1 抗4-1BB (20H4.9)x 抗FAP (4B9)之功能性,培育抗原結合分子與對照分子。對在培育6 h之後所量測之相對光單位(RLU)繪製抗原結合分子或其對照物之濃度。全部值藉由減去空白對照(例如不添加抗體)之基線值進行基線校正。在 23A 中展示與FAP靶向無關之4-1BB活化,而4-1BB結合在無任何FAP介導之交聯存在下誘導報導體細胞株中之NFκB受控螢光素酶表現。在 23B 中,添加高FAP表現細胞株NIH/3T3-huFAP純系19 (人類-FAP-基因轉殖小鼠纖維母細胞細胞株)。FAP表現腫瘤細胞導致雙特異性4-1BB (20H4.9) x FAP (4B9)抗原結合分子之交聯及其誘導4-1BB表現報導體細胞株中之NFκB誘導/螢光素酶活化之潛能的提高。雙特異性2+1 抗4-1BB (20H4.9) x 抗FAP(4B9)抗原結合分子(實心黑色之星形及直線)展示比康特斯體略佳之活化(較低EC50值)。然而,由康特斯體引起之活化比非靶向4-1BB抗體所展示之活化高得多。 24A 、圖 24B 、圖 24C 、圖 24D 、圖 24E 、圖 24F 、圖 24G 24H 展示在2天培育之後,在FAP塗佈( 24A 、圖 24C 、圖 24E 24G )或未經塗佈之Dynabeads® ( 24B 、圖 24D 、圖 24F 及圖 24H )存在下藉由二價人類抗CD40 x FAP 康特斯體進行之人類B細胞之活體外活化。相比於由交聯SGN40誘導之CD69、CD80、CD86及HLA-DR之與FAP無關的上調,在FAP塗佈之珠粒存在下,由與FAP無關之雙特異性抗原結合分子誘導之此等活化標記物之上調略微較低。在無FAP (未經塗佈之珠粒)存在下,用FAP靶向抗CD40 康特斯體未能觀測到CD69、CD80、CD86或HLA-DR表現之提高,而交聯之陽性對照抗體SGN40誘導此等活化標記物之上調。展示在與指定之滴定康特斯體或對照抗體一起培育2天之後,CD69、CD80、CD86或HLA-DR陽性活B細胞之百分比。XL表示利用特異性F(ab')2 片段山羊抗人類IgGFcγ片段進行之交聯。x軸展示康特斯體構築體或對照抗體之濃度。
<110> 瑞士商赫孚孟拉羅股份公司(F.Hoffmann-La Roche AG)
<120> 雙特異性2+1康特斯體(Contorsbody)
<140> 107138691
<141> 2018-10-31
<150> EP17199537.6
<151> 2017-11-01
<160> 184
<170> PatentIn version 3.5
<210> 1
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-H1
<400> 1
Figure 107138691-A0305-02-0223-6
<210> 2
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-H2
<400> 2
Figure 107138691-A0305-02-0223-7
<210> 3
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-H3
<400> 3
Figure 107138691-A0305-02-0224-8
<210> 4
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-L1
<400> 4
Figure 107138691-A0305-02-0224-9
<210> 5
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-L2
<400> 5
Figure 107138691-A0305-02-0224-10
<210> 6
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)CDR-L3
<400> 6
Figure 107138691-A0305-02-0225-11
<210> 7
<211> 117
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)VH
<400> 7
Figure 107138691-A0305-02-0225-12
<210> 8
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> FAP(4B9)VL
<400> 8
Figure 107138691-A0305-02-0226-14
<210> 9
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-H1
<400> 9
Figure 107138691-A0305-02-0226-15
<210> 10
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-H2
<400> 10
Figure 107138691-A0305-02-0227-16
<210> 11
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-H3
<400> 11
Figure 107138691-A0305-02-0227-17
<210> 12
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-L1
<400> 12
Figure 107138691-A0305-02-0227-18
<210> 13
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-L2
<400> 13
Figure 107138691-A0305-02-0228-19
<210> 14
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)CDR-L3
<400> 14
Figure 107138691-A0305-02-0228-20
<210> 15
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)VH
<400> 15
Figure 107138691-A0305-02-0228-21
Figure 107138691-A0305-02-0229-22
<210> 16
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> FAP(28H1)VL
<400> 16
Figure 107138691-A0305-02-0229-23
<210> 17
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9,49B4,1G4,20B7)CDR-H1
<400> 17
Figure 107138691-A0305-02-0230-24
<210> 18
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563,CLC-564,17A9)CDR-H1
<400> 18
Figure 107138691-A0305-02-0230-25
<210> 19
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9,49B4,1G4,20B7)CDR-H2
<400> 19
Figure 107138691-A0305-02-0230-26
<210> 20
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563,CLC-564,17A9)CDR-H2
<400> 20
Figure 107138691-A0305-02-0231-27
<210> 21
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9)CDR-H3
<400> 21
Figure 107138691-A0305-02-0231-28
<210> 22
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> OX40(49B4)CDR-H3
<400> 22
Figure 107138691-A0305-02-0231-29
<210> 23
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(1G4)CDR-H3
<400> 23
Figure 107138691-A0305-02-0232-30
<210> 24
<211> 13
<212> PRT
<213> 人工序列
<220>
<223> OX40(20B7)CDR-H3
<400> 24
Figure 107138691-A0305-02-0232-31
<210> 25
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563)CDR-H3
<400> 25
Figure 107138691-A0305-02-0232-32
<210> 26
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-564)CDR-H3
<400> 26
Figure 107138691-A0305-02-0232-33
<210> 27
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)-CDR-H3
<400> 27
Figure 107138691-A0305-02-0233-34
<210> 28
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9,49B4,1G4,20B7)CDR-L1
<400> 28
Figure 107138691-A0305-02-0233-35
<210> 29
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563,CLC564)CDR-L1
<400> 29
Figure 107138691-A0305-02-0233-36
<210> 30
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)CDR-L1
<400> 30
Figure 107138691-A0305-02-0233-37
Figure 107138691-A0305-02-0234-1
<210> 31
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9,49B4,1G4,20B7)CDR-L2
<400> 31
Figure 107138691-A0305-02-0234-38
<210> 32
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563,CLC564)CDR-L2
<400> 32
Figure 107138691-A0305-02-0234-39
<210> 33
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)CDR-L2
<400> 33
Figure 107138691-A0305-02-0234-40
<210> 34
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9)CDR-L3
<400> 34
Figure 107138691-A0305-02-0235-41
<210> 35
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> OX40(49B4)CDR-L3
<400> 35
Figure 107138691-A0305-02-0235-42
<210> 36
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 0X40(1G4)CDR-L3
<400> 36
Figure 107138691-A0305-02-0235-43
<210> 37
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> OX40(20B7)CDR-L3
<400> 37
Figure 107138691-A0305-02-0235-44
<210> 38
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563,CLC-164)CDR-L3
<400> 38
Figure 107138691-A0305-02-0236-45
<210> 39
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)CDR-L3
<400> 39
Figure 107138691-A0305-02-0236-46
<210> 40
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9)VH
<400> 40
Figure 107138691-A0305-02-0236-47
Figure 107138691-A0305-02-0237-48
<210> 41
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> OX40(8H9)VL
<400> 41
Figure 107138691-A0305-02-0237-49
Figure 107138691-A0305-02-0238-50
<210> 42
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> OX40(49B4)VH
<400> 42
Figure 107138691-A0305-02-0238-51
<210> 43
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> OX40(49B4)VL
<400> 43
Figure 107138691-A0305-02-0239-52
<210> 44
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> OX40(1G4)VH
<400> 44
Figure 107138691-A0305-02-0239-53
Figure 107138691-A0305-02-0240-54
<210> 45
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> OX40(1G4)VL
<400> 45
Figure 107138691-A0305-02-0240-55
Figure 107138691-A0305-02-0241-56
<210> 46
<211> 122
<212> PRT
<213> 人工序列
<220>
<223> OX40(20B7)VH
<400> 46
Figure 107138691-A0305-02-0241-57
Figure 107138691-A0305-02-0242-58
<210> 47
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> OX40(20B7)VL
<400> 47
Figure 107138691-A0305-02-0242-59
<210> 48
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563)VH
<400> 48
Figure 107138691-A0305-02-0243-60
<210> 49
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-563)VL
<400> 49
Figure 107138691-A0305-02-0244-61
<210> 50
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-564)VH
<400> 50
Figure 107138691-A0305-02-0244-62
Figure 107138691-A0305-02-0245-63
<210> 51
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> OX40(CLC-564)VL
<400> 51
Figure 107138691-A0305-02-0245-64
Figure 107138691-A0305-02-0246-65
<210> 52
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)VH
<400> 52
Figure 107138691-A0305-02-0246-66
<210> 53
<211> 106
<212> PRT
<213> 人工序列
<220>
<223> OX40(17A9)VL
<400> 53
Figure 107138691-A0305-02-0247-67
<210> 54
<211> 916
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)CD134-0093
<400> 54
Figure 107138691-A0305-02-0247-68
Figure 107138691-A0305-02-0248-69
Figure 107138691-A0305-02-0249-70
Figure 107138691-A0305-02-0250-71
Figure 107138691-A0305-02-0251-72
Figure 107138691-A0305-02-0252-73
<210> 55
<211> 905
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)CD134-0093
<400> 55
Figure 107138691-A0305-02-0252-74
Figure 107138691-A0305-02-0253-75
Figure 107138691-A0305-02-0254-76
Figure 107138691-A0305-02-0255-77
Figure 107138691-A0305-02-0256-78
Figure 107138691-A0305-02-0257-79
<210> 56
<211> 910
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)CD134-0094
<400> 56
Figure 107138691-A0305-02-0257-80
Figure 107138691-A0305-02-0258-81
Figure 107138691-A0305-02-0259-82
Figure 107138691-A0305-02-0260-83
Figure 107138691-A0305-02-0261-84
Figure 107138691-A0305-02-0262-85
<210> 57
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)CD134-0094
<400> 57
Figure 107138691-A0305-02-0262-86
Figure 107138691-A0305-02-0263-87
Figure 107138691-A0305-02-0264-88
Figure 107138691-A0305-02-0265-89
Figure 107138691-A0305-02-0266-91
<210> 58
<211> 924
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE0085
<400> 58
Figure 107138691-A0305-02-0267-93
Figure 107138691-A0305-02-0268-94
Figure 107138691-A0305-02-0269-95
Figure 107138691-A0305-02-0270-96
Figure 107138691-A0305-02-0271-97
<210> 59
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE0085
<400> 59
Figure 107138691-A0305-02-0272-98
Figure 107138691-A0305-02-0273-99
Figure 107138691-A0305-02-0274-100
Figure 107138691-A0305-02-0275-101
Figure 107138691-A0305-02-0276-102
<210> 60
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE0086
<400> 60
Figure 107138691-A0305-02-0276-103
Figure 107138691-A0305-02-0277-104
Figure 107138691-A0305-02-0278-105
Figure 107138691-A0305-02-0279-106
Figure 107138691-A0305-02-0280-107
Figure 107138691-A0305-02-0281-108
<210> 61
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE0086
<400> 61
Figure 107138691-A0305-02-0281-109
Figure 107138691-A0305-02-0282-110
Figure 107138691-A0305-02-0283-111
Figure 107138691-A0305-02-0284-112
Figure 107138691-A0305-02-0285-113
Figure 107138691-A0305-02-0286-115
<210> 62
<211> 919
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE0087
<400> 62
Figure 107138691-A0305-02-0286-116
Figure 107138691-A0305-02-0287-117
Figure 107138691-A0305-02-0288-118
Figure 107138691-A0305-02-0289-119
Figure 107138691-A0305-02-0290-120
Figure 107138691-A0305-02-0291-121
<210> 63
<211> 923
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE0087
<400> 63
Figure 107138691-A0305-02-0291-122
Figure 107138691-A0305-02-0292-123
Figure 107138691-A0305-02-0293-124
Figure 107138691-A0305-02-0294-125
Figure 107138691-A0305-02-0295-126
<210> 64
<211> 919
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE0839
<400> 64
Figure 107138691-A0305-02-0296-127
Figure 107138691-A0305-02-0297-128
Figure 107138691-A0305-02-0298-129
Figure 107138691-A0305-02-0299-130
Figure 107138691-A0305-02-0300-131
<210> 65
<211> 924
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE0839
<400> 65
Figure 107138691-A0305-02-0301-132
Figure 107138691-A0305-02-0302-133
Figure 107138691-A0305-02-0303-134
Figure 107138691-A0305-02-0304-135
Figure 107138691-A0305-02-0305-137
<210> 66
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE0821
<400> 66
Figure 107138691-A0305-02-0305-138
Figure 107138691-A0305-02-0306-139
Figure 107138691-A0305-02-0307-140
Figure 107138691-A0305-02-0308-141
Figure 107138691-A0305-02-0309-142
Figure 107138691-A0305-02-0310-143
<210> 67
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE0821
<400> 67
Figure 107138691-A0305-02-0310-144
Figure 107138691-A0305-02-0311-146
Figure 107138691-A0305-02-0312-148
Figure 107138691-A0305-02-0313-149
Figure 107138691-A0305-02-0314-150
Figure 107138691-A0305-02-0315-152
<210> 68
<211> 583
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc杵VH(28H1)(重鏈1)
<400> 68
Figure 107138691-A0305-02-0315-153
Figure 107138691-A0305-02-0316-154
Figure 107138691-A0305-02-0317-155
Figure 107138691-A0305-02-0318-156
<210> 69
<211> 575
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc臼VL(28H1)(重鏈2)
<400> 69
Figure 107138691-A0305-02-0318-157
Figure 107138691-A0305-02-0319-158
Figure 107138691-A0305-02-0320-160
Figure 107138691-A0305-02-0321-161
<210> 70
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VLCL-輕鏈
<400> 70
Figure 107138691-A0305-02-0321-162
Figure 107138691-A0305-02-0322-163
<210> 71
<211> 584
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc杵VH(4B9)(重鏈1)
<400> 71
Figure 107138691-A0305-02-0323-164
Figure 107138691-A0305-02-0324-165
Figure 107138691-A0305-02-0325-166
Figure 107138691-A0305-02-0326-167
<210> 72
<211> 575
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc臼VL(4B9)(重鏈2)
<400> 72
Figure 107138691-A0305-02-0326-168
Figure 107138691-A0305-02-0327-169
Figure 107138691-A0305-02-0328-170
Figure 107138691-A0305-02-0329-171
<210> 73
<211> 582
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc杵VH(DP47)(重鏈1)
<400> 73
Figure 107138691-A0305-02-0329-172
Figure 107138691-A0305-02-0330-173
Figure 107138691-A0305-02-0331-175
Figure 107138691-A0305-02-0332-176
<210> 74
<211> 575
<212> PRT
<213> 人工序列
<220>
<223> (49B4)VHCH1 Fc臼VL(DP47)(重鏈2)
<400> 74
Figure 107138691-A0305-02-0332-177
Figure 107138691-A0305-02-0333-178
Figure 107138691-A0305-02-0334-179
Figure 107138691-A0305-02-0335-180
<210> 75
<211> 816
<212> PRT
<213> 人工序列
<220>
<223> HC 1(49B4)VHCH1_VHCH1 Fc杵VH(4B9)
<400> 75
Figure 107138691-A0305-02-0335-181
Figure 107138691-A0305-02-0336-182
Figure 107138691-A0305-02-0337-183
Figure 107138691-A0305-02-0338-184
Figure 107138691-A0305-02-0339-185
<210> 76
<211> 807
<212> PRT
<213> 人工序列
<220>
<223> HC 2(49B4)VHCH1_VHCH1 Fc臼VL(4B9)
<400> 76
Figure 107138691-A0305-02-0339-186
Figure 107138691-A0305-02-0340-187
Figure 107138691-A0305-02-0341-188
Figure 107138691-A0305-02-0342-189
Figure 107138691-A0305-02-0343-190
<210> 77
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子G4S
<400> 77
Figure 107138691-A0305-02-0344-191
<210> 78
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子(G4S)2
<400> 78
Figure 107138691-A0305-02-0344-192
<210> 79
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子(SG4)2
<400> 79
Figure 107138691-A0305-02-0344-193
<210> 80
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> 特定肽連接子
<400> 80
Figure 107138691-A0305-02-0345-194
<210> 81
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子(G4S)3
<400> 81
Figure 107138691-A0305-02-0345-195
<210> 82
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子G4(SG4)2
<400> 82
Figure 107138691-A0305-02-0345-196
<210> 83
<211> 20
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子(G4S)4
<400> 83
Figure 107138691-A0305-02-0345-197
Figure 107138691-A0305-02-0346-198
<210> 84
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGGGSGGGGSGGGSGGGGS
<400> 84
Figure 107138691-A0305-02-0346-199
<210> 85
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GSPGSSSSGS
<400> 85
Figure 107138691-A0305-02-0346-200
<210> 86
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GSGSGSGS
<400> 86
Figure 107138691-A0305-02-0346-201
<210> 87
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GSGSGNGS
<400> 87
Figure 107138691-A0305-02-0347-202
<210> 88
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGSGSGSG
<400> 88
Figure 107138691-A0305-02-0347-203
<210> 89
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGSGSG
<400> 89
Figure 107138691-A0305-02-0347-204
<210> 90
<211> 4
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGSG
<400> 90
Figure 107138691-A0305-02-0348-205
<210> 91
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> GGSGNGSG
<400> 91
Figure 107138691-A0305-02-0348-206
<210> 92
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGNGSGSG
<400> 92
Figure 107138691-A0305-02-0348-207
<210> 93
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> 肽連接子GGNGSG
<400> 93
Figure 107138691-A0305-02-0348-208
<210> 94
<211> 98
<212> PRT
<213> 智人
<400> 94
Figure 107138691-A0305-02-0349-209
<210> 95
<211> 107
<212> PRT
<213> 智人
<400> 95
Figure 107138691-A0305-02-0349-210
Figure 107138691-A0305-02-0350-213
<210> 96
<211> 106
<212> PRT
<213> 智人
<400> 96
Figure 107138691-A0305-02-0350-214
Figure 107138691-A0305-02-0351-216
<210> 97
<211> 760
<212> PRT
<213> 智人
<400> 97
Figure 107138691-A0305-02-0351-217
Figure 107138691-A0305-02-0352-218
Figure 107138691-A0305-02-0353-219
Figure 107138691-A0305-02-0354-220
Figure 107138691-A0305-02-0355-2
<210> 98
<211> 761
<212> PRT
<213> 小家鼠
<400> 98
Figure 107138691-A0305-02-0355-221
Figure 107138691-A0305-02-0356-222
Figure 107138691-A0305-02-0357-223
Figure 107138691-A0305-02-0358-224
<210> 99
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> CH1連接子
<400> 99
Figure 107138691-A0305-02-0359-225
<210> 100
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> 鉸鏈,其中X係S或P
<220>
<221> X
<222> (8)..(8)
<223> X is S or P
<400> 100
Figure 107138691-A0305-02-0359-226
<210> 101
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 鉸鏈,其中X係S或P
<220>
<221> X
<222> (5)..(5)
<223> X is S or P
<400> 101
Figure 107138691-A0305-02-0360-227
<210> 102
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 鉸鏈,其中X係S或P
<220>
<221> X
<222> (3)..(3)
<223> 中X係S或P
<400> 102
Figure 107138691-A0305-02-0360-228
<210> 103
<211> 330
<212> PRT
<213> 智人
<400> 103
Figure 107138691-A0305-02-0360-229
Figure 107138691-A0305-02-0361-230
Figure 107138691-A0305-02-0362-232
<210> 104
<211> 330
<212> PRT
<213> 智人
<400> 104
Figure 107138691-A0305-02-0362-233
Figure 107138691-A0305-02-0363-234
Figure 107138691-A0305-02-0364-235
<210> 105
<211> 326
<212> PRT
<213> 智人
<400> 105
Figure 107138691-A0305-02-0364-236
Figure 107138691-A0305-02-0365-237
<210> 106
<211> 377
<212> PRT
<213> 智人
<400> 106
Figure 107138691-A0305-02-0366-238
Figure 107138691-A0305-02-0367-239
<210> 107
<211> 327
<212> PRT
<213> 智人
<400> 107
Figure 107138691-A0305-02-0368-240
Figure 107138691-A0305-02-0369-241
<210> 108
<211> 277
<212> PRT
<213> 智人
<400> 108
Figure 107138691-A0305-02-0370-242
Figure 107138691-A0305-02-0371-243
<210> 109
<211> 255
<212> PRT
<213> 智人
<400> 109
Figure 107138691-A0305-02-0371-244
Figure 107138691-A0305-02-0372-245
<210)> 110
<211> 260
<212> PRT
<213> 智人
<400> 110
Figure 107138691-A0305-02-0373-246
Figure 107138691-A0305-02-0374-247
<210> 111
<211> 283
<212> PRT
<213> 智人
<400> 111
Figure 107138691-A0305-02-0374-248
Figure 107138691-A0305-02-0375-249
<210> 112
<211> 595
<212> PRT
<213> 智人
<400> 112
Figure 107138691-A0305-02-0376-250
Figure 107138691-A0305-02-0377-251
Figure 107138691-A0305-02-0378-252
Figure 107138691-A0305-02-0379-253
<210> 113
<211> 241
<212> PRT
<213> 智人
<400> 113
Figure 107138691-A0305-02-0379-254
Figure 107138691-A0305-02-0380-255
<210> 114
<211> 272
<212> PRT
<213> 小家鼠
<400> 114
Figure 107138691-A0305-02-0380-256
Figure 107138691-A0305-02-0381-257
<210> 115
<211> 277
<212> PRT
<213> 智人
<400> 115
Figure 107138691-A0305-02-0382-258
Figure 107138691-A0305-02-0383-259
<210> 116
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1122
<400> 116
Figure 107138691-A0305-02-0383-260
Figure 107138691-A0305-02-0384-261
Figure 107138691-A0305-02-0385-262
Figure 107138691-A0305-02-0386-263
Figure 107138691-A0305-02-0387-264
Figure 107138691-A0305-02-0388-265
<210> 117
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1122
<400> 117
Figure 107138691-A0305-02-0388-266
Figure 107138691-A0305-02-0389-267
Figure 107138691-A0305-02-0390-268
Figure 107138691-A0305-02-0391-269
Figure 107138691-A0305-02-0392-270
Figure 107138691-A0305-02-0393-271
<210> 118
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1942
<400> 118
Figure 107138691-A0305-02-0393-272
Figure 107138691-A0305-02-0394-273
Figure 107138691-A0305-02-0395-274
Figure 107138691-A0305-02-0396-275
Figure 107138691-A0305-02-0397-276
Figure 107138691-A0305-02-0398-277
<210> 119
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1942
<400> 119
Figure 107138691-A0305-02-0398-278
Figure 107138691-A0305-02-0399-279
Figure 107138691-A0305-02-0400-280
Figure 107138691-A0305-02-0401-281
Figure 107138691-A0305-02-0402-282
<210> 120
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1887
<400> 120
Figure 107138691-A0305-02-0403-283
Figure 107138691-A0305-02-0404-284
Figure 107138691-A0305-02-0405-285
Figure 107138691-A0305-02-0406-286
Figure 107138691-A0305-02-0407-287
<210> 121
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1887
<400> 121
Figure 107138691-A0305-02-0408-288
Figure 107138691-A0305-02-0409-289
Figure 107138691-A0305-02-0410-290
Figure 107138691-A0305-02-0411-291
Figure 107138691-A0305-02-0412-292
<210> 122
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1888
<400> 122
Figure 107138691-A0305-02-0412-293
Figure 107138691-A0305-02-0413-294
Figure 107138691-A0305-02-0414-295
Figure 107138691-A0305-02-0415-296
Figure 107138691-A0305-02-0416-297
Figure 107138691-A0305-02-0417-298
<210> 123
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1888
<400> 123
Figure 107138691-A0305-02-0417-299
Figure 107138691-A0305-02-0418-301
Figure 107138691-A0305-02-0419-302
Figure 107138691-A0305-02-0420-303
Figure 107138691-A0305-02-0421-304
Figure 107138691-A0305-02-0422-305
<210> 124
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2254
<400> 124
Figure 107138691-A0305-02-0422-306
Figure 107138691-A0305-02-0423-307
Figure 107138691-A0305-02-0424-308
Figure 107138691-A0305-02-0425-309
Figure 107138691-A0305-02-0426-310
Figure 107138691-A0305-02-0427-312
<210> 125
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2254
<400> 125
Figure 107138691-A0305-02-0427-313
Figure 107138691-A0305-02-0428-314
Figure 107138691-A0305-02-0429-315
Figure 107138691-A0305-02-0430-316
Figure 107138691-A0305-02-0431-317
<210> 126
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2340
<400> 126
Figure 107138691-A0305-02-0432-318
Figure 107138691-A0305-02-0433-319
Figure 107138691-A0305-02-0434-322
Figure 107138691-A0305-02-0435-323
Figure 107138691-A0305-02-0436-324
<210> 127
<211> 688
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2340
<400> 127
Figure 107138691-A0305-02-0437-325
Figure 107138691-A0305-02-0438-327
Figure 107138691-A0305-02-0439-328
Figure 107138691-A0305-02-0440-329
<210> 128
<211> 213
<212> PRT
<213> 人工序列
<220>
<223> 輕鏈P1AE2340
<400> 128
Figure 107138691-A0305-02-0440-330
Figure 107138691-A0305-02-0441-331
<210> 129
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2735
<400> 129
Figure 107138691-A0305-02-0442-332
Figure 107138691-A0305-02-0443-333
Figure 107138691-A0305-02-0444-334
Figure 107138691-A0305-02-0445-338
Figure 107138691-A0305-02-0446-339
<210> 130
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2735
<400> 130
Figure 107138691-A0305-02-0446-340
Figure 107138691-A0305-02-0447-341
Figure 107138691-A0305-02-0448-342
Figure 107138691-A0305-02-0449-343
Figure 107138691-A0305-02-0450-344
Figure 107138691-A0305-02-0451-345
<210> 131
<211> 925
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2743
<400> 131
Figure 107138691-A0305-02-0451-346
Figure 107138691-A0305-02-0452-347
Figure 107138691-A0305-02-0453-348
Figure 107138691-A0305-02-0454-349
Figure 107138691-A0305-02-0455-351
Figure 107138691-A0305-02-0456-352
<210> 132
<211> 914
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2743
<400> 132
Figure 107138691-A0305-02-0456-353
Figure 107138691-A0305-02-0457-354
Figure 107138691-A0305-02-0458-355
Figure 107138691-A0305-02-0459-356
Figure 107138691-A0305-02-0460-357
Figure 107138691-A0305-02-0461-358
<210> 133
<211> 919
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2762
<400> 133
Figure 107138691-A0305-02-0461-359
Figure 107138691-A0305-02-0462-360
Figure 107138691-A0305-02-0463-361
Figure 107138691-A0305-02-0464-362
Figure 107138691-A0305-02-0465-363
<210> 134
<211> 924
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2762
<400> 134
Figure 107138691-A0305-02-0466-364
Figure 107138691-A0305-02-0467-365
Figure 107138691-A0305-02-0468-367
Figure 107138691-A0305-02-0469-368
Figure 107138691-A0305-02-0470-369
<210> 135
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-H1
<400> 135
Figure 107138691-A0305-02-0471-372
<210> 136
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-H2
<400> 136
Figure 107138691-A0305-02-0471-373
<210> 137
<211> 13
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-H3
<400> 137
Figure 107138691-A0305-02-0471-374
<210> 138
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-L1
<400> 138
Figure 107138691-A0305-02-0471-375
<210> 139
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-L2
<400> 139
Figure 107138691-A0305-02-0472-376
<210> 140
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)CDR-L3
<400> 140
Figure 107138691-A0305-02-0472-377
<210> 141
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)VH
<400> 141
Figure 107138691-A0305-02-0472-378
Figure 107138691-A0305-02-0473-379
<210> 142
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> 4-1BB(20H4.9)VL
<400> 142
Figure 107138691-A0305-02-0473-380
Figure 107138691-A0305-02-0474-381
<210> 143
<211> 930
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1899
<400> 143
Figure 107138691-A0305-02-0474-382
Figure 107138691-A0305-02-0475-383
Figure 107138691-A0305-02-0476-384
Figure 107138691-A0305-02-0477-385
Figure 107138691-A0305-02-0478-386
Figure 107138691-A0305-02-0479-3
<210> 144
<211> 919
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1899
<400> 144
Figure 107138691-A0305-02-0479-388
Figure 107138691-A0305-02-0480-389
Figure 107138691-A0305-02-0481-390
Figure 107138691-A0305-02-0482-391
Figure 107138691-A0305-02-0483-392
<210> 145
<211> 930
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2051
<400> 145
Figure 107138691-A0305-02-0484-393
Figure 107138691-A0305-02-0485-395
Figure 107138691-A0305-02-0486-396
Figure 107138691-A0305-02-0487-397
Figure 107138691-A0305-02-0488-398
<210> 146
<211> 919
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2051
<400> 146
Figure 107138691-A0305-02-0489-399
Figure 107138691-A0305-02-0490-401
Figure 107138691-A0305-02-0491-402
Figure 107138691-A0305-02-0492-403
Figure 107138691-A0305-02-0493-404
<210> 147
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-H1
<400> 147
Figure 107138691-A0305-02-0493-405
<210> 148
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-H2
<400> 148
Figure 107138691-A0305-02-0494-406
<210> 149
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-H3
<400> 149
Figure 107138691-A0305-02-0494-407
<210> 150
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-L1
<400> 150
Figure 107138691-A0305-02-0494-408
<210> 151
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-L2
<400> 151
Figure 107138691-A0305-02-0495-409
<210> 152
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 CDR-L3
<400> 152
Figure 107138691-A0305-02-0495-410
<210> 153
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 VH
<400> 153
Figure 107138691-A0305-02-0495-411
Figure 107138691-A0305-02-0496-412
<210> 154
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> hu CD40 VL
<400> 154
Figure 107138691-A0305-02-0496-413
<210> 155
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1799
<400> 155
Figure 107138691-A0305-02-0497-414
Figure 107138691-A0305-02-0498-415
Figure 107138691-A0305-02-0499-416
Figure 107138691-A0305-02-0500-417
Figure 107138691-A0305-02-0501-418
<210> 156
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1799
<400> 156
Figure 107138691-A0305-02-0502-419
Figure 107138691-A0305-02-0503-420
Figure 107138691-A0305-02-0504-421
Figure 107138691-A0305-02-0505-422
Figure 107138691-A0305-02-0506-423
<210> 157
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1902
<400> 157
Figure 107138691-A0305-02-0506-424
Figure 107138691-A0305-02-0507-426
Figure 107138691-A0305-02-0508-427
Figure 107138691-A0305-02-0509-428
Figure 107138691-A0305-02-0510-429
Figure 107138691-A0305-02-0511-430
<210> 158
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1902
<400> 158
Figure 107138691-A0305-02-0511-431
Figure 107138691-A0305-02-0512-432
Figure 107138691-A0305-02-0513-433
Figure 107138691-A0305-02-0514-434
Figure 107138691-A0305-02-0515-435
Figure 107138691-A0305-02-0516-436
<210> 159
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1800
<400> 159
Figure 107138691-A0305-02-0516-437
Figure 107138691-A0305-02-0517-438
Figure 107138691-A0305-02-0518-440
Figure 107138691-A0305-02-0519-441
Figure 107138691-A0305-02-0520-442
Figure 107138691-A0305-02-0521-443
<210> 160
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1800
<400> 160
Figure 107138691-A0305-02-0521-444
Figure 107138691-A0305-02-0522-446
Figure 107138691-A0305-02-0523-450
Figure 107138691-A0305-02-0524-451
Figure 107138691-A0305-02-0525-453
Figure 107138691-A0305-02-0526-4
<210> 161
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2052
<400> 161
Figure 107138691-A0305-02-0526-454
Figure 107138691-A0305-02-0527-455
Figure 107138691-A0305-02-0528-456
Figure 107138691-A0305-02-0529-457
Figure 107138691-A0305-02-0530-458
<210> 162
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2052
<400> 162
Figure 107138691-A0305-02-0531-459
Figure 107138691-A0305-02-0532-460
Figure 107138691-A0305-02-0533-461
Figure 107138691-A0305-02-0534-462
Figure 107138691-A0305-02-0535-463
<210> 163
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE1901
<400> 163
Figure 107138691-A0305-02-0535-464
Figure 107138691-A0305-02-0536-465
Figure 107138691-A0305-02-0537-466
Figure 107138691-A0305-02-0538-467
Figure 107138691-A0305-02-0539-468
Figure 107138691-A0305-02-0540-469
<210> 164
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE1901
<400> 164
Figure 107138691-A0305-02-0540-470
Figure 107138691-A0305-02-0541-471
Figure 107138691-A0305-02-0542-472
Figure 107138691-A0305-02-0543-473
Figure 107138691-A0305-02-0544-474
Figure 107138691-A0305-02-0545-475
<210> 165
<211> 926
<212> PRT
<213> 人工序列
<220>
<223> 第一融合多肽(Fc杵)P1AE2255
<400> 165
Figure 107138691-A0305-02-0545-476
Figure 107138691-A0305-02-0546-477
Figure 107138691-A0305-02-0547-478
Figure 107138691-A0305-02-0548-479
Figure 107138691-A0305-02-0549-480
Figure 107138691-A0305-02-0550-481
<210> 166
<211> 915
<212> PRT
<213> 人工序列
<220>
<223> 第二融合多肽(Fc臼)P1AE2255
<400> 166
Figure 107138691-A0305-02-0550-482
Figure 107138691-A0305-02-0551-483
Figure 107138691-A0305-02-0552-484
Figure 107138691-A0305-02-0553-485
Figure 107138691-A0305-02-0554-486
Figure 107138691-A0305-02-0555-487
<210> 167
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH1a(CD40)
<400> 167
Figure 107138691-A0305-02-0555-488
<210> 168
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH1b(CD40)
<400> 168
Figure 107138691-A0305-02-0556-489
<210> 169
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH1c(CD40)
<400> 169
Figure 107138691-A0305-02-0556-490
Figure 107138691-A0305-02-0557-491
<210> 170
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH1d(CD40)
<400> 170
Figure 107138691-A0305-02-0557-492
Figure 107138691-A0305-02-0558-493
<210> 171
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL1a(CD40)
<400> 171
Figure 107138691-A0305-02-0558-494
Figure 107138691-A0305-02-0559-495
<210> 172
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL1b(CD40)
<400> 172
Figure 107138691-A0305-02-0559-496
<210> 173
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL1c(CD40)
<400> 173
Figure 107138691-A0305-02-0560-497
<210> 174
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL1d(CD40)
<400> 174
Figure 107138691-A0305-02-0560-498
Figure 107138691-A0305-02-0561-499
<210> 175
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2a(CD40)
<400> 175
Figure 107138691-A0305-02-0561-500
Figure 107138691-A0305-02-0562-501
<210> 176
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2b(CD40)
<400> 176
Figure 107138691-A0305-02-0562-502
Figure 107138691-A0305-02-0563-503
<210> 177
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2c(CD40)
<400> 177
Figure 107138691-A0305-02-0563-504
<210> 178
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2d(CD40)
<400> 178
Figure 107138691-A0305-02-0564-505
<210> 179
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2ab(CD40)
<400> 179
Figure 107138691-A0305-02-0565-506
<210> 180
<211> 114
<212> PRT
<213> 人工序列
<220>
<223> VH2ac(CD40)
<400> 180
Figure 107138691-A0305-02-0565-507
Figure 107138691-A0305-02-0566-508
<210> 181
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL2a(CD40)
<400> 181
Figure 107138691-A0305-02-0566-509
Figure 107138691-A0305-02-0567-510
<210> 182
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL2b(CD40)
<400> 182
Figure 107138691-A0305-02-0567-511
Figure 107138691-A0305-02-0568-5
<210> 183
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL2ab(CD40)
<400> 183
Figure 107138691-A0305-02-0568-512
<210> 184
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> VL2ac(CD40)
<400> 184
Figure 107138691-A0305-02-0569-513

Claims (30)

  1. 一種雙特異性抗體,其由第一融合多肽及第二融合多肽組成且包含兩個能夠特異性結合於第一標靶之抗原結合結構域及一個能夠特異性結合於第二標靶之抗原結合結構域,其包含(a)該第一融合多肽,其包含能夠特異性結合於該第一標靶之第一抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於該第一標靶之第一抗原結合結構域之第二部分及能夠特異性結合於該第二標靶之抗原結合結構域之第一部分,其中- 該間隔結構域包含:至少25個胺基酸殘基,抗體鉸鏈區或其C端片段及包含胺基酸取代L234A、L235A及P329G(根據Kabat EU索引編號)之IgG1 Fc結構域,及根據杵-臼(knobs into hole)方法之臼,- 該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端,- 該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且- 該能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第二部分的C端,或直接或經由第三肽連接子融合至該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第一部分的N端,及 (b)該第二融合多肽,其包含能夠特異性結合於第一標靶之第二抗原結合結構域之第一部分、間隔結構域、能夠特異性結合於第一標靶之該第二抗原結合結構域之第二部分及該能夠特異性結合於第二標靶之抗原結合結構域之第二部分,其中- 該間隔結構域包含:至少25個胺基酸殘基,抗體鉸鏈區或其C端片段及包含胺基酸取代L234A、L235A及P329G(根據Kabat EU索引編號)之IgG1 Fc結構域,及根據杵-臼(knobs into hole)方法之杵,- 該能夠特異性結合於第一標靶之該第二抗原結合結構域之第一部分直接或經由第一肽連接子融合至該間隔結構域之N端,- 該能夠特異性結合於第一標靶之該第二抗原結合結構域之第二部分直接或經由第二肽連接子融合至該間隔結構域之C端,且- 該能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至該能夠特異性結合於第一標靶之該第二抗原結合結構域之第二部分的C端或直接或經由第三肽連接子融合至該能夠特異性結合於第一標靶之該第二抗原結合結構域之第一部分的N端,且其中該能夠特異性結合於該第二標靶之該抗原結合結構域之第一部分及第二部分彼此締合以形成該能夠特異性結合於該第二標靶之抗原結合結構域且其中該能夠特異性結合於該第一標靶之該第一及第二抗原結合結構域之第一部分及第二部分彼此締合以形成環形融合多肽,且其中該第一融合多肽之該間隔結構域及該第二融合多肽之該間隔結 構域藉由二硫鍵彼此共價締合且包含促進該第一及第二融合多肽之締合的修飾。
  2. 如請求項1之雙特異性抗體,其中在該第一融合多肽中,該能夠特異性結合於第二標靶之抗原結合結構域之第一部分直接或經由第三肽連接子融合至該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第二部分的C端,且其中在該第二融合多肽中,該能夠特異性結合於第二標靶之抗原結合結構域之第二部分直接或經由第三肽連接子融合至該能夠特異性結合於該第一標靶之該第一抗原結合結構域之第二部分的C端。
  3. 如請求項1或2之雙特異性抗體,其中連接該能夠特異性結合於第二標靶之抗原結合結構域之第一部分或第二部分之該第三肽連接子包含至少15個胺基酸。
  4. 如請求項1或2之雙特異性抗體,其中該第一融合多肽包含該能夠特異性結合於第二標靶之抗原結合結構域之重鏈可變結構域且該第二融合多肽包含該能夠特異性結合於第二標靶之抗原結合結構域之抗體輕鏈可變結構域或反之亦然。
  5. 如請求項1或2之雙特異性抗體,其中在該第一融合多肽及該第二融合多肽兩者中,該能夠特異性結合於該第一標靶之該抗原結合結構域之第一部分係抗體重鏈Fab片段且該能夠特異性結合於該第一標靶之該抗原結合結構域之第二部分係抗體輕鏈Fab片段。
  6. 如請求項1或2之雙特異性抗體,其中該能夠特異性結合於第二標靶之抗原結合結構域係能夠特異性結合於腫瘤相關抗原之抗原結合結構域。
  7. 如請求項1或2之雙特異性抗體,其中該能夠特異性結合於第二標靶之抗原結合結構域係能夠特異性結合於纖維母細胞活化蛋白(FAP)之抗原結合結構域。
  8. 如請求項7之雙特異性抗體,其中該能夠特異性結合於FAP之抗原結合結構域包含(a)重鏈可變區(VHFAP),其包含:(i)包含胺基酸序列SEQ ID NO:1之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:2之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:3之CDR-H3;及輕鏈可變區(VLFAP),其包含:(iv)包含胺基酸序列SEQ ID NO:4之CDR-L1,(v)包含胺基酸序列SEQ ID NO:5之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:6之CDR-L3,或(b)重鏈可變區(VHFAP),其包含:(i)包含胺基酸序列SEQ ID NO:9之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:10之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:11之CDR-H3;及輕鏈可變區(VLFAP),其包含: (iv)包含胺基酸序列SEQ ID NO:12之CDR-L1,(v)包含胺基酸序列SEQ ID NO:13之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:14之CDR-L3。
  9. 如請求項7之雙特異性抗體,其中該能夠特異性結合於FAP之抗原結合結構域包含:(a)重鏈可變區(VHFAP),其包含:(i)包含胺基酸序列SEQ ID NO:1之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:2之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:3之CDR-H3,及與胺基酸序列SEQ ID NO:7至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及輕鏈可變區(VLFAP),其包含(iv)包含胺基酸序列SEQ ID NO:4之CDR-L1,(v)包含胺基酸序列SEQ ID NO:5之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:6之CDR-L3,及與胺基酸序列SEQ ID NO:8至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列,或(b)重鏈可變區(VHFAP),其包含:(i)包含胺基酸序列SEQ ID NO:9之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:10之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:11之CDR-H3,及與胺基酸序列SEQ ID NO:15至少約95%、96%、97%、98%、 99%或100%一致的胺基酸序列;及輕鏈可變區(VLFAP),其包含:(iv)包含胺基酸序列SEQ ID NO:12之CDR-L1,(v)包含胺基酸序列SEQ ID NO:13之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:14之CDR-L3,及與胺基酸序列SEQ ID NO:16至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列。
  10. 如請求項1或2之雙特異性抗體,其中該能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於OX40之抗原結合結構域。
  11. 如請求項10之雙特異性抗體,其中該能夠特異性結合於OX40之抗原結合結構域包含:(a)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:22之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:28之CDR-L1,(v)包含胺基酸序列SEQ ID NO:31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:35之CDR-L3,或(b)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:17之CDR-H1, (ii)包含胺基酸序列SEQ ID NO:19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:21之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:28之CDR-L1,(v)包含胺基酸序列SEQ ID NO:31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:34之CDR-L3,或(c)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:23之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:28之CDR-L1,(v)包含胺基酸序列SEQ ID NO:31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:36之CDR-L3,或(d)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:17之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:19之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:24之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:28之CDR-L1,(v)包含胺基酸序列SEQ ID NO:31之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:37之CDR-L3,或(e)重鏈可變區(VHOX40),其包含: (i)包含胺基酸序列SEQ ID NO:18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:25之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:29之CDR-L1,(v)包含胺基酸序列SEQ ID NO:32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:38之CDR-L3,或(f)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:26之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:29之CDR-L1,(v)包含胺基酸序列SEQ ID NO:32之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:38之CDR-L3,或(g)重鏈可變區(VHOX40),其包含:(i)包含胺基酸序列SEQ ID NO:18之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:20之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:27之CDR-H3;及輕鏈可變區(VLOX40),其包含:(iv)包含胺基酸序列SEQ ID NO:30之CDR-L1,(v)包含胺基酸序列SEQ ID NO:33之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:39之CDR-L3。
  12. 如請求項11之雙特異性抗體,其中該能夠特異性結合於OX40之抗原結合結構域包含:(a)包含胺基酸序列SEQ ID NO:40之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:41之輕鏈可變區(VLOX40),或(b)包含胺基酸序列SEQ ID NO:42之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:43之輕鏈可變區(VLOX40),或(c)包含胺基酸序列SEQ ID NO:44之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:45之輕鏈可變區(VLOX40),或(d)包含胺基酸序列SEQ ID NO:46之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:47之輕鏈可變區(VLOX40),或(e)包含胺基酸序列SEQ ID NO:48之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:49之輕鏈可變區(VLOX40),或(f)包含胺基酸序列SEQ ID NO:50之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:51之輕鏈可變區(VLOX40),或(g)包含胺基酸序列SEQ ID NO:52之重鏈可變區(VHOX40)及包含胺基酸序列SEQ ID NO:53之輕鏈可變區(VLOX40)。
  13. 如請求項12之雙特異性抗體,其中該能夠特異性結合於OX40之抗原結合結構域包含(a)重鏈可變區(VHOX40),其包含胺基酸序列SEQ ID NO:40;及輕鏈可變區(VLOX40),其包含胺基酸序列SEQ ID NO:41。
  14. 如請求項1或2之雙特異性抗體,其中該能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於4-1BB之抗原結合結構域。
  15. 如請求項14之雙特異性抗體,其中該能夠特異性結合於4-1BB之抗原結合結構域包含:重鏈可變區(VH4-1BB),其包含:(i)包含胺基酸序列SEQ ID NO:135之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:136之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:137之CDR-H3;及輕鏈可變區(VL4-1BB),其包含:(iv)包含胺基酸序列SEQ ID NO:138之CDR-L1,(v)包含胺基酸序列SEQ ID NO:139之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:140之CDR-L3。
  16. 如請求項15之雙特異性抗體,其中該能夠特異性結合於4-1BB之抗原結合結構域包含:包含胺基酸序列SEQ ID NO:141的重鏈可變區(VH4-1BB);及包含胺基酸序列SEQ ID NO:142的輕鏈可變區(VL4-1BB)。
  17. 如請求項1或2之雙特異性抗體,其中該能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域。
  18. 如請求項17之雙特異性抗體,其中該能夠特異性結合於CD40之抗原 結合結構域包含:重鏈可變區(VHCD40),其包含:(i)包含胺基酸序列SEQ ID NO:147之CDR-H1,(ii)包含胺基酸序列SEQ ID NO:148之CDR-H2,及(iii)包含胺基酸序列SEQ ID NO:149之CDR-H3;及輕鏈可變區(VLCD40),其包含:(iv)包含胺基酸序列SEQ ID NO:150之CDR-L1,(v)包含胺基酸序列SEQ ID NO:151之CDR-L2,及(vi)包含胺基酸序列SEQ ID NO:152之CDR-L3。
  19. 如請求項18之雙特異性抗體,其中該能夠特異性結合於CD40之抗原結合結構域包含:重鏈可變區(VHCD40),其包含胺基酸序列SEQ ID NO:153;及輕鏈可變區(VLCD40),其包含胺基酸序列SEQ ID NO:154。
  20. 如請求項18之雙特異性抗體,其中該能夠特異性結合於第一標靶之抗原結合結構域係能夠特異性結合於CD40之抗原結合結構域,其包含:(i)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO:167、SEQ ID NO:168、SEQ ID NO:169及SEQ ID NO:170;及輕鏈可變區(VLCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO:171、SEQ ID NO:172、SEQ ID NO:173及SEQ ID NO:174,或 (ii)重鏈可變區(VHCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO:175、SEQ ID NO:176、SEQ ID NO:177、SEQ ID NO:178、SEQ ID NO:179及SEQ ID NO:180;及輕鏈可變區(VLCD40),其包含選自由以下組成之群之胺基酸序列:SEQ ID NO:181、SEQ ID NO:182、SEQ ID NO:183及SEQ ID NO:184。
  21. 一種經分離核酸,其編碼如請求項1至20中任一項之雙特異性抗體。
  22. 一種載體或宿主細胞,其包含如請求項21之核酸。
  23. 一種藉由在適用於表現雙特異性抗體之條件下培養如請求項22之宿主細胞來製備該雙特異性抗體的方法。
  24. 一種醫藥組合物,其包含如請求項1至20中任一項之雙特異性抗體及醫藥學上可接受之賦形劑。
  25. 如請求項1或2之雙特異性抗體,其用作藥劑。
  26. 如請求項24之醫藥組合物,其用作藥劑。
  27. 如請求項1或2之雙特異性抗體,其用於治療癌症或感染病。
  28. 如請求項24之醫藥組合物,其用於治療癌症或感染病。
  29. 一種如請求項1至20中任一項之雙特異性抗體或如請求項24之醫藥組合物之用途,其用於製造用於以下各者之藥劑:(i)刺激T細胞反應,(ii)支持活化T細胞之存活,(iii)治療感染,(iv)治療癌症,(v)延遲癌症進展,或(vi)延長罹患癌症之患者的存活期。
  30. 如請求項29之用途,其中該藥劑用於與其他治療劑一起投與。
TW107138691A 2017-11-01 2018-10-31 雙特異性2+1康特斯體(Contorsbody) TWI829658B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??17199537.6 2017-11-01
EP17199537 2017-11-01
EP17199537.6 2017-11-01

Publications (2)

Publication Number Publication Date
TW201922791A TW201922791A (zh) 2019-06-16
TWI829658B true TWI829658B (zh) 2024-01-21

Family

ID=60201893

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138691A TWI829658B (zh) 2017-11-01 2018-10-31 雙特異性2+1康特斯體(Contorsbody)

Country Status (18)

Country Link
US (1) US20210324108A1 (zh)
EP (1) EP3703821A2 (zh)
JP (1) JP7098725B2 (zh)
KR (1) KR20200079492A (zh)
CN (1) CN111182944B (zh)
AU (1) AU2018357923A1 (zh)
BR (1) BR112020006443A2 (zh)
CA (1) CA3076027A1 (zh)
CL (1) CL2020000662A1 (zh)
CR (1) CR20200171A (zh)
IL (1) IL272747A (zh)
MA (1) MA50505A (zh)
MX (1) MX2020004571A (zh)
PE (1) PE20210844A1 (zh)
SG (1) SG11202002903XA (zh)
TW (1) TWI829658B (zh)
WO (1) WO2019086500A2 (zh)
ZA (1) ZA202001139B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS60201B1 (sr) 2014-11-14 2020-06-30 Hoffmann La Roche Antigen vezujući molekuli koji sadrže trimer liganda familije tnf
EP3889175A1 (en) * 2016-05-02 2021-10-06 F. Hoffmann-La Roche AG The contorsbody - a single chain target binder
AU2017384126A1 (en) 2016-12-20 2019-05-02 F. Hoffmann-La Roche Ag Combination therapy of anti-CD20/anti-CD3 bispecific antibodies and 4-1BB (CD137) agonists
CR20190309A (es) 2017-01-03 2019-08-21 Hoffmann La Roche Moleculas de unión de3 antígeno biespecíficas que comprenden el clon 20h4.9 anti-4-1bb
JP7196094B2 (ja) * 2017-03-29 2022-12-26 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 共刺激tnf受容体のための二重特異性抗原結合分子
JP7205995B2 (ja) 2017-03-29 2023-01-17 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 共刺激性tnf受容体に対する二重特異性抗原結合分子
ES2928718T3 (es) 2017-04-03 2022-11-22 Hoffmann La Roche Inmunoconjugados de un anticuerpo anti-PD-1 con una IL-2 mutante o con IL-15
CN111836630A (zh) 2018-01-05 2020-10-27 希望之城 多特异性配体结合物
CR20200459A (es) 2018-04-13 2020-11-11 Hoffmann La Roche Moléculas de unión a antígeno dirigidas a her2 que comprendan 4-1bbl
AU2019355252A1 (en) 2018-10-01 2021-04-01 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-FAP clone 212
TW202039567A (zh) 2018-12-21 2020-11-01 瑞士商赫孚孟拉羅股份公司 靶向腫瘤之促效cd28抗原結合分子
KR20220004062A (ko) * 2019-04-25 2022-01-11 에프. 호프만-라 로슈 아게 반감기가 연장된 활성화 가능한 치료용 다중특이적 폴리펩티드
TW202106715A (zh) * 2019-04-25 2021-02-16 瑞士商赫孚孟拉羅股份公司 藉由多肽鏈交換活化之治療性多特異性多肽
KR20220005031A (ko) * 2019-04-25 2022-01-12 에프. 호프만-라 로슈 아게 폴리펩티드 사슬 교환에 의한 항체-유래된 폴리펩티드의 산출
CN113891728A (zh) * 2019-05-15 2022-01-04 协和麒麟株式会社 与cd40和fap结合的双特异性抗体
CN114531878A (zh) * 2019-06-27 2022-05-24 豪夫迈·罗氏有限公司 新颖icos抗体及包含它们的肿瘤靶向抗原结合分子
AR121706A1 (es) 2020-04-01 2022-06-29 Hoffmann La Roche Moléculas de unión a antígeno biespecíficas dirigidas a ox40 y fap
JP2023504675A (ja) * 2020-05-19 2023-02-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ガンの処置のための結合分子
WO2023245022A2 (en) * 2022-06-14 2023-12-21 Invenra Inc. Multispecific binding agents that target b7h3 and gd2 and uses thereof
TW202413410A (zh) * 2022-08-18 2024-04-01 英商英美偌科有限公司 多域結合分子
WO2024102436A1 (en) * 2022-11-10 2024-05-16 The Johns Hopkins University System for modulating receptor tyrosine kinase signaling and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116846A2 (en) * 2013-01-23 2014-07-31 Abbvie, Inc. Methods and compositions for modulating an immune response
WO2017060144A1 (en) * 2015-10-07 2017-04-13 F. Hoffmann-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory tnf receptor
WO2017180913A2 (en) * 2016-04-13 2017-10-19 Sanofi Trispecific and/or trivalent binding proteins

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2388385B1 (fr) 1977-04-18 1982-01-08 Hitachi Metals Ltd Piece d'ornement fixee par des aimants permanents
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
AU675916B2 (en) 1991-06-14 1997-02-27 Genentech Inc. Method for making humanized antibodies
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
DE69333807T2 (de) 1992-02-06 2006-02-02 Chiron Corp., Emeryville Marker für krebs und biosynthetisches bindeprotein dafür
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
EP0979281B1 (en) 1997-05-02 2005-07-20 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
CA2293829C (en) 1997-06-24 2011-06-14 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
DE19742706B4 (de) 1997-09-26 2013-07-25 Pieris Proteolab Ag Lipocalinmuteine
EP1028751B1 (en) 1997-10-31 2008-12-31 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
AUPP221098A0 (en) 1998-03-06 1998-04-02 Diatech Pty Ltd V-like domain binding molecules
ES2340112T3 (es) 1998-04-20 2010-05-28 Glycart Biotechnology Ag Ingenieria de glicosilacion de anticuerpos para la mejora de la citotoxicidad celular dependiente de anticuerpos.
US7115396B2 (en) 1998-12-10 2006-10-03 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
DE60022369T2 (de) 1999-10-04 2006-05-18 Medicago Inc., Sainte Foy Verfahren zur regulation der transkription von fremden genen in gegenwart von stickstoff
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
EP2149604A1 (en) 2000-09-08 2010-02-03 Universität Zürich Collections of repeat proteins comprising repeat modules
NZ592087A (en) 2001-08-03 2012-11-30 Roche Glycart Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
MXPA04003798A (es) 2001-10-25 2004-07-30 Genentech Inc Composiciones de glicoproteina.
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
US7432063B2 (en) 2002-02-14 2008-10-07 Kalobios Pharmaceuticals, Inc. Methods for affinity maturation
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
DE602004018141D1 (de) 2003-07-04 2009-01-15 Affibody Ab Polypeptide mit bindungsaffinität für her2
AU2003275958A1 (en) 2003-08-25 2005-03-10 Pieris Proteolab Ag Muteins of tear lipocalin
CN1326881C (zh) * 2003-09-29 2007-07-18 中国人民解放军军事医学科学院基础医学研究所 一种三价双特异性抗体,其制备方法及用途
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
SI2380911T1 (en) 2003-11-05 2018-07-31 Roche Glycart Ag ANTIGEN-RELATED PATIENTS WITH INCREASED ATTENTION ON THE RECEPTOR FC AND EFFECTORAL FUNCTION
SG149004A1 (en) 2003-12-05 2009-01-29 Bristol Myers Squibb Co Inhibitors of type 2 vascular endothelial growth factor receptors
RU2368622C2 (ru) 2004-04-13 2009-09-27 Ф.Хоффманн-Ля Рош Аг Антитела к р-селектину
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
AU2005286607B2 (en) 2004-09-23 2011-01-27 Genentech, Inc. Cysteine engineered antibodies and conjugates
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
BRPI0610470A2 (pt) 2005-05-26 2010-06-22 Seattle Genetics Inc anticorpo isolado ou fragmento de ligação a antìgeno que especificamente se liga a cd40 humano, kit, composição farmacêutica, e, polinucleotìdeo isolado
WO2007110205A2 (en) 2006-03-24 2007-10-04 Merck Patent Gmbh Engineered heterodimeric protein domains
US20090182127A1 (en) 2006-06-22 2009-07-16 Novo Nordisk A/S Production of Bispecific Antibodies
EP1958957A1 (en) 2007-02-16 2008-08-20 NascaCell Technologies AG Polypeptide comprising a knottin protein moiety
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
EP2235064B1 (en) 2008-01-07 2015-11-25 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
EP2417156B1 (en) * 2009-04-07 2015-02-11 Roche Glycart AG Trivalent, bispecific antibodies
ES2708124T3 (es) 2009-04-27 2019-04-08 Oncomed Pharm Inc Procedimiento para preparar moléculas heteromultiméricas
JP5856073B2 (ja) 2009-12-29 2016-02-09 エマージェント プロダクト デベロップメント シアトル, エルエルシー Ron結合構築体およびその使用方法
JP6022444B2 (ja) 2010-05-14 2016-11-09 ライナット ニューロサイエンス コーポレイション ヘテロ二量体タンパク質ならびにそれを生産および精製するための方法
LT2603530T (lt) * 2010-08-13 2018-01-25 Roche Glycart Ag Anti-fap antikūnai ir jų naudojimo metodai
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
RU2607014C2 (ru) 2011-03-29 2017-01-10 Рош Гликарт Аг Fc варианты антитела
PL2794905T3 (pl) 2011-12-20 2020-11-02 Medimmune, Llc Zmodyfikowane polipeptydy dla rusztowań przeciwciał dwuswoistych
SI2838918T1 (sl) 2012-04-20 2019-11-29 Merus Nv Postopki in sredstva za proizvodnjo heterodimernih IG-podobnih molekul
CN108602887B (zh) 2015-10-02 2022-06-21 豪夫迈·罗氏有限公司 对共刺激性tnf受体特异性的双特异性抗体
EP3889175A1 (en) * 2016-05-02 2021-10-06 F. Hoffmann-La Roche AG The contorsbody - a single chain target binder
CR20190309A (es) * 2017-01-03 2019-08-21 Hoffmann La Roche Moleculas de unión de3 antígeno biespecíficas que comprenden el clon 20h4.9 anti-4-1bb
CN110402255B (zh) * 2017-04-04 2022-12-02 豪夫迈·罗氏有限公司 新颖的能够特异性结合cd40和fap的双特异性抗原结合分子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116846A2 (en) * 2013-01-23 2014-07-31 Abbvie, Inc. Methods and compositions for modulating an immune response
WO2017060144A1 (en) * 2015-10-07 2017-04-13 F. Hoffmann-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory tnf receptor
WO2017180913A2 (en) * 2016-04-13 2017-10-19 Sanofi Trispecific and/or trivalent binding proteins

Also Published As

Publication number Publication date
MX2020004571A (es) 2020-08-24
CR20200171A (es) 2020-06-14
EP3703821A2 (en) 2020-09-09
BR112020006443A2 (pt) 2020-09-29
WO2019086500A3 (en) 2019-08-29
CL2020000662A1 (es) 2020-10-02
TW201922791A (zh) 2019-06-16
RU2020117441A (ru) 2021-12-01
ZA202001139B (en) 2021-03-31
SG11202002903XA (en) 2020-04-29
JP7098725B2 (ja) 2022-07-11
US20210324108A1 (en) 2021-10-21
MA50505A (fr) 2020-09-09
CA3076027A1 (en) 2019-05-09
CN111182944A (zh) 2020-05-19
PE20210844A1 (es) 2021-05-10
RU2020117441A3 (zh) 2022-04-01
KR20200079492A (ko) 2020-07-03
CN111182944B (zh) 2022-11-22
IL272747A (en) 2020-04-30
WO2019086500A2 (en) 2019-05-09
AU2018357923A1 (en) 2020-03-05
JP2021500898A (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
TWI829658B (zh) 雙特異性2+1康特斯體(Contorsbody)
US11447558B2 (en) Bispecific antigen binding molecules comprising anti-4-1BB clone 20H4.9
US20220073646A1 (en) Bispecific antibodies with tetravalency for a costimulatory tnf receptor
US20200071411A1 (en) Bispecific antibodies specific for ox40
US20210253724A1 (en) Novel bispecific agonistic 4-1bb antigen binding molecules
EP3703746A1 (en) Novel tnf family ligand trimer-containing antigen binding molecules
US20230227584A1 (en) Bispecific antibodies comprising a modified c-terminal crossfab fragment
US11453722B2 (en) Bispecific antigen binding molecule for a costimulatory TNF receptor
WO2018178055A1 (en) Bispecific antigen binding molecule for a costimulatory tnf receptor
RU2797305C2 (ru) Биспецифические 2+1 конторстела