TWI828204B - 醋酸之製造方法 - Google Patents

醋酸之製造方法 Download PDF

Info

Publication number
TWI828204B
TWI828204B TW111123382A TW111123382A TWI828204B TW I828204 B TWI828204 B TW I828204B TW 111123382 A TW111123382 A TW 111123382A TW 111123382 A TW111123382 A TW 111123382A TW I828204 B TWI828204 B TW I828204B
Authority
TW
Taiwan
Prior art keywords
mass
acetic acid
tower
less
ppb
Prior art date
Application number
TW111123382A
Other languages
English (en)
Other versions
TW202237556A (zh
Inventor
清水雅彥
Original Assignee
日商大賽璐股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大賽璐股份有限公司 filed Critical 日商大賽璐股份有限公司
Publication of TW202237556A publication Critical patent/TW202237556A/zh
Application granted granted Critical
Publication of TWI828204B publication Critical patent/TWI828204B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本發明提供一種醋酸之製造方法,其可大幅提升用以去除醋酸中之有機碘化物的銀取代離子交換樹脂(IER)之壽命。 本發明的醋酸之製造方法,在甲醇法羰基化製程中,醋酸蒸餾步驟至少具有1個以蒸餾塔的塔底溫度小於175℃的條件進行醋酸分流之蒸餾的蒸餾步驟,且該蒸餾步驟中蒸餾塔之材質為鎳基合金或鋯,並使該蒸餾步驟中蒸餾塔之加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb、且鉬離子小於2000質量ppb。

Description

醋酸之製造方法
本發明係關於製造醋酸的方法。
作為醋酸的工業製造法,甲醇法羰基化製程(甲醇法醋酸製程)已為人所知。此製程中,係例如在反應槽使甲醇與一氧化碳於觸媒之存在下反應而生成醋酸,使反應混合物在蒸發槽中蒸發,將該蒸氣相在去除低沸物塔、接著在脫水塔中精製而將醋酸製品化,或是經由脫水塔、接著經由去除高沸物塔或進一步經由製品塔而將醋酸製品化。
這種醋酸製造製程中,在反應系統中副生成碘己烷等的有機碘化物,其作為微量雜質包含於製品醋酸中。若將包含有機碘化物的醋酸用於製造醋酸乙烯酯的原料,則會導致鈀觸媒劣化,因此必須使醋酸中的有機碘化物濃度降低至數ppb等級。因此,以往使用經銀離子交換的陽離子交換樹脂,將醋酸中的有機碘化物濃度降低至極限。然而,使用這種銀取代離子交換樹脂(以下有時簡稱「IER」)的有機碘化物之吸附去除方法,存在製程分流中的鐵、鎳、鉻、鉬等的源自裝置之腐蝕的腐蝕金屬(亦稱為腐蝕性金屬)等與離子交換樹脂中的銀進行離子交換,導致有效的銀溶入醋酸中而流出至系統外,而有離子交換樹脂去除有機碘化物的壽命降低這樣的問題。又,作為其結果,使製品醋酸中的腐蝕金屬等的濃度及銀濃度增加,亦有導致製品醋酸的品質降低這樣的問題。
專利文獻1,揭示了一種醋酸的精製製程,其係以抑制因腐蝕金屬所導致之離子交換樹脂之壽命降低為目的,使用包含具有特定量之金屬-官能基化活性部位的金屬-活性化交換樹脂與具有非金屬-官能基化活性部位之非金屬-官能基化交換樹脂的離子交換樹脂組成物。又,專利文獻2揭示了一種方法,其為了抑制脫水塔的腐蝕,而在脫水塔或脫水塔供給液中添加、混合鹼成分而將成為裝置腐蝕之原因的碘化氫中和。
然而,上述任一方法皆無法充分抑制因腐蝕金屬所導致之上述離子交換樹脂的壽命降低。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特表2014-508820號公報 [專利文獻2]國際公開第2012/086386號小冊
[發明欲解決之課題]
因此,本發明之目的,係提供一種醋酸之製造方法,其可大幅提升用以去除醋酸中之有機碘化物的銀取代離子交換樹脂(IER)的壽命。 [用以解決課題之手段]
本案發明人為了達成上述目的,著眼於脫水塔的材質及脫水塔之加入液中的雜質而詳細研究,結果發現使脫水塔的材質為特定材質,且控制脫水塔加入液中的特定金屬離子的濃度,藉此可將由脫水塔所得之醋酸中的金屬離子濃度保持在低等級,並可將後續吸附去除步驟中加入IER之醋酸中的金屬離子濃度控制在低等級,藉此可大幅提升IER的壽命,進而防止製品醋酸的品質降低。
又,本案發明人為了調查脫水塔腐蝕的主要原因,首先針對蒸餾塔之塔底液(亦稱為塔底排出液)的組成與塔底溫度的關連性進行研究。上述甲醇法羰基化製程中,使用銠觸媒等的金屬觸媒作為觸媒,使用碘甲烷作為輔助觸媒。因此,反應系統內副生成碘化氫。在脫水塔中,大部分的碘甲烷及碘化氫被蒸餾分離,但脫水塔的塔底排出液中存在ppb、ppm等級的碘化氫。因此,於脫水塔的塔內或塔底排出液中加入氫氧化鉀等的鹼,以中和殘留的碘化氫。在下一個步驟的蒸餾設備等(例如去除高沸物塔)將生成的鹼金屬鹽(鹼金屬碘化物、鹼金屬醋酸鹽)去除。這種鹼金屬鹽在蒸餾塔的底部濃縮,而從塔底排出管線隨著醋酸被廢棄,但為了提升醋酸的使用率,而極力減少廢棄量。因此,蒸餾塔之塔底液中的鹼金屬鹽濃度變高,鹽造成沸點上升,導致蒸餾塔的塔底溫度(底部溫度)上升。又,因為存在於脫水塔之塔底排出液中的碘化氫導致塔內腐蝕而腐蝕金屬流出,形成醋酸金屬鹽。該醋酸金屬鹽與鹼金屬鹽相同,亦會影響蒸餾塔之塔底溫度的上升。
又,上述蒸餾塔(例如去除高沸物塔)的底部幾乎不存在水,故因醋酸的脫水反應生成醋酸酐。若存在蒸餾設備被碘化氫腐蝕所生成之金屬碘化物(例如碘化鐵),則在該觸媒作用下生成大量該醋酸酐。因此,該蒸餾塔之塔底液中存在大量醋酸酐,而導致塔底溫度上升。
再者,反應系統中副生成的丙酸等高沸點雜質在蒸餾塔的底部濃縮。此亦成為塔底溫度上升的原因之一。
接著,根據該等研究、考察,藉由腐蝕測試來確認存在於蒸餾塔塔底液中之高沸點雜質的種類與量、塔底溫度與壓力以及各種材質之腐蝕性的關連性。結果得到下述見解:腐蝕速度受到溫度的影響顯著,若溫度160℃在以上,即便是鋯或鎳基合金也只能使用赫史特合金B2等的高耐久材質,即使為純醋酸,若壓力上升而沸點上升,則腐蝕速度亦加快,在相同操作壓力下,引起沸點上升的醋酸鹽、醋酸酐、丙酸之濃度越高,腐蝕速度越快,腐蝕速度因高沸點雜質的種類而有所不同等。
本發明係根據該等的見解進一步反覆研究而完成。
亦即,本發明提供一種醋酸之製造方法,其係包含下述步驟的醋酸之製造方法: 羰基化反應步驟,在包含金屬觸媒及碘甲烷的觸媒系統、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應而生成醋酸; 分離步驟,使用1個以上的蒸發槽及/或蒸餾塔,將上述羰基化反應步驟中所得之反應混合物分離成包含金屬觸媒之分流、富含醋酸之醋酸分流與比上述醋酸分流更富含低沸成分之分流; 醋酸蒸餾步驟,其係亦可包含於上述分離步驟中的步驟,其將醋酸分流予以蒸餾而精製醋酸;及 吸附去除步驟,以離子交換樹脂處理上述醋酸蒸餾步驟中所得之精製醋酸分流; 其中, 上述醋酸蒸餾步驟至少具有一個以蒸餾塔的塔底溫度小於175℃之條件進行醋酸分流之蒸餾的蒸餾步驟,且使該蒸餾步驟中蒸餾塔之材質為鎳基合金或鋯,使該蒸餾步驟中蒸餾塔之加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb且鉬離子小於2000質量ppb。
上述蒸餾步驟中蒸餾塔之加入液中的醋酸濃度較佳為90質量%以上。
上述蒸餾步驟中蒸餾塔之加入液,例如,較佳係含有選自包含醋酸鹽、醋酸酐及丙酸之群組的至少1種化合物。
上述蒸餾步驟中蒸餾塔之塔底液的醋酸鹽濃度較佳為34質量%以下。
上述蒸餾步驟中蒸餾塔之塔底液的醋酸酐濃度較佳為90質量%以下。
上述蒸餾步驟中蒸餾塔之塔底液的丙酸濃度較佳為90質量%以下。
較佳係以上述蒸餾步驟中蒸餾塔之塔底壓力小於0.255MPaG的條件進行蒸餾。
較佳係以上述蒸餾步驟中蒸餾塔之塔底壓力在0.01MPaG以上、小於0.255MPaG的條件進行蒸餾。
上述蒸餾步驟中蒸餾塔之加入液中的鋅離子濃度較佳為小於1000質量ppb。
上述蒸餾步驟中蒸餾塔之加入液供給段與塔頂蒸氣抽出段的段間隔,以實際段數計較佳為1段以上。
上述蒸餾步驟中往蒸餾塔的加入管路之材質較佳為鎳基合金或鋯。
上述醋酸蒸餾步驟中,至少具有1個附加於蒸餾之醋酸分流中的醋酸濃度在97質量%以上的蒸餾步驟,較佳係在所有這種步驟中,皆以蒸餾塔的塔底溫度小於175℃的條件進行上述醋酸分流的蒸餾。
本發明又提供一種醋酸之製造方法,其係包含下述步驟的醋酸之製造方法: 羰基化反應步驟,在含金屬觸媒及碘甲烷的觸媒系統、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應而生成醋酸; 蒸發步驟,將上述羰基化反應步驟中所得之反應混合物在蒸發槽中分離成蒸氣分流與殘液分流; 去除低沸物步驟,將上述蒸氣分流附加於蒸餾,以分離成富含低沸成分的頂部餾出物分流與富含醋酸之第1醋酸分流; 脫水步驟,將上述第1醋酸分流附加於蒸餾,以分離成富含水的頂部餾出物分流與比第1醋酸分流更富含醋酸的第2醋酸分流;及 吸附去除步驟,以離子交換樹脂處理上述第2醋酸分流或進一步精製上述第2醋酸分流而更富含醋酸的醋酸分流; 其中, 使上述脫水步驟中蒸餾塔的材質為鎳基合金或鋯,且使上述脫水步驟中蒸餾塔之加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb且鉬離子小於2000質量ppb; 以蒸餾塔的塔底溫度小於175℃的條件進行上述脫水步驟。
上述第2醋酸分流中的鐵離子濃度較佳為小於21000質量ppb。
上述第2醋酸分流中的金屬離子濃度較佳為鐵離子小於21000質量ppb、鉻離子小於7100質量ppb、鎳離子小於4000質量ppb、鉬離子小於3000質量ppb、且鋅離子小於1000質量ppb。
本發明又提供一種醋酸之製造方法,其中,在材質為鎳基合金或鋯且加入液供給段與塔頂蒸氣抽出段的段間隔以實際段數計為1段以上的蒸餾塔中,通過材質為鎳基合金或鋯的加入管路,將鐵離子濃度小於10000質量ppb、鉻離子濃度小於5000質量ppb、鎳離子濃度小於3000質量ppb、鉬離子濃度小於2000質量ppb、鋅離子濃度小於1000質量ppb、碘己烷濃度小於510質量ppb、醋酸濃度80質量%以上的粗製醋酸加入上述加入液供給段,以塔底溫度小於175℃的條件進行蒸餾,得到富含水的頂部餾出物、以及鐵離子濃度小於21000質量ppb、鉻離子濃度小於7100質量ppb、鎳離子濃度小於4000質量ppb、鉬離子濃度小於3000質量ppb、鋅離子濃度小於1000質量ppb的精製醋酸。 [發明之效果]
根據本發明,在將包含醋酸與沸點高於醋酸之雜質的粗製醋酸液予以蒸餾而精製醋酸時,以特定材質構成醋酸蒸餾步驟(例如,脫水步驟、去除高沸物步驟等)中的蒸餾塔,以蒸餾塔的塔底溫度小於175℃的條件進行蒸餾,將往該蒸餾塔之加入液中的特定金屬離子濃度限制在特定值以下,因此可降低蒸餾塔中所得之精製醋酸中的金屬離子濃度,因而亦可降低供給至後續吸附去除步驟之醋酸中的金屬離子濃度。因此,可大幅提升吸附去除步驟中所使用的銀取代離子交換樹脂(IER)的壽命,且亦可降低製品醋酸中的金屬離子濃度。如此所得之金屬離子濃度低的醋酸,可用作電子材料用途中所使用的低金屬醋酸。
[用以實施發明的形態]
本發明的醋酸之製造方法,係包含下述步驟的醋酸之製造方法:羰基化反應步驟,在包含金屬觸媒及碘甲烷的觸媒系統、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應而生成醋酸;分離步驟,使用1個以上的蒸發槽及/或蒸餾塔,將上述羰基化反應步驟中所得之反應混合物分離成包含金屬觸媒之分流、富含醋酸之醋酸分流與比上述醋酸分流更富含低沸成分之分流;醋酸蒸餾步驟,其係亦可包含於上述分離步驟中的步驟,其將醋酸分流予以蒸餾而精製醋酸;及吸附去除步驟,以離子交換樹脂處理上述醋酸蒸餾步驟中所得之精製醋酸分流;其中,該醋酸蒸餾步驟至少具有一個以蒸餾塔的塔底溫度小於175℃之條件進行醋酸分流之蒸餾的蒸餾步驟,且使該蒸餾步驟中蒸餾塔之材質為鎳基合金或鋯,並將該蒸餾步驟中蒸餾塔之加入液中的金屬離子濃度控制在鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb且鉬離子小於2000質量ppb。脫水塔之加入液中的鋅離子濃度較佳係小於1000質量ppb。此外,蒸餾塔的加入液,係指供給至該蒸餾塔的全部分流,其包含來自該蒸餾塔正前方之蒸餾塔的醋酸分流(例如,正前方之蒸餾塔為去除低沸物步驟中之蒸餾塔的情況,為上述第1醋酸分流)的至少一部分,亦可加入該醋酸分流(例如上述第1醋酸分流)以外的分流(例如來自下游步驟的再循環分流)。上述觸媒系統亦可更包含離子性碘化物。
上述分離步驟,例如,較佳係具有將上述羰基化反應步驟中所得之反應混合物在蒸發槽中分離成蒸氣分流與殘液分流的蒸發步驟、將上述蒸氣分流附加於蒸餾而分離成富含低沸成分的頂部餾出物分流與富含醋酸之第1醋酸分流的去除低沸物步驟、將上述第1醋酸分流附加於蒸餾而分離成富含水的頂部餾出物分流與比第1醋酸分流更富含醋酸的第2醋酸分流的脫水步驟。
此外,上述分離步驟中,作為上述蒸發步驟及去除低沸物步驟的替代,亦可具備將上述羰基化反應步驟中所得之反應混合物分離成包含上述觸媒之分流、富含上述低沸成分的頂部餾出物分流、富含醋酸之第1醋酸分流的步驟(蒸發去除低沸物步驟)。又,上述分離步驟中,作為上述去除低沸物步驟及脫水步驟的替代,亦可具備亦具有上述脫水步驟之功能的去除低沸物步驟(所謂的去除低沸物脫水步驟),亦即將上述蒸氣分流附加於蒸餾而分離成富含低沸成分的頂部餾出物分流、經脫水至水濃度與上述第2醋酸分流相同的醋酸分流的步驟。因此,上述蒸發去除低沸物步驟,亦可具備亦具有上述脫水步驟之功能的步驟(蒸發去除低沸物脫水步驟)。由去除低沸物脫水步驟及蒸發去除低沸物脫水步驟所得之富含醋酸之醋酸分流,相當於上述第2醋酸分流。
上述醋酸蒸餾步驟,亦可為包含於上述分離步驟的步驟,亦可為與上述分離步驟分開而另外具備的步驟。醋酸蒸餾步驟包含於上述分離步驟的情況,上述脫水步驟、去除低沸物脫水步驟、蒸發去除低沸物脫水步驟則包含於本發明中的「醋酸蒸餾步驟」。作為與上述分離步驟分開而另外具備的醋酸蒸餾步驟,可列舉下述的去除高沸物步驟、製品塔中的蒸餾步驟。
上述鎳基合金係以鎳為基礎的合金,包含赫史特合金(赫史特合金B2、赫史特合金C等)、蒙乃爾、英高鎳、英高合金等。
上述鐵離子、鉻離子、鎳離子、鉬離子,係由裝置的腐蝕所生成的金屬離子(腐蝕金屬離子)。另一方面,鋅離子係源自於用作反應原料之甲醇中作為雜質而包含的鋅離子。
又,本發明的醋酸之製造方法中,醋酸蒸餾步驟包含使蒸餾塔的塔底溫度小於175℃(例如173℃以下)的蒸餾步驟。有將使蒸餾塔的塔底溫度小於175℃(例如173℃以下)的蒸餾步驟稱為「蒸餾步驟(A)」的情況。塔底溫度係指塔底液的溫度。在將包含醋酸與沸點高於醋酸之雜質的醋酸分流進行蒸餾來加以精製醋酸時,藉由使蒸餾塔的塔底溫度小於175℃(例如173℃以下),可明顯抑制蒸餾塔裝置的腐蝕。若使蒸餾塔的塔底溫度為175℃以上,則即使在塔底液中不存在醋酸鹽、醋酸酐、丙酸的情況,不鏽鋼及部分鎳基合金的腐蝕速度仍然快速,導致該等的材質不適合作為蒸餾塔裝置的材質。
藉由使醋酸蒸餾步驟中蒸餾塔之材質為鎳基合金或耐蝕性高於鎳基合金的鋯,可大幅抑制在反應系統中生成而包含於蒸餾塔之加入液的碘化氫或醋酸所引起的裝置腐蝕與伴隨於此的腐蝕金屬離子之溶出。又,藉由使蒸餾塔的塔底溫度小於175℃(例如173℃以下),可明顯抑制蒸餾塔裝置的腐蝕。因此,搭配限制蒸餾步驟(A)中蒸餾塔之塔底溫度、限制流入該蒸餾塔之特定金屬離子的量與抑制特定金屬離子在該蒸餾塔內溶出,可大幅降低該蒸餾塔中所得之精製醋酸中的特定金屬離子濃度。因此,可降低流入後續吸附去除步驟的特定金屬離子的量,而可大幅提升該步驟中所使用的銀取代離子交換樹脂(IER)的壽命。又,作為其結果,可降低吸附去除步驟中所得之精製醋酸中的金屬離子濃度,即使長期不更換IER,亦可長期製造高品質的製品醋酸。此外,在使蒸餾塔的材質為例如不鏽鋼的情況中,蒸餾塔內部因為碘化氫或醋酸而腐蝕,又,若使蒸餾塔的塔底溫度為175℃以上,即使塔底液中不存在醋酸鹽、醋酸酐、丙酸的情況,蒸餾塔內部亦會發生腐蝕,導致鐵、鉻、鎳、鉬等的腐蝕金屬大量混入精製醋酸中,造成後續步驟中所使用的IER的壽命降低。又,蒸餾塔之加入液中的上述特定金屬離子的濃度多於上述範圍的情況,上述精製醋酸中的金屬濃度變高,仍會縮短後續步驟中所使用的IER的壽命。
蒸餾步驟(A)中蒸餾塔之加入液中的鐵離子濃度較佳為小於9000質量ppb,更佳為小於5000質量ppb,再佳為小於3000質量ppb,特佳為小於1500質量ppb,尤其是小於800質量ppb(例如小於400質量ppb)。上述加入液中的鉻離子濃度較佳為小於4000質量ppb,更佳為小於2500質量ppb,再佳為小於1500質量ppb,特佳為小於750質量ppb,尤其是小於400質量ppb(例如小於200ppb)。上述加入液中的鎳離子濃度較佳為小於2500質量ppb,更佳為小於2000質量ppb,再佳為小於1000質量ppb,特佳為小於500質量ppb,尤其是小於250質量ppb(例如小於150質量ppb)。上述加入液中的鉬離子濃度較佳為小於1700質量ppb,更佳為小於1200質量ppb,再佳為小於700質量ppb,特佳為小於350質量ppb,尤其是小於170質量ppb。又,上述加入液中的鋅離子濃度較佳為小於800質量ppb,更佳為小於650質量ppb,再佳為小於500質量ppb,特佳為小於410質量ppb,尤其是小於200質量ppb。
作為將蒸餾步驟(A)中蒸餾塔之加入液中的特定金屬離子的濃度控制在上述特定範圍內的方法,可列舉例如:(i)使往該蒸餾塔的加入管路的材質為鎳基合金、鋯等的高耐腐蝕性金屬;(ii)在從反應槽的出口至該蒸餾塔入口的適當處,設置用以將上述特定金屬離子吸附去除的離子交換樹脂(特別是陽離子交換樹脂)塔(或槽);(iii)使用金屬離子含量(例如鋅離子含量)極少的甲醇作為供給至反應槽的甲醇等的方法。例如,因為脫水步驟中蒸餾塔(以下具有稱為「脫水塔」的情況)的加入液中存在水及碘化氫以及醋酸,因此往脫水塔之加入管路容易腐蝕,但藉由使該加入管路的材質為鎳基合金、鋯等的高耐腐蝕性金屬,可抑制加入管路內部的腐蝕及腐蝕金屬離子隨之溶出至脫水塔加入液,而且可降低脫水塔加入液中的金屬離子濃度。又,藉由在從反應槽之出口至脫水塔之入口的適當處設置用以吸附去除上述特定金屬離子的離子交換樹脂處理塔(或槽),可將從反應系統至去除離子交換樹脂處理塔(或槽)之前的管路所流入或所生成的金屬離子去除,而可將往脫水塔及其後續之蒸餾塔(例如,去除高沸物步驟中蒸餾塔)的加入液中的上述特定金屬離子濃度降低至上述特定範圍內。又,為了防止用於運送及儲存甲醇之油罐車及油槽的內面在乾燥時產生鐵鏽,而塗布無機鋅系塗料,該塗料中的鋅在長時間的運輸及儲藏中溶出至甲醇中。因此,市面上流通的甲醇中大多含鋅。該鋅亦成為導致在吸附去除步驟中所使用之銀取代離子交換樹脂(IER)的壽命降低的主要原因。因此,作為反應系統中用作原料的甲醇,較佳係使用鋅離子含量盡量較少的甲醇。針對鋅離子含量多的甲醇,期望係藉由例如陽離子交換樹脂進行處理,於降低鋅離子濃度後再供至反應。作為反應系統中所使用的原料甲醇中的鋅離子濃度,例如小於10質量ppm,較佳為小於1質量ppm,再佳為小於500質量ppb,特佳為小於100質量ppb。此外,如上所述,亦可藉由在從反應槽之出口至脫水塔之入口的適當處設置離子交換樹脂(特別是陽離子交換樹脂)塔(或槽),以去除源自原料甲醇的鋅離子。
蒸餾步驟(A)中蒸餾塔的塔底溫度較佳為173℃以下(例如小於173℃),更佳為172℃以下,再佳為170℃以下,特佳為168℃以下,尤其是165℃以下。蒸餾塔的塔底溫度只要在165℃以下,特別是164℃以下,則即使塔底液中大量存在醋酸鹽、醋酸酐、丙酸,仍可進一步抑制蒸餾塔內部的腐蝕。再者,只要使蒸餾塔的塔底溫度在163℃以下,特別是162℃以下,即可明顯抑制蒸餾塔內部的腐蝕。塔底溫度的下限例如為125℃,較佳為130℃,更佳為135℃。
蒸餾步驟(A)中蒸餾塔的塔頂溫度例如小於170℃,較佳為168℃以下,更佳為167℃以下(例如小於167℃),再佳為小於165℃,再更佳為小於163℃,特別是小於161℃,尤其是小於160℃。該蒸餾塔的塔頂溫度的下限例如為90℃,較佳為100℃,更佳為110℃。
上述醋酸蒸餾步驟中,至少具有1個附加於蒸餾之醋酸分流(亦即蒸餾塔之加入液)中的醋酸濃度為97質量%以上的蒸餾步驟,較佳係在所有這種步驟中,皆以蒸餾塔的塔底溫度小於175℃的條件(亦即,蒸餾步驟(A))進行上述醋酸分流的蒸餾。
蒸餾步驟(A)中蒸餾塔(特別是脫水塔)供給段與塔頂蒸氣抽出段的段數少的情況,由於偕同飛沫,加入液中的腐蝕金屬從塔頂流出,例如再循環至反應系統,雖使得精製醋酸中的金屬濃度降低,但也導致作為原來目標的水之濃縮分離效率降低。因此,該蒸餾塔(特別是脫水塔)的加入液供給段(加入段)與塔頂蒸氣抽出段的段間隔(段數),以實際段數計較佳為1段以上,更佳為3段以上,再佳為5段以上,特佳為8段以上(其中為10段以上)。
蒸餾步驟(A)中蒸餾塔之加入液包含醋酸與沸點高於醋酸的雜質,較佳係包含醋酸作為主成分者,作為該加入液中的醋酸濃度,較佳為90質量%以上(例如95質量%以上),更佳為97質量%以上,再佳為98質量%以上,特佳為99質量%以上。
作為上述沸點高於醋酸的雜質並未特別限定,而在本發明中,特別是在具有選自包含醋酸鹽、醋酸酐及丙酸之群組的至少1種化合物以作為上述高沸點雜質的情況,可得到很好的效果。作為上述醋酸鹽,可列舉醋酸鉀等的鹼金屬醋酸鹽等。
蒸餾步驟(A)中蒸餾塔(特別是脫水塔)的塔底液中的醋酸鹽濃度,例如為34質量%以下(例如30質量%以下),較佳為23質量%以下(例如15質量%以下),更佳為13質量%以下(例如12質量%以下),再佳為10質量%以下(例如5質量%以下),特佳為1質量%以下(例如0.5質量%以下),尤其是0.3質量%以下(例如0.1質量%以下),亦可為0.05質量%以下、0.01質量%以下。塔底液中的醋酸鹽濃度越低,腐蝕速度變得越慢。上述塔底液中的醋酸鹽濃度的下限,例如為0質量ppm(或1質量ppm)。甲醇法羰基化製程中,如上所述,為了中和反應系統中副生成的高腐蝕性碘化氫,而添加了氫氧化鉀等的鹼。添加的鹼不僅與碘化氫反應,亦與醋酸反應而生成醋酸鹽(例如醋酸鉀)。又,蒸餾塔塔底液中,可包含因為裝置的腐蝕而生成的鐵、鎳、鉻、錳、鉬等的金屬(以下有時稱為「腐蝕性金屬」)以及作為其他金屬的鈷、鋅及銅等。有時將上述腐蝕性金屬與其他金屬一併稱為「腐蝕金屬等」。蒸餾塔塔底液中,因為腐蝕金屬與醋酸而生成醋酸鹽(醋酸金屬鹽)。將包含這種醋酸鹽的粗製醋酸液蒸餾後,儲存於蒸餾塔的塔底。因此,蒸餾塔之塔底液中的醋酸鹽濃度,例如可藉由增加或減少鹼的添加量或是抑制蒸餾塔內部的腐蝕來調整。
蒸餾步驟(A)中蒸餾塔(特別是脫水塔)的塔底液中的醋酸酐濃度,例如為90質量%以下(例如80質量%以下),較佳為74質量%以下(例如60質量%以下),更佳為45質量%以下(例如20質量%以下),再佳為10質量%以下(例如5質量%以下),特佳為1質量%以下(例如0.5質量%以下),尤其是0.2質量%以下(例如0.1質量%以下),亦可為0.05質量%以下、0.02質量%以下、0.01質量%以下。塔底液中的醋酸酐濃度越低,腐蝕速度越慢。上述塔底液中的醋酸酐濃度下限例如為0質量ppm(或1質量ppm)。例如,在位於蒸餾塔上游的管路或裝置或是該蒸餾塔內添加水而使醋酸酐水解,藉此可調整蒸餾塔之塔底液中的醋酸酐濃度。
蒸餾步驟(A)中蒸餾塔(特別是脫水塔)的塔底液中的丙酸濃度例如為90質量%以下(例如80質量%以下),較佳為75質量%以下(例如65質量%以下),更佳為55質量%以下(例如35質量%以下),再佳為29質量%以下(例如20質量%以下),特佳為10質量%以下(例如5質量%以下),尤其是3質量%以下(例如1質量%以下),亦可為0.1質量%以下、0.05質量%以下、0.03質量%以下。塔底液中的丙酸濃度越低,腐蝕速度變得越慢。上述塔底液中丙酸濃度的下限例如為0質量ppm(或1質量ppm)。蒸餾塔之塔底液中的丙酸濃度,可藉由例如下述方法降低:變更反應條件以減少丙酸的副生成,或是在使加工液的一部分再循環至反應系統時,將作為丙酸副生成之原因的乙醛從該加工液分離去除後,再循環至反應系統,或於蒸餾塔的上游設置將丙酸分離去除的蒸餾塔或蒸發器(去丙酸塔)。
蒸餾步驟(A)中蒸餾塔(特別是脫水塔)的塔底壓力,可根據預期的塔底溫度及塔底液組成適當調整。上述塔底壓力例如小於0.255MPaG,較佳為0.24MPaG以下,再佳為0.23MPaG以下,特佳為0.21MPaG以下。此外,「G」表示錶壓。塔底液中的高沸點雜質的濃度越高則沸點變得越高,因此為了成為預期的塔底溫度,塔底液中的高沸點雜質的濃度越高,則必須使塔底壓力越低。塔底壓力越低,塔底溫度亦越低,而腐蝕性亦降低,但若塔底壓力低,則氣體密度降低,因此為了維持固定的醋酸生產量,必須使蒸餾塔的塔徑等變大,而在經濟上較為不利。因此,蒸餾塔的塔底壓力的下限例如為0.01MPaG,較佳為0.02MPaG,再佳為0.03MPaG,特佳為0.05MPaG。根據本發明,因為將塔底溫度調整至特定值以下,因此即使在加壓下,亦可防止裝置腐蝕並可藉由蒸餾而精製醋酸。因此,本發明在加壓下進行蒸餾以提高醋酸之生產效率的情況中特別有用。
如上所述,本發明中,因為使蒸餾步驟(A)中蒸餾塔(特別是脫水塔)的材質為特定材質,並使該蒸餾塔的塔底溫度小於175℃,且將該蒸餾塔加入液中的特定金屬離子濃度控制在特定值以下,因此可降低作為蒸餾塔之側分流或塔底排出分流而得到的醋酸分流(例如第2醋酸分流)中的金屬離子濃度。該醋酸分流(例如第2醋酸分流)中的鐵離子濃度例如小於21000質量ppb,較佳為小於16000質量ppb,更佳為小於6000質量ppb,再佳為小於2000質量ppb,特佳為小於200質量ppb。該醋酸分流(例如第2醋酸分流)中的鉻離子濃度例如小於7100質量ppb,較佳為小於5000質量ppb,更佳為小於3000質量ppb,再佳為小於1000質量ppb,特佳為小於100質量ppb。該醋酸分流(例如第2醋酸分流)中的鎳離子濃度例如小於4000質量ppb,較佳為小於3000質量ppb,更佳為小於1800質量ppb,再佳為小於700質量ppb,特佳為小於70質量ppb。該醋酸分流(例如第2醋酸分流)中的鉬離子濃度例如小於3000質量ppb,較佳為小於2500質量ppb,更佳為小於1500質量ppb,再佳為小於500質量ppb,特佳為小於50質量ppb。該醋酸分流(例如第2醋酸分流)中的鋅離子濃度例如小於1000質量ppb,較佳為小於850質量ppb,更佳為小於710質量ppb,再佳為小於410質量ppb,特佳為小於150質量ppb。
本發明中,蒸餾的形式可為批次式蒸餾及連續式蒸餾的任一種,但從生產效率等的觀點來看,更佳為連續式蒸餾。
本發明的較佳態樣之一,係在材質為鎳基合金或鋯、加入液供給段與塔頂蒸氣抽出段的段間隔以實際段數計為1段以上(理論段數例如為0.5段以上)的蒸餾塔中,通過材質為鎳基合金或鋯的加入管路,將鐵離子濃度小於10000質量ppb、鉻離子濃度小於5000質量ppb、鎳離子濃度小於3000質量ppb、鉬離子濃度小於2000質量ppb、鋅離子濃度小於1000質量ppb、碘己烷濃度小於510質量ppb、醋酸濃度80質量%以上的粗製醋酸加入上述加入液供給段,以塔底溫度小於175℃的條件進行蒸餾,得到富含水的頂部餾出物與鐵離子濃度小於21000質量ppb、鉻離子濃度小於7100質量ppb、鎳離子濃度小於4000質量ppb、鉬離子濃度小於3000質量ppb、鋅離子濃度小於1000質量ppb的精製醋酸。
以下說明本發明的一實施形態。圖1係顯示本發明之一實施形態的醋酸製造流程圖(甲醇法羰基化製程)的一例。與該醋酸製造流程相關的醋酸製造裝置,具備反應槽1、蒸發槽2、蒸餾塔3、傾析器4、蒸餾塔5、蒸餾塔6、離子交換樹脂塔7、滌氣器系統8、乙醛分離去除系統9、冷凝器1a、2a、3a、5a、6a、熱交換器2b、再沸器3b、5b、6b、管線11~56、泵57,其構成可連續製造醋酸的態樣。本實施形態的醋酸之製造方法中,在反應槽1、蒸發槽2、蒸餾塔3、蒸餾塔5、蒸餾塔6及離子交換樹脂塔7中分別進行反應步驟、蒸發步驟(急驟步驟)、第1蒸餾步驟、第2蒸餾步驟、第3蒸餾步驟及吸附去除步驟。第1蒸餾步驟亦稱為去除低沸物步驟,第2蒸餾步驟亦稱為脫水步驟,第3蒸餾步驟亦稱為去除高沸物步驟。第2蒸餾步驟、第3蒸餾步驟,包含於本發明中的「醋酸蒸餾步驟」。此外,在本發明中,不限於上述步驟,特別的是有未附帶乙醛分離去除系統9(去乙醛塔等)之設備的情況。又,如下所述,亦可在離子交換樹脂塔7的下游設置製品塔。該製品塔亦包含於本發明中的「醋酸蒸餾步驟」。
反應槽1係用以進行反應步驟的單元。該反應步驟係由下述化學式(1)所示之反應(甲醇的羰基化反應)連續生成醋酸的步驟。在醋酸製造裝置的正常運轉狀態下,在反應槽1內存在例如由攪拌機進行攪拌的反應混合物。反應混合物包含作為原料的甲醇、一氧化碳、金屬觸媒、輔助觸媒、水、作為製造目標的醋酸、以及各種的副生成物,而液相與氣相成為平衡狀態。 CH 3OH+CO→CH 3COOH       (1)
反應混合物中的原料為液態的甲醇及氣態的一氧化碳。通過管線11以既定流量將甲醇從甲醇儲存部(省略圖示)連續供給至反應槽1。如上所述,市面上流通的甲醇大多含鋅。該鋅成為導致後續吸附去除步驟中所使用之銀取代離子交換樹脂(IER)的壽命降低的主要原因。因此,針對鋅含量多的甲醇,較佳係預先以陽離子交換樹脂處理而使甲醇中的鋅離子濃度降低後再用於反應。
通過管線12以既定流量將一氧化碳從一氧化碳儲存部(省略圖示)連續供給至反應槽1。一氧化碳未必需要為純一氧化碳,亦可包含少量(例如5質量%以下,較佳為1質量%以下)的例如氮、氫、二氧化碳、氧等其他氣體。
反應混合物中的金屬觸媒係用以促進甲醇之羰基化反應的成分,例如可使用銠觸媒或銥觸媒。作為銠觸媒,例如可使用以化學式[Rh(CO) 2I 2] -表示的銠錯合物。作為銥觸媒,例如可使用以化學式[Ir(CO) 2I 2] -表示的銥錯合物。作為金屬觸媒,較佳為金屬錯合物觸媒。相對於反應混合物的液相整體,反應混合物中的觸媒濃度(金屬換算)例如為200~5000質量ppm,較佳為400~2000質量ppm。
輔助觸媒係用以輔助上述觸媒作用的碘化物,例如可使用碘甲烷或離子性碘化物。碘甲烷的作用係促進該觸媒之觸媒作用。相對於反應混合物的液相整體,碘甲烷的濃度例如為1~20質量%。離子性碘化物係在反應液中生成碘化物離子的碘化物(特別是離子性金屬碘化物),其呈現使該觸媒穩定化的作用、以及抑制副反應的作用。作為離子性碘化物,可列舉例如:碘化鋰、碘化鈉、碘化鉀等的鹼金屬碘化物等。相對於反應混合物的液相整體,反應混合物中的離子性碘化物的濃度例如為1~25質量%,較佳為5~20質量%。又,例如使用銥觸媒等的情況,亦可使用釕化合物或鋨化合物作為輔助觸媒。相對於銥1莫耳(金屬換算),該等的化合物的使用量總和例如為0.1~30莫耳(金屬換算),較佳為0.5~15莫耳(金屬換算)。
反應混合物中的水,在甲醇的羰基化反應的反應機構中,係生成醋酸的必要成分,又,亦為使反應系統之水溶性成分可溶化的必要成分。相對於反應混合物的液相整體,反應混合物中的水的濃度例如為0.1~15質量%,較佳為0.8~10質量%,更佳為1~6質量%,再佳為1.5~4質量%。為了抑制在醋酸精製過程中去除水所需之能量而提升醋酸製造的效率,水濃度較佳為15質量%以下。為了控制水濃度,亦可對於反應槽1連續供給既定流量的水。
反應混合物中的醋酸,包含在醋酸製造裝置運轉前預先加入反應槽1內的醋酸、以及作為甲醇之羰基化反應的主要生成物而生成的醋酸。這種醋酸,在反應系統中可發揮作為溶劑的功能。相對於反應混合物的液相整體,反應混合物中的醋酸的濃度為例如50~90質量%,較佳為60~80質量%。
作為反應混合物所包含的主要副生成物,可列舉例如醋酸甲酯。該醋酸甲酯可由醋酸與甲醇的反應而生成。相對於反應混合物的液相整體,反應混合物中的醋酸甲酯的濃度例如為0.1~30質量%,較佳為1~10質量%。作為反應混合物所包含的副生成物,亦可舉出碘化氫。在使用上述觸媒或輔助觸媒的情況下,在甲醇之羰基化反應的反應機構之中,不可避免地生成該碘化氫。相對於反應混合物的液相整體,反應混合物中的碘化氫的濃度例如為0.01~2質量%。又,作為副生成物,可列舉例如:氫、甲烷、二氧化碳、乙醛、巴豆醛、2-乙基巴豆醛、二甲醚、烷烴類、甲酸及丙酸、以及碘己烷及碘癸烷等的碘烷等。此外,相對於反應混合物的液相整體,碘己烷的濃度例如為0.1~10000質量ppb、通常為0.5~1000質量ppb,大多為1~100質量ppb(例如2~50質量ppb)。又,反應混合物亦可包含因裝置腐蝕所生成的鐵、鎳、鉻、錳、鉬等的金屬(以下有時稱為「腐蝕性金屬」)以及作為其他金屬的鈷、鋅及銅等。有時將上述腐蝕性金屬與其他金屬一併稱為「腐蝕金屬等」。
於存在該反應混合物的反應槽1內,將反應溫度設定為例如150~250℃,將作為整體壓力的反應壓力設定為例如2.0~3.5MPa(絕對壓力),將一氧化碳分壓設定為例如0.4~1.8MPa(絕對壓力),較佳為0.6~1.6MPa(絕對壓力),再佳為0.9~1.4MPa(絕對壓力)。
裝置運轉時反應槽1內的氣相部的蒸氣中,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等。可通過管線13從反應槽1內抽出該蒸氣。藉由調節蒸氣的抽出量,可控制反應槽1內的壓力,例如,可固定地維持反應槽1內的壓力。將從反應槽1內抽出之蒸氣導入冷凝器1a。
冷凝器1a將來自反應槽1的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等,通過管線14將其從冷凝器1a導入反應槽1,以進行再循環。氣體成分包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線15將其從冷凝器1a供給至滌氣器系統8。滌氣器系統8,從來自冷凝器1a的氣體成分將有用成分(例如,碘甲烷、水、醋酸甲酯、醋酸等)分離回收。本實施形態中,該分離回收係應用濕式法,其係使用收集氣體成分中之有用成分的吸收液而進行。作為吸收液,較佳為至少包含醋酸及/或甲醇的吸收溶劑。吸收液中亦可含有醋酸甲酯。例如,可使用來自下述蒸餾塔6之蒸氣的冷凝成分作為吸收液。分離回收亦可應用壓力變動吸附法。通過再循環管線48將經分離回收的有用成分(例如碘甲烷等)從滌氣器系統8導入反應槽1,以進行再循環。通過管線49將經收集有用成分後之氣體廢棄。此外,從管線49排出的氣體,可用作導入下述蒸發槽2的底部或殘液分流再循環管線18、19的CO源。關於滌氣器系統8中的處理以及之後再循環至反應槽1及廢棄,針對其他從冷凝器供給至滌氣器系統8的下述氣體成分亦為相同。在本發明之製造方法中,較佳為包含滌氣器步驟,該滌氣器步驟係以至少包含醋酸的吸收溶劑對來自製程的廢氣進行吸收處理,以分離成富含一氧化碳之分流與富含醋酸之分流。
如上所述,裝置運轉時的反應槽1內連續地生成醋酸。連續地從反應槽1內以既定的流量抽出這種包含醋酸的反應混合物,並通過管線16導入下一個蒸發槽2。
蒸發槽2係用以進行蒸發步驟(急驟步驟)的單元。該蒸發步驟係將通過管線16(反應混合物供給管線)連續導入蒸發槽2的反應混合物部分蒸發,藉此分成蒸氣分流(揮發相)與殘液分流(低揮發相)的步驟。可不將反應混合物加熱而藉由減少壓力來引起蒸發,亦可藉由將反應混合物加熱並加少壓力來引起蒸發。在蒸發步驟中,蒸氣分流的溫度例如為100~260℃,較佳為120~200℃,殘液分流的溫度例如為80~200℃,較佳為100~180℃,槽內壓力例如為50~1000kPa(絕對壓力)。又,關於在蒸發步驟中分離之蒸氣分流及殘液分流的比例,以質量比計,例如為10/90~50/50(蒸氣分流/殘液分流)。本步驟所產生的蒸氣,包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸、及丙酸、以及、碘乙烷、碘丙烷、碘丁烷、碘己烷及碘癸烷等的碘烷等,從蒸發槽2內將其連續地抽出至管線17(蒸氣分流排出管線)。從蒸發槽2內抽出的蒸氣分流之一部分被連續導入冷凝器2a,通過管線21將該蒸氣分流的另一部分連續導入下一個蒸餾塔3。上述蒸氣分流的醋酸濃度例如為40~85質量%(較佳為50~85質量%),更佳為50~75質量%(例如55~75質量%),碘甲烷濃度例如為2~50質量%(較佳為5~30質量%),水濃度例如為0.2~20質量%(較佳為1~15質量%),醋酸甲酯濃度例如為0.2~50質量%(較佳為2~30質量%)。此外,上述蒸氣分流的碘己烷濃度,例如為0.1~10000質量ppb,通常為0.5~1000質量ppb,大多為1~100質量ppb(例如2~50質量ppb)。本步驟所生成的殘液分流,包含反應混合物中所包含的觸媒及輔助觸媒(碘甲烷、碘化鋰等)、本步驟中未揮發而殘留的水、醋酸甲酯、醋酸、甲酸及丙酸等,使用泵57,通過管線18將其從蒸發槽2連續地導入熱交換器2b。熱交換器2b將來自蒸發槽2的殘液分流冷卻。通過管線19將經降溫的殘液分流從熱交換器2b連續地導入反應槽1,以進行再循環。此外,將管線18與管線19一併稱為殘液分流再循環管線。上述殘液分流的醋酸濃度例如為55~90質量%,較佳為60~85質量%。
冷凝器2a,將來自蒸發槽2的蒸氣分流冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分,包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等,通過管線22、23將其從冷凝器2a導入反應槽1,以進行再循環。氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線20、15將其從冷凝器2a供給至滌氣器系統8。上述反應步驟中醋酸的生成反應為放熱反應時,蓄積於反應混合物的部分熱能,在蒸發步驟(急驟步驟)中,轉移至從反應混合物所生成之蒸氣。藉由冷凝器2a將蒸氣冷卻而生成的冷凝成分再循環至反應槽1。亦即,該醋酸製造裝置中,可以冷凝器2a高效率地去除在甲醇的羰基化反應中產生的熱能。
蒸餾塔3係用以進行第1蒸餾步驟的單元,本實施形態中係將其放置於所謂的去除低沸物塔。第1蒸餾步驟係將連續導入蒸餾塔3的蒸氣分流進行蒸餾處理以將低沸成分分離去除的步驟。更具體而言,第1蒸餾步驟中,蒸餾上述蒸氣分流,以分離成富含選自碘甲烷及乙醛之至少一種低沸成分的頂部餾出物分流與富含醋酸之醋酸分流。蒸餾塔3係由例如板式塔及填充塔等的精餾塔所構成。採用板式塔作為蒸餾塔3的情況下,其理論段數例如為5~50段,迴流比係對應理論段數,例如為0.5~3000。蒸餾塔3的內部,將塔頂壓力設定為例如80~160kPaG,而將塔底壓力設定為高於塔頂壓力,例如85~180kPaG。蒸餾塔3的內部中,塔頂溫度,係設定為例如,低於醋酸在設定塔頂壓力之沸點的溫度、即90~130℃;塔底溫度,係設定為例如,於醋酸在設定塔底壓力下之沸點以上的溫度、即120~165℃(較佳為125~160℃)。
來自蒸發槽2的蒸氣分流,通過管線21連續地導入蒸餾塔3,從蒸餾塔3的塔頂部,將作為頂部餾出物分流的蒸氣連續抽出至管線24。從蒸餾塔3的塔底部,將塔底排出液連續地抽出至管線25。3b為再沸器。自蒸餾塔3塔頂部與塔底部之間的高度位置,從管線27連續地抽出作為側分流的醋酸分流(第1醋酸分流;液體)。
從蒸餾塔3的塔頂部抽出的蒸氣,相較於來自蒸餾塔3的上述塔底排出液及側分流,包含更多沸點低於醋酸的成分(低沸點成分),例如包含碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇、乙醛及甲酸等。該蒸氣中亦包含醋酸。通過管線24將這種蒸氣連續地導入冷凝器3a。
冷凝器3a將來自蒸餾塔3的蒸氣冷卻以使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線28將其從冷凝器3a連續地導入傾析器4。導入傾析器4的冷凝成分分液成水相(上方相)與有機相(碘甲烷相;下方相)。水相中包含水與例如碘甲烷、碘化氫、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。有機相中包含例如碘甲烷與例如碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。本實施形態中,通過管線29使水相的一部分迴流至蒸餾塔3,並通過管線29、30、23將水相的另一部分導入反應槽1,以進行再循環。通過管線31、23將有機相的一部分導入反應槽1以進行再循環。有機相的另一部分及/或水相的另一部分則通過管線31、50及/或管線30、51導入乙醛分離去除系統9。
使用乙醛分離去除系統9的乙醛分離去除步驟中,以習知的方法,例如蒸餾、萃取或該等的組合將有機相及/或水相所包含的乙醛分離去除。經分離的乙醛通過管線53排出至裝置外。又,有機相及/或水相所包含的有用成分(例如,碘甲烷等)通過管線52、23再循環至反應槽1以進行再利用。
圖2係顯示乙醛分離去除系統之一例的概略流程圖。根據該流程,例如以乙醛分離去除步驟處理上述有機相的情況,通過管線101將有機相供給至蒸餾塔(第1去乙醛塔)91以進行蒸餾,分離成富含乙醛的頂部餾出物分流(管線102)、富含碘甲烷的殘液分流(管線103)。在冷凝器91a中使上述頂部餾出物分流冷凝,使冷凝液的一部分迴流至蒸餾塔91的塔頂部(管線104),將冷凝液的其他部分供給至萃取塔92(管線105)。藉由從管線109導入的水對上述供給至萃取塔92的冷凝液進行萃取處理。通過管線107將藉由萃取處理所得到的萃取液供給至蒸餾塔(第2去乙醛塔)93並進行蒸餾,以分離成富含乙醛的頂部餾出物分流(管線112)與富含水的殘液分流(管線113)。接著,使富含乙醛的頂部餾出物分流在冷凝器93a中冷凝,使冷凝液的一部分迴流至蒸餾塔93的塔頂部(管線114),並將冷凝液的另一部分排出系統外(管線115)。又,分別通過管線103、111、113使第1去乙醛塔91之塔底排出液的富含碘甲烷之殘液分流、萃取塔92所得到的富含碘甲烷之萃餘物(管線108)、及第2去乙醛塔93之塔底排出液的富含水之殘液分流再循環至反應槽1,或再循環至製程的適當處,以進行再利用。例如,可通過管線110使萃取塔92所得到的富含碘甲烷之萃餘物再循環至蒸餾塔91。通常將113的液體作為排放水排出至外部。未在冷凝器91a、93a中冷凝的氣體(管線106、116),係以滌氣器系統8進行吸收處理,或進行廢棄處理。
又,根據圖2的流程,在乙醛分離去除步驟中處理上述水相的情況下,例如,通過管線101將水相供給至蒸餾塔(第1去乙醛塔)91並進行蒸餾,以分離成富含乙醛的頂部餾出物分流(管線102)與富含水的殘液分流(管線103)。使上述頂部餾出物分流在冷凝器91a中冷凝,使冷凝液的一部分迴流至蒸餾塔91的塔頂部(管線104),並將冷凝液的另一部分供給至萃取塔92(管線105)。藉由從管線109導入的水對上述供給至萃取塔92的冷凝液進行萃取處理。通過管線107將藉由萃取處理所得到的萃取液供給至蒸餾塔(第2去乙醛塔)93並進行蒸餾,以分離成富含乙醛的頂部餾出物分流(管線112)與富含水的殘液分流(管線113)。接著,使富含乙醛的頂部餾出物分流在冷凝器93a中冷凝,使冷凝液的一部分迴流至蒸餾塔93的塔頂部(管線114),並將冷凝液的另一部分排出系統外(管線115)。又,分別通過管線103、111、113使第1去乙醛塔91之塔底排出液的富含水之殘液分流、萃取塔92所得到的富含碘甲烷之萃餘物(管線108)、及第2去乙醛塔93之塔底排出液的富含水之殘液分流再循環至反應槽1,或再循環至製程的適當處,以進行再利用。例如,可通過管線110使萃取塔92所得到的富含碘甲烷之萃餘物再循環至蒸餾塔91。通常將113的液體作為排放水排出至外部。未在冷凝器91a、93a中冷凝的氣體(管線106、116),係以滌氣器系統8進行吸收處理,或進行廢棄處理。
除了上述方法以外,亦可應用萃取蒸餾將來自上述至少包含水、醋酸(AC)、碘甲烷(MeI)及乙醛(AD)之製程分流的乙醛分離去除。例如,可將使上述製程分流分液所得到的有機相及/或水相(加入液)供給至蒸餾塔(萃取蒸餾塔),同時將萃取溶劑(通常為水)導入蒸餾塔內使碘甲烷及乙醛濃縮的濃縮區域(例如,從塔頂到加入液供給位置的空間),抽出從上述濃縮區域流下的液體(萃取液)作為側分流(側取分流),使該側分流分液成水相與有機相,並蒸餾上述水相,藉此可將乙醛排出至系統外。此外,蒸餾塔內存在較多水的情況下,亦可不將上述萃取溶劑導入蒸餾塔,而抽出從上述濃縮區域流下的液體作為側分流。例如,可於該蒸餾塔配設可接收從上述濃縮區域流下之液體(萃取液)的單元(煙囪式塔盤(chimney tray)等),以抽出該單元所接收的液體(萃取液)作為側分流。萃取溶劑的導入位置,較佳為比上述加入液的供給位置更上方,更佳為塔頂附近。側分流的抽出位置,較佳在塔的高度方向上,比萃取溶劑的導入位置更下方,且比上述加入液的供給位置更上方。根據此方法,可藉由萃取溶劑(通常為水),從碘甲烷與乙醛的濃縮物高濃度地萃取乙醛,同時將萃取溶劑的導入部位與側取部位之間用作萃取區域,故可藉由少量的萃取溶劑高效率地萃取乙醛。因此,相較於例如從蒸餾塔(萃取蒸餾塔)的塔底部抽出萃取蒸餾而來的萃取液的方法,可大幅減少蒸餾塔的段數,並切降低蒸氣負載。又,使用少量的萃取溶劑,相較於組合上述圖2之去乙醛蒸餾與水萃取的方法,其可使水萃取液中的碘甲烷相對於乙醛的比例(MeI/AD比)變小,故可在能夠控制碘甲烷損耗至系統外的條件下去除乙醛。上述側分流中的乙醛濃度,格外高於上述加入液及塔底排出液(塔底液)中的乙醛濃度。又,上述側分流中乙醛相對於碘甲烷的比例,大於加入液及塔底排出液中乙醛相對於碘甲烷的比例。此外,可使上述側分流分液所得到的有機相(碘甲烷相)再循環至上述蒸餾塔。此情況下,使上述側分流分液所得到之有機相的再循環位置,在塔的高度方向上,較佳為比上述側分流抽出位置更下方,且較佳為比上述加入液的供給位置更上方。又,亦可將與構成使上述製程分流分液所得到之有機相的成分(例如醋酸甲酯等)相對的混和性溶劑導入該蒸餾塔(萃取蒸餾塔)。作為上述混和性溶劑,可列舉例如:醋酸、醋酸乙酯等。上述混和性溶劑的導入位置,在塔的高度方向上,較佳為比上述側分流抽出位置更下方,且較佳為比上述加入液的供給位置更上方。又,上述混和性溶劑的導入位置,在將使上述側分流分液所得到之有機相再循環至該蒸餾塔的情況下,較佳為比該再循環位置更下方。藉由將使上述側分流分液所得到的有機相再循環至蒸餾塔,或將上述混和性溶劑導入蒸餾塔,可降低抽出作為側分流之萃取液中的醋酸甲酯濃度,並可降低使上述萃取液體成分液所得到之水相中的醋酸甲酯濃度,而且可抑制碘甲烷混入水相。
上述蒸餾塔(萃取蒸餾塔)的理論段數,例如為1~100段,較佳為2~50段,更佳為3~30段,再佳為5~20段,相較於以往用於去乙醛之蒸餾塔或萃取蒸餾塔的80~100段,其可用較少段數高效率地將乙醛分離去除。萃取溶劑之流量與加入液(使製程分流分液所得到的有機相及/或水相)之流量的質量比例(前者/後者),可選自0.0001/100~100/100的範圍,但通常為0.0001/100~20/100,較佳為0.001/100~10/100,更佳為0.01/100~8/100,再佳為0.1/100~5/100。上述蒸餾塔(萃取蒸餾塔)的塔頂溫度,例如為15~120℃,較佳為20~90℃,更佳為20~80℃,再佳為25~70℃。塔頂壓力,以絕對壓力計,例如為0.1~0.5MPa左右。上述蒸餾塔(萃取蒸餾塔)的其他條件,可與以往用於去乙醛的蒸餾塔或萃取蒸餾塔相同。
圖3係顯示應用上述萃取蒸餾的乙醛分離去除系統之一例的概略流程圖。此例中,通過供給管線201將使上述製程分流分液所得到的有機相及/或水相(加入液)供給至蒸餾塔94的中段(塔頂與塔底之間的位置),同時通過管線202從塔頂附近導入水,在蒸餾塔94(萃取蒸餾塔)內進行萃取蒸餾。於蒸餾塔94的上述加入液的供給位置更上方配設煙囪式塔盤200,該煙囪式塔盤200用以接收從塔內使碘甲烷及乙醛濃縮的濃縮區域流下的液體(萃取液)。在該萃取蒸餾中,較佳為將煙囪式塔盤200上的液體全部抽出,並通過管線208導入傾析器95以使其分液。通過管線212將傾析器95中的水相(包含乙醛)導入冷卻器95a以進行冷卻,使溶解於水相的碘甲烷分離成兩相,以使其在傾析器96中分液。通過管線216將傾析器96中的水相供給至蒸餾塔97(去乙醛塔)並進行蒸餾,通過管線217將塔頂的蒸氣導入冷凝器97a以使其冷凝,使冷凝液(主要為乙醛及碘甲烷)的一部分迴流至蒸餾塔97的塔頂,並將剩餘部分廢棄,或通過管線220供給至蒸餾塔98(萃取蒸餾塔)。通過管線222從蒸餾塔98的塔頂附近導入水,以進行萃取蒸餾。通過管線223將塔頂的蒸氣導入冷凝器98a以使其冷凝,使冷凝液(主要為碘甲烷)的一部分迴流至塔頂部,並使剩餘部分通過管線226再循環至反應系統,但亦具有去除至系統外的情況。較佳係使傾析器95中所有的有機相(碘甲烷相)通過管線209、210而再循環至比蒸餾塔94之煙囪式塔盤200的位置更下方。分別通過管線213、210、管線214、210使傾析器95之水相的一部分、及傾析器96的有機相再循環至蒸餾塔94,但亦具有未進行再循環的情況。亦可將傾析器95之水相的一部分用作蒸餾塔94中的萃取溶劑(水)。可通過管線210使傾析器96之水相的一部分再循環至蒸餾塔94。視情況(例如,上述加入液中包含醋酸甲酯的情況等),亦可通過管線215將與構成上述使製程分流分液所得到之有機相的成分(例如醋酸甲酯等)相對的混和性溶劑(醋酸、醋酸乙酯等)加入蒸餾塔94,以提高蒸餾效率。混和性溶劑供給至蒸餾塔94的位置,比上述加入液供給部(管線201的連接部)更上方且比再循環管線210的連接部更下方。使蒸餾塔94的塔底排出液再循環至反應系統。通過管線203將蒸餾塔94之塔頂的蒸氣導入冷凝器94a以使其冷凝,並使冷凝液在傾析器99中分液,通過管線206使有機相迴流至蒸餾塔94的塔頂部,並通過管線207將水相導入傾析器95。分別通過管線218、224將蒸餾塔97的塔底排出液(水為主要成分)或蒸餾塔98(萃取蒸餾塔)的塔底排出液(包含少量乙醛的水)去除至系統外,或使其再循環至反應系統。未在冷凝器94a、97a,98a中冷凝的氣體(管線211、221、227),係以滌氣器系統8進行吸收處理,或進行廢棄處理。
圖4係顯示應用上述萃取蒸餾的乙醛分離去除系統之另一例的概略流程圖。此例中,將蒸餾塔94的塔頂之蒸氣的冷凝液導入貯留槽100,通過管線206使其全部迴流至蒸餾塔94的塔頂部。除此以外,與圖3的例子相同。
圖5顯示應用上述萃取蒸餾的乙醛分離去除系統之再一例的概略流程圖。此例中,將煙囪式塔盤200上的液體全部抽出,通過管線208,不經由傾析器95,而直接導入冷卻器95a以使其冷卻,再供給至傾析器96。除此以外,與圖4的例子相同。
在上述圖1中,冷凝器3a所生成的氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線32、15將其從冷凝器3a供給至滌氣器系統8。到達滌氣器系統8的氣體成分中之碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,在滌氣器系統8被吸收液吸收。碘化氫因與吸收液中的甲醇或醋酸甲酯的反應而生成碘甲烷。接著,通過再循環管線48、23使含有該碘甲烷等有用成分的液體成分從滌氣器系統8再循環至反應槽1以進行再利用。
從蒸餾塔3的塔底部抽出的塔底排出液,相較於來自蒸餾塔3的上述頂部餾出物分流及側分流,包含更多沸點高於醋酸的成分(高沸點成分),例如包含丙酸、以及偕同飛沫的上述觸媒或輔助觸媒。該塔底排出液中亦包含醋酸、碘甲烷、醋酸甲酯及水等。本實施形態中,通過管線25、26將這種塔底排出液的一部分連續地導入蒸發槽2以進行再循環,並通過管線25、23將塔底排出液的另一部分連續地導入反應槽1以進行再循環。
從蒸餾塔3連續抽出作為側分流的第1醋酸分流,比連續導入蒸餾塔3的蒸氣分流更富含醋酸。亦即,第1醋酸分流的醋酸濃度高於上述蒸氣分流的醋酸濃度。第1醋酸分流的醋酸濃度,例如為90~99.9質量%,較佳為93~99質量%。又,第1醋酸分流,除了醋酸,亦可包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇、乙醛、甲酸及丙酸,以及碘乙烷、碘丙烷、碘丁烷、碘己烷及碘癸烷等的碘烷等。在第1醋酸分流中,碘甲烷濃度例如為8質量%以下(例如0.1~8質量%),較佳為0.2~5質量%,水濃度例如為8質量%以下(例如0.1~8質量%),較佳為0.2~5質量%,醋酸甲酯濃度例如為8質量%以下(例如0.1~8質量%),較佳為0.2~5質量%。此外,第1醋酸分流中的碘己烷濃度例如為0.2~10000質量ppb,通常為1~1000質量ppb,大多為2~100質量ppb(例如3~50質量ppb)。此外,管線27相對於蒸餾塔3的連結位置,在蒸餾塔3的高度方向上,如圖所示,可位於管線21相對於蒸餾塔3的連結位置上方,亦可位於管線21相對於蒸餾塔3的連結位置下方,亦可與管線21相對於蒸餾塔3的連結位置相同。通過管線27將來自蒸餾塔3的第1醋酸分流以既定的流量連續地導入下一個蒸餾塔5。此外,抽出作為蒸餾塔3之側分流的第1醋酸分流、蒸餾塔3之塔底液或蒸餾塔3的塔底部之蒸氣的冷凝液,亦可不經由蒸餾塔5(脫水步驟)而直接連續地導入下述蒸餾塔6。管線27的材質、蒸餾塔5的材質(至少接觸液體、接觸氣體部分的材質)雖可為不鏽鋼,但為了抑制碘化氫或醋酸所引起的管路內部的腐蝕,較佳為鎳基合金或鋯等的高耐腐蝕性金屬。
可通過管線55(氫氧化鉀導入管線)將氫氧化鉀供給或添加至流過管線27的第1醋酸分流。氫氧化鉀可作為例如水溶液等的溶液而進行供給或添加。藉由對第1醋酸分流供給或添加氫氧化鉀,可減少第1醋酸分流中的碘化氫。具體而言,碘化氫與氫氧化鉀反應而生成碘化鉀與水。由此,可降低因碘化氫而腐蝕蒸餾塔等的裝置。此外,可將氫氧化鉀供給或添加至本製程中存在碘化氫的適當處。此外,添加至製程中的氫氧化鉀亦與醋酸反應而生成醋酸鉀。
蒸餾塔5係用以進行第2蒸餾步驟的單元,本實施形態中將其放置於所謂的脫水塔。第2蒸餾步驟係用以將連續地導入蒸餾塔5的第1醋酸分流進行蒸餾處理以進一步精製醋酸的步驟。蒸餾塔5中,較佳係如本發明中所規定,以塔底溫度小於175℃的條件對於通過管線27供給之第1醋酸分流進行蒸餾而得到精製醋酸。此外,較佳係如本發明中所規定,使蒸餾塔5的材質(至少接觸液體、接觸氣體部分的材質)為鎳基合金或鋯。藉由使用這種材質,可抑制碘化氫或醋酸所引起的蒸餾塔內部的腐蝕,而可抑制腐蝕金屬離子的溶出。
蒸餾塔5的加入液,包含第1醋酸分流的至少一部分(管線27),亦可加入第1醋酸分流以外的分流[例如來自下游步驟的再循環分流(例如管線42)]。本發明中,較佳係使蒸餾塔5之加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb、且鉬離子小於2000質量ppb。藉由使蒸餾塔5的材質為上述特定的材質、使塔底溫度小於175℃且將往蒸餾塔5之加入液中的金屬離子濃度控制在上述範圍,可明顯降低上述步驟中所得之精製醋酸中的腐蝕金屬濃度,進而可降低供給至後續吸附去除步驟之醋酸中的金屬濃度,而可大幅提升銀取代離子交換樹脂(IER)的壽命。此外,蒸餾塔5的加入液中的鐵離子濃度較佳為小於9000質量ppb,更佳為小於5000質量ppb,再佳為小於3000質量ppb,特佳為小於1500質量ppb,尤其是小於800質量ppb(例如小於400質量ppb)。上述加入液中的鉻離子濃度較佳為小於4000質量ppb,更佳為小於2500質量ppb,再佳為小於1500質量ppb,特佳為小於750質量ppb,尤其是小於400質量ppb(例如小於200ppb)。上述加入液中的鎳離子濃度較佳為小於2500質量ppb,更佳為小於2000質量ppb,再佳為小於1000質量ppb,特佳為小於500質量ppb,尤其是小於250質量ppb(例如小於150質量ppb)。上述加入液中的鉬離子濃度較佳為小於1700質量ppb,更佳為小於1200質量ppb,再佳為小於700質量ppb,特佳為小於350質量ppb,尤其是小於170質量ppb。又,上述加入液中的鋅離子濃度,例如小於1000質量ppb,較佳為小於800質量ppb,更佳為小於650質量ppb,再佳為小於500質量ppb,特佳為小於410質量ppb,尤其是小於200質量ppb。再者,上述加入液中的碘己烷濃度,例如為0.2~10000質量ppb,通常為1~1000質量ppb,大多為2~100質量ppb(例如3~50質量ppb,特別是5~40質量ppb)。又,蒸餾塔5的加入液中的醋酸濃度,例如為90質量%以上(例如95質量%以上),更佳為97質量%以上,再佳為98質量%以上,特佳為99質量%以上。又,蒸餾塔5的加入液,亦可包含選自含有醋酸鹽、醋酸酐及丙酸之群組的至少1種化合物。
蒸餾塔5係由例如板式塔及填充塔等的精餾塔所構成。採用板式塔作為蒸餾塔5的情況下,其理論段數例如為5~50段,迴流比係對應理論段數例如為0.2~3000。
在第2蒸餾步驟中蒸餾塔5的內部,較佳係以使塔底溫度小於175℃的方式,因應塔底液組成設定塔頂壓力及塔底壓力。塔頂壓力例如為0.10~0.28MPaG,較佳為0.15~0.23MPaG,再佳為0.17~0.21MPaG。塔底壓力高於塔頂壓力,例如為0.13~0.31MPaG,較佳為0.18~0.26MPaG,再佳為0.20~0.24MPaG。在第2蒸餾步驟的蒸餾塔5的內部,塔頂溫度,係設定為例如,高於設定塔頂壓力下的水之沸點且低於醋酸之沸點的溫度、即110℃以上,小於170℃。塔頂溫度,例如為168℃以下,較佳為167℃以下,更佳為小於167℃,再佳為小於165℃,再更佳為小於163℃,特別是小於161℃,尤其是小於160℃。塔頂溫度的下限,例如為90℃,較佳為100℃,更佳為110℃。塔底溫度,係設定為例如,醋酸在設定塔底壓力下之沸點以上的溫度、即120℃以上小於175℃。塔底溫度,較佳為173℃以下(例如小於173℃),更佳為172℃以下(例如170℃以下),再佳為168℃以下(例如165℃以下),特佳為165℃以下(例如164℃以下),尤其是163℃以下(例如162℃以下)。又,塔底溫度的下限,例如為125℃,較佳為130℃,更佳為135℃。藉由使脫水塔的塔底溫度小於175℃且使塔頂溫度在上述範圍內,可進一步抑制碘化氫或醋酸所引起的蒸餾塔內部的腐蝕,而可進一步抑制腐蝕金屬離子的溶出。
為了確保蒸餾塔5中水的濃縮分離效率,蒸餾塔5的加入液供給段(加入段)與塔頂蒸氣抽出段的段間隔(段數),以實際段數計較佳為1段以上,更佳為3段以上,再佳為5段以上,特佳為8段以上(其中為10段以上)。
從蒸餾塔5的塔頂部將作為頂部餾出物分流的蒸氣連續地抽出至管線33。從蒸餾塔5的塔底部將塔底排出液連續地抽出至管線34。5b為再沸器。亦可從蒸餾塔5中塔頂部與塔底部之間的高度位置,將側分流(液體或氣體)連續地抽出至管線34。
從蒸餾塔5的塔頂部抽出的蒸氣,相較於來自蒸餾塔5的上述塔底排出液,包含更多沸點低於醋酸的成分(低沸點成分),例如包含碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。通過管線33將這種蒸氣連續地導入冷凝器5a。
冷凝器5a將來自蒸餾塔5的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如水及醋酸等。通過管線35使冷凝成分的一部分從冷凝器5a連續地迴流至蒸餾塔5。通過管線35、36、23將冷凝成分的另一部分從冷凝器5a連續地導入反應槽1,以進行再循環。又,冷凝器5a所生成的氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線37、15將其從冷凝器5a供給至滌氣器系統8。到達滌氣器系統8的氣體成分中的碘化氫,在滌氣器系統8被吸收液吸收,因吸收液中的碘化氫與甲醇或醋酸甲酯的反應而生成碘甲烷,接著,通過再循環管線48、23使含有該碘甲烷等有用成分的液體成分從滌氣器系統8再循環至反應槽1,以進行再利用。
從蒸餾塔5的塔底部抽出的塔底排出液(或側分流),相較於來自蒸餾塔5的上述頂部餾出物分流,包含更多沸點高於醋酸的成分(高沸點成分),例如包含醋酸酐、丙酸、醋酸鹽及碘化鉀或源自腐蝕金屬等的碘化金屬鹽等的碘化物鹽、以及偕同飛沫的上述觸媒或輔助觸媒等。上述醋酸鹽,可列舉例如:在對管線27等供給氫氧化鉀等的鹼的情況中所形成之醋酸鉀。又,亦可列舉在該醋酸製造裝置之構成構件的內壁生成的游離之金屬等的腐蝕金屬等與醋酸所形成的醋酸金屬鹽。上述碘化物鹽,可列舉例如:對於管線27等供給氫氧化鉀等的鹼的情況中所形成之碘化鉀。該塔底排出液中亦可包含醋酸。這種塔底排出液構成第2醋酸分流,通過管線34將其連續地導入下一個蒸餾塔6。又,從蒸餾塔5的塔底部抽出的塔底排出液(或側分流),亦包含上述腐蝕金屬等以及源自腐蝕性碘的碘與上述腐蝕金屬等的化合物(碘化物鹽)。這種塔底排出液,在本實施形態中被排出至醋酸製造裝置外。
本發明中,從抑制蒸餾塔之腐蝕的觀點來看,蒸餾塔5之塔底液中的醋酸鹽、丙酸、碘化物鹽、醋酸酐的濃度分別越低越佳。蒸餾塔5之塔底液中的醋酸鹽濃度,例如為0.1質量ppm~34質量%,較佳為1質量ppm~10質量%,更佳為10質量ppm~1質量%(例如20質量ppm~0.5質量%)。蒸餾塔5之塔底液中的丙酸濃度,例如為10質量ppm~91質量%(例如10質量ppm~90質量%),較佳為50質量ppm~75質量%,更佳為100質量ppm~55質量%,再佳為150質量ppm~29質量%,特佳為200質量ppm~15質量%。蒸餾塔5之塔底液中的碘化物鹽濃度,例如為0.01質量ppb~1000質量ppm,較佳為0.1質量ppb~500質量ppm,更佳為0.5質量ppb~100質量ppm,再佳為1質量ppb~10質量ppm,特佳為2質量ppb~1質量ppm。蒸餾塔5之塔底液中的醋酸酐濃度例如為90質量%以下(例如,80質量%以下,50質量%以下),較佳為0.1質量ppm~10質量%,更佳為0.5質量ppm~1質量%,再佳為1~1000質量ppm,特佳為2~500質量ppm。蒸餾塔5之塔底液中的醋酸鹽濃度及碘化物鹽濃度,例如可藉由下述方法降低:減少用於上述碘化氫之中和的鹼之添加量,或是使蒸餾塔內部的腐蝕不易發生。蒸餾塔5之塔底液中的丙酸濃度,例如可藉由下述方法降低:變更反應條件以降低反應槽中丙酸的副生成,或在使加工液的一部分再循環至反應系統時,將成為丙酸副生成之原因的乙醛從該加工液分離去除後再循環至反應系統,或在蒸餾塔5的上游設置分離去除丙酸的蒸餾塔或蒸發器(去丙酸塔)。又,蒸餾塔5之塔底液中的醋酸酐濃度,例如可藉由下述方法降低:在位於蒸餾塔5之上游的管路、裝置或蒸餾塔5內添加水而將醋酸酐水解。
第2醋酸分流,比連續地導入蒸餾塔5的第1醋酸分流更富含醋酸。亦即,第2醋酸分流的醋酸濃度高於第1醋酸分流的醋酸濃度。第2醋酸分流的醋酸濃度,在高於第1醋酸分流的醋酸濃度的範圍內,例如為99.1~99.99質量%。又,第2醋酸分流,如上所述,除了醋酸以外,亦可包含例如丙酸、碘化氫等。本實施形態中,抽出側分流的情況,來自蒸餾塔5之側分流的抽出位置,在蒸餾塔5的高度方向上,低於第1醋酸分流往蒸餾塔5的導入位置。
本發明中,較佳地使脫水塔的材質為特定的材質、使塔底溫度在特定值以下,且使脫水塔加入液中的金屬離子濃度在特定值以下,因此可明顯降低作為脫水塔之側分流或塔底排出分流而得到的第2醋酸分流中的金屬離子濃度。如上所述,第2醋酸分流中的鐵離子濃度,例如小於21000質量ppb,較佳為小於16000質量ppb,更佳為小於6000質量ppb,再佳為小於2000質量ppb,特佳為小於200質量ppb。第2醋酸分流中的鉻離子濃度,例如小於7100質量ppb,較佳為小於5000質量ppb,更佳為小於3000質量ppb,再佳為小於1000質量ppb,特佳為小於100質量ppb。第2醋酸分流中的鎳離子濃度,例如小於4000質量ppb,較佳為小於3000質量ppb,更佳為小於1800質量ppb,再佳為小於700質量ppb,特佳為小於70質量ppb。第2醋酸分流中的鉬離子濃度,例如小於3000質量ppb,較佳為小於2500質量ppb,更佳為小於1500質量ppb,再佳為小於500質量ppb,特佳為小於50質量ppb。第2醋酸分流中的鋅離子濃度,例如小於1000質量ppb,較佳為小於850質量ppb,更佳為小於710質量ppb,再佳為小於410質量ppb,特佳為小於150質量ppb。此外,第2醋酸分流中的碘己烷濃度,例如為0.2~10000質量ppb,通常為1~1000質量ppb,大多為2~100質量ppb(例如3~50質量ppb,特別是5~40質量ppb)。
可通過管線56(氫氧化鉀導入管線)將氫氧化鉀供給或添加至流過管線34的第2醋酸分流。氫氧化鉀可作為例如水溶液等的溶液進行供給或添加。藉由對第2醋酸分流供給或添加氫氧化鉀,可減少第2醋酸分流中的碘化氫。具體而言,碘化氫與氫氧化鉀反應而生成碘化鉀與水。由此,可減少因碘化氫而腐蝕蒸餾塔等的裝置。
蒸餾塔6係用以進行第3蒸餾步驟的單元,本實施形態中將其放置於所謂的去除高沸物塔。第3蒸餾步驟係將連續地導入蒸餾塔6的第2醋酸分流進行精製處理以進一步精製醋酸的步驟。蒸餾塔6中,較佳係如本發明中所規定,以塔底溫度小於175℃的條件將通過管線34所供給的第2醋酸分流進行蒸餾而得到精製醋酸。又,較佳係如本發明中所規定,使管線34的材質及蒸餾塔6的材質(至少接觸液體、接觸氣體部分的材質)為鎳基合金或鋯。藉由使用這種材質,可抑制碘化氫及醋酸造成管路及蒸餾塔內部的腐蝕,而可抑制腐蝕金屬離子的溶出。
蒸餾塔6的加入液,包含第2醋酸分流的至少一部分(管線34),亦可加入第2醋酸分流以外的分流[例如來自下游步驟的再循環分流(例如來自下述製品塔之塔底部的塔底排出液的再循環分流)]。本發明中,較佳係使蒸餾塔6之加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb、且鉬離子小於2000質量ppb。藉由使蒸餾塔6的材質為上述特定的材質、使塔底溫度小於175℃且將往蒸餾塔6之加入液中的金屬離子濃度控制在上述範圍,可明顯降低該步驟中所得之精製醋酸中的腐蝕金屬濃度,進而可降低供給至後續吸附去除步驟的醋酸中的金屬濃度,而可大幅提升銀取代離子交換樹脂(IER)的壽命。此外,蒸餾塔6的加入液中的鐵離子濃度較佳為小於9000質量ppb,更佳為小於5000質量ppb,再佳為小於3000質量ppb,特佳為小於1500質量ppb,尤其是小於800質量ppb(例如小於400質量ppb)。上述加入液中的鉻離子濃度較佳為小於4000質量ppb,更佳為小於2500質量ppb,再佳為小於1500質量ppb,特佳為小於750質量ppb,尤其是小於400質量ppb(例如小於200ppb)。上述加入液中的鎳離子濃度較佳為小於2500質量ppb,更佳為小於2000質量ppb,再佳為小於1000質量ppb,特佳為小於500質量ppb,尤其是小於250質量ppb(例如小於150質量ppb)。上述加入液中的鉬離子濃度較佳為小於1700質量ppb,更佳為小於1200質量ppb,再佳為小於700質量ppb,特佳為小於350質量ppb,尤其是小於170質量ppb。又,上述加入液中的鋅離子濃度,例如小於1000質量ppb,較佳為小於800質量ppb,更佳為小於650質量ppb,再佳為小於500質量ppb,特佳為小於410質量ppb,尤其是小於200質量ppb。再者,上述加入液中的碘己烷濃度,例如為0.2~10000質量ppb,通常為1~1000質量ppb,大多為2~100質量ppb(例如3~50質量ppb,特別是5~40質量ppb)。又,蒸餾塔6之加入液中的醋酸濃度,例如為90質量%以上(例如95質量%以上),更佳為97質量%以上,再佳為98質量%以上,特佳為99質量%以上。又,蒸餾塔6的加入液,亦可包含選自含有醋酸鹽、醋酸酐及丙酸之群組的至少1種化合物。
蒸餾塔6,係由例如板式塔及填充塔等的精餾塔所構成。採用板式塔作為蒸餾塔6的情況,其理論段數為例如5~50段,迴流比係對應理論段數為例如0.2~3000。
在第3蒸餾步驟的蒸餾塔6的內部,較佳係以使塔底溫度小於175℃的方式因應塔底液組成設定塔頂壓力及塔底壓力。塔頂壓力,例如為0.005~0.24MPaG,較佳為0.01~0.22MPaG,再佳為0.02~0.20MPaG,特佳為0.04~0.19MPaG。塔底壓力高於塔頂壓力,例如為0.01MPaG以上、小於0.255MPaG,較佳為0.02~0.24MPaG,再佳為0.03~0.23MPaG,特佳為0.05~0.21MPaG。在第3蒸餾步驟的蒸餾塔6的內部,塔頂溫度,係設定為例如,高於在設定塔頂壓力下的水之沸點且低於醋酸之沸點的溫度、即50℃以上、小於170℃。塔頂溫度,例如為168℃以下,較佳為167℃以下,更佳為小於167℃,再佳為小於165℃,再更佳為小於163℃,特佳為小於161℃,尤其是小於160℃。該蒸餾塔的塔頂溫度的下限,例如為50℃,較佳為90℃,更佳為100℃,再佳為110℃。塔底溫度,係設定為例如,高於醋酸在設定塔底壓力下之沸點的溫度、即70℃以上小於175℃。塔底溫度較佳為173℃以下(例如小於173℃),更佳為172℃以下(例如170℃以下),再佳為168℃以下(例如165℃以下),特佳為165℃以下(例如164℃以下),尤其是163℃以下(例如162℃以下)。又,塔底溫度的下限為例如120℃,較佳為125℃,更佳為130℃,再佳為135℃。藉由使去除高沸物塔的塔底溫度小於175℃且使塔頂溫度在上述範圍,可更抑制碘化氫及醋酸造成蒸餾塔內部的腐蝕,而可更抑制腐蝕金屬離子的溶出。
從蒸餾塔6的塔頂部,將作為頂部餾出物分流的蒸氣連續地抽出至管線38。從蒸餾塔6的塔底部,將塔底排出液連續地抽出至管線39。6b為再沸器。從蒸餾塔6中的塔頂部與塔底部之間的高度位置,將側分流(液體或氣體)連續地抽出至管線46。蒸餾塔6的高度方向上,管線46相對於蒸餾塔6的連結位置,如圖所示,亦可在管線34相對於蒸餾塔6的連結位置上方,亦可在管線34相對於蒸餾塔6的連結位置下方,亦可與管線34相對於蒸餾塔6的連結位置相同。
從蒸餾塔6的塔頂部抽出的蒸氣,相較於來自蒸餾塔6的上述塔底排出液,大量包含沸點低於醋酸的成分(低沸點成分),除了醋酸以外,亦包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇及甲酸等。這種蒸氣通過管線38連續地導入冷凝器6a。
冷凝器6a將來自蒸餾塔6的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分,除了醋酸以外,亦包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇及甲酸等。關於冷凝成分的至少一部分,通過管線40使其從冷凝器6a連續地迴流至蒸餾塔6。針對冷凝成分的一部分(餾出成分),可通過管線40、41、42將其從冷凝器6a再循環至導入蒸餾塔5之前的管線27中的第1醋酸分流。連同此操作或取而代之,針對冷凝成分的一部分(餾出成分),可通過管線40、41、43使其從冷凝器6a再循環至導入蒸餾塔3之前的管線21中的蒸氣分流。又,針對冷凝成分的一部分(餾出成分),亦可通過管線40、44、23使其從冷凝器6a再循環至反應槽1。再者,針對來自冷凝器6a的餾出成分的一部分,如上所述,可將其供給至滌氣器系統8,以在該系統內作為吸收液使用。滌氣器系統8中,將吸收有用成分後的氣體成分排出裝置外,接著,通過再循環管線48、23將包含有用成分的液體成分從滌氣器系統8導入或再循環至反應槽1,以進行再利用。此外,針對來自冷凝器6a之餾出成分的一部分,可通過圖示以外的管線將其導入在裝置內運轉的各種泵(省略圖示),以用作該泵的密封液。再者,針對來自冷凝器6a之餾出成分的一部分,可通過附設於管線40之抽出管線常態性地抽出至裝置外,亦可非常態性地在需要時將其抽出至裝置外。從蒸餾塔6中的蒸餾處理系統去除部分冷凝成分(餾出成分)的情況下,該餾出成分的量(餾出量)為冷凝器6a中所生成之冷凝液的例如0.01~30質量%,較佳為0.1~10質量%,更佳為0.3~5質量%,更佳為0.5~3質量%。另一方面,冷凝器6a中生成的氣體成分包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,通過管線45、15將其從冷凝器6a供給至滌氣器系統8。
通過管線39從蒸餾塔6的塔底部抽出的塔底排出液,相較於來自蒸餾塔6的上述頂部餾出物分流,包含更多沸點高於醋酸的成分(高沸點成分),例如包含醋酸鹽、醋酸酐、丙酸等。上述醋酸鹽,可列舉例如在對於管線34等供給氫氧化鉀等的鹼的情況中所形成之醋酸鉀。又,亦可列舉在該醋酸製造裝置的構成構件之內壁生成的游離之金屬等的腐蝕金屬等與醋酸所形成之醋酸金屬鹽。通過管線39從蒸餾塔6的塔底部抽出的塔底排出液,亦可進一步包含上述腐蝕金屬等、以及源自腐蝕性碘的碘與該腐蝕金屬等的化合物。在本實施形態中將這種塔底排出液排出至醋酸製造裝置外。
本發明中,從抑制蒸餾塔腐蝕的觀點來看,蒸餾塔6的塔底液中的醋酸鹽、醋酸酐、丙酸的濃度分別越少越佳。蒸餾塔6的塔底液中的醋酸鹽濃度,例如為1質量ppm~34質量%,較佳為100質量ppm~25質量%,更佳為0.1~20質量%(例如1~15質量%)。蒸餾塔6的塔底液中的醋酸酐濃度,例如為1質量ppm~91質量%(例如1質量ppm~90質量%),較佳為10質量ppm~74質量%,更佳為100質量ppm~44質量%,再佳為0.1~20質量%,特佳為0.2~10質量%(例如0.5~5質量%)。蒸餾塔6的塔底液中的丙酸濃度,例如為100質量ppm~91質量%(例如1質量ppm~90質量%),較佳為0.1~75質量%,更佳為0.3~55質量%,再佳為0.5~29質量%,特佳為1~15質量%。蒸餾塔6的塔底液中的醋酸鹽濃度,例如,可藉由下述方法降低:減少用於上述碘化氫之中和的鹼之添加量,或是使蒸餾塔內部的腐蝕不易發生。又,蒸餾塔6的塔底液中的醋酸酐濃度,例如,可藉由下述方法降低:在位於蒸餾塔6上游的管路或裝置或是蒸餾塔6內添加水而使醋酸酐水解。蒸餾塔6的塔底液中的丙酸濃度,例如,可藉由下述方法降低:變更反應條件以使反應槽中丙酸的副生成減少,或是在使部分加工液再循環至反應系統時,從該加工液中將成為丙酸副生成之原因的乙醛分離去除後再循環至反應系統,或是在蒸餾塔6的上游設置將丙酸分離去除的蒸餾塔或蒸發器(去丙酸塔)。
將從蒸餾塔6連續地抽出至管線46的側分流連續地導入後續的離子交換樹脂塔7而作為第3醋酸分流。該第3醋酸分流,相較於連續地導入蒸餾塔6的第2醋酸分流,更富含醋酸。亦即,第3醋酸分流的醋酸濃度高於第2醋酸分流的醋酸濃度。第3醋酸分流的醋酸濃度為,在高於第2醋酸分流的醋酸濃度的範圍內,例如為99.8~99.999質量%。此外,第3醋酸分流中的碘己烷濃度,例如為0.2~10000質量ppb,通常為1~1000質量ppb,大多為2~100質量ppb(例如3~50質量ppb,特別是5~40質量ppb)。本實施形態中,來自蒸餾塔6之側分流的抽出位置,在蒸餾塔6的高度方向上,高於將第2醋酸分流導入蒸餾塔6的位置。其他實施形態中,來自蒸餾塔6的側分流的抽出位置,在蒸餾塔6的高度方向上,與第2醋酸分流導入蒸餾塔6的位置相同或比其更低。此外,亦可使用單蒸餾器(蒸發器)代替蒸餾塔6,又,只要能夠以蒸餾塔5充分去除雜質,則亦可省略蒸餾塔6。
離子交換樹脂塔7係用於進行吸附去除步驟的精製單元。該吸附去除步驟,係將連續地導入離子交換樹脂塔7的第3醋酸分流中主要微量包含的碘烷(例如碘乙烷、碘丙烷、碘丁烷、碘己烷、碘癸烷等)吸附去除以進一步精製醋酸的步驟。在離子交換樹脂塔7中,將對碘烷具有吸附能力的離子交換樹脂填充至塔內以構成離子交換樹脂床。作為這種離子交換樹脂,可列舉例如:作為交換基的磺酸基、羧基、膦酸基等之中的脫離性質子的一部分被銀或銅等金屬所取代的陽離子交換樹脂。吸附去除步驟中,例如使第3醋酸分流(液體)流過填充有這種離子交換樹脂的離子交換樹脂塔7的內部,在該流通過程中,第3醋酸分流中的碘烷等雜質被離子交換樹脂吸附而從第3醋酸分流被去除。在吸附去除步驟的離子交換樹脂塔7中,內部溫度例如為18~100℃,醋酸分流的通液速度[每1m 3樹脂容積的醋酸處理量(m 3/h)],例如為3~15m 3/h・m 3(樹脂容積)。
將第4醋酸分流從離子交換樹脂塔7的下端部連續地導出至管線47。第4醋酸分流的醋酸濃度高於第3醋酸分流的醋酸濃度。亦即,第4醋酸分流,比連續地導入離子交換樹脂塔7的第3醋酸分流更富含醋酸。第4醋酸分流的醋酸濃度,在高於第3醋酸分流的醋酸濃度的範圍內,例如為99.9~99.999質量%或其以上。此外,第4醋酸分流中的碘己烷濃度通常在1質量ppb以下,但亦可為例如0~30質量ppb、特別是0.01~10質量ppb(例如0.1~5質量ppb)。在本製造方法中,可將該第4醋酸分流儲存於圖示以外的製品槽。
在該醋酸製造裝置中,可設置蒸餾塔、即所謂的製品塔或精加工塔,作為用以進一步精製來自離子交換樹脂塔7的上述第4醋酸分流的精製單元。上述製品塔中,較佳以塔底溫度小於175℃的條件將通過管線47所供給之第4醋酸分流進行蒸餾而得到精製醋酸。設置這種製品塔的情況下,該製品塔係由例如板式塔及填充塔等的精餾塔所構成。採用板式塔作為製品塔的情況下,其理論段數例如為5~50段,迴流比係對應理論段數,例如為0.5~3000。在精製步驟的製品塔的內部中,塔頂壓力及塔底壓力較佳係以使塔底溫度小於175℃的方式對應塔底液組成設定。塔頂壓力為例如0.005~0.24MPaG,較佳為0.01~0.22MPaG,再佳為0.02~0.20MPaG,特佳為0.04~0.19MPaG。塔底壓力高於塔頂壓力,例如為0.01MPaG以上、小於0.255MPaG,較佳為0.02~0.24MPaG,再佳為0.03~0.23MPaG,特佳為0.05~0.21MPaG。在精製步驟的製品塔的內部中,塔頂溫度係設定為例如,高於水在設定塔頂壓力下之沸點且低於醋酸之沸點的溫度、即50℃以上、小於170℃,例如168℃以下,較佳為167℃以下,更佳為小於167℃,再佳為小於165℃,再更佳為小於163℃,特別是小於161℃,尤其是小於160℃。該蒸餾塔的塔頂溫度的下限,例如為50℃,較佳為90℃,更佳為100℃,再佳為110℃。塔底溫度,係設定為例如,高於醋酸在設定塔底壓力下之沸點的溫度、即70℃以上、小於175℃(較佳為173℃以下(例如小於173℃),更佳為172℃以下(例如170℃以下),再佳為168℃以下(例如165℃以下),特佳為165℃以下(例如164℃以下),尤其是163℃以下(例如162℃以下))。塔底溫度的下限,例如為120℃,較佳為125℃,更佳為130℃,再佳為135℃。此外,可使用單蒸餾器(蒸發器)代替製品塔或精加工塔。
設置製品塔的情況下,將來自離子交換樹脂塔7的第4醋酸分流(液體)的全部或一部分連續地導入製品塔。從這種製品塔的塔頂部連續地抽出包含微量低沸點成分(例如,碘甲烷,水、醋酸甲酯、二甲醚、巴豆醛、乙醛及甲酸等)的作為頂部餾出物分流的蒸氣。該蒸氣在既定的冷凝器中被分成冷凝成分與氣體成分。可使冷凝成分的一部分連續地迴流至製品塔,並使冷凝成分的另一部分再循環至反應槽1或廢棄至系統外,或可為兩者,而氣體成分則是被供給至滌氣器系統8。從製品塔的塔底部連續地抽出包含微量高沸點成分的塔底排出液,並使該塔底排出液再循環至例如導入蒸餾塔6前的管線34中的第2醋酸分流。從製品塔中塔頂部與塔底部之間的高度位置連續地抽出側分流(液體)作為第5醋酸分流。來自製品塔之側分流抽出的位置,係在製品塔的高度方向上,例如低於將第4醋酸分流導入製品塔的位置。第5醋酸分流比連續地導入製品塔的第4醋酸分流更富含醋酸。亦即,第5醋酸分流的醋酸濃度高於第4醋酸分流的醋酸濃度。第5醋酸分流的醋酸濃度,在高於第4醋酸分流的醋酸濃度的範圍內,例如為99.9~99.999質量%或其以上。此外,第5醋酸分流中的碘己烷濃度通常為1質量ppb以下,但亦可為0~30質量ppb,特別是0.01~10質量ppb(例如0.1~5質量ppb)。將該第5醋酸分流儲存於例如圖示以外的製品槽。此外,作為設置於蒸餾塔6之下游的替代(或除了設置於蒸餾塔6之下游之外),亦可將離子交換樹脂塔7設置於製品塔的下游,以處理製品塔排出的醋酸分流。
上述製品塔,設置於離子交換樹脂塔7之上游的情況,較佳係如本發明中所規定,以塔底溫度小於175℃的條件對於所供給之醋酸分流進行蒸餾而得到精製醋酸。又,較佳係如本發明中所規定,使管路的材質及製品塔的材質(至少接觸液體、接觸氣體部分的材質)為鎳基合金或鋯。藉由使用這種材質,可抑制碘化氫及醋酸造成管路及蒸餾塔內部的腐蝕,而可抑制腐蝕金屬離子的溶出。
本發明中,從抑制蒸餾塔腐蝕的觀點來看,上述製品塔的塔底液中的醋酸鹽、醋酸酐、丙酸的濃度分別越低越佳。製品塔的塔底液中的醋酸鹽濃度,例如為0.1質量ppb~1質量%,較佳為1質量ppb~0.1質量%,再佳為10質量ppb~0.01質量%(例如100質量ppb~0.001質量%)。製品塔的塔底液中的醋酸酐濃度,例如為0.1質量ppm~60質量%,較佳為1質量ppm~10質量%,再佳為10質量ppm~2質量%(例如50質量ppm~0.5質量%),或亦可為0.2~10質量%(例如0.5~5質量%)。製品塔的塔底液中的丙酸濃度,例如為1質量ppm~10質量%,較佳為10質量ppm~5質量%,再佳為50質量ppm~1質量%(例如100質量ppm~0.1質量%)。製品塔的塔底液中的醋酸鹽濃度,例如,可藉由下述方法降低:減少用於上述碘化氫之中和的鹼之添加量,或是使蒸餾塔內部的腐蝕不易發生。又,製品塔之塔底液中的醋酸酐濃度,例如,可藉由下述方法降低:在位於製品塔上游的管路、裝置或是製品塔內添加水而使醋酸酐水解。製品塔之塔底液中的丙酸濃度,例如,可藉由下述方法降低:變更反應條件使反應槽中丙酸的副生成減少,或是使部分加工液再循環至反應系統時,從該加工液將成為丙酸副生成之原因的乙醛分離去除後再循環至反應系統,或是在製品塔的上游設置將丙酸分離去除的蒸餾塔或蒸發器(去丙酸塔)。
製品塔的加入液,包含附加於蒸餾之醋酸分流的至少一部分,亦可加入該醋酸分流以外的分流。製品塔設置於離子交換樹脂塔7上游的情況,本發明中,較佳係使製品塔的加入液中的金屬離子濃度為鐵離子小於10000質量ppb、鉻離子小於5000質量ppb、鎳離子小於3000質量ppb、且鉬離子小於2000質量ppb。藉由使製品塔的材質為上述特定的材質、使塔底溫度小於175℃,且將往製品塔之加入液中的金屬離子濃度控制在上述範圍,可明顯降低該步驟中所得之精製醋酸中的腐蝕金屬濃度,進而亦可降低供給至後續吸附去除步驟之醋酸中的金屬濃度,而可大幅提升銀取代離子交換樹脂(IER)的壽命。此外,製品塔的加入液中的鐵離子濃度較佳為小於9000質量ppb,更佳為小於5000質量ppb,再佳為小於3000質量ppb,特佳為小於1500質量ppb,尤其是小於800質量ppb(例如小於400質量ppb)。上述加入液中的鉻離子濃度較佳為小於4000質量ppb,更佳為小於2500質量ppb,再佳為小於1500質量ppb,特佳為小於750質量ppb,尤其是小於400質量ppb(例如小於200ppb)。上述加入液中的鎳離子濃度較佳為小於2500質量ppb,更佳為小於2000質量ppb,再佳為小於1000質量ppb,特佳為小於500質量ppb,尤其是小於250質量ppb(例如小於150質量ppb)。上述加入液中的鉬離子濃度較佳為小於1700質量ppb,更佳為小於1200質量ppb,再佳為小於700質量ppb,特佳為小於350質量ppb,尤其是小於170質量ppb。又,上述加入液中的鋅離子濃度,例如小於1000質量ppb,較佳為小於800質量ppb,更佳為小於650質量ppb,再佳為小於500質量ppb,特佳為小於410質量ppb,尤其是小於200質量ppb。再者,上述加入液中的碘己烷濃度,例如為0.2~10000質量ppb、通常大多為1~1000質量ppb、2~100質量ppb(例如3~50質量ppb,特別是5~40質量ppb)。又,製品塔的加入液中的醋酸濃度,例如為90質量%以上(例如95質量%以上),更佳為97質量%以上,再佳為98質量%以上,特佳為99質量%以上。又,製品塔的加入液亦可包含選自含有醋酸鹽、醋酸酐及丙酸之群組的至少1種化合物。
上述實施形態中,蒸餾塔5及蒸餾塔6之中,例如,可將蒸餾塔5的塔底溫度設定為小於175℃(例如173℃以下),亦可將蒸餾塔6的塔底溫度設定為小於175℃(例如173℃以下),亦可將蒸餾塔5及蒸餾塔6的塔底溫度設定為小於175℃(例如173℃以下)。又,上述製品塔設置於離子交換樹脂塔7上游的情況,蒸餾塔5、蒸餾塔6及上述製品塔之中,除了上述例示以外,例如,可進一步將製品塔的塔底溫度設定為小於175℃(例如173℃以下),亦可將蒸餾塔5及上述製品塔的塔底溫度設定為小於175℃(例如173℃以下),亦可將蒸餾塔6及上述製品塔的塔底溫度設定為小於175℃(例如173℃以下),亦可將蒸餾塔5、蒸餾塔6及上述製品塔的3個蒸餾塔所有的塔底溫度設定為小於175℃(例如173℃以下)。上述塔底溫度,較佳係分別小於173℃,更佳為172℃以下(例如170℃以下),再佳為168℃以下(例如165℃以下),特佳為165℃以下(例如164℃以下),尤其是163℃以下(例如162℃以下)。此外,如上所述,亦可不具備蒸餾塔6或上述製品塔(特別是後者)。 [實施例]
以下根據實施例更詳細說明本發明,但本發明不限於該等的實施例。此外,%、ppm、ppb皆為質量基準。此外,水濃度係由卡爾費雪水分測量法測量,金屬離子濃度係由ICP分析(或原子吸光分析)測量,其他成分的濃度係由氣相層析儀測量。
比較例1 在醋酸製造中的連續反應製程中,使甲醇與一氧化碳在羰基化反應槽中連續地進行反應,將來自上述反應槽的反應混合物連續地供給至閃蒸器,並將由急驟蒸餾所生成的至少包含醋酸、醋酸甲酯、碘甲烷、水及碘化氫的揮發性成分供給至第1蒸餾塔(去除低沸物塔),分離第1低沸點成分作為頂部餾出物,並從塔底分離包含大量沸點高於醋酸之成分的分流作為塔底排出液。使頂部餾出物液(第1低沸點成分)直接再循環至反應槽,將來自塔底的塔底排出液與閃蒸器的塔底排出液混合並使其再循環至反應槽。接著,從該第1蒸餾塔的側分流抽出第1液狀餾分,通過包含不鏽鋼製(SUS316:Mn 2%以下,Ni 10~14%、Cr 16~18%、Mo 2~3%、Fe 50%以上)材質的管路,連續地加入包含SUS316材質的第2蒸餾塔(脫水塔)(實際段數:50段,加入段與塔頂蒸氣抽出段的段間隔:實際段數15段)。該第1液狀餾分的組成為碘甲烷2%、醋酸甲酯2%、水1%、鐵離子9100ppb、鉻離子4000ppb、鎳離子2500ppb、鉬離子1700ppb、鋅離子410ppb、碘己烷51ppb、剩餘為醋酸(90質量%以上;其中包含醋酸鹽、醋酸酐、丙酸等的微量的雜質)。脫水塔中,以塔頂溫度165℃、塔底溫度175℃的條件進行蒸餾,在塔頂將含水的第2低沸點成分濃縮,得到第2液狀餾分(精製醋酸)以作為塔底排出液。使來自塔頂的餾出液再循環至反應槽。將加入脫水塔的量設為1時,塔底排出液的量為0.7,來自塔頂之餾出液的量為0.3。塔底排出液的組成為水500ppm、鐵離子21000ppb、鉻離子8300ppb、鎳離子5200ppb、鉬離子2800ppb、鋅離子590ppb、碘己烷50ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。將塔底排出液冷卻至40~50℃後,通過長度2m的銀取代離子交換樹脂(IER)管柱,將醋酸中的碘己烷吸附去除。塔底排出液的通液速度[樹脂容積每1m 3的塔底排出液處理量(m 3/h)]為3.8m 3/h・m 3(樹脂容積)。銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為41ppb、鐵離子濃度為100ppb、鉻離子濃度為15ppb、鎳離子濃度為10ppb、鉬離子濃度為6ppb、鋅離子濃度為7ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命(至樹脂出口的碘己烷濃度超過5ppb為止的運轉時間)為1.2年。又,將試樣(SUS316)每年的腐蝕速度(厚度的減少量)換算成mm的腐蝕速度為2.69mm/Y。
比較例2 將脫水塔的材質變更為鎳基合金[赫史特合金B2(HB2):Mo 28%、Ni 69%、Cr 1%以下,Fe 2%以下,Co 1%以下,Mn 1%以下],使脫水塔的操作條件為塔頂溫度160℃、塔底溫度170℃,並使供給至脫水塔的加入液的組成為碘甲烷2%、醋酸甲酯2%、水1%、鐵離子13700ppb、鉻離子6000ppb、鎳離子3800ppb、鉬離子2600ppb、鋅離子620ppb、碘己烷51ppb、剩餘為醋酸(90質量%以上;其中包含醋酸鹽、醋酸酐、丙酸等的微量的雜質),除此之外,進行與比較例1相同的實驗。 脫水塔的塔底排出液的組成為水490ppm、鐵離子19700ppb、鉻離子8700ppb、鎳離子7000ppb、鉬離子4300ppb、鋅離子890ppb、碘己烷51ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為30ppb、鐵離子濃度為80ppb、鉻離子濃度為16ppb、鎳離子濃度為15ppb、鉬離子濃度為9ppb、鋅離子濃度為9ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.1年,腐蝕速度為0.39mm/Y。
比較例3 使脫水塔的操作條件為塔頂溫度160℃、塔底溫度170℃,除此之外,進行與比較例1相同的實驗。 脫水塔的塔底排出液的組成為水490ppm、鐵離子19800ppb、鉻離子7900ppb、鎳離子4900ppb、鉬離子2700ppb、鋅離子590ppb、碘己烷49ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為34ppb、鐵離子濃度為85ppb、鉻離子濃度為14ppb、鎳離子濃度為9ppb、鉬離子濃度為7ppb、鋅離子濃度為5ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.2年,腐蝕速度為2.28mm/Y。
比較例4 使脫水塔的操作條件為塔頂溫度155℃、塔底溫度165℃,除此之外,進行與比較例1相同的實驗。 脫水塔的塔底排出液的組成為水500ppm、鐵離子16000ppb、鉻離子6700ppb、鎳離子4200ppb、鉬離子2600ppb、鋅離子590ppb、碘己烷45ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為29ppb、鐵離子濃度為81ppb、鉻離子濃度為13ppb、鎳離子濃度為9ppb、鉬離子濃度為8ppb、鋅離子濃度為5ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.4年,腐蝕速度為1.00mm/Y。
比較例5 將脫水塔的材質變更為鎳基合金[赫史特合金B2(HB2)],除此之外,進行與比較例1相同的實驗。 脫水塔的塔底排出液的組成為水510ppm、鐵離子13200ppb、鉻離子5800ppb、鎳離子6900ppb、鉬離子3800ppb、鋅離子590ppb、碘己烷43ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為30ppb、鐵離子濃度為80ppb、鉻離子濃度為16ppb、鎳離子濃度為15ppb、鉬離子濃度為9ppb、鋅離子濃度為9ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.3年,腐蝕速度為0.82mm/Y。
實施例1 將脫水塔的材質變更為鎳基合金[赫史特合金B2(HB2)],使脫水塔的操作條件為塔頂溫度160℃,塔底溫度170℃,除此之外,進行與比較例1相同的實驗。 脫水塔的塔底排出液的組成為水490ppm、鐵離子13200ppb、鉻離子5800ppb、鎳離子5200ppb、鉬離子3100ppb、鋅離子590ppb、碘己烷52ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為18ppb、鐵離子濃度為25ppb、鉻離子濃度為9ppb、鎳離子濃度為8ppb、鉬離子濃度為6ppb、鋅離子濃度為7ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.8年,腐蝕速度為0.39mm/Y。
實施例2 將從第1蒸餾塔(去除低沸物塔)之側分流抽出的第1液狀餾分通過包含鎳基合金[赫史特合金B2(HB2)]之材質的管路,得到碘甲烷2%、醋酸甲酯2%、水1%、鐵離子500ppb、鉻離子280ppb、鎳離子190ppb、鉬離子110ppb、鋅離子410ppb、碘己烷51ppb、剩餘為醋酸(90質量%以上;其中包含醋酸鹽、醋酸酐、丙酸等的微量的雜質)的混合液,將該混合液作為供給至脫水塔的加入液,除此之外,進行與實施例1相同的實驗。 脫水塔的塔底排出液的組成為水490ppm、鐵離子770ppb、鉻離子420ppb、鎳離子1900ppb、鉬離子800ppb、鋅離子590ppb、碘己烷50ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為5ppb、鐵離子濃度為6ppb、鉻離子濃度為6ppb、鎳離子濃度為7ppb、鉬離子濃度為4ppb、鋅離子濃度為4ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為6.1年,腐蝕速度為0.39mm/Y。
實施例3 將脫水塔的材質變更為鎳基合金[赫史特合金C(HC276):Mo 16%、Ni 57%左右,Cr 16%、Fe 5%、Co 2.5%以下,Mn 1%以下],除此之外,進行與實施例1相同的實驗。 脫水塔的塔底排出液的組成為水520ppm、鐵離子13300ppb、鉻離子6400ppb、鎳離子5800ppb、鉬離子3100ppb、鋅離子590ppb、碘己烷48ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為16ppb、鐵離子濃度為28ppb、鉻離子濃度為12ppb、鎳離子濃度為13ppb、鉬離子濃度為7ppb、鋅離子濃度為4ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.7年,腐蝕速度為0.67mm/Y。
實施例4 使脫水塔的操作條件為塔頂溫度155℃、塔底溫度165℃,除此之外,進行與實施例1相同的實驗。 脫水塔的塔底排出液的組成為水490ppm、鐵離子13200ppb、鉻離子5800ppb、鎳離子5200ppb、鉬離子3100ppb、鋅離子590ppb、碘己烷52ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為13ppb、鐵離子濃度為23ppb、鉻離子濃度為8ppb、鎳離子濃度為7ppb、鉬離子濃度為5ppb、鋅離子濃度為5ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為2.0年,腐蝕速度為0.39mm/Y。
實施例5 脫水塔的塔底排出液的組成為水485ppm、鐵離子13100ppb、鉻離子5800ppb、鎳離子3900ppb、鉬離子2600ppb、鋅離子590ppb、碘己烷53ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為12ppb、鐵離子濃度為23ppb、鉻離子濃度為9ppb、鎳離子濃度為6ppb、鉬離子濃度為5ppb、鋅離子濃度為5ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為2.1年,腐蝕速度為0.07mm/Y。
實施例6 使脫水塔的操作條件為塔頂溫度163℃,塔底溫度173℃,除此之外,進行與實施例1相同的實驗。 脫水塔的塔底排出液的組成為水495ppm、鐵離子13200ppb、鉻離子5800ppb、鎳離子5600ppb、鉬離子3300ppb、鋅離子590ppb、碘己烷51ppb、醋酸鹽小於50ppm、醋酸酐110ppm、丙酸120ppm、剩餘為醋酸(其中包含微量的雜質)。又,銀取代離子交換樹脂處理後的製品醋酸的銀離子濃度為23ppb、鐵離子濃度為40ppb、鉻離子濃度為13ppb、鎳離子濃度為14ppb、鉬離子濃度為8ppb、鋅離子濃度為8ppb、碘己烷濃度小於5ppb(檢測界線以下)。此操作中,IER樹脂壽命為1.6年,腐蝕速度為0.49mm/Y。
[結果的考察] 從實施例1可得知,藉由使往脫水塔之加入液中的特定金屬離子濃度在特定值以下、並且將脫水塔的材質變更為耐蝕性高的鎳基合金,流入脫水塔的金屬離子的量少,而且搭配以蒸餾塔的塔底溫度小於175℃的條件進行蒸餾,抑制來自脫水塔的腐蝕金屬的溶出,因此可大幅降低從脫水塔所得之精製醋酸中的金屬離子濃度。藉此,可減少流入後續有機碘化物之吸附去除步驟的金屬離子的量,而降低銀取代離子交換樹脂(IER)的銀離子與其他金屬離子的交換量,使IER的壽命長至1.8年。又,IER處理後的製品醋酸中的金屬離子濃度降低,銀離子的溶出亦一併減少,因此大幅提升製品醋酸的品質。相對於此,比較例2中,脫水塔的材質雖與實施例1相同為鎳基合金,但流入脫水塔的金屬離子的量多,流入吸附去除步驟的金屬離子多,而IER的壽命短,僅1.1年。又,比較例3中,往脫水塔的加入液中的金屬離子濃度雖與實施例1相同,但因為脫水塔的材質為不鏽鋼,因此從脫水塔溶出腐蝕金屬,流入吸附去除步驟的金屬離子量多,結果IER的壽命短,僅1.2年。此外,比較例4中,雖降低了比較例3中的操作溫度,但脫水塔的材質為不鏽鋼,因此IER的壽命短,僅1.4年。
從實施例1與實施例2可知,脫水塔即使為相同材質,若控制脫水塔加入液中的腐蝕金屬濃度而使其更低,從脫水塔所得之精製醋酸中的腐蝕金屬濃度亦降低,大幅提升了吸附去除步驟中所使用的銀取代離子交換樹脂的樹脂壽命。又,IER處理後的製品醋酸中的腐蝕金屬離子濃度及銀離子濃度亦降低,因此醋酸的品質更加提升。此外,儘管離子交換樹脂管柱加入液中的金屬濃度大幅拉開,但離子交換樹脂管柱出口的金屬離子濃度幾乎未改變,這被認為是離子交換樹脂的交換容量夠高,幾乎將流入離子交換樹脂管柱的所有金屬離子去除的結果。發明人認為,若進行長時間的實驗,離子交換樹脂管柱加入液的金屬離子濃度高的實施例1,相較於金屬離子濃度低的實施例2,其離子交換樹脂管柱出口的金屬離子濃度會在更早的階段即開始增加。
從實施例1與實施例3可知,作為脫水塔的材質,鎳基合金亦使用耐腐蝕性更高的「HB2」者,可抑制腐蝕金屬的溶出,而從脫水塔所得之精製醋酸的腐蝕金屬離子濃度降低,IER樹脂壽命及製品醋酸的品質提高。
根據比較例1與比較例3的對比,脫水塔的材質為不鏽鋼的情況中,即使將脫水塔的塔底溫度從175℃降低至170℃,離子交換樹脂的樹脂壽命仍為1.2年,並無變化,但根據實施例6與比較例5的對比,脫水塔的材質為鎳基合金的HB2之情況中,使塔低溫度從175℃降低至173℃的情況,離子交換樹脂的樹脂壽命延長了0.3年。再者,根據比較例5與實施例1的對比,脫水塔的材質為HB2之情況中,若使脫水塔的塔底溫度從175℃降低至170℃,則離子交換樹脂的樹脂壽命延長了0.5年。又,從實施例1、實施例4、實施例5、實施例6及比較例5可知,脫水塔的材質為HB2的情況中,若降低脫水塔的操作溫度,腐蝕金屬的溶出量降低,離子交換樹脂的樹脂壽命提升。
此外,蒸餾塔材質中不含鋅,因此在任一種條件下,鋅離子濃度皆僅與脫水塔中的濃縮所形成的濃縮倍率對應地上升,加入脫水塔的鋅離子與精製後醋酸中之鋅離子的絕對量相同。
若綜合上述比較例1~5及實施例1~6,可知離子交換樹脂的樹脂壽命的提升幾乎與離子交換樹脂管柱加入液的金屬離子濃度降低成比例。此外,上述樹脂壽命,並不與離子交換樹脂管柱加入液的金屬離子濃度完全成比例。這是因為,離子交換樹脂管柱加入液中的碘己烷等有機碘化物的量或從離子交換樹脂溶出至醋酸中的銀的量亦影響上述樹脂壽命。惟,可得知離子交換樹脂管柱加入液的金屬離子濃度為樹脂壽命降低的主原因之一。
1:反應槽 2:蒸發槽 3,5,6:蒸餾塔 4:傾析器 7:離子交換樹脂塔 8:滌氣器系統 9:乙醛分離去除系統 16:反應混合物供給管線 17:蒸氣分流排出管線 18,19:殘液分流再循環管線 54:一氧化碳含有氣體導入管線 55,56:氫氧化鉀導入管線 57:觸媒循環泵 91:蒸餾塔(第1去乙醛塔) 92:萃取塔 93:蒸餾塔(第2去乙醛塔) 94:蒸餾塔(萃取蒸餾塔) 95:傾析器 96:傾析器 97:蒸餾塔(去乙醛塔) 98:蒸餾塔(萃取蒸餾塔) 99:傾析器 200:煙囪式塔盤
圖1係顯示本發明之一實施形態的醋酸製造流程圖。 圖2係顯示乙醛分離去除系統之一例的概略流程圖。 圖3係顯示乙醛分離去除系統之另一例的概略流程圖。 圖4係顯示乙醛分離去除系統之再一例的概略流程圖。 圖5係顯示乙醛分離去除系統之再另一例的概略流程圖。
1:反應槽
2:蒸發槽
3,5,6:蒸餾塔
4:傾析器
7:離子交換樹脂塔
8:滌氣器系統
9:乙醛分離去除系統
11~15,20~53:管線
16:反應混合物供給管線
17:蒸氣分流排出管線
18,19:殘液分流再循環管線
54:一氧化碳含有氣體導入管線
55,56:氫氧化鉀導入管線
57:觸媒循環泵
1a,2a,3a,5a,6a:冷凝器
2b:熱交換器
3b,5b,6b:再沸器

Claims (1)

  1. 一種醋酸之製造方法,其中在材質為鎳基合金或鋯、加入液供給段與塔頂蒸氣抽出段的段間隔以實際段數計為1段以上的蒸餾塔內,通過材質為鎳基合金或鋯的加入管路,將鐵離子濃度小於10000質量ppb、鉻離子濃度小於5000質量ppb、鎳離子濃度小於3000質量ppb、鉬離子濃度小於2000質量ppb、鋅離子濃度小於1000質量ppb、碘己烷濃度小於510質量ppb、醋酸濃度80質量%以上的粗製醋酸加入該加入液供給段,以塔底溫度小於175℃的條件進行蒸餾, 且以滿足下述(a’’)及(b’’)中之至少一者的條件進行蒸餾: (a’’)塔底液中的醋酸鹽濃度為0.1質量ppm~1質量%; (b’’)塔底液中的醋酸酐濃度為0.1質量ppm~1質量%; 得到富含水的頂部餾出物與鐵離子濃度小於21000質量ppb、鉻離子濃度小於7100質量ppb、鎳離子濃度小於4000質量ppb、鉬離子濃度小於3000質量ppb、鋅離子濃度小於1000質量ppb的精製醋酸。
TW111123382A 2018-05-02 2019-04-25 醋酸之製造方法 TWI828204B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/017508 WO2019211904A1 (ja) 2018-05-02 2018-05-02 酢酸の製造方法
WOPCT/JP2018/017508 2018-05-02

Publications (2)

Publication Number Publication Date
TW202237556A TW202237556A (zh) 2022-10-01
TWI828204B true TWI828204B (zh) 2024-01-01

Family

ID=68159706

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108114440A TWI778256B (zh) 2018-05-02 2019-04-25 醋酸之製造方法
TW111123382A TWI828204B (zh) 2018-05-02 2019-04-25 醋酸之製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108114440A TWI778256B (zh) 2018-05-02 2019-04-25 醋酸之製造方法

Country Status (6)

Country Link
US (1) US11773044B2 (zh)
JP (1) JP6588657B1 (zh)
KR (1) KR102676905B1 (zh)
AR (1) AR114830A1 (zh)
TW (2) TWI778256B (zh)
WO (1) WO2019211904A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928211A (zh) * 2009-06-26 2010-12-29 上海焦化有限公司 一种羰化合成乙酸的方法
CN107108433A (zh) * 2014-11-14 2017-08-29 国际人造丝公司 生产具有低乙酸丁酯含量的乙酸产物的方法
TW201800380A (zh) * 2016-03-01 2018-01-01 大賽璐股份有限公司 乙酸製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142518A1 (de) * 1981-10-27 1983-05-05 Chemische Werke Hüls AG, 4370 Marl Destillationsverfahren zur herstellung von entwaessertem ethanol
GB9211671D0 (en) * 1992-06-02 1992-07-15 Bp Chem Int Ltd Process
US5696284A (en) 1995-06-21 1997-12-09 Bp Chemicals Limited Process for the carbonylation of alkyl alcohols and/or reactive derivatives thereof
KR101865436B1 (ko) * 2010-12-24 2018-06-07 주식회사 다이셀 아세트산의 제조 방법
MX2013007647A (es) 2010-12-30 2013-08-01 Celanese Int Corp Purificacion de torrentes de productos de acido acetico.
AR094541A1 (es) * 2013-01-25 2015-08-12 Daicel Corp Procedimiento para producir ácido carboxílico
US9540304B2 (en) * 2014-11-14 2017-01-10 Celanese International Corporation Processes for producing an acetic acid product having low butyl acetate content
US9822055B2 (en) * 2015-06-23 2017-11-21 Lyondellbasell Acetyls, Llc Silver loaded halide removal resins for treating halide containing solutions
US10457622B2 (en) * 2017-03-08 2019-10-29 Daicel Corporation Method for producing acetic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928211A (zh) * 2009-06-26 2010-12-29 上海焦化有限公司 一种羰化合成乙酸的方法
CN107108433A (zh) * 2014-11-14 2017-08-29 国际人造丝公司 生产具有低乙酸丁酯含量的乙酸产物的方法
TW201800380A (zh) * 2016-03-01 2018-01-01 大賽璐股份有限公司 乙酸製造方法

Also Published As

Publication number Publication date
US20210221763A1 (en) 2021-07-22
TW202237556A (zh) 2022-10-01
KR20210005196A (ko) 2021-01-13
JPWO2019211904A1 (ja) 2020-05-28
AR114830A1 (es) 2020-10-21
WO2019211904A1 (ja) 2019-11-07
TWI778256B (zh) 2022-09-21
TW201946892A (zh) 2019-12-16
JP6588657B1 (ja) 2019-10-09
US11773044B2 (en) 2023-10-03
KR102676905B1 (ko) 2024-06-24

Similar Documents

Publication Publication Date Title
JP6626988B1 (ja) 酢酸の製造方法
US10457622B2 (en) Method for producing acetic acid
TWI714775B (zh) 醋酸之製造方法
WO2020008505A1 (ja) 酢酸の製造方法
TWI828204B (zh) 醋酸之製造方法
TWI720210B (zh) 醋酸之製造方法
JP6626987B1 (ja) 酢酸の製造方法
TWI776054B (zh) 醋酸之製造方法
KR102600551B1 (ko) 아세트산의 제조 방법
TW201827393A (zh) 醋酸之製造方法
US10550058B2 (en) Method for producing acetic acid
TWI705052B (zh) 醋酸之製造方法
TWI701234B (zh) 醋酸之製造方法