TWI815015B - 使用固相摻雜物之拉錠器設備 - Google Patents

使用固相摻雜物之拉錠器設備 Download PDF

Info

Publication number
TWI815015B
TWI815015B TW109117150A TW109117150A TWI815015B TW I815015 B TWI815015 B TW I815015B TW 109117150 A TW109117150 A TW 109117150A TW 109117150 A TW109117150 A TW 109117150A TW I815015 B TWI815015 B TW I815015B
Authority
TW
Taiwan
Prior art keywords
dopant
puller
spindle
ingot
elongated member
Prior art date
Application number
TW109117150A
Other languages
English (en)
Other versions
TW202104680A (zh
Inventor
威廉 L 路特
哈利瑞沙 史瑞達拉莫西
斯蒂芬 哈林格
理查 J 菲利浦
張楠
吳雨樵
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Publication of TW202104680A publication Critical patent/TW202104680A/zh
Application granted granted Critical
Publication of TWI815015B publication Critical patent/TWI815015B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

本發明揭示用於製造一單晶矽錠之方法。該錠使用固相硼酸作為硼源用硼進行摻雜。硼酸可在錠生長期間用於反向摻雜該錠。亦揭示使用一固相摻雜物之拉錠器設備。該固相摻雜物可經安置於經移動而更靠近熔融物之表面之一容器中,或一蒸發單元可用於自該固相摻雜物製造一摻雜物氣體。

Description

使用固相摻雜物之拉錠器設備
本發明之領域係關於用於製造一單晶矽錠之方法,其中錠使用固相硼酸作為硼源用硼進行摻雜。本發明之領域亦係關於使用一固相摻雜物之拉錠器。
在高電阻率釸晶圓應用中,自其切割晶圓之單晶矽錠之電阻率可藉由將各種摻雜物加入至熔融物來控制。摻雜物可用於補償用於形成自其抽出之矽錠之一熔融物之多晶矽源中之各種雜質(例如,硼或磷)。
儅一或多種摻雜物經加入以在錠中達成一目標電阻率時,特定摻雜物及/或雜質可由於化合物之分離係數之差異而累積於熔融物中。例如,硼具有約0.8之一分離係數,此容許硼很容易被生長錠吸收。磷具有約0.35之一分離係數,此致使磷相對於更容易吸收之硼累積於熔融物中。據此,隨著錠生長及熔融物耗盡,磷累積於熔融物中從而更改生長錠之電阻率。此可致使電阻率降低且不符合客戶規格及/或在錠中發生一類型變化。
需要用於在錠生長期間反向摻雜一矽熔融物以增加仍在客戶要求內之錠之長度之方法。需要用於容許使用容易得到及/或相對廉價 且容許熔融物相對容易地摻雜之摻雜物源材料之摻雜方法。需要容許將固相摻雜物用作摻雜物源之拉錠器設備。
此段意欲向讀者介紹可能與下文描述及/或主張之本發明之各個態樣有關之各個技術態樣。据信,此論述有助於向讀者提供背景資訊以促進本發明之各個態樣之一更佳理解。據此,應理解,鑒於此閲讀此等陳述,且其等並不作為先前技術之承認。
本發明之一個態樣係關於一種用於自固持於一坩堝內之一矽熔融物製造一單晶矽錠之方法。將多晶矽加入至該坩堝。該坩堝經安置於一拉錠器內腔室內。加熱該多晶矽以致使一矽熔融物在該坩堝中形成。自該矽熔融物抽取一單晶矽錠。提供一固相硼酸源。自該固相硼酸製造一含硼氣體。使該含硼氣體接觸該熔融物之一表面以致使硼作為一摻雜物進入該熔融物同時自該熔融物抽取該單晶矽錠。
本發明之又另一態樣係關於一種用於製造一經摻雜單晶矽錠之拉錠器設備。該拉錠器設備包含一拉錠器外殼及形成於該拉錠器外殼內之一拉錠器內腔室。坩堝經安置於該拉錠器內腔室內。一外饋送管經至少部分安置在該拉錠器外殼外部。該外饋送管界定一外饋送管腔室。該外饋送管具有一遠端、一近端及延伸穿過該遠端及該近端之一外饋送管軸線。一長形構件可在該外饋送管腔室內沿著該外饋送管軸線移動。一摻雜物容器經耦合至該長形構件。該摻雜物容器可在一裝載位置(其中該摻雜物容器經安置在該拉錠器外殼外部)與一饋送位置(其中該摻雜物容器經安置於該拉錠器內腔室內)之間可移動。
本發明之又另一態樣係關於一種用於製造一經摻雜單晶矽 錠之拉錠器設備。該拉錠器設備包含一拉錠器外殼及形成於該拉錠器外殼內之一拉錠器內腔室。一坩堝經安置於該拉錠器內腔室內。具有一氣體入口之一摻雜物導管安置在該拉錠器內腔室外部且一氣體出口安置在該拉錠器內腔室中。一摻雜物蒸發單元經安置在該拉錠器內腔室外部。該摻雜物蒸發單元包含用於固持固相摻雜物之一摻雜物腔室。該摻雜物蒸發單元包含一加熱裝置,其用於加熱該固相摻雜物且製造一摻雜物氣體。該摻雜物蒸發單元包含一出口,該摻雜物氣體穿過該出口。該出口與該摻雜物導管流體連通。
存在關於本發明之上文提及之態樣所述之特徵之各種改良。進一步特徵同樣亦可經並入於本發明之上文提及之態樣中。此等改進及額外特徵可個別地或以任一組合存在。例如,下文關於本發明繪示之實施例之任一者論述之各種特徵可單獨或以任一組合經併入至本發明之上述態樣之任一者中。
100:拉錠器設備
102:(拉錠器內/拉錠器/內)腔室
104:坩堝
108:(矽)熔融物
112:(單晶矽/所得/單晶/矽)錠
114:晶種卡盤
116:(拉錠器/拉錠器外)殼體
118:(晶種)晶體
120:熱屏蔽
124:通道
126:摻雜物饋送系統
130:外(饋送)管
136:外饋送管腔室
140:遠端
144:近端
150:長形構件
156:(摻雜物)容器
158:囊室
160:凸緣
162:肩部
164:缺口
166:(接達)埠
168:出射管
170:(管)出口
172:連接環路
174:(固體/固相)摻雜物
180:外囊室殼體
182:堰
184:通道
188:上端
190:下端
194:環形腔室
198:囊室底板
200:隔離閥
202:閥控制器
208:平移裝置
212:外管
214:內構件
216:(平移裝置)手柄
218:套筒
220:接合點
224:螺紋構件
228:第一o形環
232:第二o形環
236:襯套
240:氣體障壁
242:摻雜物腔室
256:容器
400:拉錠器設備
402:(拉錠器/內)腔室
404:坩堝
408:(矽)熔融物
412:內腔室
414:(摻雜物)蒸發單元
416:(拉錠器)外殼
418:加熱裝置
422:氣體入口
424:摻雜物腔室
426:氣體出口
430:摻雜物導管
436:第一程序氣體入口
440:第二程序氣體入口
448:溫度感測器
452:經摻雜氣體出口
460:(隔離)閥
464:閥控制器
472:加熱腔室
476:熱屏蔽
A130:外饋送管軸線
圖1係用於用硼酸作為摻雜物源生長一矽錠之一實例方法之一示意圖;圖2係具有處於一摻雜物裝載位置中之一摻雜物容器之一拉錠器設備之一實施例之一部分橫截面側視圖;圖3係具有處於一摻雜物饋送位置中之摻雜物容器之拉錠器設備之一部分橫截面側視圖;圖4係具有處於摻雜物饋送位置中之摻雜物容器之拉錠器設備之一詳細橫截面側視圖;圖5係包含用於固持固相摻雜物之一摻雜物容器之一長形 構件及用於移動該長形構件之一平移單元之一側視圖;圖6係平移單元之一側視圖;圖7係長形構件與平移單元之間之接合點之一橫截面側視圖;圖8係一外管內之長形構件之一橫截面透視圖,其中容器處於摻雜物裝載位置中;圖9係容器之一橫截面側視圖;圖10係一拉錠器設備之另一實施例之一橫截面側視圖;圖11係拉錠器設備之一蒸發單元之一橫截面側視圖;圖12係蒸發單元之透視圖;及圖13係蒸發單元之一詳細橫截面側視圖。
對應參考特性指示貫穿圖式之對應部件。
此申請案主張2019年6月28日申請之美國臨時專利申請案第62/868,573號之權利,該案以全文引用方式併入本文中。
本發明的提供係關於用於摻雜一矽熔融物(例如,反向摻雜)之涉及硼酸之方法。額外提供係關於經組態以摻雜一矽熔融物且特定言之使用一固相摻雜物(諸如硼酸)進行摻雜之拉錠器設備。
用於使用硼酸進行摻雜之方法
本發明之一實例方法在圖1中展示。方法可藉由使用經組態以自固相硼酸製造一含硼氣體之一拉錠器設備實行。可根據用於用硼酸進行摻雜之方法使用之實例拉錠器設備在圖2至圖13中展示。雖然該方法可參考圖2至圖9中展示之拉錠器設備100或圖10至圖13中展示之拉錠器 400描述以簡化該方法,然該方法不應受限於拉錠器設備100、400,除非另外聲明。
參考圖2,根據用於製備一矽錠之方法之實施例,一矽熔融物經製備於安置於一拉錠器設備100之內腔室102內之一坩堝104中。坩堝104可由一承座(未展示)支撐。拉錠器設備100可經組態以旋轉坩堝104及/或在拉錠器設備100內垂直地移動坩堝104。
為製備矽熔融物,將多晶矽加入至坩堝104。將多晶矽加熱至高於矽熔化溫度(約1414℃)以致使多晶矽液化成一矽熔融物108。一加熱系統經操作以熔化掉多晶矽。例如,坩堝104下方或其側部之一或多個加熱器經操作以熔化掉矽。
在熔融物108經製造之前或之後,該熔融物可經摻雜有一摻雜物,通常係一n型摻雜物,以補償該熔融物中之p型雜質(例如,硼)。n型摻雜物可在錠112開始生長之前加入。藉由補償熔融物,所得錠112之電阻率可增加。例如,錠之晶種端(即,錠中最接近錠冠之部分)可具有至少約1,500Ω-cm之一電阻率,或如在其他實施例中,至少約2,000Ω-cm、至少約4,000Ω-cm、至少約6,000Ω-cm、至少約8,000Ω-cm、至少約10,000Ω-cm或自約1,500Ω-cm至約50,000ohm-cm或自約8,000Ω-cm至約50,000Ω-cm。合適n型摻雜物包含磷及砷。
一旦熔融物108經製備,則自熔融物108抽取一單晶矽錠112。一晶種118經固定至一晶種卡盤114。降低晶種卡盤114及晶體118直至晶種118接觸矽熔融物108之表面。一旦晶種118開始熔化,則一拉動機構將晶種118緩慢地向上提升以生長單晶錠112。
致使一程序氣體(例如,氬氣)循環通過拉錠器設備100之內 腔室102。該程序氣體在腔室102內創建一氣體氛圍。
如圖1中展示,本發明之方法之實施例包含提供固相硼酸源(H3BO3)。硼酸可相對較純,諸如約99%純度或更大、99.9%純度或更大或99.99%純度或更大。在一些實施例中,硼酸可係相對同位素純的(即,硼-11)。例如,硼酸可經提供於拉錠器100之內腔室102內(即,在殼體116內),諸如在圖2至圖9之拉錠器設備100之容器156中(圖4)。替代地,固相硼酸可經安置在拉錠器外殼416外部,諸如在圖10至圖13之拉錠器設備400之蒸發單元414之摻雜物腔室424內。
一含硼氣體係自固相硼酸製造。所製造之氣體大體上呈硼酸(H3BO3)或其衍生物(BxOyHz +複合物)而非其他化合物(例如,乙硼烷(B2H6)或二氫化硼(BH)2)之形式。然而,應理解,其他硼化合物可加入至含硼氣體。
可將固相硼酸加熱至高於其熔化溫度(約171℃)以液化固相硼酸及製造一硼酸液。接著,將硼酸液加熱至高於其蒸發溫度(約300℃)以製造一含硼氣體。例如,固相硼酸可藉由自圖2至圖9之拉錠器設備中之矽熔融物108輻射之熱量加熱或藉由圖10至圖13之拉錠器設備之蒸發單元414之一加熱裝置428(圖12)加熱。
一旦含硼氣體經製造,含硼氣體便接觸熔融物108之表面以容許硼擴散至熔融物中。例如,含硼氣體在出射管168(圖4)中之流動路徑可經約束使得含硼氣體儘可移動通過管出口170,如在圖2至圖9之拉錠器設備100中,或含硼氣體可由一程序氣體載送,如在圖10至圖13之拉錠器設備400中。
一旦硼進入熔融物,硼便補償由於磷之相對較小分離係數 已集中於熔融物中之磷,藉此增加在拉錠器設備中形成之錠112之剩餘部分之電阻率。
用於藉由使用固體摻雜物進行摻雜之拉錠器設備
一實例拉錠器設備100大體上經展示於圖2至圖9中,且另一實例拉錠器設備400經展示於圖10至圖13中。圖2至圖9之設備及圖10至圖13之設備400可用於使用固相硼酸用硼摻雜錠,如在上文描述的方法中,或可結合可以原生形式或一水合形式或以不會污染晶體生長程序之一化合物(例如,具有與SiO2相互混合之一相對較高濃度之B2O3之經摻雜玻璃或一重摻雜Si-B合金)形式在矽熔點(約1414℃)之下蒸發的其他固相摻雜物使用。
現參考圖2,拉錠器設備100包含一拉錠器外殼116,其界定殼體116內之一拉錠器內腔室102。一坩堝104經安置於拉錠器內腔室102內。坩堝104含有自其抽取矽錠112之矽熔融物108。錠112由一熱屏蔽120罩護。
拉錠器設備100包含一摻雜物饋送系統126。摻雜物饋送系統126包含一外饋送管130,其至少部分安置在拉錠器殼體116外部。外饋送管130界定其中之一外饋送管腔室136。外管130具有距外殼116最遠之一遠端140及最接近殼體116之一近端144。一外饋送管軸線A130延伸穿過外饋送管130之遠端140及近端144。外饋送管130可由不銹鋼或其他合適材料製成。
一長形構件150在外饋送管130內沿著外饋送管軸線A130可移動。長形構件150可經降低至拉錠器內腔室102中,如圖4中展示。在所繪示之實施例中,長形構件150係一管。在其他實施例中,可使用一桿或 軸件。長形構件150可由經受拉錠器腔室102內之環境之任一材料(諸如石英)製成。
一摻雜物容器156經耦合至長形構件150(圖4)(例如,巢封於其內)。如圖8中展示,容器156可毗鄰長形構件150之一凸緣160。容器156可包含坐於凸緣160上之一肩部162(圖9)。藉由移動長形構件150,摻雜物容器156在一提升位置(圖2,其亦可稱為一「摻雜物裝載位置」)(其中摻雜物容器156經安置在拉錠器外殼116外部)與一降低位置(圖3及圖4,其亦可稱為一「摻雜物饋送位置」)(其中容器156經安置於接近熔融物108之表面之拉錠器內腔室102內)之間移動。熱屏蔽120可包含形成於其中以向長形構件150及耦合至其之摻雜物容器156提供接近熔融物108一通路之一通道124(圖2)。
容器156可與長形構件150分離。長形構件150包含使能接達容器156之一缺口164(圖5)。在裝載位置中(圖2),容器156可自長形構件150移除以用摻雜物裝載容器156。當容器156處於裝載位置中以容許接達容器156時,缺口164與一接達埠166對準。容器156可由容器156之一連接迴路172抓持以拉動容器156通過缺口164及接達埠166。在其他組態中,當容器156經安置於長形構件150中時,可將摻雜物加入至容器156。
在容器之饋送位置中(圖3及圖4),自固相摻雜物製造一摻雜物氣體。摻雜物氣體向下行進至一出射管168且通過一出口170,其中其經導引至熔融物108之表面。
在所繪示之實施例中,容器156係固持固相摻雜物之一囊室158(圖9)。囊室158包含一外囊室殼體180。一堰182經安置於外囊室殼體180內。堰182在其中形成一通道184。堰182具有各自係開放的一上端 188及一下端190使得氣體可穿過通道184。一環形腔室194經安置於堰182與外囊室殼體180之間。固體摻雜物174(例如,硼酸)經安置於環形腔室194內且巢封於囊室底板198上。當容器156處於其降低位置中時(圖3及圖4),固相摻雜物174加熱,此致使摻雜物升華或熔化及蒸發。摻雜物氣體在環形腔室194中升起且透過堰182之上端188進入堰通道184。氣體繼續向下傳遞穿過通道184且透過堰182之開放下端190離開。摻雜物氣體繼續前進通過出射管168(圖4)、通過管出口170且朝向熔融物之表面。
長形構件150包含防止氣體向上流回長形構件150之一氣體障壁240(圖8)。替代地,長形構件可係不包含用於氣體回流之一通路之一桿或軸件。
現參考圖4,拉錠器設備100包含外饋送管130內之一隔離閥200。當長形構件150係自拉錠器內腔室102抽出時,隔離閥200密封拉錠器內腔室102。此在埠166與內腔室102隔離時容許透過接達埠166接達摻雜物容器156。當長形構件150降低時,接達埠166可經關閉或連接至一程序氣體源(例如,氬氣)。隔離閥200經連接至致動閥200之一閥控制器202。
拉錠器設備100包含用於在摻雜物裝載位置(圖2)與摻雜物饋送位置(圖3及圖4)之間移動摻雜物容器156之一平移裝置208(圖2)。平移裝置208將長形構件150及摻雜物容器156移入及移出拉錠器設備100之內腔室102且在外饋送管腔室136內移動(即,沿著外饋送管軸線A130)。一般言之,可使用容許容器156在容器156之摻雜物裝載位置與摻雜物饋送位置之間移動之任一平移裝置208,除非另外聲明。
在所繪示之實施例中,平移裝置208係一磁耦合穿壁平移 單元。平移裝置208包含一外管212及在外管212內移動之一內腔室214。內腔室214經磁耦合至一平移裝置手柄216。外管212可由不銹鋼(非磁性)或其他合適材料製成。平移裝置手柄216及內構件214可具有嵌入於其中以實現手柄216與內構件214之間之磁耦合之磁體。
內構件214在一接合點220處亦經連接至長形構件150(圖7)。實例接合點220包含一螺紋構件224,螺紋構件224嚙合環繞且經鉸接至內構件214之一下部之一套筒218上之螺紋。接合點220包含第一o形環228及第二o形環232及安置於o形環228、232之間之一襯套236。螺紋構件224壓縮o形環228、232,從而致使其等徑向向外移動以促進平移裝置內構件214與長形構件150之間之一摩擦連接。
平移裝置208之手柄216可沿著軸線A130向上及向下移動(圖2)。隨著手柄216移動,內構件214在外管212內移動。因為內構件214經耦合至長形構件150,致使長形構件150及容器256移入及移出拉錠器設備100之內腔室102。在一些實施例中,當容器156處於用於饋送摻雜物之一降低位置中時,容器156與熔融物108之間之距離可經改變(例如,由一操作者)以改變施加於容器156及其中之固相摻雜物之熱量以控制製造摻雜物氣體之速率。在其他實施例中,容器156可藉由一致動器而非手動地在其裝載位置(圖2)與摻雜物饋送位置(圖3及4)之間移動。
如上所述,平移裝置208可具有其他組態。其他實例平移裝置可包含一波紋管系統或一外部操作之線性平移裝置(例如,附接至一外部隔離之線性軌或氣動缸之一桿)。任一外部致動器應與內腔室102內部之熱量及真空隔離。
另一實例拉錠器設備400在圖10至圖11中展示。拉錠器設 備400可類似於上文描述之拉錠器設備100般操作,且設備100之操作應被認為係可適用於設備400(即,在與固相摻雜物之使用不相關之態樣中)。例如,拉錠器設備400包含在殼體416內形成一內腔室402之一外殼416。用於固持其中之一矽熔融物408之一坩堝404經安置於腔室402中。設備400包含罩護自熔融物抽取之錠之一熱屏蔽(未展示)。
拉錠器設備400包含將經摻雜氣體饋送至一摻雜物導管430之一摻雜物蒸發單元414。經摻雜氣體穿過摻雜物導管430以接觸熔融物408以致使熔融物408被摻雜。摻雜物導管430包含安置在拉錠器腔室402外部之一氣體入口422(圖11)及安置於拉錠器腔室402中且經定位成相對接近熔融物408之表面之一氣體出口426。
摻雜物蒸發單元414經安置在拉錠器內腔室402外部。摻雜物蒸發單元414包含用於固持固相摻雜物(例如,上述方法中所論述之硼酸)之一摻雜物腔室424(圖13)。一程序氣體(例如,氬氣)可透過第一程序氣體入口436及第二程序氣體入口440循環通過蒸發單元414。蒸發單元414之一經摻雜氣體出口452與摻雜物導管430(圖11)流體連通以將經摻雜氣體移動至熔融物408之表面。
環繞摻雜物腔室424的係一加熱腔室472(圖13)。一加熱裝置428(例如,電阻加熱元件)加熱在蒸發單元414中循環之氣體。經加熱氣體接觸摻雜物腔室242中之固相摻雜物,從而致使製造一摻雜物氣體(例如,透過升華或藉由固相摻雜物之液化及蒸發)。摻雜物氣體被程序氣體挑選以製造透過經摻雜氣體出口452釋放且釋放至摻雜物導管430(圖11)之一經摻雜程序氣體。蒸發單元414包含減少透過加熱腔室472之壁之熱損失之一熱屏蔽476。熱腔室472可由石英製成以減少污染。
一隔離閥460係在加熱腔室472及摻雜物腔室424下游之程序氣體通路內。隔離閥460隔離蒸發單元414與拉錠器設備400之內腔室402以在摻雜物未經加入至熔融物408時密封腔室402。一閥控制器464可用於致動閥460。
蒸發單元414包含量測加熱腔室472(圖13)之溫度之一溫度感測器448(圖12)。溫度感測器448可將一信號發送至一控制單元以基於經感測溫度改變加熱裝置428之輸出。蒸發單元414包含一真空埠456以進行抽氣、洩漏測試且用於在打開隔離閥460進行摻雜之前平衡壓力與拉錠器設備內腔室402。
與用於自一矽熔融物製造一單晶矽錠之習知方法相比,本發明之實施例之方法具有若干優點。在其中熔融物係藉由使用硼酸反向摻雜之實施例中,錠之一較大部分可係在客戶規格(例如,高電阻率)內,及/或可防止錠中之一類型變化。固相硼酸具有一相對較低熔化及蒸發溫度,此容許相對容易地製造一摻雜物氣體。
與習知拉錠器設備相比,本發明之實施例之拉錠器設備具有若干優點。在其中一摻雜物容器用於固持固體摻雜物之實施例中,容器可經置放成相對接近熔融物表面,此容許加熱熔融物以熔化及蒸發摻雜物。將容器定位成靠近熔融物亦減少或防止導致失去晶體結構或完整性之元素硼或硼化合物之沉澱或凝結的形成。使用包含一堰之一摻雜物容器容許摻雜物顆粒在容器內移動而無需自容器推出且推進至熔融物中。摻雜物顆粒直接進入熔融物中可致使失去錠中之零位錯。使用一隔離閥容許拉錠器之內腔室與固相摻雜物系統隔離,此防止對熔融物之污染且實現固相摻雜物之再裝載。使用一磁耦合穿壁平移單元會簡化密封且容許系統更穩健 (例如,無單獨密封件)以維持一氣密性環境。
在其中固相摻雜物係藉由拉錠器殼體外部之一蒸發單元轉換成一氣體之實施例中,一加熱裝置可用於加熱摻雜物,此容許改良對將摻雜物加入至熔融物之速率之控制。程序氣體經循環通過蒸發單元之速率亦可用於控制摻雜熔融物之速率。在其中一饋送管或導管可在拉錠器設備內移動之實施例中,可控制距熔融物之距離,此容許控制將摻雜物加入至熔融物之速率。
如本文中使用,術語「約」、「基本上」、「實質上」及「大約」在連同尺寸、濃度、溫度或其他物理或化學性質或特性之範圍使用時意謂涵蓋可存在於性質或特性之範圍之上限及/或下限中之變動,包含(例如)由捨入、測量方法論或其他統計變動引起之變動。
當介紹本發明或其之(若干)實施例之元件時,冠詞「一(a/an)」、「該(the)」及「該(said)」意欲意謂存在該等元件之一或多者。術語「包括」、「包含」、「含有」及「具有」意欲係包含性的且意謂除所列元件外可存在額外元件。指示一特定定向(例如,「頂部」、「底部」、「側」等)之術語之使用係為了方面描述且並不要求所描述項之任一特定定向。
因為可在上述構造及方法中作出各種改變而不會背離本發明之範疇,故意欲上文描述中所含及(若干)附圖中展示之所有標的應被解譯為繪示性的而非係一限制意義。
100:拉錠器設備
102:(拉錠器內/拉錠器/內)腔室
104:坩堝
108:(矽)熔融物
112:(單晶矽/所得/單晶/矽)錠
114:晶種卡盤
116:(拉錠器/拉錠器外)殼體
118:(晶種)晶體
120:熱屏蔽
124:通道
126:摻雜物饋送系統
130:外(饋送)管
136:外饋送管腔室
140:遠端
144:近端
150:長形構件
156:(摻雜物)容器
166:(接達)埠
200:隔離閥
208:平移裝置
212:外管
214:內構件
216:(平移裝置)手柄
A130:外饋送管軸線

Claims (8)

  1. 一種用於製造一經摻雜單晶矽錠之拉錠器設備,該拉錠器設備包括:一拉錠器外殼;一拉錠器內腔室,其形成於該拉錠器外殼內;一坩堝,其安置於該拉錠器內腔室內;一外饋送管,其至少部分安置在該拉錠器外殼外部,該外饋送管界定一外饋送管腔室且具有一遠端、一近端及延伸穿過該遠端及該近端之一外饋送管軸線;一長形構件,其可在該外饋送管腔室內沿著該外饋送管軸線移動,該長形構件係一管、一桿或一軸件;及一摻雜物容器,其耦合至該長形構件,使得該長形構件沿著該外饋送管之移動致使該摻雜物容器沿著該外饋送管移動,該摻雜物容器係可在一裝載位置與一饋送位置之間移動,在該裝載位置中該摻雜物容器經安置在該拉錠器外殼外部,在該饋送位置中該摻雜物容器經安置於該拉錠器內腔室內,其中該摻雜物容器係可與該長形構件分離之一囊室,使該囊室能夠被拉動而通過一接達埠,該接達埠係延伸穿過該外饋送管,當該囊室係沿著該外饋送管而與該接達埠對準時,該囊室可自該拉錠器外殼外部被接達。
  2. 如請求項1之拉錠器設備,其中該囊室包括:一外囊室殼體;及 一堰,其安置於該外囊室殼體內,該堰形成供摻雜物氣體通過之一通道,該堰具有一上端及一下端,該上端及該下端係開放的,一環形腔室安置於該堰與該拉錠器外殼之間以用於固持固相摻雜物。
  3. 如請求項2之拉錠器設備,其中該長形構件包括一凸緣,該囊室係坐於該長形構件之該凸緣。
  4. 如請求項1之拉錠器設備,其包括安置在該摻雜物容器下方以將摻雜物氣體導引至一熔融物之一表面之一管。
  5. 如請求項1之拉錠器設備,其中該長形構件係一管。
  6. 如請求項1之拉錠器設備,其進一步包括用於在自該拉錠器內腔室抽出該長形構件時密封該拉錠器內腔室之一閥。
  7. 如請求項1之拉錠器設備,其包括用於在該裝載位置與該饋送位置之間移動該摻雜物容器之一平移裝置,該平移裝置係一磁耦合穿壁平移單元。
  8. 如請求項1之拉錠器設備,進一步包括一熱屏蔽以於錠生長期間罩護該單晶矽錠,該熱屏蔽包括形成於其中之一通道,該長形構件於該摻雜物容器位於該饋送位置時,係被安置於該通道中。
TW109117150A 2019-06-28 2020-05-22 使用固相摻雜物之拉錠器設備 TWI815015B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962868573P 2019-06-28 2019-06-28
US62/868,573 2019-06-28

Publications (2)

Publication Number Publication Date
TW202104680A TW202104680A (zh) 2021-02-01
TWI815015B true TWI815015B (zh) 2023-09-11

Family

ID=70978656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117150A TWI815015B (zh) 2019-06-28 2020-05-22 使用固相摻雜物之拉錠器設備

Country Status (7)

Country Link
US (3) US11585010B2 (zh)
EP (2) EP4394095A2 (zh)
JP (2) JP7430204B2 (zh)
KR (2) KR102587741B1 (zh)
CN (1) CN114207193A (zh)
TW (1) TWI815015B (zh)
WO (1) WO2020263455A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147344A1 (en) * 2020-12-31 2022-07-07 Globalwafers Co., Ltd. Systems and methods for producing a single crystal silicon ingot using a vaporized dopant
US11866844B2 (en) 2020-12-31 2024-01-09 Globalwafers Co., Ltd. Methods for producing a single crystal silicon ingot using a vaporized dopant
US11795569B2 (en) 2020-12-31 2023-10-24 Globalwafers Co., Ltd. Systems for producing a single crystal silicon ingot using a vaporized dopant
WO2024081521A1 (en) * 2022-10-13 2024-04-18 Globalwafers Co., Ltd. Systems and methods for controlling a gas dopant vaporization rate during a crystal growth process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1432075A (zh) * 2000-05-10 2003-07-23 Memc电子材料有限公司 用于将砷掺杂剂加入硅晶体生长工艺中的方法和装置
JP2009242142A (ja) * 2008-03-28 2009-10-22 Sumco Techxiv株式会社 シリコン単結晶引上装置及びシリコン単結晶の製造方法
US20090266294A1 (en) * 2008-04-24 2009-10-29 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing apparatus
JP2010143776A (ja) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 シリコン単結晶引上装置
US20160017513A1 (en) * 2013-03-15 2016-01-21 Memc Electronic Materials S.P.A. Gas doping systems for controlled doping of a melt of semiconductor or solar-grade material
US20160298259A1 (en) * 2013-06-07 2016-10-13 Memc Electronic Materials S.P.A. Dopant feeding device for dispensing dopant
US20170062568A1 (en) * 2015-08-26 2017-03-02 Infineon Technologies Ag Semiconductor device, silicon wafer and method of manufacturing a silicon wafer
US20170247809A1 (en) * 2016-02-25 2017-08-31 Sunedison, Inc. Feed system for crystal pulling systems
CN108138354A (zh) * 2015-05-01 2018-06-08 各星有限公司 生产被挥发性掺杂剂掺杂的单晶锭的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740904B4 (de) 1997-09-17 2004-10-28 Infineon Technologies Ag Verfahren zum Beseitigen von Sauerstoff-Restverunreinigungen aus tiegelgezogenen Siliziumwafern
JP4723071B2 (ja) 2000-10-24 2011-07-13 信越半導体株式会社 シリコン結晶及びシリコン結晶ウエーハ並びにその製造方法
JP2002226295A (ja) 2001-01-31 2002-08-14 Shin Etsu Handotai Co Ltd チョクラルスキー法によるシリコン単結晶製造工程の管理方法及びチョクラルスキー法による高抵抗シリコン単結晶の製造方法並びにシリコン単結晶
DE10250822B4 (de) * 2002-10-31 2006-09-28 Siltronic Ag Verfahren zur Herstellung eines mit leichtflüchtigem Fremdstoff dotierten Einkristalls aus Silicium
JP4367213B2 (ja) 2004-04-21 2009-11-18 信越半導体株式会社 シリコン単結晶の製造方法
WO2006003782A1 (ja) 2004-06-30 2006-01-12 Shin-Etsu Handotai Co., Ltd. シリコン単結晶の製造方法及び製造装置
JP5272329B2 (ja) 2007-05-22 2013-08-28 信越半導体株式会社 Soiウエーハの製造方法
JP5302556B2 (ja) 2008-03-11 2013-10-02 Sumco Techxiv株式会社 シリコン単結晶引上装置及びシリコン単結晶の製造方法
JP5270996B2 (ja) * 2008-07-30 2013-08-21 Sumco Techxiv株式会社 シリコン単結晶引上装置
JP5194146B2 (ja) 2010-12-28 2013-05-08 ジルトロニック アクチエンゲゼルシャフト シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
KR101939594B1 (ko) * 2011-05-06 2019-01-17 지티에이티 아이피 홀딩 엘엘씨 초기 장입물만을 도핑하여 균등하게 도핑된 실리콘 잉곳의 성장
US8691013B2 (en) * 2011-05-09 2014-04-08 Memc Singapore Pte Ltd Feed tool for shielding a portion of a crystal puller
FR2978549B1 (fr) 2011-07-27 2014-03-28 Commissariat Energie Atomique Determination des teneurs en dopants dans un echantillon de silicium compense
FR2978548A1 (fr) 2011-07-27 2013-02-01 Commissariat Energie Atomique Determination des teneurs en dopants dans un echantillon de silicium compense
JP2013129551A (ja) 2011-12-20 2013-07-04 Shin Etsu Handotai Co Ltd 単結晶製造装置及び単結晶製造方法
US20150044467A1 (en) * 2012-04-23 2015-02-12 Hwajin Jo Method of growing ingot and ingot
JP6083849B2 (ja) 2012-07-20 2017-02-22 国立大学法人静岡大学 試料中の標的物質を検出又は定量する方法及びキット
US10724148B2 (en) * 2014-01-21 2020-07-28 Infineon Technologies Ag Silicon ingot and method of manufacturing a silicon ingot
DE102014107590B3 (de) 2014-05-28 2015-10-01 Infineon Technologies Ag Halbleitervorrichtung, Siliziumwafer und Verfahren zum Herstellen eines Siliziumwafers
JP6222013B2 (ja) 2014-08-29 2017-11-01 信越半導体株式会社 抵抗率制御方法
JP6299543B2 (ja) 2014-09-18 2018-03-28 信越半導体株式会社 抵抗率制御方法及び追加ドーパント投入装置
US10920337B2 (en) * 2016-12-28 2021-02-16 Globalwafers Co., Ltd. Methods for forming single crystal silicon ingots with improved resistivity control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1432075A (zh) * 2000-05-10 2003-07-23 Memc电子材料有限公司 用于将砷掺杂剂加入硅晶体生长工艺中的方法和装置
JP2009242142A (ja) * 2008-03-28 2009-10-22 Sumco Techxiv株式会社 シリコン単結晶引上装置及びシリコン単結晶の製造方法
US20090266294A1 (en) * 2008-04-24 2009-10-29 Memc Electronic Materials, Inc. Method and device for feeding arsenic dopant into a silicon crystal growing apparatus
JP2010143776A (ja) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 シリコン単結晶引上装置
US20160017513A1 (en) * 2013-03-15 2016-01-21 Memc Electronic Materials S.P.A. Gas doping systems for controlled doping of a melt of semiconductor or solar-grade material
US20160298259A1 (en) * 2013-06-07 2016-10-13 Memc Electronic Materials S.P.A. Dopant feeding device for dispensing dopant
CN108138354A (zh) * 2015-05-01 2018-06-08 各星有限公司 生产被挥发性掺杂剂掺杂的单晶锭的方法
US20170062568A1 (en) * 2015-08-26 2017-03-02 Infineon Technologies Ag Semiconductor device, silicon wafer and method of manufacturing a silicon wafer
US20170247809A1 (en) * 2016-02-25 2017-08-31 Sunedison, Inc. Feed system for crystal pulling systems

Also Published As

Publication number Publication date
US20230160094A1 (en) 2023-05-25
US11585010B2 (en) 2023-02-21
TW202334518A (zh) 2023-09-01
CN114207193A (zh) 2022-03-18
US20200407869A1 (en) 2020-12-31
KR20230078818A (ko) 2023-06-02
JP2023113625A (ja) 2023-08-16
EP3990683B1 (en) 2024-08-14
TW202104680A (zh) 2021-02-01
WO2020263455A1 (en) 2020-12-30
US20230160093A1 (en) 2023-05-25
KR102587741B1 (ko) 2023-10-12
JP7430204B2 (ja) 2024-02-09
KR20220025003A (ko) 2022-03-03
EP4394095A2 (en) 2024-07-03
EP3990683A1 (en) 2022-05-04
JP2022540046A (ja) 2022-09-14

Similar Documents

Publication Publication Date Title
TWI815015B (zh) 使用固相摻雜物之拉錠器設備
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
US10544517B2 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
US5041186A (en) Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
KR20010080078A (ko) SiC 벌크 단결정 제조 방법
US20240309541A1 (en) Systems and methods for producing a single crystal silicon ingot using a vaporized dopant
TWI853548B (zh) 使用硼酸為摻雜物之單晶矽錠之製造方法及使用固相摻雜物之拉錠器設備
CN112830492B (zh) 一种制备碳化硅粉料的装置及方法
CN204325550U (zh) 消除碲锌镉材料沉淀相缺陷的热处理装置
US10125431B2 (en) Method of growing germanium crystals
CN105648535A (zh) 一种制备硫系化合物异质结构的装置及其制备方法
CN104532357A (zh) 一种消除碲锌镉材料沉淀相缺陷的热处理方法
CN205803634U (zh) 用于制备半导体材料的套管式腔体结构
US11866844B2 (en) Methods for producing a single crystal silicon ingot using a vaporized dopant
US20240150927A1 (en) Apparatus and method for producing a doped monocrystalline rod made of silicon
US20240125003A1 (en) Systems and methods for controlling a gas dopant vaporization rate during a crystal growth process
JP2024501868A (ja) 気化ドーパントを使用して単結晶シリコンインゴットを製造するためのシステム及び方法
JPWO2020263455A5 (zh)
TW202430732A (zh) 用於控制晶體生長過程期間氣體摻雜劑蒸發速率之系統及方法
CN104532356A (zh) 一种消除碲锌镉材料沉淀相缺陷的热处理装置