TWI809358B - 帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置 - Google Patents

帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置 Download PDF

Info

Publication number
TWI809358B
TWI809358B TW110106405A TW110106405A TWI809358B TW I809358 B TWI809358 B TW I809358B TW 110106405 A TW110106405 A TW 110106405A TW 110106405 A TW110106405 A TW 110106405A TW I809358 B TWI809358 B TW I809358B
Authority
TW
Taiwan
Prior art keywords
scintillator
light
charged particle
photodetector
particle detector
Prior art date
Application number
TW110106405A
Other languages
English (en)
Other versions
TW202201451A (zh
Inventor
岩中拓夢
關口好文
楠敏明
今村伸
川野源
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202201451A publication Critical patent/TW202201451A/zh
Application granted granted Critical
Publication of TWI809358B publication Critical patent/TWI809358B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2443Scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • H01J2237/24465Sectored detectors, e.g. quadrants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

提供一種即使一次電子線的電流的大電流化而入射至檢測器的訊號電子數增加,也不會飽和而可獲得正確的對比度的觀察圖像之帶電粒子檢測器及放射線檢測器。 本發明之帶電粒子檢測器,其特徵為,具有:閃爍體(109),具有檢測對試料照射一次電子而射出的訊號電子之訊號電子檢測面(109a),將訊號電子變換成光;及光檢測器(111),具有檢測從閃爍體(109)放出的光之光檢測面(111a);及光導(110),設於閃爍體(109)與光檢測器(111)之間;光檢測面(111a)的面積,比訊號電子檢測面(109a)的面積還大。

Description

帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置
本發明有關帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置。
檢測器,係為了將電子或離子等的粒子訊號及X射線或伽瑪射線等的放射線訊號變換成電壓、電流訊號等而被使用。當檢測對象為帶電粒子的情形下稱為帶電粒子檢測器,放射線的情形下稱為放射線檢測器。例如,在利用掃描電子顯微鏡(SEM:Scanning Electron Microscope)等的電子束等帶電粒子線之帶電粒子裝置中,檢測的訊號為電子等的帶電粒子,帶電粒子檢測器不可或缺。SEM,是將在電子源產生的電子束照射至欲觀察的試料,而將因此從試料射出的電子藉由帶電粒子檢測器來檢測。帶電粒子檢測器,根據檢測到的電子的量而輸出電流。將此電流量,與試料上的電子束照射位置的關係二維地顯示,藉此便形成SEM圖像。
這樣的帶電粒子檢測器的大多數,是由將檢測到的電子變換成光子之閃爍體(scintillator)與檢測來自的閃爍體的光子而變換成電流之光檢測器及將在閃爍體發出的光送往光檢測器之光導(light guide)所構成。在光檢測器會使用光電倍增管(PMT:Photomultiplier Tube)或MPPC(Multi-Pixel Photon Counter;多像素光子感測計數器)等。此外,放射線檢測器,為同樣的構成而僅是閃爍體的種類相異。亦即,放射線檢測器是構成為使用將檢測到的放射線變換成可藉由光檢測器檢測的波長的光之閃爍體,而透過光導將來自閃爍體的光送往光檢測器。
為了取得更多的訊號,要求在試料的鄰近配置檢測器。例如SEM中,可設想在試料與對物或最終的透鏡之間配置檢測器。專利文獻1中提出這樣的檢測器。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2018-152232號公報
[發明所欲解決之問題]
SEM中,若1次電子線的電流增加則從試料射出而被檢測的電子的數量會增加,像的S/N會提升而像的噪訊變得不明顯而解析度會提升,因此有一次電子線的電流的大電流化之需求。此時,藉由閃爍體而從電子被變換成光子,入射至光檢測器的光子數也會增加。然而,光檢測器,若相對於檢測面的面積而言之入射光子密度變大,則會飽和而變得無法正確地計數入射光子數。特別是MPPC(例如濱松光子學股份有限公司製,型號:S13360-6025CS),是在每邊數mm程度的四角形的檢測面舖設有每邊數十μm程度的微細的四角形的檢測像素,一旦光子入射至各檢測像素則在各像素每一者產生電子訊號,各像素的電子訊號表示光子的1個檢測。但,若入射光子密度變大而複數個光子同時入射至檢測像素,則入射光子數與輸出電流的比例關係會瓦解,而無法獲得正確的拍攝像。亦即,當一次電子線的電流大電流化的情形下會有光檢測器飽和這樣的待解問題。
上述的專利文獻1中,沒有關於一次電子線的電流的大電流化之記載,未記載有關此飽和之待解問題。此訊號飽和之待解問題不限於帶電粒子檢測器,在放射線檢測器中亦同。
本發明有鑑於上述情事,目的在於提供一種即使一次電子線的電流的大電流化而入射至檢測器的訊號電子數增加,也不會飽和而可獲得正確的對比度的觀察圖像之帶電粒子檢測器及放射線檢測器。 [解決問題之技術手段]
本發明的一個態樣,為了達成上述目的,提供一種具有閃爍體、光導、及光檢測器,而前述光檢測器的檢測面的面積比前述閃爍體的檢測面還大之檢測器。 本發明的更具體的構成,記載於申請專利範圍。 [發明之效果]
按照本發明,能夠提供一種即使一次電子線的電流的大電流化而入射至檢測器的訊號電子數增加,也不會飽和而可獲得正確的對比度的觀察圖像之帶電粒子檢測器及放射線檢測器。
上述以外的待解問題、構成及效果,將藉由以下實施形態之說明而明瞭。
以下利用圖面詳細說明本發明之實施例。另,用來說明實施例之所有圖中,對同一要素標注同一符號,省略其反覆說明。以下,雖示意電子束的檢測中的實施例,但使用離子束或放射線的情形下仍不失本發明之功效。 [實施例1]
圖1為實施例1的帶電粒子線裝置(SEM)的概略圖。如圖1所示,帶電粒子線裝置100a,具有配置於從電子源101被引出的一次電子102的軌道上之掃描用偏向器103與對物透鏡104。一次電子102,照射至被配置於試料搬送平台105之上的試料106,訊號電子107從試料106射出。這裡所謂訊號電子107,係指從試料射出的電子,如藉由一次電子被直接激發而放出至真空中的二次電子、或1次電子在試料中反覆散射而再度放出至真空中的反射電子等。
在對物透鏡104之下備有檢測訊號電子的帶電粒子檢測器108,在其中央設有開口部118以供一次電子102通過。從電子源101放出的一次電子102藉由對物透鏡104而被控制,以射束徑成為極小之方式被聚焦於試料106上。掃描用偏向器103,藉由系統控制部120而被控制使得一次電子102掃描試料106的被訂定的區域。從一次電子102到達試料106上的位置產生之訊號電子107,藉由帶電粒子檢測器108而被檢測。和從系統控制部120被送至掃描用偏向器103之掃描訊號同步而進行檢測到的訊號電子107之訊號處理,藉此在監視器121上形成SEM圖像。
圖2為圖1的帶電粒子檢測器的概要圖。本實施例之帶電粒子檢測器,具有將入射的訊號電子107變換成光112之閃爍體109、和閃爍體相接設置而將光112導光至光檢測器之光導110、設置於光導的正上方而檢測被導光的光之光檢測器111。又,光檢測器的檢測面111a的面積比閃爍體的檢測面109a還大,而呈現以光導110將光路擴大之構造。從試料106射出的訊號電子107,雖入射至閃爍體109,但其入射位置有偏頗,大多的訊號電子會入射至靠近一次電子102的軌道的位置,亦即距開口部118數mm的位置。另一方面,光檢測器,若相對於檢測面的面積而言入射光子密度變大則入射光子量與輸出電流之比例關係會瓦解,而變得無法正確地計數入射光子數,無法獲得正確的拍攝像。若一次電子線的電流增加,則尤其是從靠近開口部118的檢測面111a入射的光子數會變多,和入射至開口部118附近的一次電子102相對應之訊號強度會飽和。
本實施例的帶電粒子檢測器130,藉由以光導將光路擴大的構造,使得以高密度入射至閃爍體的訊號電子變換而成的光子分散,來減低入射至光檢測器的光子的密度,而發揮即使一次電子線的電流增加光檢測器也不會飽和,能夠獲得正確的對比度的拍攝像之效果。
此外,為了使盡可能多的訊號電子107入射,理想是開口部118在不干涉一次電子102的軌道的範圍內盡可能縮小。故,相對於閃爍體的檢測面109a,不使光檢測器的檢測面111a往開口部118側擴大,而是呈往外側擴大的構造。本實施例的帶電粒子檢測器中,將開口部118在不干涉一次電子的軌道的範圍內盡可能縮小,光檢測器的檢測面相對於閃爍體的檢測面做成往外側被擴大的構造,藉此發揮能夠檢測較多訊號電子107之效果。
又,本發明者,發現了光導的穿透率(相對於從一方之面入射的光而言從另一方之面射出的光的比例),若使光從面積小的一方傳遞至大的一方則會變高。是故,當如本構成般相對於入射面而言射出面的面積大的情形下,不僅會使光分散還會發揮穿透率變大之效果。
另,本發明之效果,只要光檢測面111a的面積比訊號電子檢測面109a的面積還大便可獲得,故光導110的形狀不問。圖2的光導110,具有從訊號電子檢測面109a朝向光檢測面111a而光導110的橫截面變大之形狀,但例如亦可為從訊號電子檢測面109a起橫截面逐漸變小,自某一處起朝向訊號電子檢測面109a變大之形狀。 [實施例2]
圖3A為實施例2的帶電粒子檢測器的概要圖,圖3B為圖3A的帶電粒子檢測器的從試料方向觀看時之光檢測器的檢測面的模型圖。本實施例的帶電粒子檢測器108b,係實施例1的光檢測器111為由複數個檢測單元111c所成之陣列狀光檢測器111b,光導110由複數個分割區塊110a所成。如圖3B所示,本實施例中,作為一例,將由16(4×4)通道的檢測單元111c所成之陣列狀光檢測器111b(例如濱松光子學股份有限公司製,型號:S13615-1025N-04)排列8個,來構成光檢測器。除此之外,亦能將由64(8×8)通道的檢測單元所成之陣列狀光檢測器(例如濱松光子學股份有限公司製,型號:S13615-1025N-08)排列8個。
光導的分割區塊110a與各個陣列狀光檢測器的檢測單元111c以一對一對應,入射至一個光導的分割區塊110a的光子不會入射至鄰接的另一區塊(嚴謹地說,還是會稍微入射至鄰接的另一區塊)。藉由此構造,入射至閃爍體的檢測面109a之訊號電子107被變換成光子,而光子入射至位於閃爍體的入射位置的正上方之光導的分割區塊110a,在光導的分割區塊110a內導光,而入射至和該分割區塊110a相對應之陣列狀光檢測器111b的檢測單元111c。
若將一次電子102的往試料106的入射位置起算至訊號電子107的往閃爍體的檢測面109a的入射位置為止之距離訂為w,試料106的表面起算至閃爍體的檢測面109a為止之距離訂為h,訊號電子107的從試料的射出角度訂為α,則當光檢測器111b檢測到訊號電子107時,能夠從檢測單元111c的位置來計測w。此外,h為已知的值,因此從w與h便能算出訊號電子的從試料的射出角度α。依據試料的素材、形狀而訊號電子放出的方向會發生差異,因此藉由檢測訊號電子的從試料的射出角度,便能獲得關於試料的素材、形狀之資訊。像這樣,本說明書中將能夠檢測訊號電子的入射位置之檢測器稱為位置辨別檢測器。本實施例的帶電粒子檢測器,藉由具有上述的構成,係為能夠精度良好地辨別訊號電子的往檢測面的入射位置,而能夠算出訊號電子的從試料的射出角度之構造,會發揮獲得關於試料的素材、形狀之資訊的效果。 [實施例3]
圖4為實施例3的帶電粒子檢測器的概要圖。訊號電子會入射至閃爍體而被變換成光,但光是在閃爍體內部傳播,因此實施例2的帶電粒子檢測器中,從訊號電子被變換而成的光子有可能在閃爍體內部移動,而不會入射至位於訊號電子的往閃爍體的入射位置的正上方之光導的分割區塊110a,卻入射至鄰接的另一光導的分割區塊。如此現象般,本說明書中將訊號電子入射的位置與接受光子的光檢測器的位置不對應之現象稱為串擾。由於串擾而訊號電子的往閃爍體的入射位置與光檢測器的檢測單元的位置之對應關係會瓦解(變得無法正確計測前述的w),當訊號電子入射時無法從光檢測器的檢測單元的位置正確地算出訊號電子的從試料的射出角度α,入射位置辨別的精度會降低。
圖4B為圖4A的帶電粒子檢測器的從試料方向觀看之光檢測器的檢測面的一例示意模型圖,圖4C為實施例3的帶電粒子檢測器的從試料方向觀看之光檢測器的檢測面的另一例示意模型圖。本實施例的帶電粒子檢測器,除實施例2的構造外,還將閃爍體109藉由分割部113分割成複數個閃爍體的分割單元109b。這裡,所謂分割,意指減低光的傳播之構造,例如在閃爍體的分割部設有刻痕,或完全地切斷,或設有隔間之構造。
在閃爍體109的中央設有用來照射一次電子的開口部118。閃爍體的分割單元109b、光導的分割區塊110a、光檢測器的檢測單元111c各者以一對一對應,光子從閃爍體往光導,從光導往光檢測器逐漸移動當中不會入射至鄰接的分割單元或分割區塊。閃爍體109,在圖4B為圓環形狀,在圖4C為四角形。如前述般,只要閃爍體的分割單元、光導的分割區塊、光檢測器的分割單元各者以一對一對應,則閃爍體、光導、光檢測器的形狀不問。
當閃爍體109與光檢測器的陣列構造相異的情形下,係由光導補償該陣列構造的差異而呈一對一對應之構成。藉由閃爍體被分割,能夠減低光子從訊號電子入射的閃爍體的分割單元往鄰接的分割單元移動,而能夠減低串擾,因此當訊號電子入射時能夠從光檢測器的檢測單元的位置更正確地算出訊號電子的從試料的射出角度α。本實施例的帶電粒子檢測器,藉由分割閃爍體,能夠減低串擾,發揮訊號電子的入射位置辨別的精度提升之效果。
此外,藉由在閃爍體的分割部113形成反射層,能夠防止訊號電子入射至某一閃爍體的分割單元而被變換成光子,又從入射的分割單元的側面飛出而往鄰接的分割單元入射導致串擾發生,而能夠從光檢測器的檢測單元的位置更正確地算出訊號電子的從試料的射出角度α。
反射層的材料,較佳是使用光的反射率高的材料,具體而言以鋁(Al)為理想。反射層的形成方法,有在分割部113的表面藉由濺鍍或蒸鍍等而形成由構成反射層的材料所成之薄膜的方法、或貼附由構成反射層的材料所成之金屬板的方法、塗布混合有反射率高的粒子之樹脂的方法等。本實施例的帶電粒子檢測器,藉由在閃爍體的分割部113形成反射層,能夠更減低串擾,發揮訊號電子的入射位置辨別的精度提升之效果。
說明閃爍體的分割構造與其製作方法。圖4D為閃爍體的分割構造的第1例與其製作方法說明模型圖。圖4D的構造中,是將閃爍體的分割單元109b以和光導的分割區塊110a的間距一致之方式成形,而藉由接著劑115接著。當形成反射層的情形下,在閃爍體的分割單元109b的側面109c形成反射層,藉此能夠減低串擾。
圖4E為閃爍體的分割構造的第2例,圖4F為圖4E的閃爍體的製作方法說明模型圖。圖4E的構造中,以和光導的分割區塊的間距一致之方式來製作隔間框113a,以同樣的間距在隔間框113a之中形成閃爍體的分割單元109b。當形成反射層的情形下,將隔間框113a以Al等的反射率高的材料來製作。圖4F(a)的製作方法中,將以和隔間框同樣的間距成形之閃爍體的分割單元109b嵌入隔間框113a而固定,以閃爍體的分割單元和光導的分割區塊的間距一致之方式配置。圖4F(b)的製作方法中,將隔間框113a事先以和光導的分割區塊的間距一致之方式固定,而在隔間框113a之中形成由粉體螢光體(例如P47(Y2 SiO5 :Ce)、YAG、GGAG((Y,Gd)3 (Al,Ga)5 O12 :Ce、(Y,Gd)3 (Al,Ga)5 O12 :Tb)、YAP(YAlO3 :Ce)、GOS(Gd2 O2 S:Pr、Gd2 O2 S:Ce、Gd2 O2 S:Tb))所成之閃爍體的分割單元109b。作為粉體螢光體的形成方法,可設想沉降塗布法或印刷法。
圖4E的構造中,閃爍體的分割單元109b藉由隔間框113a而被做成一體化,因此即使不將閃爍體接著於光導仍能容易地固定。本實施例的帶電粒子檢測器,不使用接著劑而藉由隔間框將閃爍體的分割單元予以一體化固定,藉由此構造,可達成製造工程的簡化而能夠減低製造成本,會發揮杜絕從接著劑釋出的氣體污染供閃爍體配置的真空腔室內之危險性的效果。
圖4G為閃爍體的分割構造的第3例示意模型圖。圖4G的構造中,首先以和光導的分割區塊的間距一致之方式在閃爍體109設置溝117,而在該溝含浸(impregnate)有接著力的材料(樹脂等)來形成隔間113b,再除去閃爍體109的下部直到到達隔間113b,藉此形成閃爍體的分割單元109b。當形成反射層的情形下,在作為隔間113b的材料使用混合了反射率高的粒子之樹脂或接著劑。
藉由圖4G的方法,閃爍體的分割單元109b亦被做成一體化,因此如同圖4F的方法般即使不將閃爍體接著於光導仍能夠固定。本實施例的帶電粒子檢測器,是藉由作為閃爍體的分割單元間的隔間之樹脂或接著劑來將閃爍體的分割單元予以一體化固定,藉此可達成製造工程的簡化而發揮能夠減低製造成本的效果。
此外,現存的陣列狀光檢測器的一個檢測單元的間距最小也有1mm程度,因此若將光檢測器的檢測單元和閃爍體的分割單元的面積設計成相同大小,則帶電粒子檢測器的位置辨別的解析力最高也只成為1mm程度。另一方面,本實施例的帶電粒子檢測器中,藉由以光導將光路擴大,能夠將閃爍體的分割單元的面積做成比光檢測器的檢測單元還小,而愈將閃爍體的分割單元的面積縮小愈可提升訊號電子的入射位置辨別的解析力。本實施例的帶電粒子檢測器,藉由以光導將光路擴大,將閃爍體的分割單元的面積做成比光檢測器的檢測單元還小,會發揮提升訊號電子的入射位置辨別的解析力的效果。 [實施例4]
圖5為實施例4的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,亦如同實施例2般是藉由分割閃爍體109來減低串擾之構造。實施例3的帶電粒子檢測器中,鄰接的閃爍體的分割單元是完全地分離,但本實施例的帶電粒子檢測器中是藉由在閃爍體設置溝117來將閃爍體分割。藉由溝來分割閃爍體,藉此能夠減低串擾,當訊號電子入射時能夠從光檢測器的檢測單元的位置更正確地算出訊號電子的從試料的射出角度α。
溝的深度愈深愈能夠防止串擾,但閃爍體分離的危險性會變高。在閃爍體當中,有在基材之上形成發光層的閃爍體(例如GaN閃爍體)。GaN閃爍體,是在藍寶石等的基材上形成有多量子井(MQW:Multi Quantum well)層這一發光層。當使用這樣的在基材之上形成發光層的閃爍體的情形下,理想是以發光層被分割之方式來設置溝。此外,閃爍體的分割單元109b被做成一體化,因此只要事先以和光導的分割區塊的間距一致之方式形成溝,光導與閃爍體的對位或固定便容易,可達成製造工程的簡化,製造成本會降低。
本實施例的帶電粒子檢測器,藉由將閃爍體以溝分割的構造,可達成製造工程的簡化,能夠減低製造成本,發揮訊號電子的入射位置辨別的精度提升的效果。
此外,藉由在溝117形成反射層,能夠防止訊號電子入射至某一閃爍體的分割單元而被變換成光子,又從入射的分割單元的側面飛出而往鄰接的分割單元入射導致串擾發生。
反射層的材料例及形成方法,如同實施例3。本實施例的帶電粒子檢測器,藉由在閃爍體的溝117形成反射層,能夠減低串擾,發揮訊號電子的入射位置辨別的精度提升之效果。 [實施例5]
圖6為實施例5的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,除實施例1的帶電粒子檢測器的構造外,還在光導使用推拔形狀的光纖板(FOP:Fiber Optics Plate)114。FOP為將直徑數μm的微細的光纖綑束而成的光學零件(例如濱松光子學股份有限公司製,型號:J5734)。入射至FOP的入射面的光纖之光子不會侵入至鄰接的光纖而會從射出面的同一光纖射出,因此能夠保存在入射面之光子的入射位置而將光子傳達至射出面。
本實施例的帶電粒子檢測器中,FOP呈推拔形狀,射出面的面積或光纖徑比入射面還大,但能夠保存在入射面之光子的入射位置資訊而傳達這點是相同的。如前述般,光子往閃爍體的入射位置有偏頗,絕大多數的訊號電子會入射至靠近一次電子的軌道的位置亦即距開口部118數mm的位置,本實施例的帶電粒子檢測器能夠藉由推拔形狀的FOP的微細的光纖來一面使以高密度入射的光子分散一面導光至光檢測器,能夠防止光檢測器飽和。像這樣,本實施例的帶電粒子檢測器,藉由以推拔形狀的FOP將光路擴大之構造,即使一次電子線的電流增加也不會讓光檢測器飽和,發揮能夠獲得正確的對比度的拍攝像的效果。
又,推拔形狀的FOP的穿透率(相對於從一方之面入射的光而言從另一方之面射出的光的比例),若使光從面積小的一方傳遞至大的一方則會變高。是故,當如本構成般相對於入射面而言射出面的面積大的情形下,不僅會使光分散還會發揮穿透率變大之效果。 [實施例6]
圖7為實施例6的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,除如同實施例4般在光導使用推拔形狀的FOP114外,還使用陣列狀光檢測器與分割的閃爍體。本實施例的帶電粒子檢測器,如同實施例3及實施例4的帶電粒子檢測器般閃爍體的分割單元109b與光檢測器的檢測單元111c各者以一對一對應,而具有作為位置辨別檢測器的機能,能夠檢測訊號電子的從試料的射出角度。
當如實施例3及實施例4的帶電粒子檢測器般使用由複數個分割區塊所成之光導的情形下,必須將閃爍體的分割單元、光導的分割區塊、光檢測器的檢測單元全都以高精度對位。另一方面,推拔形狀的FOP的光纖徑為數μm,當比起閃爍體的分割單元或光檢測器的檢測單元的大小而言FOP的光纖徑足夠小的情形下,只要閃爍體的分割單元與光檢測器的檢測單元各者以高精度被對位,而推拔形狀的FOP的倍率(入射面與射出面之面積比)和閃爍體的檢測面109a與光檢測器的檢測面111a之面積比相等,則推拔形狀的FOP便不必高精度地對位,檢測器的組立工程或構造能夠簡化。
本實施例的帶電粒子檢測器,藉由在光導使用推拔形狀的FOP之構造,不需要光導的對位而可達檢測器的製造製程的簡化,發揮能夠減低製造成本的效果。 [實施例7]
圖8為實施例7的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,是在實施例1的構成中,閃爍體109與光檢測器111的檢測面配置在不平行的位置(圖中為垂直),而以光導110導光之構造。如前述般,為了能夠在試料與最終透鏡的極片之間設置,帶電粒子檢測器被認為必須盡可能小型。本實施例的帶電粒子檢測器,藉由將光導彎曲而變得不必將閃爍體109和光檢測器111平行配置,發揮帶電粒子檢測器的形狀的自由度變高的效果,發揮能夠在對物透鏡與試料間小空間納進帶電粒子檢測器的效果。 [實施例8]
圖9為實施例8的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,是將實施例3的帶電粒子檢測器做成圓頂形狀。閃爍體109藉由分割部113而被分割,光檢測器的檢測單元111c的面積比閃爍體的分割單元109b還大。
圖10為閃爍體的分割單元與試料之位置關係的一例的模型圖。圖10中將閃爍體的分割單元相對於試料平行地排列。如實施例2~5般當將閃爍體的分割單元相對於試料平行地配置的情形下,閃爍體的分割單元與試料之位置關係成為如圖10般。將入射至最靠近一次電子102的軌道之閃爍體的分割單元111c1的訊號電子所劃出的立體角訂為ω1,入射至最遠的閃爍體的分割單元111c2的訊號電子所劃出的立體角訂為ω2。圖10般的配置中,愈遠離一次電子102的軌道之閃爍體的分割單元,從一次電子的往試料的入射位置至閃爍體的分割單元為止之距離愈遠,立體角亦變小。故,ω2會變得比ω1小而訊號電子往最遠離一次電子102的軌道之閃爍體的分割單元111c2之入射數會減少。
圖11為閃爍體的分割單元與試料之位置關係的另一例的模型圖。圖11中將閃爍體的分割單元相對於試料以圓頂狀排列。如本實施例般當將閃爍體相對於試料以圓頂狀配置的情形下,閃爍體的分割單元與試料之位置關係成為如圖11般。圖11般的配置中,即使從一次電子102的軌道至閃爍體的分割單元為止之距離變化,從一次電子的往試料的入射位置至閃爍體的分割單元為止之距離仍相等,立體角亦相等。故,ω1與ω2相等,比起圖10的情形,訊號電子往最遠離一次電子102的軌道之閃爍體的分割單元111c2之入射數會增加。本實施例的帶電粒子檢測器,藉由將閃爍體的分割單元配置成圓頂狀之構造,發揮訊號電子往遠離一次電子的軌道之閃爍體的分割單元之入射數增加的效果。 [實施例9]
圖12為實施例9的帶電粒子檢測器的概要圖。本實施例的帶電粒子檢測器,由閃爍體109、光導110、光檢測器111所成,而將光檢測器的檢測面111a的面積比閃爍體的檢測面109a還大之帶電粒子檢測器108a,在訊號電子107飛來的位置以圓頂狀配置複數個。本實施例的帶電粒子檢測器,具有作為位置辨別檢測器的機能,帶電粒子檢測器108a各者完全地獨立因此在帶電粒子檢測器間無串擾,當訊號電子入射時能夠從帶電粒子檢測器的位置更正確地檢測訊號電子107的從試料的射出角度。
此外,如同實施例8般,從一次電子的往試料的入射位置至各個帶電粒子檢測器的閃爍體為止之距離相等,入射至各個帶電粒子檢測器的閃爍體之訊號電子所劃出的立體角亦相等,訊號電子往最遠離一次電子102的軌道的帶電粒子檢測器之入射數會增加。本實施例的帶電粒子檢測器,藉由將光檢測器的檢測面的面積比閃爍體的檢測面還大之帶電粒子檢測器以圓頂狀配置複數個之構造,訊號電子的入射位置辨別的精度會提升,發揮訊號電子往遠離一次電子的軌道之帶電粒子檢測器的閃爍體之入射數增加的效果。 [實施例10]
圖13為實施例10的帶電粒子線裝置的概略圖。在從電子源101被引出的一次電子102的軌道上具備掃描用偏向器103與對物透鏡104。一次電子102,照射至被配置於試料搬送平台105之上的試料106,而試料106會射出在試料內的反射深度小之訊號電子107a、在試料內的反射深度大之訊號電子107b。
在對物透鏡104之上配置有E×B偏向器116,根據能量的大小使訊號電子偏向。在被偏向的反射電子的行進方向具備帶電粒子檢測器108,其由被分割的閃爍體109、被分割的光導110、陣列狀光檢測器111b、分割部113所成而具有作為位置辨別檢測器的機能,檢測到的訊號電子之訊號處理是和從系統控制部1001送至掃描用偏向器103的掃描訊號同步進行,藉此在監視器121上形成觀察圖像。
E×B偏向器116為利用電子在電場與磁場中的行為之偏向器,具有從上方入射的電子(一次電子)不會偏向,但從下方入射的電子(訊號電子)會偏向之機能。在訊號電子當中,有一次電子在試料內反射而從試料射出之反射電子。反射電子一般而言指帶有50eV以上的能量的電子,依據在試料內的反射深度而能量大小相異。反射電子的能量,在試料內的反射深度愈大則愈變小,反射深度愈小則愈變大。藉由E×B偏向器而被偏向的角度會依據電子的能量的大小而異,在試料內的反射深度小之訊號電子107a能量大,會以小角度被偏向,而在試料內的反射深度大之訊號電子107b能量小,會以大角度被偏向。
本實施例的帶電粒子線裝置的帶電粒子檢測器108,如同位置辨別檢測器(例如實施例3、4、6、8)般,能夠從和訊號電子的往閃爍體的檢測面之入射位置相對應的光檢測器的檢測單元的位置,來辨別訊號電子。此外,位置辨別檢測器,當訊號電子入射時能夠從光檢測器的檢測單元的位置算出訊號電子的從試料的射出角度,而本實施例的帶電粒子裝置的帶電粒子檢測器同樣地能夠從光檢測器的檢測單元的位置算出訊號電子的E×B偏向器116所致之偏向角度。E×B偏向器116所致之偏向角度,和訊號電子的能量的大小亦即反射深度有關,因此能夠從E×B偏向器116所致之偏向角度算出訊號電子的反射深度。
藉此,本實施例的帶電粒子裝置的帶電粒子檢測器,當訊號電子入射時能夠從光檢測器的檢測單元的位置依反射深度別來檢測訊號電子,而能夠算出反射深度。此外,藉由僅使用同一的反射深度的訊號電子來形成觀察圖像,能夠取得在試料的某一深度之觀察圖像,而藉由取得在各個深度之觀察圖像,將它們依反射深度深的順序堆積便能取得試料的三維的觀察圖像。本實施例的帶電粒子裝置,藉由在對物透鏡之上配置E×B偏向器,而在藉由E×B偏向器被偏向的訊號電子的行進方向配置位置辨別檢測器之構造,能夠算出訊號電子的反射深度,能夠取得在試料的某一深度之觀察圖像,發揮能夠取得試料的三維的觀察圖像的效果。 [實施例11]
圖14為實施例11的帶電粒子裝置的概略圖。本實施例的帶電粒子線裝置,和實施例10的帶電粒子裝置為同樣的構造,但差異點在於光檢測器的檢測面111a的面積比閃爍體的檢測面109a還大之帶電粒子檢測器108a,是在藉由E×B偏向器116被偏向的訊號電子的行進方向以圓頂狀配置複數個。藉由此構造,本實施例的帶電粒子裝置如同實施例7的帶電粒子裝置般當訊號電子入射時能夠從光檢測器的檢測單元的位置算出訊號電子的反射深度,能夠取得在試料的某一深度之觀察圖像,而能夠取得試料的三維的觀察圖像。
此外,藉由將帶電粒子檢測器108a以圓頂狀配置,即使從一次電子102的軌道至帶電粒子檢測器108a為止之距離變化,從E×B偏向器116的訊號電子的偏向位置至帶電粒子檢測器108a的閃爍體109為止之距離仍相等,訊號電子往最遠離一次電子102的軌道的帶電粒子檢測器108a的閃爍體109之入射數會增加。本實施例的帶電粒子檢測器,藉由將帶電粒子檢測器以圓頂狀配置之構造,發揮訊號電子往遠離一次電子的軌道的帶電粒子檢測器的閃爍體之入射數增加的效果。
此外,本實施例的帶電粒子裝置的帶電粒子檢測器108a是各者完全地獨立因此在帶電粒子檢測器間無串擾,能夠更正確地算出E×B偏向器116所致之偏向角度,訊號電子的反射深度的檢測精度會提升。本實施例的帶電粒子裝置,藉由在藉由E×B偏向器被偏向的訊號電子的行進方向將光檢測器的檢測面的面積比閃爍體的檢測面還大之帶電粒子檢測器以圓頂狀配置複數個之構造,發揮訊號電子的反射深度的檢測精度提升的效果。 [實施例12]
實施例1~12中說明了帶電粒子線檢測器與帶電粒子線裝置,但本發明的帶電粒子檢測器的構成亦能適用於放射線檢測器。圖15為實施例12的放射線檢測裝置的一例的概略圖,圖16為圖15的放射線檢測器示意圖。
如圖15所示,放射線檢測裝置200,具備對試料搬送平台105上的試料106照射X射線(放射線)之X射線源201、及檢測穿透試料106的X射線之X射線檢測器203。
如圖16所示,放射線檢測器具有:閃爍體,具有檢測放射線的放射線檢測面,將檢測到的放射線變換成光;及光檢測器,具有檢測從閃爍體放出的光之光檢測面;及光導,設於閃爍體與光檢測器之間;其具有光檢測面的面積比放射線檢測面的面積還大之構成。藉由具有這樣的構成,能夠獲得一種放射線檢測器及放射線檢測裝置,如同上述的實施例1~11的帶電粒子檢測器般,即使入射至檢測器的放射線的強度增加,仍不會飽和而可獲得正確的對比度的觀察圖像。
如以上說明般,按照本發明,揭示了能夠達成一次電子線的電流的大電流化。
另,上述實施例是為了淺顯地說明本發明而詳加說明,並非限定於一定要具備所說明之所有構成。此外,亦可將某一實施例的一部分置換成其他實施例之構成,又,亦可於某一實施例之構成追加其他實施例之構成。此外,針對各實施例的構成的一部分,可追加、刪除或置換其他構成。
100a,100b,100c:帶電粒子線裝置 101:電子源 102:一次電子 103:掃描用偏向器 104:對物透鏡 105:試料搬送平台 106:試料 107:訊號電子 107a:反射深度小之訊號電子 107b:反射深度大之訊號電子 108a,108b,108c,108d,108e,108f,108g,108h,108i:帶電粒子檢測器 108a:帶電粒子檢測器 109:閃爍體 109a:閃爍體的檢測面 109b:閃爍體的分割單元 109c:閃爍體的分割單元的側面 110:光導 110a:光導的分割區塊 111:光檢測器 111a:光檢測器的檢測面 111b:陣列狀光檢測器 111c:光檢測器的檢測單元 112:光 113:分割部 113a:隔間框 113b:隔間 114:推拔形狀的FOP 115:接著劑 116:E×B偏向器 117:溝 118:開口部 120:系統控制部 121:監視器 130:帶電粒子檢測器 w:一次電子的往試料的入射位置起算至訊號電子的往閃爍體的檢測面的入射位置為止之距離 h:試料的表面起算至閃爍體的檢測面為止之距離 α:訊號電子的從試料的射出角度 ω1:入射至最靠近一次電子的軌道的閃爍體的分割單元之訊號電子所劃出的立體角 ω2:入射至最遠離一次電子的軌道的閃爍體的分割單元之訊號電子所劃出的立體角 200:放射線檢測裝置 201:X射線源 202:X射線 203:X射線檢測器
[圖1]實施例1的帶電粒子線裝置(SEM)的概略圖 [圖2]圖1的帶電粒子檢測器的概要圖 [圖3A]實施例2的帶電粒子檢測器的概要圖 [圖3B]圖3A的帶電粒子檢測器的從試料方向觀看之光檢測器的檢測面的模型圖 [圖4A]實施例3的帶電粒子檢測器的概要圖。 [圖4B]圖4A的帶電粒子檢測器的從試料方向觀看之光檢測器的檢測面的一例示模型圖 [圖4C]實施例3的帶電粒子檢測器的從試料方向觀看之光檢測器的檢測面的另一例示意模型圖 [圖4D]閃爍體的分割構造的第1例與其製作方法說明模型圖 [圖4E]閃爍體的分割構造的第2例示意模型圖 [圖4F]圖4E的閃爍體的製作方法說明模型圖 [圖4G]閃爍體的分割構造的第3例示意模型圖 [圖5]實施例4的帶電粒子檢測器的概要圖 [圖6]實施例5的帶電粒子檢測器的概要圖 [圖7]實施例6的帶電粒子檢測器的概要圖 [圖8]實施例7的帶電粒子檢測器的概要圖 [圖9]實施例8的帶電粒子檢測器的概要圖 [圖10]閃爍體的分割單元與試料之位置關係的一例示意模型圖 [圖11]閃爍體的分割單元與試料之位置關係的另一例示意模型圖 [圖12]實施例9的帶電粒子檢測器的概要圖 [圖13]實施例10的帶電粒子線裝置的概略圖 [圖14]實施例11的帶電粒子裝置的概略圖。 [圖15]實施例12的放射線檢測裝置的一例的概略圖 [圖16]圖15的放射線檢測器示意圖
102:一次電子
106:試料
107:訊號電子
108a:帶電粒子檢測器
109:閃爍體
109a:閃爍體的檢測面
110:光導
111:光檢測器
111a:光檢測面
112:光
118:開口部

Claims (17)

  1. 一種帶電粒子檢測器,其特徵為,具有:閃爍體,具有檢測對試料照射一次電子而射出的訊號電子之訊號電子檢測面,將前述訊號電子變換成光;及光檢測器,具有檢測從前述閃爍體放出的光之光檢測面;及光導,設於前述閃爍體與前述光檢測器之間,成為前述光的光路;前述光檢測面的面積,比前述訊號電子檢測面的面積還大,前述閃爍體、前述光導、前述光檢測器的至少一者,朝向遠離一次電子的軌道之方向被分割成複數個單元,前述光導的被分割的前述單元的各者,係前述光路從設於前述閃爍體側的端部之前述光的入射面朝向於前述光檢測器側的端部之前述光的射出面而擴大。
  2. 一種帶電粒子檢測器,其特徵為,具有:閃爍體,具有檢測對試料照射一次電子而射出的訊號電子之訊號電子檢測面,將前述訊號電子變換成光;及光檢測器,具有檢測從前述閃爍體放出的光之光檢測面;及光導,設於前述閃爍體與前述光檢測器之間,成為前述光的光路; 前述光檢測面的面積,比前述訊號電子檢測面的面積還大,前述光導與前述光檢測器,被分割成複數個單元,前述光導的被分割的前述單元的各者,係前述光路從設於前述閃爍體側的端部之前述光的入射面朝向於前述光檢測器側的端部之前述光的射出面而擴大,前述光導的光路,比起靠近一次電子的軌道之方向,更朝向遠離一次電子的軌道之方向而擴大。
  3. 如請求項1記載之帶電粒子檢測器,其中,前述光導與前述光檢測器是藉由分割部被分割成複數個單元。
  4. 如請求項1記載之帶電粒子檢測器,其中,前述閃爍體被分割成複數個單元。
  5. 如請求項4記載之帶電粒子檢測器,其中,前述閃爍體是藉由分割部被分割成複數個單元。
  6. 如請求項3或5記載之帶電粒子檢測器,其中,在前述分割部的表面設有將光反射的反射層。
  7. 如請求項4記載之帶電粒子檢測器,其中,前述閃爍體,具有朝向前述光檢測器而設置的複數個溝。
  8. 如請求項7記載之帶電粒子檢測器,其中,在前述溝的表面設有將光反射的反射層。
  9. 如請求項6記載之帶電粒子檢測器,其中,前述反射層的材料為鋁。
  10. 如請求項8記載之帶電粒子檢測器,其中,前述反射層的材料為鋁。
  11. 如請求項1記載之帶電粒子檢測器,其中,前述光導由複數個光纖板(Fiber Optics Plate)所成。
  12. 如請求項1記載之帶電粒子檢測器,其中,前述光導的連接至前述閃爍體的入射面與連接至前述光檢測面的射出面之面積比,和前述訊號電子檢測面與前述光檢測面之面積比相等。
  13. 如請求項1記載之帶電粒子檢測器,其中,前述閃爍體、前述光檢測器及前述光導的截面形狀為扇形。
  14. 如請求項1記載之帶電粒子檢測器,其中,前述光檢測器相對於前述閃爍體而言垂直地配置。
  15. 一種帶電粒子線裝置,其特徵為,具備:如請求項1至14中任一項記載之前述帶電粒子檢測器;及控制前述一次電子的掃描之控制部;及處理前述訊號電子而顯示前述試料的圖像之顯示部。
  16. 一種放射線檢測器,其特徵為,具有:閃爍體,具有檢測放射線的放射線檢測面,將放射線訊號變換成光;及光檢測器,具有檢測從前述閃爍體放出的光之光檢測面;及光導,設於前述閃爍體與前述光檢測器之間,成為前述光的光路; 前述光檢測面的面積,比前述放射線檢測面的面積還大,前述閃爍體、前述光導、前述光檢測器的至少一者,朝向遠離一次電子的軌道之方向被分割成複數個單元,前述光導的被分割的前述單元的各者,係前述光路從設於前述閃爍體側的端部之前述光的入射面朝向於前述光檢測器側的端部之前述光的射出面而擴大。
  17. 一種放射線裝置,其特徵為,具備:如請求項16記載之前述放射線檢測器;及對試料照射放射線之放射線源;及處理從前述放射線檢測器獲得的訊號而顯示前述試料的圖像之顯示部。
TW110106405A 2020-03-02 2021-02-24 帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置 TWI809358B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/008668 WO2021176513A1 (ja) 2020-03-02 2020-03-02 荷電粒子検出器、荷電粒子線装置、放射線検出器および放射線検出装置
WOPCT/JP2020/008668 2020-03-02

Publications (2)

Publication Number Publication Date
TW202201451A TW202201451A (zh) 2022-01-01
TWI809358B true TWI809358B (zh) 2023-07-21

Family

ID=77613950

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106405A TWI809358B (zh) 2020-03-02 2021-02-24 帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置

Country Status (6)

Country Link
US (1) US20230050424A1 (zh)
JP (1) JP7266745B2 (zh)
DE (1) DE112020006001T5 (zh)
IL (1) IL295646A (zh)
TW (1) TWI809358B (zh)
WO (1) WO2021176513A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061244A1 (en) * 2006-09-07 2008-03-13 Pavel Adamec Asymmetric annular detector
US20080315094A1 (en) * 2007-01-30 2008-12-25 Joe Wang Charged particle detection devices
US20130334430A1 (en) * 2012-06-13 2013-12-19 Hermes Microvision, Inc. High efficiency scintillator detector for charged particle detection
TWI455169B (zh) * 2012-03-12 2014-10-01 Hermes Microvision Inc 帶電粒子偵測裝置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254127A3 (de) * 1986-07-25 1988-08-10 Siemens Aktiengesellschaft Detektor für geladene Teilchen
WO2010021012A1 (en) * 2008-08-20 2010-02-25 Advantest Corporation Electron detection device and scanning electron microscope
FR3003652A1 (fr) * 2013-03-25 2014-09-26 Commissariat Energie Atomique Detecteur de traces de particules ionisantes
JP6689777B2 (ja) 2017-03-13 2020-04-28 株式会社日立製作所 荷電粒子検出器およびそれを用いた荷電粒子線装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061244A1 (en) * 2006-09-07 2008-03-13 Pavel Adamec Asymmetric annular detector
US20080315094A1 (en) * 2007-01-30 2008-12-25 Joe Wang Charged particle detection devices
TWI455169B (zh) * 2012-03-12 2014-10-01 Hermes Microvision Inc 帶電粒子偵測裝置
US8895935B2 (en) * 2012-03-12 2014-11-25 Hermes Microvision, Inc. High efficiency secondary and back scattered electron detector
US20130334430A1 (en) * 2012-06-13 2013-12-19 Hermes Microvision, Inc. High efficiency scintillator detector for charged particle detection

Also Published As

Publication number Publication date
US20230050424A1 (en) 2023-02-16
DE112020006001T5 (de) 2022-11-03
IL295646A (en) 2022-10-01
JPWO2021176513A1 (zh) 2021-09-10
TW202201451A (zh) 2022-01-01
WO2021176513A1 (ja) 2021-09-10
JP7266745B2 (ja) 2023-04-28

Similar Documents

Publication Publication Date Title
US7732762B2 (en) Method of inspecting a specimen surface, apparatus and use of fluorescent material
US10395887B1 (en) Apparatus and method for inspecting a surface of a sample, using a multi-beam charged particle column
JP2009080124A (ja) 蛍光体
JP6826218B2 (ja) 電子衝撃検出器を動作させる方法
EP3139399A1 (en) Electron detector assembly
EP1898443B1 (en) Asymmetric annular detector
WO2015185995A1 (ja) 荷電粒子線装置
TWI809358B (zh) 帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置
JP6084902B2 (ja) 検出器および荷電粒子線装置
US20200312610A1 (en) Charged particle beam device for inspection of a specimen with a plurality of charged particle beamlets
US7842930B2 (en) Charged particle detector assembly, charged particle beam apparatus and method for generating an image
US8779368B2 (en) Scintillation detection unit for the detection of back-scattered electrons for electron or ion microscopes
JP6666626B2 (ja) 荷電粒子検出器及び荷電粒子線装置
US11515120B2 (en) Charged particle beam apparatus
US20230266485A1 (en) Device for detecting charged particles or radiation
WO2013175972A1 (ja) 電子顕微鏡および電子検出器
JP7076021B1 (ja) ライトガイド、電子線検出器、及び荷電粒子装置
JP6228870B2 (ja) 検出器および荷電粒子線装置
WO2001084590A2 (en) Method and apparatus for imaging a specimen using indirect in-column detection of secondary electrons in a microcolumn