JP6689777B2 - 荷電粒子検出器およびそれを用いた荷電粒子線装置 - Google Patents

荷電粒子検出器およびそれを用いた荷電粒子線装置 Download PDF

Info

Publication number
JP6689777B2
JP6689777B2 JP2017047453A JP2017047453A JP6689777B2 JP 6689777 B2 JP6689777 B2 JP 6689777B2 JP 2017047453 A JP2017047453 A JP 2017047453A JP 2017047453 A JP2017047453 A JP 2017047453A JP 6689777 B2 JP6689777 B2 JP 6689777B2
Authority
JP
Japan
Prior art keywords
charged particle
light
fluorescent film
scintillator
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047453A
Other languages
English (en)
Other versions
JP2018152232A (ja
JP2018152232A5 (ja
Inventor
保宏 白崎
保宏 白崎
百代 圓山
百代 圓山
香織 白幡
香織 白幡
慎 榊原
慎 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017047453A priority Critical patent/JP6689777B2/ja
Priority to US15/918,464 priority patent/US10361063B2/en
Publication of JP2018152232A publication Critical patent/JP2018152232A/ja
Publication of JP2018152232A5 publication Critical patent/JP2018152232A5/ja
Application granted granted Critical
Publication of JP6689777B2 publication Critical patent/JP6689777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2443Scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、荷電粒子検出器およびそれを用いた荷電粒子線装置に係り、特に荷電粒子線の照射された位置と強度を検出する荷電粒子検出器およびそれを用いた荷電粒子線装置に関するものである。
荷電粒子を検出する検出器は目には見えない電子やイオンなどの粒子信号を光、電圧、電流信号などに変換するために使用される。たとえば、走査電子顕微鏡(SEM:Scanning Electron Microscope)などの電子ビーム等の荷電粒子線を利用する荷電粒子線装置においては、検出する信号が電子などの荷電粒子であり、荷電粒子検出器が必要不可欠である。SEMは電子源から発生する電子ビームを観察したい試料に照射し、それにより二次電子を発生させる。荷電粒子検出器は、検出した二次電子の量に応じて電流を出力する。この電流量と、試料上の電子ビーム照射位置の関係を二次元的に表示することで、SEM画像が形成される。
このような荷電粒子検出器の多くは、二次電子を光に変換する蛍光板(以下、シンチレータ)と蛍光板からの光を検出して電流に変換する光検出器から構成される。SEMのような荷電粒子線装置における荷電粒子検出器は、情報弁別のために、検出器への荷電粒子の到達位置を特定できる構成をとることがある。例えば、試料の素材、形状により二次電子が放出される方向に違いが生じることから、試料からの二次電子の放出角度を検出することで、試料の素材、形状についての情報を得ることができる。
特許文献1では、放射線の到達位置に応じて粉末状のシンチレータに異なる発光波長を持つ色素を混合し、異なる波長で発光するシンチレータを用いる例が示されている。カラーフィルタでこの検出光の波長選択を行うことによって、シンチレータ内の放射線照射位置を特定することができる。
特開2000−258539号公報
上述の通り、SEMなどの荷電粒子線装置では二次電子の検出器への到達位置には試料情報が含まれているため、二次電子が検出器のどの位置に照射されているかを確認することにより、試料についてのより多くの情報を得ることができる。二次電子の到達位置を確認するためには、複数の荷電粒子検出器を備えたり、CCD(Charge Coupled Device)のような二次元の検出器を備えたりする構成が考えられる。しかしながら、検出器のコストが高まる、大きくなった検出器を配置するための空間が余分に必要となるといった課題がある。そのため、二次電子の到達位置を検出できる安価でコンパクトな荷電粒子検出器が望まれている。
二次電子の放出角度分布を測定するための荷電粒子検出器には二つの条件がある。まず1つめの条件について説明する。試料近傍で二次電子角度分布を測定する場合、試料と対物レンズの間の数mmの限られた空間に荷電粒子検出器を配置する必要があり、空間の制限がある。すなわち、荷電粒子検出器は小型であることが望ましい。これが1つめの条件である。
2つめの条件は荷電粒子検出器に使用可能なシンチレータの種類に関するものである。SEMでは、電子ビームが試料に照射されてから二次電子が検出されるまでの間に時間差があり、分解能を劣化することなくSEM画像を取得するためには、この時間差が小さい必要がある。この時間差を小さくするため、シンチレータの応答速度は高速であることが望ましい。一般的なSEM画像の取得レートの場合、シンチレータの応答速度は100ns程度以上であることが望まれる。また、信号対雑音比を上げるためには電子光変換効率が高く、画像の再現性を向上するためには安定であることが望まれる。以上より、二つめの条件は、応答速度が速く、電子光変換効率が高く、電子線や光照射、温度や真空度などの環境変動に対して耐性がある種類のシンチレータを使用することである。
このような2つの条件を満たし、一つの検出器で二次電子の到達位置が検出できるものを本明細書においては位置弁別検出器と称するが、2つめの条件を満たし、かつ発光波長の異なるシンチレータの種類は非常に限られるために、空間分解能の高い位置弁別検出器の実現は難しい。また、シンチレータの電子光変換効率や荷電粒子線などに対する耐性は材料に依存するため、複数の材料で作製されるシンチレータを用いると、定量的な信号量の比較が困難である。さらに特許文献1においては、一種類のパウダーシンチレータに発光波長の異なる色素を混合することで入射位置毎に発光色を変えることが記載されている。しかしながら、応答速度や荷電粒子線の照射に対する色素の耐性の観点から、荷電粒子線装置に用いる位置弁別検出器には不適切である。特に、発光波長の種類が豊富な有機化合物を含む色素は数分の荷電粒子線照射で劣化することが知られている。
荷電粒子が照射されるシンチレータと、シンチレータの荷電粒子が照射される面と対向する面に接する蛍光フィルムと、蛍光フィルムの発光を検出する光検出器とを有し、蛍光フィルムは複数の領域を有し、複数の領域はそれぞれシンチレータの発光を吸収し、互いに異なる波長で発光する蛍光体を有する荷電粒子検出器、およびこれを用いた荷電粒子線装置である。
荷電粒子線の到達位置を再現よく測定する荷電粒子検出器、これを用いた荷電粒子線装置を実現する。
荷電粒子検出器の概略構成を説明する図である。 ウェイブガイドの構成を説明する図である。 カラーフィルタによる検出光の選択を説明する図である。 発光スペクトルと透過スペクトルとの波長依存性を示す図である。 蛍光フィルムの構成を説明する図である。 蛍光フィルムの構成を説明する図である。 ウェイブガイドの別の構成を説明する図である。 カラーフィルタによる検出光の別の選択方式を説明する図である。 蛍光フィルムの発光効率変動を補正する構成を説明する図である。 信号アンプの増幅率を調整するフローチャートである。 信号アンプを調整するための設定画面である。 位置弁別検出器を備えた走査電子顕微鏡の構成を説明する図である。 位置弁別検出器を備えた走査電子顕微鏡の別の構成を説明する図である。 位置弁別検出器を備えた走査電子顕微鏡の別の構成を説明する図である。
以下、図面を用いて実施例を説明する。なお、実施例を説明するための全図において、同一の要素には同一の符号を付し、その繰り返しの説明は省略する。以下、電子ビームの検出における実施例を示すが、イオンビームや放射線を使用する場合においても本発明の効果は失われない。
図1は荷電粒子検出器の概略構成を示す図である。まず、検出器の構成について説明する。本検出器は、入射した電子線107A〜107Cを光108A〜108Cに変換するシンチレータ101、シンチレータに接して設けられ、光108A〜108Cを別の波長の光109A〜109Cに変換する蛍光フィルム102、シンチレータ101及び蛍光フィルム102の周囲を覆うハウジング103、蛍光フィルム102から発生した光109を伝搬するウェイブガイド104、光の波長に応じて透過率を選択できるカラーフィルタ105、カラーフィルタ105を透過した光を検出する光検出器106を有している。荷電粒子検出器の最終出力は光検出器106の出力であり、出力ケーブル111を介して出力される。電子線107が照射される面をシンチレータ101の表面とすると、蛍光フィルム102はシンチレータ101の裏面に密着している。さらに、ウェイブガイド104は蛍光フィルム102に密着しており、蛍光フィルム102が発生した光をカラーフィルタ105に効率よく導く。
本荷電粒子検出器における電子到達位置検出の方法を説明する。電子線107A〜107Cがシンチレータ101に照射されるとそれぞれの照射位置で光108A〜108Cが発生する。同じシンチレータで光に変換されるため、光108A〜108Cの波長は互いに同一である。光108A〜108Cはシンチレータ101を出射すると蛍光フィルム102に入射される。蛍光フィルム102は有機化合物を含む蛍光体であり、位置に応じて発光波長が異なる蛍光体102A〜102Cを有する。ここで、蛍光体として無機蛍光体を使用することは可能であるが、利用可能な波長に制限がある。図1では蛍光フィルム102を蛍光体の異なる3つの領域に分けているが、この領域を細かく分けるほど、位置弁別検出器としての空間分解能は高まる。そのため、蛍光体として高い波長選択性を有する有機化合物を使用することが望ましい。
光108A〜108Cは蛍光体102A〜102Cに吸収され、位置、すなわち吸収された蛍光体に応じて異なる波長の光109A〜109Cとなる。なお、蛍光体102A〜102Cは光を吸収し発光するまでの間でエネルギー損失が生じるため、光109A〜109Cのエネルギーは光108A〜108Cのエネルギーと同等、あるいはより低いものとなる。このことは光109A〜109Cの波長は、光108A〜108Cの波長より長いことを意味する。そこで、光109A〜109Cの波長を可視領域とするため、シンチレータ101が発光する光108A〜108Cの波長はそれより短波長である青または紫外とした。
光109A〜109Cは、蛍光フィルム102から出射され、ウェイブガイド104に入射される。ウェイブガイド104に入射した光109A〜109Cは散乱及び反射を繰り返すことによってカラーフィルタ105に導かれる。カラーフィルタ105は光109A〜109Cの内、特定の波長を持つ光のみを透過し、それ以外の波長を持つ光は吸収または反射する。図1の例においては、カラーフィルタ105は透過する波長を選択可能としている。図では、光109A,109Bが吸収され、光109Cが透過する例について示した。カラーフィルタ105を透過した光109Cは光検出器106によって検出される。これは電子線107Cのみを光検出器106で検出していることを意味する。カラーフィルタ105を透過する波長を切り替えれば電子線107Aまたは107Bを光検出器106で検出することができる。カラーフィルタ105の切り替えは、手動で行っても自動で行ってもよい。このようにカラーフィルタ105の透過波長を選択し、電子線107A〜107Cを個別に光検出器106で検出することにより、電子線107A〜107Cの強度分布を計測できる。
なお、蛍光フィルム102は有機化合物を含むため、電子線が照射すると構造の一部が破壊されて劣化し、発光効率が低減する。そこで、電子線107やそれらの散乱電子線などが蛍光フィルム102に直接照射されないよう、蛍光フィルム102はシンチレータ101及びハウジング103で覆う構成としている。電子線107がシンチレータ101を透過し、蛍光フィルム102に照射しないように、シンチレータ101の膜厚は(数1)に示すKanaya-Okayamaの式から求められるシンチレータ101に対する電子線の侵入深さより厚い膜厚とする。
Figure 0006689777
ここで、Rは電子の侵入深さ[nm]、Eは電子エネルギー[keV]、Aは原子量、ρは密度[g/cm]、Zは原子番号である。
また、絶縁膜である蛍光フィルム102は帯電すると劣化する。シンチレータ101とハウジング103には導電性があるため、導線110を通じて外部へと放電することによって蛍光フィルム102の帯電による劣化を抑制する構成とした。また、導線110を用いてシンチレータ101に電圧を印加し、検出器全体をフローティングできるようにしてもよい。これによって、電子線107のシンチレータ101への入射エネルギーが高くできるため、シンチレータ101の電子光変換効率を向上することができる。
次にウェイブガイド104の構成を、図2を用いて説明する。図2には蛍光フィルム102のある一点で発生した光201A〜201Cがウェイブガイド104を伝搬していく様子を示している。蛍光フィルム102で発生した光は様々な角度でウェイブガイド104に入射する。光201A〜201Cは、ウェイブガイド104に対して異なる角度で入射し、ウェイブガイド104の側壁に角度θ〜θで当たる。ウェイブガイドの側壁を境界とし、中と外で屈折率nに差があるため、側壁に当たる角度が(数2)に示す臨界角θより大きい場合に光は反射し、ウェイブガイド104の中を伝搬していく。
Figure 0006689777
ここで、θは臨界角、nはウェイブガイドの屈折率である。
光201Cは入射角θ>臨界角θであるため、光202Cとしてウェイブガイド104の中を伝搬していく。これに対し、光201Aの入射角θ及び光201Bの入射角θはそれぞれ入射角θ<臨界角θ、入射角θ<臨界角θであるため、光201A,201Bはそれぞれ光202A,202Bとしてウェイブガイド104の外に漏れる。なお、ウェイブガイド104の素材としてはガラスの他、プラスチックなど他の材料でも、対象となる波長を持つ光を吸収しない限り適用可能である。また、ウェイブガイド104として、光ファイバーを束ねたファイバーバンドルを使用してもよい。
なお、図1、図2の例では電子線107の進行方向に対して直角な方向に光検出器106を配置しているが、光検出器106を電子線107の進行方向に配置し、蛍光フィルムと光検出器との間にウェイブガイドを設けるようにしてもよい。さらに、ウェイブガイド104を直線ではなく湾曲した形状にして光201の伝搬方向及び光検出器106の配置を変えてもよい。
続いて、カラーフィルタ105を用いた光109の波長選択方法を図3A及び図3Bを用いて説明する。図3Aには、図1におけるカラーフィルタ105付近を拡大して示している。ウェイブガイド104を伝搬した光109A〜109Cはカラーフィルタ105に入射する。図1の例で蛍光フィルムの発光波長は3つとしたことに対応して、カラーフィルタ105はこの3つの波長に対応する3つの異なる波長フィルタ301A〜301Cから構成されている。カラーフィルタ105を横方向にスライドさせて切り替えることによりウェイブガイド104と光検出器106との間に配置するカラーフィルタを波長フィルタ301A〜301Cから選択できる。図3Bに、光109A〜109Cの発光スペクトルと波長フィルタ301A〜301Cの透過スペクトルとの波長依存性を示す。発光スペクトル302A〜302Cはそれぞれ光109A〜109Cの発光スペクトルであり、透過スペクトル303A〜303Cはそれぞれ波長フィルタ301A〜301Cの透過スペクトルである。本実施例においては、蛍光体102A〜102Cとして、その発光スペクトル302A〜302Cの分布が互いに重ならないものを使用しており、また、透過スペクトル303A〜303Cは、それぞれ発光スペクトル302A〜303Cのみが透過する構成となっている。すなわち、蛍光体102の数だけ波長フィルタ301が設けられている。図3Aでは波長フィルタ301Cが選択されている場合を示している。光109A,109Bは波長フィルタ301Cに吸収され、光109Cのみが波長フィルタ301Cを透過し、光検出器106によって検出される。同様に、カラーフィルタ105で波長フィルタ301Aまたは波長フィルタ301Bを選択することにより、それぞれ光109Aまたは109Bのみが光検出器106で検出できる。
最後に、蛍光フィルム102の具体的な構成を図4A及び図4Bを用いて説明する。本実施例では、蛍光フィルム102の作製にコロイダル量子ドット(以下、量子ドット)を用いた。量子ドットは1〜10nm程度の大きさのCdSe、ZnS、CdS、Si、PbS、PbSe、InAs、InPやその他の半導体のナノ粒子であり、有機化合物で各量子ドットの表面を覆うことで高い発光効率を持つ。また、半導体の種類を変えずにナノ粒子の大きさを変えることで発光波長を変えることが可能である。図4A,図4Bは共に量子ドットで構成した蛍光フィルム102であり、図4Bの構成の方が図4Aの構成よりも高い発光効率を得ることができる。まず、共通部分の構成に関して、図4Aを用いて説明する。蛍光フィルム102は、大きさ及び発光波長の異なる量子ドット402A〜402Cを基板401の上に塗布して作製する。この例では、量子ドット402A、量子ドット402B、量子ドット402Cの順により短波長で発光するものとする。基板401はシンチレータ101で発生した光108A〜108Cを吸収しない素材で作製する。例えば、石英を基板401に用いることができる。また、量子ドット402A〜402Cは有機溶媒に溶けるため、塗布の方法としてインクジェットプリントやスピンコートなどの手法が考えられる。インクジェットプリントによる塗布は配置分解能に優れている。蛍光フィルム102の膜厚は、光108A〜108Cに対する吸収率が等しくなるように、フィルムを構成する量子ドット402A〜402Cの種類に応じて調整する。短波長で発光する量子ドットの方が長波長で発光する量子ドットよりも光の吸収率が小さい。このため量子ドット402Aを含む蛍光体102Aの方が量子ドット402Bを含む蛍光体102Bよりも厚く、また蛍光体102Bの方が量子ドット402Cを含む蛍光体102Cよりも厚くなるように設定している。一方、蛍光フィルム102が一定以上厚いと蛍光体にて発光される光109A〜109Cが散乱などで失われるため、蛍光体102A〜102Cの厚みは光108A〜108Cを吸収する最低限の厚さであることが望ましい。例えば、蛍光体102A〜102Cが、それぞれ光108A〜108Cを95%吸収するようにするには、その厚みを(数3)を満たすように定めることができる。
Figure 0006689777
なお、α〜αはそれぞれ蛍光体102A〜102Cの吸収係数、d〜dがそれぞれ蛍光体102A〜102Cの厚みである。
ここで、量子ドット402A〜402Cは凝集すると発光効率が低下する。そのため、量子ドットのみで蛍光フィルム102を作製するのは望ましくない。そこで、図4Bの構成では、ポリマーなどの透明マトリクスを使って量子ドット402A〜402Cの発光効率低下を抑制する。塗布の方法は図4Aの構成と同様にインクジェットプリント等の手法が適用できる。図4Bの構成も図4Aの構成と同様に、基板401の上に構成されているが、量子ドット402A〜402Cは光108A〜108C、光109A〜109Cに対して透明なマトリクス403内に分散している。ポリマーなどの透明マトリクス403内で分散させることによって量子ドット402A〜402Cの凝集による発光効率の低減を抑制できる。この場合、透明マトリクス403内の量子ドット402A〜402Cの密度を調整し、蛍光体102A〜102Cの吸収係数を等しくすることによって、同じ膜厚で光108A〜108Cに対する吸収率を等しくできる。
なお、図4A、図4Bの例では蛍光フィルム102に大きさの異なる量子ドットを使用したが、発光波長が異なる蛍光体であればこれには限られない。また、蛍光体102を基板401に塗布する構成に限られず、シンチレータ101やウェイブガイド104に塗布してもよく、基板401を使用せずに蛍光フィルム102単体で構成してもよい。
以上により、電子線に対して耐性がない有機化合物を含む色素を利用するにもかかわらず、検出信号を安定して検出できる位置弁別検出器を実現することができる。以下に、位置弁別検出器の性能を向上させるための変形例を示す。
図2において説明したように、ウェイブガイド104は、臨界角以下の入射角を持つ一部の光がウェイブガイドの外に漏れてしまう。これは荷電粒子検出器の信号劣化を意味する。そこで、図5に、光の漏れを抑制しつつ、蛍光フィルム102からカラーフィルタ105まで光を伝搬するウェイブガイド501の構成例を示す。
ウェイブガイド501は、ウェイブガイド本体104に、光拡散反射膜502、光鏡面反射膜503を設けたものである。ウェイブガイド本体104の蛍光フィルム102側の端面は光拡散反射膜502で覆われる。カラーフィルタ105に対向する端面にはいずれの反射膜も設けられない。蛍光フィルム102に対向するウェイブガイド本体104の側面には光拡散反射膜502が設けられ、ウェイブガイド本体104のそれ以外の側面には光鏡面反射膜503で覆われている。ウェイブガイド本体104の側面における光拡散反射膜の高さLは、蛍光フィルム102の長さDと等しくされている。
次にウェイブガイド501内の光伝搬経路を説明する。蛍光フィルム102が発光し、出射した光201A〜201Cはウェイブガイド501に入射する。光201Aは光拡散反射膜502に入射角度θAiをもって、光201B,201Cは光鏡面反射膜503にそれぞれ角度θ〜θをもって入射する。光拡散反射膜502は入射した光をランダムな方向に反射するため、光201Aは光拡散反射膜に垂直に入射しても(θAi=0)透過せずに拡散し、角度θArをもつ光504Aとして拡散反射した後、ウェイブガイド501を伝搬する。また、光201B,201Cは光鏡面反射膜503にそれぞれ角度θ,θをもって入射すると、鏡面反射されて同じ角度θ,θで出射し、光504B,504Cとして鏡面反射を繰り返しながらウェイブガイド501を伝搬する。このように、光504A〜504Cは全てウェイブガイド501を伝搬し、カラーフィルタ105に到達する。このように、光拡散反射膜502と光鏡面反射膜503を用いることによって光201A〜201Cの漏れを防ぎ荷電粒子検出器の信号劣化を抑制することができる。
次に、カラーフィルタとは別の検出光の選択方式について説明する。図3Aでは、蛍光体の発光を選択する光学素子としてカラーフィルタを用い、波長フィルタ301A〜301Cを切り替えることにより、シンチレータの異なる位置に照射される電子線の強度分布を測定している。このため、波長フィルタ301毎に強度分布を測定する必要があり、波長フィルタの数に応じて測定時間が長くなる。図6では、蛍光フィルム102から発生する異なる波長の光109A〜109Cを複数の光検出器で同時に検出することで、シンチレータ上に照射される電子線の強度分布測定時間を短縮可能な荷電粒子線検出器について説明する。
図6の検出器では、蛍光体の発光を選択する光学素子としてダイクロイックミラー601A,601Bを設け、複数の光検出器602A〜602Cを設けている。ウェイブガイド104を伝搬した光109A〜109Cはダイクロイックミラー601Aに入射する。ダイクロイックミラーはある範囲の波長の光のみ反射しそれ以外の光を透過する性質を持つ鏡である。ダイクロイックミラー601Aは光109Aを反射し、光109B,109Cを透過する。反射された光109Aは光検出器602Aによって検出される。ダイクロイックミラー601Aを透過した光109B,109Cはダイクロイックミラー601Bに入射する。ダイクロイックミラー601Bは光109Bを反射し光109Cを透過する。反射された光109Bは光検出器602Bによって検出され、透過した光109Cは光検出器602Cによって検出される。光検出器602A〜602Cの出力は、出力ケーブル603A〜603Cを介して出力される。
このように、各蛍光体102A〜102Cからの発光を別々の光検出器602A〜602Cで同時に測定することによってシンチレータ上の電子線照射強度を一回で測定でき、測定時間を短縮できる。なお、異なる波長の光の分離はダイクロイックミラーに限られず、例えばプリズムなどを用いてもよい。
次に、蛍光フィルム102の発光効率の変動を補正し、位置弁別検出器の安定性を向上させる構成について説明する。有機化合物を含む蛍光フィルム102は、荷電粒子が直接照射しなくても、光の照射や真空の影響により発光効率が安定せず、長期的に変動する。この発光効率の変動は光検出器106が出力する電流の変動に繋がり、長期的には位置弁別検出器が安定しないことを意味する。そこで、図7の構成では、蛍光フィルム102の発光効率の変動を計測し、その値に応じて最終出力値を補正するための信号アンプを備えることによって、位置弁別検出器の安定性を向上させる。
図7に示す構成は図1の位置弁別検出器に加えて、ウェイブガイド104を通して蛍光フィルム102を励起する光源701、光検出器106の出力を増幅し、最終出力値として出力ケーブル707を介して出力する信号アンプ704を有している。したがって、図7の位置弁別検出器の最終出力値は光検出器106の出力と信号アンプ増幅率との積になる。
光源701、カラーフィルタ105、光検出器106、信号アンプ704はシステム制御部705によって制御されている。ユーザーはユーザーターミナル706を介して位置弁別検出器の制御を行う。また、システム制御部705には演算部708、記憶部709、計測部710を有している。計測部710は光検出器106や信号アンプ704の出力を検出し、その出力値を受けて記憶部709に保存されている設定を基に演算部708が信号アンプ704の増幅率を算出する。なお、後述するように、信号アンプ704の増幅率は通常、波長フィルタ301A〜301Cによって異なる。
蛍光フィルム102の発光効率の測定方法について説明する。図7の構成では、蛍光フィルム102を光源701によって励起し、その発光量を測定することで、蛍光フィルム102の発光効率を測定する。荷電粒子線を検出する場合にはシンチレータ101の発光108を用いて蛍光フィルム102を励起している。ここで、蛍光フィルム102の発光効率の測定には光量の分かっている一定量の光で励起する必要があるため、ウェイブガイド104側から光源701で直接蛍光フィルム102を励起する構成とし、荷電粒子線のシンチレータ101への入射による蛍光フィルム102の励起を、光源701により模擬的に生じさせるものである。
光源701を用いた蛍光フィルム102の発光量測定の工程について説明する。光源701から発生した光702A〜702Cは、ウェイブガイド104を伝搬して蛍光フィルム102に入射し、蛍光体102A〜102Cによって吸収される。なお、光源701から発生する光の波長は光108の発光波長と同一とすることが望ましい。しかしながら、蛍光体102A〜102Cを励起し発光させることができれば異なる波長でも問題ない。ただし、励起する光の波長が異なることによる発光効率の相違を補正する必要がある。蛍光体102A〜102Cは光702A〜702Cを吸収すると、それぞれに対応する光703A〜703Cを発光する。蛍光体102A〜102Cの発光波長は励起する光の波長には依存しないため、光703A〜703Cの波長はシンチレータ101の発光を用いて蛍光フィルムを励起して得られる光109A〜109Cと同じ波長である。そのため、光703A〜703Cはウェイブガイド104を伝搬し、カラーフィルタ105によって波長選択され、光検出器106によって検出される。この時の光検出器106の出力値をカラーフィルタ105によって選択された波長に対応する蛍光体102A〜102Cの発光効率とする。カラーフィルタ105を切り替えることにより、蛍光体102A〜102Cのそれぞれについて発光効率を測定できる。
蛍光体102A〜102Cの発光効率の変動による位置弁別検出器の不安定な出力を安定にするため、信号アンプ704の増幅率を調整する。信号アンプ704の調整手順を、図8に示すフローチャートと図9に示す信号アンプ設定画面を用いて説明する。ユーザーがユーザーターミナル706を介して信号アンプ設定画面を選択すると、ユーザーターミナル706の画面に図9に示すような信号アンプ設定画面901が表示される(S801)。信号アンプ704の調整には、調整のベースラインとして発光効率標準値を用いる。発光効率標準値は、発光効率変動前に波長フィルタ301A〜301Cを用いてあらかじめ測定された発光効率変動前の各蛍光体102A〜102Cの発光効率であり、記憶部709に保存されている。ユーザーは信号アンプ設定画面901の発光効率標準値ファイル選択枠902を用いて蛍光体102A〜102Cの発光効率標準値を選択すると、システム制御部705は記憶部709から発光効率標準値を読み出して、発光効率標準値枠903に表示する(S802)。次に、各蛍光体102A〜102Cの発光効率の変動を測定するため、システム制御部705がいずれかの波長フィルタを選択すると、信号アンプ設定画面901の波長フィルタ選択枠904において、選択されている波長フィルタが他と識別可能に表示される(S803)。その後、発光効率測定枠905の測定ボタンが点灯し、システム制御部705は上述した発光効率測定を行う。すなわち、システム制御部705が光源701をONにすることによって蛍光フィルム102を励起し、光検出器106で選択された蛍光体の発光効率を測定し、その値を記憶部709に保存するとともに発光効率測定値枠906に測定した値を表示する(S804)。測定した後は光源701がOFFとなるよう、システム制御部705によって制御される。
ここで、発光効率に変動がある場合は各波長フィルタにおける発光効率標準値から発光効率測定値が変化する。演算部708は記憶部709に保存されているこれらの値から、信号アンプ倍率を発光効率測定値に対する発光効率標準値の比率(発光効率標準値/発光効率測定値)として計算し、信号アンプ704を調整するとともに、システム制御部705を通じてその値を信号アンプ設定画面901の信号アンプ倍率枠907に表示する(S805)。
システム制御部705は全ての波長フィルタ301A〜301Cに対して信号アンプの調整を、S803〜S805を繰り返すことによって行う(S806)。ユーザーが条件保存ボタン908を押下すると、求められた信号アンプ704の増幅率が記憶部709に保存されて調整が終了する(S807)なお、蛍光フィルム102が劣化し、発光効率測定値が発光効率標準値の例えば70%以下になった場合は蛍光フィルムの交換を促す蛍光フィルム交換ボタン909が点灯する。
このように設定した増幅率で信号アンプ704により増倍した信号を最終出力値とすることにより、最終出力値に対する蛍光体102A〜102Cの発光効率の影響を抑制することができる。例えば、定期的に信号アンプ704の調整を行うことで位置弁別検出器の安定性を向上することができる。
以上説明した変形例は、単体でも適用可能であり、また適宜組み合わせて適用することも可能なものである。
実施例2では、荷電粒子線装置の一例として走査電子顕微鏡に、実施例1に示した位置弁別検出器を搭載した例について説明する。走査電子顕微鏡においては荷電粒子検出器の配置空間に制限があるため、豊富な試料情報が取得可能である場所、たとえば、対物レンズ下などは、従来型の検出器を配置することが困難であった。これに対して、実施例1で説明した小型な位置弁別検出器であれば、対物レンズ下に配置し、二次電子の到達位置を弁別しながら検出することが可能になる。
図10を用いて、実施例2の装置構成を説明する。図10には対物レンズ下に位置弁別検出器を備えた走査電子顕微鏡の装置構成を示している。電子源1001から引き出された一次ビーム1002の軌道上には走査用偏向器1003と対物レンズ1004が備えられている。試料搬送ステージ1005の上に配置された試料1006に照射された一次ビーム1002は、試料1006の表面付近の物質と相互作用し、二次電子1007を発生させる。対物レンズ1004の下には二次電子を検出する位置弁別検出器1008が備わっており、その中央には一次ビーム1002が通るように開口が設けられている。電子源1001、走査用偏向器1003、対物レンズ1004、試料搬送ステージ1005、位置弁別検出器1008はシステム制御部1009によって制御されている。システム制御部1009には、演算部1010、記憶部1011、計測部1012が配置され、画像表示装置を備えたユーザーターミナル1013と接続されている。
電子源1001から放出された一次ビーム1002は対物レンズ1004によって制御され、ビーム径が極小になるように試料1006上に集束される。走査用偏向器1003は、一次ビーム1002が試料1006の定められた領域を走査するように、システム制御部1009により制御される。試料1006の表面に到達した一次ビーム1002は、表面付近の物質と相互作用する。これにより、反射電子、二次電子、オージェ電子などが試料から発生するが、ここでは、信号としていわゆる真の二次電子(一次電子により直接励起されて、真空中に放出される二次電子)を位置弁別検出器が検出対象とする場合について示す。一次ビーム1002が試料1006上の到達した位置から発生した二次電子1007は位置弁別検出器1008によって検出される。位置弁別検出器1008から検出される二次電子1007の信号処理が、システム制御部1009から走査用偏向器1003に送られる走査信号と同期して行われることによりSEM画像が形成される。なお、図示しないが、電子源1001と対物レンズ1004との間には電子銃の光軸を補正するアライナが配置され、電子線の中心軸が絞りや電子光学系に対してずれている場合に補正できる構成となっている。
走査電子顕微鏡に適用する場合、位置弁別検出器の安定性が重要であるため、位置弁別検出器1008の構成は図7に示したものと同様とすることが望ましい。すなわち、蛍光フィルムを励起するための光源や光検出器の出力を増幅する信号アンプが備えられており、信号アンプ増幅率を制御することによって位置弁別検出器1008の安定性が向上させる構成とする。したがって、位置弁別検出器の制御に関し、システム制御部1009及びその内部に備わっている演算部1010、記憶部1011、計測部1012とユーザーターミナル1013とは、図7にて説明した位置弁別検出器のシステム制御部705及びその内部に備わっている演算部708、記憶部709、計測部710とユーザーターミナル706と同じ機能を持つ。これにより、ユーザーは図7に関連して説明した手順でユーザーターミナル1013に表示される信号アンプ設定画面(図9を参照)を介して位置弁別検出器1008の信号アンプの増幅率調整を行うことが可能である。調整の手順及びGUIに関しては上述の通りであるため、ここでは説明を割愛する。
位置弁別検出器を図10に示した構成とは異なる場所に配置することは可能であり、以下に説明する。位置弁別検出器を配置する空間を異ならせることにより、検出される二次電子の範囲を変えることが可能である。代表的な構成例を図11及び図12に示す。図10〜図12の装置構成は概ね同一であるが、走査電子顕微鏡における位置弁別検出器の設置場所が異なる。図11では位置弁別検出器1014を対物レンズ1004の上に配置している。図12は一次ビームから分離した位置に位置弁別検出器1018を配置する例である。図12の装置では、一次ビームから二次電子を分離するため、磁場または磁場と電場との組み合わせで二次電子1016を一次ビーム1002から大きく分離するビームセパレータ1017を備えている。二次電子1016から見てビームセパレータ1017より下流に位置弁別検出器1018を配置することによって一次ビーム1002から分離した二次電子1016を到達位置別に検出できる。
このように、位置弁別検出器を配置することによって、取得したい二次電子の範囲を変えてSEM画像を取得することができる。なお、図10〜図12においては1種類の検出器を配置した例を示したが、それらを組み合わせて複数個の位置弁別検出器を配置してもよいし、複数の検出器の内のいくつかを一般的な検出器として組み合わせてもよい。その際に必要となる位置弁別検出器の安定性向上のための構成や手順に関しては、図10に示した対物レンズ下の位置弁別検出器に関して説明した内容と同様であるため、説明は省略する。
以上のように、走査電子顕微鏡のような荷電粒子線装置において、限られた空間で荷電粒子(二次電子)を到達位置別に検出し、観察画像を形成することができる。
101…シンチレータ、102…蛍光フィルム、102A〜C…蛍光体、103…ハウジング、104…ウェイブガイド、105…カラーフィルタ、106…光検出器、107A〜C…電子線、108A〜C…光、109A〜C…光、110…導線、111…出力ケーブル、301A〜C…波長フィルタ、401…基板、402A〜C…量子ドット、403…マトリクス、501…ウェイブガイド、502…光拡散反射膜、503…光鏡面反射膜、601A〜B…ダイクロイックミラー、602A〜C…光検出器、701…光源、704…信号アンプ、705…システム制御部、706…ユーザーターミナル、708…演算部、709…記憶部、710…計測部、901…信号アンプ設定画面、1001…電子源、1002…一次ビーム、1003…走査用偏向器、1004…対物レンズ、1005…試料搬送ステージ、1006…試料、1007…二次電子、1008…位置弁別検出器、1009…システム制御部、1010…演算部、1011…記憶部、1012…計測部、1013…ユーザーターミナル、1014…位置弁別検出器、1015…二次電子、1016…二次電子、1017…ビームセパレータ、1018…位置弁別検出器。

Claims (14)

  1. 荷電粒子が照射されるシンチレータと、
    前記シンチレータの荷電粒子が照射される面と対向する面に接する蛍光フィルムと、
    前記蛍光フィルムの発光を検出する光検出器とを有し、
    前記蛍光フィルムは複数の領域を有し、前記複数の領域はそれぞれ前記シンチレータの発光を吸収し、互いに異なる波長で発光する蛍光体を有する荷電粒子検出器。
  2. 請求項1において、
    前記蛍光体は有機化合物を含む蛍光体である荷電粒子検出器。
  3. 請求項2において、
    前記蛍光体は有機化合物で覆われた量子ドットであり、
    前記蛍光フィルムはマトリクスを有し、前記マトリクス内に前記量子ドットが分散されている荷電粒子検出器。
  4. 請求項1において、
    前記複数の領域のいずれかの蛍光体の発光を選択的に透過または反射させる光学素子を有し、
    前記光検出器は、前記光学素子を透過または反射した光を検出する荷電粒子検出器。
  5. 請求項4において、
    前記蛍光フィルムの発光した光を前記光学素子に伝搬するウェイブガイドを有する荷電粒子検出器。
  6. 請求項5において、
    前記ウェイブガイドの前記蛍光フィルム側の端面及び前記蛍光フィルムに対向する側面は、光拡散反射膜に覆われ、
    前記ウェイブガイドの前記蛍光フィルムに対向しない側面は、光鏡面反射膜で覆われている荷電粒子検出器。
  7. 請求項1において、
    前記シンチレータに接する面と対する面から前記蛍光フィルムを励起する光源と、
    前記光検出器の出力信号を増幅する信号アンプとを有し、
    前記信号アンプは、前記複数の領域それぞれの蛍光体について、あらかじめ定められた発光効率と前記光源により前記蛍光フィルムを励起して測定した発光効率とに基づき設定される信号アンプ倍率により、前記光検出器の出力信号を増幅して出力する荷電粒子検出器。
  8. 請求項7において、
    前記光源の発光する光の発光波長は、前記シンチレータの発光する光の発光波長に等しくされる荷電粒子検出器。
  9. 請求項1において、
    前記シンチレータと前記蛍光フィルムを囲む導電性のハウジングを有する荷電粒子検出器。
  10. 荷電粒子源と、
    試料を配置するステージと、
    前記荷電粒子源より放出される一次荷電粒子線を前記ステージに配置された試料上に集束させる対物レンズと、
    前記一次荷電粒子線が試料に照射されることによって発生する二次荷電粒子を検出する荷電粒子検出器を有し、
    前記荷電粒子検出器は、前記二次荷電粒子が照射されるシンチレータと、前記シンチレータの前記二次荷電粒子が照射される面と対向する面に接する蛍光フィルムと、前記蛍光フィルムの発光を検出する光検出器とを有し、前記蛍光フィルムは複数の領域を有し、前記複数の領域はそれぞれ前記シンチレータの発光を吸収し、互いに異なる波長で発光する蛍光体を有する荷電粒子線装置。
  11. 請求項10において、
    前記荷電粒子検出器は、前記対物レンズと前記ステージとの間の空間に配置される荷電粒子線装置。
  12. 請求項10において、
    前記荷電粒子検出器は、前記シンチレータに接する面と対する面から前記蛍光フィルムを励起する光源と、前記光検出器の出力信号を増幅する信号アンプとを有し、前記信号アンプは、前記複数の領域それぞれの蛍光体について、あらかじめ定められた発光効率と前記光源により前記蛍光フィルムを励起して測定した発光効率とに基づき設定される信号アンプ倍率により、前記光検出器の出力信号を増幅して出力する荷電粒子線装置。
  13. 請求項12において、
    前記信号アンプの信号アンプ倍率を設定するシステム制御部を有し、
    前記システム制御部は、前記複数の領域それぞれの蛍光体についての発光効率標準値を記憶する記憶部と、前記光源を発光させ、前記複数の領域それぞれの蛍光体についての発光効率を測定する計測部と、前記発光効率標準値と前記計測部により測定された発光効率とに基づき、前記複数の領域それぞれの蛍光体について信号アンプ倍率を設定する演算部とを有する荷電粒子線装置。
  14. 請求項13において、
    前記発光効率標準値は、発光効率変動前にあらかじめ測定された前記複数の領域それぞれの蛍光体の発光効率である荷電粒子線装置。
JP2017047453A 2017-03-13 2017-03-13 荷電粒子検出器およびそれを用いた荷電粒子線装置 Active JP6689777B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017047453A JP6689777B2 (ja) 2017-03-13 2017-03-13 荷電粒子検出器およびそれを用いた荷電粒子線装置
US15/918,464 US10361063B2 (en) 2017-03-13 2018-03-12 Charged particle detector and charged particle beam device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047453A JP6689777B2 (ja) 2017-03-13 2017-03-13 荷電粒子検出器およびそれを用いた荷電粒子線装置

Publications (3)

Publication Number Publication Date
JP2018152232A JP2018152232A (ja) 2018-09-27
JP2018152232A5 JP2018152232A5 (ja) 2019-05-30
JP6689777B2 true JP6689777B2 (ja) 2020-04-28

Family

ID=63445065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047453A Active JP6689777B2 (ja) 2017-03-13 2017-03-13 荷電粒子検出器およびそれを用いた荷電粒子線装置

Country Status (2)

Country Link
US (1) US10361063B2 (ja)
JP (1) JP6689777B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176513A1 (ja) 2020-03-02 2021-09-10 株式会社日立ハイテク 荷電粒子検出器、荷電粒子線装置、放射線検出器および放射線検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258539A (ja) * 1999-03-10 2000-09-22 Toshiba Corp 放射線検出装置及び方法
US7663123B2 (en) * 2006-01-30 2010-02-16 Univ Sydney Fibre optic dosimeter
DE102014225541A1 (de) * 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detektionsschicht umfassend Perowskitkristalle

Also Published As

Publication number Publication date
JP2018152232A (ja) 2018-09-27
US20180261425A1 (en) 2018-09-13
US10361063B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
KR101330368B1 (ko) 표본표면을 검사하기 위한 방법 및 장치
CN110849271A (zh) 一种光谱共焦测量系统及方法
US5973839A (en) Optical homogenizer
JPH10300671A (ja) 微粒子計測装置
JP6527872B2 (ja) 非侵襲的荷電粒子ビームモニタ
US8421007B2 (en) X-ray detection system
JP6689777B2 (ja) 荷電粒子検出器およびそれを用いた荷電粒子線装置
WO2015185995A1 (ja) 荷電粒子線装置
CN211012841U (zh) 一种光谱共焦测量系统
WO2021131436A1 (ja) シンチレータ、計測装置、質量分析装置および電子顕微鏡
JP7076021B1 (ja) ライトガイド、電子線検出器、及び荷電粒子装置
WO2013168488A1 (ja) 荷電粒子線顕微鏡
JP2003503753A (ja) 近視野光学的探査装置
WO2021176513A1 (ja) 荷電粒子検出器、荷電粒子線装置、放射線検出器および放射線検出装置
WO2021255853A1 (ja) 荷電粒子または放射線の検出装置
JP2000249646A (ja) 近視野光学顕微鏡装置
US7638745B2 (en) Device for photon energy measurement and method thereof
JP6228870B2 (ja) 検出器および荷電粒子線装置
JP2000097888A (ja) 光電子分光装置におけるx線入射角設定方法および光電子分光装置
JP2007073529A (ja) イメージインテンシファイア装置および方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6689777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150