JP6666626B2 - 荷電粒子検出器及び荷電粒子線装置 - Google Patents

荷電粒子検出器及び荷電粒子線装置 Download PDF

Info

Publication number
JP6666626B2
JP6666626B2 JP2017014978A JP2017014978A JP6666626B2 JP 6666626 B2 JP6666626 B2 JP 6666626B2 JP 2017014978 A JP2017014978 A JP 2017014978A JP 2017014978 A JP2017014978 A JP 2017014978A JP 6666626 B2 JP6666626 B2 JP 6666626B2
Authority
JP
Japan
Prior art keywords
light
emitting portion
charged particle
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014978A
Other languages
English (en)
Other versions
JP2018124100A (ja
Inventor
今村 伸
伸 今村
卓 大嶋
卓 大嶋
朋信 土屋
朋信 土屋
源 川野
川野  源
シャヘドゥル ホック
シャヘドゥル ホック
俊介 水谷
水谷  俊介
鈴木 誠
鈴木  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2017014978A priority Critical patent/JP6666626B2/ja
Priority to PCT/JP2018/002319 priority patent/WO2018143054A1/ja
Priority to DE112018000236.5T priority patent/DE112018000236B4/de
Priority to US16/475,726 priority patent/US10984979B2/en
Publication of JP2018124100A publication Critical patent/JP2018124100A/ja
Priority to IL267496A priority patent/IL267496B2/en
Application granted granted Critical
Publication of JP6666626B2 publication Critical patent/JP6666626B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • G01N23/2258Measuring secondary ion emission, e.g. secondary ion mass spectrometry [SIMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2443Scintillation detectors

Description

本開示は、荷電粒子検出器、及び荷電粒子線装置に係り、特に、量子井戸構造を備えた荷電粒子検出器、及び当該荷電粒子検出器を備えた荷電粒子線装置に関する。
試料に電子ビーム等の荷電粒子ビームを照射することによって得られる荷電粒子を検出する荷電粒子線装置には、荷電粒子を検出するための検出器が備えられている。例えば電子ビームを試料に走査することによって、試料から放出された電子を検出する場合、電子検出器にポスト電圧と呼ばれる8〜10kV程度の正電圧を印加することによって、電子を検出器のシンチレータに導く。電子の衝突によってシンチレータにて発生した光はライトガイドに導かれ、光電管などの受光素子によって電気信号に変換され、画像信号や波形信号となる。
特許文献1には、基板上に形成されたInGaN/GaN量子井戸層を含む発光体を有するシンチレータが開示されている。また、InGaN/GaN量子井戸層上には、当該InGaN/GaN量子井戸層を含む窒化物半導体層の構成材料よりもバンドキャップエネルギが大きいキャップ層と、更にその上層にAlで構成されるメタルバック層を設けることが説明されている。
特許文献2には、GaInNとGaNが交互に積層された多層構造上に、GaNの層を成長させたキャップ層を設け、更にその上層に電子入射時の帯電防止のためのAl薄膜を蒸着することが説明されている。
特開2005−298603号公報(対応米国特許USP7,910,895) 特開2014−32029号公報号
特許文献1、2に説明されているようなInGaNとGaNの積層層からなる量子井戸層を有するシンチレータは、入射電子のエネルギーが高い程、発光強度が大きくなる特性を持っている。これは電子のエネルギーが高い程、シンチレータへの侵入深さが深くなり、侵入深さに応じて発光強度が変化するためである。一方、試料に対する電子ビームの照射に基づいて、試料から放出される電子には様々なエネルギー(加速電圧)を持つものが含まれている。このような様々なエネルギーを持つ電子を高効率に検出することによって、高い検出感度を実現することができるが、上述のシンチレータの特性故、装置条件(例えば試料に照射される電子ビームの到達エネルギー)や試料のチャージアップの程度等によって、発光強度が変化することになる。特に半導体デバイスを測定、検査する装置には、高い測定再現性が求められるため、試料から放出される電子のエネルギーの変化によらず、安定した強度の発光を行うシンチレータが望まれる。
以下に、入射電子のエネルギーによらず、安定した強度で発光しつつ、高い発光強度を得ることを目的としたシンチレータを備えた荷電粒子検出器、及び荷電粒子線装置を提案する。
上記目的を達成するための一態様として、試料に対する荷電粒子ビームの照射に基づいて得られる荷電粒子を検出する荷電粒子検出器であって、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第1の発光部と、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第2の発光部と、当該第1の発光部と第2の発光部との間に介在する非発光部とを備えた荷電粒子検出器を提案する。
上記構成によれば、入射電子のエネルギーによらず、安定した強度で発光しつつ、高い発光強度を得ることが可能となる。
電子顕微鏡の基本構成を示す図。 シンチレータの構成を示す図。 シンチレータの発光スペクトルを示す図。 量子井戸層の時間変化に対する発光強度の変化を示す図。 シンチレータに対する電子の入射エネルギ(印加電圧)と発光強度との関係を示す図。 シンチレータに対する電子の入射エネルギ(印加電圧)と発光強度との関係を示す図。 シンチレータに対する電子の入射エネルギ(印加電圧)と発光強度との関係を示す図。 質量分析装置の構成を示す図。
近年、特に半導体デバイス計測、検査における高精細化、低ノイズ化、スループット向上などの要求が大きくなりつつある。これらの要求に応えるためには検出時間を短縮化と、検出感度の向上の両立が望まれる。また、シンチレータの応答速度を早くすることが必要である。
一方、測長SEM(CD−SEM:Critical Dimension−Scanning Electron Microscope)のような高精度で対象物の寸法を計測する装置では、試料がチャージアップすると像がゆがみ測長精度が低下する場合がある。高精度な測定や検査を実現するために、電子線のスキャン速度を早くし、1画面を表示するためにかかる時間を短くすることによって、チャージアップを低減することができる。高速走査を行うことによって、単位面積当たりのビームの照射量が減少し、試料から放出される電子の数も減るため、応答速度が早く、かつ高感度のシンチレータが必要である。
また、特に半導体の構造などで、立体的な凹凸構造の観察の必要性が増している。そのためには、試料直上での2次電子(Secondary Electron:SE)や後方散乱電子(Backscattered Electron:BSE)の検出が有効である。BSEはパターンの形状に応じて放出方向が変化するため、試料凹凸の情報が得られる。
一方、試料から放出されたBSE等の軌道上に検出器(シンチレータ)を配置することによって、BSE等を直接検出することができる。例えば低加速の電子ビームを照射する電子顕微鏡に、BSE等を直接検出する検出する検出器を配置した場合、シンチレータには、4〜5kVのBSEが入射することになるが、4〜5kV程度以下ではシンチレータの発光が弱く、良好な画像を得ることができない。また、電子ビームの光軸近くを通過するBSEを検出する場合、シンチレータで光を効率良く発光させる8〜10kVのポスト電圧を印加することが難しい。
SEMなどの荷電粒子線装置では、試料直上での2次電子及び後方散乱電子の検出の要求がある。試料形状等によって軌道が変化する後方散乱電子を検出すると、試料凹凸の情報が得られる。また、試料から放出された後方散乱電子の軌道上に検出器を配置することによって、電子の軌道を調整する機構等の設置が不要となるメリットがある。
しかし、上述のようにシンチレータは、5kV以下のエネルギーでは十分な発光強度を得ることが困難である。また、特に低加速エネルギー範囲では、エネルギーの変化に応じて発光強度が大きく変化することになるため、加速エネルギーに応じて明るさが変化してしまい、高い計測精度を維持することが困難となる場合がある。
以下に、低エネルギーの電子の侵入に基づいて、エネルギーの変化によらず安定し、且つ高い発光強度を得ることができるシンチレータを含む検出器、及び荷電粒子線装置をより具体的に説明する。
以下に、複数の発光層を置き、発光層の間に非発光層を置くことで、低エネルギーの電子の検出が可能で、入射する電子のエネルギーの変化による明るさ変動が少なく、安定した計測が可能な、高速且つ高感度な高速シンチレータ構造、当該シンチレータ構造を備えた検出器、及び当該検出器を備えた荷電粒子線装置について説明する。主にInGaN層とGaN層の積層層からなる2以上の発光層間に、例えばGaN単一層からなる非発光層を設けたシンチレータ構造を備えた荷電粒子検出器、及び荷電粒子線装置について説明する。このような構成によれば、入射する電子のエネルギーの違いによる明るさの変化を抑制しつつ、高い発光強度を得ることが可能となる。
以下、図面等を用いて、シンチレータを検出素子とする検出器を備えた荷電粒子線装置について説明する。以下、電子顕微鏡、特に走査電子顕微鏡を荷電粒子線装置として説明するが、これに限られることなく、以下に説明する実施例は、イオンビームを用いた走査イオン顕微鏡などの他の荷電粒子線装置への適用も可能である。また、走査電子顕微鏡を用いた半導体パターンの計測装置、検査装置、観察装置等にも適用可能である。
本明細書でのシンチレータとは、荷電粒子線を入射して発光する素子を指すものとする。本明細書におけるシンチレータは、実施例に示されたものに限定されず、様々な形状や構造をとることができる。
図1は、電子顕微鏡の基本構成を示す図である。電子源9から放出された一次電子線12が試料8に照射され、二次電子や反射電子等の二次粒子14が放出される。この二次粒子14を引き込み、シンチレータSに入射させる。シンチレータSに二次粒子14が入射するとシンチレータSで発光が起こる。シンチレータSの発光は、ライトガイド11により導光され、受光素子7で電気信号に変換する。以下、シンチレータS、ライトガイド11、受光素子7を合わせて検出系と呼ぶこともある。受光素子7は、光電子増倍管や半導体を用いた受光素子などが使用可能である。受光素子7の配置は、シンチレータSの発光を入力できればどの位置においても構わない。図1では試料室13内に受光素子7が配置されているが、試料室13外に置くことも可能である。また、シンチレータSからの受光素子7への光の入力は、図1ではライトガイドを用いているが、他の方法や他の配置で光を入力しても良い。
受光素子7で得られた信号を電子線照射位置と対応付けて画像に変換し表示する。一次電子線12を試料に集束して照射するための電子光学系、すなわち偏向器やレンズ、絞り、対物レンズ等は図示を省略している。電子光学系は電子光学鏡筒10に設置されている。また、試料8は試料ステージに載置されることで移動可能な状態となっており、試料8と試料ステージは試料室13に配置される。試料室6は、一般的には電子線照射の時には真空状態に保たれている。また、電子顕微鏡には図示しないが全体および各部品の動作を制御する制御部や、画像を表示する表示部、ユーザが電子顕微鏡の動作指示を入力する入力部等が接続されている。
この電子顕微鏡は構成の一つの例であり、シンチレータを備えた電子顕微鏡であれば、他の構成でも適用が可能である。また、二次粒子7には、透過電子、走査透過電子等も含まれる。また、簡単のため、検出器は1つのみ示しているが、反射電子検出用検出器と二次電子検出用検出器を別々に設けてもよいし、方位角または仰角を弁別して検出するために複数の検出器を備えていてもよい。図1では、ビームを通過させる開口を形成する開口部形成部材として、シンチレータSを配置した例を示しているが、これ以外の配置としても同等の効果を得ることができる。
以下、シンチレータの具体的構成について説明する。図2は実施例1のシンチレータSを示す模式図である。シンチレータ発光部1の材料はGaNを含む量子井戸構造による発光素子を用いる。
実施例1のシンチレータ発光部1の構造及び作製方法として、サファイア基板6上にGaNバッファ層4を成長させ、その上にGa1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層を、組成を変えて多数の層を成長させ、量子井戸構造3を形成した。その上に導電層2としてAl層を形成した。このAl層2は、荷電粒子線装置内において、検出対象となる荷電粒子が入射する側に形成される。導電層2の材質は、導電性がある材料であれば、Al以外にも、他の材質や、合金などを用いることが可能である。また、導電層2の厚さは、荷電粒子線のエネルギー等により調整することが必要である。例えば、材質をAlとし、検出する荷電粒子を3〜12kVの電子線とした場合は、導電層2の厚さは30nm〜1000nmの範囲で調整することが望ましい。
サファイア基板6は2インチφの円盤状であり、バッファ層の厚さcは3〜10μmの範囲の厚さに成長させた。
量子井戸構造3は、下記に示す少なくとも3層以上から構成されている。Ga1−x−yAlInNの組成を持つ量子井戸層とGaNの組成を持つ隔壁層が交互に1周期以上重なった発光層21と、その直下に設置された、例えばGaNの組成を持つ非発光層22と、さらにその直下に設置された、Ga1−x−yAlInNの組成を持つ量子井戸層とGaNの組成を持つ隔壁層が交互に1周期以上重なった発光層23によって、量子井戸層3が構成されている。
発光層21、非発光層22、及び発光層23のそれぞれの厚さは、10nm〜1000nmの範囲であり、それぞれの層の厚さは異なっても良い。この構造上に、導電層2を40〜200nmの厚さの範囲で蒸着により形成し、電子入射時の帯電防止とした。これから所定のサイズに切り出したものをシンチレータとして用いた。上述のようなシンチレータの発光スペクトルの一例を図3に示す。
これらの量子井戸層、及び障壁層は、厚さ及び組成は必要に応じて適切なものを選択することができる。また、発光部1と、サファイア基板6の界面5は、平面でもよいし、凹凸のある構造でもかまわない。例えば、構造ピッチ10〜10000nmかつ構造高さ10〜10000nmの突起状構造が連続的に形成されている構造が形成されていれば、発光の取り出しによる発光出力向上に効果的である。また、非発光層22は、量子井戸層3において、複数形成することも可能であり、発光層21、23のみではなく、さらに数を増やすことも可能である。
ここで、発光層21、22、及び非発光層22の層厚と、発光強度の電圧依存性において、新たな効果を見出した。荷電粒子線は、印加して加速する電圧によりエネルギーが変化し、シンチレータの内部に侵入する深さが変化する。一般的に、印加電圧が高ければ厚さの深い部分に到達し、印加電圧が低い場合は、厚さの浅い部分までしか到達しない。
図5(a)は、比較例として、導電層2の直下に50nmの発光層21に相当する部分のみを形成したシンチレータの発光特性を示す。図5(a)は荷電粒子線として電子線を照射し、電子線を加速する印加電圧を2kV〜12kVで変化させた場合の、発光強度の依存性を示す。印加電圧が8kV前後で、発光強度が大きく、且つ8kV近傍であれば印加電圧の変化に伴う発光強度の変化が少ない。しかし、印加電圧が9kV以上の範囲では、発光強度が低下し、急峻な変化となっている。これは、印加電圧が高いと発光層の厚さが導電層2の直下から50nmであるため、比較的浅い発光層の部分で荷電粒子のエネルギーが高すぎて通過してしまい、シンチレータへのエネルギー伝播が十分なされないため、発光強度が低下するためである。
また、印加電圧が6kV以下の範囲でも、急峻に発光強度が低下している。これは、発光層到達する荷電粒子線のエネルギーが低くなり、シンチレータに伝播するエネルギーが少なくなるためである。
図5(b)は、比較例として、導電層2直下に非発光のGaN層を設け、さらに100nmの深さから、厚さが100nmの発光層23に相当する部分のみを形成したシンチレータの発光特性を示す。図5(b)では、荷電粒子線として電子線を照射し、電子線を加速する印加電圧を2kV〜12kVで変化させた場合の、発光強度の依存性を示す。印加電圧が8kV〜12kVの範囲で、発光強度が大きく、印加電圧により比較的発光強度の変化が少ない、平坦な範囲となっている。しかし、印加電圧が7kV以下の範囲では、発光強度が低下し、急峻な変化となっている。これは、発光層が比較的深い部分にあるため、発光層に到達する荷電粒子線のエネルギーが低くなり、シンチレータに伝播するエネルギーが少なくなるためである。
このように、発光層が1つの連続した層の場合、印加電圧の変化に伴う発光強度の変化が少ない平坦な部分となる印加電圧の範囲はかなり狭いことがわかる。発明者らは、発光層の間に、非発光層22を挿入することで、前記発光強度の変化が少ない平坦な部分となる印加電圧の範囲を、大幅に広げられることを見出した。
図6は、発光層間に非発光層を設けた量子井戸構造の発光特性を示す図である。本実施例では、導電層2の直下に10〜50nmの発光層21を形成し、その直下に厚さ20〜100nmの非発光のGaN層22を形成し、さらにその直下に、厚さが100〜500nmの発光層23を形成したシンチレータの発光特性を示す。図6では、荷電粒子線として電子線を照射し、電子線を加速する印加電圧を2kV〜12kVで変化させた場合の、発光強度の依存性を示す。印加電圧が4kV〜12kVの広い範囲で、発光強度が大きく、印加電圧により比較的発光強度の変化が少ない、平坦な範囲となっていることがわかる。ここに示した構造は、一つの例であり、少なくとも1層の非発光のGaN層22を挿入していれば、他の層の厚さや構造の場合でも本発明の効果を得ることは可能である。
図7に、発光層間に非発光層を介在させた量子井戸構造と、他の比較例の発光特性を示す。図7では、荷電粒子線として電子線を照射し、電子線を加速する印加電圧を2kV〜12kVで変化させた場合の、発光強度の依存性を示す。前記と同様の構造を持つ本発明の実施例と、導電層2の直下から、200nmの単一の発光層を持つ比較例1と、400nmの単一の発光層を持つ比較例2との特性を比較している。比較例1、及び2とも、印加電圧2kV〜8kVの範囲で、発光強度の急峻な変化を示し、平坦な部分は狭い範囲となっている。このように、発光層の厚みを変化させても、発光層が単一であれば、急峻な変化となる。一方、本発明の実施例では、4kV〜12kVの広い範囲で発光強度の変化が平坦な部分が得られている。
発明者らの検討により、発光層全体の厚さは、荷電粒子線の種類に依存するが、30〜10000nmの範囲が可能であり、その場合、非発光層22の厚さは、10〜5000nmの範囲が可能である。さらに、発光層全体の厚さが50〜1000nm、非発光層22の層厚が、20nm〜500nmの範囲において、特に効果が高いことを見出した。 印加電圧4kV〜12kVの範囲で発光強度が平坦である特性は、特に、電子顕微鏡等における2次電子や、反射電子の検出器などで有効な特性である。反射電子などは、1次電子線のエネルギーや、観察対象や、照射位置により、持っているエネルギーが変化し、特に印加電圧4kV〜12kVの範囲での反射電子の観測は重要である。しかし、さまざまなエネルギーを持つ電子による発光強度が大きく変化してしまうと、同じ電子の入射量でも発光強度が変わってしまい、正確な入射量の計測の精度が低下する。これは、例えば、画像では不要なコントラストや画面の濃淡をもたらし、正確な観察に支障となる。これより、本発明は、荷電粒子線装置の計測精度や、画質の向上に大きく有効なものである。そのため、本発明のシンチレータによる検出器を用いた荷電粒子装置は良好な特性を得ることが出来る。
また、本実施例の構成では、導電層2の直下の位置にある発光層21において、導電層2に接する層は、Ga1−yInN(但し0<y<1)の組成とすることも可能である。この場合、Al層直下にInを含む層を配置することで、電導率がGaN層より高くなっており、さらに、バンドギャップが小さいため、電子が流れ込みやすくなっている。このため、量子井戸構造3に入射された電子が、直ちにAl層に移動することができる。Al層は導体で設置されており、電子はシンチレータ発光部1に留まることなく排除される。
量子井戸構造3に入射した電子が直ちに排除されない場合、残留した電子はマイナスのチャージとなり、その後に入射する電子への斥力として働き、電子の入射量を減らし、発光出力の低下を招く。また、残留した電子には、入射後に少し時間をおいて発光する遅延発光を生じさせるものがあり、発光の高速性を損ねる原因となる。
上記構成によれば、入射後の電子が直ちに排除されることにより、発光出力の増加と、発光の高速化を得ることができる。図4に、実施例のシンチレータにおいて、入射後の発光出力の変化を、ns単位の極めて高速に評価した結果を示す。図4では、発光が立ち上がった後、10ns以下で発光が消えることがわかる。これは、残留した電子が直ちに排除されていることが一つの要因である。
発光の減衰時間が長いと、電子の入射間隔を短くすることができず、高速に測定を行うことができない。実施例では減衰時間が十分短く、高速な測定が可能である。このように、本実施例における光の応答特性は、比較例に比べ大幅に高速となっていることが示された。このシンチレータを有する検出器を用いた構成により、高速なスキャンが可能な、高性能な荷電粒子線検出器を得ることができる。
但し、本実施例において、導電層2の直下の位置は、他に、GaN層や、他の組成を持つ層とすることも可能であり、その場合でも上述の効果を得ることが出来る。
上記説明は主に、シンチレータを走査電子顕微鏡等の検出器に適用した例を説明したものであるが、質量分析装置の検出器として、上述のようなシンチレータを採用するようにしても良い。図8は質量分析器の構成を説明する図である。質量分析装置はイオンを電磁気的作用により質量分離し、測定対象イオンの質量/電荷比を計測する。質量分離部には、QMS型、iontrap型、 時間飛行(TOF)型、FT−ICR型、Orbitrap型、或いはそれら複合型等があるが、図8に例示する質量分析装置は、質量分離部にて質量選択されたイオンを、コンバージョンダイノードと呼ばれる変換電極に衝突させ、荷電粒子に変換、発生した荷電粒子をシンチレータにて検出し、発光した光を検出することで信号出力を得る。図8に例示する質量分析装置のシンチレータとして、上述のシンチレータを適用することによって、高速且つ高感度分析が可能な質量分析装置の提供が可能となる。
1 シンチレータ発光部
2 導電層
3 量子井戸構造
4 バッファ層
5 発光部-基板界面
6 基板
7 受光素子
8 試料
9 電子源
10 電子光学鏡筒
11 ライトガイド
12 一次電子線
13 試料室
14 二次電子線
21 発光層
22 非発光層
23 発光層

Claims (6)

  1. 試料に対する荷電粒子ビームの照射に基づいて得られる荷電粒子を検出する荷電粒子検出器において、
    Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第1の発光部と、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第2の発光部と、当該第1の発光部と第2の発光部との間に介在する非発光部とを備えたことを特徴とする荷電粒子検出器。
  2. 請求項1において、
    前記非発光部は、前記発光部に含まれる1のGaN層より厚いGaNを含む層であることを特徴とする荷電粒子検出器。
  3. 請求項1において、
    前記第1の発光部、前記第2の発光部、及び前記非発光部を含む部分の厚さの合計は、30nm〜10000nmであり、前記非発光部の厚さは、10〜5000nmであることを特徴とする荷電粒子検出器。
  4. 請求項1において、
    前記第1の発光部、前記第2の発光部、及び前記非発光部を含む部分の厚さの合計は、50nm〜1000nmであり、前記非発光部の厚さは、20〜500nmであることを特徴とする荷電粒子検出器。
  5. 試料に対する荷電粒子ビームの照射に基づいて得られる荷電粒子を検出する荷電粒子検出器を備えた荷電粒子線装置において、
    前記荷電粒子検出器は、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第1の発光部と、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第2の発光部と、当該第1の発光部と第2の発光部との間に介在する非発光部とを備えたことを特徴とする荷電粒子線装置。
  6. イオンを質量分離する質量分離部と、当該質量分離部によって分離されたイオンを検出する検出器を備えた質量分析装置において、
    前記検出器は、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第1の発光部と、Ga1−x−yAlInN(但し0≦x<1、0≦y<1)を含む層と、GaNを含む層が交互に積層された第2の発光部と、当該第1の発光部と第2の発光部との間に介在する非発光部とを備えたことを特徴とする質量分析装置。
JP2017014978A 2017-01-31 2017-01-31 荷電粒子検出器及び荷電粒子線装置 Active JP6666626B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017014978A JP6666626B2 (ja) 2017-01-31 2017-01-31 荷電粒子検出器及び荷電粒子線装置
PCT/JP2018/002319 WO2018143054A1 (ja) 2017-01-31 2018-01-25 荷電粒子検出器及び荷電粒子線装置
DE112018000236.5T DE112018000236B4 (de) 2017-01-31 2018-01-25 Ladungsträgerdetektor, Ladungsträgerstrahlvorrichtung und Massenanalysevorrichtung
US16/475,726 US10984979B2 (en) 2017-01-31 2018-01-25 Charged particle detector and charged particle beam apparatus
IL267496A IL267496B2 (en) 2017-01-31 2019-06-19 Charged particle detector and charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014978A JP6666626B2 (ja) 2017-01-31 2017-01-31 荷電粒子検出器及び荷電粒子線装置

Publications (2)

Publication Number Publication Date
JP2018124100A JP2018124100A (ja) 2018-08-09
JP6666626B2 true JP6666626B2 (ja) 2020-03-18

Family

ID=63039734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014978A Active JP6666626B2 (ja) 2017-01-31 2017-01-31 荷電粒子検出器及び荷電粒子線装置

Country Status (5)

Country Link
US (1) US10984979B2 (ja)
JP (1) JP6666626B2 (ja)
DE (1) DE112018000236B4 (ja)
IL (1) IL267496B2 (ja)
WO (1) WO2018143054A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005743A1 (ja) * 2019-07-10 2021-01-14 株式会社日立ハイテク 荷電粒子線装置用シンチレータおよび荷電粒子線装置
JP7326613B2 (ja) 2020-06-10 2023-08-15 株式会社日立ハイテク シンチレータ及び荷電粒子線装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228208B2 (ja) * 1997-12-25 2001-11-12 日本電気株式会社 半導体発光装置及びその製造方法
JP4365255B2 (ja) 2004-04-08 2009-11-18 浜松ホトニクス株式会社 発光体と、これを用いた電子線検出器、走査型電子顕微鏡及び質量分析装置
US7649195B2 (en) * 2007-06-12 2010-01-19 Seoul Opto Device Co., Ltd. Light emitting diode having active region of multi quantum well structure
JP2010263085A (ja) * 2009-05-07 2010-11-18 Toshiba Corp 発光素子
CN102185073B (zh) * 2011-04-01 2012-09-19 厦门市三安光电科技有限公司 一种倒装发光二极管及其制作方法
US8748919B2 (en) * 2011-04-28 2014-06-10 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporating optically absorbing layers
US9093581B2 (en) * 2012-05-05 2015-07-28 Texas Tech University System Structures and devices based on boron nitride and boron nitride-III-nitride heterostructures
JP6101443B2 (ja) 2012-08-01 2017-03-22 株式会社日立製作所 シンチレータ及びこれを用いた放射線検出器
KR102142709B1 (ko) * 2013-12-05 2020-08-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 장치
JP2015230195A (ja) * 2014-06-04 2015-12-21 株式会社日立ハイテクノロジーズ 荷電粒子線装置
KR102227772B1 (ko) * 2014-08-19 2021-03-16 삼성전자주식회사 반도체 발광소자
KR20160033815A (ko) * 2014-09-18 2016-03-29 삼성전자주식회사 반도체 발광소자
CZ201582A3 (cs) 2015-02-09 2016-06-29 Crytur, Spol.S R.O. Scintilační detektor pro detekci ionizujícího záření
JP6576257B2 (ja) 2016-01-29 2019-09-18 株式会社日立ハイテクノロジーズ 荷電粒子検出器、及び荷電粒子線装置

Also Published As

Publication number Publication date
DE112018000236T5 (de) 2019-08-29
IL267496B2 (en) 2023-07-01
IL267496B1 (en) 2023-03-01
US10984979B2 (en) 2021-04-20
IL267496A (ja) 2019-08-29
US20190355549A1 (en) 2019-11-21
WO2018143054A1 (ja) 2018-08-09
DE112018000236B4 (de) 2022-12-08
JP2018124100A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
US10515778B2 (en) Secondary particle detection system of scanning electron microscope
US8829428B2 (en) Time-of-flight spectrometry and spectroscopy of surfaces
US20040051041A1 (en) Scanning electron microscope
US11062892B2 (en) Charged particle detector including a light-emitting section having lamination structure, charged particle beam device, and mass spectrometer
JPWO2002061458A1 (ja) 電子線検出器、走査型電子顕微鏡、質量分析装置、及び、イオン検出器
US20150115149A1 (en) Mass distribution measurement method and mass distribution measurement apparatus
JP6666626B2 (ja) 荷電粒子検出器及び荷電粒子線装置
JP2015087236A (ja) 質量分布計測方法及び質量分布計測装置
WO2015185995A1 (ja) 荷電粒子線装置
JP6084902B2 (ja) 検出器および荷電粒子線装置
US20220413169A1 (en) Scintillator, measuring device, mass spectrometer, and electron microscope
JP5582493B2 (ja) マイクロチャネルプレート組立体及びマイクロチャネルプレート検出器
JP7218437B2 (ja) 荷電粒子線装置用シンチレータおよび荷電粒子線装置
JP7326613B2 (ja) シンチレータ及び荷電粒子線装置
JP5979075B2 (ja) 飛行時間型質量分析装置
US20230420215A1 (en) Charged particle beam device and imaging method
WO2023032034A1 (ja) 電子顕微鏡
JP2007073529A (ja) イメージインテンシファイア装置および方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6666626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150