TWI798179B - 多特異性抗體之純化 - Google Patents

多特異性抗體之純化 Download PDF

Info

Publication number
TWI798179B
TWI798179B TW106120122A TW106120122A TWI798179B TW I798179 B TWI798179 B TW I798179B TW 106120122 A TW106120122 A TW 106120122A TW 106120122 A TW106120122 A TW 106120122A TW I798179 B TWI798179 B TW I798179B
Authority
TW
Taiwan
Prior art keywords
chromatography
antibody
mixed
mode
protein
Prior art date
Application number
TW106120122A
Other languages
English (en)
Other versions
TW201803902A (zh
Inventor
格稜 吉斯
伊娃 羅森伯格
伯納德 莎莉爾
蘇珊娜 克雷德
沃夫甘 寇恩蓮
史提芬 威廉
艾格合 百俄拉斯
金柏林 凱勒斯
應吉斯 伊格卓
Original Assignee
美商建南德克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商建南德克公司 filed Critical 美商建南德克公司
Publication of TW201803902A publication Critical patent/TW201803902A/zh
Application granted granted Critical
Publication of TWI798179B publication Critical patent/TWI798179B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/165Extraction; Separation; Purification by chromatography mixed-mode chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Abstract

本發明提供純化多特異性抗體之方法。該等方法包含執行捕捉層析、第一混合模式層析及第二混合模式層析之依序步驟。在一些態樣中,本發明提供多特異性抗體之組合物,該等組合物具有減少水準之一或多種產物特異性雜質及/或過程特異性雜質。

Description

多特異性抗體之純化
本申請案主張2016年6月17日申請之美國臨時申請案第62/351,908號的優先權權益,該臨時申請案以引用之方式整體併入本文。
呈ASCII文本文檔形式之以下提交的內容以引用之方式整體併入本文:序列表之電腦可讀形式(CRF)(文檔名稱:146392036342SEQLIST.TXT,記錄日期:2017年6月9日,大小:32KB)。
提供用於自包含多特異性抗體及至少一種雜質之組合物純化多特異性抗體之方法,該雜質包括至少一種產物特異性雜質。在一些實施例中,該產物特異性雜質為例如該多特異性抗體之前驅體、聚集體及/或變異體。亦提供根據該等方法純化之多特異性抗體,及包含該等多特異性抗體之組合物及調配物。
關於欲接受用於投與至人類患者之重組生物醫藥蛋白,重要的是自最終生物產物移除由製造及純化過程產生之殘餘雜質。此等過程組分包括培養基蛋白、免疫球蛋白親和力配位體、病毒、內毒素、DNA及宿主細胞蛋白(HCP)。諸如多特異性抗體之新抗體形式的開發提供了新挑戰,因為習知製造及純化過程不適於充分地移除產物特異性雜質,包括非配對抗體臂及錯誤組裝之抗體。
如與標準抗體之純化相比,自產物培養基純化多特異性抗體提 供了獨特的挑戰。雖然標準單特異性二價抗體由一致重鏈/輕鏈次單元之二聚產生,但多特異性抗體之產生需要至少兩種不同的重鏈/輕鏈次單元之二聚,各次單元包含不同的重鏈以及不同的輕鏈。具有最少量之錯誤配對、錯誤組裝或不完全分子之最終正確且完整多特異性抗體之產生及純化提供了不同的挑戰。通常觀察到鏈錯誤配對(例如,一致重鏈肽之均二聚或不適當重鏈/輕鏈締合),亦觀察到歸因於不同抗體鏈之不均衡宿主細胞表現之不完全蛋白組裝。通常觀察到之產物特異性雜質包括半(½)抗體(包含單一重鏈/輕鏈對)、四分之三(¾)抗體(包含缺乏單一輕鏈之完整抗體)及均二聚體。視所用之多特異性形式而定,可觀察到額外產物特異性雜質。例如,在多特異性抗體之一可變域經構建成單鏈Fab(scFab)的情況下,可觀察到5/4抗體副產物(包含額外重鏈或輕鏈可變域)。該等相應產物特異性雜質將不會在標準抗體產生中出現。
當為了移除更類似於多特異性抗體之雜質而執行時,經設計以移除諸如HCP、DNA、內毒素及具有與該等抗體極其不同之特徵及特性的其他材料之過程相關雜質之習知純化技術可為不適當的。因而,需要開發有效地移除產物特異性雜質且產生足量之正確且完整多特異性抗體之製造及純化流程。
本文所引用之所有參考文獻(包括專利申請案及公開案)均以引用之方式整體併入。
如本文所述及例示,申請者已發現在初始捕捉層析步驟之後使用至少兩個混合模式(本文中亦稱作多-模式或多模式)層析步驟會引起產物 特異性雜質之更大移除及用於純化多特異性抗體之改良方法。因此,在某些實施例中,提供一種用於自包含多特異性抗體及雜質之組合物純化多特異性抗體之方法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,該方法包含依序步驟:a)使該組合物經受捕捉層析以產生捕捉層析溶離物;b)使該捕捉層析溶離物經受第一混合模式層析以產生第一混合模式溶離物;c)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及d)收集包含該多特異性抗體之溶離份,其中該方法減少來自該組合物之產物特異性雜質的量。在根據(或如應用於)以上任何實施例之一些實施例中,該捕捉層析溶離物在第一混合模式層析之前經受離子交換層析(例如,陰離子交換)或疏水性相互作用層析。在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式溶離物經受離子交換層析(例如,陰離子交換)或疏水性相互作用層析。
在某些實施例中,提供一種用於自包含多特異性抗體及雜質之組合物純化多特異性抗體之方法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,其中該多特異性抗體之各臂分別地產生,該方法包含依序步驟:a)使該多特異性抗體之各臂經受捕捉層析以產生針對該多特異性抗體之各臂的捕捉溶離物,b)在足以產生包含該多特異性抗體之組合物的條件下形成包含該多特異性抗體之各臂的捕捉溶離物之混合物,c)使包含該多特異性抗體之組合物經受第一混合模式層析以產生第一混合模式溶離物,及d)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及e)收集包含該多特異性抗體之溶離份,其中該方法減少來自該組合物之產物特異性雜質的量。在根據(或如應用於)以上任何實施例之一些實 施例中,該捕捉層析溶離物在第一混合模式層析之前經受離子交換層析(例如,陰離子交換)或疏水性相互作用層析。在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式溶離物經受離子交換層析(例如,陰離子交換)或疏水性相互作用層析。
在根據(或如應用於)以上任何實施例之一些實施例中,該捕捉層析為親和力層析。在根據(或如應用於)以上任何實施例之一些實施例中,該親和力層析為蛋白L層析、蛋白A層析、蛋白G層析、蛋白A及蛋白G層析。在根據(或如應用於)以上任何實施例之一些實施例中,該親和力層析為蛋白A層析。在根據(或如應用於)以上任何實施例之一些實施例中,該捕捉層析以結合及溶離模式進行。
在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析及該第二混合模式層析為相鄰的。在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析為混合模式陰離子交換層析。在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式層析為混合模式陽離子交換層析。在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析為混合模式陽離子交換層析。在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式層析為混合模式陰離子交換層析。
在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析以結合及溶離模式或以流通模式進行。在根據(或如應用於)其中該第一混合模式層析以結合及溶離模式進行的任何實施例之一些實施例中,該溶離為梯度溶離。
在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式層析以結合及溶離模式或以流通模式進行。在根據(或如應用於)其中該第二混合模式層析以結合及溶離模式進行的任何實施例之一些實施例中,該溶離為梯度溶離。
在根據(或如應用於)以上任何實施例之一些實施例中,該方法進一步包含使該第二混合模式溶離物經受超濾之步驟。在根據(或如應用於)以上任何實施例之一些實施例中,該超濾依序包含第一超濾、透濾及第二超濾。
在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A層析包含連接至瓊脂糖之蛋白A。在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A層析為MAbSelectTM、MAbSelectTM SuRe及MAbSelectTM SuRe LX、Prosep-VA、Prosep-VA Ultra Plus、蛋白A瓊脂糖速流或Toyopearl蛋白A層析。在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A層析使用蛋白A平衡緩衝液、蛋白A載樣緩衝液或蛋白A洗滌緩衝液中之一或多者,其中該平衡緩衝液、載樣緩衝液及/或洗滌緩衝液在約pH 7與約pH 8之間。在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A平衡緩衝液為約pH 7.7。在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A平衡緩衝液包含約25mM Tris及約25mM NaCl。在根據(或如應用於)以上任何實施例之一些實施例中,該蛋白A層析在載樣之後用平衡緩衝液洗滌。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由向蛋白A層析應用具有低pH之蛋白A溶離緩衝液而自該蛋白A溶離。在根據(或如應用於)以上任何實施例之一些 實施例中,該蛋白A溶離緩衝液包含約150mM乙酸(約pH 2.9)。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由pH梯度而自蛋白A層析溶離。
在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換混合模式層析包含四級胺及疏水性部分。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換混合模式層析包含連接至高度交聯瓊脂糖之四級胺及疏水性部分。在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式層析為CaptoTM Adhere層析或CaptoTM Adhere ImpRes層析。在根據(或如應用於)以上任何實施例之一些實施例中,該陽離子交換混合模式層析包含N-苯甲基-n-甲基乙醇胺。在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式層析為CaptoTM MMC層析或CaptoTM MMC ImpRes層析。
在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液、該混合模式載樣緩衝液及/或該混合模式洗滌緩衝液在約pH 6與約pH 7之間。在一些實施例中,陰離子混合模式平衡緩衝液在約pH 6.5與約pH 8之間。
在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液及/或混合模式洗滌緩衝液在約pH 5與約 pH 8之間,視情況在約pH 5與約pH 7之間,或在約pH 5與約pH 6之間,或在約pH 6與約pH 7之間。
在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式預平衡緩衝液、該混合模式平衡緩衝液及/或混合模式洗滌緩衝液為約pH 5.5。在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式預平衡緩衝液包含約500mM乙酸鹽。在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式平衡緩衝液包含約50mM乙酸鹽。
在根據(或如應用於)以上任何實施例之一些實施例中,該第一混合模式層析在載樣之後用洗滌緩衝液洗滌。在根據(或如應用於)以上任何實施例之一些實施例中,該第二混合模式層析在載樣之後用洗滌緩衝液洗滌。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由鹽梯度及/或pH梯度或pH分步溶離而自該第一混合模式層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由向混合模式交換層析應用具有低pH之混合模式溶離緩衝液而自該第一混合模式層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由鹽梯度及/或pH梯度或pH分步溶離而自該第二混合模式層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由向混合模式交換層析應用具有低pH之混合模式溶離緩衝液而自該第二混合模式層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該混合模式溶離緩衝液包含約25mM乙酸鹽(約pH 5.5)。
在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換層析包含四級胺。在根據(或如應用於)以上任何實施例之一些實施例中, 該陰離子交換層析包含連接至交聯瓊脂糖之四級胺。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換層析為QSFF層析。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換層析使用陰離子交換預平衡緩衝液、陰離子交換平衡緩衝液或陰離子交換載樣緩衝液中之一或多者,其中該陰離子交換預平衡緩衝液、該陰離子交換平衡緩衝液及/或陰離子交換載樣緩衝液在約pH 8與約pH 9之間。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換預平衡緩衝液、該陰離子交換平衡緩衝液及/或該陰離子交換載樣緩衝液為約pH 8.5。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換預平衡緩衝液包含約50mM Tris、500mM乙酸鈉。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換平衡緩衝液包含約50mM Tris。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換層析在載樣之後用陰離子交換平衡緩衝液洗滌。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由鹽梯度而自陰離子交換層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體藉由向陰離子交換層析應用具有增加的鹽濃度之陰離子交換溶離緩衝液而自陰離子交換層析溶離。在根據(或如應用於)以上任何實施例之一些實施例中,該陰離子交換溶離緩衝液包含約50mM Tris、100mM乙酸鈉(在約pH 8.5下)。
在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體之臂在細胞中產生。在根據(或如應用於)以上任何實施例之一些實施例中,該細胞為原核細胞。在根據(或如應用於)以上任何實施例之一些實施例中,該原核細胞為大腸桿菌細胞。在根據(或如應用於)以上任何實施例之 一些實施例中,該細胞經工程改造以表現一或多種伴侶蛋白。在根據(或如應用於)以上任何實施例之一些實施例中,該伴侶蛋白為FkpA、DsbA或DsbC中之一或多者。在根據(或如應用於)以上任何實施例之一些實施例中,該伴侶蛋白為大腸桿菌伴侶蛋白。在根據(或如應用於)以上實施例之一些實施例中,該細胞為真核細胞。在根據(或如應用於)以上實施例之一些實施例中,該真核細胞為酵母細胞、昆蟲細胞或哺乳動物細胞。在根據(或如應用於)以上實施例之一些實施例中,該真核細胞為CHO細胞。
在根據(或如應用於)以上任何實施例之一些實施例中,該細胞在捕捉層析之前經溶解以產生包含該多特異性抗體或該多特異性抗體之臂的細胞溶解產物。在根據(或如應用於)以上任何實施例之一些實施例中,該細胞使用微流化器溶解。在根據(或如應用於)以上任何實施例之一些實施例中,聚乙烯亞胺(PEI)在層析之前添加至細胞溶解產物中。在根據(或如應用於)以上任何實施例之一些實施例中,PEI添加至溶解產物中至約0.4%之最終濃度。在根據(或如應用於)以上任何實施例之一些實施例中,細胞溶解產物藉由離心澄清。在根據(或如應用於)以上任何實施例之一些實施例中,來自哺乳動物細胞(例如,CHO細胞)之細胞溶解產物經受一或多種以下處理:熱去活化、低pH去活化、藉由添加清潔劑實現之病毒去活化。
在根據(或如應用於)以上任何實施例之一些實施例中,該方法減少該組合物中之過程特異性雜質的量,諸如宿主細胞蛋白(HCP)、瀝出之蛋白A、核酸、細胞培養基組分或病毒雜質中之任一者。
在根據(或如應用於)以上任何實施例之一些實施例中,該多特異性抗體為雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例 中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。
在根據(或如應用於)以上任何方法之一些實施例中,在最後層析步驟之後收集溶離份,其包含至少約95%、至少約96%、至少約97%、至少約98%、至少約99%或約100%多特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,在最後層析步驟之後收集溶離份,其包含減少之量的產物特異性雜質,其中該產物特異性雜質為以下一或多者:非配對抗體臂、抗體均二聚體、高分子量物質(HMWS)、低分子量物質(LMWS)或¾抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有少於約5%、少於約4%、少於約3%、少於約2%或少於約1%之非配對抗體臂。在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有少於約5%、少於約4%、少於約3%、少於約2%或少於約1%之抗體均二聚體。在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有不超過約1%或不超過約2% HMWS。在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有不超過約2%或不超過約1% LMWS。在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有不超過約5%、不超過約4%、不超過約3%、不超過約2%或不超過約1%之¾抗體。
在根據(或如應用於)以上任何實施例之一些實施例中,該溶離份含有a)至少約95%-100%多特異性抗體;b)少於約1%-5%非配對抗體臂; c)少於約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及/或f)不超過約5% ¾抗體。
在某些實施例中,提供一種包含多特異性抗體之組合物,其藉由上文所述之任何方法的方法純化。
在根據(或如應用於)以上任何方法之一些實施例中,提供一種包含多特異性抗體之組合物,其中該組合物包含至少約95%、至少約96%、至少約97%、至少約98%、至少約99%或約100%多特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,提供一種包含多特異性抗體之組合物,其中該組合物包含減少之量的產物特異性雜質,其中該產物特異性雜質為以下一或多者:非配對抗體臂、抗體均二聚體、高分子量物質(HMWS)、低分子量物質(LMWS)或¾抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物少於約5%、少於約4%、少於約3%、少於約2%或少於約1%之非配對抗體臂。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物含有少於約5%、少於約4%、少於約3%、少於約2%或少於約1%之抗體均二聚體。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物含有不超過約1%或不超過約2% HMWS。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物含有不超過約2%或不超過約1% LMWS。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物含有不超過約5%、不超過約4%、不超過約3%、不超過約2%或不超過約1%之¾抗體。在根據(或如應用於)以上任何實施例之一些實施例 中,該組合物中之多特異性抗體為雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體結合於ANG-2及VEGF。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體結合於ANG-2及VEGF,包含a)包含第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
在根據(或如應用於)以上任何實施例之一些實施例中,該組合物含有:a)至少約95%-100%多特異性抗體;b)少於約1%-5%非配對抗體臂;c)少於約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及/或f)不超過約5% ¾抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該組合物中之多特異性抗體為雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體結合於ANG-2及VEGF。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體結合於ANG-2及VEGF,包含a)包含第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
在根據(或如應用於)以上任何實施例之一些實施例中,提供一種藉由上文所述之任一方法純化的包含多特異性或雙特異性抗體(諸如結合ANG2及VEGF之雙特異性抗體)之組合物,其用於治療癌症或眼病。
在根據(或如應用於)以上任何實施例之一些實施例中,提供藉由上文所述之任一方法純化的包含多特異性或雙特異性抗體(諸如結合ANG2及VEGF之雙特異性抗體)之用途,其用於製造用於治療癌症或眼病之藥劑。
在根據(或如應用於)以上任何實施例之一些實施例中,本文所提供之方法用於純化含Fc雜二聚體多肽。
在根據(或如應用於)以上任何實施例之一些實施例中,提供本文所提供之任何方法用於減少組合物中的含Fc雜二聚體多肽相關雜質之用途。
在某些實施例中,提供一種用多步驟層析方法純化含Fc區雜二聚體多肽之方法,其中該方法包含親和力層析步驟、隨後兩個不同的多模式離子交換層析步驟,及由此純化該含Fc區雜二聚體多肽。在根據(或如應用於)以上任何實施例之一些實施例中,該多步驟層析方法包含(i)親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟;或(ii)親和力層析步驟、隨後多模式陽離子交換層析步驟、隨後多模式陰離子交換層析步驟。
在根據(或如應用於)以上任何實施例之一些實施例中,該多步驟層析方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟。在根據(或如應用於)以上任何實施例之一些實施 例中,該多步驟層析方法確切地包含三個層析步驟。在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陰離子交換層析步驟以流通模式執行。在根據(或如應用於)以上任何實施例之一些實施例中,在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有小於7mS/cm之電導率值的溶液中應用。在根據(或如應用於)以上任何實施例之一些實施例中,在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有在約6mS/cm至約2mS/cm範圍內之電導率值的溶液中應用。在根據(或如應用於)以上任何實施例之一些實施例中,在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有約4.5mS/cm之電導率值的溶液中應用。在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陰離子交換層析步驟在約7之pH下執行。在根據(或如應用於)以上任何實施例之一些實施例中,在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有約4.5mS/cm之電導率及約7之pH的溶液中應用。在根據(或如應用於)以上任何實施例之一些實施例中,在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽以約100g至約300g/公升層析材料之範圍應用。
在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陰離子交換層析材料為多模式強陰離子交換層析材料。在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陰離子交換層析材料具有高流量瓊脂糖基質、作為配位體的多模式強陰離子交換劑、36-44μm之平均粒徑及0.08至0.11mmol Cl-/mL培養基之離子容量。在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陽離子交換層析培養基為多模式弱陽離子交換層析培養基。在根據(或如應用於)以上任何實施例之一些實施例 中,該多模式陽離子交換層析培養基具有高流量瓊脂糖基質、作為配位體的多模式弱陽離子交換劑、36-44μm之平均粒徑及25至39μmol/mL之離子容量。在根據(或如應用於)以上任何實施例之一些實施例中,該多模式陰離子交換層析步驟以結合及溶離模式執行。在根據(或如應用於)以上任何實施例之一些實施例中,該捕捉層析藉由親和力層析進行。在一些實施例中,該親和力層析為蛋白A親和力層析或蛋白G親和力層析或單鏈Fv配位體親和力層析或具有CaptureSelect層析材料之層析步驟或具有CaptureSelect FcXL層析材料之層析步驟。在根據(或如應用於)以上任何實施例之一些實施例中,該親和力層析步驟為蛋白A層析步驟。在根據(或如應用於)以上任何實施例之一些實施例中,該親和力層析步驟為具有CaptureSelectTM層析材料之層析步驟。
在根據(或如應用於)以上任何實施例之一些實施例中,該含Fc區雜二聚體多肽為抗體、雙特異性抗體或Fc融合蛋白。在根據(或如應用於)以上任何實施例之一些實施例中,該含Fc區雜二聚體多肽為雙特異性抗體。在根據(或如應用於)以上任何實施例之一些實施例中,該含Fc區雜二聚體多肽為CrossMab。在根據(或如應用於)以上任何實施例之一些實施例中,該含Fc區雜二聚體多肽為雙特異性抗體,其包含a)特異性結合於第一抗原之第一全長抗體的重鏈及輕鏈;及b)特異性結合於第二抗原之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體結合於ANG2及VEGF。在根據(或如應用於)以上任何實施例之一些實施例中,CrossMab結合於ANG2及VEGF。在根據(或如應用於)以上任 何實施例之一些實施例中,該雙特異性抗體為瓦紐賽單抗(vanucizumab)。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體包含具有胺基酸序列SEQ ID NO:9之第一重鏈及具有胺基酸序列SEQ ID NO:10之第二重鏈及具有胺基酸序列SEQ ID NO:11之第一輕鏈及具有胺基酸序列SEQ ID NO:12之第二輕鏈。
在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。在根據(或如應用於)以上任何實施例之一些實施例中,該雙特異性抗體包含具有胺基酸序列SEQ ID NO:13之第一重鏈及具有胺基酸序列SEQ ID NO:14之第二重鏈及具有胺基酸序列SEQ ID NO:15之第一輕鏈及具有胺基酸序列SEQ ID NO:16之第二輕鏈。
在根據(或如應用於)以上任何實施例之一些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約5% ¾抗體。
在某些實施例中,提供一種用多步驟層析方法純化結合於ANG2及VEGF之雙特異性抗體之方法,其中該方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟,及由 此純化結合於ANG2及VEGF之雙特異性抗體,其中結合於ANG2及VEGF之雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4,或包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。在根據(或如應用於)以上任何實施例之一些實施例中,結合於ANG2及VEGF之雙特異性抗體包含a)包含第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
在一些實施例中,提供根據(或如應用於)以上任何實施例之任一方法用於減少含Fc雜二聚體多肽相關雜質之用途。
在一些實施例中,提供用根據(或如應用於)以上任何實施例之方法獲得之含Fc雜二聚體多肽,其用於製造用於治療癌症或眼病之藥劑。
在一些實施例中,提供由根據(或如應用於)以上任何實施例之方法獲得之含Fc雜二聚體多肽,其用於治療癌症或眼病。
在某些實施例中,提供一種用於產生含Fc雜二聚體多肽之方法,其包含以下步驟:(i)培養包含編碼含Fc雜二聚體多肽之核酸的細胞;(ii)自細胞或培養基回收含Fc雜二聚體蛋白;(iii)使用根據(或如應用於)以上任何實施例之方法純化含Fc雜二聚體多肽,及由此產生含Fc雜二聚體多肽。
在某些實施例中,提供一種產生結合於ANG-2及VEGF之雙特 異性抗體之方法,其包含以下步驟:(i)培養包含編碼該雙特異性抗體之核酸的細胞;(ii)自細胞或培養基回收該雙特異性抗體;(iii)使用根據(或如應用於)以上任何實施例之方法純化該雙特異性抗體,且由此產生結合於ANG-2及VEGF之雙特異性抗體。
圖1A描繪實例1中所用之第一純化流程。
圖1B描繪實例1中所用之第二純化流程。
圖1C描繪實例1中所用之第三純化流程。
圖2描繪實例2中所用之純化流程。
圖3A描繪實例3中所用之第一純化流程。
圖3B描繪實例3中所用之第二純化流程。
圖4描繪實例4中所用之純化流程。
圖5A描繪實例6中所用之第一純化流程。
圖5B描繪實例6中所用之第二純化流程。
圖6A描繪實例7中所用之第一純化流程。
圖6B描繪實例7中所用之第二純化流程。
圖7A描繪實例8中所述之第一純化流程。
圖7B描繪實例8中所述之第二純化流程。
圖7C描繪實例8中所述之所用第三純化流程。
本文提供用於純化多特異性抗體(諸如雙特異性抗體或二價F(ab’)2)之方法,其包含依序步驟:使包含該多特異性抗體之組合物經受a) 捕捉層析,b)第一混合模式層析,及c)第二混合模式層析。在一些態樣中,提供用於純化多特異性抗體之方法,其中該多特異性抗體之個別臂各自在獨立培養物中產生且各自藉由捕捉層析獨立地純化。經純化之抗體臂接著經組裝以產生該多特異性抗體。經組裝之多特異性抗體接著經受第一混合模式陰離子交換層析,隨後第二混合模式層析。如下文更詳細描述,該捕捉層析、第一混合模式層析及/或第二混合模式層析中之每一者視情況前接及/或後接一或多個額外層析步驟。術語混合模式層析及多模式層析在本文中可互換使用。
在一些態樣中,提供包含多特異性抗體之組合物,其具有減少水準之一或多種過程特異性及/或產物特異性雜質,諸如非配對抗體臂、均二聚體、聚集體、低分子量物質、酸性及鹼性變異體。在一些態樣中,提供包含多特異性抗體之組合物,其具有減少水準之一或多種過程特異性雜質,諸如原核宿主細胞蛋白、真核宿主細胞蛋白(諸如CHO蛋白或「CHOP」)、核酸及伴侶蛋白(諸如原核伴侶蛋白,例如FkpA、DsbA及DsbC)。在某些實施例中,本文所提供之組合物使用本文所提供之方法獲得。在某些實施例中,本文所提供之組合物具有與使用此項技術中已知之方法獲得的組合物相比減少水準之一或多種過程特異性及/或產物特異性雜質。
在一些態樣中,提供如本文中所報告之方法用於純化含Fc雜二聚體多肽及用於減少含Fc雜二聚體多肽相關雜質之用途。實現產物特異性雜質之改良減少。在CrossMab特異性雜質之情況下,實現例如¾抗體之減少。
定義
術語「多肽」及「蛋白」在本文中可互換使用以指任何長度之胺基酸的聚合物。該聚合物可為線性或分支鏈的,其可包含經修飾胺基酸,且其可由非胺基酸中斷。該等術語亦涵蓋已天然地或藉由干預經修飾之胺基酸聚合物;例如二硫鍵形成、糖基化、脂質化、乙醯化、磷酸化或任何其他操縱或修飾,諸如與標記組分結合。該定義內亦包括例如含有胺基酸(包括例如非天然胺基酸等)之一或多種類似物以及此項技術中已知之其他修飾的多肽。如本文所用之術語「多肽」及「蛋白」特定地涵蓋抗體。
「經純化」多肽(例如,抗體或免疫黏附素)意謂該多肽之純度已增加,以致其以比其在其天然環境中存在及/或當最初在實驗室條件下合成及/或擴增時更純之形式存在。純度為相對術語且不必意謂絕對純度。如本文中可互換使用之術語「純化(purifying)」、「分離(separating)」或「分離(isolating)」係指增加來自包含所需分子及一或多種雜質之組合物或樣品的所需分子(諸如多特異性抗體,例如雙特異性抗體)之純度的程度。典型地,所需分子之純度的程度藉由自該組合物移除(完全地或部分地)至少一種雜質而增加。
「結合所關注之抗原」之多特異性抗體為以充足親和力結合抗原(例如,蛋白)者,以致該多特異性抗體在靶向蛋白或表現該蛋白之細胞或組織時適用作診斷及/或治療劑,且不會顯著地與其他蛋白交叉反應。在該等實施例中,多特異性抗體與「非靶標」蛋白之結合程度將小於多特異性抗體與其特定靶標蛋白之結合的約10%,如藉由例如螢光活化細胞分選(FACS)分析、放射性免疫沉澱(RIA)或ELISA等所測定。關於多特異性抗體與靶標分子之結合,術語「特異性結合」或「特異性結合於」特定多肽或 在特定多肽靶標上之抗原決定基或對其「具特異性」意謂顯著不同於非特異性相互作用(例如,非特異性相互作用可為結合於牛血清白蛋白或酪蛋白)之結合。特異性結合可例如藉由與對照分子之結合相比測定分子之結合來量測。例如,特異性結合可藉由與類似於靶標之對照分子(例如,過量非標記靶標)競爭來測定。在此情況下,若經標記靶標與探針之結合由過量未標記靶標競爭性地抑制,則指示特異性結合。如本文所用,術語「特異性結合」或「特異性結合於」特定多肽或在特定多肽靶標上之抗原決定基或對其「具特異性」可例如藉由對靶標具有至少約200nM、或者至少約150nM、或者至少約100nM、或者至少約60nM、或者至少約50nM、或者至少約40nM、或者至少約30nM、或者至少約20nM、或者至少約10nM、或者至少約8nM、或者至少約6nM、或者至少約4nM、或者至少約2nM、或者至少約1nM或更大親和力之Kd的分子展現。在一實施例中,術語「特異性結合」係指如下結合,其中多特異性抗原結合蛋白結合於特定多肽或在特定多肽上之抗原決定基,而不會實質上結合於任何其他多肽或多肽抗原決定基。
「結合親和力」一般係指在分子(例如多特異性抗體)之單一結合位點與其結合搭配物(例如抗原)之間的非共價相互作用之合計強度。除非另外指示,否則如本文所用,「結合親和力」係指反映結合對之成員(例如,抗體及抗原)之間的1:1相互作用之固有結合親和力。分子X對其搭配物Y之親和力一般可由解離常數(Kd)表示。例如,Kd可為約200nM或更少、約150nM或更少、約100nM或更少、約60nM或更少、約50nM或更少、約40nM或更少、約30nM或更少、約20nM或更少、約10nM或更少、 約8nM或更少、約6nM或更少、約4nM或更少、約2nM或更少、或約1nM或更少。親和力可藉由此項技術中已知之常見方法,包括本文所述之彼等來量測。低親和力抗體一般緩慢地結合抗原且傾向於快速地解離,而高親和力抗體一般更快結合抗原且傾向於保持更久結合。此項技術中已知多種量測結合親和力之方法,其中任一者均可用於本文所提供之方法及組合物。
在一實施例中,根據本發明之「Kd」或「Kd值」藉由在25℃下使用表面電漿共振分析使用BIAcoreTM-2000或BIAcoreTM-3000(BIAcore,Inc.,Piscataway,NJ)用固定靶標(例如抗原)CM5晶片在-10反應單位(RU)下量測。簡言之,羧基甲基化葡聚糖生物感測器晶片(CM5,BIAcore,Inc.)根據供應商之說明書用N-乙基-N'-(3-二甲基胺基丙基)-碳化二亞胺鹽酸鹽(EDC)及N-羥基丁二醯亞胺(NHS)活化。抗原用10mM乙酸鈉(pH 4.8)稀釋至5μg/ml(約0.2μM),接著以5μl/分鐘之流動速率注射以實現大約10反應單位(RU)之偶合蛋白。在抗原注射之後,注射1M乙醇胺以阻斷未反應基團。關於動力學量測,在25℃下以大約25μl/min之流動速率注射Fab(例如0.78nM至500nM)於具有0.05% Tween 20之PBS(PBST)中的兩倍連續稀釋液。使用簡單一對一朗格繆爾結合模型(BIAcore評估軟體3.2版)藉由同時擬合締合及解離感測圖來計算締合速率(k締合)及解離速率(k解離)。平衡解離常數(Kd)經計算為比率k解離/k締合。參見例如Chen等人,J.Mol.Biol.293:865-881(1999)。若藉由以上表面電漿共振分析發現締合速率超過106M-1 s-1,則該締合速率可藉由使用螢光淬滅技術來測定,該螢光淬滅技術量測在25℃下20nM抗-抗原抗體(Fab形式)在PBS(pH 7.2)中在遞增濃度之抗原存在下的 螢光發射強度(激發=295nm;發射=340nm,16nm帶通)之增加或降低,該螢光發射強度如光譜儀中所量測,該光譜儀如停流裝備分光光度計(Aviv Instruments)或具有攪拌杯之8000-系列SLM-Aminco分光光度計(ThermoSpectronic)。
出於本文目的之「活性(Active)」或「活性(activity)」係指多肽形式(諸如多特異性抗體),其保留原生或天然存在之多肽的生物及/或免疫活性,其中「生物」活性係指由原生或天然存在之多肽引起的生物功能(抑制或刺激),誘導針對由原生或天然存在之多肽具有的抗原性抗原決定基產生抗體之能力除外,且「免疫」活性係指誘導針對由原生或天然存在之多肽具有的抗原性抗原決定基產生抗體之能力。
除非另外規定,否則關於本文所提供之多特異性抗原結合蛋白,諸如抗體、其片段或衍生物,「生物活性(Biologically active)」及「生物活性(biological activity)」及「生物特徵(biological characteristics)」意謂具有結合於生物分子之能力。
術語「抗體」在本文中以最廣泛意義使用且特定地涵蓋單株抗體、多株抗體、由至少兩種完整抗體形成之多特異性抗體(例如,雙特異性抗體)及抗體片段,只要其展現所需生物活性即可。術語「免疫球蛋白」(Ig)在本文中可與抗體互換使用。
抗體為天然存在之免疫球蛋白分子,其具有變化結構,所有結構均基於免疫球蛋白折疊。例如,IgG抗體具有兩條「重」鏈及兩條「輕」鏈,該等鏈由二硫鍵鍵結以形成功能性抗體。各重鏈及輕鏈自身包含「恆定」(C)及「可變」(V)區。V區決定抗體之抗原結合特異性,而C區提供結 構支撐及與免疫效應子非抗原特異性相互作用之功能。抗體或抗體之抗原結合片段之抗原結合特異性為抗體特異性結合於特定抗原之能力。
抗體之抗原結合特異性由V區之結構特徵決定。變異性未在可變域之110個胺基酸跨度內均勻地分佈。實際上,V區由藉由具有極端變異性之較短區(稱作「高變區」)隔開之具有15-30個胺基酸之相對不變延伸(稱作構架區(FR))組成,該等較短區各自為9-12個胺基酸長。原生重鏈及輕鏈之可變域各自包含四個FR,該等FR主要採用β-折疊組態,由三個高變區連接,該等高變區形成連接β-折疊結構之環且在一些情況下形成β-折疊結構之一部分。各鏈中之高變區藉由FR緊密地保持在一起且與其他鏈之高變區一起有助於形成抗體之抗原結合位點(參見Kabat等人,Sequences of Proteins of Immunological Interest,第5版Public Health Service,National Institutes of Health,Bethesda,Md.(1991))。恆定域未直接牽涉於抗體與抗原之結合中,但展現多種效應子功能,諸如使抗體參與抗體依賴性細胞毒性(ADCC)。
各V區典型地包含三個互補決定區(「CDR」,其中每一者均含有「高變環」)及四個構架區。抗體結合位點(以實質親和力結合於特定所需抗原所需之最小結構單元)將因此典型地包括三個CDR,及至少三個、較佳地四個散佈在其間以保持且提供呈適當構形之CDR的構架區。經典四鏈抗體具有由VH及VL域合作界定之抗原結合位點。諸如駱駝及鯊魚抗體之某些抗體缺乏輕鏈且僅依賴於由重鏈形成之結合位點。可製備單域經工程改造之免疫球蛋白,其中結合位點單獨地由重鏈或輕鏈形成,缺乏VH與VL之間的合作。
術語「可變」係指如下實情,即可變域之某些部分在抗體之中在序列方面廣泛不同,且用於各特定抗體對其特定抗原之結合及特異性中。然而,變異性未在抗體之可變域中均勻地分佈。其集中於輕鏈及重鏈可變域中之三個稱作高變區之區段中。可變域之更高度保守部分稱作構架區(FR)。原生重鏈及輕鏈之可變域各自包含四個FR,該等FR主要採用β-折疊組態,由三個高變區連接,該等高變區形成連接β-折疊結構之環且在一些情況下形成β-折疊結構之一部分。各鏈中之高變區藉由FR緊密地保持在一起且與其他鏈之高變區一起有助於形成抗體之抗原結合位點(參見Kabat等人,Sequences of Proteins of Immunological Interest,第5版Public Health Service,National Institutes of Health,Bethesda,MD.(1991))。恆定域未直接牽涉於抗體與抗原之結合中,但展現多種效應子功能,諸如使抗體參與抗體依賴性細胞毒性(ADCC)。
術語「高變區」當用於本文中時係指抗體中負責抗原結合之胺基酸殘基。高變區可包含來自「互補決定區」或「CDR」之胺基酸殘基(例如,在VL中約殘基24-34(L1)、50-56(L2)及89-97(L3)周圍,及在VH中約31-35B(H1)、50-65(H2)及95-102(H3)周圍(Kabat等人,Sequences of Proteins of Immunological Interest,第5版Public Health Service,National Institutes of Health,Bethesda,Md.(1991))及/或來自「高變環」之彼等殘基(例如,在VL中殘基26-32(L1)、50-52(L2)及91-96(L3),及在VH中26-32(H1)、52A-55(H2)及96-101(H3)(Chothia及Lesk J.Mol.Biol.196:901-917(1987))。
「構架」或「FR」殘基為除如本文所定義之高變區殘基外之彼等可變域殘基。
在抗體或半抗體之背景下的「鉸鏈區」一般定義為自人類IgG1之Glu216延伸至Pro230(Burton,Molec.Immunol.22:161-206(1985))。其他IgG同型之鉸鏈區可藉由將形成重鏈內S-S鍵之第一個及最後一個半胱胺酸殘基置於相同位置中而與IgG1序列進行比對。
Fc區之「下部鉸鏈區」通常定義為Fc區之緊挨C端的殘基至鉸鏈區之延伸,亦即殘基233至239。在本申請案之前,FcγR結合一般歸因於在IgG Fc區之下部鉸鏈區中的胺基酸殘基。
人類IgG Fc區之「CH2域」通常自IgG之約殘基231延伸至約340。CH2域為獨特的,因為其未與另一域緊密配對。更確切地,兩條N連接之分支碳水化合物鏈插入完整原生IgG分子之兩個CH2域之間。已推測,碳水化合物可提供用於域-域配對之替代物且幫助穩定化CH2域。Burton,Molec.Immunol.22:161-206(1985)。
「CH3域」包含Fc區中C端殘基至CH2域之延伸(亦即,IgG之約胺基酸殘基341至約胺基酸殘基447)。
「抗體片段」包含完整抗體之一部分,較佳地包含其抗原結合區。抗體片段之實例包括Fab、Fab’、F(ab’)2及Fv片段;雙功能抗體;串聯雙功能抗體(taDb)、線性抗體(例如,美國專利第5,641,870號,實例2;Zapata等人,Protein Eng.8(10):1057-1062(1995));一臂抗體、單一可變域抗體、微型抗體、單鏈抗體分子;由抗體片段形成之多特異性抗體(例如,包括但不限於Db-Fc、taDb-Fc、taDb-CH3、(scFV)4-Fc、二-scFv、二-scFv或串聯(二,三)-scFv);及雙特異性T細胞銜接子(BiTE)。
抗體之木瓜蛋白酶消化產生兩個一致抗原結合片段(稱作「Fab」 片段),及殘餘「Fc」片段(反映容易結晶之能力的名稱)。Fab片段由整個L鏈連同H鏈之可變區域(VH)及一條重鏈之第一恆定域(CH1)組成。抗體之胃蛋白酶處理產生單一大F(ab’)2片段,該片段粗略地對應於具有二價抗原結合活性之兩個二硫鍵連接之Fab片段且仍能夠與抗原交聯。Fab’片段與Fab片段之不同之處在於在CH1域之羧基端處具有額外數個殘基,包括來自抗體鉸鏈區之一或多個半胱胺酸。Fab’-SH在本文中為其中恆定域之半胱胺酸殘基具有游離硫醇基之Fab’之名稱。F(ab’)2抗體片段最初以Fab’片段對之形式產生,該等片段之間具有鉸鏈半胱胺酸。亦已知抗體片段之其他化學偶合。
「Fv」為含有完全抗原識別及抗原結合位點之最小抗體片段。此區由一個重鏈及一個輕鏈可變域呈緊密、非共價締合形式之二聚體組成。在此組態中,各可變域之三個高變區相互作用以在VH-VL二聚體之表面上界定抗原結合位點。總之,六個高變區向抗體賦予抗原結合特異性。然而,即使單一可變域(或僅包含對抗原具特異性之三個高變區的Fv之一半)亦具有識別及結合抗原之能力,不過親和力低於完整結合位點。
Fab片段亦含有輕鏈之恆定域及重鏈之第一恆定域(CH1)。Fab’片段與Fab片段之不同之處在於在重鏈CH1域之羧基端處添加數個殘基,包括來自抗體鉸鏈區之一或多個半胱胺酸。Fab’-SH在本文中為其中恆定域之半胱胺酸殘基具有至少一個游離硫醇基之Fab’之名稱。F(ab’)2抗體片段最初以Fab’片段對之形式產生,該等片段之間具有鉸鏈半胱胺酸。亦已知抗體片段之其他化學偶合。
來自任何脊椎動物物種之抗體(免疫球蛋白)的「輕鏈」可基於其 恆定域之胺基酸序列經指派兩種明顯不同的類型(稱作κ(kappa)及λ(lambda))之一。
視其重鏈之恆定域的胺基酸序列而定,抗體可經指派不同類別。存在五個主要類別之完整抗體:IgA、IgD、IgE、IgG及IgM,且此等類別中之一些可進一步分成亞類(同型),例如IgG1、IgG2、IgG3、IgG4、IgA及IgA2。對應於不同類別之抗體的重鏈恆定域分別稱為α、δ、ε、γ及μ。不同類別之免疫球蛋白的次單元結構及三維組態為熟知的。
「單鏈Fv」或「scFv」抗體片段包含抗體之VH及VL域,其中此等域存在於單一多肽鏈中。在一些實施例中,Fv多肽進一步包含在VH與VL域之間之多肽連接子,其使得scFv能夠形成抗原結合所需之結構。關於scFv之回顧,參見Plückthun The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg及Moore編,Springer-Verlag,New York,第269-315頁(1994)。
術語「雙功能抗體」係指具有兩個抗原結合位點之小抗體片段,該等片段在同一多肽鏈(VH-VL)中包含連接至輕鏈可變域(VL)的重鏈可變域(VH)。藉由使用過短而不允許同一鏈上的兩個域之間配對之連接子,迫使該等域與另一鏈之互補域配對且產生兩個抗原結合位點。雙功能抗體更充分地描述於例如EP 404,097;WO 93/11161;及Hollinger等人,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993)中。
如本文所用,術語「半抗體」或「半聚體」係指單價抗原結合多肽。在某些實施例中,半抗體或半聚體包含VH/VL單元且視情況包含免疫球蛋白恆定域之至少一部分。在某些實施例中,半抗體或半聚體包含與 一條免疫球蛋白輕鏈締合之一條免疫球蛋白重鏈,或其抗原結合片段。在某些實施例中,半抗體或半聚體為單特異性的,亦即結合於單一抗原或抗原決定基。熟習此項技術者應容易理解,半抗體可具有由單一可變域組成之抗原結合域,例如源於駱駝科。
術語「VH/VL單元」係指抗體中包含至少一個VH HVR及至少一個VL HVR之抗原結合區。在某些實施例中,VH/VL單元包含至少一個、至少兩個或全部三個VH HVR及至少一個、至少兩個或全部三個VL HVR。在某些實施例中,VH/VL單元進一步包含構架區(FR)之至少一部分。在一些實施例中,VH/VL單元包含三個VH HVR及三個VL HVR。在一些該等實施例中,VH/VL單元包含至少一個、至少兩個、至少三個或全部四個VH FR及至少一個、至少兩個、至少三個或全部四個VL FR。
術語「多特異性抗體」以最廣泛意義使用且特定地涵蓋包含具有多抗原決定基特異性之抗原結合域的抗體(亦即,能夠特異性地結合於一種生物分子上之兩個或兩個以上不同抗原決定基或能夠特異性地結合於兩種或兩種以上不同生物分子上之抗原決定基)。在一些實施例中,多特異性抗體(諸如雙特異性抗體或二價F(ab’)2)之抗原結合域包含兩個VH/VL單元,其中第一VH/VL單元特異性地結合於第一抗原決定基且第二VH/VL單元特異性地結合於第二抗原決定基,其中各VH/VL單元包含重鏈可變域(VH)及輕鏈可變域(VL)。該等多特異性抗體包括但不限於全長抗體、具有兩個或兩個以上VL及VH域之抗體、抗體片段(諸如Fab、Fv、dsFv、scFv)、雙功能抗體、雙特異性抗體及三功能抗體、已經共價或非共價連接之抗體片段。進一步包含重鏈恆定區之至少一部分及/或輕鏈恆定區之至少一部分 的VH/VL單元亦可稱作「半聚體」或「半抗體」。在一些實施例中,半抗體包含單一重鏈可變區之至少一部分及單一輕鏈可變區之至少一部分。在一些該等實施例中,包含兩種半抗體且結合於兩種抗原之雙特異性抗體包含結合於第一抗原或第一抗原決定基但不結合於第二抗體或第二抗原決定基之第一半抗體及結合於第二抗原或第二抗原決定基且不結合於第一抗原或第一抗原決定基之第二半抗體。根據一些實施例,多特異性抗體為以5M至0.001pM、3M至0.001pM、1M至0.001pM、0.5M至0.001pM、或0.1M至0.001pM之親和力結合於各抗原或抗原決定基之IgG抗體。在一些實施例中,半聚體包含充足部分之重鏈可變區以允許與第二半聚體形成分子內二硫鍵。在一些實施例中,半聚體包含杵突變或臼突變,例如以允許與包含互補臼突變或杵突變之第二半聚體或半抗體雜二聚化。杵突變及臼突變進一步論述於下文中。
「雙特異性抗體」為包含能夠特異性地結合於一種生物分子上之兩種不同抗原決定基或能夠特異性地結合於兩種不同生物分子上之抗原決定基之抗原結合域的多特異性抗體。雙特異性抗體亦可在本文中稱作具有「雙重特異性」或為「雙重特異性的」。除非另外指示,否則由雙特異性抗體結合之抗原在雙特異性抗體名稱中列出之次序為任意的。在一些實施例中,雙特異性抗體包含兩種半抗體,其中各半抗體包含單一重鏈可變區及視情況重鏈恆定區之至少一部分,及單一輕鏈可變區及視情況輕鏈恆定區之至少一部分。在某些實施例中,雙特異性抗體包含兩種半抗體,其中各半抗體包含單一重鏈可變區及單一輕鏈可變區且不包含超過一個單一重鏈可變區且不包含超過一個單一輕鏈可變區。在一些實施例中,雙特異 性抗體包含兩種半抗體,其中各半抗體包含單一重鏈可變區及單一輕鏈可變區,且其中第一半抗體結合於第一抗原且不結合於第二抗原且第二半抗體結合於第二抗原且不結合於第一抗原。
如本文所用,術語「杵臼」或「KiH」技術係指藉由將突起(杵)引入至一種多肽中且將空腔(臼)引入至另一多肽中該等多肽相互作用之界面處而引導兩種多肽活體外或活體內一起配對之技術。例如,KiH已經引入至抗體之Fc:Fc結合界面、CL:CH1界面或VH/VL界面中(參見例如US 2011/0287009、US2007/0178552、WO 96/027011、WO 98/050431及Zhu等人,1997,Protein Science 6:781-788)。在一些實施例中,KiH驅動在多特異性抗體之製造期間兩種不同重鏈一起配對。例如,在Fc區中具有KiH之多特異性抗體可進一步包含連接至各Fc區之單一可變域,或進一步包含與相似或不同輕鏈可變域配對之不同重鏈可變域。KiH技術亦可用於使兩種不同的受體細胞外域一起配對或使包含不同靶標識別序列之任何其他多肽序列配對(例如,包括親和體、肽體及其他Fc融合物)。
如本文所用,術語「杵突變」係指將突起(杵)引入至多肽中該多肽與另一多肽相互作用之界面處的突變。在一些實施例中,另一多肽具有臼突變(參見例如US 5,731,168、US 5,807,706、US 5,821,333、US 7,695,936、US 8,216,805,各自以引用之方式整體併入本文中)。
如本文所用,術語「臼突變」係指將空腔(臼)引入至多肽中該多肽與另一多肽相互作用之界面處的突變。在一些實施例中,另一多肽具有杵突變(參見例如US 5,731,168、US 5,807,706、US 5,821,333、US 7,695,936、US 8,216,805,各自以引用之方式整體併入本文中)。
表述「單域抗體」(sdAb)或「單一可變域(SVD)抗體」一般係指其中單一可變域(VH或VL)可賦予抗原結合之抗體。換言之,該單一可變域無需與另一可變域相互作用來識別靶標抗原。單域抗體之實例包括源於駱駝科動物(羊駝及駱駝)及軟骨魚綱(例如護士鯊)之彼等及由人類及小鼠抗體以重組方法產生之彼等(Nature(1989)341:544-546;Dev Comp Immunol(2006)30:43-56;Trend Biochem Sci(2001)26:230-235;Trends Biotechnol(2003):21:484-490;WO 2005/035572;WO 03/035694;FEBS Lett(1994)339:285-290;WO00/29004;WO 02/051870)。
如本文所用,術語「單株抗體」係指獲自實質上均質抗體之群體的抗體,亦即,構成該群體之個別抗體為一致的及/或結合相同抗原決定基,除了可在該單株抗體之產生期間出現之可能變異體,該等變異體一般少量存在。與典型地包括針對不同決定子(抗原決定基)之不同抗體的多株抗體製劑形成對比,各單株抗體針對抗原上之單一決定子。除了其特異性,該等單株抗體因為其不受其他免疫球蛋白污染亦為有利的。修飾語「單株」指示該抗體之特徵獲自抗體的實質上均質群體,且不應解釋為需要由任何特定方法產生該抗體。例如,欲根據本文所提供之方法使用的單株抗體可藉由首先由Kohler等人,Nature 256:495(1975)描述之融合瘤方法製得,或可藉由重組DNA方法製得(參見例如美國專利第4,816,567號)。「單株抗體」亦可使用例如Clackson等人,Nature 352:624-628(1991)及Marks等人,J.Mol.Biol.222:581-597(1991)中所述之技術由噬菌體抗體文庫分離。
本文中之單株抗體特定地包括「嵌合」抗體(免疫球蛋白),其中重鏈及/或輕鏈之一部分與源於特定物種或屬特定抗體類別或亞類之抗體中 的相應序列一致或同源,而該(等)鏈之剩餘部分與源於另一物種或屬另一抗體類別或亞類之抗體中的相應序列一致或同源,以及該等抗體之片段,只要其展現所需生物活性即可(美國專利第4,816,567號;Morrison等人,Proc.Natl.Acad.Sci.USA 81:6851-6855(1984))。本文中所關注之嵌合抗體包括包含源於非人類靈長類動物(例如舊大陸猴,諸如狒狒、恆河猴或食蟹獼猴)之可變域抗原結合序列及人類恆定區序列的「靈長類化」抗體(美國專利第5,693,780號)。
非人類(例如鼠類)抗體之「人類化」形式為含有源於非人類免疫球蛋白之最小序列的嵌合抗體。主要地,人類化抗體為其中來自接受者之高變區的殘基由來自非人類物種(供體抗體)之高變區的殘基置換之人類免疫球蛋白(接受者抗體),該非人類物種諸如小鼠、大鼠、兔或具有所需特異性、親和力及能力之非人類靈長類動物。在一些情況下,人類免疫球蛋白之構架區(FR)殘基由相應非人類殘基置換。此外,人類化抗體可包含在接受者抗體中或在供體抗體中未發現之殘基。進行此等修飾以進一步細化抗體效能。一般而言,人類化抗體將包含至少一個且典型地兩個可變域中之實質上全部,其中全部或實質上全部高變環對應於非人類免疫球蛋白之彼等且全部或實質上全部FR為人類免疫球蛋白序列之彼等,除了如上文所述之FR取代。人類化抗體視情況亦將包含免疫球蛋白恆定區(典型地,人類免疫球蛋白之恆定區)的至少一部分。關於進一步詳情,參見Jones等人,Nature 321:522-525(1986);Riechmann等人,Nature 332:323-329(1988);及Presta,Curr.Op.Struct.Biol.2:593-596(1992)。
為了達成本文中之目的,「完整抗體」為包含重鏈及輕鏈可變 域以及Fc區之抗體。恆定域可為原生序列恆定域(例如,人類原生序列恆定域)或其胺基酸序列變異體。較佳地,完整抗體具有一或多種效應子功能。
「原生抗體」通常為具有約150,000道爾頓之雜四聚體糖蛋白,由兩條一致之輕(L)鏈及兩條一致之重(H)鏈構成。各輕鏈藉由一個共價二硫鍵連接至重鏈,而二硫鍵之數目在不同免疫球蛋白同型之重鏈之中變化。各重鏈及輕鏈亦具有規律間隔之鏈內二硫橋。各重鏈在一個末端處具有可變域(VH),隨後為多個恆定域。各輕鏈在一個末端處具有可變域(VL)且在其另一末端處具有恆定域;該輕鏈之恆定域與該重鏈之第一恆定域對準,且該輕鏈可變域與該重鏈之可變域對準。咸信特定胺基酸殘基在輕鏈與重鏈可變域之間形成界面。
「裸抗體」為未結合於異源分子(諸如細胞毒性部分或放射性標記)之抗體(如本文所定義)。
如本文所用,術語「免疫黏附素」指明組合異源蛋白(「黏附素」)之結合特異性與免疫球蛋白恆定域之效應子功能的分子。結構上,免疫黏附素包含具有所需結合特異性之胺基酸序列與免疫球蛋白恆定域序列(例如,IgG之CH2及/或CH3序列)的融合物,該胺基酸序列並非抗體之抗原識別及結合位點(亦即,與抗體之恆定區相比為「異源的」)。例示性黏附素序列包括包含受體或配位體中結合於所關注之蛋白的部分之相鄰胺基酸序列。黏附素序列亦可為結合所關注之蛋白,但並非受體或配位體序列之序列(例如,肽體中之黏附素序列)。該等多肽序列可藉由多種方法選擇或鑒別,包括噬菌體呈現技術及高通量分選方法。免疫黏附素中之免疫球蛋白恆定域序列可自任何免疫球蛋白,諸如IgG-1、IgG-2、IgG-3或IgG-4亞型、IgA(包 括IgA-1及IgA-2)、IgE、IgD或IgM獲得。
在某些實施例中,含Fc區雜二聚體多肽為抗體、雙特異性抗體或Fc-融合蛋白
在某些實施例中,根據本文所提供之方法產生的Fc-融合蛋白為經靶向免疫細胞因子。在某些實施例中,經靶向免疫細胞因子為CEA-IL2v免疫細胞因子。在某些實施例中,CEA-IL2v免疫細胞因子為RG7813。在某些實施例中,經靶向免疫細胞因子為FAP-IL2v免疫細胞因子。在某些實施例中,FAP-IL2v免疫細胞因子為RG7461。
在某些實施例中,根據本文所提供之方法產生的多特異性抗體(諸如雙特異性抗體)結合CEA及至少一種額外靶標分子。在某些實施例中,根據本文所提供之方法產生的多特異性抗體(諸如雙特異性抗體)結合腫瘤靶向細胞因子及至少一種額外靶標分子。在某些實施例中,根據本文所提供之方法產生的多特異性抗體融合至IL2v(亦即,介白素2變異體)及至少一種額外靶標分子。在某些實施例中,根據本文所提供之方法產生的多特異性抗體為T細胞雙特異性抗體(亦即,雙特異性T細胞銜接子或BiTE)。
在一些實施例中,抗體「效應子功能」係指可歸因於抗體之Fc區(原生序列Fc區或胺基酸序列變異體Fc區)的彼等生物活性,且隨抗體同型變化。抗體效應子功能之實例包括:C1q結合及補體依賴性細胞毒性;Fc受體結合;抗體依賴性細胞介導之細胞毒性(ADCC);噬菌作用;細胞表面受體之下調。
「補體依賴性細胞毒性」或「CDC」係指分子在補體存在下溶解靶標之能力。補體活化路徑藉由補體系統之第一組分(C1q)結合於與同源 抗原複合之分子(例如多肽(例如抗體))而起始。為了評估補體活化,可執行CDC分析,例如,如Gazzano-Santoro等人,J.Immunol.Methods 202:163(1996)中所述。
「抗體依賴性細胞介導之細胞毒性」及「ADCC」係指細胞介導之反應,其中表現Fc受體(FcR)之非特異性細胞毒性細胞(例如,自然殺手(NK)細胞、嗜中性粒細胞及巨噬細胞)識別靶標細胞上之結合抗體且隨後引起靶標細胞之溶解。用於介導ADCC之原代細胞NK細胞僅表現FcγRIII,而單核細胞表現FcγRI、FcγRII及FcγRIII。造血細胞上之FcR表現概述於Ravetch及Kinet,Annu.Rev.Immunol.9:457-92(1991)第464頁上的表3中。為了評估所關注之細胞的ADCC活性,可執行活體外ADCC分析,諸如美國專利第5,500,362號或第5,821,337號中所述者。適用於該等分析之效應子細胞包括外周血單核細胞(PBMC)及自然殺手(NK)細胞。或者或另外,所關注之分子的ADCC活性可活體內,例如在動物模型(諸如Clynes等人,Proc.Natl.Acad.Sci.(USA)95:652-656(1998)中所揭示者)中評估。
「人類效應子細胞」為表現一或多種FcR且執行效應子功能之白血球。在一些實施例中,該等細胞至少表現FcγRIII且進行ADCC效應子功能。介導ADCC之人類白血球之實例包括外周血單核細胞(PBMC)、自然殺手(NK)細胞、單核細胞、細胞毒性T細胞及嗜中性粒細胞;其中PBMC及NK細胞為較佳。
術語「Fc受體」或「FcR」用於描述結合於抗體Fc區之受體。在一些實施例中,FcR為原生序列人類FcR。此外,較佳FcR為結合IgG抗體者(γ受體)且包括FcγRI、FcγRII及FcγRIII亞類之受體,包括此等受體 之等位基因變異體及替代地剪接形式。FcγRII受體包括FcγRIIA(「活化受體」)及FcγRIIB(「抑制受體」),其具有相似胺基酸序列,該等序列之不同之處主要在於其細胞質域。活化受體FcγRIIA在其細胞質域中含有基於免疫受體酪胺酸之活化基序(ITAM)。抑制受體FcγRIIB在其細胞質域中含有基於免疫受體酪胺酸之抑制基序(ITIM)。(參見Daëron,Annu.Rev.Immunol.15:203-234(1997))。FcR回顧於Ravetch及Kinet,Annu.Rev.Immunol 9:457-92(1991);Capel等人,Immunomethods,4:25-34(1994);及de Haas等人,J.Lab.Clin.Med.,126:330-41(1995)中。其他FcR(包括未來欲鑒別之彼等)在本文中由術語「FcR」涵蓋。該術語亦包括新生兒受體FcRn,其負責將母體IgG轉移至胎兒(Guyer等人,J.Immunol.117:587(1976)及Kim等人,J.Immunol.24:249(1994))。
術語「宿主細胞」、「宿主細胞株」及「宿主細胞培養物」可互換使用且指其中已經引入外源核酸之細胞,包括該等細胞的後代。宿主細胞包括「轉型體」及「轉型細胞」,其包括原代轉型細胞及源於其之後代,而與繼代數目無關。後代可能在核酸含量方面未與親本細胞完全一致,但可含有突變。本文中包括如關於初始轉型細胞中所篩選或選擇具有相同功能或生物活性之突變型後代。
「雜質」係指不同於所需多肽產物之材料。雜質可指產物特異性多肽,諸如一臂抗體及錯誤組裝抗體、抗體變異體(包括鹼性變異體及酸性變異體)及聚集體。其他雜質包括過程特異性雜質,包括而不限於:宿主細胞材料,諸如宿主細胞蛋白(HCP);瀝出之蛋白A;核酸;另一多肽;內毒素;病毒性污染物;細胞培養基組分等。在一些實例中,雜質可為來自 例如但不限於細菌細胞(諸如大腸桿菌細胞(ECP))、昆蟲細胞、原核細胞、真核細胞、酵母細胞、哺乳動物細胞、禽細胞、真菌細胞之HCP。在一些實例中,雜質可為來自哺乳動物細胞(諸如CHO細胞)之HCP,亦即CHO細胞蛋白(CHOP)。雜質可指用於促進多特異性抗體之表現、折疊或組裝的附屬蛋白;例如原核伴侶蛋白,諸如FkpA、DsbA及DsbC。
如本文所用,「複合物」或「複合」係指經由並非肽鍵之鍵及/或力(例如,範德瓦耳斯、疏水性、親水性力)彼此相互作用之兩種或兩種以上分子的締合。在一實施例中,複合物為雜多聚體。應理解如本文所用,術語「蛋白複合物」或「多肽複合物」包括具有以蛋白複合物形式結合至蛋白之非蛋白實體(例如,包括但不限於化學分子,諸如毒素或偵測劑)的複合物。
「經分離」核酸係指已經與其天然環境之組分分離的核酸分子。經分離核酸包括含於細胞中之核酸分子,該等細胞通常含有該核酸分子,但該核酸分子存在於染色體外或不同於其天然染色體位置之染色體位置處。
關於參考多肽序列之「百分比(%)胺基酸序列一致性」係定義為在比對候選序列及引入之間隙(必要時)以實現最大百分比序列一致性之後,且不考慮作為序列一致性的一部分之任何保守取代,候選序列中與該參考多肽序列中之胺基酸殘基一致的胺基酸殘基之百分率。用於達成確定百分比胺基酸序列一致性之目的的比對可以在本領域之技能內的多種方式實現,例如使用公開可得之計算機軟體,諸如BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟體。熟習此項技術者可確定用於比對序列之適當參 數,包括在所比較之序列的全長內實現最大比對所需之任何算法。在某些實施例中,使用序列比較電腦程序ALIGN-2產生%胺基酸序列一致性值。該ALIGN-2序列比較電腦程序由Genentech,Inc.創造,且源代碼已由美國版權局(U.S.Copyright Office),Washington D.C.,20559之用戶文檔歸檔,其中其登記在美國版權登記號TXU510087下。該ALIGN-2程序由Genentech,Inc.,South San Francisco,California公開可得,或可由源代碼編譯。該ALIGN-2程序應編譯用於UNIX操作系統,包括數位UNIX V4.0D。所有序列比較參數均由ALIGN-2程序設定且不變化。
在其中ALIGN-2用於胺基酸序列比較之情形中,既定胺基酸序列A相對、與、或針對既定胺基酸序列B之%胺基酸序列一致性(其或者可表述為具有或包含相對、與、或針對既定胺基酸序列B之某一%胺基酸序列一致性的既定胺基酸序列A)計算如下:100×分數X/Y
其中X為在A及B之序列比對程序ALIGN-2的比對中由彼程序評分為一致匹配之胺基酸殘基的數目,且其中Y為B中胺基酸殘基之總數。應瞭解在胺基酸序列A之長度不等於胺基酸序列B之長度的情況下,A相對B之%胺基酸序列一致性將不等於B相對A之%胺基酸序列一致性。除非另外特定陳述,否則本文所用之所有%胺基酸序列一致性值均如前一段落中所述使用ALIGN-2電腦程序獲得。
術語「可變區」或「可變域」係指抗體重鏈或輕鏈中牽涉於抗體與抗原之結合中的域。原生抗體之重鏈及輕鏈(分別為VH及VL)的可變域一般具有相似結構,其中各域包含四個保守構架區(FR)及三個高變區 (HVR)。(參見例如Kindt等人,Kuby Immunology,第6版,W.H.Freeman and Co.,第91頁(2007)。)單一VH或VL域可足以賦予抗原結合特異性。此外,結合特定抗原之抗體可使用來自結合該抗原的抗體之VH或VL域進行分離以分別篩選互補VL或VH域之文庫。參見例如Portolano等人,J.Immunol.150:880-887(1993);Clarkson等人,Nature 352:624-628(1991)。
如本文所用,術語「載體」係指能夠傳播與其連接之另一核酸的核酸分子。該術語包括呈自主複製核酸結構之載體以及併入其中已引入其的宿主細胞之基因組中之載體。某些載體能夠指導其可操作性連接之核酸的表現。該載體在本文中稱作「表現載體」。
如本文中關於層析所用,術語「依序」係指呈特定次序之層析步驟;例如第一層析步驟、隨後第二層析步驟、隨後第三層析步驟等。額外步驟可包括於依序層析步驟之間。
如本文中關於層析所用,術語「連續」係指具有第一層析材料及第二層析材料,該等材料直接連接或呈允許該兩種層析材料之間的連續流動之一些其他機制。
「載樣密度」係指與一定體積之層析材料(例如,公升)接觸之組合物的量(例如,公克)。在一些實例中,載樣密度以g/L表述。
「樣品」係指較大量之材料的一小部分。一般而言,對樣品執行根據本文所述之方法的測試。樣品典型地獲自例如由經培養之表現重組多肽之細胞株(本文中亦稱作「產物細胞株」)或經培養之宿主細胞獲得的重組多肽製劑。如本文所用,「宿主細胞」不含用於表現所關注之重組多肽或產物之基因。樣品可獲自例如但不限於所收集之細胞培養液、在純化過 程中之某一步驟處的過程中池、或最終經純化產物。樣品亦可包括稀釋劑、緩衝液、清潔劑及污染物質、碎片及其類似物,其被發現與所需分子(諸如多特異性抗體,例如雙特異性抗體)混合。
對「約」本文中之值或參數之提及包括(且描述)自身有關彼值或參數之變化。例如,提及「約X」之描述包括「X」之描述。
應理解,本文所述之本發明的態樣及實施例包括「包含」態樣及實施例、「由其組成」及「基本上由其組成」。
除非本文另外清楚指示,否則如本文中及附圖中所用,單數形式「一(a)」、「或(or)」及「該(the)」包括複數個提及物。應理解,本文所述之本發明的態樣及變化形式包括「由態樣及變化形式組成」及/或「基本上由態樣及變化形式組成」。
本文所引用之所有參考文獻(包括專利申請案及公開案)均以引用之方式整體併入本文。
多特異性抗體之純化方法
本文中提供用於純化多特異性抗體之方法。在某些實施例中,該多特異性抗體為雙特異性抗體。在某些實施例中,該多特異性抗體為包含結合第一靶標之第一F(ab)及結合第二靶標之第二F(ab)的二價F(ab’)2。在某些實施例中,該多特異性抗體為雙重特異性抗體,亦即具有兩個在胺基酸序列方面一致之抗原結合臂的抗體,且其中各Fab臂能夠識別兩種抗原(諸如雙重作用Fab抗體)。
在一些態樣中,多特異性抗體之純化包含捕捉層析、第一混合模式層析及第二混合模式層析之依序步驟。在一些實施例中,多特異性抗 體在捕捉層析之前經組裝。在一些實施例中,多特異性抗體在捕捉層析之後經組裝。
在一些實施例中,多特異性抗體(諸如雙特異性抗體或二價F(ab’)2)包含兩個或兩個以上抗體臂,其中不同抗體臂結合不同抗原決定基。在某些實施例中,不同抗原決定基在同一抗原上。在某些實施例中,各抗原決定基在不同抗原上。在某些實施例中,抗體臂包含VH/VL單元。在某些實施例中,抗體臂包含半聚體,亦稱作半抗體。為了促進組裝,在某些實施例中,一個抗體臂之重鏈經修飾以包含「杵」且另一抗體臂之重鏈包含「臼」,以致第一重鏈之杵配合至第二重鏈之臼中。
在某些實施例中,多特異性抗體之各臂在獨立細胞培養物中產生。在抗體臂於宿主細胞中表現之後,收集全細胞肉湯且均質化,且萃取該抗體臂。在某些實施例中,聚乙烯亞胺(PEI)在層析之前添加至細胞溶解產物中。在一些實施例中,細胞溶解產物在層析之前經離心。該多特異性抗體之各臂接著藉由捕捉層析純化(以致各臂在獨立層析管柱或膜上經純化)。在某些實施例中,捕捉層析為親和力層析。在某些實施例中,該親和力層析為蛋白A層析。在某些實施例中,該親和力層析為蛋白G層析。在某些實施例中,該親和力層析為蛋白A/G層析。在某些實施例中,該親和力層析為蛋白L層析。在捕捉層析之後,經純化抗體臂可例如藉由SDS-PAGE、SEC層析、質譜分析等進行分析。接著組合該多特異性抗體之經純化臂且使其組裝,如本文中別處更詳細地論述。
在其他實施例中,多特異性抗體之各臂在獨立細胞培養物中產生。在抗體臂於宿主細胞中表現之後,收集全細胞肉湯且均質化。接著混 合來自各培養物之細胞均質物且萃取經組合之抗體臂。在一些實施例中,聚乙烯亞胺(PEI)在層析之前添加至細胞溶解產物中。在一些實施例中,細胞溶解產物在層析之前經離心。該多特異性抗體之經組合臂接著藉由親和力層析純化。在一些實施例中,該親和力層析為蛋白A層析。此時,經純化抗體臂可例如藉由SDS-PAGESEC層析、質譜分析等進行分析。接著組合該多特異性抗體之經純化臂且藉由本文所述之方法使其組裝。
在其他實施例中,多特異性抗體之各臂在相同細胞培養物中產生。在抗體臂於宿主細胞中表現之後,收集全細胞肉湯且均質化且萃取抗體臂。在一些實施例中,聚乙烯亞胺(PEI)在層析之前添加至細胞溶解產物中。在一些實施例中,細胞溶解產物在層析之前經離心。該多特異性抗體之臂接著藉由親和力層析純化。在一些實施例中,該親和力層析為蛋白A層析。此時,經純化抗體臂可例如藉由SDS-PAGE、SEC層析、質譜分析等進行分析。接著藉由本文所述之方法使該多特異性抗體之經純化臂組裝。
在一些實施例中,細胞溶解產物中PEI之最終濃度為至少約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、2.0%、3.0%、4.0%或5.0中之任一者。在一些實施例中,細胞溶解產物中PEI之最終濃度在約0.1%與5%、0.1%與1%、0.1%與0.5%、0.5%與5%、0.5%與1%或1%與5%中之任一者之間。在一些實施例中,包含PEI之細胞溶解產物保持超過約1h、2h、3h、4h、5h、6h、7h、8h、9h、10h、12h、14h、16h、18h、20h或24h中之任一者。在一些實施例中,包含PEI之細胞溶解產物保持在約1h與24h、1h與6h、6h與12h、12h與18h、 18h與24h中之任一者之間。在一些實施例中,包含PEI之細胞溶解產物保持在約10h與14h中之任一者之間。在一些實施例中,包含PEI之細胞溶解產物保持在約4℃與37℃之間。在一些實施例中,包含PEI之細胞溶解產物保持在約環境溫度下。
在一些實施例中,細胞溶解產物在層析之前藉由離心澄清。在一些實施例中,細胞溶解產物在層析之前經過濾。在一些實施例中,細胞溶解產物在層析之前經由0.22μm過濾器過濾。
親和力層析之實例包括但不限於例如蛋白A層析、蛋白G層析、蛋白A/G層析或蛋白L層析。親和力層析材料之實例包括但不限於ProSep®-vA、ProSep® Ultra Plus、蛋白A Sepharose® Fast Flow、Toyopearl® AF-rProtein A、MabSelectTM、MabSelect SuReTM、MabSelect SuReTM LX、KappaSelect、CaptureSelectTM及CaptureSelectTM FcXL。在某些實施例中,該親和力層析材料在管柱中。在某些實施例中,該親和力層析以「結合及溶離模式」(替代地稱作「結合及溶離過程」)執行。「結合及溶離模式」係指產物分離技術,其中樣品中之產物(諸如該多特異性抗體)結合親和力層析材料且隨後自該親和力層析材料溶離。在一些實施例中,該溶離為分步溶離,其中移動相之組成在溶離過程期間在一個或數個時機逐步改變。在某些實施例中,該溶離為梯度溶離,其中移動相之組成在溶離過程期間連續地改變。在某些實施例中,該親和力層析材料為膜。在某些實施例中,該親和力層析為蛋白A層析。在某些實施例中,該蛋白A層析為MAbSelect SuRe層析。在某些實施例中,該親和力層析為CaptureSelect層析。在某些實施例中,該親和力層析為CaptureSelect FcXL層析。
在某些實施例中,來自親和力層析步驟之溶離物隨後應用於第一混合模式層析。在某些實施例中,第一混合模式材料包含能夠具有一或多種以下官能性之官能基:陰離子交換、陽離子交換、氫鍵結、π-π鍵相互作用、親水性相互作用、嗜硫性相互作用及疏水性相互作用。在某些實施例中,第一混合模式材料包含能夠進行陰離子交換及疏水性相互作用之官能基。在某些實施例中,第一混合模式材料包含能夠進行陽離子交換及疏水性相互作用之官能基。在某些實施例中,第一混合模式材料含有N-苯甲基-N-甲基乙醇胺、4-巰基-乙基-吡啶、2-苯甲醯胺基-4-巰基丁酸、己胺、或苯基丙胺、或交聯聚烯丙基胺。該等混合模式材料之實例包括CaptoTM Adhere樹脂、CaptoTM MMC樹脂、MEP HyperCelTM樹脂、HEA HyperCelTM樹脂、PPA HyperCelTM樹脂、Eshmuno® HCX、CaptoTMAdhere ImpRes、CaptoTMMMC Impres、NuviaTMcPrimeTM膜。在一些實施例中,第一混合模式材料為CaptoTM Adhere樹脂。在某些實施例中,第一混合模式材料為CaptoTM Adhere樹脂。在某些實施例中,第一混合模式材料為CaptoTM MMC。在某些實施例中,第一混合模式層析不包括陶瓷羥磷灰石層析。在某些實施例中,第一混合模式層析以「結合及溶離」模式執行。在一些實施例中,該溶離為分步溶離。在某些實施例中,該溶離為梯度溶離。在某些實施例中,第一混合模式層析以「流通」模式執行。在以上某些實施例中,第一混合模式材料在管柱中。在以上某些實施例中,第一混合模式材料在膜中。
在某些實施例中,捕捉層析及第一混合模式層析為連續的,例如其中捕捉層析材料及第一混合模式材料直接地連接或藉由允許捕捉層析材料與第一混合模式材料之間的連續流動之一些其他機制連接。在某些實 施例中,捕捉層析及第一混合模式層析為相鄰的,其中第一混合模式層析直接地在捕捉層析之後執行。
在某些實施例中,來自捕捉層析之溶離物在應用於第一混合模式樹脂之前經受一或多個額外層析步驟。例如,來自捕捉層析之溶離物可在經受第一混合模式層析之前經受呈任何次序及/或呈任何組合之任何一或多個以下層析步驟:疏水性相互作用(HIC)層析、陰離子交換層析、陽離子交換層析、尺寸排阻層析、親和力層析、陶瓷羥磷灰石(CHT)層析、親水性相互作用液相層析(HILIC)等。
疏水性相互作用層析為根據疏水性分離生物分子之液相層析技術。HIC層析材料之實例包括但不限於例如Toyopearl®己基-650、Toyopearl®丁基-650、Toyopearl®苯基-650、Toyopearl®乙醚-650、HiTrap®瓊脂糖、辛基瓊脂糖(Octyl Sepharose)®、苯基瓊脂糖(Phenyl Sepharose)®或丁基瓊脂糖(Butyl Sepharose)®。在一些實施例中,HIC層析材料包含苯基瓊脂糖。在某些實施例中,HIC層析以「結合及溶離」模式執行。在一些實施例中,HIC層析以「流通」模式執行。在以上一些實施例中,HIC層析材料在管柱中。在以上一些實施例中,HIC層析材料在膜中。
陰離子交換層析材料為帶正電且具有用於與傳遞經過或通過固相之水溶液(諸如包含多特異性抗體及雜質之組合物)中的陰離子交換之游離陰離子的固相。在任何本文所述之方法的一些實施例中,陰離子交換材料可為膜、單片或樹脂。在一實施例中,陰離子交換材料可為樹脂。在一些實施例中,陰離子交換材料可包含一級胺、二級胺、三級胺或四級銨離子官能基、聚胺官能基、或二乙基胺基乙基官能基。陰離子交換材料之實 例為此項技術中已知的且包括但不限於Poros® HQ 50、Poros® PI 50、Poros® D、Mustang® Q、Q Sepharose® Fast Flow(QSFF)、AccellTM Plus Quaternary Methyl Amine(QMA)樹脂、Sartobind STIC®及DEAE-Sepharose®。在一些實施例中,陰離子交換層析以「結合及溶離」模式執行。在一些實施例中,陰離子交換層析以「流通」模式執行。在以上一些實施例中,陰離子交換層析材料在管柱中。在以上一些實施例中,陰離子交換層析材料在膜中。
陽離子交換層析材料為帶負電且具有用於與傳遞經過或通過固相之水溶液(諸如包含多特異性抗體及雜質之組合物)中的陽離子交換之游離陰離子的固相。在任何本文所述之方法的一些實施例中,陽離子交換材料可為膜、單片或樹脂。在一些實施例中,陽離子交換材料可為樹脂。陽離子交換材料可包含羧酸官能基或磺酸官能基,諸如但不限於磺酸酯、羧酸、羧基甲基磺酸、磺基異丁基、磺基乙基、羧基、磺基丙基、磺醯基、磺基氧基乙基或原磷酸酯。在以上一些實施例中,陽離子交換層析材料為陽離子交換層析管柱。在以上一些實施例中,陽離子交換層析材料為陽離子交換層析膜。陽離子交換材料之實例為此項技術中已知的,包括但不限於Mustang® S、Sartobind® S、SO3 Monolith(諸如CIM®、CIMmultus®及CIMac® SO3)、S Ceramic HyperD®、Poros® XS、Poros® HS 50、Poros® HS 20、磺基丙基-Sepharose® Fast Flow(SPSFF)、SP-Sepharose® XL(SPXL)、CM Sepharose® Fast Flow、CaptoTM S、Fractogel® EMD Se Hicap、Fractogel® EMD SO3 -或Fractogel® EMD COO-。在一些實施例中,陽離子交換層析以「結合及溶離」模式執行。在一些實施例中,陽離子交換層析以「流通」模式執行。在以上一些實施例中,陽離子交換層析材料在管柱中。在以上一些實 施例中,陽離子交換層析材料在膜中。
羥磷灰石(Ca10(PO4)6(OH)2)層析材料之官能基包含晶體鈣離子之帶正電對(C-位點)及與晶體磷酸酯之三聯體締合的六個帶負電氧原子之叢集(P-位點)。C-位點、P-位點及羥基以固定模式分佈於晶體表面上。蛋白典型地在低濃度(例如10-25mM)之磷酸鹽緩衝液中經吸附至羥磷灰石,不過若負載於水、生理食鹽水或非磷酸鹽緩衝液中,則可吸附某些酸性蛋白。蛋白通常藉由增加之磷酸鹽梯度溶離,不過亦可使用Ca2+、Mg2+或Cl-離子之梯度,諸如用於鹼性蛋白之選擇性溶離。在任何本文所述之方法的一些實施例中,羥磷灰石層析材料可為樹脂。在一些實施例中,羥磷灰石層析材料可為樹脂。在以上一些實施例中,羥磷灰石層析材料在管柱中。羥磷灰石層析材料之實例為此項技術中已知的,包括但不限於CHTTM陶瓷羥磷灰石、CHT陶瓷羥磷灰石I型支撐物、CHT陶瓷羥磷灰石II型支撐物。在一些實施例中,羥磷灰石層析以「結合及溶離」模式執行。在一些實施例中,羥磷灰石層析以「流通」模式執行。
在一實施例中,如本文所報告之方法另外可包含一種自包含包含Fc域之雙特異性抗體的溶液分離該雙特異性抗體之方法,該方法包含(a)使該溶液與羥磷灰石層析介質接觸,(b)吸附該等雙特異性抗體至該羥磷灰石層析介質,及(c)在氯離子存在下自該羥磷灰石層析介質溶離該雙特異性抗體,其中該溶液進一步包含該雙特異性抗體之一或多個片段,該一或多個片段包含Fc域;及/或其中該溶液進一步包含一或多種具有大於該雙特異性抗體之分子量的分子量之多肽且包含該雙特異性抗體之兩條重鏈中的至少一者,該一或多種多肽進一步包含如WO2015024896中所提及之Fc域。
在某些實施例中,來自捕捉層析之溶離物經受陰離子交換層析。在某些實施例中,陰離子交換層析為Q Sepharose® Fast Flow(QSFF)。在某些實施例中,陰離子交換層析以「結合及溶離」模式執行。
在某些實施例中,在第一混合模式層析之後收集的溶離物隨後應用於第二混合模式層析。在某些實施例中,第二混合模式材料包含能夠具有一或多種以下官能性之官能基:陰離子交換、陽離子交換、氫鍵結、π-π鍵相互作用、親水性相互作用、嗜硫性相互作用及疏水性相互作用。在某些實施例中,第二混合模式材料包含能夠進行陰離子交換及疏水性相互作用之官能基。在某些實施例中,第二混合模式材料包含能夠進行陽離子交換及疏水性相互作用之官能基。在某些實施例中,第二混合模式材料含有N-苯甲基-N-甲基乙醇胺、4-巰基-乙基-吡啶、2-苯甲醯胺基-4-巰基丁酸、己胺、或苯基丙胺、或交聯聚烯丙基胺。該等混合模式材料之實例包括CaptoTM Adhere樹脂、CaptoTM MMC樹脂、MEP HyperCelTM樹脂、HEA HyperCelTM樹脂、Eshmuno® HCX、CaptoTMAdhere ImpRes、CaptoTMMMC Impres、NuviaTMcPrimeTM膜。在一些實施例中,第二混合模式材料為CaptoTM Adhere樹脂。在某些實施例中,第二混合模式材料為CaptoTMAdhere樹脂。在某些實施例中,第二混合模式材料為CaptoTM MMC。在某些實施例中,第二混合模式層析不包括陶瓷羥磷灰石層析。在某些實施例中,第二混合模式層析以「結合及溶離」模式執行。在一些實施例中,該溶離為分步溶離。在某些實施例中,該溶離為梯度溶離。在某些實施例中,第一混合模式層析以「流通」模式執行。在以上某些實施例中,第二混合模式材料在管柱中。在以上某些實施例中,第二混合模式材料在膜中。
在某些實施例中,第一混合模式層析及第二混合模式層析為連續的,例如其中捕捉層析材料及第一混合模式材料直接地連接或藉由允許捕捉層析材料與第一混合模式材料之間的連續流動之一些其他機制連接。在某些實施例中,第一混合模式層析及第二混合模式層析為連續的,其中第二混合模式層析直接地在第一混合模式層析之後執行。
在某些實施例中,來自第一混合模式層析之溶離物在應用於第二混合模式樹脂之前經受一或多個額外層析操作。例如,來自第一混合模式層析之溶離物可在經受第二混合模式層析之前經受呈任何次序及/或呈任何組合之任何一或多個以下層析步驟:疏水性相互作用(HIC)層析、陰離子交換層析、陽離子交換層析、尺寸排阻層析、親和力層析、陶瓷羥磷灰石(CHT)層析、親水性相互作用液相層析(HILIC)等。
在任何本文所述之方法的某些實施例中,來自第二混合模式層析之溶離物經受一或多個額外層析步驟。例如,來自第二混合模式層析之溶離物可經受呈任何次序及/或呈任何組合之任何一或多個以下層析步驟:疏水性相互作用(HIC)層析、陰離子交換層析、陽離子交換層析、尺寸排阻層析、親和力層析、陶瓷羥磷灰石(CHT)層析、親水性相互作用液相層析(HILIC)、混合模式層析等。
在任何本文所述之方法的某些實施例中,該等方法包含使用緩衝液。在多特異性抗體之純化期間可採用多種緩衝液,取決於例如緩衝液之所需pH、緩衝液之所需電導率、經純化之多特異性抗體的特徵、及純化方法。緩衝液可為載樣緩衝液、平衡緩衝液或洗滌緩衝液。在某些實施例中,載樣緩衝液、平衡緩衝液及/或洗滌緩衝液中之一或多者為相同的。在 某些實施例中,載樣緩衝液、平衡緩衝液及/或洗滌緩衝液為不同的。在任何本文所述之方法的某些實施例中,該緩衝液包含鹽。在某些實施例中,該緩衝液包含氯化鈉、乙酸鈉、Tris HCl、乙酸Tris、磷酸鈉、磷酸鉀、MES、CHES、MOPS、BisTris、精胺酸、精胺酸HCl或其混合物。在某些實施例中,該緩衝液為氯化鈉緩衝液。在一些實施例中,該緩衝液為乙酸鈉緩衝液。在某些實施例中,該緩衝液為Tris、精胺酸、磷酸鹽、MES、CHES或MOPS緩衝液。
「負載」係指經負載至層析材料上之組合物。載樣緩衝液為用於將該組合物(例如,包含多特異性抗體及雜質之組合物或包含抗體臂及雜質之組合物)負載至層析材料(諸如本文所述之層析材料中的任一者)上之緩衝液。該層析材料可在負載欲純化之組合物之前用平衡緩衝液平衡。洗滌緩衝液在將該組合物負載至層析材料上之後使用。溶離緩衝液用於自固相溶離所關注之多肽。
將包含多特異性抗體之組合物(諸如包含多特異性抗體及雜質之組合物)負載至任何本文所述之層析材料上可針對多特異性抗體與雜質之分離經最佳化。在一些實施例中,當層析以結合及溶離模式執行時(例如,親和力層析、混合模式層析及離子交換層析,如本文所指示),將包含多特異性抗體之組合物(諸如包含多特異性抗體及雜質之組合物)負載至任何本文所述之層析材料上針對多特異性抗體結合於層析材料經最佳化。
電導率係指水溶液在兩個電極之間引導電流之能力。在溶液中,電流藉由離子轉運而流動。因此,隨著存在於水溶液中之離子的量增加,該溶液將具有較高電導率。電導率之量度的基礎單元為西門子(mS/cm)或歐 姆(姆歐),且可使用電導率計,諸如多種型號之Orion電導率計來量測。由於電解質電導率為溶液中之離子攜帶電流的能力,溶液之電導率可藉由改變其中離子濃度而改變。例如,溶液中緩衝劑之濃度及/或鹽(例如,氯化鈉、乙酸鈉或氯化鉀)之濃度可改變以便實現所需電導率。較佳地,多種緩衝液之鹽濃度經修改以實現所需電導率。
例如,在某些實施例中,包含多特異性抗體之組合物(諸如包含多特異性抗體及雜質之組合物)在處於多種不同pH值下之載樣緩衝液中負載至層析材料(例如,包含本文所述之層析材料中任一者的層析管柱)上,同時該載樣緩衝液之電導率恆定。或者,包含多特異性抗體之溶液可在處於多種不同電導率下之載樣緩衝液中負載至層析材料上,同時該載樣緩衝液之pH恆定。在將包含多特異性抗體之組合物(諸如包含多特異性抗體及雜質之組合物)負載至層析材料上且該多特異性抗體自該層析材料溶離至池部分中完成時,留在該池部分中之雜質的量提供關於該多特異性抗體與該雜質針對既定pH或電導率分離之資訊。同樣,關於其中該多特異性抗體流動通過該層析材料之層析,載樣緩衝液針對pH及電導率經最佳化以致該多特異性抗體流動通過層析,而雜質由層析材料保留或以不同於該多特異性抗體之速率流動通過該層析材料。
在一些實施例中,包含多特異性抗體或抗體臂之溶液的載樣密度大於約10g/L、20g/L、30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L或150g/L之親和力層析材料(例如,蛋白A層析材料)中任一者。在一些實施例中,包含多特異性抗體或抗體臂之溶液的載樣密度在約10g/L與20g/L、20g/L與30g/L、 30g/L與40g/L、40g/L與50g/L、50g/L與60g/L、60g/L與70g/L、70g/L與80g/L、80g/L與90g/L、90g/L與100g/L之捕捉層析材料(諸如親和力層析材料,例如蛋白A層析材料、蛋白G層析材料、蛋白A/G層析材料或蛋白L層析材料)中之任一者之間。
在任何本文所述之方法之一些實施例中,在捕捉層析之後獲得的溶離物負載至陰離子交換層析材料(例如Q Sepharose® Fast Flow(QSFF))上。在任何本文所述之方法之一些實施例中,在捕捉層析之後獲得的溶離物以大於約30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L或150g/L之陰離子層析材料(例如Q Sepharose® Fast Flow(QSFF))中任一者之多特異性抗體的載樣密度負載至陰離子交換層析材料上。在一些實施例中,在捕捉層析之後獲得的溶離物以在約10g/L與20g/L、20g/L與30g/L、30g/L與40g/L、40g/L與50g/L、50g/L與60g/L、60g/L與70g/L、70g/L與80g/L、80g/L與90g/L、90g/L與100g/L之陰離子交換層析材料(例如Q Sepharose® Fast Flow(QSFF))中之任一者之間的多特異性抗體之載樣密度負載至陰離子交換層析材料上。
在任何本文所述之方法之一些實施例中,在捕捉層析之後(視情況在捕捉層析及一或多個包含任何本文所述之層析操作的額外層析步驟之後)獲得的溶離物以大於約30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L或150g/L之第一混合模式層析材料(例如CaptoTM Adhere層析材料或CaptoTM MMC層析材料)中任一者之多特異性抗體的載樣密度負載至第一混合模式層析材料上。在一些實施例中,在捕捉層析之後獲得的溶離物以在約10g/L與20g/L、20g/L 與30g/L、30g/L與40g/L、40g/L與50g/L、50g/L與60g/L、60g/L與70g/L、70g/L與80g/L、80g/L與90g/L、90g/L與100g/L之第一混合模式層析材料(例如CaptoTM Adhere層析材料或CaptoTM MMC層析材料)中之任一者之間的多特異性抗體之載樣密度負載至第一混合模式層析材料上。
在任何本文所述之方法之一些實施例中,在第一混合模式層析之後獲得的溶離物以大於約30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L或150g/L之第二混合模式層析材料(例如CaptoTM Adhere層析材料或CaptoTM MMC層析材料)中任一者之多特異性抗體的載樣密度負載至第二混合模式層析材料上。在一些實施例中,在第一混合模式層析之後獲得的溶離物以在約10g/L與20g/L、20g/L與30g/L、30g/L與40g/L、40g/L與50g/L、50g/L與60g/L、60g/L與70g/L、70g/L與80g/L、80g/L與90g/L、90g/L與100g/L之混合模式層析材料(例如CaptoTM Adhere層析材料或CaptoTM MMC層析材料)中之任一者之間的多特異性抗體之載樣密度負載至第二混合模式層析材料上。
在任何本文所述之方法之一些實施例中,在第二混合模式層析之後獲得的溶離物以大於約30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L、110g/L、120g/L、130g/L、140g/L或150g/L之後續層析材料中任一者之多特異性抗體的載樣密度負載至後續層析材料(諸如疏水性相互作用(HIC)層析材料、陰離子交換層析材料、陽離子交換層析材料、尺寸排阻層析材料、親和力層析材料或額外混合模式層析材料)上。在一些實施例中,在第二混合模式層析之後獲得的溶離物以在約10g/L與20g/L、 20g/L與30g/L、30g/L與40g/L、40g/L與50g/L、50g/L與60g/L、60g/L與70g/L、70g/L與80g/L、80g/L與90g/L、90g/L與100g/L之後續層析材料中之任一者之間的多特異性抗體之載樣密度負載至後續層析材料(諸如疏水性相互作用(HIC)層析材料、陰離子交換層析材料、陽離子交換層析材料、尺寸排阻層析材料、親和力層析材料或額外混合模式層析材料)上。
如本文所用,溶離為自層析材料移除產物,例如多特異性抗體或抗體臂。溶離緩衝液為用於自層析材料溶離該多特異性抗體或其他所關注之產物的緩衝液。在多種情況下,溶離緩衝液具有不同於載樣緩衝液之物理特徵。例如,溶離緩衝液可具有不同於載樣緩衝液之電導率或不同於載樣緩衝液之pH。在一些實施例中,溶離緩衝液具有低於載樣緩衝液之電導率。在一些實施例中,溶離緩衝液具有高於載樣緩衝液之電導率。在一些實施例中,溶離緩衝液具有低於載樣緩衝液之pH。在一些實施例中,溶離緩衝液具有高於載樣緩衝液之pH。在一些實施例中,溶離緩衝液具有不同於載樣緩衝液之電導率及不同於載樣緩衝液之pH。溶離緩衝液可具有更高或更低電導率及更高或更低pH之任何組合。
在某些實施例中,多特異性抗體自層析材料之溶離針對產物之產率在最低雜質下且在最低溶離體積或池體積下經最佳化。例如,含有多特異性抗體(例如雙特異性抗體)或抗體臂之組合物可在載樣緩衝液中負載至層析材料(例如層析管柱)上。在負載完成時,多特異性抗體或抗體臂用處於多種不同pH值下之緩衝液溶離,同時該溶離緩衝液之電導率恆定。或者,多特異性抗體或抗體臂可在處於多種不同電導率下之溶離緩衝液中自層析材料溶離,同時該溶離緩衝液之pH恆定。在多特異性抗體(例如雙特異性 抗體)或抗體臂自層析材料之溶離完成時,池部分中之雜質的量提供關於該多特異性抗體或抗體臂與該雜質針對既定pH或電導率分離之資訊。多特異性抗體或抗體臂在高數字之管柱體積(例如八個管柱體積)中溶離指示了溶離型態之「拖尾」。在一些實施例中,溶離之拖尾減至最少。
可採用之多種緩衝液取決於例如緩衝液之所需pH、緩衝液之所需電導率、所關注之蛋白的特徵、層析材料及純化過程(例如「結合及溶離」或「流通」模式)。在任何本文所述之方法的一些實施例中,該等方法包含使用至少一種緩衝液。緩衝液可為載樣緩衝液、平衡緩衝液、溶離緩衝液或洗滌緩衝液。在一些實施例中,載樣緩衝液、平衡緩衝液、溶離緩衝液及/或洗滌緩衝液中之一或多者(諸如載樣緩衝液、平衡緩衝液及/或洗滌緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)為相同的。在一些實施例中,載樣緩衝液、平衡緩衝液及/或洗滌緩衝液(諸如載樣緩衝液、平衡緩衝液及/或洗滌緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)為不同的。在任何本文所述之方法的一些實施例中,該緩衝液包含鹽。載樣緩衝液(諸如載樣緩衝液、平衡緩衝液及/或洗滌緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)可包含氯化鈉、乙酸鈉、Tris、精胺酸、磷酸鹽、MOPS、MES、CHES、BisTris、硫酸銨、硫酸鈉、檸檬酸鹽、丁二酸鹽或其混合物。在某 些實施例中,該緩衝液為氯化鈉緩衝液。在一些實施例中,該緩衝液為乙酸鈉緩衝液。在某些實施例中,該緩衝液為Tris、精胺酸、磷酸鹽、MES、CHES或MOPS緩衝液。在一些實施例中,該緩衝液包含Tris。在一些實施例中,該緩衝液包含精胺酸。
在任何本文所述之方法的一些實施例中,載樣緩衝液(諸如載樣緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有大於約1.0mS/cm、1.5mS/cm、2.0mS/cm、2.5mS/cm、3.0mS/cm、3.5mS/cm、4.0mS/cm、4.5mS/cm、5.0mS/cm、5.5mS/cm、6.0mS/cm、6.5mS/cm、7.0mS/cm、7.5mS/cm、8.0mS/cm、8.5mS/cm、9.0mS/cm、9.5mS/cm、10mS/cm或20mS/cm中任一者之電導率。該電導率可在約1mS/cm與20mS/cm、4mS/cm與10mS/cm、4mS/cm與7mS/cm、5mS/cm與17mS/cm、5mS/cm與10mS/cm或5mS/cm與7mS/cm中之任一者之間。在一些實施例中,該電導率為約1.0mS/cm、1.5mS/cm、2.0mS/cm、2.5mS/cm、3.0mS/cm、3.5mS/cm、4mS/cm、4.5mS/cm、5.0mS/cm、5.5mS/cm、6.0mS/cm、6.5mS/cm、7.0mS/cm、7.5mS/cm、8.0mS/cm、8.5mS/cm、9.0mS/cm、9.5mS/cm、10mS/cm或20mS/cm中任一者。在一態樣中,該電導率為載樣緩衝液、平衡緩衝液及/或洗滌緩衝液之電導率。在一些實施例中,載樣緩衝液、平衡緩衝液及洗滌緩衝液中之一或多者(諸如載樣緩衝液、平衡緩衝液及/或洗滌緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析 等)的電導率為相同的。在一些實施例中,載樣緩衝液之電導率不同於洗滌緩衝液及/或平衡緩衝液之電導率。
在一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有低於載樣緩衝液之電導率的電導率。在任何本文所述之方法的一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有小於約0mS/cm、0.5mS/cm、1.0mS/cm、1.5mS/cm、2.0mS/cm、2.5mS/cm、3.0mS/cm、3.5mS/cm、4.0mS/cm、4.5mS/cm、5.0mS/cm、5.5mS/cm、6.0mS/cm、6.5mS/cm或7.0mS/cm中任一者之電導率。該電導率可在約0mS/cm與7mS/cm、1mS/cm與7mS/cm、2mS/cm與7mS/cm、3mS/cm與7mS/cm、or 4mS/cm與7mS/cm、0mS/cm與5.0mS/cm、1mS/cm與5mS/cm、2mS/cm與5mS/cm、3mS/cm與5mS/cm或4mS/cm與5mS/cm中之任一者之間。在一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之電導率為約0mS/cm、0.5mS/cm、1.0mS/cm、1.5mS/cm、2.0mS/cm、2.5mS/cm、3.0mS/cm、3.5mS/cm、4mS/cm、4.5mS/cm、5.0mS/cm、5.5mS/cm、6.0mS/cm、6.5mS/cm或7.0mS/cm中任一者。
在一些實施例中,溶離緩衝液具有大於載樣緩衝液之電導率的 電導率。在任何本文所述之方法的一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有大於約5.5mS/cm、6.0mS/cm、6.5mS/cm、7.0mS/cm、7.5mS/cm、8.0mS/cm、8.5mS/cm、9.0mS/cm、9.5mS/cm、10mS/cm、11mS/cm、12mS/cm、13mS/cm、14mS/cm、15mS/cm、16mS/cm、17.0mS/cm、18.0mS/cm、19.0mS/cm、20.0mS/cm、21.0mS/cm、22.0mS/cm、23.0mS/cm、24.0mS/cm、25.0mS/cm、26.0mS/cm、27.0mS/cm、28.0mS/cm、29.0mS/cm或30.0mS/cm中任一者之電導率。該電導率可在約5.5mS/cm與30mS/cm、6.0mS/cm與30mS/cm、7mS/cm與30mS/cm、8mS/cm與30mS/cm、9mS/cm與30mS/cm或10mS/cm與30mS/cm中之任一者之間。在一些實施例中,溶離緩衝液之電導率為約5.5mS/cm、6.0mS/cm、6.5mS/cm、7.0mS/cm、7.5mS/cm、8.0mS/cm、8.5mS/cm、9.0mS/cm、9.5mS/cm、10mS/cm、11mS/cm、12mS/cm、13mS/cm、14mS/cm、15mS/cm、16mS/cm、17.0mS/cm18.0mS/cm、19.0mS/cm、20.0mS/cm、21.0mS/cm、22.0mS/cm、23.0mS/cm、24.0mS/cm、25.0mS/cm、26.0mS/cm、27.0mS/cm、28.0mS/cm、29.0mS/cm或30.0mS/cm中任一者。在任何以上實施例之一些態樣中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之電導率藉由分步梯度或藉由線性梯度相對載樣及/或洗滌緩衝液發生改變。
在一些實施例中,包含多特異性抗體之溶液在具有約<6.5 mS/cm之電導率的載樣緩衝液中負載至第一混合模式層析材料上且該多肽在具有約1.5mS/cm之電導率的溶離緩衝液中自第一混合層析材料溶離。在一些實施例中,載樣緩衝液具有約6.5mS/cm之電導率且溶離緩衝液具有約3mS/cm之電導率。在一些實施例中,載樣緩衝液具有約5.5mS/cm之電導率且溶離緩衝液具有約2mS/cm之電導率。在一些實施例中,載樣緩衝液具有約5.5mS/cm之電導率且溶離緩衝液具有約1mS/cm之電導率。在以上實施例之其他實施例中,第一混合模式層析材料為CaptoTMAdhere樹脂。在以上實施例之其他實施例中,第一混合模式層析材料為CaptoTM MMC樹脂。
在任何以上實施例之一些態樣中,溶離緩衝液之電導率藉由分步梯度或藉由線性梯度相對載樣及/或洗滌緩衝液發生改變。在一些實施例中,包含多特異性抗體之組合物在<6.5mS/cm下負載至第一混合模式層析(例如CaptoTMAdhere層析或CaptoTMMMC層析)上且該多特異性抗體藉由分步電導率梯度至約1.5mS/cm而自第一混合模式層析溶離。
在一些實施例中,包含多特異性抗體之溶液在具有約<6.5mS/cm之電導率的載樣緩衝液中負載至第二混合模式層析材料上且該多肽在具有約1.5mS/cm之電導率的溶離緩衝液中自第二混合層析材料溶離。在一些實施例中,載樣緩衝液具有約6.5mS/cm之電導率且溶離緩衝液具有約3mS/cm之電導率。在一些實施例中,載樣緩衝液具有約5.5mS/cm之電導率且溶離緩衝液具有約2mS/cm之電導率。在一些實施例中,載樣緩衝液具有約5.5mS/cm之電導率且溶離緩衝液具有約1mS/cm之電導率。在以上實施例之其他實施例中,第二混合模式層析材料為CaptoTMAdhere樹脂。在 以上實施例之其他實施例中,第二混合模式層析材料為CaptoTM MMC樹脂。
在任何以上實施例之一些態樣中,溶離緩衝液之電導率藉由分步梯度或藉由線性梯度相對載樣及/或洗滌緩衝液發生改變。在一些實施例中,包含多特異性抗體之組合物在<6.5mS/cm下負載至第二混合模式層析(例如CaptoTMAdhere層析或CaptoTMMMC層析)上且該多特異性抗體藉由分步電導率梯度至約1.5mS/cm而自第二混合模式層析溶離。
在一些實施例中,包含多特異性抗體之組合物在<2.5mS/cm下負載至陰離子交換層析(例如QSFF層析)上且該多特異性抗體藉由分步電導率梯度至約8.6mS/cm而自陰離子交換層析溶離。
在一些實施例中,包含多特異性抗體之組合物在約5.0mS/cm下負載至陽離子交換層析(例如POROS 50HS層析)上且該多特異性抗體藉由分步電導率梯度至約27.5mS/cm而自陽離子交換層析溶離。
在任何本文所述之方法的一些實施例中,載樣緩衝液(諸如載樣緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有小於約10、9、8、7、6或5中任一者之pH,包括在此等值之間的任何範圍。在任何本文所述之方法的一些實施例中,載樣緩衝液(諸如載樣緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有大於約4、5、6、7、8或9中任一者之pH,包括在此等值之間的任何範圍。載樣緩衝液(諸如載樣緩 衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)可具有在約4與9、4與8、4與7、5與9、5與8、5與7、5與6中之任一者之間的pH,包括在此等值之間的任何範圍。在一些實施例中,載樣緩衝液(諸如載樣緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之pH具有約4、4.5、5、5.5、6、6.5、7、7.5或8中任一者之pH,包括在此等值之間的任何範圍。該pH可為載樣緩衝液、平衡緩衝液或洗滌緩衝液(諸如載樣緩衝液、平衡緩衝液及/或洗滌緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之pH。在一些實施例中,載樣緩衝液、平衡緩衝液及/或洗滌緩衝液中之一或多者之pH為相同的。在一些實施例中,載樣緩衝液之pH不同於平衡緩衝液及/或洗滌緩衝液之pH。
在一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有小於載樣緩衝液之pH的pH。在任何本文所述之方法的一些實施例中,溶離緩衝液具有小於約8、7、6、5、4、3或2中任一者之pH,包括在此等值之間的任何範圍。溶離緩衝液之pH可在約4與9、4與8、4與7、4與6、4與5、5與9、5與8、5與7、5與6、6與9、6與8、6與7中之任一者之間,包括在此等值之間的任何範圍。在一些實施例中,溶離緩衝液(諸 如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之pH為約4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5或9.0中任一者,包括在此等值之間的任何範圍。
在一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有大於載樣緩衝液之pH的pH。在任何本文所述之方法的一些實施例中,溶離緩衝液(諸如溶離緩衝液用於第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)具有大於約5、6、7、8或9中任一者之pH,包括在此等值之間的任何範圍。在任何本文所述之方法的一些實施例中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析)具有大於約2、4或4中任一者之pH,包括在此等值之間的任何範圍。溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之pH可在約2與9、3與9、4與9、2與8、3與8、4與8、2與7、3與7、4與7、2與6、3與6及4與6中之任一者之間,包括在此等值之間的任何範圍。在一些實施例中,溶離緩衝液之pH為約2.0、2.5、3.0、3.5、4.0中任一者,包括在此等值之間的任何範圍。
在一些實施例中,包含多特異性抗體或抗體臂之溶液在約pH 7下負載至親和力層析(例如蛋白A層析)上且該多特異性抗體或抗體臂藉由 分步梯度至約2.9之pH而自親和力層析溶離。
在任何以上實施例之一些態樣中,溶離緩衝液(諸如溶離緩衝液用於捕捉層析、第一混合模式層析、第二混合模式層析及/或任何額外層析,諸如陰離子交換層析、陽離子交換層析、HIC層析、尺寸排阻層析、額外混合模式層析等)之pH藉由分步梯度或藉由線性梯度相對載樣及/或洗滌緩衝液發生改變。
在任何本文所述之方法的一些實施例中,流動速率小於約50CV/h、40CV/h或30CV/h中任一者。該流動速率可在約5CV/h與50CV/h、10CV/h與40CV/h、或18CV/h與36CV/h中之任一者之間。在一些實施例中,該流動速率為約9CV/h、18CV/h、25CV/h、30CV/h、36CV/h或40CV/h中任一者。在任何本文所述之方法的一些實施例中,流動速率小於約100cm/h、75cm/h或50cm/h中任一者。該流動速率可在約25cm/h與150cm/h、25cm/h與100cm/h、50cm/h與100cm/h、或65cm/h與85cm/h中之任一者之間。
床高度為所用之層析材料的高度。在任何本文所述之方法的一些實施例中,床高度大於約5cm、10cm、15cm、20cm、25cm、30cm、35cm、40cm、45cm或50cm中任一者。在一些實施例中,床高度在約5cm與50cm之間。在一些實施例中,床高度基於負載中之多肽或污染物之量來確定。
在一些實施例中,層析在具有大於約1mL、2mL、3mL、4mL、5mL、6mL、7mL、8mL、9mL、10mL、15mL、20mL、25mL、30mL、40mL、50mL、75mL、100mL、200mL、300mL、400mL、500mL、600 mL、700mL、800mL、900mL、1L、2L、3L、4L、5L、6L、7L、8L、9L、10L、25L、50L、100L、200L、300L、400L、500L、600L、700L、800L、900L或1000L之體積的管柱或容器中。
在一些實施例中,自層析收集各部分。在一些實施例中,所收集之部分大於約0.01CV、0.02CV、0.03CV、0.04CV、0.05CV、0.06CV、0.07CV、0.08CV、0.09CV、0.1CV、0.2CV、0.3CV、0.4CV、0.5CV、0.6CV、0.7CV、0.8CV、0.9CV、1.0CV、2.0CV、3.0CV、4.0CV、5.0CV、6.0CV、7.0CV、8.0CV、9.0CV或10.0CV。
在某些實施例中,彙集含有經純化或部分純化之產物(例如多特異性抗體(諸如雙特異性抗體或二價F(ab’)2)或抗體臂或Fab)之部分。部分中多肽之量可由熟習此項技術者確定;例如,部分中多肽之量可藉由UV光譜法確定。在某些實施例中,當OD280大於約0.5、0.6、0.7、0.8、0.9及1.0中任一者時,收集各部分。在某些實施例中,當OD280在約0.5與1.0、0.6與1.0、0.7與1.0、0.8與1.0或0.9與1.0中之任一者之間時,收集各部分。在某些實施例中,彙集含有可偵測之多特異性抗體(例如雙特異性抗體)或抗體臂之部分。
在任何本文所述之方法的某些實施例中,雜質為產物特異性雜質。產物特異性雜質之實例包括但不限於非配對半抗體、非配對抗體輕鏈、非配對重鏈、抗體片段、均二聚體(例如,包含相同重鏈及輕鏈之雙特異性抗體的配對半二聚體)、聚集體、高分子量物質(MHWS)(諸如極高分子量物質(vHMWS))、具有錯誤配對之二硫化物的多特異性抗體、輕鏈二聚體、重鏈二聚體、低分子量物質(LMWS)及電荷變異體(諸如抗體之酸性變異體及 鹼性變異體)。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及非配對半抗體之組合物中非配對半抗體之水準。量測組合物中非配對半抗體之存在或水準之方法為此項技術中已知的;例如,藉由質譜分析(諸如液相層析-質譜分析)、CE-SDS、逆相HPLC、HIC HPLC。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中非配對半抗體之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中非配對半抗體之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中非配對半抗體之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,非配對半抗體之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中非配對半抗體之量與在該(等)純化步驟之前該組合物中非配對半抗體之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及均二聚體之組合物中均二聚體之水準。量測組合物中均二聚體之存在或水準之方法為此項技術中已知的;例如,藉由質譜 分析(諸如液相層析-質譜分析、逆相HPLC及HIC HPLC。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中均二聚體之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中均二聚體之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中均二聚體之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,均二聚體之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中均二聚體之量與在該(等)純化步驟之前該組合物中均二聚體之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及高分子量物質(HMWS)蛋白之組合物中HMWS蛋白之水準。HMWS蛋白可包含例如聚集之多肽(諸如聚集之多特異性抗體、聚集之半抗體、聚集之均二聚體等)。在某些實施例中,聚集之多肽包含重鏈多聚體、輕鏈多聚體及/或該多特異性抗體之多聚體。HMWS蛋白可包含重鏈或輕鏈之2、3、4、5、6、7或8種或8種以上單體,或2、3、4、5、6、7或8種或8種以上聚集之多特異性抗體。量測聚集之蛋白(例如HMWS蛋白)之方法為此項技術中已知的且描述於例如WO 2011/150110中。該等 方法包括例如尺寸排阻層析、毛細管電泳-十二烷基硫酸鈉(CE-SDS)及液相層析-質譜分析(LC-MS)。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中HMWS蛋白之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中HMWS蛋白之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中HMWS蛋白之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,HMWS蛋白之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中HMWS蛋白之量與在該(等)純化步驟之前該組合物中HMWS蛋白之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及低分子量物質(LMWS)蛋白之組合物中LMWS蛋白之水準。LMWS蛋白可包含片段化多肽。在某些實施例中,片段化多肽為多特異性抗體之片段、抗體臂之片段、重鏈片段或輕鏈片段。LMWS蛋白之實例包括但不限於Fab(亦即,片段抗原結合( f ragment a ntigen b inding)、Fc(片段( f ragment),可結晶( c rystallizable))、兩者之區域或組合,或多特異性抗體、所關注之重鏈或輕鏈、或½抗體(含有一個抗體輕鏈/重鏈對)或¾抗 體(含有抗體重鏈之雜二聚體或均二聚體及單一抗體輕鏈;本文中亦表示為HHL)之任何無規片段化部分。量測片段化蛋白(例如LMWS蛋白)之方法為此項技術中已知的且描述於例如WO 2011/150110中。該等方法包括例如尺寸排阻層析、毛細管電泳-十二烷基硫酸鈉(CE-SDS)及液相層析-質譜分析(LC-MS)。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中LMWS蛋白之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中LMWS蛋白之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中LMWS蛋白之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,LMWS蛋白之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中LMWS蛋白之量與在該(等)純化步驟之前該組合物中LMWS蛋白之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及酸性及/或鹼性變異體之組合物中酸性及/或鹼性變異體之水準。抗體(諸如多特異性抗體,例如雙特異性抗體)之酸性變異體為其中該抗體之pI小於原生完整抗體之pI的變異體。抗體(諸如多特異性 抗體,例如雙特異性抗體)之鹼性變異體為其中該抗體之pI大於原生完整抗體之pI的變異體。該等電荷變異體(例如,酸性及鹼性變異體)可為抗體之天然過程的結果,諸如氧化、去醯胺化、離胺酸殘基之C端加工、N端焦麩胺酸鹽形成、及糖化。量測電荷變異體之方法為此項技術中已知的;例如成像毛細管等電聚焦(iCIEF)。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中電荷變異體之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中電荷變異體之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中電荷變異體之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,電荷變異體之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中電荷變異體之量與在該(等)純化步驟之前該組合物中電荷變異體之量來確定。
在任何本文所述之方法的某些實施例中,雜質為過程特異性雜質。例如,該過程特異性雜質可包含以下一或多者:瀝出之蛋白A;宿主細胞材料;核酸;其他多肽;內毒素;病毒性污染物;細胞培養基組分、羧基肽酶B、慶大黴素等。在某些實施例中,該過程特異性雜質可為來自 例如原核細胞、細菌細胞(諸如大腸桿菌細胞)、昆蟲細胞、真核細胞、真菌細胞、酵母細胞、禽細胞或哺乳動物細胞(例如CHO細胞)之宿主細胞蛋白(HCP)。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及瀝出之蛋白A的組合物中瀝出之蛋白A之水準。瀝出之蛋白A為自其所結合之固相剝離或洗滌之蛋白A。例如,瀝出之蛋白A可自蛋白A層析管柱瀝出。蛋白A之量可例如藉由ELISA量測,如WO 2011/150110中所述。在某些實施例中,瀝出之蛋白A之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中瀝出之蛋白A之量與在該(等)純化步驟之前該組合物中瀝出之蛋白A之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及宿主細胞蛋白(HCP)之組合物中HCP之水準。HCP為來自其中產生該多特異性抗體(諸如雙特異性抗體)之宿主細胞的蛋白。在某些實施例中,HCP蛋白為來自原核細胞之蛋白。在某些實施例中,HCP為來自大腸桿菌細胞之蛋白(亦即,大腸桿菌蛋白或ECP)。原核HCP(諸如ECP)之實例包括但不限於原核伴侶蛋白,諸如FkpA、DsbA及DsbC。在某些實施例中,HCP為來自真核宿主細胞之蛋白,諸如本文中別處所述之彼等。在某些實施例中,HCP為來自哺乳動物細胞之蛋白,諸如CHO細胞蛋白(亦即,中國倉鼠卵巢蛋白或CHOP)。在某些實施例中,HCP(例如ECP、FkpA、DsbA或DsbC,或例如CHOP)之量藉由酶聯免疫吸附劑分析(「ELISA」)來量測。例如,抗體可針對FkpA、DsbA或DsbC之超純組合物產生。在某些實施例中,FkpA、DsbA及/或DsbC之量藉由質譜分析確定。 在任何本文所述之方法之一些實施例中,HCP(例如ECP、FkpA、DsbA或DsbC,或例如CHOP)之量。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中HCP(例如ECP、FkpA、DsbA或DsbC,或例如CHOP)之量減少至小於約100ppm、75ppm、50ppm、25ppm、20ppm、10ppm、5ppm、2ppm或1ppm,包括在此等值之間的任何範圍。在一些實施例中,組合物(諸如層析部分)中HCP(例如ECP、FkpA、DsbA或DsbC,或例如CHOP)之量減少至小於約100ppm、75ppm、50ppm、25ppm、20ppm、10ppm、5ppm、2ppm或1ppm,包括在此等值之間的任何範圍。在某些實施例中,HCP(例如ECP、FkpA、DsbA或DsbC,或例如CHOP)之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中HCP之量與在該(等)純化步驟之前該組合物中HCP之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及核酸(諸如宿主細胞DNA及/或RNA)之組合物中核酸之水準。量測核酸(諸如宿主細胞DNA及/或RNA)之方法為此項技術中已知的且描述於例如WO 2011/150110中。該等方法包括例如用於宿主細胞DNA或RNA之PCR。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中核酸之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中核酸之量減少約10與95%;10%與99%;20%與95%;20%與99%; 30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。在一些實施例中,組合物(諸如層析部分)中核酸之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,核酸之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中核酸之量與在該(等)純化步驟之前該組合物中核酸之量來確定。
在某些實施例中,本文所提供之方法移除或減少包含多特異性抗體(例如雙特異性抗體)及細胞培養基組分的組合物中細胞培養基組分之水準。「細胞培養基組分」係指存在於細胞培養基中之組分。在某些實施例中,「細胞培養基」係指在收集表現多特異性抗體(例如雙特異性抗體)或其臂之宿主細胞時的細胞培養基。在某些實施例中,細胞培養基組分為胰島素或四環素。在某些實施例中,胰島素或四環素之量藉由ELISA量測。在任何本文所述之方法的某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中細胞培養基組分之量減少超過約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或99%中任一者,包括在此等值之間的任何範圍。
在某些實施例中,由一或多個純化步驟回收之組合物(諸如層析部分)中細胞培養基組分之量減少約10與95%;10%與99%;20%與95%;20%與99%;30%與95%;30%與99%;40%與95%;40%與99%;50%與95%;50%與99%;60%與95%;60%與99%;70%與95%;70%與99%;80%與95%;80%與99%;90%與95%;或90%與99%中之任一者之間。 在一些實施例中,組合物(諸如層析部分)中細胞培養基組分之量減少約10%、20%、30%、40%、50%、60%、70%、80%、90%或95%中任一者。在某些實施例中,細胞培養基組分之存在或水準的減少藉由比較由純化步驟回收之組合物(諸如層析部分)中細胞培養基組分之量與在該(等)純化步驟之前該組合物中細胞培養基組分之量來確定。
在某些實施例中,本文中提供一種純化包含第一臂及第二臂之雙特異性抗體之方法,其中該等第一及第二臂分別地產生,該方法包含:使該等第一及第二臂經受以結合及溶離模式操作的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或組合)以產生第一及第二捕捉溶離物;在足以產生包含該多特異性抗體之組合物的條件下形成包含該等第一及第二捕捉溶離物之混合物,使包含該多特異性抗體之組合物經受呈結合及溶離模式的陰離子交換層析(例如,Q Sepharose® Fast Flow(QSFF)層析)以產生陰離子交換溶離物,其中該溶離為梯度溶離;使該陰離子交換溶離物經受呈結合及溶離模式的陰離子交換混合模式層析(例如,CaptoTM Adhere層析)以產生第一混合模式溶離物,其中該溶離為梯度溶離;及使該第一混合模式溶離物經受呈結合及溶離模式的陽離子交換混合模式層析(例如,CaptoTMMMC層析)以產生第二混合模式溶離物,其中該溶離為梯度溶離,及收集包含該雙特異性抗體之部分,其中該方法相對於包含該等第一及第二臂之混合物減少該部分中雜質之量。
在某些實施例中,本文中提供一種純化包含第一臂及第二臂之雙特異性抗體之方法,其中該等第一及第二臂分別地產生,該方法包含:使該等第一及第二臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所 述之捕捉層析步驟的任一者或組合)以產生第一及第二捕捉溶離物;在足以產生包含該多特異性抗體之組合物的條件下形成包含該等第一及第二捕捉溶離物之混合物,使包含該多特異性抗體之組合物經受呈結合及溶離模式的陽離子交換混合模式層析(例如,CaptoTMMMC層析)以產生第一混合模式溶離物;其中該溶離為pH及鹽分步溶離,及使該第一混合模式溶離物經受呈流通模式的陰離子交換混合模式層析(例如,CaptoTMAdhere層析)以產生第二混合模式溶離物,及收集包含該雙特異性抗體之部分,其中該方法相對於包含該等第一及第二臂之混合物減少該部分中雜質之量。
在某些實施例中,本文中提供一種純化包含第一臂及第二臂之雙特異性抗體之方法,其中該等第一及第二臂分別地產生,該方法包含:使該等第一及第二臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或組合)以產生第一及第二捕捉溶離物;在足以產生包含該多特異性抗體之組合物的條件下形成包含該等第一及第二捕捉溶離物之混合物,使包含該多特異性抗體之組合物經受呈結合及溶離模式的陰離子交換混合模式層析(例如,CaptoTMAdhere層析),其中該溶離為分步溶離,以產生第一混合模式溶離物;及使該第一混合模式溶離物經受呈結合及溶離模式的陽離子交換混合模式層析(例如,CaptoTMMMC層析)以產生第二混合模式溶離物,其中該溶離為分步溶離,使該第二混合模式溶離物經受呈流通模式的疏水性相互作用層析(例如,Hexyl-650C層析)以產生疏水性相互作用溶離物;及收集包含該雙特異性抗體之部分,其中該方法相對於包含該等第一及第二臂之混合物減少該部分中雜質之量。
在某些實施例中,本文中提供一種純化包含第一臂及第二臂之 雙特異性抗體(諸如雙特異性F(ab’)2)之方法,其中該等第一及第二臂分別地產生,該方法包含:使該第一臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或組合)以產生第一捕捉溶離物;使該第一捕捉溶離物經受呈結合及溶離模式的陽離子交換混合模式層析(例如,CaptoTM MMC層析)以產生第一混合模式溶離物;使該第二臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或組合)以產生第二捕捉溶離物;在足以產生包含該多特異性抗體之組合物的條件下形成包含第一混合模式溶離物及第二捕捉溶離物之混合物,使包含該多特異性抗體之組合物經受陰離子交換混合模式層析(例如CaptoTM Adhere層析)以產生第二混合模式溶離物;及使該第二混合模式溶離物經受呈結合及溶離模式的陽離子交換層析(例如POROS® 50 HS層析)以產生陽離子交換溶離物;使該陽離子交換溶離物經受呈結合及溶離模式的後續陽離子交換混合模式層析以產生第三混合模式溶離物;及收集包含該雙特異性抗體之部分,其中該方法相對於包含該等第一及第二臂之混合物減少該部分中雜質之量。
在某些實施例中,本文中提供一種純化包含第一臂及第二臂之雙特異性抗體(諸如雙特異性F(ab’)2)之方法,其中該等第一及第二臂分別地產生,該方法包含:使該第一臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或組合)以產生第一捕捉溶離物;使該第一捕捉溶離物經受呈結合及溶離模式的陽離子交換混合模式層析(例如,CaptoTM MMC層析)以產生第一混合模式溶離物;使該第二臂經受呈結合及溶離模式的捕捉層析(諸如本文中別處所述之捕捉層析步驟的任一者或 組合)以產生第二捕捉溶離物;在足以產生包含該多特異性抗體之組合物的條件下形成包含第一混合模式溶離物及第二捕捉溶離物之混合物,使包含該多特異性抗體之組合物經受陰離子交換混合模式層析(例如CaptoTM Adhere層析)以產生第二混合模式溶離物;及使該第二混合模式溶離物經受呈結合及溶離模式的後續陽離子交換混合模式層析(例如,CaptoTM MMC層析)以產生第三混合模式溶離物;及收集包含該雙特異性抗體之部分,其中該方法相對於包含該等第一及第二臂之混合物減少該部分中雜質之量。
在一些實施例中,該多特異性抗體(諸如雙特異性抗體)進一步藉由病毒性過濾來純化。病毒性過濾為多肽純化進料流中之病毒性污染物的移除。病毒性過濾之實例包括例如超濾及微濾。在一些實施例中,該多肽使用細小病毒過濾器進行純化。
在一些實施例中,該多特異性抗體在層析之後(例如,在第二混合模式層析之後或在第二混合模式層析之後執行的一或多個層析步驟之後)經濃縮。濃縮方法之實例為此項技術中已知的且包括但不限於例如超濾及透濾(UFDF)。在一些實施例中,該多特異性抗體藉由第一超濾、透濾及第二超濾經濃縮。在一些實施例中,該超濾及/或透濾使用具有小於約5kDal、10kDal、15kDal、20kDal或25kDal或30kDal中任一者之截止的過濾器。在一些實施例中,該第一超濾之滯留物經透濾至醫藥調配物中。
在一些實施例中,多特異性抗體在濃縮之後之濃度為約10mg/mL、20mg/mL、30mg/mL、40mg/mL、50mg/mL、60mg/mL、70mg/mL、80mg/mL、90mg/mL、100mg/mL、110mg/mL、120mg/mL、130mg/mL、140mg/mL、150mg/mL、160mg/mL、170mg/mL、180mg/mL、190mg/mL、 200mg/mL或300mg/mL中任一者。在一些實施例中,多特異性抗體之濃度在約10mg/mL與20mg/mL、20mg/mL與30mg/mL、30mg/mL與40mg/mL、40mg/mL與50mg/mL、50mg/mL與60mg/mL、60mg/mL與70mg/mL、70mg/mL與80mg/mL、80mg/mL與90mg/mL、90mg/mL與100mg/mL、100mg/mL與110mg/mL、110mg/mL與120mg/mL、120mg/mL與130mg/mL、130mg/mL與140mg/mL、140mg/mL與150mg/mL、150mg/mL與160mg/mL、160mg/mL與170mg/mL、170mg/mL與180mg/mL、180mg/mL與190mg/mL、190mg/mL與200mg/mL、200mg/mL或300mg/mL中之任一者之間。
在任何本文所述之方法之一些實施例中,該等方法進一步包含組合該等純化方法之經純化多肽與醫藥學上可接受之載劑。在一些實施例中,該多特異性抗體藉由超濾/透濾經調配至醫藥調配物中。
在某些實施例中,本文所提供之方法產生包含超過約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%中任一者純之多特異性抗體的組合物。在某些實施例中,該組合物中之多特異性抗體超過約96%、97%、98%或99%中任一者純。
在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之非配對抗體臂之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、 2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之均二聚體之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%中任一者之聚集之蛋白之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之HMWS之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之LMWS之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、15%、20%、25%、30%、35%、40%、45%或50%中任一者之酸性變異體之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之鹼性變異體之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm或10ppm中 任一者之瀝出之蛋白A之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm、10ppm、15ppm、20ppm、25ppm、30ppm或35ppm中任一者之HCP之多特異性抗體的組合物。在某些實施例中,本文所提供之方法產生包含含有小於約2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm或10ppm中任一者之核酸之多特異性抗體的組合物。在某些實施例中,包含該多特異性抗體之組合物包含不超過0ppm核酸。在某些實施例中,包含該多特異性抗體之組合物中的核酸低於偵測水準。在某些實施例中,本文所提供之方法產生包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之細胞培養基組分之多特異性抗體的組合物。
在某些實施例中,提供根據本文所述之方法中的任一者純化之包含多特異性抗體之組合物。
在某些實施例中,該組合物中之多特異性抗體超過約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%中任一者純。在某些實施例中,該組合物中之多特異性抗體超過約96%、97%、98%或99%中任一者純。
在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、 2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之非配對抗體臂。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之均二聚體。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%中任一者之聚集之蛋白。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之HMWS。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之LMWS。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、15%、20%、25%、30%、35%、40%、45%或50%中任一者之酸性變異體。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之鹼性變異體。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、 3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm或10ppm中任一者之瀝出之蛋白A。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm、10ppm、15ppm、20ppm、25ppm、30ppm或35ppm中任一者之HCP。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm、10ppm、15ppm、20ppm、25ppm、30ppm或35ppm中任一者之核酸。在某些實施例中,包含該多特異性抗體之組合物含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之細胞培養基組分。
在一些實施例中,提供一種包含多特異性抗體之組合物,其中該組合物含有:a)至少約95%-100%多特異性抗體;b)少於約1%-5%非配對抗體臂;c)少於約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及/或f)不超過約5% ¾抗體。
在某些實施例中,提供根據本文所述之方法中的任一者純化之包含雙特異性抗體之組合物。在某些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在一些實施例中,該雙特異性抗體為 CrossMab雙特異性抗體。
在某些實施例中,提供包含超過約50%、55%、60%、65%、70%、75%、80%、85%、90%、95%中任一者純之雙特異性抗體的組合物。在某些實施例中,該組合物中之雙特異性抗體超過約96%、97%、98%或99%中任一者純。在某些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。
在某些實施例中,提供一種包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之非配對抗體臂之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%中任一者之均二聚體之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%中任一者之聚集之蛋白之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之HMWS之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、 8.5%、9%、9.5%或10%中任一者之LMWS之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、15%、20%、25%、30%、35%、40%、45%或50%中任一者之酸性變異體之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之鹼性變異體之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm或10ppm中任一者之瀝出之蛋白A之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有不超過約0.1ppm、0.2ppm、0.3ppm、0.4ppm、0.5ppm、0.6ppm、0.7ppm、0.8ppm、0.9ppm、1ppm、1.5ppm、2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm、10ppm、15ppm、20ppm、25ppm、30ppm或35ppm中任一者之HCP之雙特異性抗體的組合物。在某些實施例中,提供一種包含含有小於約2ppm、2.5ppm、3ppm、3.5ppm、4ppm、4.5ppm、5ppm、5.5ppm、6ppm、6.5ppm、7ppm、7.5ppm、8ppm、8.5ppm、9ppm、9.5ppm或10ppm中任一者之核酸之雙特異性抗體的組合物。在某些實施例中,包含該雙特異性抗體之組合物包含不超過0ppm核酸。在某些實施例中,包含該 雙特異性抗體之組合物中的核酸低於偵測水準。在某些實施例中,提供一種包含含有不超過約0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%或35%中任一者之細胞培養基組分之雙特異性抗體的組合物。在某些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。
在一些實施例中,提供一種包含雙特異性抗體之組合物,其中該組合物含有:a)至少約95%-100%雙特異性抗體;b)少於約1%-5%非配對抗體臂;c)少於約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及/或f)不超過約5% ¾抗體。在某些實施例中,該雙特異性抗體為杵臼(KiH)抗體,例如KiH雙特異性抗體。在一些實施例中,該雙特異性抗體為CrossMab雙特異性抗體。
如本文所報告之一態樣為一種用多步驟層析方法純化含Fc區雜二聚體蛋白/多肽之方法,其中該方法包含親和力層析步驟、隨後兩個不同的多模式離子交換層析步驟,及由此純化該含Fc區雜二聚體蛋白/多肽。
在某些實施例中,該方法包含i.親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟或ii.親和力步驟、隨後多模式陽離子交換層析步驟、隨後多模式陰離子交換層析步驟。
如本文所報告之一態樣為一種用於產生含Fc區雜二聚體蛋白/多肽之方法,其包含步驟i.培養包含編碼該含Fc區雜二聚體蛋白/多肽之核酸的細胞,ii.自該細胞或培養基回收該含Fc區雜二聚體蛋白/多肽,iii.用如本文所報告之方法純化該含Fc區雜二聚體蛋白/多肽,及由此產生該含Fc區雜二聚體蛋白。已發現抗體純化過程之效能取決於所用之層析步驟的次 序。藉由選擇某一次序之層析步驟,可獲得改良過程。
本文所提供之方法至少部分地基於以下發現,即藉由(直接地)在(初始)親和力層析步驟之後且在多模式陽離子交換層析步驟之前執行多模式陰離子交換層析步驟,可省略超濾/透濾步驟。若多模式陽離子交換層析步驟在多模式陰離子交換層析步驟之前執行,則此步驟為必需的。
在某些實施例中,該多步驟層析方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟。
已發現使用本文所述之方法,可僅用三個層析步驟實現良好純度及產率。
在某些實施例中,該多步驟層析方法精確地包含三個層析步驟。
已發現若多模式陰離子交換層析方法/步驟以流通模式執行,則宿主細胞蛋白之移除可經改良。在某些實施例中,多模式陰離子交換層析方法/步驟以流通模式執行。
已發現多模式陰離子交換層析步驟之負載的pH會影響HCP、副產物及DNA移除。在所有態樣之一較佳實施例中,多模式陰離子交換層析步驟在約7.0之pH下執行。
Figure 106120122-A0202-12-0086-1
溶液之電導率可在純化過程期間對不同參數具有影響。此處,已發現多模式陰離子交換層析步驟之負載(亦即,包含該含Fc區雜二聚體多肽之溶液,其欲應用於層析材料)的低電導率值導致改良之HCP及DNA移除。
Figure 106120122-A0202-12-0087-2
在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有小於7mS/cm之電導率值之溶液中。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有小於6mS/cm之電導率值之溶液中。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有在約6mS/cm至約2mS/cm範圍內之電導率值之溶液中。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有在約5mS/cm至約4mS/cm範圍內之電導率值之溶液中。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有約4.5mS/cm之電導率值之溶液中。
在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽應用於具有約4.5mS/cm之電導率及約7之pH的溶液中。
本文所提供之方法至少部分地基於以下發現,即多模式陰離子交換層析步驟之蛋白負載量亦影響純化過程之效能。若負載在規定範圍內,則總體純化過程經改良,例如DNA污染之移除。
Figure 106120122-A0202-12-0088-3
在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在約100g至約300g/公升層析材料之範圍內應用,亦即,負載在約100g/L至約300g/L範圍內。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在約120g至約240g/公升層析材料之範圍內應用。在某些實施例中,在多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在約160g至約200g/公升層析材料之範圍內應用。
已發現當應用於如本文所報告之方法中時,某些多模式樹脂材料尤其適用。
在某些實施例中,多模式陰離子交換層析材料為多模式強陰離子交換層析材料。在某些實施例中,該多模式陰離子交換層析材料具有高流量瓊脂糖基質、作為配位體的多模式強陰離子交換劑、36-44μm之平均粒徑及0.08至0.11mmol Cl-/mL培養基之離子容量。在某些實施例中,多模式陰離子交換層析材料為「Capto adhere ImpRes」。
在某些實施例中,多模式陽離子交換層析材料為多模式弱陽離子交換層析介質。在某些實施例中,該多模式陽離子交換層析介質具有高流量瓊脂糖基質、作為配位體的多模式弱陽離子交換劑、36-44μm之平均粒徑及25至39μmol/mL之離子容量。在某些實施例中,多模式陽離子交換層析介質為「Capto MMC ImpRes」。
在某些實施例中,多模式陽離子交換層析方法/步驟以結合及溶 離模式執行。
在某些實施例中,該親和力層析步驟為蛋白A層析步驟或蛋白G親和力層析或單鏈Fv配位體親和力層析或具有KappaSelect層析材料之層析步驟或具有CaptureSelect層析材料之層析步驟或具有CaptureSelect FcXL層析材料之層析步驟。在某些實施例中,該親和力層析步驟為蛋白A層析步驟。在某些實施例中,該親和力層析步驟為CaptureSelectTM層析步驟。在某些實施例中,該親和力層析步驟為蛋白A層析步驟。
在某些實施例中,含Fc區雜二聚體蛋白/多肽為抗體、雙特異性抗體或Fc-融合蛋白。在某些實施例中,含Fc區雜二聚體蛋白/多肽為雙特異性抗體。在某些實施例中,含Fc區雜二聚體蛋白/多肽為CrossMab。在某些實施例中,含Fc區雜二聚體蛋白/多肽為Fc-融合蛋白。在某些實施例中,該含Fc區雜二聚體蛋白/多肽為雙特異性抗體,其包含a)特異性結合於第一抗原之第一全長抗體的重鏈及輕鏈;及b)特異性結合於第二抗原之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
在某些實施例中,該雙特異性抗體為結合於ANG2及VEGF之雙特異性抗體。在某些實施例中,含Fc區雜二聚體蛋白/多肽為結合於ANG2及VEGF之CrossMab。在某些實施例中,該雙特異性抗體為瓦紐賽單抗。
在某些實施例中,該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4。在某些實施例中,該雙特異性抗體包含具有胺基酸序列SEQ ID NO:9之第一重鏈及具有胺基酸序列SEQ ID NO:10之第二重鏈及具有胺基酸序列SEQ ID NO:11之第一輕鏈及具有胺基酸序列SEQ ID NO:12之第二輕鏈。在某些實施例中,該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。在某些實施例中,該雙特異性抗體包含具有胺基酸序列SEQ ID NO:13之第一重鏈及具有胺基酸序列SEQ ID NO:14之第二重鏈及具有胺基酸序列SEQ ID NO:15之第一輕鏈及具有胺基酸序列SEQ ID NO:16之第二輕鏈。胺基酸序列SEQ ID NO:1-16提供於下表4中:
Figure 106120122-A0202-12-0090-4
Figure 106120122-A0202-12-0091-5
Figure 106120122-A0202-12-0092-6
在某些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約5% ¾抗體。在某些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約4% ¾抗體。在某些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約3% ¾抗體。在某些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約2% ¾抗體。在某些實施例中,經純化之含Fc區雜二聚體多肽含有不超過約1% ¾抗體。
如本文所報告之一態樣為一種用多步驟層析方法純化結合於ANG2及VEGF之雙特異性抗體之方法,其中該方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟,及由此純化結合於ANG2及VEGF之雙特異性抗體,其中結合於ANG2及VEGF之雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4,或包含第一抗原結合位點,其包含作為重鏈可變域(VH)之 SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。
在一實施例中,結合於ANG2及VEGF之雙特異性抗體包含a)包含第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
如本文所報告之一態樣為如本文所報告之方法用於純化含Fc雜二聚體多肽之用途。
如本文所報告之一態樣為如本文所報告之方法用於減少含Fc雜二聚體多肽相關雜質之用途。
如本文所報告之一態樣為用如本文所報告之方法獲得的含Fc雜二聚體多肽,其用於製造用於治療癌症或眼病之藥劑。
如本文所報告之一態樣為用如本文所報告之方法獲得的含Fc雜二聚體多肽,其用於治療癌症或眼病。
多肽 單株抗體
在一些實施例中,抗體為單株抗體。單株抗體獲自實質上均質抗體之群體,亦即,構成該群體之個別抗體為一致的及/或結合相同抗原決定基,除了在該單株抗體之產生期間出現之可能變異體,該等變異體一般少量存在。因此,修飾語「單株」指示該抗體之特徵為並非個別或多株抗體之混合物。
例如,單株抗體可使用首先由Kohler等人,Nature 256:495(1975)描述之融合瘤方法製得,或可藉由重組DNA方法製得(美國專利第4,816,567號)。
在融合瘤方法中,小鼠或其他適當宿主動物如本文所述經免疫以引起產生或能夠產生將特異性地結合於用於免疫之多肽之抗體的淋巴細胞。或者,淋巴細胞可活體外經免疫。淋巴細胞接著使用諸如聚乙二醇之合適融合劑與骨髓瘤細胞融合,以形成融合瘤細胞(Goding,Monoclonal Antibodies:Principles and Practice,第59-103頁(Academic Press,1986))。
由此製備之融合瘤細胞在較佳地含有一或多種抑制未融合、親本骨髓瘤細胞之生長或存活的物質之合適培養基中接種且生長。例如,若該等親本骨髓瘤細胞缺乏酶次黃嘌呤鳥嘌呤磷酸核糖基轉移酶(HGPRT或HPRT),則用於融合瘤之培養基典型地將包括次黃嘌呤、胺基喋呤及胸苷(HAT培養基),該等物質防止HGPRT缺乏細胞之生長。
在一些實施例中,該等骨髓瘤細胞為有效地融合、支持由所選之抗體產生細胞穩定高水準產生抗體且對諸如HAT培養基之培養基敏感的彼等細胞。其中,在一些實施例中,骨髓瘤細胞株為鼠類骨髓瘤株,諸如源於可獲自Salk Institute Cell Distribution Center,San Diego,California USA之MOPC-21及MPC-11小鼠腫瘤及可獲自American Type Culture Collection,Rockville,Maryland USA之SP-2或X63-Ag8-653細胞的彼等細胞株。人類骨髓瘤及小鼠-人類異源骨髓瘤細胞株亦已關於人類單株抗體之產生加以描述(Kozbor,J.Immunol.133:3001(1984);Brodeur等人,Monoclonal Antibody Production Techniques and Applications第51-63頁(Marcel Dekker,Inc.,New York,1987))。
其中融合瘤細胞正在生長之培養基關於針對抗原之單株抗體的產生進行分析。在一些實施例中,由融合瘤細胞產生之單株抗體的結合特異性藉由免疫沉澱或藉由活體外結合分析,諸如放射性免疫分析(RIA)或酶聯免疫吸附劑分析(ELISA)來確定。
該單株抗體之結合親和力可例如藉由Munson等人,Anal.Biochem.107:220(1980)之斯卡查德分析(Scatchard analysis)來確定。
在鑒別出產生具有所需特異性、親和力及/或活性之抗體的融合瘤細胞之後,該等純系可藉由限制稀釋程序進行次選殖且藉由標準方法(Goding,Monoclonal Antibodies:Principles and Practice第59-103頁(Academic Press,1986))生長。用於此目的之合適培養基包括例如D-MEM或RPMI-1640培養基。此外,該等融合瘤細胞可活體內作為動物中之腹水腫瘤生長。
由該等次純系分泌之單株抗體合適地藉由習知免疫球蛋白純化程序,諸如多肽A-瓊脂糖、羥磷灰石層析、凝膠電泳、透析、親和力層析或離子交換層析與培養基、腹水液或血清分離。
編碼該等單株抗體之DNA容易地使用習知程序分離且測序(例如,藉由使用能夠特異性結合於編碼鼠類抗體的重鏈及輕鏈之基因的寡核苷酸探針)。在一些實施例中,該等融合瘤細胞充當該DNA之來源。一旦經分離,該DNA可置於表現載體中,該等表現載體接著經轉染至不以其他方式產生免疫球蛋白多肽之宿主細胞,諸如大腸桿菌細胞、猿COS細胞、人類胚胎腎(HEK)293細胞、中國倉鼠卵巢(CHO)細胞或骨髓瘤細胞中,以 獲得重組宿主細胞中單株抗體之合成。關於編碼該抗體之DNA在細菌中之重組表現的回顧文章包括Skerra等人,Curr.Opinion in Immunol.5:256-262(1993)及Plückthun,Immunol.Revs.,130:151-188(1992)。
在另一實施例中,抗體或抗體片段可自使用McCafferty等人,Nature 348:552-554(1990)中所述之技術產生的抗體噬菌體文庫分離。Clackson等人,Nature 352:624-628(1991)及Marks等人,J.Mol.Biol.222:581-597(1991)描述了分別地使用噬菌體文庫分離鼠類及人類抗體。後續出版物描述了藉由鏈改組(Marks等人,Bio/Technology 10:779-783(1992))產生高親和力(nM範圍)人類抗體,以及作為用於構建極大噬菌體文庫之策略的組合感染及活體內重組(Waterhouse等人,Nuc.Acids.Res.21:2265-2266(1993))。因此,此等技術為用於單株抗體之分離的傳統單株抗體融合瘤技術之可行替代。
該DNA亦可例如藉由用人類重鏈及輕鏈恆定域之編碼序列取代來替代同源鼠類序列(美國專利第4,816,567號;Morrison等人,Proc.Natl Acad.Sci.USA 81:6851(1984)),或藉由將非免疫球蛋白多肽之編碼序列的全部或部分共價接合至免疫球蛋白編碼序列而經修飾。
典型地,該等非免疫球蛋白多肽取代抗體之恆定域,或其取代抗體之一抗原結合位點的可變域以產生包含對抗原具有特異性之一抗原結合位點及對不同抗原具有特異性之另一抗原結合位點的嵌合二價抗體。
在任何本文所述之方法之一些實施例中,該抗體為IgA、IgD、IgE、IgG或IgM。在一些實施例中,該抗體為IgG單株抗體。
抗體片段
在一些實施例中,該抗體為抗體片段。已開發多種技術來產生抗體片段。傳統地,此等片段經由完整抗體之蛋白水解消化而衍生(參見例如Morimoto等人,Journal of Biochemical and Biophysical Methods 24:107-117(1992)及Brennan等人,Science 229:81(1985))。然而,此等片段現可直接地藉由重組宿主細胞產生。例如,抗體片段可自上文所論述之抗體噬菌體文庫分離。或者,Fab’-SH片段可直接地由大腸桿菌回收且以化學方式偶合以形成F(ab’)2片段(Carter等人,Bio/Technology 10:163-167(1992))。根據另一方法,F(ab’)2片段可直接地自重組宿主細胞培養物分離。用於產生抗體片段之其他技術對於熟練從業者將為顯而易知的。在其他實施例中,所選抗體為單鏈Fv片段(scFv)。參見WO 93/16185;美國專利第5,571,894號;及美國專利第5,587,458號。抗體片段亦可為「線性抗體」,舉例而言,如例如美國專利5,641,870所述。該等線性抗體片段可為單特異性或雙特異性的。
在一些實施例中,提供本文所述之抗體的片段。在一些實施例中,該抗體片段為抗原結合片段。在一些實施例中,該抗原結合片段係選自由Fab片段、Fab’片段、F(ab’)2片段、scFv、Fv及雙功能抗體組成之群。
多肽變異體及修飾
在某些實施例中,涵蓋本文中蛋白之胺基酸序列變異體。例如,可需要改良該蛋白之結合親和力及/或其他生物特性。蛋白之胺基酸序列變異體可藉由將適當修飾引入至編碼該蛋白之核苷酸序列中,或藉由肽合成製備。該等修飾包括例如該蛋白之胺基酸序列內殘基的缺失、及/或插入及/或取代。可製得缺失、插入及取代之任何組合以獲得最終構築體,其限制 條件在於該最終構築體具有所需特徵。
「多肽變異體」意謂如本文所定義之多肽(例如,活性多肽),該多肽與該多肽之全長原生序列、缺乏信號肽之多肽序列、多肽之細胞外域(具有或不具有信號肽)具有至少約80%胺基酸序列一致性。該等多肽變異體包括例如其中在全長原生胺基酸序列之N或C端處添加或缺失一或多個胺基酸殘基之多肽。通常,多肽變異體將與全長原生序列多肽序列、缺乏信號肽之多肽序列、多肽之細胞外域(具有或不具有信號肽)具有至少約80%胺基酸序列一致性,或者至少約85%、90%、95%、96%、97%、98%或99%中任一者之胺基酸序列一致性。視情況,變異體多肽如與原生多肽序列相比將具有不超過一種保守胺基酸取代,或者如與原生多肽序列相比不超過約2、3、4、5、6、7、8、9或10種中任一者之保守胺基酸取代。
例如,當與全長原生多肽相比時,該變異體多肽可在N端或C端處經截短,或可缺乏內部殘基。某些變異體多肽可缺乏並非所需生物活性所必需之胺基酸殘基。此等具有截短、缺失及插入之變異體多肽可藉由多種習知技術中之任一種製備。所需變異體多肽可以化學方式合成。另一合適技術涉及分離及藉由聚合酶鏈反應(PCR)擴增編碼所需變異體多肽之核酸片段。定義該核酸片段之所需末端的寡核苷酸在PCR中用於5’及3’引子處。較佳地,變異體多肽與本文所揭示之原生多肽共享至少一種生物及/或免疫學活性。
胺基酸序列插入包括介於一個殘基至含有一百個或更多殘基之多肽的長度範圍內之胺基-及/或羧基端融合,以及單一或多個胺基酸殘基之序列內插入。末端插入之實例包括具有N端甲硫胺醯基殘基之抗體或融合 至細胞毒性多肽之抗體。該抗體分子之其他插入變異體包括該抗體之N端或C端融合至酶或增加該抗體之血清半衰期的多肽。
例如,可需要改良該多肽之結合親和力及/或其他生物特性。該多肽之胺基酸序列變異體藉由將適當核苷酸改變引入至抗體核酸中,或藉由肽合成製備。該等修飾包括例如該多肽之胺基酸序列內殘基的缺失、及/或插入及/或取代。製得缺失、插入及取代之任何組合以獲得最終構築體,其限制條件在於該最終構築體具有所需特徵。該等胺基酸改變亦可改變該多肽(例如,抗體)之轉譯後過程,諸如改變糖基化位點之數目或位置。
關於確定何種胺基酸殘基可插入、取代或缺失而不會不利地影響所需活性之指導可藉由比較該多肽之序列與同源已知多肽分子之序列且使在具有高同源性之區中進行的胺基酸序列改變之數目減至最少而發現。
用於鑒別該多肽(例如,抗體)中作為突變誘發之較佳位置的某些殘基或區之適用方法被稱作「丙胺酸掃描突變誘發」,如由Cunningham及Wells,Science 244:1081-1085(1989)所述。此處,靶標殘基之殘基或基團經鑒別(例如帶電殘基,諸如Arg、Asp、His、Lys及Glu)且由中性或帶負電胺基酸(最佳地,丙胺酸或聚丙胺酸)置換以影響該等胺基酸與抗原之相互作用。證明對取代之功能敏感性之彼等胺基酸位置接著藉由在取代位點處或針對該等位點引入進一步或其他變異體而細化。因此,雖然用於引入胺基酸序列變異之位點經預定,但突變本身之性質無需經預定。例如,為了分析在既定位點處突變之效能,在靶標密碼子或區處進行ala掃描或隨機突變誘發且針對所需活性篩選經表現之抗體變異體。
另一類型之變異體為胺基酸取代變異體。此等變異體在抗體分 子中具有至少一個由不同殘基置換之胺基酸殘基。用於取代性突變誘發之最關注位點包括高變區,但亦涵蓋FR改變。若該等取代導致生物活性之改變,則可引入更多實質性改變(表5中經命名「例示性取代」,或如下文參考胺基酸類別進一步描述)且篩選產物。
Figure 106120122-A0202-12-0100-7
該多肽之生物特性的實質性修飾藉由選擇取代來實現,該等取代在其對維持(a)取代區域中多肽骨架之結構,例如,呈薄片或螺旋構形,(b)該分子在靶標位點處之電荷或疏水性,或(c)側鏈之大小的影響方面顯著不同。胺基酸可根據其側鏈之特性的相似性分組(在A.L.Lehninger,Biochemistry第二版,第73-75頁,Worth Publishers,New York(1975)中):
(1)非極性:Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、 Trp(W)、Met(M)
(2)不帶電極性:Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q)
(3)酸性:Asp(D)、Glu(E)
(4)鹼性:Lys(K)、Arg(R)、His(H)
或者,天然存在之殘基可基於常見側鏈特性分成各組:(1)疏水性:正白胺酸、Met、Ala、Val、Leu、Ile;(2)中性親水性:Cys、Ser、Thr、Asn、Gln;(3)酸性:Asp、Glu;(4)鹼性:His、Lys、Arg;(5)影響鏈取向之殘基:Gly、Pro;(6)芳香性:Trp、Tyr、Phe。
非保守取代將需要將此等類別之一的成員換成另一類別。
未牽涉於維持抗體之適當構形中的任何半胱胺酸殘基亦可一般經絲胺酸取代,以改良該分子之氧化穩定性且防止異常交聯。相反地,半胱胺酸鍵可添加至該多肽中以改良其穩定性(尤其在該抗體為諸如Fv片段之抗體片段的情況下)。
取代變異體之一實例涉及取代親本抗體(例如,人類化抗體)之一或多個高變區殘基。一般而言,針對進一步開發所選擇之所得變異體將具有相對於產生該等變異體之親本抗體有所改良之生物特性。用於產生該等取代變異體之便利方式涉及使用噬菌體呈現之親和力成熟。簡言之,數個高變區位點(例如,6-7個位點)突變以在各位點處產生所有可能的胺基取代。 因此產生之抗體變異體以單價形式自絲狀噬菌體粒子呈現為與封裝於各粒子內之M13的基因III產物之融合物。噬菌體呈現之變異體接著針對如本文所揭示之其生物活性(例如,結合親和力)進行篩選。為了鑒別用於修飾之候選高變區位點,可執行丙胺酸掃描突變誘發以鑒別顯著有助於抗原結合之高變區殘基。或者或另外,分析抗原-抗體複合物之晶體結構以鑒別該抗體與靶標之間的接觸點可為有益的。該等接觸殘基及相鄰殘基根據本文中詳細闡述之技術為用於取代之候選者。一旦產生該等變異體,變異體之組即經受如本文所述之篩選且在一或多種相關分析中具有卓越特性之抗體可篩選用於進一步開發。
該多肽之另一類型的胺基酸變異體會改變該抗體之初始糖基化模式。該多肽可包含非胺基酸部分。例如,該多肽可經糖基化。該糖基化可在該多肽在宿主細胞或宿主生物體中表現期間天然地發生,或可為由人類干預引起之有意修飾。改變意謂缺失一或多種在該多肽中發現之碳水化合物部分,及/或添加一或多個未存在於該多肽中之糖基化位點。
多肽之糖基化典型地為N連接或O連接的。N連接係指該碳水化合物部分連接至天冬醯胺殘基之側鏈。三肽序列天冬醯胺-X-絲胺酸及天冬醯胺-X-酥胺酸(其中X為除了脯胺酸外之任何胺基酸)為關於該碳水化合物部分酶促連接至天冬醯胺側鏈之識別序列。因此,多肽中此等三肽序列中任一者之存在均會產生潛在糖基化位點。O連接之糖基化係指糖N-乙醯基半乳糖胺、半乳糖或木糖之一連接至羥基胺基酸,最通常為絲胺酸或酥胺酸,不過亦可使用5-羥基脯胺酸或5-羥基離胺酸。
糖基化位點添加至該多肽中便利地藉由改變胺基酸序列以致其 含有一或多個上述三肽序列來實現(關於N連接糖基化位點)。該改變亦可藉由添加一或多個絲胺酸或酥胺酸殘基至初始抗體之序列中或由該一或多個絲胺酸或酥胺酸殘基取代來進行(關於O連接糖基化位點)。
移除存在於該多肽上之碳水化合物部分可以化學方式或以酶方式或藉由編碼充當糖基化靶標之胺基酸殘基之密碼子的突變取代來實現。多肽上之碳水化合物部分之酶裂解可藉由使用多種內切及外切-糖苷酶來實現。
其他修飾包括麩胺醯胺醯基及天冬醯胺醯基殘基分別地去醯胺化為麩胺醯基及天冬胺醯基殘基,脯胺酸及離胺酸之羥基化,絲胺醯基或酥胺醯基殘基之羥基的磷酸化,離胺酸、精胺酸及組胺酸側鏈之γ-胺基的甲基化,N端胺之乙醯化,及任何C端羧基之醯胺化。
嵌合多肽
本文所述之多肽可以一定方式經修飾以形成包含融合至另一、異源多肽或胺基酸序列之多肽的嵌合分子。在一些實施例中,嵌合分子包含該多肽與標籤多肽之融合物,該標籤多肽提供可選擇性結合抗標籤抗體之抗原決定基。該抗原決定基標籤一般置於該多肽之胺基或羧基端處。該多肽之該等抗原決定基標記形式的存在可使用針對該標籤多肽之抗體來偵測。又,該抗原決定基標籤之提供使得該多肽能夠容易地使用抗標籤抗體或另一類型之結合於該抗原決定基標籤之親和力基質藉由親和力純化來純化。
多特異性抗體
在某些實施例中,本文所提供之抗體為多特異性抗體,例如雙 特異性抗體。多特異性抗體為對至少兩個不同位點具有結合特異性之單株抗體。在某些實施例中,該等結合特異性之一針對c-met且另一者針對任何其他抗原。在某些實施例中,雙特異性抗體可結合於c-met之兩種不同抗原決定基。雙特異性抗體亦可用於使細胞毒性劑局限於表現c-met之細胞。雙特異性抗體可製備為全長抗體或抗體片段。
用於製造多特異性抗體之技術包括但不限於具有不同特異性之兩個免疫球蛋白重鏈-輕鏈對的重組共表現(參見Milstein及Cuello,Nature 305:537(1983),WO 93/08829,及Traunecker等人,EMBO J.10:3655(1991)),及「杵臼」工程改造(參見例如美國專利第5,731,168號)。多特異性抗體亦可藉由工程改造針對製造抗體Fc-雜二聚體分子之靜電轉向效應(WO 2009/089004A1);使兩種或兩種以上抗體或片段交聯(參見例如美國專利第4,676,980號,及Brennan等人,Science,229:81(1985));使用白胺酸拉鍊來製造雙特異性抗體(參見例如Kostelny等人,J.Immunol.,148(5):1547-1553(1992));使用用於製造雙特異性抗體片段的「雙功能抗體」技術(參見例如Hollinger等人,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993));及使用單鏈Fv(sFv)二聚體(參見例如Gruber等人,J.Immunol.,152:5368(1994));及如例如Tutt等人J.Immunol.147:60(1991)中所述製備三特異性抗體而製得。
本文中之抗體或片段亦包括WO 2009/080251、WO 2009/080252、WO 2009/080253、WO 2009/080254、WO 2010/112193、WO 2010/115589、WO 2010/136172、WO 2010/145792及WO 2010/145793中所述之多特異性抗體。
本文中亦包括具有三個或三個以上功能性抗原結合位點之經工 程改造之抗體,包括「章魚抗體」(參見例如US 2006/0025576A1)。
本文中之抗體或片段亦包括「雙重作用Fab(Dual Acting Fab)」或「雙重作用Fab(Dual Action Fab)」(DAF),其包含結合於第一抗原決定基(例如,在第一抗原上)以及另一、不同抗原決定基(例如,在第一抗原上或在第二、不同抗原上)之抗原結合位點(參見例如US 2008/0069820;Bostrom等人(2009)Science,5921,1610-1614)。
用於製造雙特異性抗體之方法為此項技術中已知的。傳統上,雙特異性抗體之重組產生係基於兩個免疫球蛋白重鏈-輕鏈對之共表現,其中兩條重鏈具有不同特異性(Milstein及Cuello,Nature,305:537(1983))。由於免疫球蛋白重鏈及輕鏈之隨機分類,此等融合瘤(四源雜交瘤)產生10種不同抗體分子之潛在混合物,其中僅一種具有正確雙特異性結構。該正確分子之純化通常藉由親和力層析步驟進行,相當麻煩,且產物產率低。相似程序揭示於1993年5月13日公開之WO 93/08829中,及Traunecker等人,EMBO J.,10:3655(1991)中。
根據一種不同且更佳的方法,具有所需結合特異性之抗體可變域(抗體-抗原組合位點)融合至免疫球蛋白恆定域序列。該融合較佳地使用免疫球蛋白重鏈恆定域,包含鉸鏈區、CH2及CH3區之至少一部分。較佳在至少一種融合物中存在第一重鏈恆定區(CH1),其含有輕鏈結合所必需之位點。編碼該等免疫球蛋白重鏈融合物及必要時免疫球蛋白輕鏈之DNA插入至獨立表現載體中,且共轉染至合適之宿主生物體中。當用於構建之三條多肽鏈的不等比率提供最佳產率時,此舉提供了調節實施例中之三條多肽鏈的相互比例之極大靈活性。然而,當至少兩條呈相等比率之多肽鏈的 表現導致高產率時或當該等比率不具有特定重要性時,有可能在一表現載體中插入兩條或所有三條多肽鏈之編碼序列。
在此方法之一較佳實施例中,該等雙特異性抗體由一臂中之具有第一結合特異性的雜合免疫球蛋白重鏈及另一臂中之雜合免疫球蛋白重鏈-輕鏈對(提供第二結合特異性)構成。發現此不對稱結構促進所需雙特異性化合物與不想要之免疫球蛋白鏈組合的分離,因為該雙特異性分子之僅一半中存在免疫球蛋白輕鏈會提供容易之分離方式。此方法揭示於WO 94/04690中。關於產生雙特異性抗體之其他詳情,參見例如Suresh等人,Methods in Enzymology,121:210(1986)。
杵臼技術
根據另一方法,在一對抗體分子之間之界面可經工程改造以使自重組細胞培養物回收之雜二聚體的百分率增至最高。較佳界面包含抗體恆定域之CH3域的至少一部分。在此方法中,來自第一抗體分子之界面的一或多個小胺基酸側鏈用較大側鏈(例如,酪胺酸或色胺酸)(杵或突起)置換。與大側鏈具有一致或相似尺寸之補償性「空腔」(臼)在第二抗體分子之界面上藉由用較小胺基酸側鏈(例如,丙胺酸或酥胺酸)置換大胺基酸側鏈而產生。此提供了一種用於增加雜二聚體之產率超過諸如均二聚體之其他不想要的終產物之機制。杵及臼進一步描述於本文中。
杵臼作為產生多特異性抗體及/或一臂抗體及/或免疫黏附素之方法的用途為此項技術中熟知的。參見受讓於Genentech之1998年3月24日授權之美國專利第5,731,168號,2009年7月16日公開且受讓於Amgen之PCT公開案第WO2009089004號,及2009年7月16日公開且受讓於Novo Nordisk A/S之美國專利公開案第20090182127號。亦參見Marvin及Zhu,Acta Pharmacologica Sincia(2005)26(6):649-658及Kontermann(2005)Acta Pharacol.Sin.,26:1-9。此處提供簡短論述。
「突起」係指自第一多肽之界面突出且因此可定位於相鄰界面(亦即,第二多肽之界面)中的補償性空腔中以便使雜多聚體穩定化,且由此例如支持雜多聚體形成超過均多聚體形成之至少一個胺基酸側鏈。該突起可存在於初始界面中或可以合成方式(例如,藉由改變編碼該界面之核酸)引入。通常,編碼第一多肽之界面的核酸發生改變以編碼該突起。為此,編碼第一多肽之界面中的至少一種「初始」胺基酸殘基之核酸由編碼至少一種具有大於該初始胺基酸殘基之側鏈體積的「輸入」胺基酸殘基之核酸置換。應瞭解,可存在超過一種初始及相應輸入殘基。經置換之初始殘基的數目之上限為第一多肽之界面中的殘基總數。多種胺基殘基之側鏈體積在下表中示出。
Figure 106120122-A0202-12-0107-8
Figure 106120122-A0202-12-0108-9
a分子量胺基酸減去水之分子量。來自Handbook of Chemistry and Physics,第43版Cleveland,Chemical Rubber Publishing Co.,1961之值。
b來自A.A.Zamyatnin,Prog.Biophys.Mol.Biol.24:107-123,1972之值。
c來自C.Chothia,J.Mol.Biol.105:1-14,1975之值。可及表面積定義於此參考文獻之圖6-20中。
用於形成突起之較佳輸入殘基一般為天然存在之胺基酸殘基且較佳地選自精胺酸(R)、苯丙胺酸(F)、酪胺酸(Y)及色胺酸(W)。最佳為色胺酸及酪胺酸。在一實施例中,用於形成突起之初始殘基具有小的側鏈體積,諸如丙胺酸、天冬醯胺、天冬胺酸、甘胺酸、絲胺酸、酥胺酸或纈胺酸。CH3域中用於形成突起之例示性胺基酸取代包括而不限於T366W取代。
「空腔」係指自第二多肽之界面凹進去且因此容納第一多肽之相鄰界面上的相應突起之至少一個胺基酸側鏈。該空腔可存在於初始界面中或可以合成方式(例如,藉由改變編碼該界面之核酸)引入。通常,編碼第二多肽之界面的核酸發生改變以編碼該空腔。為此,編碼第二多肽之界面中的至少一種「初始」胺基酸殘基之核酸由編碼至少一種具有小於該初始胺基酸殘基之側鏈體積的「輸入」胺基酸殘基之DNA置換。應瞭解,可存在超過一種初始及相應輸入殘基。經置換之初始殘基的數目之上限為第二多肽之界面中的殘基總數。多種胺基殘基之側鏈體積在上表2中示出。用 於形成空腔之較佳輸入殘基通常為天然存在之胺基酸殘基且較佳地選自丙胺酸(A)、絲胺酸(S)、酥胺酸(T)及纈胺酸(V)。最佳為絲胺酸、丙胺酸或酥胺酸。在一實施例中,用於形成空腔之初始殘基具有大的側鏈體積,諸如酪胺酸、精胺酸、苯丙胺酸或色胺酸。CH3域中用於產生空腔之例示性胺基酸取代包括而不限於T366S、L368A及Y407A取代。
「初始」胺基酸殘基為由可具有小於或大於該初始殘基之側鏈體積的「輸入」殘基置換者。輸入胺基酸殘基可為天然存在或非天然存在之胺基酸殘基,但較佳為前者。「天然存在之」胺基酸殘基為由遺傳密碼編碼且列於上表2中之彼等殘基。「非天然存在之」胺基酸殘基意謂未由遺傳密碼編碼,但能夠共價結合多肽鏈中之相鄰胺基酸殘基的殘基。非天然存在之胺基酸殘基的實例為正白胺酸、鳥胺酸、正纈胺酸、高絲胺酸及其他胺基酸殘基類似物,諸如Ellman等人,Meth.Enzym.202:301-336(1991)中所述之彼等。為了產生該等非天然存在之胺基酸殘基,可使用Noren等人Science 244:182(1989)及Ellman等人,上述之程序。簡言之,此涉及用非天然存在之胺基酸殘基以化學方式活化抑制因子tRNA,隨後為該RNA之活體外轉錄及轉譯。本文所提供之方法涉及置換至少一種初始胺基酸殘基,但超過一種初始殘基可經置換。通常,僅在第一或第二多肽之界面中的總殘基將包含經置換之初始胺基酸殘基。典型地,用於置換之初始殘基「經掩埋」。「掩埋」意謂溶劑基本上不可及該殘基。一般而言,輸入殘基並非半胱胺酸以防止二硫鍵之可能氧化或錯誤配對。
該突起「可定位於」空腔中,其分別意謂在第一多肽及第二多肽之界面上的突起及空腔之空間位置且該突起及空腔之尺寸使得該突起可 位於該空腔中而不會顯著地擾亂在界面處第一及第二多肽之正常締合。由於諸如Tyr、Phe及Trp之突起不會典型地自界面之軸垂直延伸且具有較佳構形,突起與相應空腔之對準依賴於基於三維結構(諸如藉由X射線結晶學或核磁共振(NMR)獲得者)對突起/空腔對建模。此可使用此項技術中之公認技術實現。
「初始或模板核酸」意謂編碼所關注之多肽的核酸,其可「發生改變」(亦即,經遺傳工程改造或經突變)以編碼突起或空腔。該初始或起始核酸可為天然存在之核酸或可包含已經受先前改變之核酸(例如,人類化抗體片段)。「改變」核酸意謂初始核酸藉由插入、缺失或置換編碼所關注之胺基酸殘基的至少一種密碼子而經突變。通常,編碼初始殘基之密碼子由編碼輸入殘基之密碼子置換。用於以此方式遺傳修飾DNA之技術已回顧於Mutagenesis:a Practical Approach,M.J.McPherson,Ed.,(IRL Press,Oxford,UK.(1991)中,且包括例如定點突變誘發、卡匣突變誘發及聚合酶鏈反應(PCR)突變誘發。藉由使初始/模板核酸突變,由初始/模板核酸編碼之初始/模板多肽因此相應地改變。
該突起或空腔可藉由合成方式,例如藉由重組技術、活體外肽合成、用於引入先前所述之非天然存在之胺基酸殘基的彼等技術、藉由肽之酶促或化學偶合或此等技術之一些組合「引入」至第一或第二多肽之界面中。相應地,「經引入」之突起或空腔為「非天然存在的」或「非原生的」,這意謂其並未存在於自然界中或初始多肽(例如,人類化單株抗體)中。
一般而言,用於形成突起之輸入胺基酸殘基具有相對少量之「旋 轉異構體」(例如,約3-6個)。「旋轉異構體」為胺基酸側鏈之能量上有利之構形。多種胺基酸殘基之旋轉異構體的數目回顧於Ponders及Richards,J.Mol.Biol.193:775-791(1987)中。
在一實施例中,第一Fc多肽及第二Fc多肽在界面處相遇/相互作用。在其中第一及第二Fc多肽在界面處相遇之一些實施例中,第二Fc多肽(序列)之界面包含可定位於在第一Fc多肽(序列)之界面中的空腔(亦稱為「臼」)中之突起(亦稱為「杵」)。在一實施例中,第一Fc多肽已自模板/初始多肽發生改變以編碼空腔或第二Fc多肽已自模板/初始多肽發生改變以編碼突起,或此兩種情況。在一實施例中,第一Fc多肽已自模板/初始多肽發生改變以編碼空腔且第二Fc多肽已自模板/初始多肽發生改變以編碼突起。在一實施例中,第二Fc多肽之界面包含可定位於在第一Fc多肽之界面中的空腔中之突起,其中該空腔或突起或兩者已分別引入至第一及第二Fc多肽之界面中。在其中第一及第二Fc多肽在界面處相遇之一些實施例中,第一Fc多肽(序列)之界面包含可定位於在第二Fc多肽(序列)之界面中的空腔中之突起。在一實施例中,第二Fc多肽已自模板/初始多肽發生改變以編碼空腔或第一Fc多肽已自模板/初始多肽發生改變以編碼突起,或此兩種情況。在一實施例中,第二Fc多肽已自模板/初始多肽發生改變以編碼空腔且第一Fc多肽已自模板/初始多肽發生改變以編碼突起。在一實施例中,第一Fc多肽之界面包含可定位於在第二Fc多肽之界面中的空腔中之突起,其中該突起或空腔或兩者已分別引入至第一及第二Fc多肽之界面中。
在一實施例中,突起及空腔各自包含天然存在之胺基酸殘基。在一實施例中,包含突起之Fc多肽藉由用具有大於初始殘基之側鏈體積的 輸入殘基置換來自模板/初始多肽之界面的初始殘基而產生。在一實施例中,包含突起之Fc多肽藉由如下方法產生,該方法包含以下步驟,其中編碼來自該多肽之界面的初始殘基之聚核苷酸用編碼具有大於初始之側鏈體積的輸入殘基之聚核苷酸置換。在一實施例中,該初始殘基為酥胺酸。在一實施例中,該初始殘基為T366。在一實施例中,該輸入殘基為精胺酸(R)。在一實施例中,該輸入殘基為苯丙胺酸(F)。在一實施例中,該輸入殘基為酪胺酸(Y)。在一實施例中,該輸入殘基為色胺酸(W)。在一實施例中,該輸入殘基為R、F、Y或W。在一實施例中,突起藉由置換模板/初始多肽中之兩種或兩種以上殘基而產生。在一實施例中,包含突起之Fc多肽包含用色胺酸置換在位置366處之酥胺酸,胺基酸根據Kabat等人(第688-696頁Sequences of proteins of immunological interest,第5版,第1卷(1991;NIH,Bethesda,MD))之EU編號方案編號。
在一些實施例中,包含空腔之Fc多肽藉由用具有小於初始殘基之側鏈體積的輸入殘基置換在模板/初始多肽之界面中的初始殘基而產生。例如,包含空腔之Fc多肽可藉由如下方法產生,該方法包含以下步驟,其中編碼來自該多肽之界面的初始殘基之聚核苷酸用編碼具有小於初始之側鏈體積的輸入殘基之聚核苷酸置換。在一實施例中,該初始殘基為酥胺酸。在一實施例中,該初始殘基為白胺酸。在一實施例中,該初始殘基為酪胺酸。在一實施例中,該輸入殘基並非半胱胺酸(C)。在一實施例中,該輸入殘基為丙胺酸(A)。在一實施例中,該輸入殘基為絲胺酸(S)。在一實施例中,該輸入殘基為酥胺酸(T)。在一實施例中,該輸入殘基為纈胺酸(V)。空腔可藉由置換模板/初始多肽之一或多種初始殘基而產生。例如,在一實施例中, 包含空腔之Fc多肽包含選自由酥胺酸、白胺酸及酪胺酸組成之群之兩種或兩種以上初始胺基酸的置換。在一實施例中,包含空腔之Fc多肽包含選自由丙胺酸、絲胺酸、酥胺酸及纈胺酸組成之群之兩種或兩種以上輸入殘基。在一些實施例中,包含空腔之Fc多肽包含選自由酥胺酸、白胺酸及酪胺酸組成之群之兩種或兩種以上初始胺基酸的置換,且其中該等初始胺基酸用選自由丙胺酸、絲胺酸、酥胺酸及纈胺酸組成之群之輸入殘基置換。在一些實施例中,經置換之初始胺基酸為T366、L368及/或Y407。在一實施例中,包含空腔之Fc多肽包含用絲胺酸置換在位置366處之酥胺酸,胺基酸根據Kabat等人上述之EU編號方案編號。在一實施例中,包含空腔之Fc多肽包含用丙胺酸置換在位置368處之白胺酸,胺基酸根據Kabat等人上述之EU編號方案編號。在一實施例中,包含空腔之Fc多肽包含用纈胺酸置換在位置407處之酪胺酸,胺基酸根據Kabat等人上述之EU編號方案編號。在一實施例中,包含空腔之Fc多肽包含選自由T366S、L368A及Y407V組成之群之兩種或兩種以上胺基酸置換,胺基酸根據Kabat等人上述之EU編號方案編號。在此等抗體片段之一些實施例中,包含突起之Fc多肽包含用色胺酸置換在位置366處之酥胺酸,胺基酸根據Kabat等人上述之EU編號方案編號。
在一實施例中,該抗體包含如WO2005/063816中所述構成「杵」及「臼」之Fc突變。例如,臼突變在Fc多肽中可為T366A、L368A及/或Y407V中之一或多者,且杵突變在IgG1或IgG4骨架中可為T366W。其他免疫球蛋白同型中之相等突變可由熟習此項技術者製得。此外,熟練技術人員應容易理解,用於雙特異性之兩種半抗體較佳為相同同型。
CrossMab技術
Schaefer等人(Roche Diagnostics GmbH)描述了一種將源於兩種現有抗體之兩條重鏈及兩條輕鏈表現為人類二價雙特異性IgG抗體而不使用人工連接子之方法(PNAS(2011)108(27):11187-11192及US 2009/0232811)。該方法涉及交換在該雙特異性抗體(CrossMab)之一半的抗原結合片段(Fab)內之一或多個重鏈及輕鏈域。該等輕鏈及其同源重鏈之正確締合藉由交換在該雙特異性抗體之一半的抗原結合片段(Fab)內之重鏈及輕鏈域而實現。此「交越(crossover)」保持抗原結合親和力,但使兩個臂極其不同,以致輕鏈錯誤配對不可再出現。參見WO2009/080251、WO2009/080252、WO2009/080253、WO2009/080254、WO 2010/115589、WO 2010/136172、WO 2010/145792及WO 2010/145793,各自以引用之方式整體併入本文。儘管例如歸因於如「杵臼(KiH)或「CrossMab」技術之方法的開發出現此等最近優勢,多特異性抗體之表現仍可導致與其產生特定地相關之產物特異性雜質之不想要的形成。此等產物特異性雜質例如可包括½抗體(包含單一重鏈/輕鏈對)、¾抗體(包含缺乏單一輕鏈之完整抗體)或5/4抗體副產物(包含額外重鏈或輕鏈可變域)。
BiTE技術
用於雙特異性T細胞銜接子(BiTE)分子之另一形式(參見例如Wolf等人(2005)Drug Discovery Today 10:1237-1244))係基於單鏈可變片段(scFv)分子。scFv由經由可撓性連接子融合之抗體之輕鏈及重鏈可變區組成,該連接子一般可適當地折疊且以致該等區可結合同源抗原。BiTE以串聯形式在單鏈上連接具有不同特異性之兩種scFv。此組態排除了具有相同重鏈 可變區之兩種拷貝之分子的產生。另外,該連接子組態經設計以確保各別輕鏈及重鏈之正確配對。
其他雙特異性抗體形式
Strop等人(Rinat-Pfizer Inc.)描述了一種藉由分別地表現及純化兩種所關注之抗體及接著使其在規定之氧化還原條件下混合在一起而產生穩定雙特異性抗體之方法(J.Mol.Biol.(2012)420:204-19)。
相對於均二聚體對形成雜二聚體具有強烈偏好之其他雜二聚化域可併入至本發明多特異性抗原結合蛋白中。說明性實例包括但不限於例如WO2007147901(Kj
Figure 106120122-A0202-12-0115-70
rgaard等人-Novo Nordisk:描述離子相互作用);WO 2009089004(Kannan等人-Amgen:描述靜電轉向效應);WO 2010/034605(Christensen等人-Genentech;描述纏繞線圈)。亦參見例如Pack,P.及Plueckthun,A.,Biochemistry 31,1579-1584(1992)(描述白胺酸拉鍊)或Pack等人,Bio/Technology 11,1271-1277(1993)(描述螺旋-轉角-螺旋基序)。措辭「雜多聚化域」及「雜二聚化域」在本文中可互換使用。在某些實施例中,該多特異性抗原結合蛋白包含一或多個雜二聚化域。
Zhu等人(Genentech)已工程改造了由完全缺乏恆定域之可變域抗體片段組成之雙功能抗體構築體之VL/VH界面中的突變,且產生了雜二聚體雙功能抗體(Protein Science(1997)6:781-788)。同樣,Igawa等人(Chugai)亦已工程改造了單鏈雙功能抗體之VL/VH界面中的突變以促進該雙功能抗體之選擇性表現且抑制構形性異構化(Protein Engineering,Design & Selection(2010)23:667-677)。
美國專利公開案第2009/0182127號(Novo Nordisk,Inc.)描述了 藉由修飾在Fc界面處及在輕鏈-重鏈對之CH1:CL界面處之胺基酸殘基而產生雙特異性抗體,該等修飾降低了一對輕鏈與另一對重鏈相互作用之能力。
雙特異性抗體包括交聯或「雜結合物」抗體。例如,該雜結合物中之一抗體可偶合至抗生物素蛋白,另一抗體可偶合至生物素。該等抗體已例如經推薦使免疫系統細胞靶向不想要之細胞(美國專利第4,676,980號),及用於治療HIV感染(WO 91/00360、WO 92/200373及EP 03089)。雜結合物抗體可使用任何便利交聯方法製得。合適之交聯劑為此項技術中熟知的,且連同多種交聯技術一起揭示於美國專利第4,676,980號中。
該文獻中亦已描述用於自抗體片段產生雙特異性抗體之技術。例如,雙特異性抗體可使用化學連接製備。Brennan等人,Science 229:81(1985)描述了一種程序,其中完整抗體經蛋白水解裂解以產生F(ab’)2片段。此等片段在二硫醇複合劑亞砷酸鈉存在下經還原以穩定化鄰近二硫醇且防止分子間二硫化物形成。所產生之Fab'片段接著轉化為硫代硝基苯甲酸鹽(TNB)衍生物。該等Fab'-TNB衍生物之一接著藉由用巰基乙胺還原再轉化為Fab'-硫醇且與等莫耳量之另一Fab'-TNB衍生物混合以形成該雙特異性抗體。所產生之雙特異性抗體可用作用於酶之選擇性固定之試劑。
亦已描述了用於直接自重組細胞培養物製造及分離雙特異性抗體片段之多種技術。例如,雙特異性抗體已使用白胺酸拉鍊產生。Kostelny等人,J.Immunol.148(5):1547-1553(1992)。來自Fos及Jun蛋白之白胺酸拉鍊肽藉由基因融合連接至兩種不同抗體之Fab'部分。抗體均二聚體在鉸鏈區經還原以形成單體且接著再氧化以形成抗體雜二聚體。此方法亦可用於 產生抗體均二聚體。由Hollinger等人,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)描述之「雙功能抗體」技術已提供了一種用於製造雙特異性抗體片段之替代機制。該等片段包含藉由連接子連接至輕鏈可變域(VL)之重鏈可變域(VH),該連接子過短而不允許同一鏈上之兩個域之間的配對。相應地,迫使一片段之VH及VL域與另一片段之互補VL及VH域配對,由此形成兩個抗原結合位點。亦已報告了另一藉由使用單鏈Fv(scFv)二聚體來製造雙特異性抗體片段之策略。參見Gruber等人,J.Immunol.152:5368(1994)。
多種雙特異性及多特異性抗體形式之回顧提供於Klein等人,(2012)mAbs 4:6,653-663;Spiess等人(2015)「Alternative molecular formats and therapeutic applications for bispecific antibodies.」Mol.Immunol.2015年1月27日在線公開;doi:10.1016/j.molimm.2015.01.003;及Kontermann等人(2015)Drug Discovery Today 20,838-847中。
聚核苷酸、載體、宿主細胞及重組方法
用於本文所述之純化方法的多特異性抗體可使用此項技術中熟知之方法,包括重組方法獲得。以下章節提供關於此等方法之指導。
聚核苷酸
如本文中可互換使用之「聚核苷酸」或「核酸」係指任何長度之核苷酸的聚合物,且包括DNA及RNA。
編碼多肽之聚核苷酸可獲自任何來源,包括但不限於由咸信具有多肽mRNA且以可偵測水準表現其之組織製備的cDNA文庫。相應地,編碼多肽之聚核苷酸可便利地獲自由人類組織製備之cDNA文庫。該多肽 編碼基因亦可獲自基因組文庫或藉由已知合成程序(例如,自動化核酸合成)獲得。
例如,該聚核苷酸可編碼完整免疫球蛋白分子鏈,諸如輕鏈或重鏈。完整重鏈不僅包括重鏈可變區(VH);而且包括重鏈恆定區(CH),其典型地將包含三個恆定域:CH1、CH2及CH3;及「鉸鏈」區。在一些情況下,恆定區之存在為所需的。
可由該聚核苷酸編碼之其他多肽包括抗原結合抗體片段,諸如單域抗體(「dAb」)、Fv、scFv、Fab'及F(ab')2及「微型抗體」。微型抗體(典型地)為已切除CH1及CK或CL域之二價抗體片段。由於微型抗體小於習知抗體,其應在臨床/診斷用途中實現較佳組織穿透,但其為二價,其應保持高於諸如dAb之單價抗體片段的結合親和力。因此,除非本文另外指示,否則如本文所用之術語「抗體」不僅涵蓋完整抗體分子,而且涵蓋上文所論述之類型的抗原結合抗體片段。較佳地,存在於編碼多肽中之各構架區相對於相應人類受體構架將包含至少一種胺基酸取代。因此,舉例而言,該等構架區可相對於受體構架區包含總計三種、四種、五種、六種、七種、八種、九種、十種、十一種、十二種、十三種、十四種或十五種胺基酸取代。
合適地,本文所述之聚核苷酸可經分離及/或經純化。在一些實施例中,該等聚核苷酸為經分離聚核苷酸。
術語「經分離聚核苷酸」意欲指示該分子自其正常或天然環境移出或分離或已以使得其不存在於其正常或天然環境中之方式產生。在一些實施例中,該等聚核苷酸為經純化聚核苷酸。術語經純化意欲指示已移 除至少一些污染分子或物質。
合適地,該等聚核苷酸實質上經純化,以致相關聚核苷酸構成存在於組合物中之主要(亦即,最豐富)聚核苷酸。
聚核苷酸之表現
以下描述主要係關於藉由培養用含有編碼多肽之聚核苷酸的載體轉型或轉染之細胞來產生多肽。當然,預期可使用此項技術中熟知之替代方法來製備多肽。例如,適當胺基酸序列或其部分可使用固相技術(參見例如Stewart等人,Solid-Phase Peptide Synthesis W.H.Freeman Co.,San Francisco,Calif.(1969);Merrifield,J.Am.Chem.Soc.85:2149-2154(1963))藉由直接肽合成製得。活體外蛋白合成可使用手動技術或藉由自動化執行。自動化合成可例如使用Applied Biosystems肽合成儀(Foster City,Calif.)使用製造商之說明書來實現。該多肽之多個部分可使用化學或酶學方法分別地及組合地以化學方式合成以製造所需多肽。
如本文所述之聚核苷酸插入至表現載體中以產生該等多肽。術語「控制序列」係指在特定宿主生物體中可操作性連接之編碼序列之表現所必需的DNA序列。控制序列包括但不限於啟動子(例如,天然締合或異源啟動子)、信號序列、增強子元件及轉錄終止序列。
當聚核苷酸置於與另一聚核苷酸序列之功能性關係中時,其「經可操作性連接」。例如,若用於前序列或分泌前導序列之核酸表現為參與多肽之分泌的前蛋白,則其可操作性連接至用於多肽之核酸;若啟動子或增強子影響編碼序列之轉錄,則其可操作性連接至該序列;或若核糖體結合位點經定位以便促進轉譯,則其可操作性連接至編碼序列。一般而言, 「可操作性連接」意謂所連接之核酸序列為鄰近的,且在分泌前導序列之情況下為鄰近的且在閱讀相中。然而,增強子不必為鄰近的。連接藉由在便利限制位點處之接合實現。若該等位點不存在,則根據習知規範使用合成寡核苷酸接頭或連接子。
關於抗體,輕鏈及重鏈可選殖於相同或不同表現載體中。編碼免疫球蛋白鏈之核酸區段可操作性連接至表現載體中之控制序列,該等控制序列確保免疫球蛋白多肽之表現。
關於包含四條不同多肽鏈之CrossMab,使用四種表現卡匣。此等卡匣可選殖於兩種至四種不同表現載體中。編碼免疫球蛋白鏈之各核酸區段可操作性連接至表現載體中之控制序列,該等控制序列確保免疫球蛋白多肽之表現。若兩種或兩種以上表現卡匣包含於相同表現載體上,則此等表現卡匣可單向或雙向組織。
含有該等聚核苷酸序列(例如,可變重鏈及/或可變輕鏈編碼序列及視情況選用之表現控制序列)之載體可藉由熟知方法轉移至宿主細胞中,該等方法視細胞宿主之類型而變化。例如,氯化鈣轉染通常用於原核細胞,而磷酸鈣處理、電穿孔、脂質轉染、基因槍或基於病毒之轉染可用於其他細胞宿主。(一般參見Sambrook等人,Molecular Cloning:A Laboratory Manual(Cold Spring Harbor Press,第2版,1989)。用於轉型哺乳動物細胞之其他方法包括使用聚凝胺、原生質體融合物、脂質體、電穿孔及微注射。關於轉殖基因動物之產生,轉殖基因可微注射至受精卵母細胞中,或可併入至胚胎幹細胞之基因組中,且該等細胞之細胞核經轉移至去核卵母細胞中。
載體
術語「載體」包括表現載體及轉型載體及穿梭載體。
術語「表現載體」意謂能夠活體內或活體外表現之構築體。
術語「轉型載體」意謂能夠自一實體轉移至另一實體之構築體,該另一適體可為該物種或可為不同物種。若該構築體能夠自一物種轉移至另一物種(諸如自大腸桿菌質體至細菌,諸如桿菌屬細菌),則該轉型載體有時稱作「穿梭載體」。其甚至可為能夠自大腸桿菌質體轉移至土壤桿菌屬直至植物之構築體。
載體可經轉型至如下文所述之合適宿主細胞中以提供多肽之表現。多種載體為公開可得的。該載體可例如呈質體、黏接質體、病毒粒子或噬菌體之形式。適當核酸序列可藉由多種程序插入至載體中。一般而言,DNA使用此項技術中已知之技術插入至適當限制核酸內切酶位點中。含有此等組分中之一或多者之合適載體的構建使用熟練技術人員已知之標準接合技術。
該等載體可例如為具有複製起點之質體、病毒或噬菌體載體,視情況選用於該聚核苷酸之表現的啟動子及視情況選用之該啟動子之調節因子。載體可含有此項技術中熟知之一或多種可選擇標記基因。
此等表現載體典型地在宿主生物體中可複製,呈游離體形式或作為宿主染色體DNA之主要部分。
關於多特異性抗體產生,編碼該多特異性抗體(或該多特異性抗體之臂,亦即重鏈/輕鏈對)之核酸典型地經分離且插入至可複製載體中用於進一步選殖、擴增及/或用於表現。編碼該抗體之DNA容易地使用習知程 序分離且測序(例如,藉由使用能夠特異性結合於編碼抗體重鏈及輕鏈之基因的寡核苷酸探針)。多種載體為可得的。載體之選擇部分地取決於欲使用之宿主細胞。應瞭解,任何同型之恆定區均可用於此目的,包括IgG、IgM、IgA、IgD及IgE恆定區,且該等恆定區可獲自任何人類或動物物種。
宿主細胞
該宿主細胞可例如為細菌、酵母或其他真菌細胞、昆蟲細胞、植物細胞或哺乳動物細胞。
已經遺傳操縱之轉殖基因多細胞宿主生物體可用於產生多肽。該生物體可為例如轉殖基因哺乳動物生物體(例如,轉殖基因山羊或小鼠株)。
合適原核生物包括但不限於真細菌,諸如革蘭氏陰性或革蘭氏陽性生物體,例如腸桿菌科,諸如大腸桿菌。多種大腸桿菌菌株為公開可得的,諸如大腸桿菌K12菌株MM294(ATCC 31,446);大腸桿菌X1776(ATCC 31,537);大腸桿菌菌株W3110(ATCC 27,325)及K5 772(ATCC 53,635)。其他合適原核宿主細胞包括腸桿菌科,諸如艾氏菌屬(例如大腸桿菌)、腸細菌、伊文氏桿菌屬、克萊桿菌屬、變形桿菌屬、沙門氏桿菌屬(例如沙門氏鼠傷寒桿菌)、鋸桿菌屬(例如黏質沙雷氏菌)及志賀桿菌屬,以及桿菌(諸如枯草桿菌及地衣桿菌(例如地衣桿菌41P))、假單胞菌(諸如綠膿桿菌)及鏈黴菌。此等實例為說明性的而非限制性的。菌株W3110為一種尤其較佳之宿主或親本宿主,因為其為用於重組聚核苷酸產物發酵之常見宿主菌株。較佳地,該宿主細胞分泌最少量之蛋白水解酶。例如,菌株W3110可經修飾以在編碼宿主之內源多肽的基因中實現基因突變,其中該等宿主 之實例包括大腸桿菌W3110菌株1A2,其具有完全基因型tonA;大腸桿菌W3110菌株9E4,其具有完全基因型tonA ptr3;大腸桿菌W3110菌株27C7(ATCC 55,244),其具有完全基因型tonA ptr3 phoA E15(argF-lac)169 degP ompT kan';大腸桿菌W3110菌株37D6,其具有完全基因型tonA ptr3 phoA E15(argF-lac)169 degP ompT rbs7 ilvG kan';大腸桿菌W3110菌株40B4,其為具有非卡那黴素抗性degP缺失突變之菌株37D6;及具有突變型周質蛋白酶之大腸桿菌菌株。或者,活體外選殖方法(例如PCR或其他核酸聚合酶反應)為合適的。在一些實施例中,原核宿主細胞(例如大腸桿菌宿主細胞)表現一或多種伴侶蛋白以促進抗體之折疊及組裝。在一些實施例中,伴侶蛋白為FkpA、DsbA或DsbC中之一或多者。在一些實施例中,伴侶蛋白自內源伴侶蛋白基因表現。在一些實施例中,伴侶蛋白自外源伴侶蛋白基因表現。在一些實施例中,伴侶蛋白基因為大腸桿菌伴侶蛋白基因(例如大腸桿菌FkpA基因、大腸桿菌DsbA基因及/或大腸桿菌DsbC基因)。
在此等原核宿主中,吾人可製得表現載體,該等載體將典型地含有可與宿主細胞(例如複製起點)相容之表現控制序列。另外,將存在任何數目之多種熟知啟動子,諸如乳糖啟動子系統、色胺酸(trp)啟動子系統、β-內醯胺酶啟動子系統或來自噬菌體λ之啟動子系統。該等啟動子將典型地控制表現,視情況使用操縱子序列,且具有用於起始及完成轉錄及轉譯之核糖體結合位點序列及其類似物。
真核微生物可用於表現。諸如絲狀真菌或酵母之真核微生物為用於多肽編碼載體之合適選殖或表現宿主。釀酒酵母為通常使用之低等真核宿主微生物。其他包括粟酒裂殖酵母;克魯維酵母宿主,諸如乳酸克魯 維酵母(MW98-8C、CBS683、CBS4574)、脆壁克魯維酵母(ATCC 12,424)、保加利亞克魯維酵母(ATCC 16,045)、威客克魯維酵母(ATCC 24,178)、瓦爾替克魯維酵母(ATCC 56,500)、果蠅克魯維酵母(ATCC 36,906)、耐熱克魯維酵母及馬克思克魯維酵母;耶氏酵母(EP 402,226);巴斯德畢赤酵母;念珠菌屬;裡氏木黴;粗糙脈胞菌;許旺酵母,諸如西方許旺酵母;及絲狀真菌,諸如脈孢菌、青黴菌屬、彎頸黴屬,及麴菌屬宿主,諸如小巢狀麴菌及黑麴菌。甲基營養型酵母在本文中為合適的且包括但不限於能夠在甲醇上生長之酵母,其選自由漢遜氏菌屬、念珠菌屬、克勒克酵母屬、畢赤酵母菌屬、酵母菌屬、球擬酵母屬及紅酵母屬組成之屬。酵母菌屬為較佳酵母宿主,其中必要時合適載體具有表現控制序列(例如啟動子)、複製起點、終止序列及其類似物。典型啟動子包括3-磷酸甘油酸激酶及其他醣解酶。誘導性酵母啟動子尤其包括來自醇去氫酶、異細胞色素C、及負責麥芽糖及半乳糖利用之酶的啟動子。
除了微生物之外,哺乳動物組織細胞培養物亦可用於表現且產生如本文所述之多肽且在一些情況下為較佳的(參見Winnacker,From Genes to Clones VCH Publishers,N.Y.,N.Y.(1987)。關於一些實施例,真核細胞可為較佳的,因為此項技術中已開發多種能夠分泌異源多肽(例如完整免疫球蛋白)之合適宿主細胞株,且包括CHO細胞株、多種Cos細胞株、海拉細胞,較佳地骨髓瘤細胞株或經轉型B細胞或融合瘤。在一些實施例中,哺乳動物細胞株為CHO細胞。
在一些實施例中,宿主細胞為脊椎動物宿主細胞。適用之哺乳動物宿主細胞株之實例為藉由SV40轉型之猴腎CV1株(COS-7,ATCC CRL 1651);人類胚胎腎株(293或經次選殖用於懸浮培養物中之生長的293細胞);幼倉鼠腎細胞(BHK,ATCC CCL 10);中國倉鼠卵巢細胞/-DHFR(CHO或CHO-DP-12株);小鼠足細胞;猴腎細胞(CV1 ATCC CCL 70);非洲綠猴腎細胞(VERO-76,ATCC CRL-1587);人類子宮頸癌細胞(HELA,ATCC CCL 2);犬腎細胞(MDCK,ATCC CCL 34);布法羅大鼠肝細胞(BRL 3A,ATCC CRL 1442);人類肺細胞(W138,ATCC CCL 75);人類肝細胞(Hep G2,HB 8065);小鼠乳房腫瘤(MMT 060562,ATCC CCL51);TRI細胞;MRC5細胞;FS4細胞;及人類肝細胞瘤株(Hep G2)。
使用原核宿主細胞產生多特異性抗體 載體構建
編碼欲根據本文所提供之方法純化的該多特異性抗體之多肽組分的聚核苷酸序列可使用標準重組技術獲得。所需聚核苷酸序列可自抗體產生細胞(諸如融合瘤細胞)分離及測序。或者,聚核苷酸可使用核苷酸合成儀或PCR技術合成。一旦獲得,編碼該等多肽(諸如兩條或兩條以上重鏈及/或兩條或兩條以上輕鏈)之序列即插入至能夠在宿主細胞(諸如大腸桿菌細胞)中複製且表現異源聚核苷酸之重組載體中。此項技術中可得且已知之多種載體可用於本文所提供之方法及組合物。適當載體之選擇將主要取決於欲插入至該載體中之核酸及欲用該載體轉型之特定宿主細胞的尺寸。各載體含有多種組分,視其功能(異源聚核苷酸之擴增或表現,或兩者)及其與其停留之特定宿主細胞的相容性而定。該等載體組分一般包括但不限於:複製起點、選擇標記基因、啟動子、核糖體結合位點(RBS)、信號序列、異源核酸插入物及轉錄終止序列。
一般而言,源於可與宿主細胞相容之物種的含有複製子及控制序列之質體載體與此等宿主聯合使用。該載體通常攜帶複製位點,以及能夠在經轉型細胞中提供表型選擇之標記序列。例如,大腸桿菌典型地使用源於大腸桿菌物種之質體pBR322轉型。pBR322含有編碼安比西林(Amp)及四環素(Tet)抗性之基因且因此提供用於鑒別經轉型細胞之簡易方式。pBR322、其衍生物或其他微生物質體或噬菌體亦可含有或經修飾含有用於表現內源蛋白之可由微生物使用的啟動子。用於表現特定抗體之pBR322衍生物之實例詳細描述於Carter等人,美國專利第5,648,237號中。
另外,可與宿主微生物相容之含有複製子及控制序列的噬菌體載體可聯合此等宿主用作轉型載體。例如,諸如GEMTM-11之噬菌體可用於製造可用於轉型諸如大腸桿菌LE392之敏感宿主細胞的重組載體。
表現載體可包含兩個或兩個以上啟動子-順反子對,編碼該等多肽組分中之每一者。啟動子為位於順反子上游(5’)之未轉譯調節序列,該順反子調節其表現。原核啟動子典型地屬另個類別,即誘導性及組成性的。誘導性啟動子為在其控制下回應於培養條件之改變(例如,營養物的存在或不存在或溫度改變)起始順反子之增加水準的轉錄之啟動子。
熟知大量由多種潛在宿主細胞識別之啟動子。所選擇之啟動子可藉由經由限制酶消化自來源DNA移出啟動子且將經分離之啟動子序列插入至載體中而可操作性連接至編碼輕鏈或重鏈之順反子DNA。原生啟動子序列及多種異源啟動子均可用於指導靶標基因之擴增及/或表現。在一些實施例中,利用異源啟動子,因為其一般允許如與原生靶標多肽啟動子相比更大之轉錄及所表現之靶標基因的更高產率。
適合用於原核宿主之啟動子包括PhoA啟動子、-內醯胺酶及乳糖啟動子系統、色胺酸(trp)啟動子系統及雜合啟動子(諸如tac或trc啟動子)。然而,在細菌中起作用之其他啟動子(諸如其他已知細菌或噬菌體啟動子)亦合適。其核苷酸序列已經公開,由此使得熟練工人能夠使用連接子或接頭使其可操作性接合至編碼靶標輕鏈及重鏈之順反子(Siebenlist等人,(1980)Cell 20:269)以供應任何所需限制位點。
轉譯起始區(TIR)為蛋白之總體轉譯水準的主要決定因素。TIR包括編碼信號序列之聚核苷酸,且自Shine-Dalgarno序列上游直接地延伸至在起始密碼子下游之大約二十個核苷酸處。一般而言,載體將包含TIR,TIR及變異體TIR為此項技術中已知的且用於產生TIR之方法為此項技術中已知的。一系列核酸序列變異體可以一定範圍之轉譯強度產生,由此提供用於針對多種不同多肽之最佳分泌調節此因素之便利方式。融合至此等變異體之報告基因(諸如PhoA)之使用提供了一種定量不同轉譯起始區之相對轉譯強度的方法。變異體或突變型TIR可在質體載體之背景中提供,由此提供質體之集合,所關注之基因可插入其中且量測其表現,以便針對成熟多肽之最大表現確立轉譯強度之最佳範圍。變異體TIR揭示於USP 8,241,901中。
在一態樣中,在重組載體內之各順反子包含指導所表現之多肽在膜上易位之分泌信號序列組分。一般而言,該信號序列可為載體之組分,或其可為插入至載體中之靶標多肽DNA的一部分。所選擇之信號序列應為由宿主細胞識別及加工(亦即,藉由信號肽酶裂解)者。關於不識別及加工異源多肽之原生信號序列之原核宿主細胞,該信號序列由原核信號序列取代。 該等序列為此項技術中熟知的。另外,載體可包含選自由鹼性磷酸酯酶、青黴素酶、Lpp或熱穩定性腸毒素II(STII)前導序列、LamB、PhoE、PelB、OmpA及MBP組成之群之信號序列。
在一態樣中,一或多種聚核苷酸(例如,表現載體)共同地編碼抗體。在一實施例中,單一聚核苷酸編碼抗體之輕鏈且不同的聚核苷酸編碼抗體之重鏈。在一實施例中,單一聚核苷酸編碼抗體之輕鏈及重鏈。在一些實施例中,一或多種聚核苷酸(例如,表現載體)共同地編碼一臂抗體。在一實施例中,單一聚核苷酸編碼(a)一臂抗體之輕鏈及重鏈,及(b)Fc多肽。在一實施例中,單一聚核苷酸編碼一臂抗體之輕鏈及重鏈,且不同的聚核苷酸編碼Fc多肽。在一實施例中,不同的聚核苷酸分別地編碼一臂抗體之輕鏈組分、一臂抗體之重鏈組分及Fc多肽。一臂抗體之產生描述於例如WO2005063816中。
適用於表現抗體之原核宿主細胞包括古細菌及真細菌,諸如革蘭氏陰性或革蘭氏陽性生物體。適用細菌之實例包括艾氏菌屬(例如大腸桿菌)、桿菌(例如枯草桿菌)、腸細菌、假單胞菌屬(例如綠膿桿菌)、沙門氏鼠傷寒桿菌、黏質沙雷氏菌、克萊桿菌屬、變形桿菌屬、志賀桿菌屬、根瘤菌、透明顫菌或副球菌屬。在一實施例中,使用革蘭氏陰性細胞。在一實施例中,大腸桿菌細胞用作宿主細胞。大腸桿菌菌株之實例包括菌株W3110(Bachmann,Cellular and Molecular Biology,第2卷(Washington,D.C.:American Society for Microbiology,1987),第1190-1219頁;ATCC寄存號27,325)及其衍生物,包括具有基因型W3110△fhuA(△tonA)ptr3 lac Iq lacL8△ompT△(nmpc-fepE)degP41 kanR之菌株33D3(美國專利第5,639,635號) 及菌株63C1及64B4。在一些實施例中,大腸桿菌菌株為命名為62A7(△fhuA(△tonA)ptr3,lacIq,lacL8,ompT△(nmpc-fepE)△degP ilvG修復)之W3110衍生物。其他菌株及其衍生物亦合適,諸如大腸桿菌294(ATCC 31,446)、大腸桿菌B、大腸桿菌λ 1776(ATCC 31,537)及大腸桿菌RV308(ATCC 31,608)。此等實例為說明性的而非限制性的。用於構建具有規定基因型之上文所提及細菌中任一者之衍生物之方法為此項技術中已知的且描述於例如Bass等人,Proteins,8:309-314(1990)中。一般有必要考慮複製子在細菌之細胞中之可複製性來選擇適當細菌。例如,當使用諸如pBR322、pBR325、pACYC177或pKN410之熟知質體來供應複製子時,大腸桿菌、鋸桿菌屬或沙門氏桿菌屬可合適地用作宿主。典型地,宿主細胞應分泌微量的蛋白水解酶,且額外蛋白酶抑制劑可合乎需要地併入細胞培養物中。
為了改良細菌培養物中該等多肽之產生產率及品質,細菌細胞可經修飾。例如,為了改良所分泌之抗體多肽的適當組裝及折疊,細菌宿主細胞可包含表現伴侶蛋白(諸如FkpA及Dsb蛋白(DsbB、DsbC、DsbD及/或DsbG))之額外載體,其可用於共轉型宿主原核細胞。該等伴侶蛋白已證明促進在細菌宿主細胞中產生之異源蛋白的適當折疊及溶解性。
多特異性抗體產生
宿主細胞經上述表現載體轉型且在習知營養培養基中培養,該等營養培養基適當時經改良用於誘導啟動子、選擇轉型體、或擴增編碼所需序列之基因。
轉型意謂將DNA引入至原核宿主中使得該DNA為可複製的,作為染色體外元件或藉由染色體整合體。視所用之宿主細胞而定,轉型使 用適用於該等細胞之標準技術來進行。使用氯化鈣之鈣處理一般用於含有實質性細胞壁障壁之細菌細胞。用於轉型之另一方法使用聚乙二醇/DMSO。所用之另一技術為電穿孔。
用於產生根據本文所提供之方法純化之多肽的原核細胞在此項技術中已知且適用於培養所選擇之宿主細胞的培養基中生長。合適培養基之實例包括Luria肉湯(LB)加上必需營養補充物。在一些實施例中,該等培養基亦含有基於表現載體之構建選擇的選擇劑,以選擇性地允許含有該表現載體之原核細胞的生長。例如,安比西林添加至培養基中用於表現安比西林抗性基因之細胞的生長。
除碳、氮及無機磷酸鹽來源外之任何必需補充物亦可以適當濃度包括在內,單獨或作為與另一補充物或培養基之混合物(諸如複合氮源)引入。視情況,培養基可含有一或多種選自由麩胱甘肽、半胱胺酸、胱胺、硫乙醇酸鹽、二硫赤藻糖醇及二硫蘇糖醇組成之群之還原劑。
原核宿主細胞在合適溫度下培養。關於大腸桿菌生長,舉例而言,較佳溫度介於約20℃至約39℃、更佳地約25℃至約37℃範圍內,甚至更佳地在約30℃下。培養基之pH可為介於約5至約9範圍內之任何pH,主要視宿主生物體而定。關於大腸桿菌,pH較佳為約6.8至約7.4,且更佳為約7.0。
若誘導性啟動子用於表現載體中,則蛋白表現在適用於活化該啟動子之條件下經誘導。在一態樣中,PhoA啟動子用於控制該等多肽之轉錄。相應地,經轉型宿主細胞在用於誘導之磷酸鹽限制培養基中培養。較佳地,該磷酸鹽限制培養基為C.R.A.P培養基(參見例如Simmons等人,J. Immunol.Methods(2002),263:133-147)或WO2002/061090中所述之培養基。如此項技術中已知,根據所用之載體構築體,可使用多種其他誘導劑。
在一實施例中,欲使用本文所提供之方法純化的所表現多肽經分泌至宿主細胞之周質中且自其回收。蛋白回收典型地涉及破壞生物體,一般藉由諸如滲透衝擊、音波處理或溶解之方式。一旦細胞經破壞,可藉由離心或過濾移除細胞碎片或全細胞。該等蛋白可進一步例如藉由親和力樹脂層析來純化。或者,蛋白可轉運至培養基中且在其中經分離。細胞可自培養物移出且培養物上清液經過濾及濃縮用於所產生之蛋白的進一步純化。所表現之多肽可使用通常已知之方法進一步分離及鑒別,諸如聚丙烯醯胺凝膠電泳(PAGE)及免疫印跡分析(Western blot assay)。
在一態樣中,藉由發酵過程大量進行抗體產生。多種大規模分批饋料發酵程序可用於產生重組多肽。大規模發酵具有至少1000公升之容量,較佳地約1,000至100,000公升之容量。此等發酵器使用攪拌器葉輪來分佈氧氣及營養物,尤其葡萄糖(較佳碳/能源)。小規模發酵一般係指在不超過大約100公升體積容量之發酵器中發酵,且可介於約1公升至約100公升範圍內。
在發酵過程中,蛋白表現之誘導典型地在細胞已在合適條件下生長至所需密度(例如約180-220之OD550)之後起始,在此階段該等細胞處於早期靜止期。如此項技術中已知及上文所述,根據所用之載體構築體,可使用多種誘導劑。細胞可在誘導之前生長持續較短時期。細胞通常經誘導持續約12-50小時,不過可使用更長或更短誘導時間。
為了改良該等多肽之產生產率及品質,可修改多種發酵條件。 例如,為了改良所分泌之抗體多肽的適當組裝及折疊,表現伴侶蛋白(諸如FkpA、DsbA及/或DsbC)之額外載體可用於共轉型宿主原核細胞。該等伴侶蛋白已證明促進在細菌宿主細胞中產生之異源蛋白的適當折疊及溶解性。在一些實施例中,FkpA、DsbA及/或DsbC在細菌宿主細胞中表現。
為了使所表現之異源蛋白(尤其對蛋白水解敏感之彼等)的蛋白水解減至最少,可使用某些缺乏蛋白水解酶之宿主菌株。例如,宿主細胞菌株可經修飾以在編碼已知細菌蛋白酶之基因中實現基因突變,該等蛋白酶諸如蛋白酶III、OmpT、DegP、Tsp、蛋白酶I、蛋白酶Mi、蛋白酶V、蛋白酶VI及其組合。一些大腸桿菌蛋白酶缺乏菌株可獲得且描述於例如Joly等人,(1998),上述;Georgiou等人,美國專利第5,264,365號;Georgiou等人,美國專利第5,508,192號;Hara等人,Microbial Drug Resistance,2:63-72(1996)中。
在一實施例中,缺乏蛋白水解酶且經表現一或多種伴侶蛋白之質體轉型的大腸桿菌菌株在表現系統中用作宿主細胞
使用真核宿主細胞產生多特異性抗體 信號序列組分
用於真核宿主細胞之載體可視情況含有信號序列或在所關注之成熟蛋白或多肽之N端處具有特異性裂解位點之其他多肽。較佳地選擇之異源信號序列為由宿主細胞識別及加工(亦即,藉由信號肽酶裂解)者。在哺乳動物細胞表現中,可獲得哺乳動物信號序列以及病毒性分泌前導序列,例如單純皰疹gD信號。用於該前驅體區之DNA在閱讀框中接合至編碼所需雜多聚體蛋白(例如抗體)之DNA。
複製起點
一般而言,複製起點組分並非哺乳動物表現載體所需。例如,可典型地使用SV40起點,但僅因為其含有早期啟動子。
選擇基因組分
表現及選殖載體可含有選擇基因,該選擇基因亦稱作可選擇標記物。典型選擇基因編碼(a)賦予對抗生素或其他毒素(例如安比西林、新黴素、胺甲喋呤或四環素)之抗性,(b)補充相關的營養缺陷型缺乏,或(c)供應無法自複合培養基獲得之關鍵營養物的蛋白。
選擇機制之一實例利用藥物來阻止宿主細胞之生長。用異源基因成功地轉型之彼等細胞產生賦予抗藥性之蛋白且因此經受得住該選擇方案。該顯性選擇之實例使用藥物新黴素、黴酚酸及潮黴素。
用於哺乳動物細胞之合適可選擇標記物之另一實例為使得能夠鑒別有能力吸收抗體核酸之細胞的彼等標記物,諸如DHFR、胸苷激酶、金屬硫蛋白-I及-II(較佳地靈長類動物金屬硫蛋白基因)、腺苷去胺酶、鳥胺酸去羧酶等。
例如,用DHFR選擇基因轉型之細胞首先藉由在含有DHFR之競爭性拮抗劑胺甲喋呤(Mtx)之培養基中培養所有轉型體來鑒別。當使用野生型DHFR時,適當宿主細胞為缺乏DHFR活性之中國倉鼠卵巢(CHO)細胞株(例如ATCC CRL-9096)。
或者,用編碼抗體之DNA序列、野生型DHFR蛋白及諸如胺基糖苷3'-磷酸轉移酶(APH)之另一可選擇標記物轉型或共轉型之宿主細胞(尤其含有內源DHFR之野生型宿主)可藉由在含有用於可選擇標記物之選擇劑 的培養基中進行細胞生長來選擇,該選擇劑諸如胺基糖苷抗生素,例如卡那黴素、新黴素或G418。參見例如美國專利第4,965,199號。
啟動子組分
表現及選殖載體通常含有由宿主生物體識別且可操作性連接至所需含鉸鏈多肽(例如抗體)核酸之啟動子。已知用於真核細胞之啟動子序列。實際上所有真核基因均具有位於起始轉錄之位點上游大約25至30個鹼基處的富AT區。在多種基因之轉錄開始上游70至80個鹼基處發現的另一序列為CNCAAT區,其中N可為任何核苷酸。在大多數真核基因之3'末端處為AATAAA序列,其可為用於添加聚腺苷酸尾至編碼序列之3'末端中的信號。所有此等序列均合適地插入至真核表現載體中。
哺乳動物宿主細胞中載體之所需重鏈及/或輕鏈轉錄例如藉由獲自病毒(諸如多瘤病毒、鳥痘病毒、腺病毒(諸如腺病毒2)、牛乳頭狀瘤病毒、禽肉瘤病毒、細胞巨化病毒、逆轉錄病毒、B型肝炎病毒及猿病毒40(SV40))之基因組、獲自異源哺乳動物啟動子(例如肌動蛋啟動子或免疫球蛋白啟動子)、或獲自熱休克啟動子之啟動子控制,限制條件在於該等啟動子可與宿主細胞系統相容。
SV40病毒之早期及晚期啟動子便利地以亦含有SV40病毒複製起點之SV40限制片段形式獲得。人類細胞巨化病毒之即刻早期啟動子便利地以Hind III E限制片段形式獲得。使用牛乳頭狀瘤病毒作為載體在哺乳動物宿主中表現DNA之系統揭示於美國專利第4,419,446號中。此系統之修改描述於美國專利第4,601,978號中。關於在來自單純皰疹病毒之胸苷激酶啟動子控制下人類b-干擾素eDNA在小鼠細胞中之表現,亦參見Reyes等 人,Nature 297:598-601(1982)。或者,勞斯肉瘤病毒長末端重複序列可用作啟動子。
增強子元件組分
由高等真核細胞轉錄編碼所需含鉸鏈多肽(例如抗體)之DNA可藉由將增強子序列插入至載體中來增加。現已知多種增強子序列來自哺乳動物基因(例如,球蛋白、彈性蛋白酶、白蛋白、a-胎蛋白及胰島素基因)。又,吾人可使用來自真核細胞病毒之增強子。實例包括在複製起點(bp 100-270)之後側上的SV40增強子、細胞巨化病毒早期啟動子增強子、在複製起點之後側上的多瘤病毒增強子及腺病毒增強子。關於用於增強真核啟動子之活化之元件的描述,亦參見Yaniv,Nature 297:17-18(1982)。該增強子可剪接至載體中在抗體多肽編碼序列之位置5'或3'處,限制條件在於實現增強,但一般地位於啟動子之位點5'處。
轉錄終止組分
用於真核宿主細胞中之表現載體典型地亦將含有轉錄終止及穩定化mRNA所必需之序列。該等序列通常可自真核或病毒DNA或cDNA之5'及偶爾3'未轉譯區獲得。此等區含有轉錄為編碼抗體之mRNA之未轉譯部分中之聚腺苷酸化片段的核苷酸區段。一種適用之轉錄終止組分為牛生長激素聚腺苷酸化區。參見WO 94/11026及其中所揭示之表現載體。
宿主細胞之選擇及轉型
用於在本文中之載體中選殖或表現DNA之合適宿主細胞包括本文所述之高等真核細胞,包括脊椎動物宿主細胞。培養物(組織培養物)中脊椎動物細胞之增殖已成為常規程序。適用之哺乳動物宿主細胞株之實 例為藉由SV40轉型之猴腎CV1株(COS-7,ATCC CRL 1651);人類胚胎腎株(293或經次選殖用於懸浮培養物中之生長的293細胞,Graham等人,J.Gen Viral.36:59(1977));幼倉鼠腎細胞(BHK,ATCC CCL 10);中國倉鼠卵巢細胞/-DHFR(CHO,Urlaub等人,Proc.Nat/.Acad.Sci.USA 77:4216(1980));小鼠足細胞(TM4,Mather,Biol.Reprod.23:243-251(1980));猴腎細胞(CV1 ATCC CCL 70);非洲綠猴腎細胞(VERO-76,ATCC CRL-1587);人類子宮頸癌細胞(HELA,ATCC CCL 2);犬腎細胞(MDCK,ATCC CCL 34);布法羅大鼠肝細胞(BRL 3A,ATCC CRL 1442);人類肺細胞(W138,ATCC CCL 75);人類肝細胞(Hep G2,HB 8065);小鼠乳房腫瘤(MMT 060562,ATCC CCL51);TRI細胞(Mather等人,Annals N.Y.Acad.Sci.383:44-68(1982));MRC 5細胞;FS4細胞;及人類肝細胞瘤株(Hep G2)。
宿主細胞經上文關於所需含鉸鏈多肽(例如抗體)產生所述之表現或選殖載體轉型且在習知營養培養基中培養,該等營養培養基適當時經改良用於誘導啟動子、選擇轉型體、或擴增編碼所需序列之基因。
培養宿主細胞
用於產生多特異性抗體(例如雙特異性抗體)之宿主細胞可在多種培養基中培養。諸如Ham氏F10(Sigma)、最低必需培養基((MEM),(Sigma),RPMI-1640(Sigma)及杜氏改良伊格爾氏培養基((DMEM),Sigma)之市售培養基適用於培養宿主細胞。另外,Ham等人,Meth.Enz.58:44(1979);Barnes等人,Anal.Biochem.102:255(1980);美國專利第4,767,704號;第4,657,866號;第4,927,762號;第4,560,655號;或第5,122,469號;WO 90/03430;WO 87/00195;或美國專利再審30,985中所述之任何培養基均可用作該等 宿主細胞之培養基。任何此等培養基均可在必要時補充激素及/或其他生長因子(諸如胰島素、轉鐵蛋白或表皮生長因子)、鹽(諸如氯化鈉、鈣、鎂及磷酸鹽)、緩衝液(諸如HEPES)、核苷酸(諸如腺苷及胸苷)、抗生素(諸如GENTAMYCINTM藥物)、痕量元素(定義為通常以微莫耳濃度範圍內之最終濃度存在的無機化合物)及葡萄糖或相等能源。亦可包括在熟習此項技術者將已知之適當濃度下之任何其他必要補充物。諸如溫度、pH及其類似因素之培養條件為先前用於針對表現所選擇之宿主細胞的彼等條件,且將為一般技術者顯而易知的。
多特異性抗體形成/組裝
在某些實施例中,本文提供用於產生多特異性抗體之方法。在某些實施例中,多特異性抗體藉由獨立地產生半抗體而產生,各半抗體包含結合特異性抗原決定基(例如,在單一靶標上之不同抗原決定基,或在兩種或兩種以上靶標上之不同抗原決定基)之VH/VL單元。在一些實施例中,各半抗體在宿主細胞中獨立地產生。在一些實施例中,各半抗體在相同宿主細胞中產生。該等半抗體混合且使其組裝成多特異性抗體。在一些實施例中,各半抗體在相同宿主細胞中一起產生。在一些實施例中,宿主細胞(諸如原核宿主細胞,例如大腸桿菌細胞)表現伴侶蛋白,諸如FkpA、DsbA及/或DsbC,以促進半抗體之折疊。
在一些實施例中,含有杵或臼突變之半抗體在獨立培養物中藉由在例如大腸桿菌之細菌宿主細胞中表現重鏈及輕鏈構築體而產生。各半抗體可獨立地藉由蛋白A親和力層析來純化。來自杵及臼半抗體之澄清細胞萃取物可藉由蛋白A管柱純化。蛋白A純化之具有不同特異性之半抗體 可經組裝以在還原劑存在下在活體外氧化還原反應中形成雙特異性抗體。
在一些實施例中,含有杵或臼突變之半抗體在相同培養物中藉由在例如大腸桿菌宿主細胞或CHO宿主細胞之細菌宿主細胞中表現重鏈及輕鏈構築體而產生。該等半抗體可藉由蛋白A親和力層析純化。來自杵及臼半抗體之澄清細胞萃取物可藉由蛋白A管柱純化。蛋白A純化之具有不同特異性之半抗體可經組裝以在還原劑存在下在活體外氧化還原反應中形成雙特異性抗體。
任何合適方法均可用於製備所需還原條件。例如,所需還原條件可藉由向反應(諸如本文所述之組裝混合物)中添加還原劑來製備。合適還原劑包括而不限於二硫蘇糖醇(DTT)、三(2-羧基乙基)膦(TCEP)、硫乙醇酸、抗壞血酸、硫醇乙酸、麩胱甘肽(GSH)、β-巰基乙胺、半胱胺酸/胱胺酸、GSH/二硫化麩胱甘肽(GSSG)、半胱胺/胱胺、甘胺醯基半胱胺酸及β-巰基乙醇,較佳地GSH。在某些特定實施例中,還原劑為弱還原劑,包括而不限於GSH、β-巰基乙胺、半胱胺酸/胱胺酸、GSH/GSSG、半胱胺/胱胺、甘胺醯基半胱胺酸及β-巰基乙醇,較佳地GSH。在某些較佳實施例中,還原劑為GSH。在某些實施例中,還原劑並非DTT。在一般技術者之能力內選擇在合適濃度下且在合適實驗條件下之合適還原劑以在反應中實現所需還原條件。例如,在20℃下在具有10g/L之雙特異性抗體蛋白濃度之溶液中的10mM L-還原麩胱甘肽將產生約-400mV之起始氧化還原電位。例如,添加至組裝混合物中之麩胱甘肽會產生有利於杵臼雙特異性組裝之弱還原條件。呈相似類別之其他還原劑可具有相似效應,諸如β-巰基乙胺(BMEA;Beta-MercaptoEthylAmine)。參見WO2013/055958,以引用之方式整體併入 本文中。反應之還原條件可估計及使用此項技術中已知之任何合適方法量測。例如,還原條件可使用刃天青指示劑量測(在還原條件下自藍色褪色為無色)。關於更精確量測,可使用氧化還原電位計(諸如由BROADLEY JAMES®製得之ORP電極)。
在某些特定實施例中,還原條件為弱還原條件。如本文所用,術語「弱還原劑」或「弱還原條件」係指在25℃下具有負氧化電位之還原劑或由該還原劑製備之還原條件。當pH在7與9之間且溫度在15℃與39℃之間時,還原劑之氧化電位較佳地在-50至-600mV、-100至-600mV、-200至-600mV、-100至-500mV、-150至-300mV之間,更佳地在約-300至-500mV之間,最佳地為約-400mV。熟習此項技術者將能夠選擇用於製備所需還原條件之合適還原劑。熟練研究人員將認識到強還原劑(亦即,關於相同濃度、pH及溫度具有比上文所提及之還原劑更具負性之氧化電位者)可以較低濃度使用。在一較佳實施例中,當在上述條件下培育時,該等蛋白將能夠在還原劑存在下形成二硫鍵。弱還原劑之實例包括而不限於麩胱甘肽、β-巰基乙胺、半胱胺酸/胱胺酸、GSH/GSSG、半胱胺/胱胺、甘胺醯基半胱胺酸及β-巰基乙醇。在某些實施例中,類似於200X莫耳比率之GSH:抗體之氧化電位的氧化電位可用作弱還原條件之參考點,此時可預期使用其他還原劑之有效組裝。
麩胱甘肽濃度可以體積莫耳濃度或以相對於存在於組裝混合物中之半抗體的量之莫耳比率或莫耳過量表述。使用還原劑對照物關於組裝混合物中之蛋白濃度的靶標莫耳比率;此舉防止由於可變蛋白濃度而引起之過還原或還原不足。在某些其他實施例中,還原劑以相對於半抗體之總 量2-600X、2-200X、2-300X、2-400X、2-500X、2-20X、2-8X、20-50X、50-600X、50-200X或100-300X莫耳過量,較佳地50-400X或50-150X,更佳地100-300X,且最佳地200X或100X莫耳過量添加至組裝混合物中。在某些實施例中,該組裝混合物具有在7與9之間之pH,較佳地pH 8.5或8.3。
亦提供免疫結合物(可互換地稱作「抗體-藥物結合物」或「ADC」),其包含任何結合至例如細胞毒性劑之本文所述之抗體,該細胞毒性劑諸如化學治療劑、藥物、生長抑制劑、毒素(例如細菌、真菌、植物或動物起源之酶活性毒素,或其片段)或放射性同位素(亦即,放射性結合物)。
抗原/靶標分子
可由根據本文所述之方法純化之多特異性抗體靶向的分子之實例包括但不限於可溶性血清蛋白及其受體及其他膜結合蛋白(例如,黏附素)。在某些實施例中,根據本文所述之方法純化之多特異性抗體能夠結合一種、兩種或超過兩種細胞因子、細胞因子相關蛋白及選自由以下組成之群之細胞因子受體:8MPI、8MP2、8MP38(GDFIO)、8MP4、8MP6、8MP8、CSFI(M-CSF)、CSF2(GM-CSF)、CSF3(G-CSF)、EPO、FGF1(αFGF)、FGF2(βFGF)、FGF3(int-2)、FGF4(HST)、FGF5、FGF6(HST-2)、FGF7(KGF)、FGF9、FGF10、FGF11、FGF12、FGF12B、FGF14、FGF16、FGF17、FGF19、FGF20、FGF21、FGF23、IGF1、IGF2、IFNA1、IFNA2、IFNA4、IFNA5、IFNA6、IFNA7、IFN81、IFNG、IFNWI、FEL1、FEL1(ε)、FEL1(ζ)、IL 1A、IL 1B、IL2、IL3、IL4、IL5、IL6、IL7、IL8、IL9、IL10、IL 11、IL 12A、IL 12B、IL 13、IL 14、IL 15、IL 16、IL 17、IL 17B、IL 18、IL 19、IL20、IL22、IL23、IL24、IL25、IL26、IL27、IL28A、IL28B、IL29、IL30、IL33、PDGFA、 PDGFB、TGFA、TGFB1、TGFB2、TGFBb3、LTA(TNF-β)、LTB、TNF(TNF-α)、TNFSF4(OX40配位體)、TNFSF5(CD40配位體)、TNFSF6(FasL)、TNFSF7(CD27配位體)、TNFSF8(CD30配位體)、TNFSF9(4-1 BB配位體)、TNFSF10(TRAIL)、TNFSF11(TRANCE)、TNFSF12(APO3L)、TNFSF13(April)、TNFSF13B、TNFSF14(HVEM-L)、TNFSF15(VEGI)、TNFSF18、HGF(VEGFD)、VEGF、VEGFB、VEGFC、IL1R1、IL1R2、IL1RL1、IL1RL2、IL2RA、IL2RB、IL2RG、IL3RA、IL4R、IL5RA、IL6R、IL7R、IL8RA、IL8RB、IL9R、IL10RA、IL10RB、IL 11RA、IL12RB1、IL12RB2、IL13RA1、IL13RA2、IL15RA、IL17R、IL18R1、IL20RA、IL21R、IL22R、IL1HY1、IL1RAP、IL1RAPL1、IL1RAPL2、IL1RN、IL6ST、IL18BP、IL18RAP、IL22RA2、AIF1、HGF、LEP(瘦素)、PTN及THPO。
在某些實施例中,根據本文所述之方法純化之多特異性抗體能夠結合趨化因子、趨化因子受體、或選自由以下組成之群之趨化因子相關蛋白:CCLI(1-309)、CCL2(MCP-1/MCAF)、CCL3(MIP-Iα)、CCL4(MIP-Iβ)、CCL5(RANTES)、CCL7(MCP-3)、CCL8(mcp-2)、CCL11(噬酸性細胞趨化因子)、CCL 13(MCP-4)、CCL 15(MIP-Iδ)、CCL 16(HCC-4)、CCL 17(TARC)、CCL 18(PARC)、CCL 19(MDP-3b)、CCL20(MIP-3α)、CCL21(SLC/exodus-2)、CCL22(MDC/STC-1)、CCL23(MPIF-1)、CCL24(MPIF-2/噬酸性細胞趨化因子-2)、CCL25(TECK)、CCL26(噬酸性細胞趨化因子-3)、CCL27(CTACK/ILC)、CCL28、CXCLI(GROI)、CXCL2(GR02)、CXCL3(GR03)、CXCL5(ENA-78)、CXCL6(GCP-2)、CXCL9(MIG)、CXCL 10(IP 10)、CXCL 11(1-TAC)、CXCL 12(SDFI)、CXCL 13、CXCL 14、CXCL 16、 PF4(CXCL4)、PPBP(CXCL7)、CX3CL 1(SCYDI)、SCYEI、XCLI(淋巴細胞趨化因子)、XCL2(SCM-Iβ)、BLRI(MDR15)、CCBP2(D6/JAB61)、CCRI(CKRI/HM145)、CCR2(mcp-IRB IRA)、CCR3(CKR3/CMKBR3)、CCR4、CCR5(CMKBR5/ChemR13)、CCR6(CMKBR6/CKR-L3/STRL22/DRY6)、CCR7(CKR7/EBII)、CCR8(CMKBR8/TER1/CKR-L1)、CCR9(GPR-9-6)、CCRL1(VSHK1)、CCRL2(L-CCR)、XCR1(GPR5/CCXCR1)、CMKLR1、CMKOR1(RDC1)、CX3CR1(V28)、CXCR4、GPR2(CCR10)、GPR31、GPR81(FKSG80)、CXCR3(GPR9/CKR-L2)、CXCR6(TYMSTR/STRL33/Bonzo)、HM74、IL8RA(IL8Rα)、IL8RB(IL8Rβ)、LTB4R(GPR16)、TCP10、CKLFSF2、CKLFSF3、CKLFSF4、CKLFSF5、CKLFSF6、CKLFSF7、CKLFSF8、BDNF、C5R1、CSF3、GRCC10(C10)、EPO、FY(DARC)、GDF5、HDF1、HDF1α、DL8、PRL、RGS3、RGS13、SDF2、SLIT2、TLR2、TLR4、TREM1、TREM2及VHL。
在某些實施例中,根據本文所述之方法純化的多特異性抗體能夠結合一或多種選自由以下組成之群之靶標:ABCF1;ACVR1;ACVR1B;ACVR2;ACVR2B;ACVRL1;ADORA2A;Aggrecan;AGR2;AICDA;AIF1;AIG1;AKAP1;AKAP2;AMH;AMHR2;ANGPTL;ANGPT2;ANGPTL3;ANGPTL4;ANPEP;APC;APOC1;AR;AZGP1(鋅-a-醣蛋白);B7.1;B7.2;BAD;BAFF(BLys);BAG1;BAI1;BCL2;BCL6;BDNF;BLNK;BLRI(MDR15);BMP1;BMP2;BMP3B(GDF10);BMP4;BMP6;BMP8;BMPR1A;BMPR1B;BMPR2;BPAG1(糙皮側耳凝集素基因);BRCA1;C19orf10(IL27w);C3;C4A;C5;C5R1;CA125;CA15-3;CA19-9; CANT1;CASP1;CASP4;CAV1;CCBP2(D6/JAB61);CCL1(1-309);CCL11(噬酸性細胞趨化因子);CCL13(MCP-4);CCL15(MIP1δ);CCL16(HCC-4);CCL17(TARC);CCL18(PARC);CCL19(MIP-3β);CCL2(MCP-1);MCAF;CCL20(MIP-3α);CCL21(MTP-2);SLC;exodus-2;CCL22(MDC/STC-1);CCL23(MPIF-1);CCL24(MPIF-2/噬酸性細胞趨化因子-2);CCL25(TECK);CCL26(噬酸性細胞趨化因子-3);CCL27(CTACK/ILC);CCL28;CCL3(MTP-Iα);CCL4(MDP-Iβ);CCL5(RANTES);CCL7(MCP-3);CCL8(mcp-2);CCNA1;CCNA2;CCND1;CCNE1;CCNE2;CCR1(CKRI/HM145);CCR2(mcp-IRβ/RA);CCR3(CKR/CMKBR3);CCR4;CCR5(CMKBR5/ChemR13);CCR6(CMKBR6/CKR-L3/STRL22/DRY6);CCR7(CKBR7/EBI1);CCR8(CMKBR8/TER1/CKR-L1);CCR9(GPR-9-6);CCRL1(VSHK1);CCRL2(L-CCR);CD11a;CD13;CD164;CD19;CD1C;CD20;CD200;CD22;CD23;CD24;CD28;CD3;CD30;CD31;CD33;CD34;CD35;CD37;CD38;CD39;CD3E;CD3G;CD3Z;CD4;CD40;CD40L;CD41;CD44;LCA/CD45;CD45RA;CD45RB;CD45RO;CD5;CD52;CD69;CD7;CD71;CD72;CD74;CD79A;CD79B;CD8;CD80;CD81;CD83;CD86;CD95/Fas;CD99;CD100;CD106;CDH1(E-鈣黏素);CD9/p24;CDH10;CD11a;CD11c;CD13;CD14;CD19,CD20;CDH12;CDH13;CDH18;CDH19;CDH20;CDH5;CDH7;CDH8;CDH9;CDK2;CDK3;CDK4;CDK5;CDK6;CDK7;CDK9;CDKN1A(p21/WAF1/Cip1);CDKN1B(p27/Kip1);CDKN1C;CDKN2A(P16INK4a);CDKN2B;CDKN2C;CDKN3;CEA;CEBPB;CER1;CHGA;CHGB;幾丁質酶;CHST10;CKLFSF2; CKLFSF3;CKLFSF4;CKLFSF5;CKLFSF6;CKLFSF7;CKLFSF8;CLDN3;CLDN7(水閘蛋白-7);CLN3;CLU(聚集素);C-MET;CMKLR1;CMKOR1(RDC1);CNR1;COL 18A1;COL1A1;COL4A3;COL6A1;CR2;CRP;CSFI(M-CSF);CSF2(GM-CSF);CSF3(GCSF);CTLA4;CTNNB1(b-連環素);CTSB(組織蛋白酶B);CTSD(組織蛋白酶D);CX3CL1(SCYDI);CX3CR1(V28);CXCL1(GRO1);CXCL10(IP-10);CXCL11(I-TAC/IP-9);CXCL12(SDF1);CXCL13;CXCL14;CXCL16;CXCL2(GRO2);CXCL3(GRO3);CXCL5(ENA-78/LIX);CXCL6(GCP-2);CXCL9(MIG);CXCR3(GPR9/CKR-L2);CXCR4;CXCR6(TYMSTR/STRL33/Bonzo);CYB5;CYC1;CYSLTR1;細胞角蛋白;DAB2IP;DES;DKFZp451J0118;DNCLI;DPP4;E2F1;ECGF1;EDG1;EFNA1;EFNA3;EFNB2;EGF;EGFR;ELAC2;ENG;ENO1;ENO2;ENO3;EPHB4;EPO;ERBB2(Her-2);EREG;ERK8;ESR1;雌激素受體;孕酮受體;ESR2;F3(TF);FADD;FasL;FASN;FCER1A;FCER2;FCGR3A;FGF;FGF1(□FGF);FGF10;FGF11;FGF12;FGF12B;FGF13;FGF14;FGF16;FGF17;FGF18;FGF19;FGF2(bFGF);FGF20;FGF21;FGF22;FGF23;FGF3(int-2);FGF4(HST);FGF5;FGF6(HST-2);FGF7(KGF);FGF8;FGF9;FGFR1;FGFR3;FIGF(VEGFD);FEL1(ε);纖維蛋白;FIL1(ζ);FLJ12584;FLJ25530;FLRTI(纖維連接蛋白);FLT1;FOS;FOSL1(FRA-1);FY(DARC);GABRP(GABAa);GAGEB1;GAGEC1;GALNAC4S-6ST;GATA3;GDF5;GFI1;GGT1;GM-CSF;GNASI;GNRHI;GPR2(CCR10);GPR31;GPR44;GPR81(FKSG80);GRCCIO(C10);GRP;GSN(凝溶膠蛋白);GSTP1;HAVCR2;HDAC4; HDAC5;HDAC7A;HDAC9;HGF;HIF1A;HOP1;組胺及組胺受體;HLA-A;HLA-DRA;HM74;HMOXI;HPV蛋白;HUMCYT2A;ICEBERG;ICOSL;1D2;IFN-a;IFNA1;IFNA2;IFNA4;IFNA5;IFNA6;IFNA7;IFNB1;IFNγ;ITGB7;DFNW1;IGBP1;IGF1;IGF1R;IGF2;IGFBP2;IGFBP3;IGFBP6;介白素,諸如IL1-IL36或其受體,包括IL-1;IL10;IL10RA;IL10RB;IL11;IL11RA;IL-12;IL12A;IL12B;IL12RB1;IL12RB2;IL13;IL13RA1;IL13RA2;IL14;IL15;IL15RA;IL16;IL17;IL17B;IL17C;IL17R;IL18;IL18BP;IL18R1;IL18RAP;IL19;IL1A;IL1B;ILIF10;IL1F5;IL1F6;IL1F7;IL1F8;IL1F9;IL1HY1;IL1R1;IL1R2;IL1RAP;IL1RAPL1;IL1RAPL2;IL1RL1;IL1RL2,ILIRN;IL2;IL20;IL20RA;IL21R;IL22;IL22R;IL22RA2;IL23;IL24;IL25;IL26;IL27;IL28A;IL28B;IL29;IL2RA;IL2RB;IL2RG;IL3;IL30;IL3RA;IL33;IL4;IL4R;IL5;IL5RA;IL6;IL6R;IL6ST(醣蛋白130);P-醣蛋白;EL7;EL7R;EL8;IL8RA;DL8RB;IL8RB;DL9;DL9R;DLK;INHA;INHBA;INSL3;INSL4;IRAK1;ERAK2;ITGA1;ITGA2;ITGA3;ITGA6(a6整合素);ITGAV;ITGB3;ITGB4(b4整合素);JAG1;JAK1;JAK3;JUN;K6HF;KAI1;KDR;角蛋白;KITLG;KLF5(GC Box BP);KLF6;KLKIO;KLK12;KLK13;KLK14;KLK15;KLK3;KLK4;KLK5;KLK6;KLK9;KRT1;KRT19(角蛋白19);KRT2A;KHTHB6(毛髮特異性H型角蛋白);κ輕鏈;λ輕鏈;LAMAS;LEP(瘦素);Lingo-p75;Lingo-Troy;LPS;LTA(TNF-b);LTB;LTB4R(GPR16);LTB4R2;LTBR;LEWIS-xMACMARCKS;MAG或Omgp;MAP2K7(c-Jun);MDK;MIB1;黑素體蛋白;中期引子; MEF;MIP-2;MKI67;(Ki-67);MMP2;MMP9;MS4A1;MSMB;MT3(金屬硫黏連蛋白-111);MTSS1;MUC1(黏蛋白);MYC;MY088;NCK2;神經黏蛋白;NFKB1;NFKB2;NGFB(NGF);NGFR;NgR-Lingo;NgR-Nogo66(Nogo);NgR-p75;NgR-Troy;NME1(NM23A);NOX5;NPPB;NR0B1;NR0B2;NR1D1;NR1D2;NR1H2;NR1H3;NR1H4;NR112;NR113;NR2C1;NR2C2;NR2E1;NR2E3;NR2F1;NR2F2;NR2F6;NR3C1;NR3C2;NR4A1;NR4A2;NR4A3;NR5A1;NR5A2;NR6A1;NRP1;NRP2;NT5E;NTN4;ODZI;OPRD1;P2RX7;PAP;PART1;PATE;PAWR;PCA3;PCNA;POGFA;POGFB;PECAM1;PF4(CXCL4);PGF;PGR;磷蛋白聚糖;PIAS2;PIK3CG;PLAU(uPA);PLG;PLXDC1;PPBP(CXCL7);PPID;PRI;PRKCQ;PRKDI;PRL;PROC;PROK2;PSA;PSAP;PSCA;PTAFR;PTEN;PTGS2(COX-2);PTN;p53;RAC2(p21 Rac2);RAS;Rb;RARB;RGSI;RGS13;RGS3;RNF110(ZNF144);ROBO2;S100A2;SCGB1D2(親脂蛋白B);SCGB2A1(乳腺珠蛋白2);SCGB2A2(乳腺珠蛋白1);SCYEI(內皮單核細胞活化細胞因子);S-100SDF2;SERPINA1;SERPINA3;SERP1NB5(maspin);SERPINE1(PAI-1);SERPDMF1;SHBG;SLA2;SLC2A2;SLC33A1;SLC43A1;SLIT2;SPPI;SPRR1B(Sprl);ST6GAL1;STABI;STAT6;STEAP;STEAP2;TB4R2;TBX21;TCPIO;TOGFI;TEK;TGFA;TGFBI;跨膜或細胞表面腫瘤特異性抗原(TAA),諸如描述於USP 7,521,541中之TAA;TAU;TGFB1II;TGFB2;TGFB3;TGFBI;TGFBRI;TGFBR2;TGFBR3;THIL;THBSI(凝血栓蛋白-1);THBS2;THBS4;THPO;TIE(Tie-1);TMP3;組織因子; TLR1;TLR2;TLR3;TLR4;TLR5;TLR6;TLR7;TLR8;TLR9;TLR10;Tn抗原TNF;TNF-a;TNFAEP2(B94);TNFAIP3;TNFRSFIIA;TNFRSF1A;TNFRSF1B;TNFRSF21;TNFRSF5;TNFRSF6(Fas);TNFRSF7;TNFRSF8;TNFRSF9;TNFSF10(TRAIL);TNFSF11(TRANCE);TNFSF12(AP03L);TNFSF13(April);TNFSF13B;TNFSF14(HVEM-L);TNFSF15(VEGI);TNFSF18;TNFSF4(OX40配位體);TNFSF5(CD40配位體);TNFSF6(FasL);TNFSF7(CD27配位體);TNFSFS(CD30配位體);TNFSF9(4-1 BB配位體);TOLLIP;Toll樣受體;TOP2A(拓撲異構酶Ea);TP53;TPM1;TPM2;TRADD;TRAF1;TRAF2;TRAF3;TRAF4;TRAF5;TRAF6;TREM1;TREM2;TRPC6;TSLP;TWEAK;泛素;VEGF;VEGFB;VEGFC;versican;VHL C5;波形蛋白;VLA-4;XCL1(淋巴細胞趨化因子);XCL2(SCM-1b);XCRI(GPR5/CCXCRI);YY1;及ZFPM2。
在某些實施例中,用於根據本文所提供之方法純化的多特異性抗體之靶標分子包括CD蛋白,諸如CD3、CD4、CD8、CD16、CD19、CD20、CD34;ErbB受體家族之CD64、CD200成員,諸如EGF受體、HER2、HER3或HER4受體;細胞黏附分子,諸如LFA-1、Mac1、p150.95、VLA-4、ICAM-1、VCAM、α4/β7整合素及αv/β3整合素(包括其α或β次單元(例如,抗CD11a、抗CD18或抗CD11b抗體));生長因子,諸如VEGF(VEGF-A)、FGFR、Ang1、KLB、VEGF-C;組織因子(TF);α干擾素(αIFN);TNFα(介白素),諸如IL-1 β、IL-3、IL-4、IL-5、IL-S、IL-9、IL-13、IL 17 AF、IL-1S、IL13;IL-13R α1、IL13R α2、IL14 IL-4R、IL-5R、IL-9R、IgE;血型抗原;flk2/flt3受體;肥胖(OB)受體;mp1受體;CTLA-4;RANKL、RANK、RSV F蛋白、 蛋白C、BR3等。
在某些實施例中,用於根據本文所提供之方法純化的多特異性抗體之靶標分子包括低密度脂蛋白受體相關蛋白(LRP)-1或LRP-8或轉鐵蛋白受體,及至少一種選自由以下組成之群之靶標:1)β-分泌酶(BACE1或BACE2),2)α-分泌酶,3)γ-分泌酶,4)τ-分泌酶,5)澱粉樣蛋白前驅蛋白(APP),6)死亡受體6(DR6),7)澱粉樣蛋白β肽,8)α-突觸核蛋白,9)Parkin,10)Huntingtin,11)p75 NTR,及12)凋亡蛋白酶-6。
在某些實施例中,用於根據本文所提供之方法純化的多特異性抗體之靶標分子包括至少兩種選自由以下組成之群之靶標分子:IL-1 α及IL-1 β、IL-12及IL-1S;IL-13及IL-9;IL-13及IL-4;IL-13及IL-5;IL-5及IL-4;IL-13及IL-1β;IL-13及IL-25;IL-13及TARC;IL-13及MDC;IL-13及MEF;IL-13及TGF-~;IL-13及LHR促效劑;IL-12及TWEAK、IL-13及CL25;IL-13及SPRR2a;IL-13及SPRR2b;IL-13及ADAMS、IL-13及PED2、IL13及IL17;IL13及IL4;IL13及IL33;IL17A及IL 17F、CD3及CD19、CD138及CD20;CD138及CD40;CD19及CD20;CD20及CD3;CD3S及CD13S;CD3S及CD20;CD3S及CD40;CD40及CD20;CD-S及IL-6;CD20及BR3、TNF α及TGF-β、TNF α及IL-1 β;TNF α及IL-2;TNF α及IL-3;TNF α及IL-4;TNF α及IL-5;TNF α及IL6;TNF α及IL8;TNF α及IL-9、TNF α及IL-10、TNF α及IL-11、TNF α及IL-12、TNF α及IL-13、TNF α及IL-14、TNF α及IL-15、TNF α及IL-16、TNF α及IL-17、TNF α及IL-18、TNF α及IL-19、TNF α及IL-20、TNF α及IL-23、TNF α及IFN α、TNF α及CD4、TNF α及VEGF、TNF α及MIF、TNF α及ICAM-1、 TNF α及PGE4、TNF α及PEG2、TNF α及RANK配位體、TNF α及Te38、TNF α及BAFF、TNF α及CD22、TNF α及CTLA-4、TNF α及GP130、TNF a及IL-12p40、FGFR1及KLB;VEGF及HER2、VEGF-A及HER2、VEGF-A及PDGF、HER1及HER2、VEGFA及ANG2、VEGF-A及VEGF-C、VEGF-C及VEGF-D、HER2及DR5、VEGF及IL-8、VEGF及MET、VEGFR及MET受體、EGFR及MET、VEGFR及EGFR、HER2及CD64、HER2及CD3、HER2及CD16、HER2及HER3;EGFR(HER1)及HER2、EGFR及HER3、EGFR及HER4、IL-14及IL-13、IL-13及CD40L、IL4及CD40L、TNFR1及IL-1 R、TNFR1及IL-6R及TNFR1及IL-18R、EpCAM及CD3、MAPG及CD28、EGFR及CD64、CSPG及RGM A;CTLA-4及BTN02;IGF1及IGF2;IGF1/2及Erb2B;MAG及RGM A;NgR及RGM A;NogoA及RGM A;OMGp及RGM A;POL-1及CTLA-4;及RGM A及RGM B。
視情況結合至其他分子之可溶性蛋白或其片段可用作用於產生抗體之免疫原。關於跨膜分子(諸如受體),其片段(例如受體之細胞外域)可用作免疫原。或者,表現該跨膜分子之細胞可用作免疫原。該等細胞可源於天然來源(例如癌細胞株)或可為已藉由重組技術轉型以表現該跨膜分子之細胞。適用於製備抗體之其他抗原及其形式將為熟習此項技術者顯而易知的。
調配物及製備該等調配數之方法
本文中亦提供包含藉由本文所述之方法純化的多特異性抗體之調配物及製備該調配物之方法。例如,經純化多肽可與醫藥學上可接受之載劑組合。
在一些實施例中,該等多肽調配物可藉由混合具有所需程度之純度的多肽與視情況選用之醫藥學上可接受之載劑、賦形劑或穩定劑而製備(Remington’s Pharmaceutical Sciences第16版,Osol,A.編(1980)),呈凍乾調配物或水溶液形式用於儲存。
如本文所用,「載劑」包括在所用劑量及濃度下對暴露於其之細胞或哺乳動物無毒的醫藥學上可接受之載劑、賦形劑或穩定劑。通常,生理學上可接受之載劑為pH緩衝水溶液。
可接受之載劑、賦形劑或穩定劑在所用劑量及濃度下對接受者無毒,且包括緩衝液,諸如磷酸鹽、檸檬酸鹽、及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如十八烷基二甲基苯甲基氯化銨;氯化六烴季銨;苯紮氯銨;苄索氯銨;苯酚、丁基或苯甲基醇;對羥基苯甲酸烷基酯,諸如對羥基苯甲酸甲酯或丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇;及間-甲酚);低分子量(小於約10個殘基)多肽;蛋白,諸如血清白蛋白、明膠、或免疫球蛋白;親水性聚合物,諸如聚乙烯吡咯啶酮;胺基酸,諸如甘胺酸、麩醯胺、天冬醯胺、組胺酸、精胺酸、或離胺酸;單醣、二醣、及其他碳水化合物,包括葡萄糖、甘露糖、或糊精;螯合劑,諸如EDTA;糖,諸如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成鹽相對離子,諸如鈉;金屬錯合物(例如,Zn-蛋白錯合物);及/或非離子性界面活性劑,諸如TWEENTM、PLURONICSTM或聚乙二醇(PEG)。
在一些實施例中,多肽調配物中之多肽維持功能活性。
欲用於活體內投與之調配物必須為無菌的。此容易藉由經由無菌濾膜過濾來實現。
本文中之調配物亦可含有所治療的特定適應症所必需之超過一種活性化合物,較佳地具有不會不利地彼此影響的互補活性之彼等。例如,除了多肽外,亦可需要在一種調配物中包括額外多肽(例如抗體)。或者或另外,該組合物可進一步包含化學治療劑、細胞毒性劑、細胞因子、生長抑制劑、抗激素劑及/或心臟保護劑。該等分子合適地以有效用於預期目的之量組合存在。
製造物件
藉由本文所述之方法純化的多特異性抗體及/或包含藉由本文所述之方法純化的多肽之調配物可含於製造物件內。該製造物件可包含含有該多肽及/或該多肽調配物之容器。較佳地,該製造物件包含:(a)容器,該容器內包含包含本文所述之多肽及/或多肽調配物的組合物;及(b)具有關於向個體投與該調配物之說明書的包裝插頁。
該製造物件包含容器及在該容器上或與該容器締合之標籤或包裝插頁。合適容器包括例如瓶、小瓶、注射器等。該等容器可由多種材料,諸如玻璃或塑膠形成。該容器容納或含有調配物且可具有無菌存取口(例如,該容器可為靜脈內溶液袋或具有可由皮下注射針刺穿之塞子的小瓶)。該組合物中之至少一種活性劑為該多肽。該標籤或包裝插頁指示該組合物在個體中之使用,其中關於給藥量及所提供之多肽及任何其他藥物的時間間隔給出特定指導。該製造物件可進一步包括自商業及使用者觀點來看可需要之其他材料,包括其他緩衝液、稀釋劑、過濾器、針、及注射器。在一些實施例中,該容器為注射器。在一些實施例中,該注射器進一步含於注射器件內。在一些實施例中,該注射器件為自動注射器。
「包裝插頁」用於指治療產品之商業包裝中慣常包括的說明書,其含有關於適應症、用法、劑量、投與、禁忌症、欲與經包裝產品組合之其他治療產品及/或有關該等治療產品的用途之警告之資訊。
本說明書中所揭示之所有特徵可呈任何組合組合。本說明書中所揭示之各特徵可由用於相同、相等或相似目的之替代特徵置換。因此,除非另外明確規定,否則所揭示之各特徵僅為相等或相似特徵之一般系列的實例。
前述書面描述被視為足以使得熟習此項技術者能夠實踐該等方法及/或獲得本文所述之組合物。以下實例及詳細描述作為說明而非作為限制提供。
本說明書中之所有參考文獻的揭示內容均以引用之方式明確併入本文中。
序列表之描述
SEQ ID NO:1 瓦紐賽單抗之<VEGF>之可變重鏈域VH
SEQ ID NO:2 瓦紐賽單抗之<VEGF>之可變輕鏈域VL
SEQ ID NO:3 瓦紐賽單抗之<ANG-2>之可變重鏈域VH
SEQ ID NO:4 瓦紐賽單抗之<ANG-2>之可變輕鏈域VL
SEQ ID NO:5 RG7716之<VEGF>之可變重鏈域VH
SEQ ID NO:6 RG7716之<VEGF>之可變輕鏈域VL
SEQ ID NO:7 RG7716之<ANG-2>之可變重鏈域VH
SEQ ID NO:8 RG7716之<ANG-2>之可變輕鏈域VL
SEQ ID NO:9 瓦紐賽單抗之<ANG-2>之重鏈
SEQ ID NO:10 瓦紐賽單抗之<VEGF>之重鏈
SEQ ID NO:11 瓦紐賽單抗之<ANG-2>之輕鏈
SEQ ID NO:12 瓦紐賽單抗之<VEGF>之輕鏈
SEQ ID NO:13 RG7716之<VEGF>之重鏈
SEQ ID NO:14 RG7716之<ANG-2>之重鏈
SEQ ID NO:15 RG7716之<VEGF>之輕鏈
SEQ ID NO:16 RG7716之<ANG-2>之輕鏈
實例
該等實例僅出於說明性目的提供,且不意欲以任何方式限制本發明之範圍。實際上,除本文所示及所述之彼等外的多種修飾對於熟習此項技術者而言將由前述描述顯而易知且屬隨附申請專利範圍之範圍。
實例1:抗X1/抗Y1雙特異性抗體之組裝及純化
針對靶標蛋白X1及Y1之雙特異性抗體(抗X1/抗Y1雙特異性抗體或aX1/Y1雙特異性)組裝如下。各半抗體(aX1(杵)及aY1(臼))獨立地經受使用蛋白A樹脂(MabSelect SuRe,GE Healthcare)之親和力層析步驟。該蛋白A步驟使用相似過程條件、但不同負載密度靶標針對各半抗體獨立地完成。蛋白A管柱在環境溫度(15-30℃)下運行且負載經冷凍至12-18℃。蛋白A管柱藉由應用三個管柱體積之溶離緩衝液、隨後三個管柱體積之再生緩衝液來製備。該等管柱接著達到平衡,載樣,洗滌三次(平衡緩衝液洗滌、磷酸鉀洗滌、平衡緩衝液洗滌),溶離,且再生持續充足週期以加工負載材料。自蛋白A管柱彙集之材料必要時藉由添加溶離緩衝液以實現pH
Figure 106120122-A0202-12-0153-71
3.60且保持最少120分鐘來進行pH調節。在此步驟之後,所彙集之材料的 pH經調節至pH 5.0±0.3用於進一步加工。
獲自蛋白A層析步驟之半抗體池接著以1:1莫耳比率組合,pH經調節至pH 8.2。200mM L-麩胱甘肽(91/9% GSH/GSSG)緩衝液添加至組合池中以實現針對每1莫耳所形成之雙特異性抗體165莫耳L-麩胱甘肽之比率。該材料加熱至32.0±2.0℃持續8-24小時。所得經組裝之池冷卻至15-25℃且接著調節至pH 5.5。
pH經調節之經組裝之池接著經受使用CaptoTM MMC樹脂呈結合及溶離模式之多模式陽離子交換層析。該管柱用100mM乙酸鈉(pH 5.5)平衡。經調節之組裝池負載至管柱上至45g/L樹脂且隨後用平衡緩衝液洗滌且用具有25mM乙酸鈉之50mM HEPES在pH 8.0下進行第二洗滌期。該雙特異性抗體藉由在分步溶離中增加鹽及pH,使用具有245mM乙酸鈉之50mM HEPES在pH 8.0下自管柱中溶離出。陽離子交換彙集基於280nm下之吸光度經起始及終止。
來自多模式陽離子層析步驟之溶離物接著經受使用CaptoTM Adhere樹脂呈流通模式之多模式陰離子交換層析。該CaptoTM Adhere管柱用50mM Tris、85mM乙酸鈉(pH 8.0)達到平衡。來自前一步驟之產物池用純化水調節至9.0mS/cm之電導率且負載至管柱上。該雙特異性抗體流動通過該管柱,該管柱接著用平衡緩衝液洗滌。陰離子交換彙集基於280nm下之吸光度經起始及終止。上述純化方案描述於圖1A中。
第三層析步驟移除如DNA、宿主細胞蛋白及內毒素之殘餘雜質,以及產物變異體,包括半抗體、均二聚體及聚集體。當CaptoTM Adhere負載摻加20% aY1均二聚體時,該層析過程使該aY1均二聚體減少大約2倍(藉 由MS發現為8%且藉由用於偵測產物相關雜質之基於細胞之分析發現為10%)。
圖1A)中示出之純化方案與使用傳統陽離子交換(CEX)樹脂(POROS XS)之純化方案(參見圖1B)的比較示出,使用該多模式樹脂會改良雙特異性抗體與產物相關變異體、尤其均二聚體之分離。因此,當自親和力層析步驟彙集之材料摻加20%臼均二聚體時,多模式陽離子交換層析減少該臼均二聚體至低於2%(藉由質譜分析(MS))及低於0.5%之定量極限(藉由用於產物相關雜質之基於細胞之分析)。
Figure 106120122-A0202-12-0155-80
Figure 106120122-A0202-12-0155-81
CHOP=CHO細胞蛋白;HMWS=高分子量物質;150kD=雙特異性及均二聚體;75kD=半抗體;LMWS=低分子量物質
在如表9及10所示之傳統陰離子交換(AEX)樹脂(QSFF)(參見圖1C)與多模式AEX樹脂(CaptoTMAdhere)(參見圖1A)之間的比較證明,如與傳統AEX QSFF樹脂相比,多模式AEX樹脂實現雙特異性抗體與產物相 關雜質之實質上更佳分離。QSFF使主峰富集1%,且Adhere使主峰富集10%,這歸因於半抗體(75kD)及聚集體(亦即,高分子量物質(HMWS))之移除。使用相同Capto MMC池直接比較Capto Adhere與QSFF示出,如與QSFF相比,Capto Adhere樹脂實現尺寸變異體、產物相關變異體(包括半抗體)之更佳清除,及宿主細胞蛋白清除(表11)。
Figure 106120122-A0202-12-0156-82
CHOP=CHO細胞蛋白;HMWS=高分子量物質;150kD=雙特異性及均二聚體;75kD=半抗體;LMWS=低分子量物質
Figure 106120122-A0202-12-0156-83
CHOP=CHO細胞蛋白;HMWS=高分子量物質;75kD=半抗體;LOQ=定量極限
Figure 106120122-A0202-12-0157-84
CHOP=CHO細胞蛋白;HMWS=高分子量物質;75kD=半抗體;LOQ=定量極限
上述實驗證明,如與圖1B圖1C中之純化方案相比,圖1A中描繪之純化方案實現aX1/Y1雙特異性抗體與產物相關雜質之顯著更佳分離。首先,當自親和力層析步驟彙集之材料摻加20%臼均二聚體時,Capto MMC(亦即,多模式陽離子交換樹脂)減少該臼均二聚體至低於2%(藉由質譜分析(MS))且低於0.5%之定量極限(藉由用於產物相關雜質之基於細胞之分析)。(參見表7及8)。該分離未使用POROS XS(亦即傳統陽離子交換樹脂)實現。另外,CaptoAdhere(亦即,多模式陰離子交換樹脂)使主峰富集10%,這歸因於高分子量物質(諸如半抗體(75kD)及聚集體)之移除,而QSFF(亦即,傳統陰離子交換樹脂)僅使主峰富集1%。此外,如與多模式陽離子樹脂(CaptoMMC)、隨後傳統陰離子交換樹脂QSFF之組合相比,兩種多模式樹脂之組合(多模式陽離子樹脂、隨後多模式陰離子樹脂CaptoAdhere)實現尺寸變異體、產物相關變異體(包括半抗體)之更佳清除,及宿主細胞蛋白清除(參見例如表11)。
當該等多模式樹脂之次序逆轉時,發現產物相關變異體及尺寸變異體之移除的相似改良:在一獨立實驗中,aX1/Y1雙特異性抗體與產物 相關雜質之更佳分離亦藉由使自親和力層析步驟彙集之材料首先經受多模式陰離子樹脂、隨後多模式陽離子樹脂來實現。
實例2:F(ab’) 2 雙特異性之組裝及純化
初始嘗試實現90%純,F(ab’)2雙特異性導致低產率(少於10%起始材料)。增加了維持可接受之產率而無純度損失之問題具有數種挑戰,包括過程中間體之不穩定性及產物相關變異體(諸如均二聚體、游離輕鏈及重鏈、及未反應之Fab’離去基)的存在。開發新穎單元操作以便實現所需雙特異性F(ab’)2之有效組裝及純化。包含兩種不同Fab’分子之雙特異性F(ab’)2如圖2中提供之示意圖中所描繪經組裝及純化。
首先,如下執行捕捉步驟。各Fab’首先自獨立大腸桿菌萃取物上清液捕捉。含有兩種Fab’半分子之一的上清液經受使用CaptoL蛋白L親和力層析樹脂之捕捉步驟。管柱使用25mM Tris氯化鈉平衡緩衝液(pH 7.7)平衡。在應用負載材料至管柱之後,該管柱用平衡緩衝液(pH 7.7)洗滌,隨後用0.4M磷酸鉀(pH 7)洗滌,用還原劑洗滌以移除半胱胺酸帽,且用平衡緩衝液(pH 7.7)進行額外洗滌。所關注之Fab’產物接著使用0.1M乙酸pH 2.9之溶離緩衝液自CaptoL管柱溶離。使用280nm下之吸光度收集產物。
來自Capto L層析步驟之含有第一Fab’半分子(Fab’A)之池經調節至pH 5.5。二吡啶基二硫(DPDS;Dipyridyl disulfide)添加至pH 5.5調節之CaptoL池中。DPDS與Fab’分子中之游離鉸鏈半胱胺酸反應以形成吡啶基化Fab’,其與可得Fab’游離硫醇反應,由此促進F(ab’)2雜二聚體之形成。一旦經形成,該吡啶基化Fab’A即負載至第二層析管柱中用於純化。
為了鑒別吡啶基化Fab’可與雜質(亦即,Fab’均二聚體、高分子 量物質(HMWS)、Fab’單體)分離時所處之層析條件,在層析樹脂結合條件之96點分配係數篩選中表徵Fab’均二聚體、高分子量物質(HMWS)、Fab’單體及吡啶基化Fab’(pyr-Fab’)在Capto MMC樹脂上之結合行為。吡啶基化Fab’池負載至CaptoTM MMC樹脂上。Fab’單體經預測在梯度中比pyr-Fab’更早溶離,而HMWS及Fab’均二聚體經預測在梯度中稍後溶離。第二Fab’分子Fab’B自CaptoL層析樹脂溶離且接著經氧化。
含有吡啶基化Fab’A及經氧化Fab’B之兩個Fab’池接著經受適用於組裝F(ab’)2雙特異性分子之條件。組合吡啶基化Fab’A及經氧化Fab’B CaptoL池。經組合之池保持最少組裝時間以允許形成F(ab’)2雙特異性。該組裝池接著經調節用於負載至下一層析管柱上。
執行低解析度Kp(亦即,分配係數)篩選以表徵F(ab’)2組裝混合物在不同層析樹脂上之結合行為。組裝混合物(0%聚集體、21.5% Fab’A均二聚體、43.9% F(ab’)2、10.3% Fab’A單體、8.8%吡啶基化Fab’A、及15.5% Fab’B單體,如藉由SEC-HPLC所量測)藉由以5g/L樹脂負載密度負載至以下樹脂上來測試:CaptoTM MMC樹脂、CaptoTM Adhere樹脂、QSFF樹脂或POROS® 50HS樹脂。各流通板之蛋白組成及蛋白濃度經由SEC-HPLC進行分析。此等資料去捲積且用於產生對應於F(ab’)2、Fab’A均二聚體、Fab’B均二聚體、Fab’A單體及Fab’B單體在四種樹脂之每一者上在測試條件下之行為的輪廓圖。
基於該等輪廓圖,CaptoTM Adhere經預測解析Fab’A單體、Fab’A均二聚體及Fab’B均二聚體。特定言之,在CaptoTM Adhere樹脂上之結合及pH梯度溶離中,Fab’A單體及Fab’B均二聚體經預測比F(ab’)2主峰 更早溶離,而Fab’A均二聚體經預測保持結合於樹脂。關於QSFF之輪廓圖示出,該等物質均未經預測針對所測試之pH範圍結合於QSFF樹脂,指示F(ab’)2與產物相關雜質之分離將不會經由QSFF層析實現。混合模式樹脂提供在實驗條件下F(ab’)2與產物相關雜質之最佳分離。CaptoTM MMC輪廓圖示出,CaptoTM MMC經預測在pH 5.5下使F(ab’)2與其產物特異性雜質有效地分離。
在F(ab’)2雙特異性之組裝之後,該組裝池經受使用CaptoAdhere樹脂之多模式AEX層析。該組裝池經滴定至pH 7.5且經稀釋至
Figure 106120122-A0202-12-0160-72
5.5mS/cm之電導率。管柱用25mM乙酸鈉、50mM Tris pH 7.5平衡緩衝液平衡。該組裝池以25g/L樹脂之負載密度負載至管柱上。該管柱接著用平衡緩衝液洗滌。該管柱使用25mM乙酸鈉、45mM MES、5mM Tris pH 5.5溶離緩衝液溶離且溶離池藉由A280吸光度彙集。
在多模式AEX之後,該材料負載至以結合及溶離模式操作之Poros 50 HS樹脂上。該Poros 50 HS管柱用52mM乙酸鈉(pH 4.9)平衡。負載經調節至pH 5且電導率
Figure 106120122-A0202-12-0160-73
3.3mS/cm。該管柱用平衡緩衝液洗滌。該管柱接著用169mM乙酸鈉(pH 4.9)洗滌。該管柱使用分步溶離使用247mM乙酸鈉pH 4.9溶離緩衝液溶離。藉由A280收集該池。
來自POROS 50 HS步驟之池接著經受使用CaptoMMC樹脂之多模式CEX層析。該多模式CEX步驟以結合及溶離溶離操作。管柱使用50mM乙酸鈉pH 5.5平衡緩衝液平衡。負載經調節至pH 5.0且電導率
Figure 106120122-A0202-12-0160-74
5mS/cm且負載至該管柱上至15g/L之負載密度。該管柱用平衡緩衝液洗滌。該管柱接著用140mM乙酸鈉pH 5.5洗滌2緩衝液洗滌。該管柱用梯度溶離使 用平衡緩衝液及350mM乙酸鈉pH 5.5溶離緩衝液溶離。藉由A280收集該池。
表12 所示,與使用POROS®HS樹脂時相比,當使用CaptoTM MMC樹脂時實現所關注之F(ab’)2雙特異性產物(100kD)與大腸桿菌蛋白及71kD錯誤成形之二硫化物產物的改良分離。使用CaptoMMC作為第四管柱實現如藉由SEC所量測大於95% Fab’2雙特異性之純度。使用CaptoMMC作為第四管柱亦實現少於5%之71kD錯誤成形之二硫化物產物相關變異體。
Figure 106120122-A0202-12-0161-85
% F(ab’) 2 =藉由SEC量測之%雙特異性;100kD=藉由CE-SDS量測之所關注之F(ab’)2雙特異性產物;71kD=藉由CE-SDS量測之具有錯誤成形之二硫化物的產物相關變異體;ECP=大腸桿菌蛋白
因此,圖2中所描繪之純化方案顯著改良純F(ab’)2之產率且如與負載材料相比,降低存在於經純化F(ab’)2池中之宿主細胞蛋白的量超過99%。
實例3:抗X2/抗Y2雙特異性抗體之組裝及純化
在另一實例中,如下純化雙特異性抗體。各半抗體獨立地產生 且經受親和力層析,隨後如本文所述之組裝。在組裝之後,組裝材料首先經受使用CaptoTM Adhere樹脂呈結合及溶離模式之多模式陰離子交換層析。組裝材料經調節至pH 7.5且負載至用150mM乙酸鹽/Tris緩衝液(pH 7.5)預平衡之管柱上。在負載之後,該管柱用平衡緩衝液洗滌且結合之蛋白用25mM乙酸鹽(pH 5.0)溶離。基於A280nm信號觸發溶離池之收集。CaptoTM Adhere溶離池接著經受使用CaptoTM MMC樹脂呈結合及溶離模式之多模式陽離子交換層析。該Capto Adhere溶離池經調節至pH 6.5且負載至在25mM乙酸鹽、25mM MES pH 6.5緩衝液中預平衡之Capto MMC管柱上。在負載之後,該CaptoTM MMC管柱用平衡緩衝液洗滌且結合之蛋白用150mM乙酸鈉、25mM MES pH 6.5.CaptoTM MMC溶離緩衝液溶離。池收集基於A280nm信號。此純化方案描繪於圖3A中。
如下文表1314中所示,如與CaptoTM Adhere層析、隨後QSFF層析(參見圖3B)相比,當CaptoTM Adhere層析後接CaptoTM MMC層析(參見圖3A)時,實現雙特異性抗體與諸如大腸桿菌蛋白及伴侶蛋白(例如fkpA、dsbA及dsbC)之過程特異性雜質的更大分離。此外,如與CaptoTM Adhere層析、隨後QSFF層析(參見圖3B)相比,當CaptoTM Adhere層析後接CaptoTM MMC層析(參見圖3A)時,實現雙特異性抗體與諸如極高分子量物質(vHMWS)、高分子量物質(HMWS)及低分子量物質(LMWS)之產物特異性雜質的更大分離。參見表1314
Figure 106120122-A0202-12-0162-86
Figure 106120122-A0202-12-0163-87
Figure 106120122-A0202-12-0163-88
上述實驗證明了如與圖3B中描繪之純化方案(亦即,其中多模式陰離子交換層析後接傳統陽離子交換層析)相比,圖3A中描繪之純化方案(亦即,其中多模式陰離子交換層析後接多模式陽離子交換層析)實現抗X2Y2雙特異性抗體與過程及產物相關雜質之改良分離。另外,如與圖3B中描繪之純化方案相比,圖3A中描繪之純化方案亦實現抗X2Y2雙特異性抗體之改良產率。
實例4:抗X3/抗Y3雙特異性抗體之組裝及純化
抗X3杵半抗體經捕捉於蛋白A管柱上。管柱首先使用25mM Tris、25mM氯化鈉pH 7.7平衡緩衝液平衡。含有抗X3半抗體之大腸桿菌萃取物上清液接著負載至該管柱上。在負載該萃取物上清液之後,該管柱用平衡緩衝液、隨後0.4M磷酸鉀pH 7洗滌緩衝液洗滌,且接著用平衡緩衝液洗滌。抗X3半抗體接著使用0.15M乙酸pH 2.9溶離緩衝液溶離。藉由A280收集該溶離池。該溶離池經滴定至pH 5.0且接著儲存直至與抗Y3 臼半抗體組合。該抗Y3臼半抗體使用關於抗X3半抗體所述之相同蛋白A過程經捕捉。
該兩種半抗體以1:1質量比率組合。精胺酸添加至組裝池中至50mM之最終濃度。經組合半抗體之池用200mM組胺酸、8% PVP(pH 8)1:1稀釋。添加L-還原麩胱甘肽至200X莫耳過量(每莫耳雙特異性抗體200莫耳麩胱甘肽)以組裝該兩種半抗體。該組裝池經滴定至pH 8.0且接著加熱至攝氏35度持續六個小時。該池接著冷卻至室溫且經調節用於負載於下一層析管柱上。
該組裝池負載於QSFF陰離子交換管柱上。該管柱首先用25mM Tris、350mM氯化鈉(pH 9.1),隨後用25mM Tris、70mM氯化鈉pH 9.1平衡緩衝液預平衡。經調節之負載接著在pH 8.5、電導率
Figure 106120122-A0202-12-0164-75
4.9mS/cm下應用於該管柱。該管柱接著用平衡緩衝液洗滌。該池接著使用平衡緩衝液及25mM Tris、350mM氯化鈉溶離緩衝液溶離。藉由A280收集該溶離池。
該QSFF池接著經調節以負載至下一管柱上。CaptoAdhere多模式陰離子交換管柱用500mM乙酸鈉pH 6.0預平衡緩衝液預平衡,隨後用八個管柱體積之50mM乙酸鈉pH 6.0平衡緩衝液平衡。經調節之負載在pH 6.0、電導率
Figure 106120122-A0202-12-0164-76
12mS/cm下應用於該管柱。該管柱接著用平衡緩衝液、隨後0.1M精胺酸pH 7.0電導率7.5mS/cm洗滌緩衝液洗滌,且接著用平衡緩衝液洗滌。該管柱接著用梯度溶離使用50mM乙酸鈉pH 5.0溶離緩衝液溶離。藉由A280收集該溶離池。
該CaptoAdhere池接著經調節以負載至下一管柱上。CaptoMMC多模式陽離子交換管柱用350mM乙酸鈉pH 6.0預平衡緩衝液預平衡,隨 後用50mM乙酸鈉pH 6.0平衡緩衝液平衡。經調節之負載在pH 6.0、電導率
Figure 106120122-A0202-12-0165-79
6.5mS/cm下應用於該管柱。該管柱接著用80mM乙酸鈉pH 6.0洗滌緩衝液洗滌。該管柱接著用梯度溶離使用350mM乙酸鈉pH 6.0溶離緩衝液溶離。藉由A280收集該溶離池。此純化方案描繪於圖4中。
如下文 表15 所示,僅包含一個多模式管柱之三管柱過程(亦即,蛋白A、隨後QSFF、隨後CaptoTM Adhere)不實現充足ECP移除。使用CaptoTM MMC層析使CaptoTM Adhere層析之溶離物經受第四層析管柱會相對於CaptoTM Adhere池使大腸桿菌蛋白之水準減少超過三倍,使HMWS降低至低於1%,且使雙特異性含量增加至100%。
Figure 106120122-A0202-12-0165-89
HMWS=藉由SEC量測之高分子量物質;%雙特異性=藉由逆相HPLC量測之%雙特異性抗體;ECP=大腸桿菌宿主細胞蛋白
實例5:用於實例6及7之材料及方法 抗體
實例6-7使用多種例示性抗體,包括:如WO 2011/117329中所述結合Ang2及VEGF-A之雙特異性抗體(抗Ang2/VEGF-A抗體;瓦紐賽單抗;RG7221)或SEQ ID NO:1至SEQ ID NO:4或如WO 2014/009465中所述針對VEGF-A及Ang2之雙特異性抗體(抗VEGF-A/Ang2抗體;RG7716) 或SEQ ID NO:5至SEQ ID NO:8。本文中亦包括如下文實例中所述之多種抗體。
本文所述或所提及之技術及程序一般為熟習此項技術者充分瞭解的且通常使用習知方法使用,該習知方法諸如Sambrook等人,Molecular Cloning:A Laboratory Manual第3版(2001)Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.;Current Protocols in Molecular Biology(F.M.Ausubel等人編,(2003));the series Methods in Enzymology(Academic Press,Inc.);Antibodies,A Laboratory Manual,and Animal Cell Culture(R.I.Freshney編(1987));Methods in Molecular Biology,Humana Press;Cell Biology:Introduction to Cell and Tissue Culture(J.P.Mather及P.E.Roberts,1998)Plenum Press;Cell and Tissue Culture:Laboratory Procedures(A.Doyle、J.B.Griffiths及D.G.Newell編,1993-8)J.Wiley and Sons;Handbook of Experimental Immunology(D.M.Weir及C.C.Blackwell編);Current Protocols in Immunology(J.E.Coligan等人編,1991);Short Protocols in Molecular Biology(Wiley and Sons,1999);Immunobiology(C.A.Janeway及P.Travers,1997);Antibodies(P.Finch,1997);Antibodies:A Practical Approach(D.Catty.編,IRL Press,1988-1989);Monoclonal Antibodies:A Practical Approach(P.Shepherd及C.Dean編,Oxford University Press,2000);Using Antibodies:A Laboratory Manual(E.Harlow及D.Lane(Cold Spring Harbor Laboratory Press,1999);及The Antibodies(M.Zanetti及J.D.Capra編,Harwood Academic Publishers,1995)中所述之廣泛使用方法。
藉由尺寸排除(SE;Size Exclusion)HPLC獲得之純度
使用SE HPLC以在原生條件下藉由使用SE HPLC管柱分離抗體聚集體、單體及片段來監測尺寸異質性。溶離物藉由UV吸光度來監測。純度經確定為主峰、HMWS形式之總和及LMWS形式之總和相對於所偵測之所有蛋白峰全體的百分率(面積)。
藉由離子交換(IE;Ion Exchange)HPLC獲得之純度
使用梯度離子交換層析以藉由使用陽離子交換管柱分離用羧基肽酶B處理之樣品至主峰、酸性區及鹼性區中來定量監測樣品的電荷異質性。藉由UV吸光度執行偵測。純度經確定為主峰、酸性區及鹼性區相對於所偵測之所有蛋白峰全體的百分率(面積)。
藉由CE-SDS(Caliper)獲得之純度
用於蛋白之電泳分離之習知SDS-PAGE方法已轉換為Caliper GXII/LabChip GX分析系統(Caliper LifeScience,Inc./Perkin Elmer)中之晶片形式。蛋白藉由其各別尺寸經分離。製備樣品,接著藉由用螢光染料標記來分離,該等螢光染料可根據製造商之說明書經偵測及分離。
在使用微流體Labchip技術(Caliper Life Science,USA)藉由CE-SDS進行各純化步驟之後,分析純度及抗體完整性。因此,分析物溶液經製備且在LabChip GXII系統上使用HT蛋白表現晶片加以分析。使用LabChip GX軟體分析資料。
藉由UV獲得之蛋白含量
藉由UV測定樣品之蛋白濃度。蛋白吸收藉由自280nm下之吸收減去320nm下之吸收來校正。此吸光度值與蛋白濃度成正比。使用1.5mL mg-1cm-1之消光係數來計算蛋白濃度。
用於宿主細胞蛋白(HCP)及DNA含量之偵測方法 a)CHO HCP分析
過程樣品中之殘餘CHO HCP含量藉由在cobas e 411免疫分析分析儀(Roche Diagnostics GmbH,Mannheim,Germany)上進行電化學發光免疫分析(ECLLA)來測定。
該分析係基於使用來自山羊之多株抗CHO HCP抗體之夾心原則。
首次培育:來自15μL樣品(純及/或經稀釋)之中國倉鼠卵巢宿主細胞蛋白(CHO HCP)及生物素結合之多株CHO HCP特異性抗體形成夾心複合物,該複合物經由生物素與抗生蛋白鏈菌素之相互作用結合於抗生蛋白鏈菌素塗佈之微粒。
第二次培育:在添加用釕複合物(三(2,2`-聯吡啶基)釕(II)-複合物)標記之多株CHO HCP特異性抗體之後,在微粒上形成三重夾心複合物。
該反應混合物經抽吸至量測元件中,其中該等微粒經磁性捕捉至電極之表面上。未結合物質接著在洗滌步驟中移除。向該電極施加電壓接著誘導化學發光發射,該發射藉由光電倍增器量測。
測試樣品中CHO HCP之濃度最終自已知濃度之CHO HCP標準曲線計算。
b)DNA含量
基於q PCR之分析用於CHO DNA之偵測及定量。來自樣品之DNA用商業RNA萃取套組使用基於矽膠之膜萃取。經萃取之DNA用序列偵測系統使用PCR引子及探針經受定量即時PCR。擴增子(經擴增產物)與 在DNA擴增期間持續量測之螢光發射的增加呈正比例定量。使用標準曲線定量樣品中CHO細胞DNA之量。
實例6:結合Ang2及VEGF-A之雙特異性抗體(如WO 2011/117329中所述之抗Ang2/抗VEGF-A抗體)的純化
自CHO表現培養物收集之細胞培養液(HCCF)藉由呈結合-溶離模式之MabSelect SuRe親和力層析加工。在HCCF負載至管柱上至38gmAb/l樹脂之最大負載密度之後,該管柱用25mM Tris、25mM NaCl(pH 7.2)洗滌持續5個管柱體積。接著,用0.7M Tris/HCl(pH 7.2)執行額外洗滌持續五個管柱體積。使用高度純化水或10mM Tris/HCl pH 7.5進行第三洗滌步驟。管柱結合之抗體使用50mM乙酸鹽(pH 3.4)溶離。基於500至250mAU(路徑長度1cm)之OD280,經最大三個管柱體積收集溶離池。
該親和力溶離池用乙酸調節至pH 3.5且保持30min。該池接著用1.5M Tris鹼調節至pH 5.0且藉由深層過濾清除。該深層過濾池使用1.5M Tris鹼調節至pH 7且用作使用多模式陰離子交換樹脂Capto adhere ImpRes之第二層析步驟的饋料。
該Capto adhere ImpRes管柱用50mM Tris乙酸鹽(pH 7.0)平衡。該平衡管柱經負載直至180gmAb/l樹脂之負載密度且用20mM Tris乙酸鹽(pH 7.0)洗滌。基於1000至4000mAU(路徑長度1cm)之OD280收集該溶離池。
該第二層析步驟之池用乙酸調節至pH 5.0且用作使用多模式陽離子交換樹脂Capto MMC ImpRes之最終第三層析步驟的饋料。該第三層析步驟以結合及溶離模式運行。該Capto MMC ImpRes管柱用30mM Tris/乙酸鹽pH 5.0(平衡緩衝液)平衡。該平衡管柱經負載直至45gmAb/l樹脂之負 載密度且用平衡緩衝液洗滌持續五個管柱體積。使用30mM Tris/乙酸鹽(pH 6.8)執行第二洗滌持續十個管柱體積,隨後使用平衡緩衝液持續五個管柱體積。使用30mM Tris/乙酸鹽(pH 4.9)、500mM硫酸鈉執行最終洗滌步驟持續十個管柱體積。管柱結合之抗體使用30mM Tris/乙酸鹽(pH 6.0)、500mM硫酸鈉溶離。基於3600至1000mAU(路徑長度1cm)之OD280收集該溶離池。
該第三層析步驟之池經濃縮且經緩衝液交換至調配緩衝液中。上述純化方案描繪於圖5A中。
Figure 106120122-A0202-12-0170-90
表17:與使用包含親和力層析、陽離子交換層析、疏水性相互作用層析及陰離子交換層析之4種層析管柱的過程(4管柱(4C)過程)之比較
Figure 106120122-A0202-12-0171-91
可見如與使用包含捕捉層析、傳統陽離子交換層析、疏水性相互作用層析及傳統陰離子交換層析之四管柱過程相比,藉由使用包含MabSelectSure、Capto adhere及Capto MMC ImpRes HHL之三管柱過程,可減少諸如3/4抗體、前峰、HMWS、LMWS之產物相關雜質及諸如HCP及DNA之過程相關雜質。
實例7:針對VEGF-A及Ang2之雙特異性抗體(如WO 2014/009465中所述之抗VEGF-A/抗Ang2抗體)的純化
自CHO表現培養物收集之細胞培養液(HCCF)藉由呈結合-溶離模式之Capture Select FcXL親和力層析加工。在HCCF負載至管柱上至25gmAb/l樹脂之最大負載密度之後,該管柱用25mM Tris/HCl、25mM NaCl(pH 7.2)洗滌持續2個管柱體積。接著,用純化水PWII執行額外洗滌持續五個 管柱體積。管柱結合之抗體使用30mM乙酸(pH 3.2)溶離。基於2500至1000mAU(路徑長度1cm)之OD280收集該溶離池。
該親和力溶離池用乙酸調節至pH 3.4且保持60min。該池接著用1.5M Tris鹼調節至pH 5.0且藉由深層過濾清除。該深層過濾池使用1.5M Tris鹼調節至pH 7且用作使用多模式陰離子交換樹脂Capto adhere之第二層析步驟的饋料。由於負載之電導率<5mS/cm,不必要調節電導率。
該Capto adhere管柱用50mM Tris/乙酸鹽(pH 7.0)平衡。該平衡管柱經負載直至170gmAb/l樹脂之負載密度且用50mM Tris/乙酸鹽(pH 7.0)(=平衡緩衝液)洗滌。基於1000至2500mAU(路徑長度1cm)之OD280,經最多3個CV洗滌收集溶離池。
該第二層析步驟之池用乙酸調節至pH 5.0且用作使用多模式陽離子交換樹脂Capto MMC ImpRes之最終第三層析步驟的饋料。該第三層析步驟以結合及溶離模式運行。該CaptoMMC ImpRes管柱用30mM Tris/乙酸鹽、30mM Tris/檸檬酸鹽(pH 5.0)平衡。該平衡管柱經負載直至30gmAb/l樹脂之負載密度且用平衡緩衝液洗滌持續五個管柱體積。使用30mM Tris/乙酸鹽、30mM Tris/檸檬酸鹽、150mM NaCl(pH 5.0)執行第二洗滌持續十個管柱體積,隨後使用平衡緩衝液持續五個管柱體積。使用30mM Tris/乙酸鹽、30mM Tris/檸檬酸鹽、500mM NaCl(pH 4.5)執行最終洗滌步驟持續十個管柱體積。管柱結合之抗體使用0-50% B之pH/鹽梯度在40個管柱體積中溶離。緩衝液A為平衡緩衝液30mM Tris/乙酸鹽、30mM Tris/檸檬酸鹽(pH 5.0)且緩衝液B為30mM Tris/乙酸鹽、30mM Tris/檸檬酸鹽、1.5M NaCl(pH 8.5)。基於250至4500mAU(路徑長度1cm)之OD280收集該溶離池。
Figure 106120122-A0202-12-0173-92
Figure 106120122-A0202-12-0173-93
Figure 106120122-A0202-12-0174-94
可見藉由使用Capto Adhere及Capto MMC ImpRes HHL,可減少諸如3/4抗體、前峰、HMWS、LMWS之產物相關雜質及諸如HCP及DNA之過程相關雜質。
實例8:抗X1/抗Y1雙特異性抗體之組裝及純化
針對靶標蛋白X1及Y1之雙特異性抗體(抗X1/抗Y1雙特異性抗體或aX1/Y1雙特異性)組裝如下。如實例1中所述,各半抗體(aX1(杵)及aY1(臼))獨立地經受使用蛋白A樹脂(MabSelect SuRe,GE Healthcare)之親和力層析步驟。
獲自蛋白A層析步驟之半抗體池接著如實例1中所述以1:1莫耳比率組合且組裝。pH經調節之經組裝之池接著經受使用CaptoTM Adhere樹脂呈流通模式之多模式陰離子交換層析。該CaptoTM Adhere管柱如實例1中所述達到平衡。來自雙特異性組裝步驟之產物池用純化水調節至9.0mS/cm之電導率且負載至管柱上。該雙特異性抗體流動通過該管柱,該管柱接著用平衡緩衝液洗滌。陰離子交換彙集基於280nm下之吸光度經起始及終止。
該多模式陰離子層析產物池接著經受使用CaptoTM MMC樹脂呈結合及溶離模式之多模式陽離子交換層析。該管柱如實例1中所述達到平衡。該多模式陰離子層析產物池如實例1中所述經負載及洗滌。該雙特異性抗體如實例1中所述藉由在分步溶離中增加鹽及pH自管柱中溶離出。陽離子交換彙集基於280nm下之吸光度經起始及終止。上述純化方案描繪於 圖7A中。
使用圖7A中所示之純化方案實現的該雙特異性抗體與產物相關及過程相關雜質之分離程度與使用圖7B7C中所示之純化方案實現的分離程度相比較。
重複上述實驗,且自該親和力層析步驟彙集之材料摻加20%臼均二聚體。使用圖7A中所示之純化方案實現的該雙特異性抗體與產物相關及過程相關雜質之分離程度再一次與使用圖7B7C中所示之純化方案實現的分離程度相比較。
實施例清單
1.一種用於自包含多特異性抗體及雜質之組合物純化該多特異性抗體之方法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,該方法包含依序步驟:a)使該組合物經受捕捉層析以產生捕捉層析溶離物;b)使該捕捉層析溶離物經受第一混合模式層析以產生第一混合模式溶離物;及c)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及d)收集包含該多特異性抗體之部分,其中該方法減少該組合物中之產物特異性雜質的量。
2.實施例1之方法,其中該捕捉層析溶離物在該第一混合模式層析之前經受離子交換或HIC層析。
3.一種用於自包含多特異性抗體及雜質之組合物純化該多特異性抗體之方 法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,其中該多特異性抗體之各臂獨立地產生,該方法包含依序步驟:a)使該多特異性抗體之各臂經受捕捉層析以針對該多特異性抗體之各臂產生捕捉溶離物,b)在足以產生包含該多特異性抗體之組合物的條件下形成包含該多特異性抗體之各臂的捕捉溶離物之混合物,c)使該包含該多特異性抗體之組合物經受第一混合模式層析以產生第一混合模式溶離物,及d)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及e)收集包含該多特異性抗體之部分,其中該方法減少該組合物中之產物特異性雜質的量。
4.實施例3之方法,其中該包含該多特異性抗體之組合物在該第一混合模式層析之前經受離子交換或HIC層析。
5.實施例1-4中任一者之方法,其中該捕捉層析為親和力層析。
6.實施例5之方法,其中該親和力層析為蛋白L層析、蛋白A層析、蛋白G層析、蛋白A及蛋白G層析。
7.實施例5或實施例6之方法,其中該親和力層析為蛋白A層析。
8.實施例1-7中任一者之方法,其中該捕捉層析以結合及溶離模式進行。
9.實施例1-8中任一者之方法,其中該第一混合模式層析及該第二混合模式層析為鄰近的。
10.實施例1-9中任一者之方法,其中該第一混合模式層析為混合模式陰離 子交換層析。
11.實施例1-10中任一者之方法,其中該第二混合模式層析為混合模式陽離子交換層析。
12.實施例1-9中任一者之方法,其中該第一混合模式層析為混合模式陽離子交換層析。
13.實施例1-10及12中任一者之方法,其中該第二混合模式層析為混合模式陰離子交換層析。
14.實施例1-13中任一者之方法,其中該第一混合模式層析以結合及溶離模式進行。
15.實施例14之方法,其中該溶離為梯度溶離。
16.實施例1-13中任一者之方法,其中該第一混合模式層析以流通模式進行。
17.實施例1-16中任一者之方法,其中該第二混合模式層析以結合及溶離模式進行。
18.實施例17之方法,其中該溶離為梯度溶離。
19.實施例1-16中任一者之方法,其中該第二混合模式層析以流通模式進行。
20.實施例1-19中任一者之方法,其進一步包含使該第二混合模式溶離物經受超濾之步驟。
21.實施例20之方法,其中該超濾依序包含第一超濾、透濾及第二超濾。
22.實施例7-21中任一者之方法,其中該蛋白A層析包含連接至瓊脂糖之蛋白A。
23.實施例7-21中任一者之方法,其中該蛋白A層析為MAbSelectTM、MAbSelectTM SuRe及MAbSelectTM SuRe LX、Prosep-VA、Prosep-VA Ultra Plus、蛋白A瓊脂糖速流或Toyopearl蛋白A層析。
24.實施例7-23中任一者之方法,其中該蛋白A層析使用蛋白A平衡緩衝液、蛋白A載樣緩衝液或蛋白A洗滌緩衝液中之一或多者,其中該平衡緩衝液、載樣緩衝液及/或洗滌緩衝液在約pH 7與約pH 8之間。
25.實施例24之方法,其中該蛋白A平衡緩衝液為約pH 7.7。
26.實施例24或實施例25之方法,其中該蛋白A平衡緩衝液包含約25mM Tris及約25mM NaCl。
27.實施例24-26中任一者之方法,其中該蛋白A層析在載樣之後用平衡緩衝液洗滌。
28.實施例7-27中任一者之方法,其中該多特異性抗體藉由pH分步溶離自蛋白A層析溶離。
29.實施例7-28中任一者之方法,其中該多特異性抗體藉由向蛋白A層析應用具有低pH之蛋白A溶離緩衝液而自該蛋白A溶離。
30.實施例29之方法,其中該蛋白A溶離緩衝液包含約150mM乙酸(約pH 2.9)。
31.實施例7-30中任一者之方法,其中彙集蛋白A溶離物,其中該溶離物之OD280大於約0.5。
32.實施例10-31中任一者之方法,其中該陰離子交換混合模式層析包含四級胺及疏水性部分。
33.實施例32之方法,其中該陰離子交換混合模式層析包含連接至高度交聯 瓊脂糖之四級胺及疏水性部分。
34.實施例33之方法,其中該混合模式層析為CaptoTM Adhere層析或CaptoTM Adhere ImpRes層析。
35.實施例11-34中任一者之方法,其中該陽離子交換混合模式層析包含N-苯甲基-n-甲基乙醇胺。
36.實施例35之方法,其中該混合模式層析為CaptoTM MMC層析或CaptoTM MMC ImpRes層析。
37.實施例1-36中任一者之方法,其中該第一混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,且其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液、該混合模式載樣緩衝液及/或該混合模式洗滌緩衝液在約pH 6與約pH 7之間。
38.實施例1-37中任一者之方法,其中該第二混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液及/或混合模式洗滌緩衝液在約pH 5與約pH 8之間。
39.實施例37或實施例38之方法,其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液及/或混合模式洗滌緩衝液為約pH 6.5。
40.實施例37-39中任一者之方法,其中該混合模式預平衡緩衝液包含約500mM乙酸鹽。
41.實施例37-40中任一者之方法,其中該混合模式平衡緩衝液包含約50mM乙酸鹽。
42.實施例37-41中任一者之方法,其中該第一混合模式層析在載樣之後用洗滌緩衝液洗滌。
43.實施例37-42中任一者之方法,其中該第二混合模式層析在載樣之後用洗滌緩衝液洗滌。
44.實施例15及18-43中任一者之方法,其中該多特異性抗體藉由pH梯度自該第一混合模式層析溶離。
45.實施例15及18-44中任一者之方法,其中該多特異性抗體藉由向混合模式離子交換層析應用具有低pH之混合模式溶離緩衝液而自該第一混合模式層析溶離。
46.實施例15及18-45中任一者之方法,其中該多特異性抗體藉由pH梯度自該第二混合模式層析溶離。
47.實施例15及18-46中任一者之方法,其中該多特異性抗體藉由向混合模式交換層析應用具有低pH之混合模式溶離緩衝液而自該第二混合模式層析溶離。
48.實施例2及4-47中任一者之方法,其中該離子交換層析包含四級胺。
49.實施例48之方法,其中該離子交換層析為陰離子交換層析,且其中該陰離子交換層析包含連接至交聯瓊脂糖之四級胺。
50.實施例49之方法,其中該混合模式陰離子交換層析為CaptoAdhere層析。
51.實施例48-50中任一者之方法,其中該陰離子交換層析使用陰離子交換預平衡緩衝液、陰離子交換平衡緩衝液或陰離子交換載樣緩衝液中之一或多者,其中該陰離子交換預平衡緩衝液、該陰離子交換平衡緩衝液及/或陰 離子交換載樣緩衝液在約pH 6與約pH 8之間。
52.實施例51之方法,其中該陰離子交換預平衡緩衝液、該陰離子交換平衡緩衝液及/或該陰離子交換載樣為約pH 6.5。
53.實施例51或實施例52之方法,其中該陰離子交換預平衡緩衝液包含約50mM Tris、500mM乙酸鈉。
54.實施例51-53中任一者之方法,其中該陰離子交換平衡緩衝液包含約50mM Tris。
55.實施例51-54中任一者之方法,其中該陰離子交換層析在載樣之後用陰離子交換平衡緩衝液洗滌。
56.實施例51-55中任一者之方法,其中該多特異性抗體藉由鹽梯度自該陰離子交換層析溶離。
57.實施例51-56中任一者之方法,其中該多特異性抗體藉由向該陰離子交換層析應用具有增加的鹽濃度之陰離子交換溶離緩衝液而自該陰離子交換層析溶離。
58.實施例57之方法,其中該陰離子交換溶離緩衝液包含約50mM Tris、100mM乙酸鈉(在約pH 8.5下)。
59.實施例51-58中任一者之方法,其中彙集陰離子交換溶離物,其中該溶離物之OD280大於約0.5至約2.0。
60.實施例1-59中任一者之方法,其中該多特異性抗體之臂在細胞中產生。
61.實施例60之方法,其中該細胞為原核細胞。
62.實施例61之方法,其中該原核細胞為大腸桿菌細胞。
63.實施例61或實施例62之方法,其中該細胞經工程改造以表現一或多種 伴侶蛋白。
64.實施例63之方法,其中該伴侶蛋白為FkpA、DsbA或DsbC中之一或多者。
65.實施例63或實施例64之方法,其中該伴侶蛋白為大腸桿菌伴侶蛋白。
66.實施例1-60中任一者之方法,其中該細胞為真核細胞。
67.實施例66之方法,其中該真核細胞為酵母細胞、昆蟲細胞或哺乳動物細胞。
68.實施例66或實施例67之方法,其中該真核細胞為CHO細胞。
69.實施例60-68中任一者之方法,其中該等細胞在捕捉層析之前經溶解以產生包含該多特異性抗體或該多特異性抗體之臂的細胞溶解產物。
70.實施例69之方法,其中該等細胞使用微流化器溶解。
71.實施例69或實施例70之方法,其中聚乙烯亞胺(PEI)在層析之前添加至該細胞溶解產物中。
72.實施例1-71中任一者之方法,其中該方法減少該組合物中宿主細胞蛋白(HCP)、瀝出之蛋白A、核酸、細胞培養基組分或病毒雜質中之任一者的量。
73.實施例1-72中任一者之方法,其中該多特異性抗體為雙特異性抗體。
74.實施例73之方法,其中該雙特異性抗體為杵臼(KiH)雙特異性抗體。
75.實施例73或實施例74之方法,其中該雙特異性抗體為CrossMab雙特異性抗體。
76.實施例1-75中任一者之方法,其中該部分含有至少約95%多特異性抗體。
77.實施例1-76中任一者之方法,其中該產物特異性雜質為非配對抗體臂、 抗體均二聚體、聚集體、高分子量物質(HMWS)、低分子量物質(LMWS)、酸性變異體或鹼性變異體中之一或多者。
78.實施例77之方法,其中該部分含有不超過約5%非配對抗體臂。
79.實施例77或實施例78之方法,其中該部分含有不超過約5%抗體均二聚體。
80.實施例77-79中任一者之方法,其中該部分含有不超過約2%聚集體或高分子量物質(HMWS)。
81.實施例77-80中任一者之方法,其中該部分含有不超過約2% LMWS。
82.實施例77-81中任一者之方法,其中該部分含有不超過約50%酸性變異體。
83.實施例77-82中任一者之方法,其中該部分含有不超過約35%鹼性變異體。
84.實施例77-83中任一者之方法,其中該部分含有不超過約5% ¾抗體。
85.實施例77之方法,其中該部分含有a)至少約95%-100%多特異性抗體;b)不超過約1%-5%非配對抗體臂;c)不超過約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及f)不超過約5% ¾抗體。
86.一種包含藉由實施例1-85中任一者之方法純化的多特異性抗體之組合物。
87.一種包含藉由實施例1-85中任一者之方法純化的多特異性抗體之組合物,其用於治療癌症或眼病。
88.一種用多步驟層析方法純化含Fc區雜二聚體多肽之方法,其中該方法包含親和力層析步驟、隨後兩個不同的多模式離子交換層析步驟,及由此純化該含Fc區雜二聚體多肽。
89.根據實施例88之方法,其中該多步驟層析方法包含i.親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟或ii.親和力層析步驟、隨後多模式陽離子交換層析步驟、隨後多模式陰離子交換層析步驟。
90.根據實施例88-89中任一者之方法,其中該多步驟層析方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟。
91.根據實施例88-90中任一者之方法,其中該多步驟層析方法精確地包含三個層析步驟。
92.根據實施例89-91中任一者之方法,其中該多模式陰離子交換層析步驟以流通模式執行。
93.根據實施例89-92中任一者之方法,其中在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有小於7mS/cm之電導率值的溶液中應用。
94.根據實施例89-93中任一者之方法,其中在該多模式陰離子交換層析步 驟中,該含Fc區雜二聚體多肽在具有在約6mS/cm至約2mS/cm範圍內之電導率值的溶液中應用。
95.根據實施例89-94中任一者之方法,其中在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有約4.5mS/cm之電導率值的溶液中應用。
96.根據實施例89-95中任一者之方法,其中該多模式陰離子交換層析步驟在約7之pH下執行。
97.根據實施例89-96中任一者之方法,其中在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在具有約4.5mS/cm之電導率及約7之pH的溶液中應用。
98.根據實施例89-97中任一者之方法,其中在該多模式陰離子交換層析步驟中,該含Fc區雜二聚體多肽在約100g至約300g/公升層析材料之範圍內應用。
99.根據實施例89-98中任一者之方法,其中該多模式陰離子交換層析材料為多模式強陰離子交換層析材料。
100.根據實施例89-99中任一者之方法,其中該多模式陰離子交換層析材料具有高流量瓊脂糖基質、作為配位體的多模式強陰離子交換劑、36-44μm之平均粒徑及0.08至0.11mmol Cl-/mL培養基之離子容量。
101.根據實施例89-100中任一者之方法,其中該多模式陽離子交換層析介質為多模式弱陽離子交換層析介質。
102.根據實施例89-101中任一者之方法,其中該多模式陽離子交換層析介質具有高流量瓊脂糖基質、作為配位體的多模式弱陽離子交換劑、36-44μm 之平均粒徑及25至39μmol/mL之離子容量。
103.根據實施例89-102中任一者之方法,其中該多模式陰離子交換層析步驟以結合及溶離模式執行。
104.根據實施例88-103中任一者之方法,其中該親和力層析為蛋白A親和力層析或蛋白G親和力層析或單鏈Fv配位體親和力層析或具有CaptureSelect層析材料之層析步驟或具有CaptureSelect FcXL層析材料之層析步驟。
105.根據實施例88-104中任一者之方法,其中該親和力層析步驟為蛋白A層析步驟。
106.根據實施例88-105中任一者之方法,其中該親和力層析步驟為具有CaptureSelectTM層析材料之層析步驟。
107.根據實施例88-106中任一者之方法,其中該含Fc區雜二聚體多肽為抗體、雙特異性抗體或Fc-融合蛋白。
108.根據實施例88-107中任一者之方法,其中該含Fc區雜二聚體多肽為雙特異性抗體。
109.根據實施例90-108中任一者之方法,其中該含Fc區雜二聚體多肽為CrossMab。
110.根據實施例90-109中任一者之方法,其中該含Fc區雜二聚體多肽為雙特異性抗體,其包含a)特異性結合於第一抗原之第一全長抗體的重鏈及輕鏈;及b)特異性結合於第二抗原之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
111.根據實施例108-110中任一者之方法,其中該雙特異性抗體結合於ANG2及VEGF。
112.根據實施例108-110中任一者之方法,其中該CrossMab結合於ANG2及VEGF。
113.根據實施例108-112中任一者之方法,其中該雙特異性抗體為瓦紐賽單抗。
114.根據實施例108-112中任一者之方法,其中該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4。
115.根據實施例108-112中任一者之方法,其中該雙特異性抗體包含具有胺基酸序列SEQ ID NO:9之第一重鏈及具有胺基酸序列SEQ ID NO:10之第二重鏈及具有胺基酸序列SEQ ID NO:11之第一輕鏈及具有胺基酸序列SEQ ID NO:12之第二輕鏈。
116.根據實施例108-112中任一者之方法,其中該雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。
117.根據實施例108-112中任一者之方法,其中該雙特異性抗體包含具有胺基酸序列SEQ ID NO:13之第一重鏈及具有胺基酸序列SEQ ID NO:14之第二重鏈及具有胺基酸序列SEQ ID NO:15之第一輕鏈及具有胺基酸序列SEQ ID NO:16之第二輕鏈。
118.實施例108-117中任一者之方法,其中該經純化含Fc區雜二聚體多肽含有不超過約5% ¾抗體。
119.一種用多步驟層析方法純化結合於ANG-2及VEGF之雙特異性抗體之方法,其中該方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟,及由此純化該結合於ANG-2及VEGF之雙特異性抗體,其中雙特異性抗體包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4或包含第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。
120.根據實施例119之方法,其中該雙特異性抗體結合於ANG-2及VEGF,其包含a)包含該第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含該第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
121.一種包含雙特異性抗體之組合物,其中該組合物含有至少約95%雙特異性抗體。
122.實施例121之組合物,其中該組合物含有不超過約5%非配對抗體臂。
123.實施例121或122之組合物,其中該組合物含有不超過約5%抗體均二 聚體。
124.一種包含CrossMab抗體之組合物,其中該組合物含有至少95% CrossMab抗體。
125.實施例121-124中任一者之組合物,其中該組合物含有不超過約2%聚集體或高分子量物質(HMWS)。
126.實施例121-125中任一者之組合物,其中該組合物含有不超過約2%低分子量物質(LMWS)。
127.實施例121-126中任一者之組合物,其中該組合物含有不超過約50%酸性變異體。
128.實施例121-127中任一者之組合物,其中該組合物含有不超過約35%鹼性變異體。
129.實施例121-128中任一者之組合物,其中該組合物含有不超過約5% ¾抗體。
130.實施例121或實施例122之組合物,其中該組合物含有a)至少約95%-100%多特異性抗體;b)不超過約1%-5%非配對抗體臂;c)不超過約1%-5%抗體均二聚體;d)不超過約1%或2% HMWS;e)不超過約1%或2% LMWS;及f)不超過約5% ¾抗體。
131.實施例121-130中任一者之組合物,其中該雙特異性抗體結合於ANG-2及VEGF。
132.實施例131之組合物,其中該雙特異性抗體結合於ANG-2及VEGF,其包含a)包含該第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含該第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
133.一種包含結合於ANG-2及VEGF之雙特異性抗體之組合物,其中該組合物含有不超過約5%、約4%、約3%、約2%或約1% ¾抗體。
134.實施例133之組合物,其中該結合於ANG-2及VEGF之雙特異性抗體包含a)包含該第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含該第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
135.實施例133或134之組合物,其中該組合物使用實施例119之方法獲得。
136.根據實施例88-118中任一者之方法用於純化含Fc雜二聚體多肽之用途。
137.根據實施例88-118中任一者之方法用於減少含Fc雜二聚體多肽相關雜質之用途。
138.一種用根據實施例88-118中任一者之方法獲得的含Fc雜二聚體多肽或一種使用實施例119-120中任一者之方法獲得的結合於ANG-2及VEGF之雙特異性抗體,其用於製造用於治療癌症或眼病之藥劑。
139.一種由根據實施例88-118中任一者之方法獲得的含Fc雜二聚體多肽或 一種使用實施例119-120中任一者之方法獲得的結合於ANG-2及VEGF之雙特異性抗體,其用於治療癌症或眼病。
140.一種用於產生含Fc雜二聚體多肽之方法,其包含以下步驟:i.培養包含編碼含Fc雜二聚體多肽之核酸的細胞,ii.自該細胞或該培養基回收該含Fc雜二聚體蛋白,iii.用根據實施例88-118中任一者之方法純化該含Fc雜二聚體多肽,及由此產生該含Fc雜二聚體多肽。
141.一種用於產生使用實施例119-120中任一者之方法獲得的結合於ANG-2及VEGF之雙特異性抗體之方法,其包含步驟i.培養包含編碼該雙特異性抗體之核酸的細胞,ii.自該細胞或該培養基回收該雙特異性抗體,iii.用根據實施例119-120中任一者之方法純化該雙特異性抗體,及由此產生該結合於ANG-2及VEGF之雙特異性抗體。
<110> Glen GIESE Eva ROSENBERG Bernard SALLIER Susanne KONRAD Wolfgang KOEHNLEIN Steffen WILLMANN Agathe BIALAS
<120> 多特異性抗體之純化
<130> 146392036342
<140> 尚未經指派
<141> 與此並行
<150> US 62/351,908
<151> 2016-06-17
<160> 16
<170> 用於Windows 4.0版本之FastSEQ
<210> 1
<211> 123
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 1
Figure 106120122-A0202-12-0192-95
Figure 106120122-A0202-12-0193-96
<210> 2
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 2
Figure 106120122-A0202-12-0193-97
<210> 3
<211> 128
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 3
Figure 106120122-A0202-12-0193-98
Figure 106120122-A0202-12-0194-100
<210> 4
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 4
Figure 106120122-A0202-12-0194-99
<210> 5
<211> 123
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 5
Figure 106120122-A0202-12-0195-101
<210> 6
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 6
Figure 106120122-A0202-12-0195-102
Figure 106120122-A0202-12-0196-103
<210> 7
<211> 129
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 7
Figure 106120122-A0202-12-0196-104
<210> 8
<211> 110
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 8
Figure 106120122-A0202-12-0196-105
Figure 106120122-A0202-12-0197-107
<210> 9
<211> 463
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 9
Figure 106120122-A0202-12-0197-106
Figure 106120122-A0202-12-0198-108
<210> 10
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 10
Figure 106120122-A0202-12-0199-109
Figure 106120122-A0202-12-0200-110
<210> 11
<211> 213
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 11
Figure 106120122-A0202-12-0200-111
Figure 106120122-A0202-12-0201-112
<210> 12
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 12
Figure 106120122-A0202-12-0201-113
Figure 106120122-A0202-12-0202-115
<210> 13
<211> 453
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 13
Figure 106120122-A0202-12-0202-114
Figure 106120122-A0202-12-0203-116
<210> 14
<211> 463
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 14
Figure 106120122-A0202-12-0204-117
Figure 106120122-A0202-12-0205-118
<210> 15
<211> 214
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 15
Figure 106120122-A0202-12-0205-119
Figure 106120122-A0202-12-0206-120
<210> 16
<211> 213
<212> PRT
<213> 人工序列
<220>
<223> 合成構築體
<400> 16
Figure 106120122-A0202-12-0206-121
Figure 106120122-A0202-12-0207-122

Claims (40)

  1. 一種用於自包含多特異性抗體及雜質之組合物純化該多特異性抗體之方法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,該方法包含依序步驟:a)使該組合物經受捕捉層析以產生捕捉層析溶離物;b)使該捕捉層析溶離物經受第一混合模式層析以產生第一混合模式溶離物;c)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及d)收集包含該多特異性抗體之部分(fraction),其中該方法減少該組合物中之產物特異性雜質的量,其中該產物特異性雜質為非配對抗體臂、抗體均二聚體、聚集體、高分子量物質(HMWS)、低分子量物質(LMWS)、酸性變異體或鹼性變異體中之一或多者。
  2. 如申請專利範圍第1項之方法,其中該捕捉層析溶離物在該第一混合模式層析之前經受離子交換或HIC層析,視情況其中該離子交換層析包含四級胺。
  3. 一種用於自包含多特異性抗體及雜質之組合物純化該多特異性抗體之方法,其中該多特異性抗體包含多個臂,各臂包含VH/VL單元,其中該多特異性抗體之各臂獨立地產生,該方法包含依序步驟:a)使該多特異性抗體之各臂經受捕捉層析以針對該多特異性抗體之各臂產生捕捉溶離物,b)在足以產生包含該多特異性抗體之組合物的條件下形成包含該多特異性抗體之各臂的捕捉溶離物之混合物,c)使該包含該多特異性抗體之組合物經受第一混合模式層析以產生 第一混合模式溶離物,d)使該第一混合模式溶離物經受第二混合模式層析以產生第二混合模式溶離物;及e)收集包含該多特異性抗體之部分,其中該方法減少該組合物中之產物特異性雜質的量,其中該產物特異性雜質為非配對抗體臂、抗體均二聚體、聚集體、高分子量物質(HMWS)、低分子量物質(LMWS)、酸性變異體或鹼性變異體中之一或多者。
  4. 如申請專利範圍第3項之方法,其中該包含該多特異性抗體之組合物在該第一混合模式層析之前經受離子交換或HIC層析,視情況其中該離子交換層析包含四級胺。
  5. 如申請專利範圍第1項至第4項中任一項之方法,其中該捕捉層析為蛋白L層析、蛋白A層析、蛋白G層析或蛋白A及蛋白G層析。
  6. 如申請專利範圍第1項至第4項中任一項之方法,其中該第一混合模式層析及該第二混合模式層析為鄰近的。
  7. 如申請專利範圍第1項至第4項中任一項之方法,其中:(a)該第一混合模式層析為混合模式陰離子交換層析;(b)該第二混合模式層析為混合模式陽離子交換層析;(c)該第一混合模式層析為混合模式陽離子交換層析;或(d)該第二混合模式層析為混合模式陰離子交換層析。
  8. 如申請專利範圍第1項至第4項中任一項之方法,其中:(a)該第一混合模式層析以結合及溶離模式或以流通模式進行;以及(b)該第二混合模式層析以結合及溶離模式或以流通模式進行。
  9. 如申請專利範圍第8項之方法,其中該第一混合模式層析以結合及溶離模式進行,以及其中該溶離為梯度溶離。
  10. 如申請專利範圍第8項之方法,其中該第二混合模式層析以結合及溶離模式進行,以及其中該溶離為梯度溶離。
  11. 如申請專利範圍第1項至第4項中任一項之方法,其進一步包含使該第二混合模式溶離物經受超濾之步驟,視情況其中該超濾依序包含第一超濾、透濾及第二超濾。
  12. 如申請專利範圍第5項之方法,其中該捕捉層析為蛋白A層析,以及其中該蛋白A層析使用蛋白A平衡緩衝液、蛋白A載樣緩衝液或蛋白A洗滌緩衝液中之一或多者,其中該平衡緩衝液、載樣緩衝液及/或洗滌緩衝液在pH 7與pH 8之間。
  13. 如申請專利範圍第12項之方法,其中該蛋白A平衡緩衝液包含25mM Tris及25mM NaCl。
  14. 如申請專利範圍第12項之方法,其中該蛋白A層析在載樣之後用平衡緩衝液洗滌。
  15. 如申請專利範圍第5項之方法,其中該捕捉層析為蛋白A層析,以及其中該多特異性抗體藉由pH分步(pH step elution)溶離自該蛋白A層析溶離,或藉由向該蛋白A層析施用具有低pH之蛋白A溶離緩衝液而自該蛋白A溶離。
  16. 如申請專利範圍第15項之方法,其中該pH分步溶離包含施用分步溶離,該分步溶離包含向該蛋白A層析施用具有低pH之蛋白A溶離緩衝液,以及其中該蛋白A溶離緩衝液包含約150mM乙酸,約pH 2.9。
  17. 如申請專利範圍第5項之方法,其中該捕捉層析為蛋白A層析,以及其中彙集該蛋白A溶離物,其中該溶離物之OD280大於0.5。
  18. 如申請專利範圍第7項之方法,其中該陰離子交換混合模式層 析包含四級胺及疏水性部分。
  19. 如申請專利範圍第7項之方法,其中該陽離子交換混合模式層析包含N-苯甲基-n-甲基乙醇胺。
  20. 如申請專利範圍第1項至第4項中任一項之方法,其中:(a)該第一混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,且其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液、該混合模式載樣緩衝液及/或該混合模式洗滌緩衝液在pH 6與pH 7之間;(b)該第二混合模式層析使用混合模式預平衡緩衝液、混合模式平衡緩衝液、混合模式載樣緩衝液或混合模式洗滌緩衝液中之一或多者,其中該混合模式預平衡緩衝液、該混合模式平衡緩衝液及/或混合模式洗滌緩衝液在pH 5與pH 8之間,視情況約pH 6.5;或(c)(a)及(b)二者。
  21. 如申請專利範圍第20項之方法,其中該混合模式預平衡緩衝液包含500mM乙酸鹽或50mM乙酸鹽。
  22. 如申請專利範圍第20項之方法,其中該第一混合模式層析、該第二混合模式層析或該第一及第二混合模式層析二者在載樣之後用洗滌緩衝液洗滌。
  23. 如申請專利範圍第9項之方法,其中該多特異性抗體藉由pH梯度自該第一混合模式層析、該第二混合模式層或該第一及第二混合模式層析二者溶離,或該多特異性抗體藉由向該混合模式交換層析施用具有低pH之混合模式溶離緩衝液自該第一混合模式層析、該第二混合模式層或該第一及第二混合模式層析二者溶離。
  24. 如申請專利範圍第2項或第4項之方法,其中該離子交換層析為陰離子交換層析,且其中該陰離子交換層析使用陰離子交換預平衡緩衝液、陰離子交換平衡緩衝液或陰離子交換載樣緩衝液中之一或多者,其中該陰離子交換預平衡緩衝液、該陰離子交換平衡緩衝液及/或陰離子交換載樣緩衝液在pH 6與pH 8之間,視情況約6.5。
  25. 如申請專利範圍第24項之方法,其中如下列一或多者:(a)該陰離子交換預平衡緩衝液包含約50mM Tris、約500mM乙酸鈉;(b)該陰離子交換平衡緩衝液包含約50mM Tris;(c)該陰離子交換層析在載樣之後用陰離子交換平衡緩衝液洗滌;(d)該多特異性抗體藉由鹽梯度自該陰離子交換層析溶離,或該多特異性抗體藉由向該陰離子交換層析施用具有增加的鹽濃度之陰離子交換溶離緩衝液而自該陰離子交換層析溶離。
  26. 如申請專利範圍第25項之方法,其中(d)中該多特異性抗體藉由施用包含約50mM Tris、約100mM乙酸鈉、約pH 8.5之陰離子交換溶離緩衝液而自該陰離子交換層析溶離。
  27. 如申請專利範圍第24項之方法,其中彙集陰離子交換溶離物,其中該溶離物之OD280大於0.5至2.0。
  28. 如申請專利範圍第1項至第4項中任一項之方法,其中該多特異性抗體之臂在原核細胞或真核細胞中產生,其中視情況該原核細胞為大腸桿菌細胞,視情況該大腸桿菌細胞經工程改造以表現一或多種伴侶蛋白,視情況該伴侶蛋白為FkpA、DsbA或DsbC,視情況其中該真核細 胞為酵母細胞、昆蟲細胞或哺乳動物細胞,視情況其中該哺乳動物細胞為CHO細胞。
  29. 如申請專利範圍第28項之方法,其中該等細胞在捕捉層析之前經溶解,視情況使用微流化器溶解,以產生包含該多特異性抗體或該多特異性抗體之臂的細胞溶解產物,視情況其中聚乙烯亞胺(PEI)在層析之前添加至該細胞溶解產物中。
  30. 如申請專利範圍第1項至第4項中任一項之方法,其中該方法減少該組合物中宿主細胞蛋白(HCP)、瀝出之蛋白A、核酸、細胞培養基組分或病毒雜質中之任一者的量。
  31. 如申請專利範圍第1項至第4項中任一項之方法,其中該多特異性抗體為雙特異性抗體,視情況其中該雙特異性抗體為杵臼(Knob-in-hole;KiH)雙特異性抗體或CrossMab雙特異性抗體。
  32. 如申請專利範圍第1項至第4項中任一項之方法,其中該部分含有至少95%多特異性抗體。
  33. 如申請專利範圍第1項至第4項中任一項之方法,其中該部分含有不超過以下一或多者:(a)約5%非配對抗體臂;(b)約5%抗體均二聚體;(c)約2%聚集體或高分子量物質(HMWS);(d)約2%低分子量物質(LMWS);(e)約50%酸性變異體;(f)約35%鹼性變異體;或(g)約5% ¾抗體。
  34. 如申請專利範圍第1項至第4項中任一項之方法,其中該部分含有a)至少95%-100%多特異性抗體;b)不超過1%-5%非配對抗體臂;c)不超過1%-5%抗體均二聚體;d)不超過1%或2% HMWS;e)不超過1%或2% LMWS;及f)不超過5% ¾抗體。
  35. 一種用多步驟層析方法純化結合於ANG-2及VEGF之雙特異性抗體之方法,其中該方法包含親和力層析步驟、隨後多模式陰離子交換層析步驟、隨後多模式陽離子交換層析步驟,及由此純化該結合於ANG-2及VEGF之雙特異性抗體,其中雙特異性抗體包含:(1)第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:1及作為輕鏈可變域(VL)之SEQ ID NO:2;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:3及作為輕鏈可變域(VL)之SEQ ID NO:4,或(ii)第一抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:5及作為輕鏈可變域(VL)之SEQ ID NO:6;及第二抗原結合位點,其包含作為重鏈可變域(VH)之SEQ ID NO:7及作為輕鏈可變域(VL)之SEQ ID NO:8。
  36. 如申請專利範圍第35項之方法,其中該雙特異性抗體結合於 ANG-2及VEGF,視情況其中該雙特異性抗體包含a)包含該第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含該第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
  37. 一種包含結合於ANG-2及VEGF之雙特異性抗體之組合物,其中該組合物含有不超過5%、4%、3%、2%或1% ¾抗體,視情況其中該組合物係使用如申請專利範圍第35項之方法所獲得,視情況其中該結合於ANG-2及VEGF之雙特異性抗體包含a)包含該第一抗原結合位點之第一全長抗體的重鏈及輕鏈;及b)包含該第二抗原結合位點之全長抗體的經修飾重鏈及經修飾輕鏈,其中恆定域CL及CH1由彼此置換。
  38. 一種用於產生結合於ANG-2及VEGF之雙特異性抗體之方法,其包含步驟i.培養包含編碼該雙特異性抗體之核酸的細胞,ii.自該細胞或培養基回收該雙特異性抗體,iii.用如申請專利範圍第35項之方法純化該雙特異性抗體,及由此產生該結合於ANG-2及VEGF之雙特異性抗體。
  39. 一種製造包含多特異性抗體之組合物的方法,其中該方法包含如申請專利範圍第1項至第4項中任一項之方法。
  40. 一種製造如申請專利範圍第37項之組合物的方法,其包含如申請專利範圍第35項之方法。
TW106120122A 2016-06-17 2017-06-16 多特異性抗體之純化 TWI798179B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662351908P 2016-06-17 2016-06-17
US62/351,908 2016-06-17

Publications (2)

Publication Number Publication Date
TW201803902A TW201803902A (zh) 2018-02-01
TWI798179B true TWI798179B (zh) 2023-04-11

Family

ID=59593150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120122A TWI798179B (zh) 2016-06-17 2017-06-16 多特異性抗體之純化

Country Status (14)

Country Link
US (1) US20190256556A1 (zh)
EP (1) EP3472177A2 (zh)
JP (2) JP2019521986A (zh)
KR (2) KR20230113662A (zh)
CN (1) CN109563124A (zh)
AR (1) AR108800A1 (zh)
AU (1) AU2017286676A1 (zh)
BR (1) BR112018075516A2 (zh)
CA (1) CA3026518A1 (zh)
IL (1) IL263690B2 (zh)
MX (1) MX2018015173A (zh)
SG (1) SG11201810777WA (zh)
TW (1) TWI798179B (zh)
WO (1) WO2017218977A2 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
RU2744860C2 (ru) 2015-12-30 2021-03-16 Кодиак Сайенсиз Инк. Антитела и их конъюгаты
EP3676280A1 (en) * 2017-08-30 2020-07-08 Fresenius Kabi Deutschland GmbH Method for purifying anti-il-6 receptor antibodies
US11945839B2 (en) 2017-12-22 2024-04-02 Hoffmann-La Roche Inc. Depletion of light chain mispaired antibody variants by hydrophobic interaction chromatography
WO2019149693A1 (en) * 2018-01-30 2019-08-08 Univercells S.A. Protein purification process and platform
MX2020008000A (es) * 2018-01-30 2021-01-08 Exothera Sa Procedimiento para la purificacion de proteinas.
CN111423512B (zh) * 2019-01-10 2024-01-05 北京比洋生物技术有限公司 阻断血管内皮细胞生长且活化t细胞的多靶向融合蛋白和包含其的药物组合物
CA3128027A1 (en) 2019-01-29 2020-08-06 Shire-Nps Pharmaceuticals, Inc. Parathyroid hormone variants
CA3137116A1 (en) * 2019-05-03 2020-11-12 Genentech, Inc. Methods of reducing the enzymatic hydrolysis activity rate in a composition obtained from a purification platform
WO2020258704A1 (zh) * 2019-06-28 2020-12-30 信达生物制药(苏州)有限公司 无缝连续流层析方法
CA3157509A1 (en) 2019-10-10 2021-04-15 Kodiak Sciences Inc. Methods of treating an eye disorder
US20220372071A1 (en) * 2019-11-07 2022-11-24 Amgen Inc. High salt washes during cation exchange chromatography to remove product-related impurities
AU2021208515A1 (en) * 2020-01-15 2022-08-04 F. Hoffmann-La Roche Ag Methods to decrease impurities from recombinant protein manufacturing processes
WO2021170060A1 (en) * 2020-02-28 2021-09-02 Wuxi Biologics (Shanghai) Co., Ltd. Purification of bispeciifc antibodies
CN115734969A (zh) * 2020-04-13 2023-03-03 上海药明生物技术有限公司 双特异性抗体的纯化
CN113563469A (zh) * 2020-04-28 2021-10-29 江苏中新医药有限公司 高回收率纯化阿达木单抗的方法
CN114014906B (zh) * 2020-06-24 2024-01-12 夏尔巴生物技术(苏州)有限公司 一种利用阳离子交换层析纯化疏水性蛋白的方法
CN114539416A (zh) * 2020-11-26 2022-05-27 盛禾(中国)生物制药有限公司 一种双特异性抗体的层析纯化工艺
AU2022234150A1 (en) * 2021-03-09 2023-09-28 Jcr Pharmaceuticals Co., Ltd. Method for producing antibody-lysosomal enzyme fusion protein
WO2022225060A1 (ja) * 2021-04-23 2022-10-27 協和キリン株式会社 分解物の産生を抑制する方法
TW202241924A (zh) * 2021-04-23 2022-11-01 大陸商和鉑醫藥(上海)有限責任公司 一種雙特異性抗體的純化方法
US20220411811A1 (en) * 2021-06-25 2022-12-29 The Board Of Trustees Of The University Of Illinois Synthetic toolkit for plant transformation
CA3235508A1 (en) * 2021-10-19 2023-05-11 Soon Jae Park Method for purifying fusion protein having igg fc domain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070068A1 (en) * 2013-11-07 2015-05-14 Abbvie Inc. Isolation and purification of antibodies
WO2015135884A1 (en) * 2014-03-10 2015-09-17 Richter Gedeon Nyrt. Immunoglobulin purification using pre-cleaning steps
WO2016018740A2 (en) * 2014-07-26 2016-02-04 Regeneron Pharmaceuticals, Inc. Purification platform for bispecific antibodies

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
FR2413974A1 (fr) 1978-01-06 1979-08-03 David Bernard Sechoir pour feuilles imprimees par serigraphie
US4419446A (en) 1980-12-31 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Recombinant DNA process utilizing a papilloma virus DNA as a vector
US4601978A (en) 1982-11-24 1986-07-22 The Regents Of The University Of California Mammalian metallothionein promoter system
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
DE68925971T2 (de) 1988-09-23 1996-09-05 Cetus Oncology Corp Zellenzuchtmedium für erhöhtes zellenwachstum, zur erhöhung der langlebigkeit und expression der produkte
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
DE69029036T2 (de) 1989-06-29 1997-05-22 Medarex Inc Bispezifische reagenzien für die aids-therapie
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5508192A (en) 1990-11-09 1996-04-16 Board Of Regents, The University Of Texas System Bacterial host strains for producing proteolytically sensitive polypeptides
US5264365A (en) 1990-11-09 1993-11-23 Board Of Regents, The University Of Texas System Protease-deficient bacterial strains for production of proteolytically sensitive polypeptides
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
EP0586505A1 (en) 1991-05-14 1994-03-16 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
ES2206447T3 (es) 1991-06-14 2004-05-16 Genentech, Inc. Anticuerpo humanizado para heregulina.
IE922437A1 (en) 1991-07-25 1993-01-27 Idec Pharma Corp Recombinant antibodies for human therapy
US7018809B1 (en) 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
JPH07501451A (ja) 1991-11-25 1995-02-16 エンゾン・インコーポレイテッド 多価抗原結合タンパク質
AU675929B2 (en) 1992-02-06 1997-02-27 Curis, Inc. Biosynthetic binding protein for cancer marker
ATE149570T1 (de) 1992-08-17 1997-03-15 Genentech Inc Bispezifische immunoadhesine
CA2149329C (en) 1992-11-13 2008-07-15 Darrell R. Anderson Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
US5639635A (en) 1994-11-03 1997-06-17 Genentech, Inc. Process for bacterial production of polypeptides
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
DE69830901T2 (de) 1997-05-02 2006-05-24 Genentech Inc., San Francisco ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen
IL127127A0 (en) 1998-11-18 1999-09-22 Peptor Ltd Small functional units of antibody heavy chain variable regions
ES2528794T3 (es) 2000-04-11 2015-02-12 Genentech, Inc. Anticuerpos multivalentes y usos de los mismos
WO2002061090A2 (en) 2000-12-14 2002-08-08 Genentech, Inc. Prokaryotically produced antibodies and uses thereof
CA2447832C (en) 2000-12-22 2012-09-25 Jamshid Tanha Phage display libraries of human vh fragments
JP2005289809A (ja) 2001-10-24 2005-10-20 Vlaams Interuniversitair Inst Voor Biotechnologie Vzw (Vib Vzw) 突然変異重鎖抗体
PT1639011E (pt) 2003-06-30 2009-01-20 Domantis Ltd Anticorpos (dab) de domínio único peguilados
PT1718677E (pt) 2003-12-19 2012-07-18 Genentech Inc Fragmentos de anticorpo monovalentes úteis como agentes terapêuticos
CA2552639C (en) * 2004-02-27 2012-05-01 Ge Healthcare Bio-Sciences Ab A process for the purification of antibodies
EP1791565B1 (en) 2004-09-23 2016-04-20 Genentech, Inc. Cysteine engineered antibodies and conjugates
CN100475965C (zh) 2005-07-22 2009-04-08 上海高科联合生物技术研发有限公司 一种大肠杆菌高效外分泌表达溶葡萄球菌酶的方法
JP2009541275A (ja) 2006-06-22 2009-11-26 ノボ・ノルデイスク・エー/エス 二重特異性抗体の生産
EP2471816A1 (en) 2006-08-30 2012-07-04 Genentech, Inc. Multispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US8227577B2 (en) 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
PT2235064E (pt) 2008-01-07 2016-03-01 Amgen Inc Método de preparação de moléculas heterodiméricas de fc de anticorpos utilizando efeitos de indução eletrostática
DE102008048942B4 (de) 2008-09-25 2011-01-13 Siemens Aktiengesellschaft Anordnung mit einer Wellendichtung
CA2756244A1 (en) 2009-04-02 2010-10-07 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
EP2417156B1 (en) 2009-04-07 2015-02-11 Roche Glycart AG Trivalent, bispecific antibodies
WO2010136172A1 (en) 2009-05-27 2010-12-02 F. Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US8703132B2 (en) 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
AR080794A1 (es) 2010-03-26 2012-05-09 Hoffmann La Roche Anticuerpos bivalentes biespecificos anti- vegf/ anti-ang-2
ES2617777T5 (es) 2010-04-23 2022-10-13 Hoffmann La Roche Producción de proteínas heteromultiméricas
ES2637613T5 (es) 2010-05-25 2022-07-20 Hoffmann La Roche Procedimientos de purificación de polipéptidos
JP5947802B2 (ja) * 2010-11-05 2016-07-06 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト ミックスモードクロマトグラフィーによる抗体捕捉の最適化方法
EP3418306B1 (en) 2011-10-11 2023-12-06 F. Hoffmann-La Roche AG Improved assembly of bispecific antibodies
HUE056217T2 (hu) * 2012-07-13 2022-02-28 Roche Glycart Ag Bispecifikus anti-VEGF/anti-ANG-2 antitestek és ezek alkalmazása szemészeti érbetegségek kezelésében
CN104902914B (zh) * 2012-09-11 2019-01-01 科荣生生物科学公司 高纯度和优异产量的正确折叠的依那西普
EP3036253B1 (en) * 2013-08-19 2020-09-23 F. Hoffmann-La Roche AG Separation of bispecific antibodies and bispecific antibody production side products using hydroxyapatite chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070068A1 (en) * 2013-11-07 2015-05-14 Abbvie Inc. Isolation and purification of antibodies
WO2015135884A1 (en) * 2014-03-10 2015-09-17 Richter Gedeon Nyrt. Immunoglobulin purification using pre-cleaning steps
WO2016018740A2 (en) * 2014-07-26 2016-02-04 Regeneron Pharmaceuticals, Inc. Purification platform for bispecific antibodies

Also Published As

Publication number Publication date
WO2017218977A8 (en) 2019-03-28
US20190256556A1 (en) 2019-08-22
AU2017286676A8 (en) 2018-12-20
JP2022166004A (ja) 2022-11-01
EP3472177A2 (en) 2019-04-24
SG11201810777WA (en) 2018-12-28
TW201803902A (zh) 2018-02-01
CA3026518A1 (en) 2017-12-21
MX2018015173A (es) 2019-07-04
KR20230113662A (ko) 2023-07-31
BR112018075516A2 (pt) 2019-10-01
WO2017218977A2 (en) 2017-12-21
IL263690B1 (en) 2023-01-01
WO2017218977A3 (en) 2018-01-18
CN109563124A (zh) 2019-04-02
JP2019521986A (ja) 2019-08-08
AU2017286676A1 (en) 2018-12-13
KR20190039929A (ko) 2019-04-16
AR108800A1 (es) 2018-09-26
IL263690B2 (en) 2023-05-01
IL263690A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
TWI798179B (zh) 多特異性抗體之純化
JP6216321B2 (ja) 二重特異性抗体の構築の改善
US20230220114A1 (en) Purification of multispecific antibodies
TWI796563B (zh) 製造抗體之方法
JP2023539581A (ja) ヘテロポリペプチドの末端異質性を低減するためのシグナルペプチド