TWI794618B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI794618B
TWI794618B TW109123196A TW109123196A TWI794618B TW I794618 B TWI794618 B TW I794618B TW 109123196 A TW109123196 A TW 109123196A TW 109123196 A TW109123196 A TW 109123196A TW I794618 B TWI794618 B TW I794618B
Authority
TW
Taiwan
Prior art keywords
film
layer
insulating film
insulating
semiconductor device
Prior art date
Application number
TW109123196A
Other languages
English (en)
Other versions
TW202131455A (zh
Inventor
野口将希
高島章
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202131455A publication Critical patent/TW202131455A/zh
Application granted granted Critical
Publication of TWI794618B publication Critical patent/TWI794618B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

根據一實施形態,半導體裝置具備交替包含複數個電極層與複數個絕緣層之積層膜。上述裝置更具備依序設於上述積層膜內之第1絕緣膜、電荷蓄積層、第2絕緣膜及半導體層。上述裝置更具備第3絕緣膜,上述第3絕緣膜係在上述積層膜內,設於上述電極層與上述絕緣層之間、及上述電極層與上述第1絕緣膜之間,且包含α結晶相之氧化鋁膜。

Description

半導體裝置及其製造方法
本發明之實施形態係關於一種半導體裝置及其製造方法。
三維記憶體之阻擋絕緣膜例如形成為除了包含氧化矽膜以外,還包含氧化鋁膜等金屬絕緣膜。為了提昇阻擋絕緣膜之性能,希望形成包含適合的金屬絕緣膜之阻擋絕緣膜。
[專利文獻]
一實施形態提供一種能夠提昇阻擋絕緣膜之性能之半導體裝置及其製造方法。
根據一實施形態,半導體裝置具備交替包含複數個電極層與複數個絕緣層之積層膜。上述裝置更具備依序設於上述積層膜內之第1絕緣膜、電荷蓄積層、第2絕緣膜、及半導體層。上述裝置更具備第3絕緣膜,上述第3絕緣膜係在上述積層膜內,設於上述電極層與上述絕緣層之間、及上述電極層與上述第1絕緣膜之間,且包含α結晶相之氧化鋁膜。
根據上述結構,可提供一種能提昇阻擋絕緣膜之性能之半導體裝置及其製造方法。
以下,參照附圖說明本發明之實施形態。圖1至圖8中,對於相同結構標註相同符號,省略重複說明。
(第1實施形態) 圖1係表示第1實施形態之半導體裝置之構造的立體圖。圖1之半導體裝置例如為三維型NAND(Not-AND,反及)記憶體。
圖1之半導體裝置具備芯體絕緣膜1、溝道半導體層2、隧道絕緣膜3、電荷蓄積層4、阻擋絕緣膜5及電極層6。阻擋絕緣膜5包含絕緣膜5a及絕緣膜5b。電極層6包含障壁金屬層6a及電極材層6b。阻擋絕緣膜5內之絕緣膜5a為第1絕緣膜之一例,隧道絕緣膜3為第2絕緣膜之一例,阻擋絕緣膜5內之絕緣膜5b為第3絕緣膜之一例。
圖1中,複數個電極層與複數個絕緣層交替積層於基板上,該等電極層及絕緣層內設有記憶體孔H1。圖1表示該等電極層中之一個電極層6。該等電極層例如作為NAND記憶體之字元線發揮功能。圖1中表示平行於基板之表面且相互垂直的X方向及Y方向、以及垂直於基板之表面的Z方向。本說明書中,將+Z方向作為上方向處理,將-Z方向作為下方向處理。-Z方向可與重力方向一致,亦可並不與重力方向一致。
芯體絕緣膜1、溝道半導體層2、隧道絕緣膜3、電荷蓄積層4及絕緣膜5a形成於記憶體孔H1內,構成NAND記憶體的記憶胞。絕緣膜5a形成於記憶體孔H1內之電極層及絕緣層之表面,電荷蓄積層4形成於絕緣膜5a之表面。電荷蓄積層4的外側之側面與內側之側面之間可蓄積電荷。隧道絕緣膜3形成於電荷蓄積層4之表面,溝道半導體層2形成於隧道絕緣膜3之表面。溝道半導體層2作為記憶胞之溝道發揮功能。芯體絕緣膜1形成於溝道半導體層2內。
絕緣膜5a例如為SiO2 膜(氧化矽膜)。電荷蓄積層4例如為SiN膜(氮化矽膜)。隧道絕緣膜3例如為包含SiON膜(氧氮化矽膜)及SiO2 膜之積層膜。溝道半導體層2例如為多晶矽層。芯體絕緣膜1例如為SiO2 膜。
絕緣膜5b、障壁金屬層6a及電極材層6b形成於相互鄰接之絕緣層間,依序形成於上側之絕緣層的下表面、下側之絕緣層的上表面及絕緣膜5a的側面。絕緣膜5b例如為Al2 O3 膜(氧化鋁膜)等金屬絕緣膜。障壁金屬層6a例如為TiN膜(氮化鈦膜)。電極材層6b例如為W(鎢)層。
以下,將進一步說明本實施形態之絕緣膜5b之詳情。
絕緣膜5b例如為α結晶相之Al2 O3 膜。α結晶相之Al2 O3 膜具有與作為一般的Al2 O3 膜之γ結晶相之Al2 O3 膜同等的介電常數。另一方面,α結晶相之Al2 O3 膜相對於Si(矽)層之障壁高度比γ結晶相之Al2 O3 膜相對於Si層之障壁高度高0.7 eV。0.7 eV這一障壁高度差可有效減少NAND記憶體之清除動作時來自字元線之反向隧道電流。因此,根據本實施形態,藉由形成α結晶相之Al2 O3 膜作為絕緣膜5b,能減少NAND記憶體之洩漏電流。
再者,γ結晶相之Al2 O3 膜具有被稱為缺陷尖晶石構造之準穩態構造,而α結晶相之Al2 O3 膜具有被稱為剛玉構造之最穩態構造。γ結晶相之Al2 O3 膜中,O2- 離子構成面心立方格子,Al3 離子成為6配位或4配位。另一方面,α結晶相之Al2 O3 膜中,O2- 離子構成六方最密填充,Al3 離子有規則地佔據6個配位點之2/3。因γ結晶相之Al2 O3 膜與α結晶相之Al2 O3 膜之間存在此種差異,故而Al2 O3 膜處於γ結晶相還是α結晶相可藉由X射線繞射來指定。
圖2至圖5係表示第1實施形態之半導體裝置之製造方法的剖視圖。
首先,於基板11上形成基礎層12,於基礎層12上交替形成複數個犧牲層13與複數個絕緣層14(圖2)。結果,於基礎層12上,形成交替包含複數個犧牲層13與複數個絕緣層14之積層膜15。繼而,形成貫穿積層膜15及基礎層12之記憶體孔H1(圖2)。結果,基板11之上表面露出於記憶體孔H1內。
基板11例如為Si基板等半導體基板。基礎層12例如為包含依序設於基板11上之下部絕緣膜12a、半導體層12b及上部絕緣膜12c之積層膜。下部絕緣膜12a例如為SiO2 膜、或包含SiO2 膜及其它絕緣膜之積層膜。半導體層12b例如為多晶矽層。上部絕緣膜12c例如為SiO2 膜、或包含SiO2 膜及其它絕緣膜之積層膜。犧牲層13例如為SiN膜,絕緣層14例如為SiO2 膜。犧牲層13係第1膜之一例。再者,記憶體孔H1可並不到達基板11,而是到達基板11上方之半導體層。
繼而,於記憶體孔H1內之基板11、基礎層12及積層膜15之表面,依序形成絕緣膜5a、電荷蓄積層4及隧道絕緣膜3(圖3)。然後,自記憶體孔H1之底部起,藉由蝕刻而除去絕緣膜5a、電荷蓄積層4及隧道絕緣膜3(圖3)。結果,基板11之上表面再次露出於記憶體孔H1內。繼而,於記憶體孔H1內之基板11及隧道絕緣膜3之表面,依序形成溝道半導體層2及芯體絕緣膜1(圖3)。結果,於記憶體孔H1內之基礎層12及積層膜15之側面,依序形成絕緣膜5a、電荷蓄積層4、隧道絕緣膜3、溝道半導體層2及芯體絕緣膜1。
繼而,於積層膜15內形成未圖示之狹縫,利用該狹縫使用磷酸等藥液除去犧牲層13。結果,於絕緣層14間形成複數個空腔H2(圖4)。該等空腔H2為凹部之一例。
繼而,於該等空腔H2內之絕緣層14及絕緣膜5a之表面,依序形成絕緣膜5b、障壁金屬層6a及電極材層6b(圖5)。結果,形成包含絕緣膜5a及絕緣膜5b之阻擋絕緣膜5。進而,於各空腔H2內形成包含障壁金屬層6a及電極材層6b之電極層6,於基礎層12上形成交替包含複數個電極層6及複數個絕緣層14之積層膜16。
各空腔H2內,絕緣膜5b、障壁金屬層6a及電極材層6b形成於上側之絕緣層14與下側之絕緣層14之間。因此,各空腔H2內之絕緣膜5b形成於上側之絕緣層14之下表面、下側之絕緣層14之上表面、及絕緣膜5a之側面,被夾於上側之絕緣層14、下側之絕緣層14及絕緣膜5a與障壁金屬層6a之間。如上文所述,本實施形態之絕緣膜5b例如為α結晶相之Al2 O3 膜。該絕緣膜5b之形成方法之詳情將於下文敍述。
如此,可製造本實施形態之半導體裝置(圖5)。圖1中表示圖5所示之半導體裝置的一部分。
圖6係表示第1實施形態之半導體裝置之製造方法之詳情的剖視圖。圖6(a)至圖6(c)中表示圖5中形成絕緣膜5b的步驟之詳情。
首先,於空腔H2內之絕緣層14及絕緣膜5a之表面,形成絕緣膜5c(圖6(a))。絕緣膜5c例如為不同於Al2 O3 膜之鋁化合物膜。此種絕緣膜5c之例為非晶相鋁化合物膜之AlN膜(氮化鋁膜)。絕緣膜5c為第2膜之一例。再者,圖6(a)中表示隧道絕緣膜3中所含之絕緣膜3a(例如SiO2 膜)及絕緣膜3b(例如SiON膜)。
本實施形態之絕緣膜5c(AlN膜)係於立式減壓分批加熱爐內藉由ALD(Atomic Layer Deposition,原子層沈積)而形成。具體而言,絕緣膜5c使用TMA(三甲基鋁、Al(CH3 )3 )作為原料氣體,使用氨(NH3 )作為氮化劑,以300~400℃之溫度形成。絕緣膜5c之膜厚係藉由調節ALD循環數而控制。本實施形態中,如下文所述,藉由熱氧化使非晶相之AlN膜變為α結晶相之Al2 O3 膜,而使絕緣膜5c變為絕緣膜5b。藉由該熱氧化,絕緣膜5c的氧化與結晶化同時進行,從而絕緣膜5c變為絕緣膜5b。
再者,絕緣膜5c亦可為其它鋁化合物膜。此種絕緣膜5c例如為含有鋁(Al)元素及氮(N)元素之非晶相鋁化合物膜,例如包含AlON膜(氧氮化鋁膜)、AlCN膜(碳氮化鋁膜)、AlCON膜(碳氧氮化鋁膜)等。絕緣膜5c只要為形成為結晶相以外之鋁化合物膜、且藉由熱氧化同時進行氧化及結晶化,則亦可為其它絕緣膜。又,絕緣膜5c於本實施形態中係使用液化氣體TMA而形成,但亦可藉由使AlCl3 (氯化鋁)等固體材料昇華而形成。
繼而,進行絕緣膜5c之熱氧化(圖6(b))。結果,絕緣膜5c之氧化與結晶化同時進行,絕緣膜5c(非晶相之AlN膜)變為絕緣膜5b(α結晶相之Al2 O3 膜)(圖6(c))。
本實施形態中,藉由自由基氧化而同時進行熱施加與氧化,使絕緣膜5c變為絕緣膜5b。例如,對膜厚2.3~2.5 nm之絕緣膜5c,以930~1050℃之溫度及10.5 torr之壓力進行10~30秒自由基氧化。此時,藉由以H2 (氫)氣之分壓比成為2~20%之方式同時供給H2 氣體及O2 (氧)氣,從而產生O自由基及OH自由基,利用O自由基使絕緣膜5c氧化(參照圖6(b))。藉此,絕緣膜5c膨脹,可獲得膜厚約3 nm之絕緣膜5b。再者,本實施形態中係利用熱來產生O自由基,但亦可取而代之使用等離子體來產生O自由基。
當藉由自由基氧化使絕緣膜5c變為絕緣膜5b時,受自由基之影響,於絕緣膜5a(SiO2 膜)與電荷蓄積層4(SiN膜)之間形成含有矽(Si)元素、氧(O)元素及氮(N)元素的層L(參照圖6(b))。層L係含有氮元素之氧化膜的層,以沿Z方向延伸之方式形成於複數個空腔H2及複數個絕緣層14之側方(圖6(b)中為X方向)。層L例如具有0.8~1.0 nm之厚度,且會殘留於最終完成之半導體裝置內。層L為第1層之一例。如下文所述,本實施形態之層L內之氮濃度高於電荷蓄積層4內之氮濃度。
再者,絕緣膜5c之熱氧化亦可並非藉由自由基氧化而是藉由氫氧化來進行。例如,對於膜厚2.3~2.5 nm之絕緣膜5c,於立式減壓分批加熱爐內以850~950℃之溫度及384 torr之H2 O(水)分壓進行10~60分鐘氫氧化。此時,作為用於氫氧化之水,將使用水分產生器精製之水蒸氣導入到爐內。藉此,絕緣膜5c膨脹,可獲得膜厚約3 nm之絕緣膜5b。絕緣膜5c之氫氧化處理在此處係利用N2 (氮)氣將水蒸氣稀釋的大氣壓處理,但亦可取而代之採用減壓處理。
當執行圖6(a)至圖6(c)之步驟之後,於空腔H2內,隔著絕緣膜5b而依序形成障壁金屬層6a及電極材層6b(參照圖5)。如此,可製造出本實施形態之半導體裝置。
圖7係用來說明第1實施形態之半導體裝置之特性的圖表。
曲線C1表示圖6(b)之自由基氧化執行前的電荷蓄積層4、絕緣膜5a、及絕緣膜5b之XRR(X射線反射率)測定結果。曲線C2表示圖6(b)之自由基氧化執行後的電荷蓄積層4、絕緣膜5a及絕緣膜5c之XRR測定結果。圖7之橫軸表示圖6(b)等中所示之X座標,圖7之縱軸表示藉由XRR測定所得之強度。
如圖7所示,曲線C2於電荷蓄積層4與絕緣膜5a之間呈現波峰。此表示於電荷蓄積層4與絕緣膜5a之間形成以高濃度含有氮原子之層L。根據XRR測定結果可知,該層L內之氮濃度高於電荷蓄積層4內之氮濃度。
圖8係用來說明第1實施形態之絕緣膜5b、5c之特性的圖表。
圖8表示Al2 O3 膜之晶體構造與溫度的關係。例如,箭頭P1表示在780℃以下可產生γ結晶相之Al2 O3 膜。又,箭頭P2表示在約1100℃可產生α結晶相之Al2 O3 膜。而且,箭頭P3表示在約800~1400℃可產生α結晶相之Al2 O3 膜。
此處,假設藉由加熱使非晶相之氧化鋁膜(AlOX 膜)變為結晶相之氧化鋁膜(Al2 O3 膜)的情形。該情形時,若使AlOX 膜之溫度自常溫上升到500~1000℃之溫度區域,則AlOX 膜不僅可能如箭頭P3所示變為α結晶相之Al2 O3 膜,還可能如箭頭P1所示變為γ結晶相之Al2 O3 膜。如為後者之情形,若使AlOX 膜之溫度自常溫上升到約1100℃,則AlOX 膜變為γ結晶相之Al2 O3 膜(箭頭P1),之後,γ結晶相之Al2 O3 膜變為α結晶相之Al2 O3 膜(箭頭P2)。然而,該情形時,為了產生α結晶相之Al2 O3 膜,會需要以約1100℃之高溫加熱,或有因γ結晶相之Al2 O3 膜之影響而難以產生α結晶相之Al2 O3 膜的問題。
因此,本實施形態中,藉由熱氧化而使非晶相之氮化鋁膜(AlN膜)變為結晶相之氧化鋁膜(Al2 O3 膜)。藉此,能將非晶相之AlN膜至少維持在780℃,以高於780℃之溫度使非晶相之AlN膜變為結晶相之Al2 O3 膜。該情形時,由於AlN膜之溫度已通過箭頭P1之溫度區域,故AlN膜不經過γ結晶相之Al2 O3 膜之狀態即變為α結晶相之Al2 O3 膜。即,AlN膜無需進行γ結晶相之成核,即變為α結晶相之Al2 O3 膜。因此,根據本實施形態,能夠不進行約1100℃之高溫加熱便產生α結晶相之Al2 O3 膜(絕緣膜5b)(箭頭P3),或抑制因γ結晶相之Al2 O3 膜之影響而難以產生α結晶相之Al2 O3 膜(絕緣膜5b)的情形(箭頭P2)。
如上文所述,本實施形態之阻擋絕緣膜5包含α結晶相之Al2 O3 膜作為絕緣膜5b。因此,根據本實施形態,藉由α結晶相之Al2 O3 膜,可提昇阻擋絕緣膜5之性能。
例如,與γ結晶相之Al2 O3 膜相同,α結晶相之Al2 O3 膜具有高介電常數。因此,根據本實施形態,藉由使用α結晶相之Al2 O3 膜,可獲得與使用γ結晶相之Al2 O3 膜時同樣為高性能的阻擋絕緣膜5。
而且,α結晶相之Al2 O3 膜相對於Si層之障壁高度比γ結晶相之Al2 O3 膜相對於Si層之障壁高度高0.7 eV。因此,根據本實施形態,藉由使用α結晶相之Al2 O3 膜,可使得與使用γ結晶相之Al2 O3 膜時相比進一步減少洩漏電流。
而且,根據本實施形態,藉由利用密度比AlOX 膜高的AlN膜形成α結晶相之Al2 O3 膜,可形成例如缺陷少的絕緣膜5b。
以上,已說明了若干實施形態,但該等實施形態係作為示例而提出,並不旨在限制發明範圍。本說明書中說明之新穎的裝置及方法能以其它各種形態實施。而且,本說明書中說明之裝置及方法之形態可在不脫離發明宗旨之範圍內進行多種省略、置換、變更。隨附之申請專利範圍及與其等價之範圍旨在包含發明範圍及宗旨中所含之此種形態及變化例。
相關申請案之引用 本申請案基於2020年02月14日先行申請之日本專利申請案第2020-023497號之先權而主張優先權利益,並藉由引用將該申請案之全部內容併入本文中。
1:芯體絕緣膜 2:溝道半導體層 3:隧道絕緣膜 3a,3b:絕緣膜 4:電荷蓄積層 5:阻擋絕緣膜 5a,5b,5c:絕緣膜 6:電極層 6a:障壁金屬層 6b:電極材層 11:基板 12:基礎層 12a:下部絕緣膜 12b:半導體層 12c:上部絕緣膜 13:犧牲層 14:絕緣層 15:積層膜 16:積層膜 H1:記憶體孔 H2:空腔 L:層
圖1係表示第1實施形態之半導體裝置之構造的立體圖。 圖2係表示第1實施形態之半導體裝置之製造方法的剖視圖(1/4)。 圖3係表示第1實施形態之半導體裝置之製造方法的剖視圖(2/4)。 圖4係表示第1實施形態之半導體裝置之製造方法的剖視圖(3/4)。
圖5係表示第1實施形態之半導體裝置之製造方法的剖視圖(4/4)。 圖6(a)~(c)係表示第1實施形態之半導體裝置之製造方法之詳情的剖視圖。 圖7係用來說明第1實施形態之半導體裝置之特性的圖表。 圖8係用來說明第1實施形態之絕緣膜5b、5c之特性的圖表。
1:芯體絕緣膜
2:溝道半導體層
3:隧道絕緣膜
4:電荷蓄積層
5:阻擋絕緣膜
5a,5b:絕緣膜
6:電極層
6a:障壁金屬層
6b:電極材層
11:基板
12:基礎層
12a:下部絕緣膜
12b:半導體層
12c:上部絕緣膜
14:絕緣層
16:積層膜
H1:記憶體孔
H2:空腔

Claims (13)

  1. 一種半導體裝置,其具備:積層膜,其包含於第1方向上交替積層之複數個電極層與複數個絕緣層;第1絕緣膜(first insulator)、電荷蓄積層、第2絕緣膜及半導體層,其等設置於上述積層膜內,上述第1絕緣膜與上述積層膜之側面接觸,上述電荷蓄積層介隔(via)上述第1絕緣膜而設置於上述積層膜之上述側面,且上述半導體層介隔上述第2絕緣膜而設置於上述電荷蓄積層之側面;及第3絕緣膜,其設於上述電極層與上述絕緣層之間、及上述電極層與上述第1絕緣膜之間,且包含α結晶相之氧化鋁。
  2. 如請求項1之半導體裝置,其中上述第1絕緣膜含有矽元素及氧元素。
  3. 如請求項1之半導體裝置,其進而具備:第1層,其係於上述第1絕緣膜與上述電荷蓄積層之間,且含有矽元素、氧元素及氮元素。
  4. 如請求項3之半導體裝置,其中上述第1層設於上述複數個電極層及上述複數個絕緣層之側方。
  5. 如請求項3之半導體裝置,其中上述電荷蓄積層含有矽元素及氮元素, 上述第1層內之氮濃度高於上述電荷蓄積層內之氮濃度。
  6. 如請求項3之半導體裝置,其中上述第1層係沿上述第1方向而設置。
  7. 如請求項3之半導體裝置,其中上述第1層之厚度等於或小於1.0nm。
  8. 如請求項3之半導體裝置,其中上述第1層之厚度等於或大於0.8nm。
  9. 一種半導體裝置之製造方法,其包括:形成交替包含複數個第1膜與複數個絕緣層之積層膜;於上述積層膜內依序形成第1絕緣膜、電荷蓄積層、第2絕緣膜及半導體層;除去上述第1膜,於上述絕緣層間形成複數個凹部;及於上述凹部內,依序形成包含α結晶相之氧化鋁膜的複數個第3絕緣膜、及複數個電極層;其中上述第3絕緣膜藉由如下方式形成:於上述凹部內形成包含鋁化合物膜之第2膜,使上述第2膜變為上述第3絕緣膜;且上述鋁化合物膜含有鋁元素及氮元素。
  10. 如請求項9之半導體裝置之製造方法,其中 當上述第2膜變為上述第3絕緣膜時,上述鋁化合物膜不經過γ結晶相之氧化鋁膜的狀態即變為上述α結晶相之氧化鋁膜。
  11. 如請求項10之半導體裝置之製造方法,其中上述第2膜包含非晶相之上述鋁化合物膜。
  12. 如請求項9至11中任一項之半導體裝置之製造方法,其中上述第2膜係藉由熱氧化而變為上述第3絕緣膜。
  13. 如請求項9之半導體裝置之製造方法,其中上述鋁化合物膜包含氮化鋁膜、氧氮化鋁膜、碳氮化鋁膜或碳氧氮化鋁膜。
TW109123196A 2020-02-14 2020-07-09 半導體裝置及其製造方法 TWI794618B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020023497A JP2021129042A (ja) 2020-02-14 2020-02-14 半導体装置およびその製造方法
JP2020-023497 2020-02-14

Publications (2)

Publication Number Publication Date
TW202131455A TW202131455A (zh) 2021-08-16
TWI794618B true TWI794618B (zh) 2023-03-01

Family

ID=77227661

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123196A TWI794618B (zh) 2020-02-14 2020-07-09 半導體裝置及其製造方法

Country Status (4)

Country Link
US (1) US11735673B2 (zh)
JP (1) JP2021129042A (zh)
CN (1) CN113270420B (zh)
TW (1) TWI794618B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132961A (ja) * 2007-11-29 2009-06-18 Tokyo Electron Ltd 成膜方法、成膜装置及び記憶媒体
US20090239367A1 (en) * 2008-03-21 2009-09-24 Kim Byong-Ju Nonvolatile memory device and method of fabricating the same
TWI643254B (zh) * 2016-01-21 2018-12-01 東芝記憶體股份有限公司 Semiconductor device and method of manufacturing same
US20190279932A1 (en) * 2018-03-09 2019-09-12 Toshiba Memory Corporation Semiconductor device and method of manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311992A (ja) * 1999-04-26 2000-11-07 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2005142319A (ja) * 2003-11-06 2005-06-02 Renesas Technology Corp 半導体装置の製造方法
JP5315695B2 (ja) * 2006-01-25 2013-10-16 日本電気株式会社 半導体装置および半導体装置の製造方法
JP4643617B2 (ja) * 2007-06-26 2011-03-02 株式会社東芝 不揮発性半導体記憶装置
US8062978B2 (en) 2007-08-24 2011-11-22 Samsung Electronics Co., Inc. Crystalline aluminum oxide layers having increased energy band gap, charge trap layer devices including crystalline aluminum oxide layers, and methods of manufacturing the same
US7790591B2 (en) * 2007-11-13 2010-09-07 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices including metal oxide layers
JP2011151366A (ja) * 2009-12-26 2011-08-04 Canon Anelva Corp 誘電体膜の製造方法
JP6343256B2 (ja) * 2015-05-29 2018-06-13 東芝メモリ株式会社 半導体装置及びその製造方法
JP2018157035A (ja) * 2017-03-16 2018-10-04 東芝メモリ株式会社 半導体装置、およびその製造方法
KR102331474B1 (ko) * 2017-06-19 2021-11-29 삼성전자주식회사 반도체 장치
JP2020141092A (ja) * 2019-03-01 2020-09-03 キオクシア株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132961A (ja) * 2007-11-29 2009-06-18 Tokyo Electron Ltd 成膜方法、成膜装置及び記憶媒体
US20090239367A1 (en) * 2008-03-21 2009-09-24 Kim Byong-Ju Nonvolatile memory device and method of fabricating the same
TWI643254B (zh) * 2016-01-21 2018-12-01 東芝記憶體股份有限公司 Semiconductor device and method of manufacturing same
US20190279932A1 (en) * 2018-03-09 2019-09-12 Toshiba Memory Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
CN113270420B (zh) 2024-04-16
JP2021129042A (ja) 2021-09-02
US20210257500A1 (en) 2021-08-19
TW202131455A (zh) 2021-08-16
US11735673B2 (en) 2023-08-22
CN113270420A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US8227357B2 (en) Methods of fabricating silicon oxide layers using inorganic silicon precursors and methods of fabricating semiconductor devices including the same
US7410913B2 (en) Method of manufacturing silicon rich oxide (SRO) and semiconductor device employing SRO
KR100640654B1 (ko) ZrO2 박막 형성 방법 및 이를 포함하는 반도체 메모리소자의 커패시터 제조 방법
TWI798582B (zh) 第六族金屬沈積方法
KR20030043380A (ko) 반도체 소자의 캐패시터 제조방법
US12040228B2 (en) Semiconductor device and manufacturing method thereof
KR20060006133A (ko) 질화 티타늄막 형성방법 및 이를 이용한 커패시터 제조방법
KR100693890B1 (ko) 반응 장벽막을 갖는 반도체 장치의 제조 방법
US7507644B2 (en) Method of forming dielectric layer of flash memory device
JP2020141092A (ja) 半導体装置
TWI794618B (zh) 半導體裝置及其製造方法
US7754563B2 (en) Nanolaminate-structure dielectric film forming method
KR100859256B1 (ko) 반도체 소자 및 그 제조 방법
KR20120009893A (ko) 반도체 소자의 커패시터 및 그 제조 방법
KR100593645B1 (ko) 반도체 장치의 제조 방법
KR100717824B1 (ko) 캐패시터 및 그의 제조방법
KR100677765B1 (ko) 반도체 소자의 캐패시터 제조방법
JP2006156516A (ja) 金属シリケート窒化膜の製造方法および半導体装置の製造方法
JP2006147896A (ja) 薄膜の製造方法および半導体装置の製造方法
JP2006161061A (ja) 薄膜の形成方法および半導体装置の製造方法
US11737276B2 (en) Method of manufacturing semiconductor device and semiconductor device
KR100511914B1 (ko) 피이사이클 시브이디법을 이용한 반도체소자의 제조방법
KR100755072B1 (ko) 3원계 옥사이드 게이트절연막을 갖는 반도체소자 및 그제조방법
KR100750558B1 (ko) 반도체 장치의 커패시터 형성 방법
KR100721203B1 (ko) 3원계 옥사이드 게이트절연막을 갖는 반도체소자 및 그제조방법