TWI791582B - 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料 - Google Patents

纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料 Download PDF

Info

Publication number
TWI791582B
TWI791582B TW107127385A TW107127385A TWI791582B TW I791582 B TWI791582 B TW I791582B TW 107127385 A TW107127385 A TW 107127385A TW 107127385 A TW107127385 A TW 107127385A TW I791582 B TWI791582 B TW I791582B
Authority
TW
Taiwan
Prior art keywords
fiber
thermoplastic resin
fibers
weight
organic
Prior art date
Application number
TW107127385A
Other languages
English (en)
Other versions
TW201920429A (zh
Inventor
平田慎
三辻祐樹
土谷敦岐
Original Assignee
日商東麗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東麗股份有限公司 filed Critical 日商東麗股份有限公司
Publication of TW201920429A publication Critical patent/TW201920429A/zh
Application granted granted Critical
Publication of TWI791582B publication Critical patent/TWI791582B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • B29C2045/0008Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements the fibres being oriented randomly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2301/00Use of unspecified macromolecular compounds as reinforcement
    • B29K2301/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Abstract

本發明係為了提供衝擊特性優異之纖維強化熱塑性樹脂成形品,而作成一種纖維強化熱塑性樹脂成形品,其係包含無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之纖維強化熱塑性樹脂成形品,相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~94重量份的熱塑性樹脂(C),纖維強化熱塑性樹脂成形品中的無機纖維(A)之重量平均纖維長度(Lwa)為0.01mm以上3mm以下,且有機纖維(B)之重量平均纖維長度(Lwb)超過4mm且為20mm以下。

Description

纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料
本發明係關於包含熱塑性樹脂、碳纖維、有機纖維之纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料。
包含強化纖維與熱塑性樹脂之成形品,由於輕量且具有優異的力學特性,而廣泛使用於運動用品用途、航太用途及一般產業用途等。作為此等成形品所使用的強化纖維,可舉出鋁纖維或不銹鋼纖維等之金屬纖維、碳化矽纖維、碳纖維等之無機纖維、聚芳醯胺(aramid)纖維或聚對伸苯基苯并
Figure 107127385-A0202-12-0001-8
唑(PBO)纖維等之有機纖維等。從比強度、比剛性及輕量性的平衡之觀點來看,宜為碳纖維,其中較宜使用聚丙烯腈(PAN)系碳纖維。
由於碳纖維具有優異的比強度及比剛性,而經碳纖維所強化的成形品係具有優異的輕量性與力學特性。因此,碳纖維在電子機器殼體或汽車構件等各式各樣之領域中被廣泛使用。然而,於前述用途中,要求更進一步的輕量化、薄型化,於殼體等之成形品中,要求更輕量性與力學特性(尤其衝擊特性)。特別於汽車構件中的車門下裝飾或車門內板等之大型成形品領域中,其之要求強。
作為提高碳纖維強化熱塑性樹脂成形品的衝擊特性之手段,例如有提案一種纖維強化熱塑性樹脂成形品,其包含碳纖維、有機纖維及熱塑性樹脂,碳纖維的平均纖維長度與平均纖維端部間距離(即纖維端部間的平均距離)、有機纖維的平均纖維長度與平均纖維端部間距離係在特定範圍(例如,參照專利文獻1)。又,為了機械強度的提升,有提案一種含有有機纖維及碳纖維之纖維強化丙烯系樹脂組成物(例如,參照專利文獻2)。再者,亦有提供一種以樹脂含浸狀態含有不同長度的纖維之纖維強化剛性樹脂成形用顆粒(例如,專利文獻3)。
先前技術文獻 專利文獻
專利文獻1 國際公開第2014/098103號
專利文獻2 日本特開2016-74779號公報
專利文獻3 日本特開平6-287317號公報
然而,於專利文獻1~3記載之技術中,力學特性、尤其衝擊特性依然不充分。特別於大型成形品領域中,衝擊特性之要求強,更具體而言,亦要求大型成形品破壞時的防碎片飛散特性。若對於防碎片飛散特性更具體地說明,則當汽車等大型成形品係因碰撞或衝擊而被破壞時,料想如此的成形品係成為尖銳的碎片,飛散到周圍各處。其結果,不僅料想造成飛散的碎片直 接命中人體之傷害,且亦料想因已在人受害時飛散而散亂在地面等之成形品而造成二次傷害。因此,於大型成形品,要求即使成形品受到衝擊時也不完全地被破壞(不飛散),或不被粉碎地破壞,但專利文獻1~3中沒有揭示如此的特性。
如此,於習知技術中,在以熱塑性樹脂為基質的纖維強化熱塑性樹脂成形品中,得不到具有高力學特性、尤其優異的衝擊特性之纖維強化熱塑性樹脂成形品,而期望開發出如此的纖維強化熱塑性樹脂成形品。
本發明係鑒於習知技術所具有的上述問題,目的在於提供力學特性、尤其衝擊特性優異之纖維強化熱塑性樹脂成形品及能得到如此的成形品之纖維強化熱塑性樹脂成形材料。
為了解決上述課題,本發明主要包含以下之構成。
(1)一種纖維強化熱塑性樹脂成形品,其係包含無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之纖維強化熱塑性樹脂成形品,相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~94重量份的熱塑性樹脂(C),纖維強化熱塑性樹脂成形品中的無機纖維(A)之重量平均纖維長度(Lwa)為0.01mm以上3mm以下,且有機 纖維(B)之重量平均纖維長度(Lwb)超過4mm且為20mm以下。
(2)一種纖維強化熱塑性樹脂成形材料,其係包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)之纖維強化熱塑性樹脂成形材料,相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及成分(D)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~93重量份的熱塑性樹脂(C)及1~20重量份的成分(D),無機纖維(A)及有機纖維(B)係在軸心方向上大致平行地排列,且無機纖維(A)及有機纖維(B)之長度係與纖維強化熱塑性樹脂成形材料之長度實質上相同,纖維強化熱塑性樹脂成形材料的長度方向之長度為8mm~14mm。
(3)一種纖維強化熱塑性樹脂成形材料,其係由複數種的顆粒(pellet)所構成,包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)之纖維強化熱塑性樹脂成形材料,相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及成分(D)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~93重量份的熱塑性樹脂(C)及1~20重量份的成分(D), 複數種的顆粒包括顆粒(x)與顆粒(y),顆粒(x)包含無機纖維(A)、熱塑性樹脂(C)及成分(D),顆粒(y)包含有機纖維(B)、熱塑性樹脂(F)及成分(G),無機纖維(A)係在顆粒(x)的軸心方向上大致平行地排列,有機纖維(B)係在顆粒(y)的軸心方向上大致平行地排列,無機纖維(A)係與顆粒(x)之長度實質上相同,有機纖維(B)係與顆粒(y)之長度實質上相同,再者,顆粒(x)及顆粒(y)的長度方向之長度為8mm~14mm。
本發明之纖維強化熱塑性樹脂成形品由於包含無機纖維、有機纖維、熱塑性樹脂,而補強效果高、衝擊特性優異。再者,本發明之纖維強化熱塑性樹脂成形品由於包含相較於無機纖維而充分長的有機纖維,而在成形品破壞時的防碎片飛散效果亦優異。如此的成形品可藉由使用本發明之纖維強化熱塑性樹脂成形材料而得。而且,如此的成形品於電氣‧電子機器、OA機器、家電機器、殼體及汽車之零件等係極為有用,尤其可較宜使用於大型成形品。
1‧‧‧無機纖維(A)
2‧‧‧有機纖維(B)
3‧‧‧熱塑性樹脂(C)
4‧‧‧在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)
圖1係顯示於成形材料剖面中,無機纖維(A)內包有機纖維(B)之形態的示意圖。
圖2係顯示於成形材料剖面中,有機纖維(B)內包無機纖維(A)之形態的示意圖。
圖3係顯示於成形材料剖面中,無機纖維(A)之束與有機纖維(B)之束係在藉由某邊界部而分開的狀態下各自存在之形態的示意圖。
圖4係顯示於成形材料剖面中,成分(D)附著於包含無機纖維(A)與有機纖維(B)的纖維束之形態的複合纖維束(E)的示意圖。
用以實施發明的形態
本發明為一種纖維強化熱塑性樹脂成形品,其係包含無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之纖維強化熱塑性樹脂成形品,其中相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~94重量份的熱塑性樹脂(C),纖維強化熱塑性樹脂成形品中的無機纖維(A)之重量平均纖維長度(Lwa)為0.01mm以上3mm以下,且有機纖維(B)之重量平均纖維長度(Lwb)超過4mm且為20mm以下。又,本發明中亦包含可用於得到如此的成形品之纖維強化熱塑性樹脂成形材料,其係包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)之纖維強化熱塑性樹脂成形材料,其中相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及成分(D)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重 量份的有機纖維(B)、10~93重量份的熱塑性樹脂(C)及1~20重量份的成分(D),無機纖維(A)及有機纖維(B)係在軸心方向大致平行地排列,且該成分(A)及(B)之長度係與纖維強化熱塑性樹脂成形材料之長度實質上相同,纖維強化熱塑性樹脂成形材料的長度方向之長度為8mm~14mm。如此,本發明之纖維強化熱塑性樹脂成形品(亦稱為「成形品」)及纖維強化熱塑性樹脂成形材料(亦稱為「成形材料」)皆至少包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)。
首先,詳細說明本發明之成形品。
於本發明之成形品中,連同無機纖維(A)亦含有有機纖維(B),但具有柔軟性的有機纖維(B)在成形時不易折斷,在成形品中容易以保持著長的纖維長度的狀態而殘存。因此,相較於僅由剛直且脆的無機纖維(A)所構成之纖維強化熱塑性樹脂成形品,本發明之成形品具有高的衝擊特性。具體而言,藉由使成形品中的有機纖維(B)之殘存纖維長度(換言之,成形品中之重量平均纖維長度(Lwb))成為超過4mm且為20mm以下,可對該成形品賦予更高的衝擊特性。此外,成形品破壞時之防碎片飛散效果亦優異。
本發明中的無機纖維(A)係藉由對於熱塑性樹脂(C)的纖維補強效果,而可提升作為成形品的力學特性。再者,當無機纖維具有導電性或熱傳導性等固有的特性時,可將以熱塑性樹脂(C)單質無法完成的彼等之性質亦賦予至成形品。作為無機纖維(A),較佳為碳纖維或 玻璃纖維。從力學特性的進一步提升、成形品的輕量化效果之觀點來看,於無機纖維之中,較佳為碳纖維。又,以賦予導電性為目的,亦較佳使用被覆有鎳、銅或鐿等金屬的無機纖維。
作為本發明所用之玻璃纖維的種類,沒有特別的限制,可使用眾所周知的玻璃纖維。作為玻璃纖維之具體例,可舉出Nippon Electric Glass(股)公司製T-120、T-187、T-187H等。一般而言,為了抑制使用時的絨毛、靜電之產生而改善操縱性,或者為了改善與基質的熱塑性樹脂(C)之接著性,而對玻璃纖維賦予各種的黏合劑。於本發明中,亦可使用經賦予此等黏合劑之玻璃纖維。黏合劑之種類只要因應基質的熱塑性樹脂(C)之種類而選擇即可。又,黏合劑對於玻璃纖維的賦予量,以黏合劑賦予後的玻璃纖維全體之質量為基準,就固體成分而言較佳為0.1~3.0質量%。若黏合劑賦予量為0.1質量%以上,則可充分改善前述的操縱性及接著性。另一方面,若黏合劑賦予量為3.0質量%以下,則可更有效地進行熱塑性樹脂(C)對於玻璃纖維之含浸。
作為黏合劑,例如可舉出包含以胺基矽烷、環氧矽烷、丙烯酸矽烷等之矽烷系偶合劑為代表的偶合劑;乙酸乙烯酯樹脂、胺基甲酸酯樹脂、丙烯酸樹脂、聚酯樹脂、聚醚樹脂、苯氧樹脂、聚醯胺樹脂、環氧樹脂、聚烯烴樹脂等之聚合物或其改質物;以聚烯烴系蠟為代表的蠟類等之寡聚物者。此外,上述之聚合物或寡聚物一般係以藉由因界面活性劑所造成的水分散化而得 之水分散體、或藉由因聚合物或寡聚物的骨架中存在的羧基或醯胺基之中和或水合所造成的水溶化而得之水溶液形態來使用。上述黏合劑除了上述之成分以外,亦可包含氯化鋰、碘化鉀等之無機鹽;以氯化銨型或乙基硫酸銨(ammonium ethosulfate)型等四級銨鹽為代表之抗靜電劑;以脂肪族酯系、脂肪族醚系、芳香族酯系、芳香族醚系之界面活性劑為代表之潤滑劑等。
作為碳纖維,並沒有特別的限制,可例示PAN系碳纖維、瀝青系碳纖維、嫘縈系碳纖維、纖維素系碳纖維、氣相成長系碳纖維、此等之石墨化纖維等。PAN系碳纖維係以聚丙烯腈纖維作為原料之碳纖維。瀝青系碳纖維係以石油溚或石油瀝青作為原料之碳纖維。纖維素系碳纖維係以黏液嫘縈或乙酸纖維素等作為原料之碳纖維。氣相成長系碳纖維係以烴等作為原料之碳纖維。
再者,作為碳纖維,藉由X射線光電子分光法所測定的纖維表面之氧(O)與碳(C)的原子數之比的表面氧濃度比[O/C]較佳為0.05~0.5。藉由表面氧濃度比為0.05以上,可在碳纖維表面上確保充分的官能基量,可得到與熱塑性樹脂(C)更強固的接著性,因此成形品的彎曲強度及拉伸強度更提升。表面氧濃度比更佳為0.08以上,進一步較佳為0.1以上。又,從碳纖維的操作性、生產性之平衡來看,表面氧濃度比之上限一般較佳為0.5以下。表面氧濃度比更佳為0.4以下,進一步較佳為0.3以下。
碳纖維的表面氧濃度比係藉由X射線光電子分光法,依照以下的程序求出。首先,於碳纖維表面上附著有上漿劑等時,以溶劑去除該上漿劑等。將碳纖維切割成20mm,於銅製的試料支撐台上擴展並列後,使用Al Kα1、2作為X射線源,將試料室中保持在1×10-8Torr。作為測定時之帶電所伴隨的波峰之修正值,使C1s的主峰的動能值(K.E.)符合1202eV。藉由就K.E.而言在1191~1205eV之範圍內畫出直線的基線而求出C1s波峰面積。藉由就K.E.而言在947~959eV之範圍內畫出直線的基線而求出O1s波峰面積。
此處,表面氧濃度比[O/C]係自上述O1s波峰面積與C1s波峰面積之比,使用裝置固有的感度修正值,作為原子數比而算出。作為X射線光電子分光裝置,使用國際電氣公司製ES-200型,感度修正值射為1.74。
作為將表面氧濃度比[O/C]調整至0.05~0.5之手段,並沒有特別的限定,例如可舉出電解氧化處理、藥液氧化處理及氣相氧化處理等之手法。其中,較佳為電解氧化處理。
碳纖維之平均纖維直徑沒有特別的限定,但從成形品的力學特性與表面外觀之觀點來看,較佳為1~20μm,更佳為3~15μm。
以提升碳纖維與熱塑性樹脂(C)的接著性等為目的,碳纖維亦可為經表面處理者。作為表面處理之方法,例如可舉出電解處理、臭氧處理、紫外線處理等。
以防止碳纖維的起毛、或提升碳纖維與熱塑性樹脂(C)的接著性等為目的,碳纖維亦可為經賦予上漿劑者。藉由賦予上漿劑,可提升碳纖維表面的官能基等之表面特性,提升接著性及複合材料綜合特性。
作為上漿劑,例如可舉出環氧樹脂、酚樹脂、聚乙二醇、聚胺基甲酸酯、聚酯、乳化劑或界面活性劑等。亦可使用2種以上的此等。上漿劑較佳為水溶性或水分散性。較佳為與碳纖維的潤濕性優異之環氧樹脂,更佳為多官能環氧樹脂。
作為多官能環氧樹脂,可舉出雙酚A型環氧樹脂、雙酚F型環氧樹脂、脂肪族環氧樹脂、苯酚酚醛清漆型環氧樹脂等。其中,較佳為容易發揮與熱塑性樹脂(C)的接著性之脂肪族環氧樹脂。脂肪族環氧樹脂由於柔軟的骨架,即使交聯密度高也容易成為韌性高的構造。又,脂肪族環氧樹脂存在於碳纖維/熱塑性樹脂間時,由於柔軟且使其難以剝離,可更提升成形品的強度。
作為多官能的脂肪族環氧樹脂,例如可舉出二環氧丙基醚化合物、多環氧丙基醚化合物等。作為二環氧丙基醚化合物,可舉出乙二醇二環氧丙基醚、聚乙二醇二環氧丙基醚類、丙二醇二環氧丙基醚、聚丙二醇二環氧丙基醚類、1,4-丁二醇二環氧丙基醚、新戊二醇二環氧丙基醚、聚四亞甲二醇二環氧丙基醚類、聚烷二醇二環氧丙基醚類等。又,作為多環氧丙基醚化合物,可舉出甘油多環氧丙基醚、二甘油多環氧丙基醚、聚甘油多環氧丙基醚類、山梨糖醇多環氧丙基醚類、阿拉伯 糖醇多環氧丙基醚類、三羥甲基丙烷多環氧丙基醚類、三羥甲基丙烷環氧丙基醚類、季戊四醇多環氧丙基醚類、脂肪族多元醇之多環氧丙基醚類等。
於上述脂肪族環氧樹脂之中,較佳為3官能以上的脂肪族環氧樹脂,更佳為具有3個以上反應性高的環氧丙基之脂肪族的多環氧丙基醚化合物。脂肪族的多環氧丙基醚化合物係柔軟性、交聯密度、與熱塑性樹脂(C)的相容性之平衡良好,可更提升接著性。於此等之中,更佳為甘油多環氧丙基醚、二甘油多環氧丙基醚、聚甘油多環氧丙基醚類、聚乙二醇環氧丙基醚類、聚丙二醇環氧丙基醚類。
於上漿劑與碳纖維之合計100重量%中,上漿劑之附著量較佳為0.01~10重量%。若上漿劑附著量為0.01重量%以上,則可更提升與熱塑性樹脂(C)的接著性。上漿劑附著量更佳為0.05重量%以上,進一步較佳為0.1重量%以上。另一方面,若上漿劑附著量為10重量%以下,則能以更高的水準維持熱塑性樹脂(C)之物性。上漿劑附著量更佳為5重量%以下,進一步較佳為2重量%以下。
作為上漿劑的賦予手段,並沒有特別的限定,例如可舉出調製在溶媒(包含使其分散時的分散介質)中溶解(亦包含分散)有上漿劑之上漿處理液,將該上漿處理液賦予至碳纖維後,使溶媒乾燥‧氣化而去除之方法。作為將上漿處理液賦予至碳纖維之方法,例如可舉出:經由輥將碳纖維浸漬於上漿處理液中之方法;使 碳纖維接觸附著有上漿處理液的輥之方法;使上漿處理液成為霧狀而噴灑於碳纖維之方法等。又,上漿處理液之賦予手段可為分批式及連續式中任一者,但較佳為生產性良好、可減小偏差之連續式。此時,較佳為調整上漿處理液濃度、溫度、紗線張力等,以使上漿劑對於碳纖維的附著量在適當範圍內且成為均勻。又,於上漿處理液賦予時,更佳為以超音波使碳纖維振動。
乾燥溫度與乾燥時間應依據化合物的附著量來調整,但從完全去除上漿處理液所用的溶媒、縮短乾燥所需要的時間、且防止上漿劑的熱降解、防止經上漿處理的碳纖維變硬而擴展性惡化之觀點來看,乾燥溫度較佳為150℃以上350℃以下,更佳為180℃以上250℃以下。
作為上漿處理液所使用的溶媒,例如可舉出水、甲醇、乙醇、二甲基甲醯胺、二甲基乙醯胺、丙酮等。從操作容易及防災之觀點來看,較佳為水。因此,使用不溶或難溶於水之化合物作為上漿劑時,較佳為添加乳化劑、界面活性劑,進行水分散而使用。作為具體的乳化劑或界面活性劑,可使用苯乙烯-馬來酸酐共聚物、烯烴-馬來酸酐共聚物、萘磺酸鹽的福馬林縮合物、聚丙烯酸鈉等之陰離子系乳化劑;聚乙亞胺、聚乙烯基咪唑啉等之陽離子系乳化劑;壬基苯酚環氧乙烷加成物、聚乙烯醇、聚氧伸乙基醚酯共聚物、山梨糖醇酯氧化乙基加成物等之非離子系乳化劑等。相互作用小的非離子系乳化劑不易妨礙上漿劑中所含的官能基之接著效果而較佳。
本發明之成形品相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)之合計100重量份,包含5~45重量份的無機纖維(A)。若無機纖維(A)之含量小於5重量份,則成形品的衝擊特性降低。無機纖維(A)之含量較佳為10重量份以上。另一方面,若無機纖維(A)之含量超過45重量份,則由於纖維的分散性降低,纖維彼此的纏結增加。其結果,由於發生纖維折斷,纖維長度變短,包含防碎片飛散性的衝擊特性降低。無機纖維(A)之含量較佳為30重量份以下。
於本發明中,熱塑性樹脂(C)係構成成形品及成形材料之基質樹脂。作為熱塑性樹脂(C),較佳是成形溫度(熔融溫度)為200~450℃者,可舉出聚烯烴樹脂、聚苯乙烯樹脂、聚醯胺樹脂、乙烯基鹵化物(vinyl halide)樹脂、聚縮醛樹脂、飽和聚酯樹脂、聚碳酸酯樹脂、聚芳基碸樹脂、聚芳基酮樹脂、聚伸芳基醚樹脂、聚芳硫(polyarylene sulfide)樹脂、聚芳基醚酮樹脂、聚醚碸樹脂、聚芳硫碸樹脂、聚芳酯樹脂、聚醯胺樹脂等。亦可使用2種以上的此等。作為聚烯烴樹脂,較佳為聚丙烯樹脂。
於前述熱塑性樹脂(C)之中,更佳為選自包含輕量且力學特性、成形性之平衡優異的聚丙烯樹脂、聚醯胺樹脂、聚碳酸酯樹脂及聚芳硫樹脂之群組的至少1種,從通用性優異來看,進一步較佳為聚丙烯樹脂、聚碳酸酯樹脂。聚丙烯樹脂可為無改質者,也可為經改質者。
作為無改質的聚丙烯樹脂,具體而言,可舉出丙烯的均聚物、或丙烯與選自包含α-烯烴、共軛二烯、非共軛二烯及其它熱塑性單體之群組的至少1種單體之共聚物等。作為共聚物,可舉出隨機共聚物或嵌段共聚物等。作為α-烯烴,例如可舉出乙烯、1-丁烯、3-甲基-1-丁烯、4-甲基-1-戊烯、3-甲基-1-戊烯、4-甲基-1-己烯、4,4-二甲基-1-己烯、1-壬烯、1-辛烯、1-庚烯、1-己烯、1-癸烯、1-十一烯、1-十二烯等之不包括丙烯的碳數2~12之α-烯烴等。作為共軛二烯或非共軛二烯,例如可舉出丁二烯、亞乙基降
Figure 107127385-A0202-12-0015-9
烯、二環戊二烯、1,5-己二烯等。亦可使用2種以上的此等。例如,可舉出聚丙烯、乙烯‧丙烯共聚物、丙烯‧1-丁烯共聚物、乙烯‧丙烯‧1-丁烯共聚物等作為合適者。從提升成形品的剛性之觀點來看,丙烯的均聚物為較佳。從更提升成形品的衝撃特性之觀點來看,較佳為丙烯與選自包含α-烯烴、共軛二烯及非共軛二烯之群組的至少1種單體之隨機共聚物或嵌段共聚物。
又,作為改質聚丙烯樹脂,較佳為酸改質聚丙烯樹脂,更佳為具有鍵結於聚合物鏈的羧酸及/或羧酸鹽基之酸改質聚丙烯樹脂。上述酸改質聚丙烯樹脂能以各種方法獲得。例如,可藉由使具有被中和或未被中和的羧酸基之單體及/或具有被皂化或未被皂化的羧酸酯基之單體,接枝聚合於無改質的聚丙烯樹脂而獲得。
此處,作為具有被中和或未被中和的羧酸基之單體或者具有被皂化或未被皂化的羧酸酯基之單 體,例如可舉出乙烯系不飽和羧酸、其酐、乙烯系不飽和羧酸酯等。
作為乙烯系不飽和羧酸,例如可例示(甲基)丙烯酸、馬來酸、富馬酸、四氫苯二甲酸、伊康酸、檸康酸、巴豆酸、異巴豆酸等。作為其酐,可例示納狄克酸(nadic acid)TM(內順-雙環[2.2.1]庚-5-烯-2,3-二甲酸)、馬來酸酐、檸康酸酐等。
作為乙烯系不飽和羧酸酯,例如可舉出(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸三級丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二酯、(甲基)丙烯酸十八酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸十三酯、(甲基)丙烯酸月桂醯酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸苯酯、(甲基)丙烯酸異
Figure 107127385-A0202-12-0016-10
酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二甲基胺基乙酯、(甲基)丙烯酸二乙基胺基乙酯等之(甲基)丙烯酸酯類;丙烯酸羥乙酯、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯酸2-羥丙酯、丙烯酸4-羥丁酯、內酯改質(甲基)丙烯酸羥乙酯、丙烯酸2-羥基-3-苯氧基丙酯等之含羥基的(甲基)丙烯酸酯類;(甲基)丙烯酸環氧丙酯、(甲基)丙烯酸甲基環氧丙酯等之含環氧基的(甲基)丙烯酸酯類;(甲基)丙烯酸N,N-二甲基胺基乙酯、(甲基)丙烯酸N,N-二乙基胺基乙酯、(甲基)丙 烯酸N,N-二甲基胺基丙酯、(甲基)丙烯酸N,N-二丙基胺基乙酯、(甲基)丙烯酸N,N-二丁基胺基乙酯、(甲基)丙烯酸N,N-二羥乙基胺基乙酯等之(甲基)丙烯酸胺基烷酯類等。
亦可使用2種以上的此等。於此等之中,較佳為乙烯系不飽和羧酸的酐類,更佳為馬來酸酐。
為了更提升成形品的彎曲強度及拉伸強度,較佳為同時使用無改質聚丙烯樹脂與改質聚丙烯樹脂。特別從難燃性與彎曲強度及拉伸強度的平衡之觀點來看,較佳為以無改質聚丙烯樹脂與改質聚丙烯樹脂之重量比成為95/5~75/25之方式使用。更佳為95/5~80/20,進一步較佳為90/10~80/20。
所謂的聚醯胺樹脂,係以胺基酸、內醯胺、或二胺與二羧酸作為主要原料的樹脂。作為該主要原料,例如可舉出6-胺基己酸、11-胺基十一酸、12-胺基十二酸、對胺基甲基苯甲酸等之胺基酸;ε-己內醯胺、ω-月桂內醯胺等之內醯胺;四亞甲二胺、六亞甲二胺、2-甲基五亞甲二胺、九亞甲二胺、十一亞甲二胺、十二亞甲二胺、2,2,4-/2,4,4-三甲基六亞甲二胺、5-甲基九亞甲二胺等之脂肪族二胺;間苯二甲基二胺、對苯二甲基二胺等之芳香族二胺;1,3-雙(胺基甲基)環己烷、1,4-雙(胺基甲基)環己烷、1-胺基-3-胺基甲基-3,5,5-三甲基環己烷、雙(4-胺基環己基)甲烷、雙(3-甲基-4-胺基環己基)甲烷、2,2-雙(4-胺基環己基)丙烷、雙(胺基丙基)哌
Figure 107127385-A0202-12-0017-11
、胺基乙基哌
Figure 107127385-A0202-12-0017-12
等之脂環族二胺;己二酸、辛二酸、壬二 酸、癸二酸、十二烷二酸等之脂肪族二羧酸;對苯二甲酸、間苯二甲酸、2-氯對苯二甲酸、2-甲基對苯二甲酸、5-甲基間苯二甲酸、5-鈉磺基間苯二甲酸(5-sodium sulfoisophthalic acid)、六氫對苯二甲酸、六氫間苯二甲酸等之芳香族二羧酸;1,4-環己烷二甲酸、1,3-環己烷二甲酸、1,2-環己烷二甲酸等之脂環族二羧酸等。亦可使用2種以上的此等。
從耐熱性、強度優異之點來看,具有200℃以上的熔點之聚醯胺樹脂係特別有用。作為其具體例,可舉出聚己醯胺(尼龍6)、聚六亞甲己二醯胺(尼龍66)、聚己醯胺/聚六亞甲己二醯胺共聚物(尼龍6/66)、聚四亞甲己二醯胺(尼龍46)、聚六亞甲癸二醯胺(尼龍610)、聚六亞甲十二醯胺(尼龍612)、聚六亞甲對苯二甲醯胺/聚己醯胺共聚物(尼龍6T/6)、聚六亞甲己二醯胺/聚六亞甲對苯二甲醯胺共聚物(尼龍66/6T)、聚月桂醯胺/聚六亞甲對苯二甲醯胺共聚物(尼龍12T/6)、聚六亞甲己二醯胺/聚六亞甲間苯二甲醯胺共聚物(尼龍66/6I)、聚六亞甲己二醯胺/聚六亞甲對苯二甲醯胺/聚六亞甲間苯二甲醯胺共聚物(尼龍66/6T/6I)、聚六亞甲己二醯胺/聚六亞甲間苯二甲醯胺/聚己醯胺共聚物(尼龍66/6I/6)、聚六亞甲對苯二甲醯胺/聚六亞甲間苯二甲醯胺共聚物(尼龍6T/6I)、聚六亞甲對苯二甲醯胺/聚十二醯胺共聚物(尼龍6T/12)、聚六亞甲對苯二甲醯胺/聚(2-甲基五亞甲)對苯二甲醯胺共聚物(尼龍6T/M5T)、聚苯二甲基己二醯胺(尼龍XD6)、聚九亞甲對苯二甲醯胺(尼龍9T)及此等之 共聚物等。亦可使用2種以上的此等。於此等之中,更佳為尼龍6、尼龍66。
聚醯胺樹脂之聚合度係沒有特別的限制,但從成形時的流動性優異、容易得到薄的成形品來看,將0.25g的聚醯胺樹脂溶解於25ml的98%濃硫酸而成的溶液之在25℃所測定的相對黏度,較佳為1.5~5.0之範圍,更佳為2.0~3.5之範圍。
所謂的聚碳酸酯樹脂,係使二元酚類與碳酸酯前驅物反應而得者。亦可為使用2種以上的二元酚類或2種以上的碳酸酯前驅物而得之共聚物。作為反應方法之一例,可舉出界面聚合法、熔融酯交換法、碳酸酯預聚物之固相酯交換法及環狀碳酸酯化合物之開環聚合法等。如此的聚碳酸酯樹脂其本身為眾所周知者,例如,可使用日本特開2002-129027號公報中記載的聚碳酸酯樹脂。
作為二元酚,例如可舉出1,1-雙(4-羥基苯基)-3,3,5-三甲基環己烷、雙(4-羥基苯基)烷(雙酚A等)、2,2-雙{(4-羥基-3-甲基)苯基}丙烷、α,α’-雙(4-羥基苯基)-m-二異丙基苯、9,9-雙(4-羥基-3-甲基苯基)茀等。亦可使用2種以上的此等。於此等之中,較佳為雙酚A,可得到衝撃特性更優異的聚碳酸酯樹脂。另一方面,使用雙酚A與其它的二元酚類所得之共聚物,在高耐熱性或低吸水率之點為優異。
作為碳酸酯前驅物,例如可使用羰基鹵化物(carbonyl halide)、碳酸二酯或鹵甲酸酯等。具體而 言,可舉出光氣、碳酸二苯酯或二元酚類之二鹵甲酸酯等。
由上述二元酚類與碳酸酯前驅物來製造聚碳酸酯樹脂時,因應需要亦可使用觸媒、末端終止劑、防止二元酚類之氧化的抗氧化劑等。
又,聚碳酸酯樹脂可為共聚合有三官能以上的多官能性芳香族化合物之分支聚碳酸酯樹脂,也可為共聚合有芳香族或脂肪族(包含脂環族)的二官能性羧酸之聚酯碳酸酯樹脂,亦可為共聚合有二官能性脂肪族醇(包含脂環族)之共聚合聚碳酸酯樹脂,也可為同時共聚合有二官能性羧酸及二官能性脂肪族醇之聚酯碳酸酯樹脂。又,亦可使用2種以上的此等聚碳酸酯樹脂。
聚碳酸酯樹脂之分子量沒有特別的限定,但黏度平均分子量較佳為10,000~50,000。若黏度平均分子量為10,000以上,則可更提升成形品的強度。黏度平均分子量更佳為15,000以上,進一步較佳為18,000以上。另一方面,若黏度平均分子量為50,000以下,則成形加工性提升。黏度平均分子量更佳為40,000以下,進一步較佳為30,000以下。使用2種以上的聚碳酸酯樹脂時,較佳為至少1種的黏度平均分子量在上述範圍。此時,作為其它的聚碳酸酯樹脂,宜使用黏度平均分子量超過50,000、較佳為超過80,000的聚碳酸酯樹脂。如此的聚碳酸酯樹脂係熵彈性高,除了有利於併用氣體輔助成形等之情況以外,亦發揮來自高熵彈性的特性(防滴落特性、垂伸(drawdown)特性及噴射改良等的改良熔融特性之特性)。
聚碳酸酯樹脂之黏度平均分子量(M)係從在100ml的二氯甲烷中溶解有0.7g聚碳酸酯樹脂之溶液,求出在20℃之比黏度(ηsp),將其代入下式而求得。
ηsp/c=[η]+0.45×[η]2(惟[η]為極限黏度)
[η]=1.23×10-4M0.83
c=0.7。
聚碳酸酯樹脂之熔融黏度沒有限定,但在200℃的熔融黏度較佳為10~25000Pa‧s。若在200℃的熔融黏度為10Pa‧s以上,則可更提升成形品的強度。熔融黏度更佳為20Pa‧s以上,進一步較佳為50Pa‧s以上。另一方面,若在200℃的熔融黏度為25,000Pa‧s以下,則成形加工性提升。熔融黏度更佳為20,000Pa‧s以下,進一步較佳為15,000Pa‧s以下。
作為聚碳酸酯樹脂,亦可使用作為Mitsubishi Engineering-Plastic(股)製「Iupilon」(註冊商標)、「Novarex」(註冊商標)、帝人化成(股)製「Panlite」(註冊商標)、出光石油化學(股)製「Tarflon」(註冊商標)等而上市者。
作為聚芳硫樹脂,例如可舉出聚苯硫(PPS)樹脂、聚苯硫碸樹脂、聚苯硫酮樹脂、此等之隨機或嵌段共聚物等。亦可使用2種以上的此等。其中,特佳為使用聚苯硫樹脂。
聚芳硫樹脂例如可藉由日本特公昭45-3368號公報中記載之得到分子量比較小之聚合物的方法、日本特公昭52-12240號公報或日本特開昭61-7332號公報 中記載之得到分子量比較大之聚合物的方法等之任意的方法來製造。
對於所得之聚芳硫樹脂,亦可施予藉由在空氣中加熱之交聯/高分子量化;於氮等之惰性氣體環境下或減壓下的熱處理;藉由有機溶媒、熱水、酸水溶液等之洗淨;藉由酸酐、胺、異氰酸酯、含官能基的二硫化物化合物等之含官能基的化合物之活性化等的各種處理。
作為將聚芳硫樹脂藉由加熱而進行交聯/高分子量化之方法,例如可例示在空氣、氧等的氧化性氣體環境下或前述氧化性氣體與氮、氬等的惰性氣體之混合氣體環境下,於加熱容器中在指定的溫度下進行加熱直到得到所希望的熔融黏度為止之方法。加熱處理溫度較佳為200~270℃之範圍,加熱處理時間較佳為2~50小時之範圍。藉由調整處理溫度與處理時間,可將所得之聚合物的黏度調整至所欲的範圍。作為加熱處理裝置,可舉出通常的熱風乾燥機、旋轉式或附攪拌翼的加熱裝置等。從效率佳、更均勻地進行加熱處理之觀點來看,較佳為使用旋轉式或附攪拌翼的加熱裝置。
於減壓下處理聚芳硫樹脂時,壓力較佳為7,000Nm-2以下。作為加熱處理裝置,可舉出通常的熱風乾燥機、旋轉式或附攪拌翼的加熱裝置等。從效率佳、更均勻地進行加熱處理之觀點來看,較佳為使用旋轉式或附攪拌翼的加熱裝置。
以有機溶媒洗淨聚芳硫樹脂時,作為有機溶媒,例如可舉出N-甲基吡咯啶酮、二甲基甲醯胺、二甲基乙醯胺等之含氮極性溶媒;二甲亞碸、二甲基碸等之亞碸‧碸系溶媒;丙酮、甲基乙基酮、二乙基酮、苯乙酮等之酮系溶媒;二甲基醚、二丙基醚、四氫呋喃等之醚系溶媒;氯仿、二氯甲烷、三氯乙烯、二氯乙烯、二氯乙烷、四氯乙烷、氯苯等之鹵素系溶媒;甲醇、乙醇、丙醇、丁醇、戊醇、乙二醇、丙二醇、苯酚、甲酚、聚乙二醇等之醇或酚系溶媒;苯、甲苯、二甲苯等之芳香族烴系溶媒等。亦可使用2種以上的此等。於此等有機溶媒之中,較佳使用N-甲基吡咯啶酮、丙酮、二甲基甲醯胺及氯仿等。作為藉由有機溶媒之洗淨方法,例如可舉出使聚芳硫樹脂浸漬於有機溶媒中之方法等。亦可依據需要而適宜攪拌或加熱。於有機溶媒中洗淨聚芳硫樹脂時的洗淨溫度較佳為常溫~150℃。此外,經施予有機溶媒洗淨的聚芳硫樹脂為了去除殘留的有機溶媒,較佳為以水或溫水洗淨數次。
以熱水洗淨聚芳硫樹脂時,為了展現藉由熱水洗淨之聚芳硫樹脂的較佳之化學改質效果,所使用的水較佳為蒸餾水或去離子水。熱水洗淨通常係藉由將指定量的聚芳硫樹脂投入指定量的水中,於常壓下或壓力容器內加熱、攪拌而進行。聚芳硫樹脂與水之比例較佳為相對於1升的水,選擇200g的聚芳硫樹脂以下之浴比。
作為酸處理聚芳硫樹脂之方法,例如可舉出使聚芳硫樹脂浸漬於酸或酸的水溶液中之方法等。亦可依據需而適宜攪拌或加熱。作為酸,例如可舉出甲酸、乙酸、丙酸、丁酸等之脂肪族飽和單羧酸;氯乙酸、二氯乙酸等之鹵素取代脂肪族飽和羧酸;丙烯酸、巴豆酸等之脂肪族不飽和單羧酸;苯甲酸、水楊酸等之芳香族羧酸;草酸、丙二酸、琥珀酸、苯二甲酸、富馬酸等之二羧酸;及硫酸、磷酸、鹽酸、碳酸、矽酸等之無機酸性化合物等。於此等酸之中,較佳使用乙酸或鹽酸。經施予酸處理的聚芳硫樹脂為了去除所殘留的酸或鹽等,較佳為以水或溫水洗淨數次。用於洗淨的水較佳為蒸餾水或去離子水。
聚芳硫樹脂之熔融黏度在310℃、剪切速度1000/秒之條件下較佳為80Pa‧s以下,更佳為20Pa‧s以下。對於熔融黏度之下限沒有特別的限制,但較佳為5Pa‧s以上。亦可併用熔融黏度不同的2種以上之聚芳硫樹脂。此外,熔融黏度可使用Capilograph(東洋精機(股)公司製)裝置,藉由模頭長度10mm、模孔直徑0.5~1.0mm之條件來測定。
作為聚芳硫樹脂,亦可使用作為東麗(股)製「TORELINA」(註冊商標)、DIC(股)製「DIC.PPS」(註冊商標)、POLYPLASTICS(股)製「Durafide」(註冊商標)等而上市者。
本發明之成形品中的熱塑性樹脂(C)之含量,相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C) 之合計100重量份,為10~94重量份。於熱塑性樹脂(C)之含量小於10重量份時,成形品中的無機纖維(A)及有機纖維(B)之纖維分散性降低,衝擊特性降低。熱塑性樹脂(C)之含量較佳為30重量份以上。另一方面,於熱塑性樹脂(C)之含量超過94重量份時,由於無機纖維(A)、有機纖維(B)之含量相對變少,藉由纖維的補強效果變低,衝擊特性降低。熱塑性樹脂(C)之含量較佳為85重量份以下,更佳為75重量份以下。
本發明之成形品除了前述的無機纖維(A)以外,還含有有機纖維(B)。無機纖維(A)等之無機纖維由於剛直且脆,而不易纏繞,容易折斷。因此,僅包含無機纖維的纖維束有在成形品之製造中容易被切斷、或容易從成形品脫落之課題。因此,藉由包含柔軟且不易折斷的有機纖維(B),可大幅提升成形品的衝擊特性。
有機纖維(B)係可在不使成形品的力學特性大幅降低之範圍內適宜選擇。例如,可舉出將聚乙烯、聚丙烯等之聚烯烴系樹脂、尼龍6、尼龍66、芳香族聚醯胺等之聚醯胺系樹脂、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯等之聚酯系樹脂、聚四氟乙烯、全氟乙烯‧丙烯共聚物、乙烯‧四氟乙烯共聚物等之氟樹脂、液晶聚酯、液晶聚酯醯胺等之液晶聚合物、聚醚酮、聚醚碸、聚苯硫等之聚芳硫、聚丙烯腈等之樹脂予以紡絲而得之纖維。亦可使用2種以上的此等。較佳為從此等有機纖維(B)之中,依據拉伸斷裂伸度或與熱塑性樹脂(C)之組合,適宜選擇而使用。特別地,相對於熱塑性樹脂(C) 之成形溫度(熔融溫度),有機纖維(B)的熔融溫度較佳為高30℃~150℃,更佳為高50~100℃。或者,使用與熱塑性樹脂(C)為不相容性的樹脂而成之有機纖維(B),由於在成形品內保持著纖維狀態而存在,可更提升成形品的衝擊特性而較佳。作為熔融溫度高的有機纖維(B),可舉出聚醯胺纖維、聚酯纖維、聚芳硫纖維及氟樹脂纖維等。作為本發明中的有機纖維(B),較佳為使用選自包含此等之群組的至少1種纖維。
有機纖維(B)之單纖維纖度較佳為0.1~10dtex。
有機纖維(B)的單紗強力較佳為30cN以上。此處所謂的單紗強力,係表示對有機纖維(B)的單紗強度乘以有機纖維(B)的單紗剖面積而得之值。有機纖維(B)的單紗強度可藉由眾所周知的單紗拉伸試驗而求出。單紗剖面積可由一般的電子顯微鏡求出。例如,可使用日本電子股份有限公司製InTouchScope JSM-6010LA,設定在倍率2000倍,拍攝纖維的剖面影像,從所得之顯微鏡影像進行影像處理並解析,藉此而求出。若單紗強力為30cN以上,則在成形品斷裂時,由於有機纖維(B)不易被切斷,可提高成形品內的纖維補強效果。
於本發明中,相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,成形品中的有機纖維(B)之含量為1~45重量份。有機纖維(B)之含量小於1重量份時,成形品的衝擊特性降低,成形品的防 碎片飛散性亦差。有機纖維(B)之含量較佳為3重量份以上。另一方面,有機纖維(B)之含量超過45重量份時,纖維彼此的纏結增加,成形品中的有機纖維(B)之分散性降低,多引起成形品的衝擊特性之降低。有機纖維(B)之含量較佳為20重量份以下,更佳為10重量份以下。
於不損害本發明目的之範圍內,本發明之成形品除了前述(A)~(C)以外,還可包含其它成分。作為其它成分之例,可舉出熱硬化性樹脂、難燃劑、結晶成核劑、紫外線吸收劑、抗氧化劑、制振劑、抗菌劑、防蟲劑、防臭劑、著色防止劑、熱安定劑、脫模劑、抗靜電劑、可塑劑、潤滑劑、著色劑、顏料、染料、發泡劑、制泡劑或偶合劑等。又,亦可包含例如後述之成形材料中所用的成分(D)。
本發明之成形品,成形品中的前述無機纖維(A)之重量平均纖維長度(Lwa)為0.01mm以上3mm以下。於無機纖維(A)的平均纖維長度(Lwa)小於0.01mm時,難以達成成形品的彎曲強度及衝擊特性提升效果。Lwa較佳為0.05mm以上,更佳為0.1mm以上,進一步較佳為0.5mm以上,最佳為0.7mm以上。另一方面,於重量平均纖維長度(Lwa)超過3mm時,變得難以抑制無機纖維(A)彼此的單紗間之纏結,難以提升分散性,因此不易達成成形品的彎曲強度提升效果。Lwa較佳為2.5mm以下,更佳為2mm以下,進一步較佳為1.5mm以下,最佳為1.2mm以下。
又,本發明之成形品,成形品中的前述有機纖維(B)之重量平均纖維長度(Lwb)超過4mm且為20mm以下。於有機纖維(B)之重量平均纖維長度(Lwb)為4mm以下時,難以達成成形品中的有機纖維(B)之補強效果,衝擊特性差。特別地,成形品斷裂時的防碎片飛散效果差。Lwb較佳為5mm以上。另一方面,於平均纖維長度(Lwb)超過20mm時,變得難以抑制有機纖維(B)彼此的單紗間之纏結,難以提升分散性,因此成形品的衝擊特性差。Lwb更佳為14mm以下,進一步較佳為10mm以下。藉由使有機纖維(B)之重量平均纖維長度(Lwb)成為前述範圍,而抑制有機纖維的單紗彼此之纏結,儘管有機纖維(B)彎曲,纖維也以分散的狀態存在。其結果,成形品被破壞時的裂痕進展並非單方向,變得能吸收更多的衝擊能量,因此可抑制成形品的分裂,而且提升成形品的防飛散特性。
此處,本發明中所謂的「重量平均纖維長度」,並非單純地取數量平均,而係將重量平均分子量之算出方法應用於纖維長度之算出,指從考慮纖維長度的貢獻之下述式所算出的平均纖維長度。惟,下述式係適用於無機纖維(A)、有機纖維(B)的纖維直徑及密度為一定之情況。
重量平均纖維長度=Σ(Mi2×Ni)/Σ(Mi×Ni)
Mi:纖維長度(mm)
Ni:纖維長度Mi的強化纖維之個數。
上述重量平均纖維長度之測定可藉由以下之方法進行。於設定在200~300℃的熱載台上,將ISO型啞鈴試驗片以夾於玻璃板間之狀態加熱,使其成為薄膜狀而均勻地分散。以光學顯微鏡(50~200倍)觀察纖維均勻分散的薄膜。計測隨機選出的1000條無機纖維(A)及有機纖維(B)之纖維長度,從上述式算出無機纖維(A)之重量平均纖維長度(Lwa)及有機纖維(B)之重量平均纖維長度(Lwb)。
此外,成形品中的無機纖維(A)及有機纖維(B)之重量平均纖維長度,例如可藉由成形條件等而調整。作為如此的成形條件,例如於射出成形之情況,可舉出背壓或保壓壓力等之壓力條件、射出時間或保壓時間等之時間條件、料筒溫度或模具溫度等之溫度條件等。具體而言,利用有機纖維(B)係比無機纖維(A)柔軟且不易折斷,藉由適度地增加背壓等的壓力條件而適度地提高料筒內的剪切力,使無機纖維(A)的平均纖維長度比有機纖維(B)短。又,亦可藉由適度地縮短射出時間而適度地提高射出時的剪切力,使無機纖維(A)的平均纖維長度比有機纖維(B)短。再者,若適度地降低料筒溫度或模具溫度等之溫度,則由於流動的樹脂之黏度上升,可提高剪切力,藉由如此之方法亦可使無機纖維(A)的平均纖維長度比有機纖維(B)短。於本發明中,如上述藉由適宜變更條件,可使成形品中的無機纖維(A)及有機纖維(B)之平均纖維長度成為所欲之範圍。其中,尤其藉由背壓條件或射出時間之控制而調整剪切力者係特別有效。 惟,若超出需要地過度提高作用於纖維的剪切力,則不僅無機纖維(A)而有機纖維(B)的平均纖維長度亦變短,必須注意。
又,於本發明中,藉由使用後述之成形材料,亦可使無機纖維(A)之重量平均纖維長度(Lwa)及有機纖維(B)之重量平均纖維長度(Lwb)成為上述範圍。
本發明之成形品較佳為成形品中的無機纖維(A)之重量平均纖維長度為0.05~2.5mm之範圍內,同時無機纖維(A)及有機纖維(B)之重量平均纖維長度之關係滿足下式。
8<(Lwb/Lwa)<70
(Lwb/Lwa)表示有機纖維(B)相對於無機纖維(A)的重量平均纖維長度之比率,藉由使無機纖維(A)之長度成為如上述之範圍,同時使前述比率成為較佳的範圍,可有效率地提高藉由無機纖維(A)的補強效果,同時有效率地提高衝擊特性。
即,當Lwb/Lwa超過8時,意指對於無機纖維(A)而言,有機纖維(B)相對較長。此時,由於成形品內的裂痕之進展係以繞過有機纖維(B)之方式進展,可增長裂痕的進展距離。其結果,可使裂痕進展之範圍在成形品內廣範圍地傳播,可將衝擊能量分散至廣範圍。因此,變得容易防止成形品的脆性破壞,變得能以成形品全體吸收更大的能量,因此可提高被衝壓時的衝壓吸收能量。此效果對於衝擊面積廣的大型成形品特別有效。Lwb/Lwa較佳為9以上,更佳為10以上,最佳為12以上。
另一方面,所謂Lwb/Lwa小於70,係指抑制成形品內的有機纖維(B)對於無機纖維(A)而言相對過長。而且,於成形品內,由於可抑制僅有機纖維(B)極度長地存在或纖維彼此之過度纏結,可有效地展現無機纖維(A)之纖維補強效果,可使成形品的彎曲強度、衝擊特性成為優異者。Lwb/Lwa更佳為50以下,進一步較佳為小於40,最佳為30以下。此外,Lwb/Lwa在上述範圍之成形品可藉由使用後述的成形材料進行成形,而容易調整。
接著,說明本發明之成形材料的形態。此外,本發明中所謂的「成形材料」,意指以射出成形等將成形品成形時所使用的原材料。
於本發明中,作為用以得到本發明之成形品的成形材料,可較宜使用一種纖維強化熱塑性樹脂成形材料,其係包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)之纖維強化熱塑性樹脂成形材料,其中相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及成分(D)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~93重量份的熱塑性樹脂(C)及1~20重量份的成分(D)。如此的成形材料之具體形狀係如後述,但例如可例示具有如圖1~圖4中所示的剖面之柱狀體。圖1~圖3表示在包含無機纖維(A)與有機纖維(B)的纖維束之周圍,配置有包含成分D的熱塑性樹脂(C)之態樣(於成分D與熱塑性樹脂(C)不存在明確的邊界之 態樣),而圖4表示在包含無機纖維(A)與有機纖維(B)的纖維束之周圍,配置成分(D),進一步在其外周配置有熱塑性樹脂(C)之態樣。
作為成形材料中的無機纖維(A)、有機纖維(B)及熱塑性樹脂(C),可使用先前對於本發明之成形品所說明的(A)~(C),亦可含有對於本發明之成形品作為其它成分所例示者。又,彼等之效果亦如先前所說明。惟,無機纖維(A)及有機纖維(B)可各自在成形前的階段之成形材料中成為束,又如後述,較佳為與作為包含該纖維的成形材料之長度實質上相同的長度。
在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)係低分子量之情況多,多為在常溫下通常比較脆且容易破碎之固體、或液體。成分(D)由於為低分子量,而為高流動性,可提高無機纖維(A)與有機纖維(B)在熱塑性樹脂(C)內之分散效果。作為成分(D),可舉出環氧樹脂、酚樹脂、萜烯樹脂、環狀聚芳硫樹脂等。亦可含有2種以上的此等。作為成分(D),較佳為與熱塑性樹脂(C)的親和性高者。藉由選擇與熱塑性樹脂(C)的親和性高之成分(D),由於在成形材料之製造時或成形時,與熱塑性樹脂(C)效率佳地相容,可更提升無機纖維(A)及有機纖維(B)之分散性。
成分(D)係因應與熱塑性樹脂(C)之組合而適宜選擇。例如,若成形溫度為150℃~270℃之範圍,則宜使用萜烯樹脂。若成形溫度為270℃~320℃之範圍,則宜使用環氧樹脂、酚樹脂、環狀聚芳硫樹脂。具體而 言,當熱塑性樹脂(C)為聚丙烯樹脂時,成分(D)較佳為萜烯樹脂。當熱塑性樹脂(C)為聚碳酸酯樹脂或聚芳硫樹脂時,成分(D)較佳為環氧樹脂、酚樹脂、環狀聚芳硫樹脂。當熱塑性樹脂(C)為聚醯胺樹脂時,成分(D)較佳為萜烯酚樹脂。
成分(D)在200℃的熔融黏度較佳為0.01~10Pa‧s。若在200℃的熔融黏度為0.01Pa‧s以上,則更抑制以成分(D)作為起點的破壞,可更提升成形品的衝擊特性。熔融黏度更佳為0.05Pa‧s以上,進一步較佳為0.1Pa‧s以上。另一方面,若在200℃的熔融黏度為10Pa‧s以下,則容易使成分(D)含浸至無機纖維(A)及有機纖維(B)之內部。因此,於將本發明的成形材料予以成形之際,可更提升無機纖維(A)及有機纖維(B)之分散性。熔融黏度較佳為5Pa‧s以下,更佳為2Pa‧s以下。此處,熱塑性樹脂(C)及成分(D)在200℃的熔融黏度可使用40mm的平行板,以0.5Hz,藉由黏彈性測定器測定。
此外,如後述,於製造本發明之成形材料時,較佳為使成分(D)附著於無機纖維(A)及有機纖維(B)而一次得到複合纖維束(E),供給成分(D)時的熔融溫度(熔融浴內之溫度)較佳為100~300℃。因此,作為成分(D)對無機纖維(A)及有機纖維(B)之含浸性的指標,著眼於成分(D)在200℃的熔融黏度。若在200℃的熔融黏度為上述較佳的範圍,則於如此的較佳熔融溫度範圍中,由於對無機纖維(A)及有機纖維(B)的含浸性優異,因此可 更提升成形品中的無機纖維(A)及有機纖維(B)之分散性,更提升成形品的力學特性,尤其衝擊特性。
成分(D)之數量平均分子量較佳為200~50,000。若數量平均分子量為200以上,則可更提升成形品的力學特性,尤其衝擊特性。數量平均分子量更佳為1,000以上。又,若數量平均分子量為50,000以下,則由於成分(D)的黏度為適度地低,而對於成形品中所含的無機纖維(A)及有機纖維(B)之含浸性優異,可更提升成形品中的無機纖維(A)及有機纖維(B)之分散性。數量平均分子量更佳為3,000以下。此外,如此的化合物之數量平均分子量可使用凝膠滲透層析術(GPC)測定。
成分(D)在成形溫度的10℃/分鐘升溫(空氣中)之加熱減量較佳為5重量%以下,更佳為3重量%以下。如此的加熱減量為5重量%以下的情況,在對無機纖維(A)及有機纖維(B)含浸時可抑制分解氣體之產生,在成形時可抑制空隙(void)之發生。又,尤其在高溫下的成形中,可抑制氣體之產生。
此外,本發明中所謂的加熱減量,係表示以加熱前的成分(D)之重量作為100%,在前述加熱條件下之加熱前後的成分(D)之重量減量率,可藉由下述式求出。加熱前後的重量可使用鉑樣品盤,在空氣環境下,以升溫速度10℃/分鐘之條件,藉由熱重量分析(TGA)測定在成形溫度的重量而求出。
加熱減量[重量%]={(加熱前重量-加熱後重量)/加熱前重量}×100。
又,成分(D)在200℃的2小時加熱後的熔融黏度變化率較佳為2%以下。藉由使熔融黏度變化率成為2%以下,即使在歷經長時間而製造複合纖維束(E)之情況中,也抑制附著不均等,可安定地製造複合纖維束(E)。熔融黏度變化率更佳為1.5%以下,進一步較佳為1.3%以下。
此處,成分(D)的熔融黏度變化率可藉由以下的方法求出。首先,使用40mm的平行板,以0.5Hz,藉由黏彈性測定器測定在200℃的熔融黏度。又,將成分(D)在200℃的熱風乾燥機中靜置2小時後,同樣地測定在200℃的熔融黏度,藉由下述式算出黏度變化率。
熔融黏度變化率[%]={|(以200℃加熱2小時前之在200℃的熔融黏度-以200℃加熱2小時後之在200℃的熔融黏度)|/(以200℃加熱2小時前之在200℃的熔融黏度)}×100。
於本發明中,可作為成分(D)而較佳使用的環氧樹脂,係指具有2個以上的環氧基之化合物,實質上不含硬化劑,即使加熱也不進行因所謂的三維交聯而造成的硬化者。環氧樹脂藉由具有環氧基,變得容易與無機纖維(A)及有機纖維(B)相互作用。因此,於含浸時與構成複合纖維束(E)的無機纖維(A)及有機纖維(B)容易相容,又,成形加工時的無機纖維(A)及有機纖維(B)之分散性更提升。
此處,可作為成分(D)而較佳使用的環氧樹脂,例如可舉出環氧丙基醚型環氧樹脂、環氧丙基酯型 環氧樹脂、環氧丙基胺型環氧樹脂、脂環式環氧樹脂。亦可使用2種以上的此等。
作為環氧丙基醚型環氧樹脂,例如可舉出雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚AD型環氧樹脂、鹵化雙酚A型環氧樹脂、雙酚S型環氧樹脂、間苯二酚型環氧樹脂、氫化雙酚A型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、具有醚鍵的脂肪族環氧樹脂、萘型環氧樹脂、聯苯型環氧樹脂、聯苯芳烷基型環氧樹脂、二環戊二烯型環氧樹脂等。
作為環氧丙基酯型環氧樹脂,例如可舉出六氫苯二甲酸環氧丙酯、二聚酸二環氧丙酯等。
作為環氧丙基胺型環氧樹脂,例如可舉出異三聚氰酸三環氧丙酯、四環氧丙基二胺基二苯基甲烷、四環氧丙基間二甲苯二胺、胺基苯酚型環氧樹脂等。
作為脂環式環氧樹脂,例如可舉出3,4-環氧基-6-甲基環己基甲基甲酸酯、3,4-環氧基環己基甲基甲酸酯等。
其中,由於黏度與耐熱性之平衡優異,較佳為環氧丙基醚型環氧樹脂,更佳為雙酚A型環氧樹脂、雙酚F型環氧樹脂。
又,可作為成分(D)使用的環氧樹脂之數量平均分子量,較佳為200~5000。若環氧樹脂之數量平均分子量為200以上,則可更提升成形品的力學特性。更佳為800以上,進一步較佳為1000以上。另一方面,若環氧樹脂之數量平均分子量為5000以下,則對構成複合 纖維束(E)的無機纖維(A)及有機纖維(B)之含浸性優異,可更提升成形品中的無機纖維(A)及有機纖維(B)之分散性。數量平均分子量更佳為4000以下,進一步較佳為3000以下。此外,環氧樹脂之數量平均分子量可使用凝膠滲透層析術(GPC)測定。
又,作為萜烯樹脂,例如可舉出在有機溶媒中,於夫里德耳-夸夫特(Friedel-Crafts)型觸媒存在下,將萜烯單體與因應需要的芳香族單體等聚合而得之聚合物或共聚物等。
作為萜烯單體,例如可舉出α-蒎烯、β-蒎烯、雙戊烯、d-檸檬烯、月桂油烯(myrcene)、別羅勒萜(allo-ocimene)、羅勒萜、α-水芹烯、α-萜品烯、γ-萜品烯、萜品油烯、1,8-桉樹腦、1,4-桉樹腦、α-萜品醇、β-萜品醇、γ-萜品醇、檜烯、對
Figure 107127385-A0202-12-0037-13
二烯類、蒈烯類等。又,作為芳香族單體,例如可舉出苯乙烯、α-甲基苯乙烯等。其中,α-蒎烯、β-蒎烯、雙戊烯、d-檸檬烯由於與熱塑性樹脂(C)的相容性優異而較佳,再者,更佳為此等萜烯單體之均聚物。
又,亦可使用將此等萜烯樹脂予以氫化處理而得之氫化萜烯樹脂、或使萜烯單體與酚類在觸媒存在下反應而得之萜烯酚樹脂。此處,作為酚類,較佳使用在酚之苯環上具有1~3個選自包含烷基、鹵素原子及羥基之群組的至少1種取代基者。作為其具體例,可舉出甲酚、二甲苯酚、乙基苯酚、丁基苯酚、三級丁基苯酚、壬基苯酚、3,4,5-三甲基苯酚、氯苯酚、溴苯酚、氯 甲酚、氫醌、間苯二酚、苔黑酚等。亦可使用2種以上的此等。於此等之中,較佳為苯酚及甲酚。於此等之中,氫化萜烯樹脂由於與熱塑性樹脂(C)、尤其聚丙烯樹脂的相容性更優異而較佳。
又,萜烯樹脂之玻璃轉移溫度沒有特別的限定,但較佳為30~100℃。若玻璃轉移溫度為30℃以上,則在成形加工時成分(D)之操作性優異。又,若玻璃轉移溫度為100℃以下,則可適度地抑制成形加工時的成分(D)之流動性,提升成形性。
又,萜烯樹脂之數量平均分子量較佳為200~5000。若數量平均分子量為200以上,則可更提升成形品的成形品的力學特性,尤其衝擊特性。又,若數量平均分子量為5000以下,則由於萜烯樹脂之黏度係適度地低而對無機纖維(A)及有機纖維(B)之含浸性優異,可更提升成形品中的無機纖維(A)及有機纖維(B)之分散性。此外,萜烯樹脂之數量平均分子量可使用凝膠滲透層析術(GPC)測定。
本發明之成形材料中的成分(D)之含量,相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)以及成分(D)之合計100重量份,較佳為1~20重量份。於成分(D)之含量小於1重量份時,成形品製造時的無機纖維(A)及有機纖維(B)之流動性降低,分散性降低。成分(D)之含量較佳為2重量份以上,更佳為4重量份以上。另一方面,於成分(D)之含量超過20重量份時,成形品之彎曲強度、拉伸強度及衝擊特性降低。較佳為15重量份以 下,更佳為12重量份以下,進一步較佳為10重量份以下。
作為本發明之成形材料,就具體的形狀而言可例示具有如圖1~圖4所示之剖面的柱狀體。於如此的柱狀體中,較佳為無機纖維(A)、有機纖維(B)係在柱狀體的軸心方向上大致平行地整齊排列,且無機纖維(A)、有機纖維(B)之長度與成形材料之長度係實質上相同。藉由纖維之長度與成形材料之長度實質上相同,而容易控制使用其所製造的成形品中之無機纖維(A)與有機纖維(B)之纖維長度,又,由於可使其成為比較長者,可得到更優異的力學特性之成形品。此外,所謂「大致平行地排列」,係表示包含無機纖維(A)及有機纖維(B)的纖維束之長軸的軸線與成形材料之長軸的軸線係指向相同方向的狀態,軸線彼此的角度之差距較佳為20°以下,更佳為10°以下,進一步較佳為5°以下。所謂成形材料之長度,係成形材料中的纖維束配向方向之長度,於如上述的柱狀體之情況,為該柱狀體的長軸方向之長度。又,所謂「實質上相同的長度」,係在成形材料內部纖維束未被意圖地切斷、或實質上不含有意比成形材料全長更短之纖維束。特別地,比成形材料全長更短的纖維束之量並沒有限定,但成形材料全長的50%以下之長度的纖維束之含量,較佳為全部纖維束中的30質量%以下,更佳為20質量%以下。宜成形材料全長的85%以上之長度的纖維束之含量較佳為80質量%以上,更佳為90質量%以上。
成形材料較佳為在長度方向上連續具有一定長度的大致相同之剖面形狀。成形材料之長度為8mm~14mm之範圍。小於8mm時,缺乏纖維的補強效果。換言之,使用小於8mm的成形材料進行成形時,由於無法充分增長所得之成形品中的有機纖維之重量平均纖維長度,而衝擊特性差。成形材料較佳為8.5mm以上,更佳為9mm以上,進一步較佳為10mm以上。另一方面,於成形材料超過14mm時,射出成形時的成形性降低。換言之,於成形材料之長度超過14mm時,由於成形材料長,在射出成形機內成形材料不被咬入。因此成形性降低。成形材料較佳為12mm以下,更佳為11mm以下。
又,如上述構成的本發明之成形材料在背壓壓力3MPa、射出速度30mm/s之條件下將成形品射出成形時,該成形品中的有機纖維(B)之重量平均纖維長度Lwb容易成為起始物質的成形材料長度之60%以上。當Lwb為成形材料長度之60%以上時,容易發揮成形品內的有機纖維(B)之纖維補強效果,成形品的衝擊特性提升。Lwb更佳為70%以上。此外,於後述之實施例中,測定ISO型啞鈴試驗片的Lwb,但成形品係不受此所限定。
本發明之成形材料較佳為在熱塑性樹脂(C)內具有包含連續纖維束的無機纖維(A)及有機纖維(B)之纖維束。換言之,較佳為具有在纖維束之外側配置有熱塑性樹脂(C)之構成。於熱塑性樹脂(C)中,亦可包含成分(D),又,亦可構成在前述纖維束的各單纖維間充滿成分(D)之複合纖維束(E),並在其外側配置熱塑性樹脂(C)。 複合纖維束(E)係在纖維束中含浸成分(D)而成,係無機纖維(A)及有機纖維(B)以島之方式分散於成分(D)的海之狀態。
本發明之成形材料較佳為具有前述纖維束或複合纖維束(E)經前述熱塑性樹脂(C)所被覆之芯鞘構造。成為鞘構造的熱塑性樹脂(C)可因應需要更含有其它成分而作成熱塑性樹脂組成物。此處,所謂「經被覆的構造」,係指含有前述熱塑性樹脂(C)的組成物(以下,於組成物時亦有僅稱為「熱塑性樹脂(C)」的情況)係配置於纖維束或複合纖維束(E)之表面而接著的構造。
本發明之成形材料中所含的成分(D)係低分子量的情況多,多為在常溫下通常比較脆且容易破碎之固體、或液體。藉由作成於複合纖維束(E)之外側包含熱塑性樹脂(C)之構成,而高分子量的熱塑性樹脂(C)保護複合纖維束(E),可抑制因成形材料之搬運或操作時的衝擊、摩擦等所造成的成分(D)之破碎、飛散等,保持成形材料之形狀。從操作性之觀點來看,本發明之成形材料較佳為保持前述之形狀直到供於成形為止。
複合纖維束(E)與熱塑性樹脂(C)亦可為如在邊界附近,熱塑性樹脂(C)部分地進入複合纖維束(E)之一部分內而相容之狀態,也可為如在複合纖維束(E)中含浸有熱塑性樹脂(C)之狀態。
本發明之成形材料較佳為在纖維束剖面中,無機纖維(A)與有機纖維(B)係偏向地存在。此處,所謂的纖維束剖面,係指纖維束之對於纖維長度方向呈 垂直的剖面。藉由於纖維束剖面中,無機纖維(A)與有機纖維(B)係偏向地存在,而抑制成形時的無機纖維(A)及有機纖維(B)之纏結,可得到無機纖維(A)及有機纖維(B)均勻分散之成形品。因此,可更提升成形品的衝擊特性。此處,本發明中所謂的「偏向地存在」,係指於纖維束剖面中,無機纖維(A)與有機纖維(B)各自並非在全部的區域中均等地存在,而係偏向部分地存在。作為本發明中的「偏向地存在」之態樣,例如可舉出:如圖1所示之於纖維束剖面中無機纖維(A)1內包有機纖維(B)2之形態、或如圖2所示之有機纖維(B)2內包無機纖維(A)1之形態等的所謂芯鞘型構造;或者如圖3所示之於纖維束剖面中無機纖維(A)1之束與有機纖維(B)2之束係藉由某邊界部以分開的狀態各自存在之構造等。此外,本發明中所謂的「內包」,係指將無機纖維(A)配置於芯部,將有機纖維(B)配置於鞘部之態樣;或將有機纖維(B)配置於芯部,將無機纖維(A)配置於鞘部之態樣等。圖3所示的態樣之情況,於纖維束剖面中,無機纖維(A)與有機纖維(B)的各自至少一部分係接於外層的熱塑性樹脂(C)3。此時,於無機纖維(A)或有機纖維(B)接於熱塑性樹脂(C)3之態樣中,如圖4所示,亦包含無機纖維(A)或有機纖維(B)隔著成分(D)而接於熱塑性樹脂(C)3之態樣。
此外,於本發明中,作為確認纖維束中無機纖維(A)、有機纖維(B)偏向地存在之方法,例如可舉出以設定在倍率300倍的光學顯微鏡,觀察成形材料之 對於纖維長度方向呈垂直的剖面,進行所得之顯微鏡影像的影像處理並解析之手法。
作為於纖維束的剖面中使無機纖維(A)、有機纖維(B)偏向地存在之方法,可舉出將無機纖維(A)之束與有機纖維(B)之束予以併線而製作上述成形材料之方法。將各自的束彼此予以併線而製作成形材料,藉此無機纖維(A)與有機纖維(B)變得作為獨立的纖維束存在,可使其偏向地存在。若增多所使用的無機纖維(A)之束與有機纖維(B)之束的單纖維數則可將束增大,若減少單纖維數則可將束縮小,可改變束的大小而使其偏向地存在。
使用碳纖維作為無機纖維(A)時,並沒有特別的限制,但較佳為使用碳纖維的條數是100~350,000條的纖維束,從生產性之觀點來看,更佳為使用20,000~100,000條的纖維束。另一方面,使用聚酯纖維、聚苯硫纖維、液晶聚酯纖維等作為有機纖維(B)時,並沒有特別的限制,但較佳為使用1~2,000條的纖維束,從生產性及能抑制成形品內的纖維彼此之纏結的觀點來看,更佳為使用10~1,000條的纖維束,進一步較佳為使用30~700條的纖維束。
藉由使用上述成形材料進行成形,可得到無機纖維(A)及有機纖維(B)之分散性優異,且彎曲強度、衝擊特性優異之成形品。
接著,說明上述成形材料之製造方法。本發明之成形材料例如可藉由以下的方法而得。
可舉出:首先,將無機纖維(A)的粗紗及有機纖維(B)的粗紗相對於纖維長度方向而並列地併紗,製作具有無機纖維(A)與有機纖維(B)的纖維束;其次,使熔融的成分(D)含浸至纖維束而製作複合纖維束(E);再者,將複合纖維束(E)導引至充滿熔融的包含熱塑性樹脂(C)之組成物的含浸模頭中,使熱塑性樹脂(C)被覆於複合纖維束(E)的外側,通過噴嘴拔出;於冷卻固化後,造粒成為指定的長度,而得到成形材料之方法(形態I)。熱塑性樹脂(C)只要至少配置於複合纖維束(E)之外側,則亦可含浸至纖維束中。
亦可將藉由前述方法所製作之複合纖維束(E)經熱塑性樹脂(C)被覆的成形材料、與不含熱塑性樹脂(C)的顆粒(不含無機纖維(A)或有機纖維(B)),進行顆粒摻合,而得到成形材料混合物。藉此,可容易調整成形品中的無機纖維(A)、有機纖維(B)之含量。此外,所謂的顆粒摻合,與熔融混煉不同,係指將複數的材料在樹脂成分不熔融的溫度下攪拌‧混合,成為實質上均勻的狀態,較佳使用於主要為射出成形或擠出成形等之使用顆粒形狀的成形材料之情況。
又,本發明亦包含:藉由將無機纖維(A)經熱塑性樹脂(C)被覆之顆粒、與有機纖維(B)經與先前的顆粒相同或不同的熱塑性樹脂(C)被覆之顆粒,進行顆粒摻合而得之成形材料(形態II)。於此態樣中,更佳為成分(D)至少含浸至無機纖維(A)。具體而言,例如較佳為分別準備至少包含無機纖維(A)、熱塑性樹脂(C)及成 分(D)之無機纖維強化熱塑性樹脂成形材料(X)(亦稱為「無機纖維強化成形材料(X)」)與至少包含有機纖維(B)、熱塑性樹脂(F)及成分(G)之有機纖維強化熱塑性樹脂成形材料(Y)(亦稱為「有機纖維強化成形材料(Y)」),將此等進行顆粒摻合。
無機纖維強化成形材料(X)較佳為具有:包含在無機纖維(A)中含浸成分(D)而成之複合纖維束(H),且在複合纖維束(H)之外側包含熱塑性樹脂(C)之構成。無機纖維(A)較佳為在無機纖維強化成形材料(X)的軸心方向上大致平行地排列,又,無機纖維強化成形材料(X)之長度較佳為8~14mm。同時,較佳為無機纖維(A)之長度與無機纖維強化成形材料(X)之長度係實質上相同。
有機纖維強化成形材料(Y)較佳為具有:包含在有機纖維(B)中含浸成分(G)而成之複合纖維束(I),且在複合纖維束(I)之外側包含熱塑性樹脂(F)之構成。此外,於成分(G)中,亦可使用在先前說明的成分(D)中所例示的化合物,此情況,成分(D)與成分(G)可為相同的化合物,也可為不同的化合物。熱塑性樹脂(F)可使用在先前說明的熱塑性樹脂(C)中所例示的樹脂,熱塑性樹脂(C)與熱塑性樹脂(F)可為相同的化合物,也可為不同的化合物。
有機纖維(B)較佳為在有機纖維強化成形材料(Y)的軸心方向上大致平行地排列,又,有機纖維強化成形材料(Y)之長度較佳為8~14mm。同時,較佳為有機 纖維(B)之長度與有機纖維強化成形材料(Y)之長度係實質上相同。
此處,所謂「大致平行地排列」,係指於無機纖維強化成形材料(X)及有機纖維強化成形材料(Y)各自中,纖維束的長軸之軸線與包含彼等的成形材料的長軸之軸線指向相同方向之狀態,係指軸線彼此的角度之差距較佳為20°以下,更佳為10°以下,進一步較佳為5°以下。又,所謂「實質上相同的長度」,係指於無機纖維強化成形材料(X)及有機纖維強化成形材料(Y)各自中,該成形材料之全長的50%以下之長度的纖維束之含量為全部纖維束中30質量%以下,較佳為20質量%以下。宜全長的85%以上之長度的纖維束之含量較佳為80質量%以上,更佳為90質量%以上。
無機纖維強化成形材料(X),相對於無機纖維(A)、熱塑性樹脂(C)及成分(D)之合計100重量份,較佳為包含5~45重量份的無機纖維(A)、10~94重量份的熱塑性樹脂(C)、1~20重量份的成分(D)。有機纖維強化成形材料(Y),相對於有機纖維(B)、熱塑性樹脂(F)及成分(G)之合計100重量份,較佳為包含1~45重量份的有機纖維(B)、10~98重量份的熱塑性樹脂(F)、1~20重量份的成分(G)。
而且,較佳為相對於無機纖維強化成形材料(X)與有機纖維強化成形材料(Y)之合計100重量份,摻合50~80重量份的無機纖維強化成形材料(X)、20~50重量份的有機纖維強化成形材料(Y)。再者,將無機纖維 強化成形材料(X)與有機纖維強化成形材料(Y)作成顆粒摻合物(混合物)時,作為混合物全體,較佳為相對於無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)以及成分(D)之合計100重量份,以無機纖維(A)成為5~45重量份、有機纖維(B)成為1~45重量份、熱塑性樹脂(C)成為10~93重量份以及成分(D)成為1~20重量份之方式調製。此外,於算出如此的比率時,將作為熱塑性樹脂(F)使用的熱塑性樹脂當作熱塑性樹脂(C)而算入,使用相當於成分(D)者作為成分(G)時,將該成分(G)當作成分(D)而算入。
接著,說明本發明之成形品的製造方法。
藉由使用前述本發明之成形材料進行成形,可得到無機纖維(A)及有機纖維(B)之分散性優異,且彎曲強度、衝擊特性優異之成形品。作為成形方法,較佳為使用模具之成形方法,可使用射出成形、擠壓成形、加壓成形等各種的成形方法。特別地,藉由使用射出成形機的成形方法,可連續地得到安定的成形品。作為射出成形之條件,並沒有特別的規定,例如射出時間較佳為0.5秒~10秒,更佳為2秒~10秒。背壓較佳為0.1MPa以上,更佳為1MPa以上,進一步較佳為2MPa以上,最佳3MPa以上。又,上限較佳為50MPa以下,更佳為30MPa以下,進一步較佳為20MPa以下,最佳為10MPa以下。射出速度較佳為1mm/s~200mm/s,更佳為10mm/s~150mm/s,進一步較佳為20mm/s~100mm/s。螺桿旋轉數較佳為10rpm~200rpm,更佳為30rpm~150rpm, 進一步較佳為50rpm~100rpm。保壓壓力較佳為1MPa~50MPa,更佳為1MPa~30MPa。保壓時間較佳為1秒~20秒,更佳為5秒~20秒。料筒溫度為200℃~320℃,模具溫度為20℃~100℃之條件較佳。此處,所謂的料筒溫度,係表示射出成形機之將成形材料加熱熔融的部分之溫度,所謂的模具溫度,係表示為了形成指定的形狀之注入樹脂的模具之溫度。藉由適宜選擇此等條件,尤其射出時間、背壓及模具溫度,可容易調整成形品中的碳纖維等之無機纖維及有機纖維的纖維長度。
如以上所得的本發明之成形品係力學特性尤其彎曲強度、衝擊特性優異。
實施例
以下顯示實施例,更具體地說明本發明,惟本發明不受此等實施例之記載所限定。首先,說明本實施例所用的各種特性之評價方法。
(1)熔融黏度測定
對於各實施例及比較例中使用之熱塑性樹脂(C)、成分(D),使用40mm的平行板,以0.5Hz,藉由黏彈性測定器測定在200℃的熔融黏度。
(2)重量平均纖維長度之測定
於設定在200~300℃的熱載台上,將藉由各實施例及比較例所得的ISO型啞鈴試驗片以夾於玻璃板間之狀態加熱,使其成為薄膜狀而使纖維均勻分散。以光學顯 微鏡(50~200倍)觀察無機纖維(A)及有機纖維(B)均勻分散的薄膜。對於隨機選出的1000條無機纖維(A)與同樣地隨機選出的1000條有機纖維(B),分別計測纖維長度,由下述式算出重量平均纖維長度。
平均纖維長度=Σ(Mi2×Ni)/Σ(Mi×Ni)
Mi:纖維長度(mm)
Ni:纖維長度Mi的纖維之個數
(3)成形品之彎曲強度測定
對於藉由各實施例及比較例所得的ISO型啞鈴試驗片,遵照ISO 178,使用3點彎曲試驗夾具(壓頭半徑5mm),將支點距離設定在64mm,以試驗速度2mm/分鐘之試驗條件測定彎曲強度。使用「Instron」(註冊商標)萬能試驗機5566型(Instron公司製)作為試驗機。測定係進行3次,算出其平均值當作各實施例及比較例之彎曲強度。
(4)成形品之夏比衝擊強度(Charpy impact strength)測定
將藉由各實施例及比較例所得之ISO型啞鈴型試驗片的平行部切出,使用東京試驗機股份有限公司製C1-4-01型試驗機,遵照ISO 179,實施附V缺口的夏比衝擊試驗。測定係進行5次,算出其平均值當作各實施例及比較例之衝擊強度(kJ/m2)。
(5)成形品之纖維分散性評價
對於藉由各實施例及比較例所得的80mm×80mm×3mm厚之試驗片,以目視計數表裏各自的面上所存在的未分散無機纖維束(CF束)之個數。評價係對於50片的成形品進行,對於其之合計個數,藉由以下之基準進行纖維分散性之判定,將A及B當作合格。
A:未分散CF束少於1個
B:未分散CF束為1個以上
C:未分散CF束為3個以上
(6)射出成形時之成形性評價
對於各實施例及比較例中使用的成形材料之成形性,於成形材料開始被咬入至射出成形機的螺桿後,計數螺桿移動到規定的計量位置為止且完成計量之時間。藉由以下之基準進行判定,將A當作合格。
A:計量時間少於120秒
B:計量時間為120秒以上
(7)成形品之落錘衝擊吸收能量測定
對於藉由各實施例及比較例所得的80mm×80mm×3mm之試驗片,使用錘前端為圓形的錘頭(
Figure 107127385-A0202-12-0050-14
20mm),以錘質量15kg、落錘速度4.4m/秒、試驗溫度23℃之條件實施落錘衝擊試驗,測定落錘衝擊吸收能量(J)。測定係進行3次,算出其平均值當作各實施例及比較例之落錘衝擊吸收能量。
(8)成形品之防飛散性評價
對於藉由各實施例及比較例所得的80mm×80mm×3mm之試驗片,以(7)所示的條件實施落錘衝擊試驗,藉由試驗後的飛散狀況進行判定。藉由以下之基準進行防飛散性之判定,將A及B當作合格。測定係進行3次,將其中數目最多的飛散狀況當作各實施例及比較例之防飛散性評價結果。
A:成形品未被破壞(意指成形品未分裂成2個以上。可舉出在成形品中產生裂痕之情況)
B:成形品分裂成2個
C:成形品分裂成3個以上(即,可舉出成形品成為3個以上的碎片之情況)
(9)衝壓碰撞試驗
對於藉由各實施例及比較例所得的800mm×400mm×150mm之箱型、厚度2.5mm的大型成形品,使用角柱塊型的擊鎚(100mm×100mm),以擊鎚質量15kg、碰撞速度5.0m/秒、試驗溫度23℃之條件,對於800mm×400mm之面,實施衝壓擊鎚之碰撞試驗。藉由經擊鎚所衝壓的面積,判定吸收能量之大小。關於碰撞時的吸收能量,藉由以下基準進行大小之判定,將A及B當作合格。測定係進行3次,於各實施例及比較例的衝壓吸收能量之評價,使用其中經衝壓的面積最大的一次。
A:經衝壓的面積係比擊鎚剖面積大。
B:經衝壓的面積係與擊鎚剖面積相同,且當僅看經衝壓的部位時,沒有產生裂痕或分裂成複數。
C:經衝壓的面積係與擊鎚剖面積相同,當僅看經衝壓的部位時,有產生裂痕。
D:經衝壓的面積係與擊鎚剖面積相同,當僅看經衝壓的部位時,分裂成複數。
<無機纖維(A)之製作>
從以聚丙烯腈為主成分的共聚物,進行紡絲、燒製處理、表面氧化處理,得到總單紗數24,000條、單纖維直徑7μm、每單位長度的質量1.6g/m、比重1.8g/cm3、表面氧濃度比[O/C]0.2之連續碳纖維。此連續碳纖維之股束(strand)拉伸強度為4,880MPa,股束拉伸彈性模數為225GPa。接著,調製將作為多官能性化合物的甘油多環氧丙基醚以成為2重量%之方式溶解於水而成的上漿劑母液,藉由浸漬法將上漿劑賦予至碳纖維,在230℃進行乾燥。如此所得的碳纖維之上漿劑附著量為1.0重量%。
<有機纖維(B)> (B-1)
使用聚酯纖維(東麗(股)製,「Tetoron(註冊商標)」2200T-480-705M,單纖維纖度:4.6dtex,熔點:260℃)。
(B-2)
使用聚苯硫纖維(東麗(股)製「Torcon」(註冊商標)400T-100-190,單纖維纖度4.0dtex,熔點285℃)。
(B-3)
使用聚四氟乙烯纖維(東麗(股)製「Toyoflon」(註冊商標)440T-60F-S290-M190,單纖維纖度7.3dtex,熔點327℃)。
(B-4)
使用液晶聚酯纖維(東麗(股)製「Siveras」(註冊商標)1700T-288f,單纖維纖度5.7dtex,熔點330℃)。
<熱塑性樹脂(C)> (C-1)
使用將聚丙烯樹脂(PRIME POLYMER(股)製「Prime Polypro」(註冊商標)J137G)與馬來酸改質聚丙烯樹脂(三井化學(股)製「Admer」(註冊商標)QE840)以重量比85/15進行顆粒摻合者。藉由上述(1)中記載之方法測定在200℃的熔融黏度,結果為50Pa‧s。
(C-2)
使用聚碳酸酯樹脂(帝人化成(股)製,「Panlite」(註冊商標)L-1225L)。藉由上述(1)中記載之方法測定在200℃的熔融黏度,結果為14000Pa‧s。
(C-3)
使用聚苯硫樹脂(東麗(股)製「Torelina(註冊商標)」M2888)。除了將測定溫度設為310℃以外,藉由上述(1)中記載之方法測定熔融黏度,結果為50Pa‧s。
<成分(D)> (D-1)
使用固體的氫化萜烯樹脂(Yasuhara Chemical(股)製「Clearon」(註冊商標)P125,軟化點125℃)。將其投入含浸助劑塗布裝置內的槽內,將槽內之溫度設定在200℃,加熱1小時而使其成為熔融狀態。藉由上述(1)中記載之方法測定此時在200℃的熔融黏度,結果為1Pa‧s,又,算出熔融黏度變化率,結果為1.2%。
(D-2)
使用固體的雙酚A型環氧樹脂(三菱化學(股)製jER1004AF(E-2),軟化點97℃),作為將聚碳酸酯樹脂使用於熱塑性樹脂(C)時的成分(D)。將其與前述P125同樣地,藉由上述(1)中記載之方法測定熔融黏度,結果為1Pa‧s,又,算出熔融黏度變化率,結果為1.1%。
(實施例1)
使用在日本製鋼所(股)製TEX-30α型雙軸擠壓機(螺桿直徑30mm,L/D=32)之前端設有電線被覆法用的塗布模頭的長纖維強化樹脂顆粒製造裝置,將擠壓機料筒溫度設定在220℃,從主料斗供給上述所示的熱塑性樹脂(C-1),以螺桿旋轉數200rpm進行熔融混煉。將在200℃加熱熔融的成分(D-1),以相對於(A)~(C)之合計100重量份成為8.7重量份(相對於(A)~(D)之合計100重量份為8.0重量份)之方式調整吐出量,賦予至包含無機纖維 (A)及有機纖維(B-1)的纖維束而作成複合纖維束(E)後,將該複合纖維束(E)供給至吐出包含熔融的熱塑性樹脂(C-1)的組成物之模口(直徑3mm),以使無機纖維(A)及有機纖維(B-1)之周圍被包含熱塑性樹脂(C-1)的組成物連續地被覆。此時的複合纖維束(E)之內部剖面係無機纖維(A)及有機纖維(B-1)偏向地存在。偏向地存在的狀態係如圖3所示,無機纖維(A)、有機纖維(B-1)的各自至少一部分係接於包含熱塑性樹脂(C-1)的組成物。將所得之股束冷卻後,以切刀切斷成顆粒長度8mm,作成長纖維顆粒。此時,以相對於(A)~(C)之合計100重量份,無機纖維(A)成為20重量份,有機纖維(B-1)成為5重量份之方式,調整牽引速度。所得之長纖維顆粒的無機纖維(A)及有機纖維(B-1)之長度與顆粒長度係實質上相同。此外,偏向地存在的狀態係以設定在倍率300倍的光學顯微鏡觀察所得之長纖維顆粒的對於纖維長度方向呈垂直的剖面,,進行所得之顯微鏡影像的影像處理並解析。
藉由使用射出成形機(日本製鋼所(股)製J110AD),於射出時間:2秒、背壓5MPa、保壓壓力:20MPa、保壓時間:10秒、射出速度30mm/s、螺桿旋轉數80rpm、料筒溫度:230℃、模具溫度:60℃之條件下,將如此所得之長纖維顆粒予以射出成形,而製作作為成形品的ISO型啞鈴試驗片(型A1)及80mm×80mm×3mm的試驗片。此處,所謂的料筒溫度,係表示射出成形機之將成形材料加熱熔融的部分之溫度,所謂的模具溫度,係表示為了成為指定的形狀之注入樹脂的模具之溫度。 將所得之試驗片(成形品)在調整至溫度23℃、50%RH的恒溫恒濕室中靜置24小時後,供於特性評價。彙總藉由前述方法所評價的評價結果,顯示於表1中。
又,藉由使用射出成形機(日本製鋼所(股)製J1300E-C3),於射出時間:10秒、背壓5MPa、射出速度:100mm/秒、料筒溫度:230℃、模具溫度:80℃之條件下,將所得之長纖維顆粒予以射出成形,而製作800mm×400mm×150mm的箱型、厚度2.5mm之大型成形品。將所得之大型成形品在調整至溫度23℃、50%RH的恒溫恒濕室中靜置24小時後,供於特性評價。彙總藉由前述方法所評價的評價結果,顯示於表1中。
(實施例2~4)
除了如表1中記載地變更組成比或所用的纖維種類以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例5)
除了將熱塑性樹脂(C)變更為(C-2),將有機纖維(B)變更為(B-3),將成分(D)變更為(D-2),再者,將料筒溫度變更為300℃,將模具溫度變更為80℃以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例6)
除了將熱塑性樹脂(C)變更為(C-2),將有機纖維(B)變更為(B-4),將成分(D)變更為(D-2),再者,將料筒溫度變更為300℃,將模具溫度變更為80℃以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例7)
除了以相對於(A)~(C)之合計100重量份,有機纖維(B-1)成為20重量份,成分(D)成為13.9重量份(相對於(A)~(D)之合計100重量份,有機纖維(B-1)成為20重量份,成分(D)成為12.2重量份))之方式變更以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例8)
除了將熱塑性樹脂(C)變更為(C-3),將有機纖維(B)變更為(B-3),將成分(D)變更為(D-2),再者,將料筒溫度變更為330℃,將模具溫度變更為130℃以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例9)
除了將長纖維顆粒的顆粒長度變更為14mm以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例10)
除了將長纖維顆粒的顆粒長度變更為14mm,將有機纖維(B)變更為(B-4)以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例11)
除了如表1中記載地變更組成比或所用的纖維種類以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表1中。
(實施例12)
除了將射出成形時的背壓壓力變更為15MPa,如表2中記載地變更組成比或所用的纖維種類以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(實施例13)
除了將射出成形時的背壓壓力變更為1MPa,如表2中記載地變更組成比或所用的纖維種類以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(實施例14)
除了將射出成形時的背壓壓力變更為15MPa以外,與實施例6同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(實施例15)
除了將長纖維顆粒的顆粒長度變更為14mm,將有機纖維(B)變更為(B-4),再者,將射出成形時的背壓壓力設為1MPa以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(實施例16)
除了將射出成形ISO型啞鈴試驗片及大型成形品時的背壓壓力設為15MPa,將射出速度設為100mm/s以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(實施例17)
除了將長纖維顆粒的顆粒長度變更為19mm,再者,將射出成形時的背壓壓力設為1MPa外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表2中。
(比較例1~3)
除了如表3中記載地變更組成以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表3中。
(比較例4)
除了以使射出成形時的成形背壓成為20MPa的方式進行以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表3中。
(比較例5)
除了將長纖維顆粒的顆粒長度設為25mm以外,與實施例1同樣地嘗試成形品之製作、評價。然而,由於增長長纖維顆粒的顆粒長度,顆粒不被咬入至射出成形機的螺桿,無法成形。彙總條件,顯示於表3中。
(比較例6)
除了將長纖維顆粒的顆粒長度設為20mm以外,與實施例1同樣地嘗試成形品之製作‧評價。然而,由於增長長纖維顆粒的顆粒長度,顆粒不被咬入至射出成形機的螺桿,無法成形。彙總條件,顯示於表3中。
(比較例7)
除了將長纖維顆粒的顆粒長度設為7mm,如表3中記載地變更組成以外,與實施例1同樣地製作成形品,進行評價。彙總評價結果,顯示於表3中。
Figure 107127385-A0202-12-0061-1
Figure 107127385-A0202-12-0062-2
Figure 107127385-A0202-12-0063-3
實施例1~17之任一材料皆係無機纖維(A)、有機纖維(B)及成分(D)存在於成形品內,顯示高的彎曲強度、衝擊特性。另一方面,於比較例1中,由於不含有機纖維(B),而成為纖維補強效果弱,衝擊特性低,成形品的防飛散性亦低之結果。於增多無機纖維(A)之含量的比較例2中,由於無機纖維(A)彼此纏結,成形品內的纖維分散性差,而成為衝擊特性低,成形品的防飛散性亦低之結果。於比較例3中,由於不含無機纖維(A),而成為衝擊特性低,成形品的防飛散性亦低之結果。於比較例4中,由於增高成形時的背壓,而有機纖維(B)纖維長度變得過短,成為衝擊特性低,成形品的防飛散性亦低之結果。於比較例5及6中,由於增長長纖維顆粒的顆粒長度,而顆粒不被咬入至射出成形機的螺桿,無法成形。於縮短長纖維顆粒的顆粒長度的比較例7中,成為成形品的防飛散性亦低之結果。
產業上的可利用性
作為本發明之成形品及成形材料的用途,可舉出儀表板、門樑、下蓋、備胎罩、前端、構造用構件、內部零件等之汽車零件;或電話、傳真機、VTR、影印機、電視、微波爐、音響機器、化妝(toiletry)用品、雷射光碟(註冊商標)、電冰箱、空調機等之家庭‧事務電氣製品零件;再者,個人電腦、行動電話等所使用的殼體;或以在個人電腦的內部支撐鍵盤的鍵盤支撐體為代表之電氣‧電子機器用構件等。其中,從大型成形品破壞時的防碎片飛散特性亦優異來看,宜適用於大型成形品,尤其車門下裝飾或車門內板等成形品。

Claims (5)

  1. 一種纖維強化熱塑性樹脂成形品,其係包含無機纖維(A)、有機纖維(B)、熱塑性樹脂(C)及在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)之纖維強化熱塑性樹脂成形品,無機纖維(A)為碳纖維,在200℃的熔融黏度比熱塑性樹脂(C)低的成分(D)係選自環氧樹脂、酚樹脂、萜烯樹脂、環狀聚芳硫樹脂的至少1種,相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,包含5~45重量份的無機纖維(A)、1~45重量份的有機纖維(B)、10~94重量份的熱塑性樹脂(C),纖維強化熱塑性樹脂成形品中的無機纖維(A)之重量平均纖維長度(Lwa)為0.05mm以上2.5mm以下,且有機纖維(B)之重量平均纖維長度(Lwb)超過4mm且為20mm以下,無機纖維(A)之重量平均纖維長度(Lwa)與有機纖維(B)之重量平均纖維長度(Lwb)滿足下述式:8<(Lwb/Lwa)≦30。
  2. 如請求項1之纖維強化熱塑性樹脂成形品,其中無機纖維(A)之重量平均纖維長度(Lwa)為0.5mm以上2.5mm以下。
  3. 如請求項1或2之纖維強化熱塑性樹脂成形品,其中相對於無機纖維(A)、有機纖維(B)及熱塑性樹脂(C)之合計100重量份,有機纖維(B)之含量為1重量份以上 10重量份以下。
  4. 如請求項1或2之纖維強化熱塑性樹脂成形品,其中有機纖維(B)係選自包含聚醯胺纖維、聚酯纖維、聚芳硫(polyarylene sulfide)纖維及氟樹脂纖維之群組的至少1種。
  5. 如請求項1或2之纖維強化熱塑性樹脂成形品,其中熱塑性樹脂(C)係選自包含聚丙烯系樹脂、聚醯胺樹脂、聚碳酸酯樹脂及聚芳硫樹脂之群組的至少1種。
TW107127385A 2017-08-08 2018-08-07 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料 TWI791582B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-153082 2017-08-08
JP2017153082 2017-08-08
JP2018-032717 2018-02-27
JP2018032717 2018-02-27

Publications (2)

Publication Number Publication Date
TW201920429A TW201920429A (zh) 2019-06-01
TWI791582B true TWI791582B (zh) 2023-02-11

Family

ID=65271992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127385A TWI791582B (zh) 2017-08-08 2018-08-07 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料

Country Status (7)

Country Link
US (1) US11529769B2 (zh)
EP (1) EP3666817A4 (zh)
JP (1) JP6766877B2 (zh)
KR (1) KR102481163B1 (zh)
CN (1) CN110785454B (zh)
TW (1) TWI791582B (zh)
WO (1) WO2019031288A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015047B1 (en) 2017-09-05 2021-05-25 Toray Industries, Inc. Moldings of fiber-reinforced thermoplastic resin
EP4166301A1 (en) * 2020-06-15 2023-04-19 Tomoegawa Co., Ltd. Thermoplastic resin composite material, thermoplastic resin composite material particle, and molded article
WO2023074305A1 (ja) * 2021-10-27 2023-05-04 東レ株式会社 繊維強化熱可塑性樹脂成形品
CN116426071B (zh) * 2023-05-25 2024-03-19 江苏大易材料科技有限公司 一种高力学性能热塑性连续纤维带材及其生产工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073482A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453368B1 (zh) 1964-11-27 1970-02-04
US3919177A (en) 1973-11-19 1975-11-11 Phillips Petroleum Co P-phenylene sulfide polymers
JPS617332U (ja) 1984-06-20 1986-01-17 ナショナル住宅産業株式会社 キヤビネツト
JPS617332A (ja) 1984-06-20 1986-01-14 Kureha Chem Ind Co Ltd 高分子量ポリアリ−レンスルフイドの製造法
JPH06287317A (ja) 1993-04-01 1994-10-11 Kobe Steel Ltd 繊維強化合成樹脂製品成形用ペレット
JP3543011B2 (ja) * 1993-04-27 2004-07-14 出光石油化学株式会社 ポリオレフィン樹脂組成物
JP3732541B2 (ja) * 1994-11-30 2006-01-05 出光興産株式会社 繊維強化樹脂成形用材料,成形方法及び成形品
JP2002129027A (ja) 2000-10-25 2002-05-09 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2009013331A (ja) * 2007-07-06 2009-01-22 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物および成形品
JP5238939B2 (ja) * 2007-11-07 2013-07-17 三菱化学株式会社 長繊維強化複合樹脂組成物および成形品
JP2010121108A (ja) 2008-10-22 2010-06-03 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物及び成形品
JP5768811B2 (ja) 2011-02-28 2015-08-26 東レ株式会社 射出成形体の製造方法
JP5633660B1 (ja) * 2012-12-21 2014-12-03 東レ株式会社 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
EP3178870B1 (en) * 2014-08-06 2023-07-19 Toray Industries, Inc. Fibre-reinforced thermoplastic resin moulding material
JP2016074779A (ja) 2014-10-03 2016-05-12 日本ポリプロ株式会社 繊維強化プロピレン系樹脂組成物
JP6957859B2 (ja) * 2015-10-29 2021-11-02 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP6123956B1 (ja) 2015-10-30 2017-05-10 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073482A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Also Published As

Publication number Publication date
JPWO2019031288A1 (ja) 2020-04-30
TW201920429A (zh) 2019-06-01
US20200139641A1 (en) 2020-05-07
CN110785454A (zh) 2020-02-11
EP3666817A4 (en) 2021-04-28
KR20200038920A (ko) 2020-04-14
JP6766877B2 (ja) 2020-10-14
KR102481163B1 (ko) 2022-12-26
WO2019031288A1 (ja) 2019-02-14
EP3666817A1 (en) 2020-06-17
US11529769B2 (en) 2022-12-20
CN110785454B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10385174B2 (en) Fiber reinforced thermoplastic resin molding material, and fiber reinforced thermoplastic resin molded article
JP5633660B1 (ja) 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
JP6123955B1 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
TWI791582B (zh) 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料
TWI784935B (zh) 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料
JP6957859B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP7136086B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP2018059087A (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP6554815B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP6996351B2 (ja) 繊維強化熱可塑性樹脂組成物、繊維強化熱可塑性樹脂成形材料およびそれからなる成形品
WO2023058448A1 (ja) 繊維強化熱可塑性樹脂組成物